From: lkcl Date: Sat, 15 Apr 2023 12:42:38 +0000 (+0100) Subject: (no commit message) X-Git-Tag: opf_rfc_ls009_v1~79 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=b1598707cb45898286d3eb0a05d86e95a2a40e97;p=libreriscv.git --- diff --git a/openpower/sv/rfc/ls009.mdwn b/openpower/sv/rfc/ls009.mdwn index c41016ace..b25d94ce7 100644 --- a/openpower/sv/rfc/ls009.mdwn +++ b/openpower/sv/rfc/ls009.mdwn @@ -1758,5 +1758,176 @@ if __name__ == '__main__': demo() ``` +## REMAP FFT pseudocode + +``` +# a "yield" version of the REMAP algorithm, for FFT Tukey-Cooley schedules +# original code for the FFT Tukey-Cooley schedule: +# https://www.nayuki.io/res/free-small-fft-in-multiple-languages/fft.py +""" + # Radix-2 decimation-in-time FFT (real, not complex) + size = 2 + while size <= n: + halfsize = size // 2 + tablestep = n // size + for i in range(0, n, size): + k = 0 + for j in range(i, i + halfsize): + jh = j+halfsize + jl = j + temp1 = vec[jh] * exptable[k] + temp2 = vec[jl] + vec[jh] = temp2 - temp1 + vec[jl] = temp2 + temp1 + k += tablestep + size *= 2 +""" + +# python "yield" can be iterated. use this to make it clear how +# the indices are generated by using natural-looking nested loops +def iterate_butterfly_indices(SVSHAPE): + # get indices to iterate over, in the required order + n = SVSHAPE.lims[0] + stride = SVSHAPE.lims[2] # stride-multiplier on reg access + # creating lists of indices to iterate over in each dimension + # has to be done dynamically, because it depends on the size + # first, the size-based loop (which can be done statically) + x_r = [] + size = 2 + while size <= n: + x_r.append(size) + size *= 2 + # invert order if requested + if SVSHAPE.invxyz[0]: x_r.reverse() + + if len(x_r) == 0: + return + + # start an infinite (wrapping) loop + skip = 0 + while True: + for size in x_r: # loop over 3rd order dimension (size) + x_end = size == x_r[-1] + # y_r schedule depends on size + halfsize = size // 2 + tablestep = n // size + y_r = [] + for i in range(0, n, size): + y_r.append(i) + # invert if requested + if SVSHAPE.invxyz[1]: y_r.reverse() + for i in y_r: # loop over 2nd order dimension + y_end = i == y_r[-1] + k_r = [] + j_r = [] + k = 0 + for j in range(i, i+halfsize): + k_r.append(k) + j_r.append(j) + k += tablestep + # invert if requested + if SVSHAPE.invxyz[2]: k_r.reverse() + if SVSHAPE.invxyz[2]: j_r.reverse() + for j, k in zip(j_r, k_r): # loop over 1st order dimension + z_end = j == j_r[-1] + # now depending on MODE return the index + if SVSHAPE.skip == 0b00: + result = j # for vec[j] + elif SVSHAPE.skip == 0b01: + result = j + halfsize # for vec[j+halfsize] + elif SVSHAPE.skip == 0b10: + result = k # for exptable[k] + + loopends = (z_end | + ((y_end and z_end)<<1) | + ((y_end and x_end and z_end)<<2)) + + yield (result * stride) + SVSHAPE.offset, loopends + +def demo(): + # set the dimension sizes here + xdim = 8 + ydim = 0 # not needed + zdim = 1 # stride must be set to 1 + + # set total. err don't know how to calculate how many there are... + # do it manually for now + VL = 0 + size = 2 + n = xdim + while size <= n: + halfsize = size // 2 + tablestep = n // size + for i in range(0, n, size): + for j in range(i, i + halfsize): + VL += 1 + size *= 2 + + # set up an SVSHAPE + class SVSHAPE: + pass + # j schedule + SVSHAPE0 = SVSHAPE() + SVSHAPE0.lims = [xdim, ydim, zdim] + SVSHAPE0.order = [0,1,2] # experiment with different permutations, here + SVSHAPE0.mode = 0b01 + SVSHAPE0.skip = 0b00 + SVSHAPE0.offset = 0 # experiment with different offset, here + SVSHAPE0.invxyz = [0,0,0] # inversion if desired + # j+halfstep schedule + SVSHAPE1 = SVSHAPE() + SVSHAPE1.lims = [xdim, ydim, zdim] + SVSHAPE1.order = [0,1,2] # experiment with different permutations, here + SVSHAPE0.mode = 0b01 + SVSHAPE1.skip = 0b01 + SVSHAPE1.offset = 0 # experiment with different offset, here + SVSHAPE1.invxyz = [0,0,0] # inversion if desired + # k schedule + SVSHAPE2 = SVSHAPE() + SVSHAPE2.lims = [xdim, ydim, zdim] + SVSHAPE2.order = [0,1,2] # experiment with different permutations, here + SVSHAPE0.mode = 0b01 + SVSHAPE2.skip = 0b10 + SVSHAPE2.offset = 0 # experiment with different offset, here + SVSHAPE2.invxyz = [0,0,0] # inversion if desired + + # enumerate over the iterator function, getting new indices + schedule = [] + for idx, (jl, jh, k) in enumerate(zip(iterate_butterfly_indices(SVSHAPE0), + iterate_butterfly_indices(SVSHAPE1), + iterate_butterfly_indices(SVSHAPE2))): + if idx >= VL: + break + schedule.append((jl, jh, k)) + + # ok now pretty-print the results, with some debug output + size = 2 + idx = 0 + while size <= n: + halfsize = size // 2 + tablestep = n // size + print ("size %d halfsize %d tablestep %d" % \ + (size, halfsize, tablestep)) + for i in range(0, n, size): + prefix = "i %d\t" % i + k = 0 + for j in range(i, i + halfsize): + (jl, je), (jh, he), (ks, ke) = schedule[idx] + print (" %-3d\t%s j=%-2d jh=%-2d k=%-2d -> " + "j[jl=%-2d] j[jh=%-2d] ex[k=%d]" % \ + (idx, prefix, j, j+halfsize, k, + jl, jh, ks, + ), + "end", bin(je)[2:], bin(je)[2:], bin(ke)[2:]) + k += tablestep + idx += 1 + size *= 2 + +# run the demo +if __name__ == '__main__': + demo() +``` + + [[!tag opf_rfc]]