From: Luke Kenneth Casson Leighton Date: Wed, 27 Sep 2023 10:25:43 +0000 (+0100) Subject: code-cleanup, bit of comments, copyright, blah blah, link to bugreport X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=738783aa5886abf42f58c2721aa714f29854646a;p=openpower-isa.git code-cleanup, bit of comments, copyright, blah blah, link to bugreport all preparation before doing code-morph on simple-demo to work out how to demonstrate REMAP Indexed (then BigMul) viability --- diff --git a/src/openpower/test/bigint/powmod.py b/src/openpower/test/bigint/powmod.py index f2831df8..04ae3564 100644 --- a/src/openpower/test/bigint/powmod.py +++ b/src/openpower/test/bigint/powmod.py @@ -1,8 +1,11 @@ # SPDX-License-Identifier: LGPL-3-or-later # Copyright 2023 Jacob Lifshay programmerjake@gmail.com +# Copyright 2023 Luke Kenneth Casson Leighton # Funded by NLnet Assure Programme 2021-02-052, https://nlnet.nl/assure part # of Horizon 2020 EU Programme 957073. +# +# * https://bugs.libre-soc.org/show_bug.cgi?id=1044 """ modular exponentiation (`pow(x, y, z)`) @@ -41,23 +44,26 @@ MUL_256_X_256_TO_512_ASM = ( "bclr 20, 0, 0 # blr", ) +# TODO: these really need to go into a common util file, see +# openpower/decoder/isa/poly1305-donna.py:def _DSRD(lo, hi, sh) +# okok they are modulo 100 but you get the general idea +def maddedu(a, b, c): + y = a * b + c + return y % 100, y // 100 -def _python_mul_algorithm(a, b): - # version of the MUL_256_X_256_TO_512_ASM algorithm using base 100 rather - # than 2^64, since that's easier to read. - # run this file in a debugger to see all the intermediate values. - def maddedu(a, b, c): - y = a * b + c - return y % 100, y // 100 +def adde(a, b, c): + y = a + b + c + return y % 100, y // 100 - def adde(a, b, c): - y = a + b + c - return y % 100, y // 100 +def addc(a, b): + y = a + b + return y % 100, y // 100 - def addc(a, b): - y = a + b - return y % 100, y // 100 +def python_mul_algorithm(a, b): + # version of the MUL_256_X_256_TO_512_ASM algorithm using base 100 rather + # than 2^64, since that's easier to read. + # run this file in a debugger to see all the intermediate values. y = [0] * 8 t = [0] * 5 for i in range(4): @@ -83,22 +89,11 @@ def _python_mul_algorithm(a, b): return y -def _python_mul_algorithm2(a, b): - # version of the MUL_256_X_256_TO_512_ASM algorithm using base 100 rather +def python_mul_algorithm2(a, b): + # version 2 of the MUL_256_X_256_TO_512_ASM algorithm using base 100 rather # than 2^64, since that's easier to read. # the idea here is that it will "morph" into something more akin to # using REMAP bigmul (first using REMAP Indexed) - def maddedu(a, b, c): - y = a * b + c - return y % 100, y // 100 - - def adde(a, b, c): - y = a + b + c - return y % 100, y // 100 - - def addc(a, b): - y = a + b - return y % 100, y // 100 y = [0] * 8 t = [0] * 5 @@ -272,11 +267,14 @@ class PowModCases(TestAccumulatorBase): # TODO: add 256-bit modular exponentiation +# for running "quick" simple investigations if __name__ == "__main__": + # first check if python_mul_algorithm works a = b = (99, 99, 99, 99) expected = [1, 0, 0, 0, 98, 99, 99, 99] - assert _python_mul_algorithm(a, b) == expected + assert python_mul_algorithm(a, b) == expected + # now test python_mul_algorithm2 *against* python_mul_algorithm import random random.seed(0) # reproducible values for i in range(10): @@ -285,10 +283,9 @@ if __name__ == "__main__": for j in range(4): a.append(random.randint(0,99)) b.append(random.randint(0,99)) - expected = _python_mul_algorithm(a, b) - testing = _python_mul_algorithm2(a, b) - report = "%+17s * %-17s = %s\n" \ - " (%s)" % \ - (repr(a), repr(b), repr(expected), repr(testing)) + expected = python_mul_algorithm(a, b) + testing = python_mul_algorithm2(a, b) + report = "%+17s * %-17s = %s\n" % (repr(a), repr(b), repr(expected)) + report += " (%s)" % repr(testing) print(report) assert expected == testing