From: Kenneth Graunke Date: Mon, 27 Jun 2016 18:32:16 +0000 (-0700) Subject: glsl: Add a lowering pass to handle advanced blending modes. X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=8ab50f5dd14fb720316e65d9553e7cad5c50bf87;p=mesa.git glsl: Add a lowering pass to handle advanced blending modes. Many GPUs cannot handle GL_KHR_blend_equation_advanced natively, and need to emulate it in the pixel shader. This lowering pass implements all the necessary math for advanced blending. It fetches the existing framebuffer value using the MESA_shader_framebuffer_fetch built-in variables, and the previous commit's state var uniform to select which equation to use. This is done at the GLSL IR level to make it easy for all drivers to implement the GL_KHR_blend_equation_advanced extension and share code. Drivers need to hook up MESA_shader_framebuffer_fetch functionality: 1. Hook up the fb_fetch_output variable 2. Implement BlendBarrier() Then to get KHR_blend_equation_advanced, they simply need to: 3. Disable hardware blending based on ctx->Color._AdvancedBlendEnabled 4. Call this lowering pass. Very little driver specific code should be required. v2: Handle multiple output variables per render target (which may exist due to ARB_enhanced_layouts), and array variables (even with one render target, we might have out vec4 color[1]), and non-vec4 variables (it's easier than finding spec text to justify not handling it). Thanks to Francisco Jerez for the feedback. v3: Lower main returns so that we have a single exit point where we can add our blending epilogue (caught by Francisco Jerez). Signed-off-by: Kenneth Graunke Reviewed-by: Francisco Jerez --- diff --git a/src/compiler/Makefile.sources b/src/compiler/Makefile.sources index cfb6359a6f8..edd683a00e9 100644 --- a/src/compiler/Makefile.sources +++ b/src/compiler/Makefile.sources @@ -78,6 +78,7 @@ LIBGLSL_FILES = \ glsl/loop_analysis.h \ glsl/loop_controls.cpp \ glsl/loop_unroll.cpp \ + glsl/lower_blend_equation_advanced.cpp \ glsl/lower_buffer_access.cpp \ glsl/lower_buffer_access.h \ glsl/lower_const_arrays_to_uniforms.cpp \ diff --git a/src/compiler/glsl/ir_optimization.h b/src/compiler/glsl/ir_optimization.h index c29260a45ca..3bd6928a06c 100644 --- a/src/compiler/glsl/ir_optimization.h +++ b/src/compiler/glsl/ir_optimization.h @@ -151,6 +151,7 @@ void optimize_dead_builtin_variables(exec_list *instructions, bool lower_tess_level(gl_linked_shader *shader); bool lower_vertex_id(gl_linked_shader *shader); +bool lower_blend_equation_advanced(gl_linked_shader *shader); bool lower_subroutine(exec_list *instructions, struct _mesa_glsl_parse_state *state); void propagate_invariance(exec_list *instructions); diff --git a/src/compiler/glsl/lower_blend_equation_advanced.cpp b/src/compiler/glsl/lower_blend_equation_advanced.cpp new file mode 100644 index 00000000000..1c095dd4f71 --- /dev/null +++ b/src/compiler/glsl/lower_blend_equation_advanced.cpp @@ -0,0 +1,562 @@ +/* + * Copyright © 2016 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +#include "ir.h" +#include "ir_builder.h" +#include "ir_optimization.h" +#include "ir_hierarchical_visitor.h" +#include "program/prog_instruction.h" +#include "program/prog_statevars.h" +#include "util/bitscan.h" + +using namespace ir_builder; + +#define imm1(x) new(mem_ctx) ir_constant((float) (x), 1) +#define imm3(x) new(mem_ctx) ir_constant((float) (x), 3) + +static ir_rvalue * +blend_multiply(ir_variable *src, ir_variable *dst) +{ + /* f(Cs,Cd) = Cs*Cd */ + return mul(src, dst); +} + +static ir_rvalue * +blend_screen(ir_variable *src, ir_variable *dst) +{ + /* f(Cs,Cd) = Cs+Cd-Cs*Cd */ + return sub(add(src, dst), mul(src, dst)); +} + +static ir_rvalue * +blend_overlay(ir_variable *src, ir_variable *dst) +{ + void *mem_ctx = ralloc_parent(src); + + /* f(Cs,Cd) = 2*Cs*Cd, if Cd <= 0.5 + * 1-2*(1-Cs)*(1-Cd), otherwise + */ + ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst)); + ir_rvalue *rule_2 = + sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst)))); + return csel(lequal(dst, imm3(0.5f)), rule_1, rule_2); +} + +static ir_rvalue * +blend_darken(ir_variable *src, ir_variable *dst) +{ + /* f(Cs,Cd) = min(Cs,Cd) */ + return min2(src, dst); +} + +static ir_rvalue * +blend_lighten(ir_variable *src, ir_variable *dst) +{ + /* f(Cs,Cd) = max(Cs,Cd) */ + return max2(src, dst); +} + +static ir_rvalue * +blend_colordodge(ir_variable *src, ir_variable *dst) +{ + void *mem_ctx = ralloc_parent(src); + + /* f(Cs,Cd) = + * 0, if Cd <= 0 + * min(1,Cd/(1-Cs)), if Cd > 0 and Cs < 1 + * 1, if Cd > 0 and Cs >= 1 + */ + return csel(lequal(dst, imm3(0)), imm3(0), + csel(gequal(src, imm3(1)), imm3(1), + min2(imm3(1), div(dst, sub(imm3(1), src))))); +} + +static ir_rvalue * +blend_colorburn(ir_variable *src, ir_variable *dst) +{ + void *mem_ctx = ralloc_parent(src); + + /* f(Cs,Cd) = + * 1, if Cd >= 1 + * 1 - min(1,(1-Cd)/Cs), if Cd < 1 and Cs > 0 + * 0, if Cd < 1 and Cs <= 0 + */ + return csel(gequal(dst, imm3(1)), imm3(1), + csel(lequal(src, imm3(0)), imm3(0), + sub(imm3(1), min2(imm3(1), div(sub(imm3(1), dst), src))))); +} + +static ir_rvalue * +blend_hardlight(ir_variable *src, ir_variable *dst) +{ + void *mem_ctx = ralloc_parent(src); + + /* f(Cs,Cd) = 2*Cs*Cd, if Cs <= 0.5 + * 1-2*(1-Cs)*(1-Cd), otherwise + */ + ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst)); + ir_rvalue *rule_2 = + sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst)))); + return csel(lequal(src, imm3(0.5f)), rule_1, rule_2); +} + +static ir_rvalue * +blend_softlight(ir_variable *src, ir_variable *dst) +{ + void *mem_ctx = ralloc_parent(src); + + /* f(Cs,Cd) = + * Cd-(1-2*Cs)*Cd*(1-Cd), + * if Cs <= 0.5 + * Cd+(2*Cs-1)*Cd*((16*Cd-12)*Cd+3), + * if Cs > 0.5 and Cd <= 0.25 + * Cd+(2*Cs-1)*(sqrt(Cd)-Cd), + * if Cs > 0.5 and Cd > 0.25 + * + * We can simplify this to + * + * f(Cs,Cd) = Cd+(2*Cs-1)*g(Cs,Cd) where + * g(Cs,Cd) = Cd*Cd-Cd if Cs <= 0.5 + * Cd*((16*Cd-12)*Cd+3) if Cs > 0.5 and Cd <= 0.25 + * sqrt(Cd)-Cd, otherwise + */ + ir_rvalue *factor_1 = mul(dst, sub(imm3(1), dst)); + ir_rvalue *factor_2 = + mul(dst, add(mul(sub(mul(imm3(16), dst), imm3(12)), dst), imm3(3))); + ir_rvalue *factor_3 = sub(sqrt(dst), dst); + ir_rvalue *factor = csel(lequal(src, imm3(0.5f)), factor_1, + csel(lequal(dst, imm3(0.25f)), + factor_2, factor_3)); + return add(dst, mul(sub(mul(imm3(2), src), imm3(1)), factor)); +} + +static ir_rvalue * +blend_difference(ir_variable *src, ir_variable *dst) +{ + return abs(sub(dst, src)); +} + +static ir_rvalue * +blend_exclusion(ir_variable *src, ir_variable *dst) +{ + void *mem_ctx = ralloc_parent(src); + + return add(src, sub(dst, mul(imm3(2), mul(src, dst)))); +} + +/* Return the minimum of a vec3's components */ +static ir_rvalue * +minv3(ir_variable *v) +{ + return min2(min2(swizzle_x(v), swizzle_y(v)), swizzle_z(v)); +} + +/* Return the maximum of a vec3's components */ +static ir_rvalue * +maxv3(ir_variable *v) +{ + return max2(max2(swizzle_x(v), swizzle_y(v)), swizzle_z(v)); +} + +static ir_rvalue * +lumv3(ir_variable *c) +{ + ir_constant_data data; + data.f[0] = 0.30; + data.f[1] = 0.59; + data.f[2] = 0.11; + + void *mem_ctx = ralloc_parent(c); + + /* dot(c, vec3(0.30, 0.59, 0.11)) */ + return dot(c, new(mem_ctx) ir_constant(glsl_type::vec3_type, &data)); +} + +static ir_rvalue * +satv3(ir_variable *c) +{ + return sub(maxv3(c), minv3(c)); +} + +/* Take the base RGB color and override its luminosity with that + * of the RGB color . + * + * This follows the equations given in the ES 3.2 (June 15th, 2016) + * specification. Revision 16 of GL_KHR_blend_equation_advanced and + * revision 9 of GL_NV_blend_equation_advanced specify a different set + * of equations. Older revisions match ES 3.2's text, and dEQP expects + * the ES 3.2 rules implemented here. + */ +static void +set_lum(ir_factory *f, + ir_variable *color, + ir_variable *cbase, + ir_variable *clum) +{ + void *mem_ctx = f->mem_ctx; + f->emit(assign(color, add(cbase, sub(lumv3(clum), lumv3(cbase))))); + + ir_variable *llum = f->make_temp(glsl_type::float_type, "__blend_lum"); + ir_variable *mincol = f->make_temp(glsl_type::float_type, "__blend_mincol"); + ir_variable *maxcol = f->make_temp(glsl_type::float_type, "__blend_maxcol"); + + f->emit(assign(llum, lumv3(color))); + f->emit(assign(mincol, minv3(color))); + f->emit(assign(maxcol, maxv3(color))); + + f->emit(if_tree(less(mincol, imm1(0)), + assign(color, add(llum, div(mul(sub(color, llum), llum), + sub(llum, mincol)))), + if_tree(greater(maxcol, imm1(1)), + assign(color, add(llum, div(mul(sub(color, llum), + sub(imm3(1), llum)), + sub(maxcol, llum))))))); + +} + +/* Take the base RGB color and override its saturation with + * that of the RGB color . The override the luminosity of the + * result with that of the RGB color . + */ +static void +set_lum_sat(ir_factory *f, + ir_variable *color, + ir_variable *cbase, + ir_variable *csat, + ir_variable *clum) +{ + void *mem_ctx = f->mem_ctx; + + ir_rvalue *minbase = minv3(cbase); + ir_rvalue *ssat = satv3(csat); + + ir_variable *sbase = f->make_temp(glsl_type::float_type, "__blend_sbase"); + f->emit(assign(sbase, satv3(cbase))); + + /* Equivalent (modulo rounding errors) to setting the + * smallest (R,G,B) component to 0, the largest to , + * and interpolating the "middle" component based on its + * original value relative to the smallest/largest. + */ + f->emit(if_tree(greater(sbase, imm1(0)), + assign(color, div(mul(sub(cbase, minbase), ssat), sbase)), + assign(color, imm3(0)))); + set_lum(f, color, color, clum); +} + +static ir_rvalue * +is_mode(ir_variable *mode, enum gl_advanced_blend_mode q) +{ + return equal(mode, new(ralloc_parent(mode)) ir_constant(unsigned(q))); +} + +static ir_variable * +calc_blend_result(ir_factory f, + ir_variable *mode, + ir_variable *fb, + ir_rvalue *blend_src, + GLbitfield blend_qualifiers) +{ + void *mem_ctx = f.mem_ctx; + ir_variable *result = f.make_temp(glsl_type::vec4_type, "__blend_result"); + + /* Save blend_src to a temporary so we can reference it multiple times. */ + ir_variable *src = f.make_temp(glsl_type::vec4_type, "__blend_src"); + f.emit(assign(src, blend_src)); + + /* If we're not doing advanced blending, just write the original value. */ + ir_if *if_blending = new(mem_ctx) ir_if(is_mode(mode, BLEND_NONE)); + f.emit(if_blending); + if_blending->then_instructions.push_tail(assign(result, src)); + + f.instructions = &if_blending->else_instructions; + + /* (Rs', Gs', Bs') = + * (0, 0, 0), if As == 0 + * (Rs/As, Gs/As, Bs/As), otherwise + */ + ir_variable *src_rgb = f.make_temp(glsl_type::vec3_type, "__blend_src_rgb"); + ir_variable *src_alpha = f.make_temp(glsl_type::float_type, "__blend_src_a"); + + /* (Rd', Gd', Bd') = + * (0, 0, 0), if Ad == 0 + * (Rd/Ad, Gd/Ad, Bd/Ad), otherwise + */ + ir_variable *dst_rgb = f.make_temp(glsl_type::vec3_type, "__blend_dst_rgb"); + ir_variable *dst_alpha = f.make_temp(glsl_type::float_type, "__blend_dst_a"); + + f.emit(assign(dst_alpha, swizzle_w(fb))); + f.emit(if_tree(equal(dst_alpha, imm1(0)), + assign(dst_rgb, imm3(0)), + assign(dst_rgb, div(swizzle_xyz(fb), dst_alpha)))); + + f.emit(assign(src_alpha, swizzle_w(src))); + f.emit(if_tree(equal(src_alpha, imm1(0)), + assign(src_rgb, imm3(0)), + assign(src_rgb, div(swizzle_xyz(src), src_alpha)))); + + ir_variable *factor = f.make_temp(glsl_type::vec3_type, "__blend_factor"); + + ir_factory casefactory = f; + + unsigned choices = blend_qualifiers; + while (choices) { + enum gl_advanced_blend_mode choice = (enum gl_advanced_blend_mode) + (1u << u_bit_scan(&choices)); + + ir_if *iff = new(mem_ctx) ir_if(is_mode(mode, choice)); + casefactory.emit(iff); + casefactory.instructions = &iff->then_instructions; + + ir_rvalue *val = NULL; + + switch (choice) { + case BLEND_MULTIPLY: + val = blend_multiply(src_rgb, dst_rgb); + break; + case BLEND_SCREEN: + val = blend_screen(src_rgb, dst_rgb); + break; + case BLEND_OVERLAY: + val = blend_overlay(src_rgb, dst_rgb); + break; + case BLEND_DARKEN: + val = blend_darken(src_rgb, dst_rgb); + break; + case BLEND_LIGHTEN: + val = blend_lighten(src_rgb, dst_rgb); + break; + case BLEND_COLORDODGE: + val = blend_colordodge(src_rgb, dst_rgb); + break; + case BLEND_COLORBURN: + val = blend_colorburn(src_rgb, dst_rgb); + break; + case BLEND_HARDLIGHT: + val = blend_hardlight(src_rgb, dst_rgb); + break; + case BLEND_SOFTLIGHT: + val = blend_softlight(src_rgb, dst_rgb); + break; + case BLEND_DIFFERENCE: + val = blend_difference(src_rgb, dst_rgb); + break; + case BLEND_EXCLUSION: + val = blend_exclusion(src_rgb, dst_rgb); + break; + case BLEND_HSL_HUE: + set_lum_sat(&casefactory, factor, src_rgb, dst_rgb, dst_rgb); + break; + case BLEND_HSL_SATURATION: + set_lum_sat(&casefactory, factor, dst_rgb, src_rgb, dst_rgb); + break; + case BLEND_HSL_COLOR: + set_lum(&casefactory, factor, src_rgb, dst_rgb); + break; + case BLEND_HSL_LUMINOSITY: + set_lum(&casefactory, factor, dst_rgb, src_rgb); + break; + case BLEND_NONE: + case BLEND_ALL: + unreachable("not real cases"); + } + + if (val) + casefactory.emit(assign(factor, val)); + + casefactory.instructions = &iff->else_instructions; + } + + /* p0(As,Ad) = As*Ad + * p1(As,Ad) = As*(1-Ad) + * p2(As,Ad) = Ad*(1-As) + */ + ir_variable *p0 = f.make_temp(glsl_type::float_type, "__blend_p0"); + ir_variable *p1 = f.make_temp(glsl_type::float_type, "__blend_p1"); + ir_variable *p2 = f.make_temp(glsl_type::float_type, "__blend_p2"); + + f.emit(assign(p0, mul(src_alpha, dst_alpha))); + f.emit(assign(p1, mul(src_alpha, sub(imm1(1), dst_alpha)))); + f.emit(assign(p2, mul(dst_alpha, sub(imm1(1), src_alpha)))); + + /* R = f(Rs',Rd')*p0(As,Ad) + Y*Rs'*p1(As,Ad) + Z*Rd'*p2(As,Ad) + * G = f(Gs',Gd')*p0(As,Ad) + Y*Gs'*p1(As,Ad) + Z*Gd'*p2(As,Ad) + * B = f(Bs',Bd')*p0(As,Ad) + Y*Bs'*p1(As,Ad) + Z*Bd'*p2(As,Ad) + * A = X*p0(As,Ad) + Y*p1(As,Ad) + Z*p2(As,Ad) + * + * is always <1, 1, 1>, so we can ignore it. + * + * In vector form, this is: + * RGB = factor * p0 + Cs * p1 + Cd * p2 + * A = p0 + p1 + p2 + */ + f.emit(assign(result, + add(add(mul(factor, p0), mul(src_rgb, p1)), mul(dst_rgb, p2)), + WRITEMASK_XYZ)); + f.emit(assign(result, add(add(p0, p1), p2), WRITEMASK_W)); + + return result; +} + +/** + * Dereference var, or var[0] if it's an array. + */ +static ir_dereference * +deref_output(ir_variable *var) +{ + void *mem_ctx = ralloc_parent(var); + + ir_dereference *val = new(mem_ctx) ir_dereference_variable(var); + if (val->type->is_array()) { + ir_constant *index = new(mem_ctx) ir_constant(0); + val = new(mem_ctx) ir_dereference_array(val, index); + } + + return val; +} + +static ir_function_signature * +get_main(gl_linked_shader *sh) +{ + ir_function_signature *sig; + /* We can't use _mesa_get_main_function_signature() because we don't + * have a symbol table at this point. Just go find main() by hand. + */ + foreach_in_list(ir_instruction, ir, sh->ir) { + ir_function *f = ir->as_function(); + if (f && strcmp(f->name, "main") == 0) { + exec_list void_parameters; + sig = f->matching_signature(NULL, &void_parameters, false); + break; + } + } + assert(sig != NULL); /* main() must exist */ + return sig; +} + +bool +lower_blend_equation_advanced(struct gl_linked_shader *sh) +{ + if (sh->info.BlendSupport == 0) + return false; + + /* Lower early returns in main() so there's a single exit point + * where we can insert our lowering code. + */ + do_lower_jumps(sh->ir, false, false, true, false, false); + + void *mem_ctx = ralloc_parent(sh->ir); + + ir_variable *fb = new(mem_ctx) ir_variable(glsl_type::vec4_type, + "__blend_fb_fetch", + ir_var_shader_out); + fb->data.location = FRAG_RESULT_DATA0; + fb->data.read_only = 1; + fb->data.fb_fetch_output = 1; + fb->data.how_declared = ir_var_hidden; + + ir_variable *mode = new(mem_ctx) ir_variable(glsl_type::uint_type, + "gl_AdvancedBlendModeMESA", + ir_var_uniform); + mode->data.how_declared = ir_var_hidden; + mode->allocate_state_slots(1); + ir_state_slot *slot0 = &mode->get_state_slots()[0]; + slot0->swizzle = SWIZZLE_XXXX; + slot0->tokens[0] = STATE_INTERNAL; + slot0->tokens[1] = STATE_ADVANCED_BLENDING_MODE; + for (int i = 2; i < STATE_LENGTH; i++) + slot0->tokens[i] = 0; + + sh->ir->push_head(fb); + sh->ir->push_head(mode); + + /* Gather any output variables referring to render target 0. + * + * ARB_enhanced_layouts irritatingly allows the shader to specify + * multiple output variables for the same render target, each of + * which writes a subset of the components, starting at location_frac. + * The variables can't overlap, thankfully. + */ + ir_variable *outputs[4]; + foreach_in_list(ir_instruction, ir, sh->ir) { + ir_variable *var = ir->as_variable(); + if (!var || var->data.mode != ir_var_shader_out) + continue; + + if (var->data.location == FRAG_RESULT_DATA0 || + var->data.location == FRAG_RESULT_COLOR) { + const int components = var->type->without_array()->vector_elements; + + for (int i = 0; i < components; i++) { + outputs[var->data.location_frac + i] = var; + } + } + } + + /* Combine values written to outputs into a single RGBA blend source. + * We assign <0, 0, 0, 1> to any components with no corresponding output. + */ + ir_rvalue *blend_source; + if (outputs[0] && outputs[0]->type->without_array()->vector_elements == 4) { + blend_source = deref_output(outputs[0]); + } else { + ir_rvalue *blend_comps[4]; + for (int i = 0; i < 4; i++) { + ir_variable *var = outputs[i]; + if (var) { + blend_comps[i] = swizzle(deref_output(outputs[i]), + i - outputs[i]->data.location_frac, 1); + } else { + blend_comps[i] = new(mem_ctx) ir_constant(i < 3 ? 0.0f : 1.0f); + } + } + + blend_source = + new(mem_ctx) ir_expression(ir_quadop_vector, glsl_type::vec4_type, + blend_comps[0], blend_comps[1], + blend_comps[2], blend_comps[3]); + } + + ir_function_signature *main = get_main(sh); + ir_factory f(&main->body, mem_ctx); + + ir_variable *result_dest = + calc_blend_result(f, mode, fb, blend_source, sh->info.BlendSupport); + + /* Copy the result back to the original values. It would be simpler + * to demote the program's output variables, and create a new vec4 + * output for our result, but this pass runs before we create the + * ARB_program_interface_query resource list. So we have to leave + * the original outputs in place and use them. + */ + for (int i = 0; i < 4; i++) { + if (!outputs[i]) + continue; + + f.emit(assign(deref_output(outputs[i]), swizzle(result_dest, i, 1), + 1 << i)); + } + + validate_ir_tree(sh->ir); + return true; +}