From: whitequark Date: Sun, 1 Dec 2019 01:51:16 +0000 (+0000) Subject: write_cxxrtl: new backend. X-Git-Tag: working-ls180~670^2~9 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=d20e971725a780458ccd18d08be7ecfb67884eaf;p=yosys.git write_cxxrtl: new backend. This commit adds a basic implementation that isn't very performant but implements most of the planned features. --- diff --git a/Makefile b/Makefile index 218863b32..d1c4a2030 100644 --- a/Makefile +++ b/Makefile @@ -546,6 +546,7 @@ $(eval $(call add_include_file,libs/json11/json11.hpp)) $(eval $(call add_include_file,passes/fsm/fsmdata.h)) $(eval $(call add_include_file,frontends/ast/ast.h)) $(eval $(call add_include_file,backends/ilang/ilang_backend.h)) +$(eval $(call add_include_file,backends/cxxrtl/cxxrtl.h)) OBJS += kernel/driver.o kernel/register.o kernel/rtlil.o kernel/log.o kernel/calc.o kernel/yosys.o OBJS += kernel/cellaigs.o kernel/celledges.o diff --git a/backends/cxxrtl/Makefile.inc b/backends/cxxrtl/Makefile.inc new file mode 100644 index 000000000..f93e65f85 --- /dev/null +++ b/backends/cxxrtl/Makefile.inc @@ -0,0 +1,2 @@ + +OBJS += backends/cxxrtl/cxxrtl.o diff --git a/backends/cxxrtl/cxxrtl.cc b/backends/cxxrtl/cxxrtl.cc new file mode 100644 index 000000000..2dc7b3d36 --- /dev/null +++ b/backends/cxxrtl/cxxrtl.cc @@ -0,0 +1,904 @@ +/* + * yosys -- Yosys Open SYnthesis Suite + * + * Copyright (C) 2019 whitequark + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + */ + +#include "kernel/rtlil.h" +#include "kernel/register.h" +#include "kernel/sigtools.h" +#include "kernel/celltypes.h" +#include "kernel/log.h" + +USING_YOSYS_NAMESPACE +PRIVATE_NAMESPACE_BEGIN + +struct CxxrtlWorker { + std::ostream &f; + std::string indent; + int temporary = 0; + + dict sigmaps; + pool sync_wires; + dict sync_types; + pool writable_memories; + + CxxrtlWorker(std::ostream &f) : f(f) {} + + void inc_indent() { + indent += "\t"; + } + void dec_indent() { + indent.resize(indent.size() - 1); + } + + // RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code + // because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl + // identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results + // in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules: + // 1. All generated identifiers start with `_`. + // 1a. Generated identifiers for public names (beginning with `\`) start with `p_`. + // 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`. + // 2. An underscore is escaped with another underscore, i.e. `__`. + // 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`. + std::string mangle_name(const RTLIL::IdString &name) + { + std::string mangled; + bool first = true; + for (char c : name.str()) { + if (first) { + first = false; + if (c == '\\') + mangled += "p_"; + else if (c == '$') + mangled += "i_"; + else + log_assert(false); + } else { + if (isalnum(c)) { + mangled += c; + } else if (c == '_') { + mangled += "__"; + } else { + char l = c & 0xf, h = (c >> 4) & 0xf; + mangled += '_'; + mangled += (h < 10 ? '0' + h : 'a' + h - 10); + mangled += (l < 10 ? '0' + l : 'a' + l - 10); + mangled += '_'; + } + } + } + return mangled; + } + + std::string mangle_module_name(const RTLIL::IdString &name) + { + // Class namespace. + return mangle_name(name); + } + + std::string mangle_memory_name(const RTLIL::IdString &name) + { + // Class member namespace. + return "memory_" + mangle_name(name); + } + + std::string mangle_wire_name(const RTLIL::IdString &name) + { + // Class member namespace. + return mangle_name(name); + } + + std::string mangle(const RTLIL::Module *module) + { + return mangle_module_name(module->name); + } + + std::string mangle(const RTLIL::Memory *memory) + { + return mangle_memory_name(memory->name); + } + + std::string mangle(const RTLIL::Wire *wire) + { + return mangle_wire_name(wire->name); + } + + std::string mangle(RTLIL::SigBit sigbit) + { + log_assert(sigbit.wire != NULL); + if (sigbit.wire->width == 1) + return mangle(sigbit.wire); + return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset); + } + + std::string fresh_temporary() + { + return stringf("tmp_%d", temporary++); + } + + void dump_attrs(const RTLIL::AttrObject *object) + { + for (auto attr : object->attributes) { + f << indent << "// " << attr.first.str() << ": "; + if (attr.second.flags & RTLIL::CONST_FLAG_STRING) { + f << attr.second.decode_string(); + } else { + f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED); + } + f << "\n"; + } + } + + void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false) + { + f << "{"; + while (width > 0) { + const int CHUNK_SIZE = 32; + uint32_t chunk = data.extract(offset, width > CHUNK_SIZE ? CHUNK_SIZE : width).as_int(); + if (fixed_width) + f << stringf("0x%08xu", chunk); + else + f << stringf("%#xu", chunk); + if (width > CHUNK_SIZE) + f << ','; + offset += CHUNK_SIZE; + width -= CHUNK_SIZE; + } + f << "}"; + } + + void dump_const_init(const RTLIL::Const &data) + { + dump_const_init(data, data.size()); + } + + void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false) + { + f << "value<" << width << ">"; + dump_const_init(data, width, offset, fixed_width); + } + + void dump_const(const RTLIL::Const &data) + { + dump_const(data, data.size()); + } + + bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs) + { + if (chunk.wire == NULL) { + dump_const(chunk.data, chunk.width, chunk.offset); + return false; + } else { + f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr"); + if (chunk.width == chunk.wire->width && chunk.offset == 0) + return false; + else if (chunk.width == 1) + f << ".slice<" << chunk.offset << ">()"; + else + f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()"; + return true; + } + } + + bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs) + { + if (sig.empty()) { + f << "value<0>()"; + return false; + } else if (sig.is_chunk()) { + return dump_sigchunk(sig.as_chunk(), is_lhs); + } else { + dump_sigchunk(*sig.chunks().rbegin(), is_lhs); + for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) { + f << ".concat("; + dump_sigchunk(*it, is_lhs); + f << ")"; + } + return true; + } + } + + void dump_sigspec_lhs(const RTLIL::SigSpec &sig) + { + dump_sigspec(sig, /*is_lhs=*/true); + } + + void dump_sigspec_rhs(const RTLIL::SigSpec &sig) + { + // In the contexts where we want template argument deduction to occur for `template ... value`, + // it is necessary to have the argument to already be a `value`, since template argument deduction and implicit + // type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit + // type conversion, but only if the expression needs it. + bool is_complex = dump_sigspec(sig, /*is_lhs=*/false); + if (is_complex) + f << ".val()"; + } + + void dump_assign(const RTLIL::SigSig &sigsig) + { + f << indent; + dump_sigspec_lhs(sigsig.first); + f << " = "; + dump_sigspec_rhs(sigsig.second); + f << ";\n"; + } + + void dump_cell(const RTLIL::Cell *cell) + { + dump_attrs(cell); + f << indent << "// cell " << cell->name.str() << "\n"; + // Unary cells + if (cell->type.in( + ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), + ID($pos), ID($neg))) { + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = " << cell->type.substr(1) << '_' << + (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') << + "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">("; + dump_sigspec_rhs(cell->getPort(ID(A))); + f << ");\n"; + // Binary cells + } else if (cell->type.in( + ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or), + ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx), + ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le), + ID($add), ID($sub), ID($mul), ID($div), ID($mod))) { + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = " << cell->type.substr(1) << '_' << + (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') << + (cell->getParam(ID(B_SIGNED)).as_bool() ? 's' : 'u') << + "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">("; + dump_sigspec_rhs(cell->getPort(ID(A))); + f << ", "; + dump_sigspec_rhs(cell->getPort(ID(B))); + f << ");\n"; + // Muxes + } else if (cell->type == ID($mux)) { + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = "; + dump_sigspec_rhs(cell->getPort(ID(S))); + f << " ? "; + dump_sigspec_rhs(cell->getPort(ID(B))); + f << " : "; + dump_sigspec_rhs(cell->getPort(ID(A))); + f << ";\n"; + // Parallel (one-hot) muxes + } else if (cell->type == ID($pmux)) { + int width = cell->getParam(ID(WIDTH)).as_int(); + int s_width = cell->getParam(ID(S_WIDTH)).as_int(); + bool first = true; + for (int part = 0; part < s_width; part++) { + f << (first ? indent : " else "); + first = false; + f << "if ("; + dump_sigspec_rhs(cell->getPort(ID(S)).extract(part)); + f << ") {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = "; + dump_sigspec_rhs(cell->getPort(ID(B)).extract(part * width, width)); + f << ";\n"; + dec_indent(); + f << indent << "}"; + } + f << " else {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = "; + dump_sigspec_rhs(cell->getPort(ID(A))); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + // Flip-flops + } else if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) { + if (cell->getPort(ID(CLK)).is_wire()) { + // Edge-sensitive logic + RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0]; + clk_bit = sigmaps[clk_bit.wire->module](clk_bit); + f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_") + << mangle(clk_bit) << ") {\n"; + inc_indent(); + if (cell->type == ID($dffe)) { + f << indent << "if ("; + dump_sigspec_rhs(cell->getPort(ID(EN))); + f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "}) {\n"; + inc_indent(); + } + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Q))); + f << " = "; + dump_sigspec_rhs(cell->getPort(ID(D))); + f << ";\n"; + if (cell->type == ID($dffe)) { + dec_indent(); + f << indent << "}\n"; + } + dec_indent(); + f << indent << "}\n"; + } + // Level-sensitive logic + if (cell->type == ID($adff)) { + f << indent << "if ("; + dump_sigspec_rhs(cell->getPort(ID(ARST))); + f << " == value<1> {" << cell->getParam(ID(ARST_POLARITY)).as_bool() << "}) {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Q))); + f << " = "; + dump_const(cell->getParam(ID(ARST_VALUE))); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + } else if (cell->type == ID($dffsr)) { + f << indent << "if ("; + dump_sigspec_rhs(cell->getPort(ID(CLR))); + f << " == value<1> {" << cell->getParam(ID(CLR_POLARITY)).as_bool() << "}) {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Q))); + f << " = "; + dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID(WIDTH)).as_int())); + f << ";\n"; + dec_indent(); + f << indent << "} else if ("; + dump_sigspec_rhs(cell->getPort(ID(SET))); + f << " == value<1> {" << cell->getParam(ID(SET_POLARITY)).as_bool() << "}) {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Q))); + f << " = "; + dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID(WIDTH)).as_int())); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + } + // Memory ports + } else if (cell->type.in(ID($memrd), ID($memwr))) { + if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { + RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0]; + clk_bit = sigmaps[clk_bit.wire->module](clk_bit); + f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_") + << mangle(clk_bit) << ") {\n"; + inc_indent(); + } + RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID(MEMID)).decode_string()]; + if (cell->type == ID($memrd)) { + if (!cell->getPort(ID(EN)).is_fully_ones()) { + f << indent << "if ("; + dump_sigspec_rhs(cell->getPort(ID(EN))); + f << ") {\n"; + inc_indent(); + } + f << indent; + dump_sigspec_lhs(cell->getPort(ID(DATA))); + f << " = " << mangle(memory) << "["; + dump_sigspec_rhs(cell->getPort(ID(ADDR))); + if (writable_memories[memory]) { + // FIXME: the handling of transparent read ports is a bit naughty: normally, nothing on RHS should ever + // read from `next`, since this can result in evaluation order nondeterminism, as well as issues with + // latches. However, for now this is the right tradeoff to make, since it allows to simplify $memrd/$memwr + // codegen dramatically. + f << "]." << (cell->getParam(ID(TRANSPARENT)).as_bool() ? "next" : "curr") << ";\n"; + } else { + f << "];\n"; + } + if (!cell->getPort(ID(EN)).is_fully_ones()) { + dec_indent(); + f << indent << "}\n"; + } + } else /*if (cell->type == ID($memwr))*/ { + log_assert(writable_memories[memory]); + // FIXME: handle write port priority. + int width = cell->getParam(ID(WIDTH)).as_int(); + std::string lhs_temp = fresh_temporary(); + f << indent << "wire<" << width << "> &" << lhs_temp << " = " << mangle(memory) << "["; + dump_sigspec_rhs(cell->getPort(ID(ADDR))); + f << "];\n"; + int start = 0; + RTLIL::SigBit prev_en_bit = RTLIL::Sm; + for (int stop = 0; stop < width + 1; stop++) { + if (stop == width || (prev_en_bit != RTLIL::Sm && prev_en_bit != cell->getPort(ID(EN))[stop])) { + f << indent << "if ("; + dump_sigspec_rhs(prev_en_bit); + f << ") {\n"; + inc_indent(); + f << indent << lhs_temp << ".next.slice<" << (stop - 1) << "," << start << ">() = "; + dump_sigspec_rhs(cell->getPort(ID(DATA)).extract(start, stop - start)); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + start = stop + 1; + } + if (stop != width) + prev_en_bit = cell->getPort(ID(EN))[stop]; + } + } + if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { + dec_indent(); + f << indent << "}\n"; + } + // Memory initializers + } else if (cell->type == ID($meminit)) { + // Handled elsewhere. + } else if (cell->type[0] == '$') { + log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str()); + } else { + log_assert(false); + } + } + + void dump_case_rule(const RTLIL::CaseRule *rule) + { + for (auto action : rule->actions) + dump_assign(action); + for (auto switch_ : rule->switches) + dump_switch_rule(switch_); + } + + void dump_switch_rule(const RTLIL::SwitchRule *rule) + { + // The switch attributes are printed before the switch condition is captured. + dump_attrs(rule); + std::string signal_temp = fresh_temporary(); + f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = "; + dump_sigspec(rule->signal, /*is_lhs=*/false); + f << ";\n"; + + bool first = true; + for (auto case_ : rule->cases) { + // The case attributes (for nested cases) are printed before the if/else if/else statement. + dump_attrs(rule); + f << indent; + if (!first) + f << "} else "; + first = false; + if (!case_->compare.empty()) { + f << "if ("; + bool first = true; + for (auto &compare : case_->compare) { + if (!first) + f << " || "; + first = false; + if (compare.is_fully_def()) { + f << signal_temp << " == "; + dump_sigspec(compare, /*is_lhs=*/false); + } else if (compare.is_fully_const()) { + RTLIL::Const compare_mask, compare_value; + for (auto bit : compare.as_const()) { + switch (bit) { + case RTLIL::S0: + case RTLIL::S1: + compare_mask.bits.push_back(RTLIL::S1); + compare_value.bits.push_back(bit); + break; + + case RTLIL::Sx: + case RTLIL::Sz: + case RTLIL::Sa: + compare_mask.bits.push_back(RTLIL::S0); + compare_value.bits.push_back(RTLIL::S0); + break; + + default: + log_assert(false); + } + } + f << "and_uu<" << compare.size() << ">(" << signal_temp << ", "; + dump_const(compare_mask); + f << ") == "; + dump_const(compare_value); + } else { + log_assert(false); + } + } + f << ") "; + } + f << "{\n"; + inc_indent(); + dump_case_rule(case_); + dec_indent(); + } + f << indent << "}\n"; + } + + void dump_process(const RTLIL::Process *proc) + { + dump_attrs(proc); + f << indent << "// process " << proc->name.str() << "\n"; + // The case attributes (for root case) are always empty. + log_assert(proc->root_case.attributes.empty()); + dump_case_rule(&proc->root_case); + for (auto sync : proc->syncs) { + RTLIL::SigBit sync_bit = sync->signal[0]; + sync_bit = sigmaps[sync_bit.wire->module](sync_bit); + + pool events; + switch (sync->type) { + case RTLIL::STp: + events.insert("posedge_" + mangle(sync_bit)); + break; + case RTLIL::STn: + events.insert("negedge_" + mangle(sync_bit)); + case RTLIL::STe: + events.insert("posedge_" + mangle(sync_bit)); + events.insert("negedge_" + mangle(sync_bit)); + break; + + case RTLIL::ST0: + case RTLIL::ST1: + case RTLIL::STa: + case RTLIL::STg: + case RTLIL::STi: + log_assert(false); + } + if (!events.empty()) { + f << indent << "if ("; + bool first = true; + for (auto &event : events) { + if (!first) + f << " || "; + first = false; + f << event; + } + f << ") {\n"; + inc_indent(); + for (auto action : sync->actions) + dump_assign(action); + dec_indent(); + f << indent << "}\n"; + } + } + } + + void dump_wire(const RTLIL::Wire *wire) + { + dump_attrs(wire); + f << indent << "wire<" << wire->width << "> " << mangle(wire); + if (wire->attributes.count(ID(init))) { + f << " "; + dump_const_init(wire->attributes.at(ID(init))); + } + f << ";\n"; + if (sync_wires[wire]) { + for (auto sync_type : sync_types) { + if (sync_type.first.wire == wire) { + if (sync_type.second != RTLIL::STn) + f << indent << "bool posedge_" << mangle(sync_type.first) << " = false;\n"; + if (sync_type.second != RTLIL::STp) + f << indent << "bool negedge_" << mangle(sync_type.first) << " = false;\n"; + } + } + } + } + + void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory) + { + vector init_cells; + for (auto cell : module->cells()) + if (cell->type == ID($meminit) && cell->getParam(ID(MEMID)).decode_string() == memory->name.str()) + init_cells.push_back(cell); + + std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) { + int a_addr = a->getPort(ID(ADDR)).as_int(), b_addr = b->getPort(ID(ADDR)).as_int(); + int a_prio = a->getParam(ID(PRIORITY)).as_int(), b_prio = b->getParam(ID(PRIORITY)).as_int(); + return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr); + }); + + dump_attrs(memory); + f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro") + << "<" << memory->width << "> " << mangle(memory) + << " { " << memory->size << "u"; + if (init_cells.empty()) { + f << " };\n"; + } else { + f << ",\n"; + inc_indent(); + for (auto cell : init_cells) { + dump_attrs(cell); + RTLIL::Const data = cell->getPort(ID(DATA)).as_const(); + size_t width = cell->getParam(ID(WIDTH)).as_int(); + size_t words = cell->getParam(ID(WORDS)).as_int(); + f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro") + << "<" << memory->width << ">::init<" << words << "> { " + << stringf("%#x", cell->getPort(ID(ADDR)).as_int()) << ", {"; + inc_indent(); + for (size_t n = 0; n < words; n++) { + if (n % 4 == 0) + f << "\n" << indent; + else + f << " "; + dump_const(data, width, n * width, /*fixed_width=*/true); + f << ","; + } + dec_indent(); + f << "\n" << indent << "}},\n"; + } + dec_indent(); + f << indent << "};\n"; + } + } + + void dump_module(RTLIL::Module *module) + { + dump_attrs(module); + f << "struct " << mangle(module) << " : public module {\n"; + inc_indent(); + for (auto wire : module->wires()) + dump_wire(wire); + f << "\n"; + for (auto memory : module->memories) + dump_memory(module, memory.second); + if (!module->memories.empty()) + f << "\n"; + f << indent << "void eval() override;\n"; + f << indent << "bool commit() override;\n"; + dec_indent(); + f << "}; // struct " << mangle(module) << "\n"; + f << "\n"; + + f << "void " << mangle(module) << "::eval() {\n"; + inc_indent(); + for (auto cell : module->cells()) + dump_cell(cell); + f << indent << "// connections\n"; + for (auto conn : module->connections()) + dump_assign(conn); + for (auto proc : module->processes) + dump_process(proc.second); + for (auto sync_type : sync_types) { + if (sync_type.first.wire->module == module) { + if (sync_type.second != RTLIL::STn) + f << indent << "posedge_" << mangle(sync_type.first) << " = false;\n"; + if (sync_type.second != RTLIL::STp) + f << indent << "negedge_" << mangle(sync_type.first) << " = false;\n"; + } + } + dec_indent(); + f << "}\n"; + + f << "\n"; + f << "bool " << mangle(module) << "::commit() {\n"; + inc_indent(); + f << indent << "bool changed = false;\n"; + for (auto wire : module->wires()) { + if (sync_wires[wire]) { + std::string wire_prev = mangle(wire) + "_prev"; + std::string wire_curr = mangle(wire) + ".curr"; + std::string wire_edge = mangle(wire) + "_edge"; + f << indent << "value<" << wire->width << "> " << wire_prev << " = " << wire_curr << ";\n"; + f << indent << "if (" << mangle(wire) << ".commit()) {\n"; + inc_indent(); + f << indent << "value<" << wire->width << "> " << wire_edge << " = " + << wire_prev << ".bit_xor(" << wire_curr << ");\n"; + for (auto sync_type : sync_types) { + if (sync_type.first.wire != wire) + continue; + if (sync_type.second != RTLIL::STn) { + f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && " + << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n"; + inc_indent(); + f << indent << "posedge_" << mangle(sync_type.first) << " = true;\n"; + dec_indent(); + } + if (sync_type.second != RTLIL::STp) { + f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && " + << "!" << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n"; + inc_indent(); + f << indent << "negedge_" << mangle(sync_type.first) << " = true;\n"; + dec_indent(); + } + f << indent << "changed = true;\n"; + } + dec_indent(); + f << indent << "}\n"; + } else { + f << indent << "changed |= " << mangle(wire) << ".commit();\n"; + } + } + for (auto memory : module->memories) { + if (!writable_memories[memory.second]) + continue; + f << indent << "for (size_t i = 0; i < " << memory.second->size << "u; i++)\n"; + inc_indent(); + f << indent << "changed |= " << mangle(memory.second) << "[i].commit();\n"; + dec_indent(); + } + f << indent << "return changed;\n"; + dec_indent(); + f << "}\n"; + } + + void dump_design(RTLIL::Design *design) + { + f << "#include \n"; + f << "\n"; + f << "using namespace cxxrtl_yosys;\n"; + f << "\n"; + f << "namespace cxxrtl_design {\n"; + for (auto module : design->modules()) { + if (module->get_blackbox_attribute()) + continue; + + if (!design->selected_module(module)) + continue; + + f << "\n"; + dump_module(module); + } + f << "\n"; + f << "} // namespace cxxrtl_design\n"; + } + + // Edge-type sync rules require us to emit edge detectors, which require coordination between + // eval and commit phases. To do this we need to collect them upfront. + // + // Note that the simulator commit phase operates at wire granularity but edge-type sync rules + // operate at wire bit granularity; it is possible to have code similar to: + // wire [3:0] clocks; + // always @(posedge clocks[0]) ... + // To handle this we track edge sensitivity both for wires and wire bits. + void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type) + { + signal = sigmap(signal); + log_assert(signal.is_wire() && signal.is_bit()); + log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe); + + RTLIL::SigBit sigbit = signal[0]; + if (!sync_types.count(sigbit)) + sync_types[sigbit] = type; + else if (sync_types[sigbit] != type) + sync_types[sigbit] = RTLIL::STe; + sync_wires.insert(signal.as_wire()); + } + + void analyze_design(RTLIL::Design *design) + { + for (auto module : design->modules()) { + SigMap &sigmap = sigmaps[module]; + sigmap.set(module); + + for (auto cell : module->cells()) { + // Various DFF cells are treated like posedge/negedge processes, see above for details. + if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) { + if (cell->getPort(ID(CLK)).is_wire()) + register_edge_signal(sigmap, cell->getPort(ID(CLK)), + cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn); + // The $adff and $dffsr cells are level-sensitive, not edge-sensitive (in spite of the fact that they + // are inferred from an edge-sensitive Verilog process) and do not correspond to an edge-type sync rule. + } + // Similar for memory port cells. + if (cell->type.in(ID($memrd), ID($memwr))) { + if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { + if (cell->getPort(ID(CLK)).is_wire()) + register_edge_signal(sigmap, cell->getPort(ID(CLK)), + cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn); + } + } + // Optimize access to read-only memories. + if (cell->type == ID($memwr)) + writable_memories.insert(module->memories[cell->getParam(ID(MEMID)).decode_string()]); + // Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence + // of RTLIL memory objects and $memrd/$memwr/$meminit cells. + if (cell->type.in(ID($mem))) + log_assert(false); + } + + for (auto proc : module->processes) + for (auto sync : proc.second->syncs) + switch (sync->type) { + // Edge-type sync rules require pre-registration. + case RTLIL::STp: + case RTLIL::STn: + case RTLIL::STe: + register_edge_signal(sigmap, sync->signal, sync->type); + break; + + // Level-type sync rules require no special handling. + case RTLIL::ST0: + case RTLIL::ST1: + case RTLIL::STa: + break; + + // Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire + // attribute regardless of input. + case RTLIL::STi: + log_assert(false); + + case RTLIL::STg: + log_cmd_error("Global clock is not supported.\n"); + } + } + } + + void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem) + { + has_sync_init = has_packed_mem = false; + + for (auto module : design->modules()) { + if (module->get_blackbox_attribute()) + continue; + + if (!design->selected_whole_module(module)) + if (design->selected_module(module)) + log_cmd_error("Can't handle partially selected module %s!\n", id2cstr(module->name)); + + for (auto proc : module->processes) + for (auto sync : proc.second->syncs) + if (sync->type == RTLIL::STi) + has_sync_init = true; + + for (auto cell : module->cells()) + if (cell->type == ID($mem)) + has_packed_mem = true; + } + } + + void prepare_design(RTLIL::Design *design) + { + bool has_sync_init, has_packed_mem; + check_design(design, has_sync_init, has_packed_mem); + if (has_sync_init) + Pass::call(design, "proc_init"); + if (has_packed_mem) + Pass::call(design, "memory_unpack"); + // Recheck the design if it was modified. + if (has_sync_init || has_packed_mem) + check_design(design, has_sync_init, has_packed_mem); + + log_assert(!(has_sync_init || has_packed_mem)); + analyze_design(design); + } +}; + +struct CxxrtlBackend : public Backend { + CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { } + void help() YS_OVERRIDE + { + // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| + log("\n"); + log(" write_cxxrtl [options] [filename]\n"); + log("\n"); + log("Write C++ code for simulating the design.\n"); + log("\n"); + } + void execute(std::ostream *&f, std::string filename, std::vector args, RTLIL::Design *design) YS_OVERRIDE + { + log_header(design, "Executing CXXRTL backend.\n"); + + size_t argidx; + for (argidx = 1; argidx < args.size(); argidx++) + { + // if (args[argidx] == "-top" && argidx+1 < args.size()) { + // top_module_name = args[++argidx]; + // continue; + // } + break; + } + extra_args(f, filename, args, argidx); + + CxxrtlWorker worker(*f); + worker.prepare_design(design); + worker.dump_design(design); + } +} CxxrtlBackend; + +PRIVATE_NAMESPACE_END diff --git a/backends/cxxrtl/cxxrtl.h b/backends/cxxrtl/cxxrtl.h new file mode 100644 index 000000000..d066530f2 --- /dev/null +++ b/backends/cxxrtl/cxxrtl.h @@ -0,0 +1,1104 @@ +/* + * yosys -- Yosys Open SYnthesis Suite + * + * Copyright (C) 2019 whitequark + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + */ + +// This file is included by the designs generated with `write_cxxrtl`. It is not used in Yosys itself. + +#ifndef CXXRTL_H +#define CXXRTL_H + +#include +#include +#include +#include +#include +#include +#include + +// The cxxrtl support library implements compile time specialized arbitrary width arithmetics, as well as provides +// composite lvalues made out of bit slices and concatenations of lvalues. This allows the `write_cxxrtl` pass +// to perform a straightforward translation of RTLIL structures to readable C++, relying on the C++ compiler +// to unwrap the abstraction and generate efficient code. +namespace cxxrtl { + +// All arbitrary-width values in cxxrtl are backed by arrays of unsigned integers called chunks. The chunk size +// is the same regardless of the value width to simplify manipulating values via FFI interfaces, e.g. driving +// and introspecting the simulation in Python. +// +// It is practical to use chunk sizes between 32 bits and platform register size because when arithmetics on +// narrower integer types is legalized by the C++ compiler, it inserts code to clear the high bits of the register. +// However, (a) most of our operations do not change those bits in the first place because of invariants that are +// invisible to the compiler, (b) we often operate on non-power-of-2 values and have to clear the high bits anyway. +// Therefore, using relatively wide chunks and clearing the high bits explicitly and only when we know they may be +// clobbered results in simpler generated code. +template +struct chunk_traits { + static_assert(std::is_integral::value && std::is_unsigned::value, + "chunk type must be an unsigned integral type"); + using type = T; + static constexpr size_t bits = std::numeric_limits::digits; + static constexpr T mask = std::numeric_limits::max(); +}; + +template +struct expr_base; + +template +struct value : public expr_base> { + static constexpr size_t bits = Bits; + + using chunk = chunk_traits; + static constexpr chunk::type msb_mask = (Bits % chunk::bits == 0) ? chunk::mask + : chunk::mask >> (chunk::bits - (Bits % chunk::bits)); + + static constexpr size_t chunks = (Bits + chunk::bits - 1) / chunk::bits; + chunk::type data[chunks] = {}; + + value() = default; + template + explicit constexpr value(Init ...init) : data{init...} {} + + // This allows using value<> as well as wire<> in memory initializers. + using init = value; + + value(const value &) = default; + value(value &&) = default; + value &operator=(const value &) = default; + + // A (no-op) helper that forces the cast to value<>. + const value &val() const { + return *this; + } + + std::string str() const { + std::stringstream ss; + ss << *this; + return ss.str(); + } + + // Operations with compile-time parameters. + // + // These operations are used to implement slicing, concatenation, and blitting. + // The trunc, zext and sext operations add or remove most significant bits (i.e. on the left); + // the rtrunc and rzext operations add or remove least significant bits (i.e. on the right). + template + value trunc() const { + static_assert(NewBits <= Bits, "trunc() may not increase width"); + value result; + for (size_t n = 0; n < result.chunks; n++) + result.data[n] = data[n]; + result.data[result.chunks - 1] &= result.msb_mask; + return result; + } + + template + value zext() const { + static_assert(NewBits >= Bits, "zext() may not decrease width"); + value result; + for (size_t n = 0; n < chunks; n++) + result.data[n] = data[n]; + return result; + } + + template + value sext() const { + static_assert(NewBits >= Bits, "sext() may not decrease width"); + value result; + for (size_t n = 0; n < chunks; n++) + result.data[n] = data[n]; + if (is_neg()) { + result.data[chunks - 1] |= ~msb_mask; + for (size_t n = chunks; n < result.chunks; n++) + result.data[n] = chunk::mask; + result.data[result.chunks - 1] &= result.msb_mask; + } + return result; + } + + template + value rtrunc() const { + static_assert(NewBits <= Bits, "rtrunc() may not increase width"); + value result; + constexpr size_t shift_chunks = (Bits - NewBits) / chunk::bits; + constexpr size_t shift_bits = (Bits - NewBits) % chunk::bits; + chunk::type carry = 0; + if (shift_chunks + result.chunks < chunks) { + carry = (shift_bits == 0) ? 0 + : data[shift_chunks + result.chunks] << (chunk::bits - shift_bits); + } + for (size_t n = result.chunks; n > 0; n--) { + result.data[n - 1] = carry | (data[shift_chunks + n - 1] >> shift_bits); + carry = (shift_bits == 0) ? 0 + : data[shift_chunks + n - 1] << (chunk::bits - shift_bits); + } + return result; + } + + template + value rzext() const { + static_assert(NewBits >= Bits, "rzext() may not decrease width"); + value result; + constexpr size_t shift_chunks = (NewBits - Bits) / chunk::bits; + constexpr size_t shift_bits = (NewBits - Bits) % chunk::bits; + chunk::type carry = 0; + for (size_t n = 0; n < chunks; n++) { + result.data[shift_chunks + n] = (data[n] << shift_bits) | carry; + carry = (shift_bits == 0) ? 0 + : data[n] >> (chunk::bits - shift_bits); + } + if (carry != 0) + result.data[result.chunks - 1] = carry; + return result; + } + + // Bit blit operation, i.e. a partial read-modify-write. + template + value blit(const value &source) const { + static_assert(Stop >= Start, "blit() may not reverse bit order"); + constexpr chunk::type start_mask = ~(chunk::mask << (Start % chunk::bits)); + constexpr chunk::type stop_mask = (Stop % chunk::bits + 1 == chunk::bits) ? 0 + : (chunk::mask << (Stop % chunk::bits + 1)); + value masked = *this; + if (Start / chunk::bits == Stop / chunk::bits) { + masked.data[Start / chunk::bits] &= stop_mask | start_mask; + } else { + masked.data[Start / chunk::bits] &= start_mask; + for (size_t n = Start / chunk::bits + 1; n < Stop / chunk::bits; n++) + masked.data[n] = 0; + masked.data[Stop / chunk::bits] &= stop_mask; + } + value shifted = source + .template rzext() + .template zext(); + return masked.bit_or(shifted); + } + + // Helpers for selecting extending or truncating operation depending on whether the result is wider or narrower + // than the operand. In C++17 these can be replaced with `if constexpr`. + template + struct zext_cast { + value operator()(const value &val) { + return val.template zext(); + } + }; + + template + struct zext_cast::type> { + value operator()(const value &val) { + return val.template trunc(); + } + }; + + template + struct sext_cast { + value operator()(const value &val) { + return val.template sext(); + } + }; + + template + struct sext_cast::type> { + value operator()(const value &val) { + return val.template trunc(); + } + }; + + template + value zcast() const { + return zext_cast()(*this); + } + + template + value scast() const { + return sext_cast()(*this); + } + + // Operations with run-time parameters (offsets, amounts, etc). + // + // These operations are used for computations. + bool bit(size_t offset) const { + return data[offset / chunk::bits] & (1 << (offset % chunk::bits)); + } + + void set_bit(size_t offset, bool value = true) { + size_t offset_chunks = offset / chunk::bits; + size_t offset_bits = offset % chunk::bits; + data[offset_chunks] &= ~(1 << offset_bits); + data[offset_chunks] |= value ? 1 << offset_bits : 0; + } + + bool is_zero() const { + for (size_t n = 0; n < chunks; n++) + if (data[n] != 0) + return false; + return true; + } + + explicit operator bool() const { + return !is_zero(); + } + + bool is_neg() const { + return data[chunks - 1] & (1 << ((Bits - 1) % chunk::bits)); + } + + bool operator ==(const value &other) const { + for (size_t n = 0; n < chunks; n++) + if (data[n] != other.data[n]) + return false; + return true; + } + + bool operator !=(const value &other) const { + return !(*this == other); + } + + value bit_not() const { + value result; + for (size_t n = 0; n < chunks; n++) + result.data[n] = ~data[n]; + result.data[chunks - 1] &= msb_mask; + return result; + } + + value bit_and(const value &other) const { + value result; + for (size_t n = 0; n < chunks; n++) + result.data[n] = data[n] & other.data[n]; + return result; + } + + value bit_or(const value &other) const { + value result; + for (size_t n = 0; n < chunks; n++) + result.data[n] = data[n] | other.data[n]; + return result; + } + + value bit_xor(const value &other) const { + value result; + for (size_t n = 0; n < chunks; n++) + result.data[n] = data[n] ^ other.data[n]; + return result; + } + + template + value shl(const value &amount) const { + // Ensure our early return is correct by prohibiting values larger than 4 Gbit. + static_assert(Bits <= chunk::mask, "shl() of unreasonably large values is not supported"); + // Detect shifts definitely large than Bits early. + for (size_t n = 1; n < amount.chunks; n++) + if (amount.data[n] != 0) + return {}; + // Past this point we can use the least significant chunk as the shift size. + size_t shift_chunks = amount.data[0] / chunk::bits; + size_t shift_bits = amount.data[0] % chunk::bits; + if (shift_chunks >= chunks) + return {}; + value result; + chunk::type carry = 0; + for (size_t n = 0; n < chunks - shift_chunks; n++) { + result.data[shift_chunks + n] = (data[n] << shift_bits) | carry; + carry = (shift_bits == 0) ? 0 + : data[n] >> (chunk::bits - shift_bits); + } + return result; + } + + template + value shr(const value &amount) const { + // Ensure our early return is correct by prohibiting values larger than 4 Gbit. + static_assert(Bits <= chunk::mask, "shr() of unreasonably large values is not supported"); + // Detect shifts definitely large than Bits early. + for (size_t n = 1; n < amount.chunks; n++) + if (amount.data[n] != 0) + return {}; + // Past this point we can use the least significant chunk as the shift size. + size_t shift_chunks = amount.data[0] / chunk::bits; + size_t shift_bits = amount.data[0] % chunk::bits; + if (shift_chunks >= chunks) + return {}; + value result; + chunk::type carry = 0; + for (size_t n = 0; n < chunks - shift_chunks; n++) { + result.data[chunks - shift_chunks - 1 - n] = carry | (data[chunks - 1 - n] >> shift_bits); + carry = (shift_bits == 0) ? 0 + : data[chunks - 1 - n] << (chunk::bits - shift_bits); + } + if (Signed && is_neg()) { + for (size_t n = chunks - shift_chunks; n < chunks; n++) + result.data[n] = chunk::mask; + if (shift_bits != 0) + result.data[chunks - shift_chunks] |= chunk::mask << (chunk::bits - shift_bits); + } + return result; + } + + template + value sshr(const value &amount) const { + return shr(amount); + } + + size_t ctpop() const { + size_t count = 0; + for (size_t n = 0; n < chunks; n++) { + // This loop implements the population count idiom as recognized by LLVM and GCC. + for (chunk::type x = data[n]; x != 0; count++) + x = x & (x - 1); + } + return count; + } + + size_t ctlz() const { + size_t count = 0; + for (size_t n = 0; n < chunks; n++) { + chunk::type x = data[chunks - 1 - n]; + if (x == 0) { + count += (n == 0 ? Bits % chunk::bits : chunk::bits); + } else { + // This loop implements the find first set idiom as recognized by LLVM. + for (; x != 0; count++) + x >>= 1; + } + } + return count; + } + + template + std::pair, bool /*CarryOut*/> alu(const value &other) const { + value result; + bool carry = CarryIn; + for (size_t n = 0; n < result.chunks; n++) { + result.data[n] = data[n] + (Invert ? ~other.data[n] : other.data[n]) + carry; + carry = (result.data[n] < data[n]) || + (result.data[n] == data[n] && carry); + } + result.data[result.chunks - 1] &= result.msb_mask; + return {result, carry}; + } + + value add(const value &other) const { + return alu(other).first; + } + + value sub(const value &other) const { + return alu(other).first; + } + + value neg() const { + return value { 0u }.sub(*this); + } + + bool ucmp(const value &other) const { + bool carry; + std::tie(std::ignore, carry) = alu(other); + return !carry; // a.ucmp(b) ≡ a u< b + } + + bool scmp(const value &other) const { + value result; + bool carry; + std::tie(result, carry) = alu(other); + bool overflow = (is_neg() == !other.is_neg()) && (is_neg() != result.is_neg()); + return result.is_neg() ^ overflow; // a.scmp(b) ≡ a s< b + } +}; + +// Expression template for a slice, usable as lvalue or rvalue, and composable with other expression templates here. +template +struct slice_expr : public expr_base> { + static_assert(Stop >= Start, "slice_expr() may not reverse bit order"); + static_assert(Start < T::bits && Stop < T::bits, "slice_expr() must be within bounds"); + static constexpr size_t bits = Stop - Start + 1; + + T &expr; + + slice_expr(T &expr) : expr(expr) {} + slice_expr(const slice_expr &) = delete; + + operator value() const { + return static_cast &>(expr) + .template rtrunc() + .template trunc(); + } + + slice_expr &operator=(const value &rhs) { + // Generic partial assignment implemented using a read-modify-write operation on the sliced expression. + expr = static_cast &>(expr) + .template blit(rhs); + return *this; + } + + // A helper that forces the cast to value<>, which allows deduction to work. + value val() const { + return static_cast &>(*this); + } +}; + +// Expression template for a concatenation, usable as lvalue or rvalue, and composable with other expression templates here. +template +struct concat_expr : public expr_base> { + static constexpr size_t bits = T::bits + U::bits; + + T &ms_expr; + U &ls_expr; + + concat_expr(T &ms_expr, U &ls_expr) : ms_expr(ms_expr), ls_expr(ls_expr) {} + concat_expr(const concat_expr &) = delete; + + operator value() const { + value ms_shifted = static_cast &>(ms_expr) + .template rzext(); + value ls_extended = static_cast &>(ls_expr) + .template zext(); + return ms_shifted.bit_or(ls_extended); + } + + concat_expr &operator=(const value &rhs) { + ms_expr = rhs.template rtrunc(); + ls_expr = rhs.template trunc(); + return *this; + } + + // A helper that forces the cast to value<>, which allows deduction to work. + value val() const { + return static_cast &>(*this); + } +}; + +// Base class for expression templates, providing helper methods for operations that are valid on both rvalues and lvalues. +// +// Note that expression objects (slices and concatenations) constructed in this way should NEVER be captured because +// they refer to temporaries that will, in general, only live until the end of the statement. For example, both of +// these snippets perform use-after-free: +// +// const auto &a = val.slice<7,0>().slice<1>(); +// value<1> b = a; +// +// auto &&c = val.slice<7,0>().slice<1>(); +// c = value<1>{1u}; +// +// An easy way to write code using slices and concatenations safely is to follow two simple rules: +// * Never explicitly name any type except `value` or `const value &`. +// * Never use a `const auto &` or `auto &&` in any such expression. +// Then, any code that compiles will be well-defined. +template +struct expr_base { + template + slice_expr slice() const { + return {*static_cast(this)}; + } + + template + slice_expr slice() { + return {*static_cast(this)}; + } + + template + concat_expr::type> concat(const U &other) const { + return {*static_cast(this), other}; + } + + template + concat_expr::type> concat(U &&other) { + return {*static_cast(this), other}; + } +}; + +template +std::ostream &operator<<(std::ostream &os, const value &val) { + auto old_flags = os.flags(std::ios::right); + auto old_width = os.width(0); + auto old_fill = os.fill('0'); + os << val.bits << '\'' << std::hex; + for (size_t n = val.chunks - 1; n != (size_t)-1; n--) { + if (n == val.chunks - 1 && Bits % value::chunk::bits != 0) + os.width((Bits % value::chunk::bits + 3) / 4); + else + os.width((value::chunk::bits + 3) / 4); + os << val.data[n]; + } + os.fill(old_fill); + os.width(old_width); + os.flags(old_flags); + return os; +} + +template +struct wire { + static constexpr size_t bits = Bits; + + value curr; + value next; + + wire() = default; + constexpr wire(const value &init) : curr(init), next(init) {} + template + explicit constexpr wire(Init ...init) : curr{init...}, next{init...} {} + + wire(const wire &) = delete; + wire(wire &&) = default; + wire &operator=(const wire &) = delete; + + // We want to avoid having operator=(wire<>) or operator=(value<>) that overwrites both curr and next, + // since this operation is almost always wrong. But we also need an operation like that for memory + // initialization. This is solved by adding a wrapper and making the use of operator= valid only when + // this wrapper is used. + struct init { + value data; + }; + + wire &operator=(const init &init) { + curr = next = init.data; + return *this; + } + + bool commit() { + if (curr != next) { + curr = next; + return true; + } + return false; + } +}; + +template +std::ostream &operator<<(std::ostream &os, const wire &val) { + os << val.curr; + return os; +} + +template +struct memory { + using StoredElem = typename std::remove_const::type; + std::vector data; + + static constexpr size_t width = StoredElem::bits; + size_t depth() const { + return data.size(); + } + + memory() = delete; + explicit memory(size_t depth) : data(depth) {} + + memory(const memory &) = delete; + memory &operator=(const memory &) = delete; + + // The only way to get the compiler to put the initializer in .rodata and do not copy it on stack is to stuff it + // into a plain array. You'd think an std::initializer_list would work here, but it doesn't, because you can't + // construct an initializer_list in a constexpr (or something) and so if you try to do that the whole thing is + // first copied on the stack (probably overflowing it) and then again into `data`. + template + struct init { + size_t offset; + typename Elem::init data[Size]; + }; + + template + explicit memory(size_t depth, const init &...init) : data(depth) { + // FIXME: assert(init.size() <= depth); + data.resize(depth); + // This utterly reprehensible construct is the most reasonable way to apply a function to every element + // of a parameter pack, if the elements all have different types and so cannot be cast to an initializer list. + auto _ = {std::move(std::begin(init.data), std::end(init.data), data.begin() + init.offset)...}; + } + + Elem &operator [](size_t index) { + // FIXME: assert(index < data.size()); + return data[index]; + } + + template + Elem &operator [](const value &addr) { + static_assert(value::chunks <= 1, "memory indexing with unreasonably large address is not supported"); + return (*this)[addr.data[0]]; + } +}; + +template +using memory_rw = memory>; + +template +using memory_ro = memory>; + +struct module { + module() {} + virtual ~module() {} + + module(const module &) = delete; + module &operator=(const module &) = delete; + + virtual void eval() = 0; + virtual bool commit() = 0; + + size_t step() { + size_t deltas = 0; + do { + eval(); + deltas++; + } while (commit()); + return deltas; + } +}; + +} // namespace cxxrtl + +// Definitions of internal Yosys cells. Other than the functions in this namespace, cxxrtl is fully generic +// and indepenent of Yosys implementation details. +// +// The `write_cxxrtl` pass translates internal cells (cells with names that start with `$`) to calls of these +// functions. All of Yosys arithmetic and logical cells perform sign or zero extension on their operands, +// whereas basic operations on arbitrary width values require operands to be of the same width. These functions +// bridge the gap by performing the necessary casts. They are named similar to `cell_A[B]`, where A and B are `u` +// if the corresponding operand is unsigned, and `s` if it is signed. +namespace cxxrtl_yosys { + +using namespace cxxrtl; + +// std::max isn't constexpr until C++14 for no particular reason (it's an oversight), so we define our own. +template +constexpr T max(const T &a, const T &b) { + return a > b ? a : b; +} + +// Logic operations +template +value not_u(const value &a) { + return a.template zcast().bit_not(); +} + +template +value not_s(const value &a) { + return a.template scast().bit_not(); +} + +template +value logic_not_u(const value &a) { + return value { a ? 0u : 1u }; +} + +template +value logic_not_s(const value &a) { + return value { a ? 0u : 1u }; +} + +template +value reduce_and_u(const value &a) { + return value { a.bit_not().is_zero() ? 1u : 0u }; +} + +template +value reduce_and_s(const value &a) { + return value { a.bit_not().is_zero() ? 1u : 0u }; +} + +template +value reduce_or_u(const value &a) { + return value { a ? 1u : 0u }; +} + +template +value reduce_or_s(const value &a) { + return value { a ? 1u : 0u }; +} + +template +value reduce_xor_u(const value &a) { + return value { (a.ctpop() % 2) ? 1u : 0u }; +} + +template +value reduce_xor_s(const value &a) { + return value { (a.ctpop() % 2) ? 1u : 0u }; +} + +template +value reduce_xnor_u(const value &a) { + return value { (a.ctpop() % 2) ? 0u : 1u }; +} + +template +value reduce_xnor_s(const value &a) { + return value { (a.ctpop() % 2) ? 0u : 1u }; +} + +template +value reduce_bool_u(const value &a) { + return value { a ? 1u : 0u }; +} + +template +value reduce_bool_s(const value &a) { + return value { a ? 1u : 0u }; +} + +template +value and_uu(const value &a, const value &b) { + return a.template zcast().bit_and(b.template zcast()); +} + +template +value and_ss(const value &a, const value &b) { + return a.template scast().bit_and(b.template scast()); +} + +template +value or_uu(const value &a, const value &b) { + return a.template zcast().bit_or(b.template zcast()); +} + +template +value or_ss(const value &a, const value &b) { + return a.template scast().bit_or(b.template scast()); +} + +template +value xor_uu(const value &a, const value &b) { + return a.template zcast().bit_xor(b.template zcast()); +} + +template +value xor_ss(const value &a, const value &b) { + return a.template scast().bit_xor(b.template scast()); +} + +template +value xnor_uu(const value &a, const value &b) { + return a.template zcast().bit_xor(b.template zcast()).bit_not(); +} + +template +value xnor_ss(const value &a, const value &b) { + return a.template scast().bit_xor(b.template scast()).bit_not(); +} + +template +value logic_and_uu(const value &a, const value &b) { + return value { (bool(a) & bool(b)) ? 1u : 0u }; +} + +template +value logic_and_ss(const value &a, const value &b) { + return value { (bool(a) & bool(b)) ? 1u : 0u }; +} + +template +value logic_or_uu(const value &a, const value &b) { + return value { (bool(a) | bool(b)) ? 1u : 0u }; +} + +template +value logic_or_ss(const value &a, const value &b) { + return value { (bool(a) | bool(b)) ? 1u : 0u }; +} + +template +value shl_uu(const value &a, const value &b) { + return a.template zcast().template shl(b); +} + +template +value shl_su(const value &a, const value &b) { + return a.template scast().template shl(b); +} + +template +value sshl_uu(const value &a, const value &b) { + return a.template zcast().template shl(b); +} + +template +value sshl_su(const value &a, const value &b) { + return a.template scast().template shl(b); +} + +template +value shr_uu(const value &a, const value &b) { + return a.template shr(b).template zcast(); +} + +template +value shr_su(const value &a, const value &b) { + return a.template shr(b).template scast(); +} + +template +value sshr_uu(const value &a, const value &b) { + return a.template shr(b).template zcast(); +} + +template +value sshr_su(const value &a, const value &b) { + return a.template shr(b).template scast(); +} + +template +value shift_uu(const value &a, const value &b) { + return shr_uu(a, b); +} + +template +value shift_su(const value &a, const value &b) { + return shr_su(a, b); +} + +template +value shift_us(const value &a, const value &b) { + return b.is_neg() ? shl_uu(a, b.template sext().neg()) : shr_uu(a, b); +} + +template +value shift_ss(const value &a, const value &b) { + return b.is_neg() ? shl_su(a, b.template sext().neg()) : shr_su(a, b); +} + +template +value shiftx_uu(const value &a, const value &b) { + return shift_uu(a, b); +} + +template +value shiftx_su(const value &a, const value &b) { + return shift_su(a, b); +} + +template +value shiftx_us(const value &a, const value &b) { + return shift_us(a, b); +} + +template +value shiftx_ss(const value &a, const value &b) { + return shift_ss(a, b); +} + +// Comparison operations +template +value eq_uu(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value{ a.template zext() == b.template zext() ? 1u : 0u }; +} + +template +value eq_ss(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value{ a.template sext() == b.template sext() ? 1u : 0u }; +} + +template +value ne_uu(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value{ a.template zext() != b.template zext() ? 1u : 0u }; +} + +template +value ne_ss(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value{ a.template sext() != b.template sext() ? 1u : 0u }; +} + +template +value eqx_uu(const value &a, const value &b) { + return eq_uu(a, b); +} + +template +value eqx_ss(const value &a, const value &b) { + return eq_ss(a, b); +} + +template +value nex_uu(const value &a, const value &b) { + return ne_uu(a, b); +} + +template +value nex_ss(const value &a, const value &b) { + return ne_ss(a, b); +} + +template +value gt_uu(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value { b.template zext().ucmp(a.template zext()) ? 1u : 0u }; +} + +template +value gt_ss(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value { b.template sext().scmp(a.template sext()) ? 1u : 0u }; +} + +template +value ge_uu(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value { !a.template zext().ucmp(b.template zext()) ? 1u : 0u }; +} + +template +value ge_ss(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value { !a.template sext().scmp(b.template sext()) ? 1u : 0u }; +} + +template +value lt_uu(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value { a.template zext().ucmp(b.template zext()) ? 1u : 0u }; +} + +template +value lt_ss(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value { a.template sext().scmp(b.template sext()) ? 1u : 0u }; +} + +template +value le_uu(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value { !b.template zext().ucmp(a.template zext()) ? 1u : 0u }; +} + +template +value le_ss(const value &a, const value &b) { + constexpr size_t BitsExt = max(BitsA, BitsB); + return value { !b.template sext().scmp(a.template sext()) ? 1u : 0u }; +} + +// Arithmetic operations +template +value pos_u(const value &a) { + return a.template zcast(); +} + +template +value pos_s(const value &a) { + return a.template scast(); +} + +template +value neg_u(const value &a) { + return a.template zcast().neg(); +} + +template +value neg_s(const value &a) { + return a.template scast().neg(); +} + +template +value add_uu(const value &a, const value &b) { + return a.template zcast().add(b.template zcast()); +} + +template +value add_ss(const value &a, const value &b) { + return a.template scast().add(b.template scast()); +} + +template +value sub_uu(const value &a, const value &b) { + return a.template zcast().sub(b.template zcast()); +} + +template +value sub_ss(const value &a, const value &b) { + return a.template scast().sub(b.template scast()); +} + +template +value mul_uu(const value &a, const value &b) { + value product; + value multiplicand = a.template zcast(); + const value &multiplier = b; + uint32_t multiplicand_shift = 0; + for (size_t step = 0; step < BitsB; step++) { + if (multiplier.bit(step)) { + multiplicand = multiplicand.shl(value<32> { multiplicand_shift }); + product = product.add(multiplicand); + multiplicand_shift = 0; + } + multiplicand_shift++; + } + return product; +} + +template +value mul_ss(const value &a, const value &b) { + value ub = b.template sext(); + if (ub.is_neg()) ub = ub.neg(); + value y = mul_uu(a.template scast(), ub); + return b.is_neg() ? y.neg() : y; +} + +template +std::pair, value> divmod_uu(const value &a, const value &b) { + constexpr size_t Bits = max(BitsY, max(BitsA, BitsB)); + value quotient; + value dividend = a.template zext(); + value divisor = b.template zext(); + if (dividend.ucmp(divisor)) + return {/*quotient=*/value { 0u }, /*remainder=*/dividend.template trunc()}; + uint32_t divisor_shift = dividend.ctlz() - divisor.ctlz(); + divisor = divisor.shl(value<32> { divisor_shift }); + for (size_t step = 0; step <= divisor_shift; step++) { + quotient = quotient.shl(value<1> { 1u }); + if (!dividend.ucmp(divisor)) { + dividend = dividend.sub(divisor); + quotient.set_bit(0, true); + } + divisor = divisor.shr(value<1> { 1u }); + } + return {quotient.template trunc(), /*remainder=*/dividend.template trunc()}; +} + +template +std::pair, value> divmod_ss(const value &a, const value &b) { + value ua = a.template sext(); + value ub = b.template sext(); + if (ua.is_neg()) ua = ua.neg(); + if (ub.is_neg()) ub = ub.neg(); + value y, r; + std::tie(y, r) = divmod_uu(ua, ub); + if (a.is_neg() != b.is_neg()) y = y.neg(); + if (a.is_neg()) r = r.neg(); + return {y, r}; +} + +template +value div_uu(const value &a, const value &b) { + return divmod_uu(a, b).first; +} + +template +value div_ss(const value &a, const value &b) { + return divmod_ss(a, b).first; +} + +template +value mod_uu(const value &a, const value &b) { + return divmod_uu(a, b).second; +} + +template +value mod_ss(const value &a, const value &b) { + return divmod_ss(a, b).second; +} + +} // namespace cxxrtl_yosys + +#endif diff --git a/kernel/yosys.cc b/kernel/yosys.cc index 380f7030b..cbf041f79 100644 --- a/kernel/yosys.cc +++ b/kernel/yosys.cc @@ -1034,6 +1034,8 @@ void run_backend(std::string filename, std::string command, RTLIL::Design *desig command = "verilog"; else if (filename.size() > 3 && filename.compare(filename.size()-3, std::string::npos, ".il") == 0) command = "ilang"; + else if (filename.size() > 3 && filename.compare(filename.size()-3, std::string::npos, ".cc") == 0) + command = "cxxrtl"; else if (filename.size() > 4 && filename.compare(filename.size()-4, std::string::npos, ".aig") == 0) command = "aiger"; else if (filename.size() > 5 && filename.compare(filename.size()-5, std::string::npos, ".blif") == 0) diff --git a/kernel/yosys.h b/kernel/yosys.h index 16e0aaf1c..6aed7c96a 100644 --- a/kernel/yosys.h +++ b/kernel/yosys.h @@ -207,6 +207,7 @@ namespace RTLIL { struct SigSpec; struct Wire; struct Cell; + struct Memory; struct Module; struct Design; struct Monitor; @@ -229,6 +230,7 @@ using RTLIL::Design; namespace hashlib { template<> struct hash_ops : hash_obj_ops {}; template<> struct hash_ops : hash_obj_ops {}; + template<> struct hash_ops : hash_obj_ops {}; template<> struct hash_ops : hash_obj_ops {}; template<> struct hash_ops : hash_obj_ops {}; template<> struct hash_ops : hash_obj_ops {}; @@ -236,6 +238,7 @@ namespace hashlib { template<> struct hash_ops : hash_obj_ops {}; template<> struct hash_ops : hash_obj_ops {}; + template<> struct hash_ops : hash_obj_ops {}; template<> struct hash_ops : hash_obj_ops {}; template<> struct hash_ops : hash_obj_ops {}; template<> struct hash_ops : hash_obj_ops {};