From: Eddie Hung Date: Sun, 29 Sep 2019 06:48:17 +0000 (-0700) Subject: Big rework; flop info now mostly in cells_sim.v X-Git-Tag: working-ls180~881^2^2~206 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=79b6edb6397c530a7304eb4334f95324a4208aba;p=yosys.git Big rework; flop info now mostly in cells_sim.v --- diff --git a/backends/aiger/xaiger.cc b/backends/aiger/xaiger.cc index 4df97bd52..5d41d49b9 100644 --- a/backends/aiger/xaiger.cc +++ b/backends/aiger/xaiger.cc @@ -81,11 +81,11 @@ struct XAigerWriter dict init_map; pool input_bits, output_bits; - dict not_map, ff_map, alias_map; + dict not_map, /*ff_map,*/ alias_map; dict> and_map; vector> ci_bits; vector> co_bits; - vector> ff_bits; + dict ff_bits; dict arrival_times; vector> aig_gates; @@ -218,13 +218,8 @@ struct XAigerWriter // box ordering, but not individual AIG cells dict> bit_drivers, bit_users; TopoSort toposort; - struct flop_data_t { - IdString d_port; - IdString q_port; - int q_arrival; - }; - dict flop_data; bool abc_box_seen = false; + std::vector flop_boxes; for (auto cell : module->selected_cells()) { if (cell->type == "$_NOT_") @@ -269,6 +264,8 @@ struct XAigerWriter unused_bits.erase(D); undriven_bits.erase(Q); alias_map[Q] = D; + auto r = ff_bits.insert(std::make_pair(D, 0)); + log_assert(r.second); continue; } @@ -278,59 +275,6 @@ struct XAigerWriter toposort.node(cell->name); - auto r = flop_data.insert(std::make_pair(cell->type, flop_data_t{IdString(), IdString(), 0})); - if (r.second && inst_module->attributes.count("\\abc_flop")) { - IdString &abc_flop_d = r.first->second.d_port; - IdString &abc_flop_q = r.first->second.q_port; - for (auto port_name : inst_module->ports) { - auto wire = inst_module->wire(port_name); - log_assert(wire); - if (wire->attributes.count("\\abc_flop_d")) { - if (abc_flop_d != IdString()) - log_error("More than one port has the 'abc_flop_d' attribute set on module '%s'.\n", log_id(cell->type)); - abc_flop_d = port_name; - } - if (wire->attributes.count("\\abc_flop_q")) { - if (abc_flop_q != IdString()) - log_error("More than one port has the 'abc_flop_q' attribute set on module '%s'.\n", log_id(cell->type)); - abc_flop_q = port_name; - - auto it = wire->attributes.find("\\abc_arrival"); - if (it != wire->attributes.end()) { - if (it->second.flags != 0) - log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type)); - r.first->second.q_arrival = it->second.as_int(); - } - } - } - if (abc_flop_d == IdString()) - log_error("'abc_flop_d' attribute not found on any ports on module '%s'.\n", log_id(cell->type)); - if (abc_flop_q == IdString()) - log_error("'abc_flop_q' attribute not found on any ports on module '%s'.\n", log_id(cell->type)); - } - - auto abc_flop_d = r.first->second.d_port; - if (abc_flop_d != IdString()) { - SigBit d = cell->getPort(abc_flop_d); - SigBit I = sigmap(d); - if (I != d) - alias_map[d] = I; - unused_bits.erase(d); - - auto abc_flop_q = r.first->second.q_port; - SigBit q = cell->getPort(abc_flop_q); - log_assert(q == sigmap(q)); - undriven_bits.erase(q); - auto it = cell->attributes.find(ID(abc_mergeability)); - log_assert(it != cell->attributes.end()); - ff_bits.emplace_back(q, it->second.as_int()); - cell->attributes.erase(it); - - auto arrival = r.first->second.q_arrival; - if (arrival) - arrival_times[q] = arrival; - } - for (const auto &conn : cell->connections()) { auto port_wire = inst_module->wire(conn.first); if (port_wire->port_input) { @@ -345,6 +289,8 @@ struct XAigerWriter bit_drivers[bit].insert(cell->name); } + if (inst_module->attributes.count("\\abc9_flop")) + flop_boxes.push_back(cell); continue; } @@ -403,6 +349,45 @@ struct XAigerWriter } if (abc_box_seen) { + dict> flop_q; + for (auto cell : flop_boxes) { + auto r = flop_q.insert(std::make_pair(cell->type, std::make_pair(IdString(), 0))); + SigBit d; + if (r.second) { + for (const auto &conn : cell->connections()) { + const SigSpec &rhs = conn.second; + if (!rhs.is_bit()) + continue; + if (!ff_bits.count(rhs)) + continue; + r.first->second.first = conn.first; + Module *inst_module = module->design->module(cell->type); + Wire *wire = inst_module->wire(conn.first); + log_assert(wire); + auto jt = wire->attributes.find("\\abc_arrival"); + if (jt != wire->attributes.end()) { + if (jt->second.flags != 0) + log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type)); + r.first->second.second = jt->second.as_int(); + } + d = rhs; + log_assert(d == sigmap(d)); + break; + } + } + else + d = cell->getPort(r.first->second.first); + + auto it = cell->attributes.find(ID(abc9_mergeability)); + log_assert(it != cell->attributes.end()); + ff_bits.at(d) = it->second.as_int(); + cell->attributes.erase(it); + + auto arrival = r.first->second.second; + if (arrival) + arrival_times[d] = arrival; + } + for (auto &it : bit_users) if (bit_drivers.count(it.first)) for (auto driver_cell : bit_drivers.at(it.first)) @@ -498,6 +483,29 @@ struct XAigerWriter } } } + + if (box_module->get_bool_attribute("\\abc9_flop")) { + IdString port_name = "\\$currQ"; + RTLIL::Wire* w = box_module->wire(port_name); + SigSpec rhs = cell->getPort(port_name); + log_assert(GetSize(w) == GetSize(rhs)); + + int offset = 0; + for (auto b : rhs.bits()) { + SigBit I = sigmap(b); + if (b == RTLIL::Sx) + b = State::S0; + else if (I != b) { + if (I == RTLIL::Sx) + alias_map[b] = State::S0; + else + alias_map[b] = I; + } + co_bits.emplace_back(b, cell, port_name, offset++, 0); + unused_bits.erase(b); + } + } + box_list.emplace_back(cell); } @@ -569,7 +577,7 @@ struct XAigerWriter } not_map.sort(); - ff_map.sort(); + //ff_map.sort(); and_map.sort(); aig_map[State::S0] = 0; @@ -850,6 +858,28 @@ struct XAigerWriter } } + if (box_module->get_bool_attribute("\\abc9_flop")) { + log_assert(holes_cell); + IdString port_name = "\\$currQ"; + Wire* w = box_module->wire(port_name); + SigSpec rhs = cell->getPort(port_name); + log_assert(GetSize(w) == GetSize(rhs)); + SigSpec port_wire; + Wire *holes_wire; + for (int i = 0; i < GetSize(w); i++) { + box_inputs++; + holes_wire = holes_module->wire(stringf("\\i%d", box_inputs)); + if (!holes_wire) { + holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs)); + holes_wire->port_input = true; + holes_wire->port_id = port_id++; + holes_module->ports.push_back(holes_wire->name); + } + port_wire.append(holes_wire); + } + holes_cell->setPort(w->name, port_wire); + } + write_h_buffer(box_inputs); write_h_buffer(box_outputs); write_h_buffer(box_module->attributes.at("\\abc_box_id").as_int()); @@ -861,6 +891,7 @@ struct XAigerWriter log_debug("flopNum = %d\n", GetSize(ff_bits)); write_r_buffer(ff_bits.size()); for (const auto &i : ff_bits) { + log_assert(i.second > 0); write_r_buffer(i.second); const SigBit &bit = i.first; write_i_buffer(arrival_times.at(bit, 0)); diff --git a/frontends/aiger/aigerparse.cc b/frontends/aiger/aigerparse.cc index 7a467b91e..439311230 100644 --- a/frontends/aiger/aigerparse.cc +++ b/frontends/aiger/aigerparse.cc @@ -740,7 +740,7 @@ void AigerReader::post_process() bool is_flop = false; if (seen_boxes.insert(cell->type).second) { - if (box_module->attributes.count("\\abc_flop")) { + if (box_module->attributes.count("\\abc9_flop")) { log_assert(flop_count < flopNum); flops.insert(cell->type); is_flop = true; @@ -811,12 +811,18 @@ void AigerReader::post_process() } rhs.append(wire); } - - if (!is_flop || port_name != "\\$pastQ") - cell->setPort(port_name, rhs); + cell->setPort(port_name, rhs); } if (is_flop) { + Wire* port = box_module->wire("\\$currQ"); + log_assert(port); + log_assert(co_count < outputs.size()); + Wire *wire = outputs[co_count++]; + log_assert(wire); + log_assert(wire->port_output); + wire->port_output = false; + RTLIL::Wire *d = outputs[outputs.size() - flopNum + flop_count]; log_assert(d); log_assert(d->port_output); @@ -827,9 +833,10 @@ void AigerReader::post_process() log_assert(q->port_input); q->port_input = false; + auto ff = module->addCell(NEW_ID, "$__ABC_FF_"); + ff->setPort("\\D", d); + ff->setPort("\\Q", q); flop_count++; - module->connect(q, d); - cell->set_bool_attribute("\\abc_flop"); continue; } } diff --git a/passes/techmap/abc9.cc b/passes/techmap/abc9.cc index 64841d873..a5d823139 100644 --- a/passes/techmap/abc9.cc +++ b/passes/techmap/abc9.cc @@ -536,8 +536,10 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri cell_stats[mapped_cell->type]++; RTLIL::Cell *existing_cell = nullptr; - if (mapped_cell->type == ID($lut)) { - if (GetSize(mapped_cell->getPort(ID::A)) == 1 && mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) { + if (mapped_cell->type.in(ID($lut), ID($__ABC_FF_))) { + if (mapped_cell->type == ID($lut) && + GetSize(mapped_cell->getPort(ID::A)) == 1 && + mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) { SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name)); SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name)); module->connect(my_y, my_a); @@ -564,7 +566,8 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri cell->attributes = mapped_cell->attributes; } - auto abc_flop = mapped_cell->attributes.count("\\abc_flop"); + RTLIL::Module* box_module = design->module(mapped_cell->type); + auto abc_flop = box_module && box_module->attributes.count("\\abc9_flop"); for (auto &conn : mapped_cell->connections()) { RTLIL::SigSpec newsig; for (auto c : conn.second.chunks()) { @@ -1073,29 +1076,18 @@ struct Abc9Pass : public Pass { std::set expand_queue_up, next_expand_queue_up; std::set expand_queue_down, next_expand_queue_down; - typedef pair clkdomain_t; - std::map> assigned_cells; - std::map assigned_cells_reverse; + std::map> assigned_cells; + std::map assigned_cells_reverse; std::map> cell_to_bit, cell_to_bit_up, cell_to_bit_down; std::map> bit_to_cell, bit_to_cell_up, bit_to_cell_down; - pool seen_cells; - struct flop_data_t { - IdString clk_port; - IdString en_port; - }; - dict flop_data; - typedef clkdomain_t endomain_t; + typedef std::pair endomain_t; std::map mergeability_class; for (auto cell : all_cells) { - clkdomain_t key; - endomain_t key2; - for (auto &conn : cell->connections()) - for (auto bit : conn.second) { - bit = assign_map(bit); + for (auto bit : assign_map(conn.second)) if (bit.wire != nullptr) { cell_to_bit[cell].insert(bit); bit_to_cell[bit].insert(cell); @@ -1108,72 +1100,68 @@ struct Abc9Pass : public Pass { bit_to_cell_up[bit].insert(cell); } } - } - - // TODO: Generate this outside - decltype(flop_data)::iterator it; - if (seen_cells.insert(cell->type).second) { - RTLIL::Module* inst_module = design->module(cell->type); - if (!inst_module) - continue; - - if (!inst_module->attributes.count("\\abc_flop")) - continue; - - IdString abc_flop_clk, abc_flop_en; - for (auto port_name : inst_module->ports) { - auto wire = inst_module->wire(port_name); - log_assert(wire); - if (wire->attributes.count("\\abc_flop_clk")) { - if (abc_flop_clk != IdString()) - log_error("More than one port has the 'abc_flop_clk' attribute set on module '%s'.\n", log_id(cell->type)); - abc_flop_clk = port_name; - } - if (wire->attributes.count("\\abc_flop_en")) { - if (abc_flop_en != IdString()) - log_error("More than one port has the 'abc_flop_en' attribute set on module '%s'.\n", log_id(cell->type)); - abc_flop_en = port_name; - } - } - if (abc_flop_clk == IdString()) - log_error("'abc_flop_clk' attribute not found on any ports on module '%s'.\n", log_id(cell->type)); - if (abc_flop_en == IdString()) - log_error("'abc_flop_en' attribute not found on any ports on module '%s'.\n", log_id(cell->type)); + auto inst_module = design->module(cell->type); + if (!inst_module || !inst_module->attributes.count("\\abc9_flop")) + continue; - it = flop_data.insert(std::make_pair(cell->type, flop_data_t{abc_flop_clk, abc_flop_en})).first; - } - else { - it = flop_data.find(cell->type); - if (it == flop_data.end()) - continue; + auto derived_name = inst_module->derive(design, cell->parameters); + auto derived_module = design->module(derived_name); + log_assert(derived_module); + Pass::call_on_module(design, derived_module, "proc"); + SigMap derived_sigmap(derived_module); + + Wire *currQ = derived_module->wire("\\$currQ"); + if (currQ == NULL) + log_error("'\\$currQ' is not a wire present in module '%s'.\n", log_id(cell->type)); + log_assert(!currQ->port_output); + if (!currQ->port_input) { + currQ->port_input = true; + derived_module->ports.push_back(currQ->name); + currQ->port_id = GetSize(derived_module->ports); +#ifndef NDEBUG + derived_module->check(); +#endif } - const auto &data = it->second; - - auto jt = cell->parameters.find("\\CLK_POLARITY"); - if (jt == cell->parameters.end()) - log_error("'CLK_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type)); - bool this_clk_pol = jt->second.as_bool(); - - jt = cell->parameters.find("\\EN_POLARITY"); - if (jt == cell->parameters.end()) - log_error("'EN_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type)); - bool this_en_pol = jt->second.as_bool(); + SigSpec pattern; + SigSpec with; + for (auto &conn : cell->connections()) { + Wire *first = derived_module->wire(conn.first); + log_assert(first); + SigSpec second = assign_map(conn.second); + log_assert(GetSize(first) == GetSize(second)); + pattern.append(first); + with.append(second); + } - key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(data.clk_port))); + Wire *abc9_clock_wire = derived_module->wire("\\$abc9_clock"); + if (abc9_clock_wire == NULL) + log_error("'\\$abc9_clock' is not a wire present in module '%s'.\n", log_id(cell->type)); + SigSpec abc9_clock = derived_sigmap(abc9_clock_wire); + abc9_clock.replace(pattern, with); + for (const auto &c : abc9_clock.chunks()) + log_assert(!c.wire || c.wire->module == mod); + + Wire *abc9_control_wire = derived_module->wire("\\$abc9_control"); + if (abc9_control_wire == NULL) + log_error("'\\$abc9_control' is not a wire present in module '%s'.\n", log_id(cell->type)); + SigSpec abc9_control = derived_sigmap(abc9_control_wire); + abc9_control.replace(pattern, with); + for (const auto &c : abc9_control.chunks()) + log_assert(!c.wire || c.wire->module == mod); unassigned_cells.erase(cell); expand_queue.insert(cell); expand_queue_up.insert(cell); expand_queue_down.insert(cell); - assigned_cells[key].insert(cell->name); - assigned_cells_reverse[cell] = key; + assigned_cells[abc9_clock].insert(cell->name); + assigned_cells_reverse[cell] = abc9_clock; - key2 = endomain_t(this_en_pol, assign_map(cell->getPort(data.en_port))); - auto r = mergeability_class.emplace(key2, mergeability_class.size() + 1); - auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc_mergeability), r.first->second)); + endomain_t key(cell->type, abc9_control); + auto r = mergeability_class.emplace(key, mergeability_class.size() + 1); + auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second)); log_assert(r2.second); } @@ -1182,7 +1170,7 @@ struct Abc9Pass : public Pass { if (!expand_queue_up.empty()) { RTLIL::Cell *cell = *expand_queue_up.begin(); - clkdomain_t key = assigned_cells_reverse.at(cell); + SigSpec key = assigned_cells_reverse.at(cell); expand_queue_up.erase(cell); for (auto bit : cell_to_bit_up[cell]) @@ -1199,7 +1187,7 @@ struct Abc9Pass : public Pass { if (!expand_queue_down.empty()) { RTLIL::Cell *cell = *expand_queue_down.begin(); - clkdomain_t key = assigned_cells_reverse.at(cell); + SigSpec key = assigned_cells_reverse.at(cell); expand_queue_down.erase(cell); for (auto bit : cell_to_bit_down[cell]) @@ -1222,7 +1210,7 @@ struct Abc9Pass : public Pass { while (!expand_queue.empty()) { RTLIL::Cell *cell = *expand_queue.begin(); - clkdomain_t key = assigned_cells_reverse.at(cell); + SigSpec key = assigned_cells_reverse.at(cell); expand_queue.erase(cell); for (auto bit : cell_to_bit.at(cell)) { @@ -1240,7 +1228,7 @@ struct Abc9Pass : public Pass { expand_queue.swap(next_expand_queue); } - clkdomain_t key(true, RTLIL::SigSpec()); + SigSpec key; for (auto cell : unassigned_cells) { assigned_cells[key].insert(cell->name); assigned_cells_reverse[cell] = key; @@ -1248,8 +1236,7 @@ struct Abc9Pass : public Pass { log_header(design, "Summary of detected clock domains:\n"); for (auto &it : assigned_cells) - log(" %d cells in clk=%s%s\n", GetSize(it.second), - std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first))); + log(" %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first)); design->selection_stack.emplace_back(false); for (auto &it : assigned_cells) { diff --git a/techlibs/xilinx/abc_map.v b/techlibs/xilinx/abc_map.v index 9f96d16be..056f66bbb 100644 --- a/techlibs/xilinx/abc_map.v +++ b/techlibs/xilinx/abc_map.v @@ -26,27 +26,23 @@ module FDRE (output reg Q, input C, CE, D, R); parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; wire \$nextQ ; - \$__ABC_FDRE #( + FDRE #( .INIT(INIT), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), - .IS_R_INVERTED(IS_R_INVERTED), - .CLK_POLARITY(!IS_C_INVERTED), - .EN_POLARITY(1'b1) + .IS_R_INVERTED(IS_R_INVERTED) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R) + .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R) ); \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); endmodule module FDRE_1 (output reg Q, input C, CE, D, R); parameter [0:0] INIT = 1'b0; wire \$nextQ ; - \$__ABC_FDRE_1 #( - .INIT(|0), - .CLK_POLARITY(1'b0), - .EN_POLARITY(1'b1) + FDRE_1 #( + .INIT(|0), ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R) + .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R) ); \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); endmodule @@ -57,28 +53,24 @@ module FDCE (output reg Q, input C, CE, D, CLR); parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; wire \$nextQ , \$currQ ; - \$__ABC_FDCE #( + FDCE #( .INIT(INIT), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), - .IS_CLR_INVERTED(IS_CLR_INVERTED), - .CLK_POLARITY(!IS_C_INVERTED), - .EN_POLARITY(1'b1) + .IS_CLR_INVERTED(IS_CLR_INVERTED) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR) + .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR) ); \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); - \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q)); + \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q)); endmodule module FDCE_1 (output reg Q, input C, CE, D, CLR); parameter [0:0] INIT = 1'b0; wire \$nextQ , \$currQ ; - \$__ABC_FDCE_1 #( - .INIT(INIT), - .CLK_POLARITY(1'b0), - .EN_POLARITY(1'b1) + FDCE_1 #( + .INIT(INIT) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR) + .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR) ); \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q)); @@ -90,33 +82,56 @@ module FDPE (output reg Q, input C, CE, D, PRE); parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; wire \$nextQ , \$currQ ; - \$__ABC_FDPE #( + FDPE #( .INIT(INIT), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_PRE_INVERTED(IS_PRE_INVERTED), - .CLK_POLARITY(!IS_C_INVERTED), - .EN_POLARITY(1'b1) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE) + .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE) ); \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); - \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q)); + \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q)); endmodule module FDPE_1 (output reg Q, input C, CE, D, PRE); parameter [0:0] INIT = 1'b0; wire \$nextQ , \$currQ ; - \$__ABC_FDPE_1 #( - .INIT(INIT), - .CLK_POLARITY(1'b0), - .EN_POLARITY(1'b1) + FDPE_1 #( + .INIT(INIT) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE) + .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE) ); \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q)); endmodule +module FDSE (output reg Q, input C, CE, D, S); + parameter [0:0] INIT = 1'b0; + parameter [0:0] IS_C_INVERTED = 1'b0; + parameter [0:0] IS_D_INVERTED = 1'b0; + parameter [0:0] IS_S_INVERTED = 1'b0; + wire \$nextQ ; + FDSE #( + .INIT(INIT), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_S_INVERTED(IS_S_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S) + ); + \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); +endmodule +module FDSE_1 (output reg Q, input C, CE, D, S); + parameter [0:0] INIT = 1'b0; + wire \$nextQ ; + FDSE_1 #( + .INIT(|0), + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S) + ); + \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); +endmodule + module RAM32X1D ( output DPO, SPO, input D, diff --git a/techlibs/xilinx/abc_model.v b/techlibs/xilinx/abc_model.v index d94ddb7e5..a2914464d 100644 --- a/techlibs/xilinx/abc_model.v +++ b/techlibs/xilinx/abc_model.v @@ -26,97 +26,9 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1); : (S0 ? I1 : I0); endmodule -module \$__ABC_FF_ (input C, D, output Q); +module \$__ABC_FF_ (input D, output Q); endmodule (* abc_box_id = 1000 *) module \$__ABC_ASYNC (input A, S, output Y); endmodule - -(* abc_box_id=1001, lib_whitebox, abc_flop *) -module \$__ABC_FDRE ((* abc_flop_q, abc_arrival=303 *) output Q, - (* abc_flop_clk *) input C, - (* abc_flop_en *) input CE, - (* abc_flop_d *) input D, - input R, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_R_INVERTED = 1'b0; - parameter CLK_POLARITY = !IS_C_INVERTED; - parameter EN_POLARITY = 1'b1; - assign Q = (R ^ IS_R_INVERTED) ? 1'b0 : (CE ? (D ^ IS_D_INVERTED) : \$pastQ ); -endmodule - -(* abc_box_id=1002, lib_whitebox, abc_flop *) -module \$__ABC_FDRE_1 ((* abc_flop_q, abc_arrival=303 *) output Q, - (* abc_flop_clk *) input C, - (* abc_flop_en *) input CE, - (* abc_flop_d *) input D, - input R, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter CLK_POLARITY = 1'b0; - parameter EN_POLARITY = 1'b1; - assign Q = R ? 1'b0 : (CE ? D : \$pastQ ); -endmodule - -(* abc_box_id=1003, lib_whitebox, abc_flop *) -module \$__ABC_FDCE ((* abc_flop_q, abc_arrival=303 *) output Q, - (* abc_flop_clk *) input C, - (* abc_flop_en *) input CE, - (* abc_flop_d *) input D, - input CLR, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_CLR_INVERTED = 1'b0; - parameter CLK_POLARITY = !IS_C_INVERTED; - parameter EN_POLARITY = 1'b1; - assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ; -endmodule - -(* abc_box_id=1004, lib_whitebox, abc_flop *) -module \$__ABC_FDCE_1 ((* abc_flop_q, abc_arrival=303 *) output Q, - (* abc_flop_clk *) input C, - (* abc_flop_en *) input CE, - (* abc_flop_d *) input D, - input CLR, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter CLK_POLARITY = 1'b0; - parameter EN_POLARITY = 1'b1; - assign Q = (CE && !CLR) ? D : \$pastQ ; -endmodule - -(* abc_box_id=1005, lib_whitebox, abc_flop *) -module \$__ABC_FDPE ((* abc_flop_q, abc_arrival=303 *) output Q, - (* abc_flop_clk *) input C, - (* abc_flop_en *) input CE, - (* abc_flop_d *) input D, - input PRE, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_PRE_INVERTED = 1'b0; - parameter CLK_POLARITY = !IS_C_INVERTED; - parameter EN_POLARITY = 1'b1; - assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ; -endmodule - -(* abc_box_id=1006, lib_whitebox, abc_flop *) -module \$__ABC_FDPE_1 ((* abc_flop_q, abc_arrival=303 *) output Q, - (* abc_flop_clk *) input C, - (* abc_flop_en *) input CE, - (* abc_flop_d *) input D, - input PRE, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter CLK_POLARITY = 1'b0; - parameter EN_POLARITY = 1'b1; - assign Q = (CE && !PRE) ? D : \$pastQ ; -endmodule - -(* abc_box_id=2000 *) -module \$__ABC_LUT6 (input A, input [5:0] S, output Y); -endmodule -(* abc_box_id=2001 *) -module \$__ABC_LUT7 (input A, input [6:0] S, output Y); -endmodule diff --git a/techlibs/xilinx/abc_unmap.v b/techlibs/xilinx/abc_unmap.v index c24571747..bf8253adb 100644 --- a/techlibs/xilinx/abc_unmap.v +++ b/techlibs/xilinx/abc_unmap.v @@ -24,124 +24,6 @@ module \$__ABC_ASYNC (input A, S, output Y); assign Y = A; endmodule -module \$__ABC_FDRE (output Q, - input C, - input CE, - input D, - input R, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_R_INVERTED = 1'b0; - parameter CLK_POLARITY = !IS_C_INVERTED; - parameter EN_POLARITY = 1'b1; - - FDRE #( - .INIT(INIT), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_R_INVERTED(IS_R_INVERTED), - ) _TECHMAP_REPLACE_ ( - .D(D), .Q(Q), .C(C), .CE(CE), .R(R) - ); -endmodule - -module \$__ABC_FDRE_1 (output Q, - input C, - input CE, - input D, - input R, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter CLK_POLARITY = 1'b0; - parameter EN_POLARITY = 1'b1; - assign Q = R ? 1'b0 : (CE ? D : \$pastQ ); - - FDRE_1 #( - .INIT(INIT), - ) _TECHMAP_REPLACE_ ( - .D(D), .Q(Q), .C(C), .CE(CE), .R(R) - ); -endmodule - -module \$__ABC_FDCE (output Q, - input C, - input CE, - input D, - input CLR, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_CLR_INVERTED = 1'b0; - parameter CLK_POLARITY = !IS_C_INVERTED; - parameter EN_POLARITY = 1'b1; - - FDCE #( - .INIT(INIT), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_CLR_INVERTED(IS_CLR_INVERTED), - ) _TECHMAP_REPLACE_ ( - .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR) - ); -endmodule - -module \$__ABC_FDCE_1 (output Q, - input C, - input CE, - input D, - input CLR, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter CLK_POLARITY = 1'b0; - parameter EN_POLARITY = 1'b1; - - FDCE_1 #( - .INIT(INIT), - ) _TECHMAP_REPLACE_ ( - .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR) - ); -endmodule - -module \$__ABC_FDPE (output Q, - input C, - input CE, - input D, - input PRE, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_PRE_INVERTED = 1'b0; - parameter CLK_POLARITY = !IS_C_INVERTED; - parameter EN_POLARITY = 1'b1; - - FDPE #( - .INIT(INIT), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_PRE_INVERTED(IS_PRE_INVERTED), - ) _TECHMAP_REPLACE_ ( - .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE) - ); -endmodule - -module \$__ABC_FDPE_1 (output Q, - input C, - input CE, - input D, - input PRE, \$pastQ ); - parameter [0:0] INIT = 1'b0; - parameter CLK_POLARITY = 1'b0; - parameter EN_POLARITY = 1'b1; - - FDPE_1 #( - .INIT(INIT), - ) _TECHMAP_REPLACE_ ( - .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE) - ); -endmodule - -module \$__ABC_LUT6 (input A, input [5:0] S, output Y); - assign Y = A; -endmodule -module \$__ABC_LUT7 (input A, input [6:0] S, output Y); - assign Y = A; +module \$__ABC_FF_ (input D, output Q); + assign Q = D; endmodule diff --git a/techlibs/xilinx/abc_xc7.box b/techlibs/xilinx/abc_xc7.box index aebb8b975..daaa4d16f 100644 --- a/techlibs/xilinx/abc_xc7.box +++ b/techlibs/xilinx/abc_xc7.box @@ -52,36 +52,46 @@ $__ABC_ASYNC 1000 0 2 1 # https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251 # https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277 -# Inputs: C CE D R \$pastQ +# Inputs: C CE D R \$currQ # Outputs: Q FDRE 1001 1 5 1 0 151 0 446 0 -# Inputs: C CE D R \$pastQ +# Inputs: C CE D R \$currQ # Outputs: Q FDRE_1 1002 1 5 1 0 151 0 446 0 -# Inputs: C CE CLR D \$pastQ +# Inputs: C CE CLR D \$currQ # Outputs: Q FDCE 1003 1 5 1 0 151 806 0 0 -# Inputs: C CE CLR D \$pastQ +# Inputs: C CE CLR D \$currQ # Outputs: Q FDCE_1 1004 1 5 1 0 151 806 0 0 -# Inputs: C CE D PRE \$pastQ +# Inputs: C CE D PRE \$currQ # Outputs: Q FDPE 1005 1 5 1 0 151 0 806 0 -# Inputs: C CE D PRE \$pastQ +# Inputs: C CE D PRE \$currQ # Outputs: Q FDPE_1 1006 1 5 1 0 151 0 806 0 +# Inputs: C CE D S \$currQ +# Outputs: Q +FDSE 1007 1 5 1 +0 151 0 446 0 + +# Inputs: C CE D S \$currQ +# Outputs: Q +FDSE_1 1008 1 5 1 +0 151 0 446 0 + # SLICEM/A6LUT # Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32} # Necessary since RAMD* and SRL* have both combinatorial (i.e. diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v index ef4340d10..ee9d48684 100644 --- a/techlibs/xilinx/cells_sim.v +++ b/techlibs/xilinx/cells_sim.v @@ -240,6 +240,7 @@ endmodule // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250 +(* abc_box_id=1001, lib_whitebox, abc9_flop *) module FDRE ( (* abc_arrival=303 *) output reg Q, @@ -257,35 +258,72 @@ module FDRE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; initial Q <= INIT; + wire \$currQ ; + reg \$nextQ ; + always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; - 1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; + 1'b0: always @(posedge C) Q <= \$nextQ ; + 1'b1: always @(negedge C) Q <= \$nextQ ; endcase endgenerate +`endif endmodule -module FDSE ( +(* abc_box_id=1002, lib_whitebox, abc9_flop *) +module FDRE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) - (* invertible_pin = "IS_C_INVERTED" *) input C, - input CE, - (* invertible_pin = "IS_D_INVERTED" *) - input D, - (* invertible_pin = "IS_S_INVERTED" *) - input S + input CE, D, R ); - parameter [0:0] INIT = 1'b1; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_S_INVERTED = 1'b0; + parameter [0:0] INIT = 1'b0; initial Q <= INIT; - generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - endcase endgenerate + wire \$currQ ; + reg \$nextQ ; + always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + always @(negedge C) Q <= \$nextQ ; +`endif endmodule +(* abc_box_id=1003, lib_whitebox, abc9_flop *) module FDCE ( (* abc_arrival=303 *) output reg Q, @@ -303,14 +341,78 @@ module FDCE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; initial Q <= INIT; + wire \$currQ ; + reg \$nextQ ; + always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC_ASYNC box by abc_map.v + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED}) - 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; + 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; + 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; + 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; + 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; endcase endgenerate +`endif endmodule +(* abc_box_id=1004, lib_whitebox, abc9_flop *) +module FDCE_1 ( + (* abc_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + input C, + input CE, D, CLR +); + parameter [0:0] INIT = 1'b0; + initial Q <= INIT; + wire \$currQ ; + reg \$nextQ ; + always @* if (CE) Q <= D; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC_ASYNC box by abc_map.v + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + always @(negedge C, posedge CLR) if (CLR == !IS_CLR_INVERTED) Q <= 1'b0; else Q <= \$nextQ ; +`endif +endmodule + +(* abc_box_id=1005, lib_whitebox, abc9_flop *) module FDPE ( (* abc_arrival=303 *) output reg Q, @@ -328,60 +430,158 @@ module FDPE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; initial Q <= INIT; + wire \$currQ ; + reg \$nextQ ; + always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC_ASYNC box by abc_map.v + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED}) - 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; + 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; + 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; + 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; + 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; endcase endgenerate +`endif endmodule -module FDRE_1 ( - (* abc_arrival=303 *) - output reg Q, - (* clkbuf_sink *) - input C, - input CE, D, R -); - parameter [0:0] INIT = 1'b0; - initial Q <= INIT; - always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D; -endmodule - -module FDSE_1 ( +(* abc_box_id=1006, lib_whitebox, abc9_flop *) +module FDPE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) input C, - input CE, D, S + input CE, D, PRE ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D; + wire \$currQ ; + reg \$nextQ ; + always @* if (CE) Q <= D; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC_ASYNC box by abc_map.v + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ; +`endif endmodule -module FDCE_1 ( +(* abc_box_id=1007, lib_whitebox, abc9_flop *) +module FDSE ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) + (* invertible_pin = "IS_C_INVERTED" *) input C, - input CE, D, CLR + input CE, + (* invertible_pin = "IS_D_INVERTED" *) + input D, + (* invertible_pin = "IS_S_INVERTED" *) + input S ); - parameter [0:0] INIT = 1'b0; + parameter [0:0] INIT = 1'b1; + parameter [0:0] IS_C_INVERTED = 1'b0; + parameter [0:0] IS_D_INVERTED = 1'b0; + parameter [0:0] IS_S_INVERTED = 1'b0; initial Q <= INIT; - always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D; + wire \$currQ ; + reg \$nextQ ; + always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + generate case (|IS_C_INVERTED) + 1'b0: always @(posedge C) Q <= \$nextQ ; + 1'b1: always @(negedge C) Q <= \$nextQ ; + endcase endgenerate +`endif endmodule -module FDPE_1 ( +(* abc_box_id=1008, lib_whitebox, abc9_flop *) +module FDSE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) input C, - input CE, D, PRE + input CE, D, S ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D; + wire \$currQ ; + reg \$nextQ ; + always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + always @(negedge C) Q <= \$nextQ ; +`endif endmodule module RAM32X1D ( diff --git a/techlibs/xilinx/synth_xilinx.cc b/techlibs/xilinx/synth_xilinx.cc index 888b5ed7b..f5143ca82 100644 --- a/techlibs/xilinx/synth_xilinx.cc +++ b/techlibs/xilinx/synth_xilinx.cc @@ -276,9 +276,9 @@ struct SynthXilinxPass : public ScriptPass if (check_label("begin")) { if (vpr) - run("read_verilog -lib -D_EXPLICIT_CARRY +/xilinx/cells_sim.v"); + run("read_verilog -lib -D_ABC -D_EXPLICIT_CARRY +/xilinx/cells_sim.v"); else - run("read_verilog -lib +/xilinx/cells_sim.v"); + run("read_verilog -lib -D_ABC +/xilinx/cells_sim.v"); if (help_mode) run("read_verilog -lib +/xilinx/{family}_cells_xtra.v");