From: Jacob Lifshay Date: Tue, 10 Oct 2023 03:35:40 +0000 (-0700) Subject: adapt divmod algorithm for putting variables in registers X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=cc0e1af9fbdaa763f77976de31184e4107ed0f1d;p=openpower-isa.git adapt divmod algorithm for putting variables in registers --- diff --git a/src/openpower/decoder/isa/test_caller_svp64_powmod.py b/src/openpower/decoder/isa/test_caller_svp64_powmod.py index a91f0dae..4ca16db5 100644 --- a/src/openpower/decoder/isa/test_caller_svp64_powmod.py +++ b/src/openpower/decoder/isa/test_caller_svp64_powmod.py @@ -52,7 +52,7 @@ class TestPythonAlgorithms(unittest.TestCase): on_corner_case=seen_corner_cases.add) with self.subTest(out_q=[f"{i:#_x}" for i in out_q], out_r=[f"{i:#_x}" for i in out_r]): - self.assertEqual(out_q, q + [0] * 4) + self.assertEqual(out_q, q) self.assertEqual(out_r, r) # ensure our testing actually covers all the corner cases diff --git a/src/openpower/test/bigint/powmod.py b/src/openpower/test/bigint/powmod.py index 22c0c82d..94810e77 100644 --- a/src/openpower/test/bigint/powmod.py +++ b/src/openpower/test/bigint/powmod.py @@ -292,41 +292,65 @@ def python_divmod_shift_sub_algorithm(n, d, width=256, log_regex=False): @plain_data() class DivModKnuthAlgorithmD: - __slots__ = "n_size", "d_size", "word_size", + __slots__ = "num_size", "denom_size", "q_size", "word_size", "regs" - def __init__(self, n_size=8, d_size=4, word_size=64): - assert n_size >= d_size, \ + def __init__(self, num_size=8, denom_size=4, q_size=4, + word_size=64, regs=None): + # type: (int, int, int | None, int, None | dict[str, int]) -> None + assert num_size >= denom_size, \ "the dividend's length must be >= the divisor's length" assert word_size > 0 - self.n_size = n_size - self.d_size = d_size + if q_size is None: + # quotient length from original algorithm is m - n + 1, + # but that assumes v[-1] != 0 -- since we support smaller divisors + # the quotient must be larger. + q_size = num_size + + if regs is None: + regs = {} + + self.num_size = num_size + self.denom_size = denom_size + self.q_size = q_size self.word_size = word_size + self.regs = regs + + @property + def r_size(self): + return self.denom_size + + @property + def un_size(self): + return self.num_size + 1 + + @property + def vn_size(self): + return self.denom_size + + @property + def product_size(self): + return self.num_size + 1 def python(self, n, d, log_regex=False, on_corner_case=lambda desc: None): - do_log = _DivModRegsRegexLogger(enabled=log_regex).log + do_log = _DivModRegsRegexLogger(enabled=log_regex, regs=self.regs).log # switch to names used by Knuth's algorithm D u = list(n) # dividend + assert len(u) == self.num_size, "numerator has wrong size" m = len(u) # length of dividend v = list(d) # divisor + assert len(v) == self.denom_size, "denominator has wrong size" del d # less confusing to debug n = len(v) # length of divisor - assert m == self.n_size and n == self.d_size, \ - "inputs don't match expected size" - # allocate outputs/temporaries -- before any normalization so # the outputs/temporaries can be fixed-length in the assembly version. - # quotient length from original algorithm is m - n + 1, - # but that assumes v[-1] != 0 -- since we support smaller divisors the - # quotient must be larger. - q = [0] * m # quotient - r = [0] * n # remainder - vn = [0] * n # normalized divisor - un = [0] * (m + 1) # normalized dividend - product = [0] * (n + 1) + q = [0] * self.q_size # quotient + vn = [None] * self.vn_size # normalized divisor + un = [None] * self.un_size # normalized dividend + product = [None] * self.product_size # get non-zero length of dividend while m > 0 and u[m - 1] == 0: @@ -344,18 +368,23 @@ class DivModKnuthAlgorithmD: # Knuth's algorithm D requires the divisor to have length >= 2 # handle single-word divisors separately t = 0 + if m > self.q_size: + t = u[self.q_size] + m = self.q_size for i in reversed(range(m)): # divmod2du t <<= self.word_size t += u[i] q[i] = t // v[0] t %= v[0] + r = [0] * self.r_size # remainder r[0] = t return q, r if m < n: + r = [None] * self.r_size # remainder # dividend < divisor - for i in range(m): + for i in range(self.r_size): r[i] = u[i] return q, r @@ -389,7 +418,7 @@ class DivModKnuthAlgorithmD: un[m] = t # Step D2 and Step D7: loop - for j in range(m - n, -1, -1): + for j in range(min(m - n, self.q_size - 1), -1, -1): # Step D3: calculate q̂ t = un[j + n] @@ -434,14 +463,13 @@ class DivModKnuthAlgorithmD: # Step D5: test remainder - q[j] = qhat if need_fixup: # Step D6: add back on_corner_case("add back") - q[j] -= 1 + qhat -= 1 t = 0 for i in range(n): @@ -451,8 +479,10 @@ class DivModKnuthAlgorithmD: t = int(t >= 2 ** self.word_size) un[j + n] += t - # Step D8: un-normalize + q[j] = qhat + # Step D8: un-normalize + r = [0] * self.r_size # remainder # r = un >> s t = 0 for i in reversed(range(n)):