From: Michal Krol Date: Mon, 18 Oct 2004 09:49:25 +0000 (+0000) Subject: conform to language version 1.10 rev 59 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=cfb62331bc9cd229eea6aa6b96339c570456495d;p=mesa.git conform to language version 1.10 rev 59 resolve TODOs --- diff --git a/src/mesa/shader/slang_core.gc b/src/mesa/shader/slang_core.gc index 1b69510d641..3a18673ed6b 100755 --- a/src/mesa/shader/slang_core.gc +++ b/src/mesa/shader/slang_core.gc @@ -1,1654 +1,1751 @@ - -// -// This file defines nearly all constructors and operators for built-in data types, using -// extended language syntax. In general, compiler treats constructors and operators as -// ordinary functions with some exceptions. For example, the language does not allow -// functions to be called in constant expressions - here the exception is made to allow it. -// -// Each implementation provides its own version of this file. Each implementation can define -// the required set of operators and constructors in its own fashion. -// -// The extended language syntax is only present when compiling this file. It is implicitly -// included at the very beginning of the compiled shader, so no built-in functions can be -// used. -// -// To communicate with the implementation, a special extended "__asm" keyword is used, followed -// by an instruction name (any valid identifier), a destination variable identifier and a -// a list of zero or more source variable identifiers. A variable identifier is a variable name -// declared earlier in the code (as a function parameter, local or global variable). -// An instruction name designates an instruction that must be exported by the implementation. -// Each instruction receives data from destination and source variable identifiers and returns -// data in the destination variable identifier. -// -// It is up to the implementation how to define a particular operator or constructor. If it is -// expected to being used rarely, it can be defined in terms of other operators and constructors, -// for example: -// -// ivec2 ____operator + (const ivec2 x, const ivec2 y) { -// return ivec2 (x[0] + y[0], x[1] + y[1]); -// } -// -// If a particular operator or constructor is expected to be used very often or is an atomic -// operation (that is, an operation that cannot be expressed in terms of other operations or -// would create a dependency cycle) it must be defined using one or more __asm constructs. -// -// Each implementation must define constructors for all scalar types (bool, float, int). -// There are 9 scalar-to-scalar constructors (including identity constructors). However, -// since the language introduces special constructors (like matrix constructor with a single -// scalar value), implementations must also implement these cases. -// The compiler provides the following algorithm when resolving a constructor: -// - try to find a constructor with a prototype matching ours, -// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error, -// - if a constructor is found, execute it and return, -// - count the size of the constructor parameter list - if it is less than the size of -// our constructor's type, raise an error, -// - for each parameter in the list do a recursive constructor matching for appropriate -// scalar fields in the constructed variable, -// -// Each implementation must also define a set of operators that deal with built-in data types. -// There are four kinds of operators: -// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence) -// and "?:" (selection). -// 2) Operators that are implemented by the compiler by expressing it in terms of other operators: -// - "." (field selection) - translated to subscript access, -// - "&&" (logical and) - translated to " ? : false", -// - "||" (logical or) - translated to " ? true : ", -// 3) Operators that can be defined by the implementation and if the required prototype is not -// found, standard behaviour is used: -// - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one; -// note that at least operators for scalar data types must be defined by the implementation -// to get it work, -// 4) All other operators not mentioned above. If no required prototype is found, an error is -// raised. An implementation must follow the language specification to provide all valid -// operator prototypes. -// - -// -// TODO: -// - do something with [] operator: leave it in compiler or move it here, -// - emulate bools and ints with floats (this should simplify target implementation), -// - are vec*mat and mat*vec definitions correct? is the list complete? -// - -// -// From Shader Spec, ver. 1.051 -// - -// -// 5.4.1 Conversion and Scalar Constructors -// - -// -// When constructors are used to convert a float to an int, the fractional part of the -// floating-point value is dropped. -// - -int __constructor (const float _f) { - int _i; - __asm float_to_int _i, _f; - return _i; -} - -// -// When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to -// false, and nonzero values are converted to true. -// - -bool __constructor (const int _i) { - return _i != 0; -} - -bool __constructor (const float _f) { - return _f != 0.0; -} - -// -// When a constructor is used to convert a bool to an int or float, false is converted to 0 or -// 0.0, and true is converted to 1 or 1.0. -// - -int __constructor (const bool _b) { - return _b ? 1 : 0; -} - -float __constructor (const bool _b) { - return _b ? 1.0 : 0.0; -} - -// -// Int to float constructor. -// - -float __constructor (const int _i) { - float _f; - __asm int_to_float _f, _i; - return _f; -} - -// -// Identity constructors, like float(float) are also legal, but of little use. -// - -bool __constructor (const bool _b) { - return _b; -} - -int __constructor (const int _i) { - return _i; -} - -float __constructor (const float _f) { - return _f; -} - -// -// Scalar constructors with non-scalar parameters can be used to take the first element from -// a non-scalar. For example, the constructor float(vec3) will select the first component of the -// vec3 parameter. -// - -// [These scalar conversions will be handled internally by the compiler.] - -// -// 5.4.2 Vector and Matrix Constructors -// -// Constructors can be used to create vectors or matrices from a set of scalars, vectors, -// or matrices. This includes the ability to shorten vectors or matrices. -// - -// -// If there is a single scalar parameter to a vector constructor, it is used to initialize all -// components of the constructed vector to that scalar’s value. -// -// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic -// type of the object being constructed, the scalar construction rules (above) are used to convert -// the parameters. -// - -vec2 __constructor (const float _f) { - return vec2 (_f, _f); -} - -vec2 __constructor (const int _i) { - return vec2 (_i, _i); -} - -vec2 __constructor (const bool _b) { - return vec2 (_b, _b); -} - -vec3 __constructor (const float _f) { - return vec3 (_f, _f, _f); -} - -vec3 __constructor (const int _i) { - return vec3 (_i, _i, _i); -} - -vec3 __constructor (const bool _b) { - return vec3 (_b, _b, _b); -} - -vec4 __constructor (const float _f) { - return vec4 (_f, _f, _f, _f); -} - -vec4 __constructor (const int _i) { - return vec4 (_i, _i, _i, _i); -} - -vec4 __constructor (const bool _b) { - return vec4 (_b, _b, _b, _b); -} - -ivec2 __constructor (const int _i) { - return ivec2 (_i, _i); -} - -ivec2 __constructor (const float _f) { - return ivec2 (_f, _f); -} - -ivec2 __constructor (const bool _b) { - return ivec2 (_b, _b); -} - -ivec3 __constructor (const int _i) { - return ivec3 (_i, _i, _i); -} - -ivec3 __constructor (const float _f) { - return ivec3 (_f, _f, _f); -} - -ivec3 __constructor (const bool _b) { - return ivec3 (_b, _b, _b); -} - -ivec4 __constructor (const int _i) { - return ivec4 (_i, _i, _i, _i); -} - -ivec4 __constructor (const float _f) { - return ivec4 (_f, _f, _f, _f); -} - -ivec4 __constructor (const bool _b) { - return ivec4 (_b, _b, _b, _b); -} - -bvec2 __constructor (const bool _b) { - return bvec2 (_b, _b); -} - -bvec2 __constructor (const float _f) { - return bvec2 (_f, _f); -} - -bvec2 __constructor (const int _i) { - return bvec2 (_i, _i); -} - -bvec3 __constructor (const bool _b) { - return bvec3 (_b, _b, _b); -} - -bvec3 __constructor (const float _f) { - return bvec3 (_f, _f, _f); -} - -bvec3 __constructor (const int _i) { - return bvec3 (_i, _i, _i); -} - -bvec4 __constructor (const bool _b) { - return bvec4 (_b, _b, _b, _b); -} - -bvec4 __constructor (const float _f) { - return bvec4 (_f, _f, _f, _f); -} - -bvec4 __constructor (const int _i) { - return bvec4 (_i, _i, _i, _i); -} - -// -// If there is a single scalar parameter to a matrix constructor, it is used to initialize all the -// components on the matrix’s diagonal, with the remaining components initialized to 0.0. -// (...) Matrices will be constructed in column major order. -// -// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic -// type of the object being constructed, the scalar construction rules (above) are used to convert -// the parameters. -// - -mat2 __constructor (const float _f) { - return mat2 ( - _f, .0, - .0, _f - ); -} - -mat2 __constructor (const int _i) { - return mat2 ( - _i, .0, - .0, _i - ); -} - -mat2 __constructor (const bool _b) { - return mat2 ( - _b, .0, - .0, _b - ); -} - -mat3 __constructor (const float _f) { - return mat3 ( - _f, .0, .0, - .0, _f, .0, - .0, .0, _f - ); -} - -mat3 __constructor (const int _i) { - return mat3 ( - _i, .0, .0, - .0, _i, .0, - .0, .0, _i - ); -} - -mat3 __constructor (const bool _b) { - return mat3 ( - _b, .0, .0, - .0, _b, .0, - .0, .0, _b - ); -} - -mat4 __constructor (const float _f) { - return mat4 ( - _f, .0, .0, .0, - .0, _f, .0, .0, - .0, .0, _f, .0, - .0, .0, .0, _f - ); -} - -mat4 __constructor (const int _i) { - return mat4 ( - _i, .0, .0, .0, - .0, _i, .0, .0, - .0, .0, _i, .0, - .0, .0, .0, _i - ); -} - -mat4 __constructor (const bool _b) { - return mat4 ( - _b, .0, .0, .0, - .0, _b, .0, .0, - .0, .0, _b, .0, - .0, .0, .0, _b - ); -} - -// -// 5.8 Assignments -// -// Assignments of values to variable names are done with the assignment operator ( = ), like -// -// lvalue = expression -// -// The assignment operator stores the value of expression into lvalue. It will compile only if -// expression and lvalue have the same type. All desired type-conversions must be specified -// explicitly via a constructor. Lvalues must be writable. Variables that are built-in types, -// entire structures, structure fields, l-values with the field selector ( . ) applied to select -// components or swizzles without repeated fields, and l-values dereferenced with the array -// subscript operator ( [ ] ) are all possible l-values. Other binary or unary expressions, -// non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot -// be l-values. -// -// Expressions on the left of an assignment are evaluated before expressions on the right of the -// assignment. -// - -void __operator = (inout float a, const float b) { - __asm float_copy a, b; -} - -void __operator = (inout int a, const int b) { - __asm int_copy a, b; -} - -void __operator = (inout bool a, const bool b) { - __asm bool_copy a, b; -} - -void __operator = (inout vec2 v, const vec2 u) { - v.x = u.x, v.y = u.y; -} - -void __operator = (inout vec3 v, const vec3 u) { - v.x = u.x, v.y = u.y, v.z = u.z; -} - -void __operator = (inout vec4 v, const vec4 u) { - v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; -} - -void __operator = (inout ivec2 v, const ivec2 u) { - v.x = u.x, v.y = u.y; -} - -void __operator = (inout ivec3 v, const ivec3 u) { - v.x = u.x, v.y = u.y, v.z = u.z; -} - -void __operator = (inout ivec4 v, const ivec4 u) { - v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; -} - -void __operator = (inout bvec2 v, const bvec2 u) { - v.x = u.x, v.y = u.y; -} - -void __operator = (inout bvec3 v, const bvec3 u) { - v.x = u.x, v.y = u.y, v.z = u.z; -} - -void __operator = (inout bvec4 v, const bvec4 u) { - v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; -} - -void __operator = (inout mat2 m, const mat2 n) { - m[0] = n[0], m[1] = n[1]; -} - -void __operator = (inout mat3 m, const mat3 n) { - m[0] = n[0], m[1] = n[1], m[2] = n[2]; -} - -void __operator = (inout mat4 m, const mat4 n) { - m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3]; -} - -// -// • The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide -// into (/=). The variable and expression must be the same floating-point or integer type, ... -// - -void __operator += (inout float a, const float b) { - __asm float_add a, b; -} - -void __operator -= (inout float a, const float b) { - a += -b; -} - -void __operator *= (inout float a, const float b) { - __asm float_multiply a, b; -} - -void __operator /= (inout float a, const float b) { - __asm float_divide a, b; -} - -void __operator += (inout int x, const int y) { - __asm int_add x, y; -} - -void __operator -= (inout int x, const int y) { - x += -y; -} - -void __operator *= (inout int x, const int y) { - __asm int_multiply x, y; -} - -void __operator /= (inout int x, const int y) { - __asm int_divide x, y; -} - -void __operator += (inout vec2 v, const vec2 u) { - v.x += u.x, v.y += u.y; -} - -void __operator -= (inout vec2 v, const vec2 u) { - v.x -= u.x, v.y -= u.y; -} - -void __operator *= (inout vec2 v, const vec2 u) { - v.x *= u.x, v.y *= u.y; -} - -void __operator /= (inout vec2 v, const vec2 u) { - v.x /= u.x, v.y /= u.y; -} - -void __operator += (inout vec3 v, const vec3 u) { - v.x += u.x, v.y += u.y, v.z += u.z; -} - -void __operator -= (inout vec3 v, const vec3 u) { - v.x -= u.x, v.y -= u.y, v.z -= u.z; -} - -void __operator *= (inout vec3 v, const vec3 u) { - v.x *= u.x, v.y *= u.y, v.z *= u.z; -} - -void __operator /= (inout vec3 v, const vec3 u) { - v.x /= u.x, v.y /= u.y, v.z /= u.z; -} - -void __operator += (inout vec4 v, const vec4 u) { - v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; -} - -void __operator -= (inout vec4 v, const vec4 u) { - v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; -} - -void __operator *= (inout vec4 v, const vec4 u) { - v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; -} - -void __operator /= (inout vec4 v, const vec4 u) { - v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; -} - -void __operator += (inout ivec2 v, const ivec2 u) { - v.x += u.x, v.y += u.y; -} - -void __operator -= (inout ivec2 v, const ivec2 u) { - v.x -= u.x, v.y -= u.y; -} - -void __operator *= (inout ivec2 v, const ivec2 u) { - v.x *= u.x, v.y *= u.y; -} - -void __operator /= (inout ivec2 v, const ivec2 u) { - v.x /= u.x, v.y /= u.y; -} - -void __operator += (inout ivec3 v, const ivec3 u) { - v.x += u.x, v.y += u.y, v.z += u.z; -} - -void __operator -= (inout ivec3 v, const ivec3 u) { - v.x -= u.x, v.y -= u.y, v.z -= u.z; -} - -void __operator *= (inout ivec3 v, const ivec3 u) { - v.x *= u.x, v.y *= u.y, v.z *= u.z; -} - -void __operator /= (inout ivec3 v, const ivec3 u) { - v.x /= u.x, v.y /= u.y, v.z /= u.z; -} - -void __operator += (inout ivec4 v, const ivec4 u) { - v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; -} - -void __operator -= (inout ivec4 v, const ivec4 u) { - v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; -} - -void __operator *= (inout ivec4 v, const ivec4 u) { - v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; -} - -void __operator /= (inout ivec4 v, const ivec4 u) { - v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; -} - -void __operator += (inout mat2 m, const mat2 n) { - m[0] += n[0], m[1] += n[1]; -} - -void __operator -= (inout mat2 v, const mat2 n) { - m[0] -= n[0], m[1] -= n[1]; -} - -void __operator *= (inout mat2 m, const mat2 n) { - m = m * n; -} - -void __operator /= (inout mat2 m, const mat2 n) { - m[0] /= n[0], m[1] /= n[1]; -} - -void __operator += (inout mat3 m, const mat3 n) { - m[0] += n[0], m[1] += n[1], m[2] += n[2]; -} - -void __operator -= (inout mat3 m, const mat3 n) { - m[0] -= n[0], m[1] -= n[1], m[2] -= n[2]; -} - -void __operator *= (inout mat3 m, const mat3 n) { - m = m * n; -} - -void __operator /= (inout mat3 m, const mat3 n) { - m[0] /= n[0], m[1] /= n[1], m[2] /= n[2]; -} - -void __operator += (inout mat4 m, const mat4 n) { - m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3]; -} - -void __operator -= (inout mat4 m, const mat4 n) { - m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3]; -} - -void __operator *= (inout mat4 m, const mat4 n) { - m = m * n; -} - -void __operator /= (inout mat4 m, const mat4 n) { - m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3]; -} - -// -// ... or if the expression is a float, then the variable can be floating-point, a vector, or -// a matrix, ... -// - -void __operator += (inout vec2 v, const float a) { - v.x += a, v.y += a; -} - -void __operator -= (inout vec2 v, const float a) { - v.x -= a, v.y -= a; -} - -void __operator *= (inout vec2 v, const float a) { - v.x *= a, v.y *= a; -} - -void __operator /= (inout vec2 v, const float a) { - v.x /= a, v.y /= a; -} - -void __operator += (inout vec3 v, const float a) { - v.x += a, v.y += a, v.z += a; -} - -void __operator -= (inout vec3 v, const float a) { - v.x -= a, v.y -= a, v.z -= a; -} - -void __operator *= (inout vec3 v, const float a) { - v.x *= a, v.y *= a, v.z *= a; -} - -void __operator /= (inout vec3 v, const float a) { - v.x /= a, v.y /= a, v.z /= a; -} - -void __operator += (inout vec4 v, const float a) { - v.x += a, v.y += a, v.z += a, v.w += a; -} - -void __operator -= (inout vec4 v, const float a) { - v.x -= a, v.y -= a, v.z -= a, v.w -= a; -} - -void __operator *= (inout vec4 v, const float a) { - v.x *= a, v.y *= a, v.z *= a, v.w *= a; -} - -void __operator /= (inout vec4 v, const float a) { - v.x /= a, v.y /= a, v.z /= a, v.w /= a; -} - -void __operator += (inout mat2 m, const float a) { - m[0] += a, m[1] += a; -} - -void __operator -= (inout mat2 m, const float a) { - m[0] -= a, m[1] -= a; -} - -void __operator *= (inout mat2 m, const float a) { - m[0] *= a, m[1] *= a; -} - -void __operator /= (inout mat2 m, const float a) { - m[0] /= a, m[1] /= a; -} - -void __operator += (inout mat3 m, const float a) { - m[0] += a, m[1] += a, m[2] += a; -} - -void __operator -= (inout mat3 m, const float a) { - m[0] -= a, m[1] -= a, m[2] -= a; -} - -void __operator *= (inout mat3 m, const float a) { - m[0] *= a, m[1] *= a, m[2] *= a; -} - -void __operator /= (inout mat3 m, const float a) { - m[0] /= a, m[1] /= a, m[2] /= a; -} - -void __operator += (inout mat4 m, const float a) { - m[0] += a, m[1] += a, m[2] += a, m[3] += a; -} - -void __operator -= (inout mat4 m, const float a) { - m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a; -} - -void __operator *= (inout mat4 m, const float a) { - m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a; -} - -void __operator /= (inout mat4 m, const float a) { - m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a; -} - -// -// ... or if the operation is multiply into (*=), then the variable can be a vector and the -// expression can be a matrix of matching size. -// - -void __operator *= (inout vec2 v, const mat2 m) { - v = v * m; -} - -void __operator *= (inout vec3 v, const mat3 m) { - v = v * m; -} - -void __operator *= (inout vec4 v, const mat4 m) { - v = v * m; -} - -// -// 5.9 Expressions -// -// Expressions in the shading language include the following: -// - -// -// • The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that -// operate on integer and floating-point typed expressions (including vectors and matrices). -// The two operands must be the same type, ... -// - -float __operator + (const float a, const float b) { - float c = a; - return c += b; -} - -float __operator - (const float a, const float b) { - return a + -b; -} - -float __operator * (const float a, const float b) { - float c = a; - return c *= b; -} - -float __operator / (const float a, const float b) { - float c = a; - return c /= b; -} - -int __operator + (const int a, const int b) { - int c = a; - return c += b; -} - -int __operator - (const int x, const int y) { - return x + -y; -} - -int __operator * (const int x, const int y) { - int z = x; - return z *= y; -} - -int __operator / (const int x, const int y) { - int z = x; - return z /= y; -} - -vec2 __operator + (const vec2 v, const vec2 u) { - return vec2 (v.x + u.x, v.y + u.y); -} - -vec2 __operator - (const vec2 v, const vec2 u) { - return vec2 (v.x - u.x, v.y - u.y); -} - -vec3 __operator + (const vec3 v, const vec3 u) { - return vec3 (v.x + u.x, v.y + u.y, v.z + u.z); -} - -vec3 __operator - (const vec3 v, const vec3 u) { - return vec3 (v.x - u.x, v.y - u.y, v.z - u.z); -} - -vec4 __operator + (const vec4 v, const vec4 u) { - return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); -} - -vec4 __operator - (const vec4 v, const vec4 u) { - return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); -} - -ivec2 __operator + (const ivec2 v, const ivec2 u) { - return ivec2 (v.x + u.x, v.y + u.y); -} - -ivec2 __operator - (const ivec2 v, const ivec2 u) { - return ivec2 (v.x - u.x, v.y - u.y); -} - -ivec3 __operator + (const ivec3 v, const ivec3 u) { - return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z); -} - -ivec3 __operator - (const ivec3 v, const ivec3 u) { - return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z); -} - -ivec4 __operator + (const ivec4 v, const ivec4 u) { - return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); -} - -ivec4 __operator - (const ivec4 v, const ivec4 u) { - return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); -} - -mat2 __operator + (const mat2 m, const mat2 n) { - return mat2 (m[0] + n[0], m[1] + n[1]); -} - -mat2 __operator - (const mat2 m, const mat2 n) { - return mat2 (m[0] - n[0], m[1] - n[1]); -} - -mat3 __operator + (const mat3 m, const mat3 n) { - return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]); -} - -mat3 __operator - (const mat3 m, const mat3 n) { - return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]); -} - -mat4 __operator + (const mat4 m, const mat4 n) { - return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]); -} - -mat4 __operator - (const mat4 m, const mat4 n) { - return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]); -} - -// -// ... or one must be a scalar float and the other a vector or matrix, ... -// - -vec2 __operator + (const float a, const vec2 u) { - return vec2 (a + u.x, a + u.y); -} - -vec2 __operator + (const vec2 v, const float b) { - return vec2 (v.x + b, v.y + b); -} - -vec2 __operator - (const float a, const vec2 u) { - return vec2 (a - u.x, a - u.y); -} - -vec2 __operator - (const vec2 v, const float b) { - return vec2 (v.x - b, v.y - b); -} - -vec2 __operator * (const float a, const vec2 u) { - return vec2 (a * u.x, a * u.y); -} - -vec2 __operator * (const vec2 v, const float b) { - return vec2 (v.x * b, v.y * b); -} - -vec2 __operator / (const float a, const vec2 u) { - return vec2 (a / u.x, a / u.y); -} - -vec2 __operator / (const vec2 v, const float b) { - return vec2 (v.x / b, v.y / b); -} - -vec3 __operator + (const float a, const vec3 u) { - return vec3 (a + u.x, a + u.y, a + u.z); -} - -vec3 __operator + (const vec3 v, const float b) { - return vec3 (v.x + b, v.y + b, v.z + b); -} - -vec3 __operator - (const float a, const vec3 u) { - return vec3 (a - u.x, a - u.y, a - u.z); -} - -vec3 __operator - (const vec3 v, const float b) { - return vec3 (v.x - b, v.y - b, v.z - b); -} - -vec3 __operator * (const float a, const vec3 u) { - return vec3 (a * u.x, a * u.y, a * u.z); -} - -vec3 __operator * (const vec3 v, const float b) { - return vec3 (v.x * b, v.y * b, v.z * b); -} - -vec3 __operator / (const float a, const vec3 u) { - return vec3 (a / u.x, a / u.y, a / u.z); -} - -vec3 __operator / (const vec3 v, const float b) { - return vec3 (v.x / b, v.y / b, v.z / b); -} - -vec4 __operator + (const float a, const vec4 u) { - return vec4 (a + u.x, a + u.y, a + u.z, a + u.w); -} - -vec4 __operator + (const vec4 v, const float b) { - return vec4 (v.x + b, v.y + b, v.z + b, v.w + b); -} - -vec4 __operator - (const float a, const vec4 u) { - return vec4 (a - u.x, a - u.y, a - u.z, a - u.w); -} - -vec4 __operator - (const vec4 v, const float b) { - return vec4 (v.x - b, v.y - b, v.z - b, v.w - b); -} - -vec4 __operator * (const float a, const vec4 u) { - return vec4 (a * u.x, a * u.y, a * u.z, a * u.w); -} - -vec4 __operator * (const vec4 v, const float b) { - return vec4 (v.x * b, v.y * b, v.z * b, v.w * b); -} - -vec4 __operator / (const float a, const vec4 u) { - return vec4 (a / u.x, a / u.y, a / u.z, a / u.w); -} - -vec4 __operator / (const vec4 v, const float b) { - return vec4 (v.x / b, v.y / b, v.z / b, v.w / b); -} - -mat2 __operator + (const float a, const mat2 n) { - return mat2 (a + n[0], a + n[1]); -} - -mat2 __operator + (const mat2 m, const float b) { - return mat2 (m[0] + b, m[1] + b); -} - -mat2 __operator - (const float a, const mat2 n) { - return mat2 (a - n[0], a - n[1]); -} - -mat2 __operator - (const mat2 m, const float b) { - return mat2 (m[0] - b, m[1] - b); -} - -mat2 __operator * (const float a, const mat2 n) { - return mat2 (a * n[0], a * n[1]); -} - -mat2 __operator * (const mat2 m, const float b) { - return mat2 (m[0] * b, m[1] * b); -} - -mat2 __operator / (const float a, const mat2 n) { - return mat2 (a / n[0], a / n[1]); -} - -mat2 __operator / (const mat2 m, const float b) { - return mat2 (m[0] / b, m[1] / b); -} - -mat3 __operator + (const float a, const mat3 n) { - return mat3 (a + n[0], a + n[1], a + n[2]); -} - -mat3 __operator + (const mat3 m, const float b) { - return mat3 (m[0] + b, m[1] + b, m[2] + b); -} - -mat3 __operator - (const float a, const mat3 n) { - return mat3 (a - n[0], a - n[1], a - n[2]); -} - -mat3 __operator - (const mat3 m, const float b) { - return mat3 (m[0] - b, m[1] - b, m[2] - b); -} - -mat3 __operator * (const float a, const mat3 n) { - return mat3 (a * n[0], a * n[1], a * n[2]); -} - -mat3 __operator * (const mat3 m, const float b) { - return mat3 (m[0] * b, m[1] * b, m[2] * b); -} - -mat3 __operator / (const float a, const mat3 n) { - return mat3 (a / n[0], a / n[1], a / n[2]); -} - -mat3 __operator / (const mat3 m, const float b) { - return mat3 (m[0] / b, m[1] / b, m[2] / b); -} - -mat4 __operator + (const float a, const mat4 n) { - return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]); -} - -mat4 __operator + (const mat4 m, const float b) { - return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b); -} - -mat4 __operator - (const float a, const mat4 n) { - return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]); -} - -mat4 __operator - (const mat4 m, const float b) { - return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b); -} - -mat4 __operator * (const float a, const mat4 n) { - return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]); -} - -mat4 __operator * (const mat4 m, const float b) { - return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b); -} - -mat4 __operator / (const float a, const mat4 n) { - return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]); -} - -mat4 __operator / (const mat4 m, const float b) { - return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b); -} - -// -// ... or for multiply (*) one can be a vector and the other a matrix with the same dimensional -// size of the vector. -// -// [When:] -// • the left argument is a floating-point vector and the right is a matrix with a compatible -// dimension in which case the * operator will do a row vector matrix multiplication. -// • the left argument is a matrix and the right is a floating-point vector with a compatible -// dimension in which case the * operator will do a column vector matrix multiplication. -// - -vec2 __operator * (const mat2 m, const vec2 v) { - return vec2 ( - v.x * m[0].x + v.y * m[1].x, - v.x * m[0].y + v.y * m[1].y - ); -} - -vec2 __operator * (const vec2 v, const mat2 m) { - return vec2 ( - v.x * m[0].x + v.y * m[0].y, - v.x * m[1].x + v.y * m[1].y - ); -} - -vec3 __operator * (const mat3 m, const vec3 v) { - return vec3 ( - v.x * m[0].x + v.y * m[1].x + v.z * m[2].x, - v.x * m[0].y + v.y * m[1].y + v.z * m[2].y, - v.x * m[0].z + v.y * m[1].z + v.z * m[2].z - ); -} - -vec3 __operator * (const vec3 v, const mat3 m) { - return vec3 ( - v.x * m[0].x + v.y * m[0].y + v.z * m[0].z, - v.x * m[1].x + v.y * m[1].y + v.z * m[1].z, - v.x * m[2].x + v.y * m[2].y + v.z * m[2].z - ); -} - -vec4 __operator * (const mat4 m, const vec4 v) { - return vec4 ( - v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x, - v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y, - v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z, - v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w - ); -} - -vec4 __operator * (const vec4 v, const mat4 m) { - return vec4 ( - v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w, - v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w, - v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w, - v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w - ); -} - -// -// Multiply (*) applied to two vectors yields a component-wise multiply. -// - -vec2 __operator * (const vec2 v, const vec2 u) { - return vec2 (v.x * u.x, v.y * u.y); -} - -vec3 __operator * (const vec3 v, const vec3 u) { - return vec3 (v.x * u.x, v.y * u.y, v.z * u.z); -} - -vec4 __operator * (const vec4 v, const vec4 u) { - return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); -} - -ivec2 __operator * (const ivec2 v, const ivec2 u) { - return ivec2 (v.x * u.x, v.y * u.y); -} - -ivec3 __operator * (const ivec3 v, const ivec3 u) { - return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z); -} - -ivec4 __operator * (const ivec4 v, const ivec4 u) { - return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); -} - -// -// Dividing by zero does not cause an exception but does result in an unspecified value. -// - -vec2 __operator / (const vec2 v, const vec2 u) { - return vec2 (v.x / u.x, v.y / u.y); -} - -vec3 __operator / (const vec3 v, const vec3 u) { - return vec3 (v.x / u.x, v.y / u.y, v.z / u.z); -} - -vec4 __operator / (const vec4 v, const vec4 u) { - return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); -} - -ivec2 __operator / (const ivec2 v, const ivec2 u) { - return ivec2 (v.x / u.x, v.y / u.y); -} - -ivec3 __operator / (const ivec3 v, const ivec3 u) { - return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z); -} - -ivec4 __operator / (const ivec4 v, const ivec4 u) { - return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); -} - -mat2 __operator / (const mat2 m, const mat2 n) { - return mat2 (m[0] / n[0], m[1] / n[1]); -} - -mat3 __operator / (const mat3 m, const mat3 n) { - return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]); -} - -mat4 __operator / (const mat4 m, const mat4 n) { - return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]); -} - -// -// Multiply (*) applied to two matrices yields a linear algebraic matrix multiply, not -// a component-wise multiply. -// - -mat2 __operator * (const mat2 m, const mat2 n) { - return mat2 (m * n[0], m * n[1]); -} - -mat3 __operator * (const mat3 m, const mat3 n) { - return mat3 (m * n[0], m * n[1], m * n[2]); -} - -mat4 __operator * (const mat4 m, const mat4 n) { - return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]); -} - -// -// • The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and -// ++) that operate on integer or floating-point values (including vectors and matrices). These -// result with the same type they operated on. For post- and pre-increment and decrement, the -// expression must be one that could be assigned to (an l-value). Pre-increment and predecrement -// add or subtract 1 or 1.0 to the contents of the expression they operate on, and the -// value of the pre-increment or pre-decrement expression is the resulting value of that -// modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to -// the contents of the expression they operate on, but the resulting expression has the -// expression’s value before the post-increment or post-decrement was executed. -// -// [NOTE: postfix increment and decrement operators take additional dummy int parameter to -// distinguish their prototypes from prefix ones.] -// - -float __operator - (const float a) { - float c = a; - __asm float_negate c; - return c; -} - -int __operator - (const int a) { - int c = a; - __asm int_negate c; - return c; -} - -vec2 __operator - (const vec2 v) { - return vec2 (-v.x, -v.y); -} - -vec3 __operator - (const vec3 v) { - return vec3 (-v.x, -v.y, -v.z); -} - -vec4 __operator - (const vec4 v) { - return vec4 (-v.x, -v.y, -v.z, -v.w); -} - -ivec2 __operator - (const ivec2 v) { - return ivec2 (-v.x, -v.y); -} - -ivec3 __operator - (const ivec3 v) { - return ivec3 (-v.x, -v.y, -v.z); -} - -ivec4 __operator - (const ivec4 v) { - return ivec4 (-v.x, -v.y, -v.z, -v.w); -} - -mat2 __operator - (const mat2 m) { - return mat2 (-m[0], -m[1]); -} - -mat3 __operator - (const mat3 m) { - return mat3 (-m[0], -m[1], -m[2]); -} - -mat4 __operator - (const mat4 m) { - return mat4 (-m[0], -m[1], -m[2], -m[3]); -} - -void __operator -- (inout float a) { - a -= 1.0; -} - -void __operator -- (inout int a) { - a -= 1; -} - -void __operator -- (inout vec2 v) { - --v.x, --v.y; -} - -void __operator -- (inout vec3 v) { - --v.x, --v.y, --v.z; -} - -void __operator -- (inout vec4 v) { - --v.x, --v.y, --v.z, --v.w; -} - -void __operator -- (inout ivec2 v) { - --v.x, --v.y; -} - -void __operator -- (inout ivec3 v) { - --v.x, --v.y, --v.z; -} - -void __operator -- (inout ivec4 v) { - --v.x, --v.y, --v.z, --v.w; -} - -void __operator -- (inout mat2 m) { - --m[0], --m[1]; -} - -void __operator -- (inout mat3 m) { - --m[0], --m[1], --m[2]; -} - -void __operator -- (inout mat4 m) { - --m[0], --m[1], --m[2], --m[3]; -} - -void __operator ++ (inout float a) { - a += 1.0; -} - -void __operator ++ (inout int a) { - a += 1; -} - -void __operator ++ (inout vec2 v) { - ++v.x, ++v.y; -} - -void __operator ++ (inout vec3 v) { - ++v.x, ++v.y, ++v.z; -} - -void __operator ++ (inout vec4 v) { - ++v.x, ++v.y, ++v.z, ++v.w; -} - -void __operator ++ (inout ivec2 v) { - ++v.x, ++v.y; -} - -void __operator ++ (inout ivec3 v) { - ++v.x, ++v.y, ++v.z; -} - -void __operator ++ (inout ivec4 v) { - ++v.x, ++v.y, ++v.z, ++v.w; -} - -void __operator ++ (inout mat2 m) { - ++m[0], ++m[1]; -} - -void __operator ++ (inout mat3 m) { - ++m[0], ++m[1], ++m[2]; -} - -void __operator ++ (inout mat4 m) { - ++m[0], ++m[1], ++m[2], ++m[3]; -} - -float __operator -- (inout float a, const int) { - const float c = a; - --a; - return c; -} - -int __operator -- (inout int a, const int) { - const int c = a; - --a; - return c; -} - -vec2 __operator -- (inout vec2 v, const int) { - return vec2 (v.x--, v.y--); -} - -vec3 __operator -- (inout vec3 v, const int) { - return vec3 (v.x--, v.y--, v.z--); -} - -vec4 __operator -- (inout vec4 v, const int) { - return vec4 (v.x--, v.y--, v.z--, v.w--); -} - -ivec2 __operator -- (inout ivec2 v, const int) { - return ivec2 (v.x--, v.y--); -} - -ivec3 __operator -- (inout ivec3 v, const int) { - return ivec3 (v.x--, v.y--, v.z--); -} - -ivec4 __operator -- (inout ivec4 v, const int) { - return ivec4 (v.x--, v.y--, v.z--, v.w--); -} - -mat2 __operator -- (inout mat2 m, const int) { - return mat2 (m[0]--, m[1]--); -} - -mat3 __operator -- (inout mat3 m, const int) { - return mat3 (m[0]--, m[1]--, m[2]--); -} - -mat4 __operator -- (inout mat4 m, const int) { - return mat4 (m[0]--, m[1]--, m[2]--, m[3]--); -} - -float __operator ++ (inout float a, const int) { - const float c = a; - ++a; - return c; -} - -int __operator ++ (inout int a, const int) { - const int c = a; - ++a; - return c; -} - -vec2 __operator ++ (inout vec2 v, const int) { - return vec2 (v.x++, v.y++); -} - -vec3 __operator ++ (inout vec3 v, const int) { - return vec3 (v.x++, v.y++, v.z++); -} - -vec4 __operator ++ (inout vec4 v, const int) { - return vec4 (v.x++, v.y++, v.z++, v.w++); -} - -ivec2 __operator ++ (inout ivec2 v, const int) { - return ivec2 (v.x++, v.y++); -} - -ivec3 __operator ++ (inout ivec3 v, const int) { - return ivec3 (v.x++, v.y++, v.z++); -} - -ivec4 __operator ++ (inout ivec4 v, const int) { - return ivec4 (v.x++, v.y++, v.z++, v.w++); -} - -mat2 __operator ++ (inout mat2 m, const int) { - return mat2 (m[0]++, m[1]++); -} - -mat3 __operator ++ (inout mat3 m, const int) { - return mat3 (m[0]++, m[1]++, m[2]++); -} - -mat4 __operator ++ (inout mat4 m, const int) { - return mat4 (m[0]++, m[1]++, m[2]++, m[3]++); -} - -// -// • The relational operators greater than (>), less than (<), greater than or equal (>=), and less -// than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The -// result is scalar Boolean. The operands’ types must match. To do component-wise -// comparisons on vectors, use the built-in functions lessThan, lessThanEqual, -// greaterThan, and greaterThanEqual. -// - -bool __operator < (const float a, const float b) { - bool c; - __asm float_less c, a, b; - return c; -} - -bool __operator < (const int a, const int b) { - bool c; - __asm int_less c, a, b; - return c; -} - -bool __operator > (const float a, const float b) { - return b < a; -} - -bool __operator > (const int a, const int b) { - return b < a; -} - -bool __operator >= (const float a, const float b) { - return a > b || a == b; -} - -bool __operator >= (const int a, const int b) { - return a > b || a == b; -} - -bool __operator <= (const float a, const float b) { - return a < b || a == b; -} - -bool __operator <= (const int a, const int b) { - return a < b || a == b; -} - -// -// • The equality operators equal (==), and not equal (!=) operate on all types except arrays. -// They result in a scalar Boolean. For vectors, matrices, and structures, all components of the -// operands must be equal for the operands to be considered equal. To get component-wise -// equality results for vectors, use the built-in functions equal and notEqual. -// - -bool __operator == (const float a, const float b) { - bool c; - __asm float_equal c, a, b; - return c; -} - -bool __operator == (const int a, const int b) { - bool c; - __asm int_equal c, a, b; - return c; -} - -bool __operator == (const bool a, const bool b) { - bool c; - __asm bool_equal c, a, b; - return c; -} - -bool __operator == (const vec2 v, const vec2 u) { - return v.x == u.x && v.y == u.y; -} - -bool __operator == (const vec3 v, const vec3 u) { - return v.x == u.x && v.y == u.y && v.z == u.z; -} - -bool __operator == (const vec4 v, const vec4 u) { - return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; -} - -bool __operator == (const ivec2 v, const ivec2 u) { - return v.x == u.x && v.y == u.y; -} - -bool __operator == (const ivec3 v, const ivec3 u) { - return v.x == u.x && v.y == u.y && v.z == u.z; -} - -bool __operator == (const ivec4 v, const ivec4 u) { - return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; -} - -bool __operator == (const bvec2 v, const bvec2 u) { - return v.x == u.x && v.y == u.y; -} - -bool __operator == (const bvec3 v, const bvec3 u) { - return v.x == u.x && v.y == u.y && v.z == u.z; -} - -bool __operator == (const bvec4 v, const bvec4 u) { - return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; -} - -bool __operator == (const mat2 m, const mat2 n) { - return m[0] == n[0] && m[1] == n[1]; -} - -bool __operator == (const mat3 m, const mat3 n) { - return m[0] == n[0] && m[1] == n[1] && m[2] == n[2]; -} - -bool __operator == (const mat4 m, const mat4 n) { - return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3]; -} - -bool __operator != (const float a, const float b) { - return !(a == b); -} - -bool __operator != (const int a, const int b) { - return !(a == b); -} - -bool __operator != (const bool a, const bool b) { - return !(a == b); -} - -bool __operator != (const vec2 v, const vec2 u) { - return v.x != u.x || v.y != u.y; -} - -bool __operator != (const vec3 v, const vec3 u) { - return v.x != u.x || v.y != u.y || v.z != u.z; -} - -bool __operator != (const vec4 v, const vec4 u) { - return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; -} - -bool __operator != (const ivec2 v, const ivec2 u) { - return v.x != u.x || v.y != u.y; -} - -bool __operator != (const ivec3 v, const ivec3 u) { - return v.x != u.x || v.y != u.y || v.z != u.z; -} - -bool __operator != (const ivec4 v, const ivec4 u) { - return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; -} - -bool __operator != (const bvec2 v, const bvec2 u) { - return v.x != u.x || v.y != u.y; -} - -bool __operator != (const bvec3 v, const bvec3 u) { - return v.x != u.x || v.y != u.y || v.z != u.z; -} - -bool __operator != (const bvec4 v, const bvec4 u) { - return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; -} - -bool __operator != (const mat2 m, const mat2 n) { - return m[0] != n[0] || m[1] != n[1]; -} - -bool __operator != (const mat3 m, const mat3 n) { - return m[0] != n[0] || m[1] != n[1] || m[2] != n[2]; -} - -bool __operator != (const mat4 m, const mat4 n) { - return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3]; -} - -// -// • The logical binary operators and (&&), or ( | | ), and exclusive or (^^). They operate only -// on two Boolean expressions and result in a Boolean expression. And (&&) will only -// evaluate the right hand operand if the left hand operand evaluated to true. Or ( | | ) will -// only evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or -// (^^) will always evaluate both operands. -// - -bool __operator ^^ (const bool a, const bool b) { - return a != b; -} - -// -// [These operators are handled internally by the compiler:] -// -// bool __operator && (bool a, bool b) { -// return a ? b : false; -// } -// bool __operator || (bool a, bool b) { -// return a ? true : b; -// } -// - -// -// • The logical unary operator not (!). It operates only on a Boolean expression and results in a -// Boolean expression. To operate on a vector, use the built-in function not. -// - -bool __operator ! (const bool a) { - return a == false; -} - + +// +// This file defines nearly all constructors and operators for built-in data types, using +// extended language syntax. In general, compiler treats constructors and operators as +// ordinary functions with some exceptions. For example, the language does not allow +// functions to be called in constant expressions - here the exception is made to allow it. +// +// Each implementation provides its own version of this file. Each implementation can define +// the required set of operators and constructors in its own fashion. +// +// The extended language syntax is only present when compiling this file. It is implicitly +// included at the very beginning of the compiled shader, so no built-in functions can be +// used. +// +// To communicate with the implementation, a special extended "__asm" keyword is used, followed +// by an instruction name (any valid identifier), a destination variable identifier and a +// a list of zero or more source variable identifiers. A variable identifier is a variable name +// declared earlier in the code (as a function parameter, local or global variable). +// An instruction name designates an instruction that must be exported by the implementation. +// Each instruction receives data from destination and source variable identifiers and returns +// data in the destination variable identifier. +// +// It is up to the implementation how to define a particular operator or constructor. If it is +// expected to being used rarely, it can be defined in terms of other operators and constructors, +// for example: +// +// ivec2 __operator + (const ivec2 x, const ivec2 y) { +// return ivec2 (x[0] + y[0], x[1] + y[1]); +// } +// +// If a particular operator or constructor is expected to be used very often or is an atomic +// operation (that is, an operation that cannot be expressed in terms of other operations or +// would create a dependency cycle) it must be defined using one or more __asm constructs. +// +// Each implementation must define constructors for all scalar types (bool, float, int). +// There are 9 scalar-to-scalar constructors (including identity constructors). However, +// since the language introduces special constructors (like matrix constructor with a single +// scalar value), implementations must also implement these cases. +// The compiler provides the following algorithm when resolving a constructor: +// - try to find a constructor with a prototype matching ours, +// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error, +// - if a constructor is found, execute it and return, +// - count the size of the constructor parameter list - if it is less than the size of +// our constructor's type, raise an error, +// - for each parameter in the list do a recursive constructor matching for appropriate +// scalar fields in the constructed variable, +// +// Each implementation must also define a set of operators that deal with built-in data types. +// There are four kinds of operators: +// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence) +// and "?:" (selection). +// 2) Operators that are implemented by the compiler by expressing it in terms of other operators: +// - "." (field selection) - translated to subscript access, +// - "&&" (logical and) - translated to " ? : false", +// - "||" (logical or) - translated to " ? true : ", +// 3) Operators that can be defined by the implementation and if the required prototype is not +// found, standard behaviour is used: +// - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one; +// note that at least operators for scalar data types must be defined by the implementation +// to get it work, +// 4) All other operators not mentioned above. If no required prototype is found, an error is +// raised. An implementation must follow the language specification to provide all valid +// operator prototypes. +// + +// +// From Shader Spec, ver. 1.10, rev. 59 +// + +// +// 5.4.1 Conversion and Scalar Constructors +// + +// +// When constructors are used to convert a float to an int, the fractional part of the +// floating-point value is dropped. +// + +int __constructor (const float _f) { + int _i; + __asm float_to_int _i, _f; + return _i; +} + +// +// When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to +// false, and nonzero values are converted to true. +// + +bool __constructor (const int _i) { + return _i != 0; +} + +bool __constructor (const float _f) { + return _f != 0.0; +} + +// +// When a constructor is used to convert a bool to an int or float, false is converted to 0 or +// 0.0, and true is converted to 1 or 1.0. +// + +int __constructor (const bool _b) { + return _b ? 1 : 0; +} + +float __constructor (const bool _b) { + return _b ? 1.0 : 0.0; +} + +// +// Int to float constructor. +// + +float __constructor (const int _i) { + float _f; + __asm int_to_float _f, _i; + return _f; +} + +// +// Identity constructors, like float(float) are also legal, but of little use. +// + +bool __constructor (const bool _b) { + return _b; +} + +int __constructor (const int _i) { + return _i; +} + +float __constructor (const float _f) { + return _f; +} + +// +// Scalar constructors with non-scalar parameters can be used to take the first element from +// a non-scalar. For example, the constructor float(vec3) will select the first component of the +// vec3 parameter. +// + +// [These scalar conversions will be handled internally by the compiler.] + +// +// 5.4.2 Vector and Matrix Constructors +// +// Constructors can be used to create vectors or matrices from a set of scalars, vectors, +// or matrices. This includes the ability to shorten vectors. +// + +// +// If there is a single scalar parameter to a vector constructor, it is used to initialize all +// components of the constructed vector to that scalar’s value. +// +// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic +// type of the object being constructed, the scalar construction rules (above) are used to convert +// the parameters. +// + +vec2 __constructor (const float _f) { + return vec2 (_f, _f); +} + +vec2 __constructor (const int _i) { + return vec2 (_i, _i); +} + +vec2 __constructor (const bool _b) { + return vec2 (_b, _b); +} + +vec3 __constructor (const float _f) { + return vec3 (_f, _f, _f); +} + +vec3 __constructor (const int _i) { + return vec3 (_i, _i, _i); +} + +vec3 __constructor (const bool _b) { + return vec3 (_b, _b, _b); +} + +vec4 __constructor (const float _f) { + return vec4 (_f, _f, _f, _f); +} + +vec4 __constructor (const int _i) { + return vec4 (_i, _i, _i, _i); +} + +vec4 __constructor (const bool _b) { + return vec4 (_b, _b, _b, _b); +} + +ivec2 __constructor (const int _i) { + return ivec2 (_i, _i); +} + +ivec2 __constructor (const float _f) { + return ivec2 (_f, _f); +} + +ivec2 __constructor (const bool _b) { + return ivec2 (_b, _b); +} + +ivec3 __constructor (const int _i) { + return ivec3 (_i, _i, _i); +} + +ivec3 __constructor (const float _f) { + return ivec3 (_f, _f, _f); +} + +ivec3 __constructor (const bool _b) { + return ivec3 (_b, _b, _b); +} + +ivec4 __constructor (const int _i) { + return ivec4 (_i, _i, _i, _i); +} + +ivec4 __constructor (const float _f) { + return ivec4 (_f, _f, _f, _f); +} + +ivec4 __constructor (const bool _b) { + return ivec4 (_b, _b, _b, _b); +} + +bvec2 __constructor (const bool _b) { + return bvec2 (_b, _b); +} + +bvec2 __constructor (const float _f) { + return bvec2 (_f, _f); +} + +bvec2 __constructor (const int _i) { + return bvec2 (_i, _i); +} + +bvec3 __constructor (const bool _b) { + return bvec3 (_b, _b, _b); +} + +bvec3 __constructor (const float _f) { + return bvec3 (_f, _f, _f); +} + +bvec3 __constructor (const int _i) { + return bvec3 (_i, _i, _i); +} + +bvec4 __constructor (const bool _b) { + return bvec4 (_b, _b, _b, _b); +} + +bvec4 __constructor (const float _f) { + return bvec4 (_f, _f, _f, _f); +} + +bvec4 __constructor (const int _i) { + return bvec4 (_i, _i, _i, _i); +} + +// +// If there is a single scalar parameter to a matrix constructor, it is used to initialize all the +// components on the matrix’s diagonal, with the remaining components initialized to 0.0. +// (...) Matrices will be constructed in column major order. It is an error to construct matrices +// from other matrices. This is reserved for future use. +// +// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic +// type of the object being constructed, the scalar construction rules (above) are used to convert +// the parameters. +// + +mat2 __constructor (const float _f) { + return mat2 ( + _f, .0, + .0, _f + ); +} + +mat2 __constructor (const int _i) { + return mat2 ( + _i, .0, + .0, _i + ); +} + +mat2 __constructor (const bool _b) { + return mat2 ( + _b, .0, + .0, _b + ); +} + +mat3 __constructor (const float _f) { + return mat3 ( + _f, .0, .0, + .0, _f, .0, + .0, .0, _f + ); +} + +mat3 __constructor (const int _i) { + return mat3 ( + _i, .0, .0, + .0, _i, .0, + .0, .0, _i + ); +} + +mat3 __constructor (const bool _b) { + return mat3 ( + _b, .0, .0, + .0, _b, .0, + .0, .0, _b + ); +} + +mat4 __constructor (const float _f) { + return mat4 ( + _f, .0, .0, .0, + .0, _f, .0, .0, + .0, .0, _f, .0, + .0, .0, .0, _f + ); +} + +mat4 __constructor (const int _i) { + return mat4 ( + _i, .0, .0, .0, + .0, _i, .0, .0, + .0, .0, _i, .0, + .0, .0, .0, _i + ); +} + +mat4 __constructor (const bool _b) { + return mat4 ( + _b, .0, .0, .0, + .0, _b, .0, .0, + .0, .0, _b, .0, + .0, .0, .0, _b + ); +} + +// +// 5.8 Assignments +// +// Assignments of values to variable names are done with the assignment operator ( = ), like +// +// lvalue = expression +// +// The assignment operator stores the value of expression into lvalue. It will compile only if +// expression and lvalue have the same type. All desired type-conversions must be specified +// explicitly via a constructor. Lvalues must be writable. Variables that are built-in types, +// entire structures, structure fields, l-values with the field selector ( . ) applied to select +// components or swizzles without repeated fields, and l-values dereferenced with the array +// subscript operator ( [ ] ) are all possible l-values. Other binary or unary expressions, +// non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot +// be l-values. +// +// Expressions on the left of an assignment are evaluated before expressions on the right of the +// assignment. +// + +void __operator = (inout float a, const float b) { + __asm float_copy a, b; +} + +void __operator = (inout int a, const int b) { + __asm int_copy a, b; +} + +void __operator = (inout bool a, const bool b) { + __asm bool_copy a, b; +} + +void __operator = (inout vec2 v, const vec2 u) { + v.x = u.x, v.y = u.y; +} + +void __operator = (inout vec3 v, const vec3 u) { + v.x = u.x, v.y = u.y, v.z = u.z; +} + +void __operator = (inout vec4 v, const vec4 u) { + v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; +} + +void __operator = (inout ivec2 v, const ivec2 u) { + v.x = u.x, v.y = u.y; +} + +void __operator = (inout ivec3 v, const ivec3 u) { + v.x = u.x, v.y = u.y, v.z = u.z; +} + +void __operator = (inout ivec4 v, const ivec4 u) { + v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; +} + +void __operator = (inout bvec2 v, const bvec2 u) { + v.x = u.x, v.y = u.y; +} + +void __operator = (inout bvec3 v, const bvec3 u) { + v.x = u.x, v.y = u.y, v.z = u.z; +} + +void __operator = (inout bvec4 v, const bvec4 u) { + v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; +} + +void __operator = (inout mat2 m, const mat2 n) { + m[0] = n[0], m[1] = n[1]; +} + +void __operator = (inout mat3 m, const mat3 n) { + m[0] = n[0], m[1] = n[1], m[2] = n[2]; +} + +void __operator = (inout mat4 m, const mat4 n) { + m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3]; +} + +// +// • The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide +// into (/=). The variable and expression must be the same floating-point or integer type, ... +// + +void __operator += (inout float a, const float b) { + __asm float_add a, b; +} + +void __operator -= (inout float a, const float b) { + a += -b; +} + +void __operator *= (inout float a, const float b) { + __asm float_multiply a, b; +} + +void __operator /= (inout float a, const float b) { + __asm float_divide a, b; +} + +void __operator += (inout int x, const int y) { + __asm int_add x, y; +} + +void __operator -= (inout int x, const int y) { + x += -y; +} + +void __operator *= (inout int x, const int y) { + __asm int_multiply x, y; +} + +void __operator /= (inout int x, const int y) { + __asm int_divide x, y; +} + +void __operator += (inout vec2 v, const vec2 u) { + v.x += u.x, v.y += u.y; +} + +void __operator -= (inout vec2 v, const vec2 u) { + v.x -= u.x, v.y -= u.y; +} + +void __operator *= (inout vec2 v, const vec2 u) { + v.x *= u.x, v.y *= u.y; +} + +void __operator /= (inout vec2 v, const vec2 u) { + v.x /= u.x, v.y /= u.y; +} + +void __operator += (inout vec3 v, const vec3 u) { + v.x += u.x, v.y += u.y, v.z += u.z; +} + +void __operator -= (inout vec3 v, const vec3 u) { + v.x -= u.x, v.y -= u.y, v.z -= u.z; +} + +void __operator *= (inout vec3 v, const vec3 u) { + v.x *= u.x, v.y *= u.y, v.z *= u.z; +} + +void __operator /= (inout vec3 v, const vec3 u) { + v.x /= u.x, v.y /= u.y, v.z /= u.z; +} + +void __operator += (inout vec4 v, const vec4 u) { + v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; +} + +void __operator -= (inout vec4 v, const vec4 u) { + v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; +} + +void __operator *= (inout vec4 v, const vec4 u) { + v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; +} + +void __operator /= (inout vec4 v, const vec4 u) { + v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; +} + +void __operator += (inout ivec2 v, const ivec2 u) { + v.x += u.x, v.y += u.y; +} + +void __operator -= (inout ivec2 v, const ivec2 u) { + v.x -= u.x, v.y -= u.y; +} + +void __operator *= (inout ivec2 v, const ivec2 u) { + v.x *= u.x, v.y *= u.y; +} + +void __operator /= (inout ivec2 v, const ivec2 u) { + v.x /= u.x, v.y /= u.y; +} + +void __operator += (inout ivec3 v, const ivec3 u) { + v.x += u.x, v.y += u.y, v.z += u.z; +} + +void __operator -= (inout ivec3 v, const ivec3 u) { + v.x -= u.x, v.y -= u.y, v.z -= u.z; +} + +void __operator *= (inout ivec3 v, const ivec3 u) { + v.x *= u.x, v.y *= u.y, v.z *= u.z; +} + +void __operator /= (inout ivec3 v, const ivec3 u) { + v.x /= u.x, v.y /= u.y, v.z /= u.z; +} + +void __operator += (inout ivec4 v, const ivec4 u) { + v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; +} + +void __operator -= (inout ivec4 v, const ivec4 u) { + v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; +} + +void __operator *= (inout ivec4 v, const ivec4 u) { + v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; +} + +void __operator /= (inout ivec4 v, const ivec4 u) { + v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; +} + +void __operator += (inout mat2 m, const mat2 n) { + m[0] += n[0], m[1] += n[1]; +} + +void __operator -= (inout mat2 v, const mat2 n) { + m[0] -= n[0], m[1] -= n[1]; +} + +void __operator *= (inout mat2 m, const mat2 n) { + m = m * n; +} + +void __operator /= (inout mat2 m, const mat2 n) { + m[0] /= n[0], m[1] /= n[1]; +} + +void __operator += (inout mat3 m, const mat3 n) { + m[0] += n[0], m[1] += n[1], m[2] += n[2]; +} + +void __operator -= (inout mat3 m, const mat3 n) { + m[0] -= n[0], m[1] -= n[1], m[2] -= n[2]; +} + +void __operator *= (inout mat3 m, const mat3 n) { + m = m * n; +} + +void __operator /= (inout mat3 m, const mat3 n) { + m[0] /= n[0], m[1] /= n[1], m[2] /= n[2]; +} + +void __operator += (inout mat4 m, const mat4 n) { + m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3]; +} + +void __operator -= (inout mat4 m, const mat4 n) { + m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3]; +} + +void __operator *= (inout mat4 m, const mat4 n) { + m = m * n; +} + +void __operator /= (inout mat4 m, const mat4 n) { + m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3]; +} + +// +// ... or if the expression is a float, then the variable can be floating-point, a vector, or +// a matrix, ... +// + +void __operator += (inout vec2 v, const float a) { + v.x += a, v.y += a; +} + +void __operator -= (inout vec2 v, const float a) { + v.x -= a, v.y -= a; +} + +void __operator *= (inout vec2 v, const float a) { + v.x *= a, v.y *= a; +} + +void __operator /= (inout vec2 v, const float a) { + v.x /= a, v.y /= a; +} + +void __operator += (inout vec3 v, const float a) { + v.x += a, v.y += a, v.z += a; +} + +void __operator -= (inout vec3 v, const float a) { + v.x -= a, v.y -= a, v.z -= a; +} + +void __operator *= (inout vec3 v, const float a) { + v.x *= a, v.y *= a, v.z *= a; +} + +void __operator /= (inout vec3 v, const float a) { + v.x /= a, v.y /= a, v.z /= a; +} + +void __operator += (inout vec4 v, const float a) { + v.x += a, v.y += a, v.z += a, v.w += a; +} + +void __operator -= (inout vec4 v, const float a) { + v.x -= a, v.y -= a, v.z -= a, v.w -= a; +} + +void __operator *= (inout vec4 v, const float a) { + v.x *= a, v.y *= a, v.z *= a, v.w *= a; +} + +void __operator /= (inout vec4 v, const float a) { + v.x /= a, v.y /= a, v.z /= a, v.w /= a; +} + +void __operator += (inout mat2 m, const float a) { + m[0] += a, m[1] += a; +} + +void __operator -= (inout mat2 m, const float a) { + m[0] -= a, m[1] -= a; +} + +void __operator *= (inout mat2 m, const float a) { + m[0] *= a, m[1] *= a; +} + +void __operator /= (inout mat2 m, const float a) { + m[0] /= a, m[1] /= a; +} + +void __operator += (inout mat3 m, const float a) { + m[0] += a, m[1] += a, m[2] += a; +} + +void __operator -= (inout mat3 m, const float a) { + m[0] -= a, m[1] -= a, m[2] -= a; +} + +void __operator *= (inout mat3 m, const float a) { + m[0] *= a, m[1] *= a, m[2] *= a; +} + +void __operator /= (inout mat3 m, const float a) { + m[0] /= a, m[1] /= a, m[2] /= a; +} + +void __operator += (inout mat4 m, const float a) { + m[0] += a, m[1] += a, m[2] += a, m[3] += a; +} + +void __operator -= (inout mat4 m, const float a) { + m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a; +} + +void __operator *= (inout mat4 m, const float a) { + m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a; +} + +void __operator /= (inout mat4 m, const float a) { + m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a; +} + +// +// ... or if the operation is multiply into (*=), then the variable can be a vector and the +// expression can be a matrix of matching size. +// + +void __operator *= (inout vec2 v, const mat2 m) { + v = v * m; +} + +void __operator *= (inout vec3 v, const mat3 m) { + v = v * m; +} + +void __operator *= (inout vec4 v, const mat4 m) { + v = v * m; +} + +// +// 5.9 Expressions +// +// Expressions in the shading language include the following: +// + +// +// • The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that +// operate on integer and floating-point typed expressions (including vectors and matrices). +// The two operands must be the same type, (...) Additionally, for multiply (*) (...) If one +// operand is scalar and the other is a vector or matrix, the scalar is applied component-wise +// to the vector or matrix, resulting in the same type as the vector or matrix. +// + +float __operator + (const float a, const float b) { + float c = a; + return c += b; +} + +float __operator - (const float a, const float b) { + return a + -b; +} + +float __operator * (const float a, const float b) { + float c = a; + return c *= b; +} + +float __operator / (const float a, const float b) { + float c = a; + return c /= b; +} + +int __operator + (const int a, const int b) { + int c = a; + return c += b; +} + +int __operator - (const int x, const int y) { + return x + -y; +} + +int __operator * (const int x, const int y) { + int z = x; + return z *= y; +} + +int __operator / (const int x, const int y) { + int z = x; + return z /= y; +} + +vec2 __operator + (const vec2 v, const vec2 u) { + return vec2 (v.x + u.x, v.y + u.y); +} + +vec2 __operator - (const vec2 v, const vec2 u) { + return vec2 (v.x - u.x, v.y - u.y); +} + +vec3 __operator + (const vec3 v, const vec3 u) { + return vec3 (v.x + u.x, v.y + u.y, v.z + u.z); +} + +vec3 __operator - (const vec3 v, const vec3 u) { + return vec3 (v.x - u.x, v.y - u.y, v.z - u.z); +} + +vec4 __operator + (const vec4 v, const vec4 u) { + return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); +} + +vec4 __operator - (const vec4 v, const vec4 u) { + return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); +} + +ivec2 __operator + (const ivec2 v, const ivec2 u) { + return ivec2 (v.x + u.x, v.y + u.y); +} + +ivec2 __operator - (const ivec2 v, const ivec2 u) { + return ivec2 (v.x - u.x, v.y - u.y); +} + +ivec3 __operator + (const ivec3 v, const ivec3 u) { + return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z); +} + +ivec3 __operator - (const ivec3 v, const ivec3 u) { + return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z); +} + +ivec4 __operator + (const ivec4 v, const ivec4 u) { + return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); +} + +ivec4 __operator - (const ivec4 v, const ivec4 u) { + return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); +} + +mat2 __operator + (const mat2 m, const mat2 n) { + return mat2 (m[0] + n[0], m[1] + n[1]); +} + +mat2 __operator - (const mat2 m, const mat2 n) { + return mat2 (m[0] - n[0], m[1] - n[1]); +} + +mat3 __operator + (const mat3 m, const mat3 n) { + return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]); +} + +mat3 __operator - (const mat3 m, const mat3 n) { + return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]); +} + +mat4 __operator + (const mat4 m, const mat4 n) { + return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]); +} + +mat4 __operator - (const mat4 m, const mat4 n) { + return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]); +} + +// +// ... or one can be a scalar float and the other a float vector or matrix, ... +// + +vec2 __operator + (const float a, const vec2 u) { + return vec2 (a + u.x, a + u.y); +} + +vec2 __operator + (const vec2 v, const float b) { + return vec2 (v.x + b, v.y + b); +} + +vec2 __operator - (const float a, const vec2 u) { + return vec2 (a - u.x, a - u.y); +} + +vec2 __operator - (const vec2 v, const float b) { + return vec2 (v.x - b, v.y - b); +} + +vec2 __operator * (const float a, const vec2 u) { + return vec2 (a * u.x, a * u.y); +} + +vec2 __operator * (const vec2 v, const float b) { + return vec2 (v.x * b, v.y * b); +} + +vec2 __operator / (const float a, const vec2 u) { + return vec2 (a / u.x, a / u.y); +} + +vec2 __operator / (const vec2 v, const float b) { + return vec2 (v.x / b, v.y / b); +} + +vec3 __operator + (const float a, const vec3 u) { + return vec3 (a + u.x, a + u.y, a + u.z); +} + +vec3 __operator + (const vec3 v, const float b) { + return vec3 (v.x + b, v.y + b, v.z + b); +} + +vec3 __operator - (const float a, const vec3 u) { + return vec3 (a - u.x, a - u.y, a - u.z); +} + +vec3 __operator - (const vec3 v, const float b) { + return vec3 (v.x - b, v.y - b, v.z - b); +} + +vec3 __operator * (const float a, const vec3 u) { + return vec3 (a * u.x, a * u.y, a * u.z); +} + +vec3 __operator * (const vec3 v, const float b) { + return vec3 (v.x * b, v.y * b, v.z * b); +} + +vec3 __operator / (const float a, const vec3 u) { + return vec3 (a / u.x, a / u.y, a / u.z); +} + +vec3 __operator / (const vec3 v, const float b) { + return vec3 (v.x / b, v.y / b, v.z / b); +} + +vec4 __operator + (const float a, const vec4 u) { + return vec4 (a + u.x, a + u.y, a + u.z, a + u.w); +} + +vec4 __operator + (const vec4 v, const float b) { + return vec4 (v.x + b, v.y + b, v.z + b, v.w + b); +} + +vec4 __operator - (const float a, const vec4 u) { + return vec4 (a - u.x, a - u.y, a - u.z, a - u.w); +} + +vec4 __operator - (const vec4 v, const float b) { + return vec4 (v.x - b, v.y - b, v.z - b, v.w - b); +} + +vec4 __operator * (const float a, const vec4 u) { + return vec4 (a * u.x, a * u.y, a * u.z, a * u.w); +} + +vec4 __operator * (const vec4 v, const float b) { + return vec4 (v.x * b, v.y * b, v.z * b, v.w * b); +} + +vec4 __operator / (const float a, const vec4 u) { + return vec4 (a / u.x, a / u.y, a / u.z, a / u.w); +} + +vec4 __operator / (const vec4 v, const float b) { + return vec4 (v.x / b, v.y / b, v.z / b, v.w / b); +} + +mat2 __operator + (const float a, const mat2 n) { + return mat2 (a + n[0], a + n[1]); +} + +mat2 __operator + (const mat2 m, const float b) { + return mat2 (m[0] + b, m[1] + b); +} + +mat2 __operator - (const float a, const mat2 n) { + return mat2 (a - n[0], a - n[1]); +} + +mat2 __operator - (const mat2 m, const float b) { + return mat2 (m[0] - b, m[1] - b); +} + +mat2 __operator * (const float a, const mat2 n) { + return mat2 (a * n[0], a * n[1]); +} + +mat2 __operator * (const mat2 m, const float b) { + return mat2 (m[0] * b, m[1] * b); +} + +mat2 __operator / (const float a, const mat2 n) { + return mat2 (a / n[0], a / n[1]); +} + +mat2 __operator / (const mat2 m, const float b) { + return mat2 (m[0] / b, m[1] / b); +} + +mat3 __operator + (const float a, const mat3 n) { + return mat3 (a + n[0], a + n[1], a + n[2]); +} + +mat3 __operator + (const mat3 m, const float b) { + return mat3 (m[0] + b, m[1] + b, m[2] + b); +} + +mat3 __operator - (const float a, const mat3 n) { + return mat3 (a - n[0], a - n[1], a - n[2]); +} + +mat3 __operator - (const mat3 m, const float b) { + return mat3 (m[0] - b, m[1] - b, m[2] - b); +} + +mat3 __operator * (const float a, const mat3 n) { + return mat3 (a * n[0], a * n[1], a * n[2]); +} + +mat3 __operator * (const mat3 m, const float b) { + return mat3 (m[0] * b, m[1] * b, m[2] * b); +} + +mat3 __operator / (const float a, const mat3 n) { + return mat3 (a / n[0], a / n[1], a / n[2]); +} + +mat3 __operator / (const mat3 m, const float b) { + return mat3 (m[0] / b, m[1] / b, m[2] / b); +} + +mat4 __operator + (const float a, const mat4 n) { + return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]); +} + +mat4 __operator + (const mat4 m, const float b) { + return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b); +} + +mat4 __operator - (const float a, const mat4 n) { + return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]); +} + +mat4 __operator - (const mat4 m, const float b) { + return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b); +} + +mat4 __operator * (const float a, const mat4 n) { + return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]); +} + +mat4 __operator * (const mat4 m, const float b) { + return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b); +} + +mat4 __operator / (const float a, const mat4 n) { + return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]); +} + +mat4 __operator / (const mat4 m, const float b) { + return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b); +} + +// +// ... or one can be a scalar integer and the other an integer vector. +// + +ivec2 __operator + (const int a, const ivec2 u) { + return ivec2 (a + u.x, a + u.y); +} + +ivec2 __operator + (const ivec2 v, const int b) { + return ivec2 (v.x + b, v.y + b); +} + +ivec2 __operator - (const int a, const ivec2 u) { + return ivec2 (a - u.x, a - u.y); +} + +ivec2 __operator - (const ivec2 v, const int b) { + return ivec2 (v.x - b, v.y - b); +} + +ivec2 __operator * (const int a, const ivec2 u) { + return ivec2 (a * u.x, a * u.y); +} + +ivec2 __operator * (const ivec2 v, const int b) { + return ivec2 (v.x * b, v.y * b); +} + +ivec2 __operator / (const int a, const ivec2 u) { + return ivec2 (a / u.x, a / u.y); +} + +ivec2 __operator / (const ivec2 v, const int b) { + return ivec2 (v.x / b, v.y / b); +} + +ivec3 __operator + (const int a, const ivec3 u) { + return ivec3 (a + u.x, a + u.y, a + u.z); +} + +ivec3 __operator + (const ivec3 v, const int b) { + return ivec3 (v.x + b, v.y + b, v.z + b); +} + +ivec3 __operator - (const int a, const ivec3 u) { + return ivec3 (a - u.x, a - u.y, a - u.z); +} + +ivec3 __operator - (const ivec3 v, const int b) { + return ivec3 (v.x - b, v.y - b, v.z - b); +} + +ivec3 __operator * (const int a, const ivec3 u) { + return ivec3 (a * u.x, a * u.y, a * u.z); +} + +ivec3 __operator * (const ivec3 v, const int b) { + return ivec3 (v.x * b, v.y * b, v.z * b); +} + +ivec3 __operator / (const int a, const ivec3 u) { + return ivec3 (a / u.x, a / u.y, a / u.z); +} + +ivec3 __operator / (const ivec3 v, const int b) { + return ivec3 (v.x / b, v.y / b, v.z / b); +} + +ivec4 __operator + (const int a, const ivec4 u) { + return ivec4 (a + u.x, a + u.y, a + u.z, a + u.w); +} + +ivec4 __operator + (const ivec4 v, const int b) { + return ivec4 (v.x + b, v.y + b, v.z + b, v.w + b); +} + +ivec4 __operator - (const int a, const ivec4 u) { + return ivec4 (a - u.x, a - u.y, a - u.z, a - u.w); +} + +ivec4 __operator - (const ivec4 v, const int b) { + return ivec4 (v.x - b, v.y - b, v.z - b, v.w - b); +} + +ivec4 __operator * (const int a, const ivec4 u) { + return ivec4 (a * u.x, a * u.y, a * u.z, a * u.w); +} + +ivec4 __operator * (const ivec4 v, const int b) { + return ivec4 (v.x * b, v.y * b, v.z * b, v.w * b); +} + +ivec4 __operator / (const int a, const ivec4 u) { + return ivec4 (a / u.x, a / u.y, a / u.z, a / u.w); +} + +ivec4 __operator / (const ivec4 v, const int b) { + return ivec4 (v.x / b, v.y / b, v.z / b, v.w / b); +} + +// +// Additionally, for multiply (*) one can be a vector and the other a matrix with the same +// dimensional size of the vector. These result in the same fundamental type (integer or float) +// as the expressions they operate on. +// +// [When:] +// • the left argument is a floating-point vector and the right is a matrix with a compatible +// dimension in which case the * operator will do a row vector matrix multiplication. +// • the left argument is a matrix and the right is a floating-point vector with a compatible +// dimension in which case the * operator will do a column vector matrix multiplication. +// + +vec2 __operator * (const mat2 m, const vec2 v) { + return vec2 ( + v.x * m[0].x + v.y * m[1].x, + v.x * m[0].y + v.y * m[1].y + ); +} + +vec2 __operator * (const vec2 v, const mat2 m) { + return vec2 ( + v.x * m[0].x + v.y * m[0].y, + v.x * m[1].x + v.y * m[1].y + ); +} + +vec3 __operator * (const mat3 m, const vec3 v) { + return vec3 ( + v.x * m[0].x + v.y * m[1].x + v.z * m[2].x, + v.x * m[0].y + v.y * m[1].y + v.z * m[2].y, + v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + ); +} + +vec3 __operator * (const vec3 v, const mat3 m) { + return vec3 ( + v.x * m[0].x + v.y * m[0].y + v.z * m[0].z, + v.x * m[1].x + v.y * m[1].y + v.z * m[1].z, + v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + ); +} + +vec4 __operator * (const mat4 m, const vec4 v) { + return vec4 ( + v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x, + v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y, + v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z, + v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w + ); +} + +vec4 __operator * (const vec4 v, const mat4 m) { + return vec4 ( + v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w, + v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w, + v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w, + v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w + ); +} + +// +// Multiply (*) applied to two vectors yields a component-wise multiply. +// + +vec2 __operator * (const vec2 v, const vec2 u) { + return vec2 (v.x * u.x, v.y * u.y); +} + +vec3 __operator * (const vec3 v, const vec3 u) { + return vec3 (v.x * u.x, v.y * u.y, v.z * u.z); +} + +vec4 __operator * (const vec4 v, const vec4 u) { + return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); +} + +ivec2 __operator * (const ivec2 v, const ivec2 u) { + return ivec2 (v.x * u.x, v.y * u.y); +} + +ivec3 __operator * (const ivec3 v, const ivec3 u) { + return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z); +} + +ivec4 __operator * (const ivec4 v, const ivec4 u) { + return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); +} + +// +// Dividing by zero does not cause an exception but does result in an unspecified value. +// + +vec2 __operator / (const vec2 v, const vec2 u) { + return vec2 (v.x / u.x, v.y / u.y); +} + +vec3 __operator / (const vec3 v, const vec3 u) { + return vec3 (v.x / u.x, v.y / u.y, v.z / u.z); +} + +vec4 __operator / (const vec4 v, const vec4 u) { + return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); +} + +ivec2 __operator / (const ivec2 v, const ivec2 u) { + return ivec2 (v.x / u.x, v.y / u.y); +} + +ivec3 __operator / (const ivec3 v, const ivec3 u) { + return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z); +} + +ivec4 __operator / (const ivec4 v, const ivec4 u) { + return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); +} + +mat2 __operator / (const mat2 m, const mat2 n) { + return mat2 (m[0] / n[0], m[1] / n[1]); +} + +mat3 __operator / (const mat3 m, const mat3 n) { + return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]); +} + +mat4 __operator / (const mat4 m, const mat4 n) { + return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]); +} + +// +// Multiply (*) applied to two matrices yields a linear algebraic matrix multiply, not +// a component-wise multiply. +// + +mat2 __operator * (const mat2 m, const mat2 n) { + return mat2 (m * n[0], m * n[1]); +} + +mat3 __operator * (const mat3 m, const mat3 n) { + return mat3 (m * n[0], m * n[1], m * n[2]); +} + +mat4 __operator * (const mat4 m, const mat4 n) { + return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]); +} + +// +// • The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and +// ++) that operate on integer or floating-point values (including vectors and matrices). These +// result with the same type they operated on. For post- and pre-increment and decrement, the +// expression must be one that could be assigned to (an l-value). Pre-increment and predecrement +// add or subtract 1 or 1.0 to the contents of the expression they operate on, and the +// value of the pre-increment or pre-decrement expression is the resulting value of that +// modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to +// the contents of the expression they operate on, but the resulting expression has the +// expression’s value before the post-increment or post-decrement was executed. +// +// [NOTE: postfix increment and decrement operators take additional dummy int parameter to +// distinguish their prototypes from prefix ones.] +// + +float __operator - (const float a) { + float c = a; + __asm float_negate c; + return c; +} + +int __operator - (const int a) { + int c = a; + __asm int_negate c; + return c; +} + +vec2 __operator - (const vec2 v) { + return vec2 (-v.x, -v.y); +} + +vec3 __operator - (const vec3 v) { + return vec3 (-v.x, -v.y, -v.z); +} + +vec4 __operator - (const vec4 v) { + return vec4 (-v.x, -v.y, -v.z, -v.w); +} + +ivec2 __operator - (const ivec2 v) { + return ivec2 (-v.x, -v.y); +} + +ivec3 __operator - (const ivec3 v) { + return ivec3 (-v.x, -v.y, -v.z); +} + +ivec4 __operator - (const ivec4 v) { + return ivec4 (-v.x, -v.y, -v.z, -v.w); +} + +mat2 __operator - (const mat2 m) { + return mat2 (-m[0], -m[1]); +} + +mat3 __operator - (const mat3 m) { + return mat3 (-m[0], -m[1], -m[2]); +} + +mat4 __operator - (const mat4 m) { + return mat4 (-m[0], -m[1], -m[2], -m[3]); +} + +void __operator -- (inout float a) { + a -= 1.0; +} + +void __operator -- (inout int a) { + a -= 1; +} + +void __operator -- (inout vec2 v) { + --v.x, --v.y; +} + +void __operator -- (inout vec3 v) { + --v.x, --v.y, --v.z; +} + +void __operator -- (inout vec4 v) { + --v.x, --v.y, --v.z, --v.w; +} + +void __operator -- (inout ivec2 v) { + --v.x, --v.y; +} + +void __operator -- (inout ivec3 v) { + --v.x, --v.y, --v.z; +} + +void __operator -- (inout ivec4 v) { + --v.x, --v.y, --v.z, --v.w; +} + +void __operator -- (inout mat2 m) { + --m[0], --m[1]; +} + +void __operator -- (inout mat3 m) { + --m[0], --m[1], --m[2]; +} + +void __operator -- (inout mat4 m) { + --m[0], --m[1], --m[2], --m[3]; +} + +void __operator ++ (inout float a) { + a += 1.0; +} + +void __operator ++ (inout int a) { + a += 1; +} + +void __operator ++ (inout vec2 v) { + ++v.x, ++v.y; +} + +void __operator ++ (inout vec3 v) { + ++v.x, ++v.y, ++v.z; +} + +void __operator ++ (inout vec4 v) { + ++v.x, ++v.y, ++v.z, ++v.w; +} + +void __operator ++ (inout ivec2 v) { + ++v.x, ++v.y; +} + +void __operator ++ (inout ivec3 v) { + ++v.x, ++v.y, ++v.z; +} + +void __operator ++ (inout ivec4 v) { + ++v.x, ++v.y, ++v.z, ++v.w; +} + +void __operator ++ (inout mat2 m) { + ++m[0], ++m[1]; +} + +void __operator ++ (inout mat3 m) { + ++m[0], ++m[1], ++m[2]; +} + +void __operator ++ (inout mat4 m) { + ++m[0], ++m[1], ++m[2], ++m[3]; +} + +float __operator -- (inout float a, const int) { + const float c = a; + --a; + return c; +} + +int __operator -- (inout int a, const int) { + const int c = a; + --a; + return c; +} + +vec2 __operator -- (inout vec2 v, const int) { + return vec2 (v.x--, v.y--); +} + +vec3 __operator -- (inout vec3 v, const int) { + return vec3 (v.x--, v.y--, v.z--); +} + +vec4 __operator -- (inout vec4 v, const int) { + return vec4 (v.x--, v.y--, v.z--, v.w--); +} + +ivec2 __operator -- (inout ivec2 v, const int) { + return ivec2 (v.x--, v.y--); +} + +ivec3 __operator -- (inout ivec3 v, const int) { + return ivec3 (v.x--, v.y--, v.z--); +} + +ivec4 __operator -- (inout ivec4 v, const int) { + return ivec4 (v.x--, v.y--, v.z--, v.w--); +} + +mat2 __operator -- (inout mat2 m, const int) { + return mat2 (m[0]--, m[1]--); +} + +mat3 __operator -- (inout mat3 m, const int) { + return mat3 (m[0]--, m[1]--, m[2]--); +} + +mat4 __operator -- (inout mat4 m, const int) { + return mat4 (m[0]--, m[1]--, m[2]--, m[3]--); +} + +float __operator ++ (inout float a, const int) { + const float c = a; + ++a; + return c; +} + +int __operator ++ (inout int a, const int) { + const int c = a; + ++a; + return c; +} + +vec2 __operator ++ (inout vec2 v, const int) { + return vec2 (v.x++, v.y++); +} + +vec3 __operator ++ (inout vec3 v, const int) { + return vec3 (v.x++, v.y++, v.z++); +} + +vec4 __operator ++ (inout vec4 v, const int) { + return vec4 (v.x++, v.y++, v.z++, v.w++); +} + +ivec2 __operator ++ (inout ivec2 v, const int) { + return ivec2 (v.x++, v.y++); +} + +ivec3 __operator ++ (inout ivec3 v, const int) { + return ivec3 (v.x++, v.y++, v.z++); +} + +ivec4 __operator ++ (inout ivec4 v, const int) { + return ivec4 (v.x++, v.y++, v.z++, v.w++); +} + +mat2 __operator ++ (inout mat2 m, const int) { + return mat2 (m[0]++, m[1]++); +} + +mat3 __operator ++ (inout mat3 m, const int) { + return mat3 (m[0]++, m[1]++, m[2]++); +} + +mat4 __operator ++ (inout mat4 m, const int) { + return mat4 (m[0]++, m[1]++, m[2]++, m[3]++); +} + +// +// • The relational operators greater than (>), less than (<), greater than or equal (>=), and less +// than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The +// result is scalar Boolean. The operands’ types must match. To do component-wise +// comparisons on vectors, use the built-in functions lessThan, lessThanEqual, +// greaterThan, and greaterThanEqual. +// + +bool __operator < (const float a, const float b) { + bool c; + __asm float_less c, a, b; + return c; +} + +bool __operator < (const int a, const int b) { + bool c; + __asm int_less c, a, b; + return c; +} + +bool __operator > (const float a, const float b) { + return b < a; +} + +bool __operator > (const int a, const int b) { + return b < a; +} + +bool __operator >= (const float a, const float b) { + return a > b || a == b; +} + +bool __operator >= (const int a, const int b) { + return a > b || a == b; +} + +bool __operator <= (const float a, const float b) { + return a < b || a == b; +} + +bool __operator <= (const int a, const int b) { + return a < b || a == b; +} + +// +// • The equality operators equal (==), and not equal (!=) operate on all types except arrays. +// They result in a scalar Boolean. For vectors, matrices, and structures, all components of the +// operands must be equal for the operands to be considered equal. To get component-wise +// equality results for vectors, use the built-in functions equal and notEqual. +// + +bool __operator == (const float a, const float b) { + bool c; + __asm float_equal c, a, b; + return c; +} + +bool __operator == (const int a, const int b) { + bool c; + __asm int_equal c, a, b; + return c; +} + +bool __operator == (const bool a, const bool b) { + bool c; + __asm bool_equal c, a, b; + return c; +} + +bool __operator == (const vec2 v, const vec2 u) { + return v.x == u.x && v.y == u.y; +} + +bool __operator == (const vec3 v, const vec3 u) { + return v.x == u.x && v.y == u.y && v.z == u.z; +} + +bool __operator == (const vec4 v, const vec4 u) { + return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; +} + +bool __operator == (const ivec2 v, const ivec2 u) { + return v.x == u.x && v.y == u.y; +} + +bool __operator == (const ivec3 v, const ivec3 u) { + return v.x == u.x && v.y == u.y && v.z == u.z; +} + +bool __operator == (const ivec4 v, const ivec4 u) { + return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; +} + +bool __operator == (const bvec2 v, const bvec2 u) { + return v.x == u.x && v.y == u.y; +} + +bool __operator == (const bvec3 v, const bvec3 u) { + return v.x == u.x && v.y == u.y && v.z == u.z; +} + +bool __operator == (const bvec4 v, const bvec4 u) { + return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; +} + +bool __operator == (const mat2 m, const mat2 n) { + return m[0] == n[0] && m[1] == n[1]; +} + +bool __operator == (const mat3 m, const mat3 n) { + return m[0] == n[0] && m[1] == n[1] && m[2] == n[2]; +} + +bool __operator == (const mat4 m, const mat4 n) { + return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3]; +} + +bool __operator != (const float a, const float b) { + return !(a == b); +} + +bool __operator != (const int a, const int b) { + return !(a == b); +} + +bool __operator != (const bool a, const bool b) { + return !(a == b); +} + +bool __operator != (const vec2 v, const vec2 u) { + return v.x != u.x || v.y != u.y; +} + +bool __operator != (const vec3 v, const vec3 u) { + return v.x != u.x || v.y != u.y || v.z != u.z; +} + +bool __operator != (const vec4 v, const vec4 u) { + return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; +} + +bool __operator != (const ivec2 v, const ivec2 u) { + return v.x != u.x || v.y != u.y; +} + +bool __operator != (const ivec3 v, const ivec3 u) { + return v.x != u.x || v.y != u.y || v.z != u.z; +} + +bool __operator != (const ivec4 v, const ivec4 u) { + return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; +} + +bool __operator != (const bvec2 v, const bvec2 u) { + return v.x != u.x || v.y != u.y; +} + +bool __operator != (const bvec3 v, const bvec3 u) { + return v.x != u.x || v.y != u.y || v.z != u.z; +} + +bool __operator != (const bvec4 v, const bvec4 u) { + return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; +} + +bool __operator != (const mat2 m, const mat2 n) { + return m[0] != n[0] || m[1] != n[1]; +} + +bool __operator != (const mat3 m, const mat3 n) { + return m[0] != n[0] || m[1] != n[1] || m[2] != n[2]; +} + +bool __operator != (const mat4 m, const mat4 n) { + return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3]; +} + +// +// • The logical binary operators and (&&), or ( | | ), and exclusive or (^^). They operate only +// on two Boolean expressions and result in a Boolean expression. And (&&) will only +// evaluate the right hand operand if the left hand operand evaluated to true. Or ( | | ) will +// only evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or +// (^^) will always evaluate both operands. +// + +bool __operator ^^ (const bool a, const bool b) { + return a != b; +} + +// +// [These operators are handled internally by the compiler:] +// +// bool __operator && (bool a, bool b) { +// return a ? b : false; +// } +// bool __operator || (bool a, bool b) { +// return a ? true : b; +// } +// + +// +// • The logical unary operator not (!). It operates only on a Boolean expression and results in a +// Boolean expression. To operate on a vector, use the built-in function not. +// + +bool __operator ! (const bool a) { + return a == false; +} +