From: James Greenhalgh Date: Thu, 1 Oct 2015 09:33:40 +0000 (+0000) Subject: [Patch 2/2 ARM/AArch64] Add a new Cortex-A53 scheduling model X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=cdc1afa3c04e6ddf2d2119a4144754cabcfe419a;p=gcc.git [Patch 2/2 ARM/AArch64] Add a new Cortex-A53 scheduling model * config/arm/aarch-common-protos.h (aarch_accumulator_forwarding): New. (aarch_forward_to_shift_is_not_shifted_reg): Likewise. * config/arm/aarch-common.c (aarch_accumulator_forwarding): New. (aarch_forward_to_shift_is_not_shifted_reg): Liekwise. * config/arm/cortex-a53.md: Rewrite. From-SVN: r228324 --- diff --git a/gcc/ChangeLog b/gcc/ChangeLog index 122f3b410dc..8fdc84d5454 100644 --- a/gcc/ChangeLog +++ b/gcc/ChangeLog @@ -1,3 +1,12 @@ +2015-10-01 James Greenhalgh + + * config/arm/aarch-common-protos.h + (aarch_accumulator_forwarding): New. + (aarch_forward_to_shift_is_not_shifted_reg): Likewise. + * config/arm/aarch-common.c (aarch_accumulator_forwarding): New. + (aarch_forward_to_shift_is_not_shifted_reg): Liekwise. + * config/arm/cortex-a53.md: Rewrite. + 2015-10-01 Richard Biener * gimple-match.h (mprts_hook): Declare. diff --git a/gcc/config/arm/aarch-common-protos.h b/gcc/config/arm/aarch-common-protos.h index 29f7c993922..348ae7495fe 100644 --- a/gcc/config/arm/aarch-common-protos.h +++ b/gcc/config/arm/aarch-common-protos.h @@ -23,7 +23,9 @@ #ifndef GCC_AARCH_COMMON_PROTOS_H #define GCC_AARCH_COMMON_PROTOS_H +extern int aarch_accumulator_forwarding (rtx_insn *, rtx_insn *); extern int aarch_crypto_can_dual_issue (rtx_insn *, rtx_insn *); +extern int aarch_forward_to_shift_is_not_shifted_reg (rtx_insn *, rtx_insn *); extern bool aarch_rev16_p (rtx); extern bool aarch_rev16_shleft_mask_imm_p (rtx, machine_mode); extern bool aarch_rev16_shright_mask_imm_p (rtx, machine_mode); diff --git a/gcc/config/arm/aarch-common.c b/gcc/config/arm/aarch-common.c index 5dd8222539e..43579d8be70 100644 --- a/gcc/config/arm/aarch-common.c +++ b/gcc/config/arm/aarch-common.c @@ -394,6 +394,112 @@ arm_mac_accumulator_is_result (rtx producer, rtx consumer) && !reg_overlap_mentioned_p (result, op1)); } +/* Return non-zero if the destination of PRODUCER feeds the accumulator + operand of an MLA-like operation. */ + +int +aarch_accumulator_forwarding (rtx_insn *producer, rtx_insn *consumer) +{ + rtx producer_set = single_set (producer); + rtx consumer_set = single_set (consumer); + + /* We are looking for a SET feeding a SET. */ + if (!producer_set || !consumer_set) + return 0; + + rtx dest = SET_DEST (producer_set); + rtx mla = SET_SRC (consumer_set); + + /* We're looking for a register SET. */ + if (!REG_P (dest)) + return 0; + + rtx accumulator; + + /* Strip a zero_extend. */ + if (GET_CODE (mla) == ZERO_EXTEND) + mla = XEXP (mla, 0); + + switch (GET_CODE (mla)) + { + case PLUS: + /* Possibly an MADD. */ + if (GET_CODE (XEXP (mla, 0)) == MULT) + accumulator = XEXP (mla, 1); + else + return 0; + break; + case MINUS: + /* Possibly an MSUB. */ + if (GET_CODE (XEXP (mla, 1)) == MULT) + accumulator = XEXP (mla, 0); + else + return 0; + break; + case FMA: + { + /* Possibly an FMADD/FMSUB/FNMADD/FNMSUB. */ + if (REG_P (XEXP (mla, 1)) + && REG_P (XEXP (mla, 2)) + && (REG_P (XEXP (mla, 0)) + || GET_CODE (XEXP (mla, 0)) == NEG)) + + { + /* FMADD/FMSUB. */ + accumulator = XEXP (mla, 2); + } + else if (REG_P (XEXP (mla, 1)) + && GET_CODE (XEXP (mla, 2)) == NEG + && (REG_P (XEXP (mla, 0)) + || GET_CODE (XEXP (mla, 0)) == NEG)) + { + /* FNMADD/FNMSUB. */ + accumulator = XEXP (XEXP (mla, 2), 0); + } + else + return 0; + break; + } + default: + /* Not an MLA-like operation. */ + return 0; + } + + return (REGNO (dest) == REGNO (accumulator)); +} + +/* Return nonzero if the CONSUMER instruction is some sort of + arithmetic or logic + shift operation, and the register we are + writing in PRODUCER is not used in a register shift by register + operation. */ + +int +aarch_forward_to_shift_is_not_shifted_reg (rtx_insn *producer, + rtx_insn *consumer) +{ + rtx value, op; + rtx early_op; + + if (!arm_get_set_operands (producer, consumer, &value, &op)) + return 0; + + if ((early_op = arm_find_shift_sub_rtx (op))) + { + if (REG_P (early_op)) + early_op = op; + + /* Any other canonicalisation of a shift is a shift-by-constant + so we don't care. */ + if (GET_CODE (early_op) == ASHIFT) + return (!REG_P (XEXP (early_op, 0)) + || !REG_P (XEXP (early_op, 1))); + else + return 1; + } + + return 0; +} + /* Return non-zero if the consumer (a multiply-accumulate instruction) has an accumulator dependency on the result of the producer (a multiplication instruction) and no other dependency on that result. */ diff --git a/gcc/config/arm/cortex-a53.md b/gcc/config/arm/cortex-a53.md index 032d5eb2371..4632cd88f23 100644 --- a/gcc/config/arm/cortex-a53.md +++ b/gcc/config/arm/cortex-a53.md @@ -22,345 +22,700 @@ (define_automaton "cortex_a53") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; Functional units. +;; General-purpose functional units. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; There are two main integer execution pipelines, described as -;; slot 0 and issue slot 1. +;; We use slot0 and slot1 to model constraints on which instructions may +;; dual-issue. (define_cpu_unit "cortex_a53_slot0" "cortex_a53") (define_cpu_unit "cortex_a53_slot1" "cortex_a53") -(define_reservation "cortex_a53_slot_any" "cortex_a53_slot0|cortex_a53_slot1") -(define_reservation "cortex_a53_single_issue" "cortex_a53_slot0+cortex_a53_slot1") +(define_reservation "cortex_a53_slot_any" + "cortex_a53_slot0\ + |cortex_a53_slot1") -;; The load/store pipeline. Load/store instructions can dual-issue from -;; either pipeline, but two load/stores cannot simultaneously issue. +(define_reservation "cortex_a53_single_issue" + "cortex_a53_slot0\ + +cortex_a53_slot1") -(define_cpu_unit "cortex_a53_ls" "cortex_a53") - -;; The store pipeline. Shared between both execution pipelines. +;; Used to model load and store pipelines. Load/store instructions +;; can dual-issue with other instructions, but two load/stores cannot +;; simultaneously issue. (define_cpu_unit "cortex_a53_store" "cortex_a53") +(define_cpu_unit "cortex_a53_load" "cortex_a53") +(define_cpu_unit "cortex_a53_ls_agen" "cortex_a53") -;; The branch pipeline. Branches can dual-issue with other instructions -;; (except when those instructions take multiple cycles to issue). +;; Used to model a branch pipeline. Branches can dual-issue with other +;; instructions (except when those instructions take multiple cycles +;; to issue). (define_cpu_unit "cortex_a53_branch" "cortex_a53") -;; The integer divider. +;; Used to model an integer divide pipeline. (define_cpu_unit "cortex_a53_idiv" "cortex_a53") -;; The floating-point add pipeline used to model the usage -;; of the add pipeline by fmac instructions. - -(define_cpu_unit "cortex_a53_fpadd_pipe" "cortex_a53") +;; Used to model an integer multiply/multiply-accumulate pipeline. -;; Floating-point div/sqrt (long latency, out-of-order completion). +(define_cpu_unit "cortex_a53_imul" "cortex_a53") -(define_cpu_unit "cortex_a53_fp_div_sqrt" "cortex_a53") +;; Model general structural hazards, for wherever we need them. -;; The Advanced SIMD pipelines. - -(define_cpu_unit "cortex_a53_simd0" "cortex_a53") -(define_cpu_unit "cortex_a53_simd1" "cortex_a53") +(define_cpu_unit "cortex_a53_hazard" "cortex_a53") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ALU instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -(define_insn_reservation "cortex_a53_alu" 2 +(define_insn_reservation "cortex_a53_shift" 2 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\ - alu_sreg,alus_sreg,logic_reg,logics_reg,\ - adc_imm,adcs_imm,adc_reg,adcs_reg,\ - adr,bfm,csel,clz,rbit,rev,alu_dsp_reg,\ - rotate_imm,shift_imm,shift_reg,\ - mov_imm,mov_reg,mvn_imm,mvn_reg,\ - mrs,multiple,no_insn")) + (eq_attr "type" "adr,shift_imm,shift_reg,mov_imm,mvn_imm")) "cortex_a53_slot_any") -(define_insn_reservation "cortex_a53_alu_shift" 2 +(define_insn_reservation "cortex_a53_alu_rotate_imm" 2 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "alu_shift_imm,alus_shift_imm,\ - crc,logic_shift_imm,logics_shift_imm,\ - alu_ext,alus_ext,alu_shift_reg,alus_shift_reg,\ - logic_shift_reg,logics_shift_reg,\ - extend,mov_shift,mov_shift_reg,\ - mvn_shift,mvn_shift_reg")) - "cortex_a53_slot_any") + (eq_attr "type" "rotate_imm")) + "(cortex_a53_slot1) + | (cortex_a53_single_issue)") -;; Forwarding path for unshifted operands. - -(define_bypass 1 "cortex_a53_alu,cortex_a53_alu_shift" - "cortex_a53_alu") +(define_insn_reservation "cortex_a53_alu" 3 + (and (eq_attr "tune" "cortexa53") + (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm, + alu_sreg,alus_sreg,logic_reg,logics_reg, + adc_imm,adcs_imm,adc_reg,adcs_reg, + bfm,csel,clz,rbit,rev,alu_dsp_reg, + mov_reg,mvn_reg, + mrs,multiple,no_insn")) + "cortex_a53_slot_any") -(define_bypass 1 "cortex_a53_alu,cortex_a53_alu_shift" - "cortex_a53_alu_shift" - "arm_no_early_alu_shift_dep") +(define_insn_reservation "cortex_a53_alu_shift" 3 + (and (eq_attr "tune" "cortexa53") + (eq_attr "type" "alu_shift_imm,alus_shift_imm, + crc,logic_shift_imm,logics_shift_imm, + alu_ext,alus_ext, + extend,mov_shift,mvn_shift")) + "cortex_a53_slot_any") -;; The multiplier pipeline can forward results so there's no need to specify -;; bypasses. Multiplies can only single-issue currently. +(define_insn_reservation "cortex_a53_alu_shift_reg" 3 + (and (eq_attr "tune" "cortexa53") + (eq_attr "type" "alu_shift_reg,alus_shift_reg, + logic_shift_reg,logics_shift_reg, + mov_shift_reg,mvn_shift_reg")) + "cortex_a53_slot_any+cortex_a53_hazard") (define_insn_reservation "cortex_a53_mul" 3 (and (eq_attr "tune" "cortexa53") (ior (eq_attr "mul32" "yes") - (eq_attr "mul64" "yes"))) - "cortex_a53_single_issue") - -;; A multiply with a single-register result or an MLA, followed by an -;; MLA with an accumulator dependency, has its result forwarded so two -;; such instructions can issue back-to-back. - -(define_bypass 1 "cortex_a53_mul" - "cortex_a53_mul" - "arm_mac_accumulator_is_mul_result") + (eq_attr "mul64" "yes"))) + "cortex_a53_slot_any+cortex_a53_imul") -;; Punt with a high enough latency for divides. -(define_insn_reservation "cortex_a53_udiv" 8 - (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "udiv")) - "(cortex_a53_slot0+cortex_a53_idiv),cortex_a53_idiv*7") +;; From the perspective of the GCC scheduling state machine, if we wish to +;; model an instruction as serialising other instructions, we are best to do +;; so by modelling it as taking very few cycles. Scheduling many other +;; instructions underneath it at the cost of freedom to pick from the +;; ready list is likely to hurt us more than it helps. However, we do +;; want to model some resource and latency cost for divide instructions in +;; order to avoid divides ending up too lumpy. -(define_insn_reservation "cortex_a53_sdiv" 9 +(define_insn_reservation "cortex_a53_div" 4 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "sdiv")) - "(cortex_a53_slot0+cortex_a53_idiv),cortex_a53_idiv*8") - - -(define_bypass 2 "cortex_a53_mul,cortex_a53_udiv,cortex_a53_sdiv" - "cortex_a53_alu") -(define_bypass 2 "cortex_a53_mul,cortex_a53_udiv,cortex_a53_sdiv" - "cortex_a53_alu_shift" - "arm_no_early_alu_shift_dep") + (eq_attr "type" "udiv,sdiv")) + "cortex_a53_slot0,cortex_a53_idiv*2") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Load/store instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; Address-generation happens in the issue stage. +;; TODO: load is not prescriptive about how much data is to be loaded. +;; This is most obvious for LDRD from AArch32 and LDP (X register) from +;; AArch64, both are tagged load2 but LDP will load 128-bits compared to +;; LDRD which is 64-bits. +;; +;; For the below, we assume AArch64 X-registers for load2, and AArch32 +;; registers for load3/load4. -(define_insn_reservation "cortex_a53_load1" 3 +(define_insn_reservation "cortex_a53_load1" 4 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "load_byte,load1,load_acq")) - "cortex_a53_slot_any+cortex_a53_ls") + "cortex_a53_slot_any+cortex_a53_ls_agen, + cortex_a53_load") (define_insn_reservation "cortex_a53_store1" 2 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "store1,store_rel")) - "cortex_a53_slot_any+cortex_a53_ls+cortex_a53_store") + "cortex_a53_slot_any+cortex_a53_ls_agen, + cortex_a53_store") -(define_insn_reservation "cortex_a53_load2" 3 +;; Model AArch64-sized LDP Xm, Xn, [Xa] + +(define_insn_reservation "cortex_a53_load2" 4 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "load2")) - "cortex_a53_single_issue+cortex_a53_ls") + "cortex_a53_single_issue+cortex_a53_ls_agen, + cortex_a53_load+cortex_a53_slot0, + cortex_a53_load") (define_insn_reservation "cortex_a53_store2" 2 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "store2")) - "cortex_a53_single_issue+cortex_a53_ls+cortex_a53_store") + "cortex_a53_slot_any+cortex_a53_ls_agen, + cortex_a53_store") + +;; Model AArch32-sized LDM Ra, {Rm, Rn, Ro} -(define_insn_reservation "cortex_a53_load3plus" 4 +(define_insn_reservation "cortex_a53_load3plus" 6 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "load3,load4")) - "(cortex_a53_single_issue+cortex_a53_ls)*2") + "cortex_a53_single_issue+cortex_a53_ls_agen, + cortex_a53_load+cortex_a53_slot0, + cortex_a53_load") -(define_insn_reservation "cortex_a53_store3plus" 3 +(define_insn_reservation "cortex_a53_store3plus" 2 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "store3,store4")) - "(cortex_a53_single_issue+cortex_a53_ls+cortex_a53_store)*2") - -;; Load/store addresses are required early in Issue. -(define_bypass 3 "cortex_a53_load1,cortex_a53_load2,cortex_a53_load3plus,cortex_a53_alu,cortex_a53_alu_shift" - "cortex_a53_load*" - "arm_early_load_addr_dep") -(define_bypass 3 "cortex_a53_load1,cortex_a53_load2,cortex_a53_load3plus,cortex_a53_alu,cortex_a53_alu_shift" - "cortex_a53_store*" - "arm_early_store_addr_dep") - -;; Load data can forward in the ALU pipeline -(define_bypass 2 "cortex_a53_load1,cortex_a53_load2" - "cortex_a53_alu") -(define_bypass 2 "cortex_a53_load1,cortex_a53_load2" - "cortex_a53_alu_shift" - "arm_no_early_alu_shift_dep") - -;; ALU ops can forward to stores. -(define_bypass 0 "cortex_a53_alu,cortex_a53_alu_shift" - "cortex_a53_store1,cortex_a53_store2,cortex_a53_store3plus" - "arm_no_early_store_addr_dep") - -(define_bypass 1 "cortex_a53_mul,cortex_a53_udiv,cortex_a53_sdiv,cortex_a53_load1,cortex_a53_load2,cortex_a53_load3plus" - "cortex_a53_store1,cortex_a53_store2,cortex_a53_store3plus" - "arm_no_early_store_addr_dep") + "cortex_a53_slot_any+cortex_a53_ls_agen, + cortex_a53_store+cortex_a53_slot0, + cortex_a53_store") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Branches. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; Currently models all branches as dual-issuable from either execution -;; slot, which isn't true for all cases. We still need to model indirect -;; branches. +;; Model all branches as dual-issuable from either execution, which +;; is not strictly true for all cases (indirect branches). (define_insn_reservation "cortex_a53_branch" 0 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "branch,call")) - "cortex_a53_slot_any+cortex_a53_branch") + "cortex_a53_slot_any,cortex_a53_branch") + +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;; General-purpose register bypasses +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +;; Model bypasses for unshifted operands to ALU instructions. + +(define_bypass 1 "cortex_a53_shift" + "cortex_a53_shift") + +(define_bypass 1 "cortex_a53_alu, + cortex_a53_alu_shift*, + cortex_a53_alu_rotate_imm, + cortex_a53_shift" + "cortex_a53_alu") + +(define_bypass 2 "cortex_a53_alu, + cortex_a53_alu_shift*" + "cortex_a53_alu_shift*" + "aarch_forward_to_shift_is_not_shifted_reg") + +;; In our model, we allow any general-purpose register operation to +;; bypass to the accumulator operand of an integer MADD-like operation. + +(define_bypass 1 "cortex_a53_alu*, + cortex_a53_load*, + cortex_a53_mul" + "cortex_a53_mul" + "aarch_accumulator_forwarding") + +;; Model a bypass from MLA/MUL to many ALU instructions. + +(define_bypass 2 "cortex_a53_mul" + "cortex_a53_alu, + cortex_a53_alu_shift*") + +;; We get neater schedules by allowing an MLA/MUL to feed an +;; early load address dependency to a load. + +(define_bypass 2 "cortex_a53_mul" + "cortex_a53_load*" + "arm_early_load_addr_dep") + +;; Model bypasses for loads which are to be consumed by the ALU. + +(define_bypass 2 "cortex_a53_load1" + "cortex_a53_alu") + +(define_bypass 3 "cortex_a53_load1" + "cortex_a53_alu_shift*") + +;; Model a bypass for ALU instructions feeding stores. + +(define_bypass 1 "cortex_a53_alu*" + "cortex_a53_store1, + cortex_a53_store2, + cortex_a53_store3plus" + "arm_no_early_store_addr_dep") + +;; Model a bypass for load and multiply instructions feeding stores. + +(define_bypass 2 "cortex_a53_mul, + cortex_a53_load1, + cortex_a53_load2, + cortex_a53_load3plus" + "cortex_a53_store1, + cortex_a53_store2, + cortex_a53_store3plus" + "arm_no_early_store_addr_dep") + +;; Model a GP->FP register move as similar to stores. + +(define_bypass 1 "cortex_a53_alu*" + "cortex_a53_r2f") + +(define_bypass 2 "cortex_a53_mul, + cortex_a53_load1, + cortex_a53_load2, + cortex_a53_load3plus" + "cortex_a53_r2f") + +;; Shifts feeding Load/Store addresses may not be ready in time. + +(define_bypass 3 "cortex_a53_shift" + "cortex_a53_load*" + "arm_early_load_addr_dep") + +(define_bypass 3 "cortex_a53_shift" + "cortex_a53_store*" + "arm_early_store_addr_dep") + +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;; Floating-point/Advanced SIMD. +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +(define_automaton "cortex_a53_advsimd") + +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;; Broad Advanced SIMD type categorisation +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +(define_attr "cortex_a53_advsimd_type" + "advsimd_alu, advsimd_alu_q, + advsimd_mul, advsimd_mul_q, + advsimd_div_s, advsimd_div_s_q, + advsimd_div_d, advsimd_div_d_q, + advsimd_load_64, advsimd_store_64, + advsimd_load_128, advsimd_store_128, + advsimd_load_lots, advsimd_store_lots, + unknown" + (cond [ + (eq_attr "type" "neon_add, neon_qadd, neon_add_halve, neon_sub, neon_qsub,\ + neon_sub_halve, neon_abs, neon_neg, neon_qneg,\ + neon_qabs, neon_abd, neon_minmax, neon_compare,\ + neon_compare_zero, neon_arith_acc, neon_reduc_add,\ + neon_reduc_add_acc, neon_reduc_minmax,\ + neon_logic, neon_tst, neon_shift_imm,\ + neon_shift_reg, neon_shift_acc, neon_sat_shift_imm,\ + neon_sat_shift_reg, neon_ins, neon_move,\ + neon_permute, neon_zip, neon_tbl1,\ + neon_tbl2, neon_tbl3, neon_tbl4, neon_bsl,\ + neon_cls, neon_cnt, neon_dup,\ + neon_ext, neon_rbit, neon_rev,\ + neon_fp_abd_s, neon_fp_abd_d,\ + neon_fp_abs_s, neon_fp_abs_d,\ + neon_fp_addsub_s, neon_fp_addsub_d, neon_fp_compare_s,\ + neon_fp_compare_d, neon_fp_minmax_s,\ + neon_fp_minmax_d, neon_fp_neg_s, neon_fp_neg_d,\ + neon_fp_reduc_add_s, neon_fp_reduc_add_d,\ + neon_fp_reduc_minmax_s, neon_fp_reduc_minmax_d,\ + neon_fp_cvt_widen_h, neon_fp_to_int_s,neon_fp_to_int_d,\ + neon_int_to_fp_s, neon_int_to_fp_d, neon_fp_round_s,\ + neon_fp_recpe_s, neon_fp_recpe_d, neon_fp_recps_s,\ + neon_fp_recps_d, neon_fp_recpx_s, neon_fp_recpx_d,\ + neon_fp_rsqrte_s, neon_fp_rsqrte_d, neon_fp_rsqrts_s,\ + neon_fp_rsqrts_d") + (const_string "advsimd_alu") + (eq_attr "type" "neon_add_q, neon_add_widen, neon_add_long,\ + neon_qadd_q, neon_add_halve_q, neon_add_halve_narrow_q,\ + neon_sub_q, neon_sub_widen, neon_sub_long,\ + neon_qsub_q, neon_sub_halve_q, neon_sub_halve_narrow_q,\ + neon_abs_q, neon_neg_q, neon_qneg_q, neon_qabs_q,\ + neon_abd_q, neon_abd_long, neon_minmax_q,\ + neon_compare_q, neon_compare_zero_q,\ + neon_arith_acc_q, neon_reduc_add_q,\ + neon_reduc_add_long, neon_reduc_add_acc_q,\ + neon_reduc_minmax_q, neon_logic_q, neon_tst_q,\ + neon_shift_imm_q, neon_shift_imm_narrow_q,\ + neon_shift_imm_long, neon_shift_reg_q,\ + neon_shift_acc_q, neon_sat_shift_imm_q,\ + neon_sat_shift_imm_narrow_q, neon_sat_shift_reg_q,\ + neon_ins_q, neon_move_q, neon_move_narrow_q,\ + neon_permute_q, neon_zip_q,\ + neon_tbl1_q, neon_tbl2_q, neon_tbl3_q,\ + neon_tbl4_q, neon_bsl_q, neon_cls_q, neon_cnt_q,\ + neon_dup_q, neon_ext_q, neon_rbit_q,\ + neon_rev_q, neon_fp_abd_s_q, neon_fp_abd_d_q,\ + neon_fp_abs_s_q, neon_fp_abs_d_q,\ + neon_fp_addsub_s_q, neon_fp_addsub_d_q,\ + neon_fp_compare_s_q, neon_fp_compare_d_q,\ + neon_fp_minmax_s_q, neon_fp_minmax_d_q,\ + neon_fp_cvt_widen_s, neon_fp_neg_s_q, neon_fp_neg_d_q,\ + neon_fp_reduc_add_s_q, neon_fp_reduc_add_d_q,\ + neon_fp_reduc_minmax_s_q, neon_fp_reduc_minmax_d_q,\ + neon_fp_cvt_narrow_s_q, neon_fp_cvt_narrow_d_q,\ + neon_fp_to_int_s_q, neon_fp_to_int_d_q,\ + neon_int_to_fp_s_q, neon_int_to_fp_d_q,\ + neon_fp_round_s_q,\ + neon_fp_recpe_s_q, neon_fp_recpe_d_q,\ + neon_fp_recps_s_q, neon_fp_recps_d_q,\ + neon_fp_recpx_s_q, neon_fp_recpx_d_q,\ + neon_fp_rsqrte_s_q, neon_fp_rsqrte_d_q,\ + neon_fp_rsqrts_s_q, neon_fp_rsqrts_d_q") + (const_string "advsimd_alu_q") + (eq_attr "type" "neon_mul_b, neon_mul_h, neon_mul_s,\ + neon_mul_h_scalar, neon_mul_s_scalar,\ + neon_sat_mul_b, neon_sat_mul_h, neon_sat_mul_s,\ + neon_sat_mul_h_scalar, neon_sat_mul_s_scalar,\ + neon_mla_b, neon_mla_h, neon_mla_s,\ + neon_mla_h_scalar, neon_mla_s_scalar,\ + neon_fp_mul_s, neon_fp_mul_s_scalar,\ + neon_fp_mul_d, neon_fp_mla_s,\ + neon_fp_mla_s_scalar, neon_fp_mla_d") + (const_string "advsimd_mul") + (eq_attr "type" "neon_mul_b_q, neon_mul_h_q, neon_mul_s_q,\ + neon_mul_b_long, neon_mul_h_long, neon_mul_s_long,\ + neon_mul_d_long, neon_mul_h_scalar_q,\ + neon_mul_s_scalar_q, neon_mul_h_scalar_long,\ + neon_mul_s_scalar_long, neon_sat_mul_b_q,\ + neon_sat_mul_h_q, neon_sat_mul_s_q,\ + neon_sat_mul_b_long, neon_sat_mul_h_long,\ + neon_sat_mul_s_long, neon_sat_mul_h_scalar_q,\ + neon_sat_mul_s_scalar_q, neon_sat_mul_h_scalar_long,\ + neon_sat_mul_s_scalar_long, neon_mla_b_q,\ + neon_mla_h_q, neon_mla_s_q, neon_mla_b_long,\ + neon_mla_h_long, neon_mla_s_long,\ + neon_mla_h_scalar_q, neon_mla_s_scalar_q,\ + neon_mla_h_scalar_long, neon_mla_s_scalar_long,\ + neon_sat_mla_b_long, neon_sat_mla_h_long,\ + neon_sat_mla_s_long, neon_sat_mla_h_scalar_long,\ + neon_sat_mla_s_scalar_long,\ + neon_fp_mul_s_q, neon_fp_mul_s_scalar_q,\ + neon_fp_mul_d_q, neon_fp_mul_d_scalar_q,\ + neon_fp_mla_s_q, neon_fp_mla_s_scalar_q,\ + neon_fp_mla_d_q, neon_fp_mla_d_scalar_q") + (const_string "advsimd_mul_q") + (eq_attr "type" "neon_fp_sqrt_s, neon_fp_div_s") + (const_string "advsimd_div_s") + (eq_attr "type" "neon_fp_sqrt_s_q, neon_fp_div_s_q") + (const_string "advsimd_div_s_q") + (eq_attr "type" "neon_fp_sqrt_d, neon_fp_div_d") + (const_string "advsimd_div_d") + (eq_attr "type" "neon_fp_sqrt_d_q, neon_fp_div_d_q") + (const_string "advsimd_div_d_q") + (eq_attr "type" "neon_ldr, neon_load1_1reg,\ + neon_load1_all_lanes, neon_load1_all_lanes_q,\ + neon_load1_one_lane, neon_load1_one_lane_q") + (const_string "advsimd_load_64") + (eq_attr "type" "neon_str, neon_store1_1reg,\ + neon_store1_one_lane,neon_store1_one_lane_q") + (const_string "advsimd_store_64") + (eq_attr "type" "neon_load1_1reg_q, neon_load1_2reg,\ + neon_load2_2reg,\ + neon_load2_all_lanes, neon_load2_all_lanes_q,\ + neon_load2_one_lane, neon_load2_one_lane_q") + (const_string "advsimd_load_128") + (eq_attr "type" "neon_store1_1reg_q, neon_store1_2reg,\ + neon_store2_2reg,\ + neon_store2_one_lane, neon_store2_one_lane_q") + (const_string "advsimd_store_128") + (eq_attr "type" "neon_load1_2reg_q, neon_load1_3reg, neon_load1_3reg_q,\ + neon_load1_4reg, neon_load1_4reg_q, \ + neon_load2_2reg_q, neon_load2_4reg,\ + neon_load2_4reg_q, neon_load3_3reg,\ + neon_load3_3reg_q, neon_load3_all_lanes,\ + neon_load3_all_lanes_q, neon_load3_one_lane,\ + neon_load3_one_lane_q, neon_load4_4reg,\ + neon_load4_4reg_q, neon_load4_all_lanes,\ + neon_load4_all_lanes_q, neon_load4_one_lane,\ + neon_load4_one_lane_q, neon_ldp, neon_ldp_q") + (const_string "advsimd_load_lots") + (eq_attr "type" "neon_store1_2reg_q, neon_store1_3reg,\ + neon_store1_3reg_q, neon_store1_4reg,\ + neon_store1_4reg_q, neon_store2_2reg_q,\ + neon_store2_4reg, neon_store2_4reg_q,\ + neon_store3_3reg, neon_store3_3reg_q,\ + neon_store3_one_lane, neon_store3_one_lane_q,\ + neon_store4_4reg, neon_store4_4reg_q,\ + neon_store4_one_lane, neon_store4_one_lane_q,\ + neon_stp, neon_stp_q") + (const_string "advsimd_store_lots")] + (const_string "unknown"))) + +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;; Floating-point/Advanced SIMD functional units. +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +;; We model the Advanced SIMD unit as two 64-bit units, each with three +;; pipes, FP_ALU, FP_MUL, FP_DIV. We also give convenient reservations +;; for 128-bit Advanced SIMD instructions, which use both units. + +;; The floating-point/Advanced SIMD ALU pipelines. + +(define_cpu_unit "cortex_a53_fp_alu_lo,\ + cortex_a53_fp_alu_hi" + "cortex_a53_advsimd") + +(define_reservation "cortex_a53_fp_alu" + "cortex_a53_fp_alu_lo\ + |cortex_a53_fp_alu_hi") + +(define_reservation "cortex_a53_fp_alu_q" + "cortex_a53_fp_alu_lo\ + +cortex_a53_fp_alu_hi") + +;; The floating-point/Advanced SIMD multiply/multiply-accumulate +;; pipelines. + +(define_cpu_unit "cortex_a53_fp_mul_lo,\ + cortex_a53_fp_mul_hi" + "cortex_a53_advsimd") + +(define_reservation "cortex_a53_fp_mul" + "cortex_a53_fp_mul_lo\ + |cortex_a53_fp_mul_hi") + +(define_reservation "cortex_a53_fp_mul_q" + "cortex_a53_fp_mul_lo\ + +cortex_a53_fp_mul_hi") + +;; Floating-point/Advanced SIMD divide/square root. + +(define_cpu_unit "cortex_a53_fp_div_lo,\ + cortex_a53_fp_div_hi" + "cortex_a53_advsimd") + +;; Once we choose a pipe, stick with it for three simulated cycles. + +(define_reservation "cortex_a53_fp_div" + "(cortex_a53_fp_div_lo*3)\ + |(cortex_a53_fp_div_hi*3)") + +(define_reservation "cortex_a53_fp_div_q" + "(cortex_a53_fp_div_lo*3)\ + +(cortex_a53_fp_div_hi*3)") + +;; Cryptographic extensions + +(define_cpu_unit "cortex_a53_crypto" + "cortex_a53_advsimd") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point arithmetic. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -(define_insn_reservation "cortex_a53_fpalu" 4 +(define_insn_reservation "cortex_a53_fpalu" 5 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "ffariths, fadds, ffarithd, faddd, fmov, fmuls,\ - f_cvt,f_cvtf2i,f_cvti2f,\ - fcmps, fcmpd, fcsel, f_rints, f_rintd, f_minmaxs,\ - f_minmaxd")) - "cortex_a53_slot0+cortex_a53_fpadd_pipe") + (eq_attr "type" "ffariths, fadds, ffarithd, faddd, fmov, + f_cvt, fcmps, fcmpd, fcsel, f_rints, f_rintd, + f_minmaxs, f_minmaxd")) + "cortex_a53_slot_any,cortex_a53_fp_alu") -(define_insn_reservation "cortex_a53_fconst" 2 +(define_insn_reservation "cortex_a53_fconst" 3 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "fconsts,fconstd")) - "cortex_a53_slot0+cortex_a53_fpadd_pipe") + "cortex_a53_slot_any,cortex_a53_fp_alu") -(define_insn_reservation "cortex_a53_fpmul" 4 +(define_insn_reservation "cortex_a53_fpmul" 5 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "fmuls,fmuld")) - "cortex_a53_slot0") + "cortex_a53_slot_any,cortex_a53_fp_mul") -;; For single-precision multiply-accumulate, the add (accumulate) is issued after -;; the multiply completes. Model that accordingly. +;; For multiply-accumulate, model the add (accumulate) as being issued +;; after the multiply completes. (define_insn_reservation "cortex_a53_fpmac" 8 (and (eq_attr "tune" "cortexa53") (eq_attr "type" "fmacs,fmacd,ffmas,ffmad")) - "cortex_a53_slot0, nothing*3, cortex_a53_fpadd_pipe") + "cortex_a53_slot_any,cortex_a53_fp_mul, + nothing*3, cortex_a53_fp_alu") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; Floating-point divide/square root instructions. +;; Floating-point to/from core transfers. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; fsqrt really takes one cycle less, but that is not modelled. -(define_insn_reservation "cortex_a53_fdivs" 14 +(define_insn_reservation "cortex_a53_r2f" 6 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "fdivs, fsqrts")) - "cortex_a53_slot0, cortex_a53_fp_div_sqrt * 5") + (eq_attr "type" "f_mcr,f_mcrr,f_cvti2f, + neon_from_gp, neon_from_gp_q")) + "cortex_a53_slot_any,cortex_a53_store, + nothing,cortex_a53_fp_alu") -(define_insn_reservation "cortex_a53_fdivd" 29 +(define_insn_reservation "cortex_a53_f2r" 6 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "fdivd, fsqrtd")) - "cortex_a53_slot0, cortex_a53_fp_div_sqrt * 8") + (eq_attr "type" "f_mrc,f_mrrc,f_cvtf2i, + neon_to_gp, neon_to_gp_q")) + "cortex_a53_slot_any,cortex_a53_fp_alu, + nothing,cortex_a53_store") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; ARMv8-A Cryptographic extensions. +;; Floating-point flag transfer. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -(define_insn_reservation "cortex_a53_crypto_aese" 2 +(define_insn_reservation "cortex_a53_f_flags" 5 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "crypto_aese")) - "cortex_a53_simd0") + (eq_attr "type" "f_flag")) + "cortex_a53_slot_any") -(define_insn_reservation "cortex_a53_crypto_aesmc" 2 - (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "crypto_aesmc")) - "cortex_a53_simd0 | cortex_a53_simd1") +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;; Floating-point load/store. +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -(define_insn_reservation "cortex_a53_crypto_sha1_fast" 2 +(define_insn_reservation "cortex_a53_f_load_64" 4 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "crypto_sha1_fast, crypto_sha256_fast")) - "cortex_a53_simd0") + (ior (eq_attr "type" "f_loads,f_loadd") + (eq_attr "cortex_a53_advsimd_type" + "advsimd_load_64"))) + "cortex_a53_slot_any+cortex_a53_ls_agen, + cortex_a53_load") -(define_insn_reservation "cortex_a53_crypto_sha1_xor" 3 +(define_insn_reservation "cortex_a53_f_load_many" 5 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "crypto_sha1_xor")) - "cortex_a53_simd0") + (eq_attr "cortex_a53_advsimd_type" + "advsimd_load_128,advsimd_load_lots")) + "cortex_a53_single_issue+cortex_a53_ls_agen, + cortex_a53_load+cortex_a53_slot0, + cortex_a53_load") -(define_insn_reservation "cortex_a53_crypto_sha_slow" 5 +(define_insn_reservation "cortex_a53_f_store_64" 0 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "crypto_sha1_slow, crypto_sha256_slow")) - "cortex_a53_simd0") + (ior (eq_attr "type" "f_stores,f_stored") + (eq_attr "cortex_a53_advsimd_type" + "advsimd_store_64"))) + "cortex_a53_slot_any+cortex_a53_ls_agen, + cortex_a53_store") -(define_bypass 0 "cortex_a53_crypto_aese" - "cortex_a53_crypto_aesmc" - "aarch_crypto_can_dual_issue") +(define_insn_reservation "cortex_a53_f_store_many" 0 + (and (eq_attr "tune" "cortexa53") + (eq_attr "cortex_a53_advsimd_type" + "advsimd_store_128,advsimd_store_lots")) + "cortex_a53_slot_any+cortex_a53_ls_agen, + cortex_a53_store+cortex_a53_slot0, + cortex_a53_store") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; VFP to/from core transfers. +;; Advanced SIMD. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -(define_insn_reservation "cortex_a53_r2f" 4 +;; Either we want to model use of the ALU pipe, the multiply pipe or the +;; divide/sqrt pipe. In all cases we need to check if we are a 64-bit +;; operation (in which case we model dual-issue without penalty) +;; or a 128-bit operation in which case we require in our model that we +;; issue from slot 0. + +(define_insn_reservation "cortex_a53_advsimd_alu" 5 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "f_mcr,f_mcrr")) - "cortex_a53_slot0") + (eq_attr "cortex_a53_advsimd_type" "advsimd_alu")) + "cortex_a53_slot_any,cortex_a53_fp_alu") -(define_insn_reservation "cortex_a53_f2r" 2 +(define_insn_reservation "cortex_a53_advsimd_alu_q" 5 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "f_mrc,f_mrrc")) - "cortex_a53_slot0") + (eq_attr "cortex_a53_advsimd_type" "advsimd_alu_q")) + "cortex_a53_slot0,cortex_a53_fp_alu_q") -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; VFP flag transfer. -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +(define_insn_reservation "cortex_a53_advsimd_mul" 5 + (and (eq_attr "tune" "cortexa53") + (eq_attr "cortex_a53_advsimd_type" "advsimd_mul")) + "cortex_a53_slot_any,cortex_a53_fp_mul") -(define_insn_reservation "cortex_a53_f_flags" 4 +(define_insn_reservation "cortex_a53_advsimd_mul_q" 5 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "f_flag")) - "cortex_a53_slot0") + (eq_attr "cortex_a53_advsimd_type" "advsimd_mul_q")) + "cortex_a53_slot0,cortex_a53_fp_mul_q") + +;; SIMD Dividers. + +(define_insn_reservation "cortex_a53_advsimd_div_s" 14 + (and (eq_attr "tune" "cortexa53") + (ior (eq_attr "type" "fdivs,fsqrts") + (eq_attr "cortex_a53_advsimd_type" "advsimd_div_s"))) + "cortex_a53_slot0,cortex_a53_fp_mul, + cortex_a53_fp_div") + +(define_insn_reservation "cortex_a53_advsimd_div_d" 29 + (and (eq_attr "tune" "cortexa53") + (ior (eq_attr "type" "fdivd,fsqrtd") + (eq_attr "cortex_a53_advsimd_type" "advsimd_div_d"))) + "cortex_a53_slot0,cortex_a53_fp_mul, + cortex_a53_fp_div") + +(define_insn_reservation "cortex_a53_advsimd_div_s_q" 14 + (and (eq_attr "tune" "cortexa53") + (eq_attr "cortex_a53_advsimd_type" "advsimd_div_s_q")) + "cortex_a53_single_issue,cortex_a53_fp_mul_q, + cortex_a53_fp_div_q") + +(define_insn_reservation "cortex_a53_advsimd_divd_q" 29 + (and (eq_attr "tune" "cortexa53") + (eq_attr "cortex_a53_advsimd_type" "advsimd_div_d_q")) + "cortex_a53_single_issue,cortex_a53_fp_mul_q, + cortex_a53_fp_div_q") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; VFP load/store. +;; ARMv8-A Cryptographic extensions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -(define_insn_reservation "cortex_a53_f_loads" 4 +;; We want AESE and AESMC to end up consecutive to one another. + +(define_insn_reservation "cortex_a53_crypto_aese" 3 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "f_loads")) + (eq_attr "type" "crypto_aese")) "cortex_a53_slot0") -(define_insn_reservation "cortex_a53_f_loadd" 5 +(define_insn_reservation "cortex_a53_crypto_aesmc" 3 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "f_loadd")) - "cortex_a53_slot0") + (eq_attr "type" "crypto_aesmc")) + "cortex_a53_slot_any") -(define_insn_reservation "cortex_a53_f_load_2reg" 5 +;; SHA1H + +(define_insn_reservation "cortex_a53_crypto_sha1_fast" 3 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "neon_ldp, neon_ldp_q, neon_load2_2reg_q")) - "(cortex_a53_slot_any+cortex_a53_ls)*2") + (eq_attr "type" "crypto_sha1_fast")) + "cortex_a53_slot_any,cortex_a53_crypto") -(define_insn_reservation "cortex_a53_f_loadq" 5 +(define_insn_reservation "cortex_a53_crypto_sha256_fast" 3 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "neon_load1_1reg_q")) - "cortex_a53_slot_any+cortex_a53_ls") + (eq_attr "type" "crypto_sha256_fast")) + "cortex_a53_slot0,cortex_a53_crypto") -(define_insn_reservation "cortex_a53_f_stores" 0 +(define_insn_reservation "cortex_a53_crypto_sha1_xor" 4 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "f_stores")) - "cortex_a53_slot0") + (eq_attr "type" "crypto_sha1_xor")) + "cortex_a53_slot0,cortex_a53_crypto") -(define_insn_reservation "cortex_a53_f_stored" 0 +(define_insn_reservation "cortex_a53_crypto_sha_slow" 5 (and (eq_attr "tune" "cortexa53") - (eq_attr "type" "f_stored")) - "cortex_a53_slot0") + (eq_attr "type" "crypto_sha1_slow, crypto_sha256_slow")) + "cortex_a53_slot0,cortex_a53_crypto") -;; Load-to-use for floating-point values has a penalty of one cycle, -;; i.e. a latency of two. +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;; Floating-point/Advanced SIMD register bypasses. +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -(define_bypass 2 "cortex_a53_f_loads" - "cortex_a53_fpalu, cortex_a53_fpmac, cortex_a53_fpmul,\ - cortex_a53_fdivs, cortex_a53_fdivd,\ - cortex_a53_f2r") +;; Model the late use of the accumulator operand for floating-point +;; multiply-accumulate operations as a bypass reducing the latency +;; of producing instructions to near zero. -(define_bypass 2 "cortex_a53_f_loadd" - "cortex_a53_fpalu, cortex_a53_fpmac, cortex_a53_fpmul,\ - cortex_a53_fdivs, cortex_a53_fdivd,\ - cortex_a53_f2r") +(define_bypass 1 "cortex_a53_fp*, + cortex_a53_r2f, + cortex_a53_f_load*" + "cortex_a53_fpmac" + "aarch_accumulator_forwarding") -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; Crude Advanced SIMD approximation. -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;; Model a bypass from the result of an FP operation to a use. + +(define_bypass 4 "cortex_a53_fpalu, + cortex_a53_fpmul" + "cortex_a53_fpalu, + cortex_a53_fpmul, + cortex_a53_fpmac, + cortex_a53_advsimd_div*") + +;; We want AESE and AESMC to end up consecutive to one another. + +(define_bypass 0 "cortex_a53_crypto_aese" + "cortex_a53_crypto_aesmc" + "aarch_crypto_can_dual_issue") -(define_insn_reservation "cortex_a53_advsimd" 4 - (and (eq_attr "tune" "cortexa53") - (eq_attr "is_neon_type" "yes")) - "cortex_a53_simd0")