From: Tobias Burnus Date: Fri, 16 May 2008 16:29:36 +0000 (+0200) Subject: intrinsic.texi: Write Fortran 77/90/95 instead of F77/90/95... X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=d1325932580a13fea6ce6e257c30e756405d5ac3;p=gcc.git intrinsic.texi: Write Fortran 77/90/95 instead of F77/90/95... 2008-05-16 Tobias Burnus * primary.c: New private structure "gfc_structure_ctor_component". diff --git a/gcc/fortran/intrinsic.texi b/gcc/fortran/intrinsic.texi index 35400e23fbd..571f10e893f 100644 --- a/gcc/fortran/intrinsic.texi +++ b/gcc/fortran/intrinsic.texi @@ -361,7 +361,7 @@ end program test_abort @code{ABS(X)} computes the absolute value of @code{X}. @item @emph{Standard}: -F77 and later, has overloads that are GNU extensions +Fortran 77 and later, has overloads that are GNU extensions @item @emph{Class}: Elemental function @@ -395,9 +395,9 @@ end program test_abs @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{CABS(Z)} @tab @code{COMPLEX(4) Z} @tab @code{REAL(4)} @tab F77 and later -@item @code{DABS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later -@item @code{IABS(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab F77 and later +@item @code{CABS(Z)} @tab @code{COMPLEX(4) Z} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{DABS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later +@item @code{IABS(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab Fortran 77 and later @item @code{ZABS(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension @item @code{CDABS(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension @end multitable @@ -475,17 +475,20 @@ end program access_test in the @acronym{ASCII} collating sequence. @item @emph{Standard}: -F77 and later +Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Elemental function @item @emph{Syntax}: -@code{RESULT = ACHAR(I)} +@code{RESULT = ACHAR(I [, KIND])} @item @emph{Arguments}: @multitable @columnfractions .15 .70 -@item @var{I} @tab The type shall be @code{INTEGER(*)}. +@item @var{I} @tab The type shall be @code{INTEGER(*)}. +@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization + expression indicating the kind parameter of + the result. @end multitable @item @emph{Return value}: @@ -523,7 +526,7 @@ and formatted string representations. @code{ACOS(X)} computes the arccosine of @var{X} (inverse of @code{COS(X)}). @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -553,7 +556,7 @@ end program test_acos @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later +@item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @item @emph{See also}: @@ -626,7 +629,7 @@ Inverse function: @ref{COSH} Spaces are inserted at the end of the string as needed. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -671,7 +674,7 @@ end program test_adjustl Spaces are inserted at the start of the string as needed. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -720,7 +723,7 @@ for compatibility with @command{g77}, and their use in new code is strongly discouraged. @item @emph{Standard}: -F77 and later, has overloads that are GNU extensions +Fortran 77 and later, has overloads that are GNU extensions @item @emph{Class}: Elemental function @@ -771,7 +774,7 @@ end program test_aimag @code{AINT(X [, KIND])} truncates its argument to a whole number. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -811,7 +814,7 @@ end program test_aint @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later +@item @code{DINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @end table @@ -880,7 +883,7 @@ after 3 seconds. in the array along dimension @var{DIM}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -945,7 +948,7 @@ end program test_all @code{ALLOCATED(X)} checks the status of whether @var{X} is allocated. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -1024,7 +1027,7 @@ END PROGRAM @end smallexample @item @emph{See also}: -F95 elemental function: @ref{IAND} +Fortran 95 elemental function: @ref{IAND} @end table @@ -1041,7 +1044,7 @@ F95 elemental function: @ref{IAND} @code{ANINT(X [, KIND])} rounds its argument to the nearest whole number. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -1079,7 +1082,7 @@ end program test_anint @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DNINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later +@item @code{DNINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @end table @@ -1097,7 +1100,7 @@ end program test_anint @var{MASK} along dimension @var{DIM} are @code{.TRUE.}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -1164,7 +1167,7 @@ end program test_any @code{ASIN(X)} computes the arcsine of its @var{X} (inverse of @code{SIN(X)}). @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -1194,7 +1197,7 @@ end program test_asin @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DASIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later +@item @code{DASIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @item @emph{See also}: @@ -1266,7 +1269,7 @@ Inverse function: @ref{SINH} or if @var{PTR} is associated with the target @var{TGT}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -1342,7 +1345,7 @@ end program test_associated @code{ATAN(X)} computes the arctangent of @var{X}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -1370,7 +1373,7 @@ end program test_atan @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later +@item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @item @emph{See also}: @@ -1393,7 +1396,7 @@ Inverse function: @ref{TAN} @math{X + i Y}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -1428,7 +1431,7 @@ end program test_atan2 @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DATAN2(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later +@item @code{DATAN2(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @end table @@ -1789,7 +1792,7 @@ end program test_besyn represented by the type of @var{I}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -1829,7 +1832,7 @@ end program test_bit_size in @var{I} is set. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -2138,7 +2141,7 @@ end subroutine association_test @code{CEILING(X)} returns the least integer greater than or equal to @var{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -2184,7 +2187,7 @@ end program test_ceiling @code{CHAR(I [, KIND])} returns the character represented by the integer @var{I}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -2357,7 +2360,7 @@ component. If @var{Y} is not present then the imaginary component is set to 0.0. If @var{X} is complex then @var{Y} must not be present. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -2507,7 +2510,7 @@ end program test_complex then the result is @code{(x, -y)} @item @emph{Standard}: -F77 and later, has overloads that are GNU extensions +Fortran 77 and later, has overloads that are GNU extensions @item @emph{Class}: Elemental function @@ -2559,7 +2562,7 @@ end program test_conjg @code{COS(X)} computes the cosine of @var{X}. @item @emph{Standard}: -F77 and later, has overloads that are GNU extensions +Fortran 77 and later, has overloads that are GNU extensions @item @emph{Class}: Elemental function @@ -2589,8 +2592,8 @@ end program test_cos @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DCOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later -@item @code{CCOS(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab F77 and later +@item @code{DCOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later +@item @code{CCOS(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later @item @code{ZCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension @item @code{CDCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension @end multitable @@ -2615,7 +2618,7 @@ Inverse function: @ref{ACOS} @code{COSH(X)} computes the hyperbolic cosine of @var{X}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -2643,7 +2646,7 @@ end program test_cosh @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DCOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later +@item @code{DCOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @item @emph{See also}: @@ -2670,7 +2673,7 @@ omitted it is taken to be @code{1}. @var{DIM} is a scaler of type is the rank of @var{MASK}. @item @emph{Standard}: -F95 and later +Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Transformational function @@ -2742,7 +2745,7 @@ this subroutine, as shown in the example below, should be used. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Subroutine @@ -2794,7 +2797,7 @@ sections of @var{ARRAY} along the given dimension are shifted. Elements shifted out one end of each rank one section are shifted back in the other end. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -2917,7 +2920,7 @@ Unavailable time and date parameters return blanks. @end multitable @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Subroutine @@ -2969,7 +2972,7 @@ end program test_time_and_date @code{DBLE(X)} Converts @var{X} to double precision real type. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -3104,7 +3107,7 @@ representation of @var{X}. For example, on a system using a 32-bit floating point representation, a default real number would likely return 24. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -3148,7 +3151,7 @@ end program test_digits otherwise returns zero. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -3180,8 +3183,8 @@ end program test_dim @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X,Y} @tab @code{INTEGER(4)} @tab F77 and later -@item @code{DDIM(X,Y)} @tab @code{REAL(8) X,Y} @tab @code{REAL(8)} @tab F77 and later +@item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X,Y} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@item @code{DDIM(X,Y)} @tab @code{REAL(8) X,Y} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @end table @@ -3204,7 +3207,7 @@ vectors are @code{COMPLEX(*)}, the result is @code{SUM(CONJG(X)*Y)}. If the vectors are @code{LOGICAL}, the result is @code{ANY(X.AND.Y)}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -3250,7 +3253,7 @@ end program test_dot_prod @code{DPROD(X,Y)} returns the product @code{X*Y}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -3438,7 +3441,7 @@ following are copied in depending on the type of @var{ARRAY}. @end multitable @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -3486,7 +3489,7 @@ end program test_eoshift @code{EPSILON(X)} returns a nearly negligible number relative to @code{1}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -3777,7 +3780,7 @@ end program test_exit @code{EXP(X)} computes the base @math{e} exponential of @var{X}. @item @emph{Standard}: -F77 and later, has overloads that are GNU extensions +Fortran 77 and later, has overloads that are GNU extensions @item @emph{Class}: Elemental function @@ -3805,8 +3808,8 @@ end program test_exp @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DEXP(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later -@item @code{CEXP(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab F77 and later +@item @code{DEXP(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later +@item @code{CEXP(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later @item @code{ZEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension @item @code{CDEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension @end multitable @@ -3826,7 +3829,7 @@ end program test_exp is zero the value returned is zero. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -3923,7 +3926,7 @@ end program test_fdate @code{FLOAT(I)} converts the integer @var{I} to a default real value. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -4085,7 +4088,7 @@ END PROGRAM @code{FLOOR(X)} returns the greatest integer less than or equal to @var{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -4318,7 +4321,7 @@ END PROGRAM representation of @code{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -5209,7 +5212,7 @@ be obtained, or to a blank string otherwise. the model of the type of @code{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -5289,7 +5292,7 @@ end program test_hypot in the first character position of @code{C}. @item @emph{Standard}: -F95 and later +Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Elemental function @@ -5339,7 +5342,7 @@ and formatted string representations. Bitwise logical @code{AND}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -5432,7 +5435,7 @@ Fortran 2003 functions and subroutines: @ref{GET_COMMAND}, @var{POS} set to zero. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -5472,7 +5475,7 @@ zeroed. The value of @code{POS+LEN} must be less than or equal to the value @code{BIT_SIZE(I)}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -5508,7 +5511,7 @@ The return value is of type @code{INTEGER(*)} and of the same kind as @var{POS} set to one. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -5546,7 +5549,7 @@ The correspondence between characters and their codes is not necessarily the same across different GNU Fortran implementations. @item @emph{Standard}: -F95 and later +Fortan 95 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Elemental function @@ -5661,7 +5664,7 @@ end program test_idate @var{J}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -5735,7 +5738,7 @@ the @var{BACK} argument is present and true, the return value is the start of the last occurrence rather than the first. @item @emph{Standard}: -F77 and later +Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Elemental function @@ -5778,7 +5781,7 @@ The return value is of type @code{INTEGER} and of kind @var{KIND}. If Convert to integer type @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -5823,8 +5826,8 @@ end program @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{IFIX(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab F77 and later -@item @code{IDINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab F77 and later +@item @code{IFIX(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 77 and later +@item @code{IDINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab Fortran 77 and later @end multitable @end table @@ -5846,7 +5849,7 @@ standard @code{INT} intrinsic with an optional argument of The @code{SHORT} intrinsic is equivalent to @code{INT2}. @item @emph{Standard}: -GNU extension. +GNU extension @item @emph{Class}: Elemental function @@ -5881,7 +5884,7 @@ standard @code{INT} intrinsic with an optional argument of @code{KIND=8}, and is only included for backwards compatibility. @item @emph{Standard}: -GNU extension. +GNU extension @item @emph{Class}: Elemental function @@ -5916,7 +5919,7 @@ The return value is a @code{INTEGER(8)} variable. @var{J}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -6094,7 +6097,7 @@ END PROGRAM Determine whether a unit is connected to a terminal device. @item @emph{Standard}: -GNU extension. +GNU extension @item @emph{Class}: Function @@ -6142,7 +6145,7 @@ value is undefined. Bits shifted out from the left end or right end are lost; zeros are shifted in from the opposite end. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -6183,7 +6186,7 @@ a right shift. The absolute value of @var{SHIFT} must be less than equivalent to @code{BIT_SIZE(I)}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -6344,7 +6347,7 @@ Subroutine, function @code{KIND(X)} returns the kind value of the entity @var{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -6387,7 +6390,7 @@ end program test_kind Returns the lower bounds of an array, or a single lower bound along the @var{DIM} dimension. @item @emph{Standard}: -F95 and later +Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Inquiry function @@ -6433,7 +6436,7 @@ the length of an element of @var{STRING} is returned. Note that only the length, not the content, of @var{STRING} is needed. @item @emph{Standard}: -F77 and later +Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Inquiry function @@ -6470,7 +6473,7 @@ The return value is of type @code{INTEGER} and of kind @var{KIND}. If Returns the length of a character string, ignoring any trailing blanks. @item @emph{Standard}: -F95 and later +Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Elemental function @@ -6573,7 +6576,7 @@ ASCII on some targets), whereas the former always use the ASCII ordering. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -6619,7 +6622,7 @@ ASCII on some targets), whereas the former always use the ASCII ordering. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -6708,7 +6711,7 @@ ASCII on some targets), whereas the former always use the ASCII ordering. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -6754,7 +6757,7 @@ ASCII on some targets), whereas the former always use the ASCII ordering. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -6870,7 +6873,7 @@ end program test_loc @code{LOG(X)} computes the logarithm of @var{X}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -6924,7 +6927,7 @@ end program test_log @code{LOG10(X)} computes the base 10 logarithm of @var{X}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -6952,8 +6955,8 @@ end program test_log10 @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{ALOG10(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab F95 and later -@item @code{DLOG10(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later +@item @code{ALOG10(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later +@item @code{DLOG10(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable @end table @@ -6969,7 +6972,7 @@ end program test_log10 Converts one kind of @code{LOGICAL} variable to another. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -7009,7 +7012,7 @@ intrinsic with an optional argument of @code{KIND=4}, and is only included for backwards compatibility. @item @emph{Standard}: -GNU extension. +GNU extension @item @emph{Class}: Elemental function @@ -7245,7 +7248,7 @@ end program test_malloc Performs a matrix multiplication on numeric or logical arguments. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -7294,7 +7297,7 @@ for the @code{*} or @code{.AND.} operators. Returns the argument with the largest (most positive) value. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -7319,11 +7322,11 @@ and has the same type and kind as the first argument. @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{MAX0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab F77 and later -@item @code{AMAX0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MAX(X))} @tab F77 and later -@item @code{MAX1(X)} @tab @code{REAL(*) X} @tab @code{INT(MAX(X))} @tab F77 and later -@item @code{AMAX1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab F77 and later -@item @code{DMAX1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later +@item @code{MAX0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@item @code{AMAX0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MAX(X))} @tab Fortran 77 and later +@item @code{MAX1(X)} @tab @code{REAL(*) X} @tab @code{INT(MAX(X))} @tab Fortran 77 and later +@item @code{AMAX1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{DMAX1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @item @emph{See also}: @@ -7344,7 +7347,7 @@ and has the same type and kind as the first argument. type of @code{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -7395,7 +7398,7 @@ and all of the elements of @var{MASK} along a given row are zero, the result value for that row is zero. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -7452,7 +7455,7 @@ number of the type and kind of @var{ARRAY} if @var{ARRAY} is numeric, or a string of nulls if @var{ARRAY} is of character type. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -7579,7 +7582,7 @@ is equal to @var{TSOURCE} if @var{MASK} is @code{.TRUE.}, or equal to @var{FSOURCE} if it is @code{.FALSE.}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -7617,7 +7620,7 @@ The result is of the same type and type parameters as @var{TSOURCE}. Returns the argument with the smallest (most negative) value. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -7642,11 +7645,11 @@ and has the same type and kind as the first argument. @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{MIN0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab F77 and later -@item @code{AMIN0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MIN(X))} @tab F77 and later -@item @code{MIN1(X)} @tab @code{REAL(*) X} @tab @code{INT(MIN(X))} @tab F77 and later -@item @code{AMIN1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab F77 and later -@item @code{DMIN1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later +@item @code{MIN0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab Fortran 77 and later +@item @code{AMIN0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MIN(X))} @tab Fortran 77 and later +@item @code{MIN1(X)} @tab @code{REAL(*) X} @tab @code{INT(MIN(X))} @tab Fortran 77 and later +@item @code{AMIN1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later +@item @code{DMIN1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later @end multitable @item @emph{See also}: @@ -7666,7 +7669,7 @@ and has the same type and kind as the first argument. type of @code{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -7709,7 +7712,7 @@ and all of the elements of @var{MASK} along a given row are zero, the result value for that row is zero. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -7766,7 +7769,7 @@ considered. If the array has zero size, or all of the elements of @var{ARRAY} is of character type. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -7817,7 +7820,7 @@ cases, the result is of the same type and kind as @var{ARRAY}. calculated as @code{A - (INT(A/P) * P)}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -7859,8 +7862,8 @@ end program test_mod @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Arguments @tab Return type @tab Standard -@item @code{AMOD(A,P)} @tab @code{REAL(4)} @tab @code{REAL(4)} @tab F95 and later -@item @code{DMOD(A,P)} @tab @code{REAL(8)} @tab @code{REAL(8)} @tab F95 and later +@item @code{AMOD(A,P)} @tab @code{REAL(4)} @tab @code{REAL(4)} @tab Fortran 95 and later +@item @code{DMOD(A,P)} @tab @code{REAL(8)} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable @end table @@ -7877,7 +7880,7 @@ end program test_mod @code{MODULO(A,P)} computes the @var{A} modulo @var{P}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -7983,7 +7986,7 @@ affected by the movement of bits is unchanged. The values of @code{BIT_SIZE(FROM)}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental subroutine @@ -8019,7 +8022,7 @@ Elemental subroutine to @code{X} in the direction indicated by the sign of @code{S}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -8105,17 +8108,20 @@ end program newline @code{NINT(X)} rounds its argument to the nearest whole number. @item @emph{Standard}: -F77 and later +Fortran 77 and later, with @var{KIND} argument Fortran 90 and later @item @emph{Class}: Elemental function @item @emph{Syntax}: -@code{RESULT = NINT(X)} +@code{RESULT = NINT(X [, KIND])} @item @emph{Arguments}: @multitable @columnfractions .15 .70 @item @var{X} @tab The type of the argument shall be @code{REAL}. +@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization + expression indicating the kind parameter of + the result. @end multitable @item @emph{Return value}: @@ -8137,7 +8143,7 @@ end program test_nint @item @emph{Specific names}: @multitable @columnfractions .25 .25 .25 @item Name @tab Argument @tab Standard -@item @code{IDNINT(X)} @tab @code{REAL(8)} @tab F95 and later +@item @code{IDNINT(X)} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable @item @emph{See also}: @@ -8159,7 +8165,7 @@ end program test_nint @code{NOT} returns the bitwise boolean inverse of @var{I}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -8200,7 +8206,7 @@ In Fortran 95, @var{MOLD} is optional. Please note that Fortran 2003 includes cases where it is required. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -8277,7 +8283,7 @@ END PROGRAM @end smallexample @item @emph{See also}: -F95 elemental function: @ref{IOR} +Fortran 95 elemental function: @ref{IOR} @end table @@ -8298,7 +8304,7 @@ equals @code{TRUE}. Afterwards, positions are filled with elements taken from @var{VECTOR}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -8392,7 +8398,7 @@ Subroutine type of @code{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -8432,7 +8438,7 @@ end program prec_and_range Determines whether an optional dummy argument is present. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -8480,7 +8486,7 @@ Multiplies the elements of @var{ARRAY} along dimension @var{DIM} if the corresponding element in @var{MASK} is @code{TRUE}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -8535,7 +8541,7 @@ END PROGRAM @code{RADIX(X)} returns the base of the model representing the entity @var{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -8669,7 +8675,7 @@ OpenMP-enabled application heavily relies on random numbers, one should consider employing a dedicated parallel random number generator instead. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Subroutine @@ -8713,7 +8719,7 @@ a default state. The example below shows how to initialize the random seed based on the system's time. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Subroutine @@ -8771,7 +8777,7 @@ END SUBROUTINE type of @code{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -8808,7 +8814,7 @@ See @code{PRECISION} for an example. and its use is strongly discouraged. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -8914,7 +8920,7 @@ Subroutine, function Concatenates @var{NCOPIES} copies of a string. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -8955,7 +8961,7 @@ the new array may be padded with elements from @var{PAD} or permuted as defined by @var{ORDER}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -9009,7 +9015,7 @@ END PROGRAM model numbers near @var{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -9086,7 +9092,7 @@ The return value is of type @code{INTEGER(*)} and of the same kind as @code{SCALE(X,I)} returns @code{X * RADIX(X)**I}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -9134,7 +9140,7 @@ is returned. If no character of @var{SET} is found in @var{STRING}, the result is zero. @item @emph{Standard}: -F95 and later +Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Elemental function @@ -9319,7 +9325,7 @@ to @math{10^I} (exclusive). If there is no integer kind that accommodates this range, @code{SELECTED_INT_KIND} returns @math{-1}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -9364,7 +9370,7 @@ with decimal precision greater of at least @code{P} digits and exponent range greater at least @code{R}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -9426,7 +9432,7 @@ end program real_kinds is that that of @var{X} and whose exponent part is @var{I}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -9469,7 +9475,7 @@ END PROGRAM Determines the shape of an array. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -9517,7 +9523,7 @@ END PROGRAM @code{SIGN(A,B)} returns the value of @var{A} with the sign of @var{B}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -9631,7 +9637,7 @@ end program test_signal @code{SIN(X)} computes the sine of @var{X}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -9684,7 +9690,7 @@ end program test_sin @code{SINH(X)} computes the hyperbolic sine of @var{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -9711,7 +9717,7 @@ end program test_sinh @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DSINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later +@item @code{DSINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable @item @emph{See also}: @@ -9733,7 +9739,7 @@ Determine the extent of @var{ARRAY} along a specified dimension @var{DIM}, or the total number of elements in @var{ARRAY} if @var{DIM} is absent. @item @emph{Standard}: -F95 and later +Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Inquiry function @@ -9859,7 +9865,7 @@ to a default real value. This is an archaic form of @code{REAL} that is specific to one type for @var{A}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -9893,7 +9899,7 @@ Determines the distance between the argument @var{X} and the nearest adjacent number of the same type. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Elemental function @@ -9939,7 +9945,7 @@ Replicates a @var{SOURCE} array @var{NCOPIES} times along a specified dimension @var{DIM}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -9990,7 +9996,7 @@ END PROGRAM @code{SQRT(X)} computes the square root of @var{X}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -10021,8 +10027,8 @@ end program test_sqrt @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DSQRT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later -@item @code{CSQRT(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab F95 and later +@item @code{DSQRT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later +@item @code{CSQRT(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 95 and later @item @code{ZSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension @item @code{CDSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension @end multitable @@ -10175,7 +10181,7 @@ Adds the elements of @var{ARRAY} along dimension @var{DIM} if the corresponding element in @var{MASK} is @code{TRUE}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -10320,7 +10326,7 @@ If there is no clock, @var{COUNT} is set to @code{-HUGE(COUNT)}, and @var{COUNT_RATE} and @var{COUNT_MAX} are set to zero @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Subroutine @@ -10366,7 +10372,7 @@ END PROGRAM @code{TAN(X)} computes the tangent of @var{X}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -10394,7 +10400,7 @@ end program test_tan @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DTAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later +@item @code{DTAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable @item @emph{See also}: @@ -10416,7 +10422,7 @@ end program test_tan @code{TANH(X)} computes the hyperbolic tangent of @var{X}. @item @emph{Standard}: -F77 and later +Fortran 77 and later @item @emph{Class}: Elemental function @@ -10444,7 +10450,7 @@ end program test_tanh @item @emph{Specific names}: @multitable @columnfractions .20 .20 .20 .25 @item Name @tab Argument @tab Return type @tab Standard -@item @code{DTANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later +@item @code{DTANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later @end multitable @item @emph{See also}: @@ -10545,7 +10551,7 @@ The return value is a scalar of type @code{INTEGER(8)}. in the model of the type of @code{X}. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Inquiry function @@ -10583,7 +10589,7 @@ This is approximately equivalent to the C concept of @emph{casting} one type to another. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -10643,7 +10649,7 @@ Transpose an array of rank two. Element (i, j) of the result has the value @code{MATRIX(j, i)}, for all i, j. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -10673,7 +10679,7 @@ The result has the same type as @var{MATRIX}, and has shape Removes trailing blank characters of a string. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -10761,7 +10767,7 @@ END PROGRAM Returns the upper bounds of an array, or a single upper bound along the @var{DIM} dimension. @item @emph{Standard}: -F95 and later +Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Inquiry function @@ -10877,7 +10883,7 @@ Subroutine, function Store the elements of @var{VECTOR} in an array of higher rank. @item @emph{Standard}: -F95 and later +Fortran 95 and later @item @emph{Class}: Transformational function @@ -10932,7 +10938,7 @@ is returned. If all characters of @var{SET} are found in @var{STRING}, the result is zero. @item @emph{Standard}: -F95 and later +Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later @item @emph{Class}: Elemental function @@ -11020,7 +11026,7 @@ END PROGRAM @end smallexample @item @emph{See also}: -F95 elemental function: @ref{IEOR} +Fortran 95 elemental function: @ref{IEOR} @end table