From: Luke Kenneth Casson Leighton Date: Sun, 16 Apr 2023 14:32:47 +0000 (+0100) Subject: move REMAP pseudocode (too long) to REMAP Appendix X-Git-Tag: opf_rfc_ls009_v1~2 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=ef57ebd8ea652e5127d62c41f4166a750ae6746f;p=libreriscv.git move REMAP pseudocode (too long) to REMAP Appendix --- diff --git a/openpower/sv/remap.mdwn b/openpower/sv/remap.mdwn index 3fa8dc722..89fe28aa8 100644 --- a/openpower/sv/remap.mdwn +++ b/openpower/sv/remap.mdwn @@ -813,228 +813,7 @@ SVM-Form | -- | -- | --- | ----- | ------ | -- | ------| -------- | |PO | SVxd | SVyd | SVzd | SVRM | vf | XO | svshape | -``` - # for convenience, VL to be calculated and stored in SVSTATE - vlen <- [0] * 7 - mscale[0:5] <- 0b000001 # for scaling MAXVL - itercount[0:6] <- [0] * 7 - SVSTATE[0:31] <- [0] * 32 - # only overwrite REMAP if "persistence" is zero - if (SVSTATE[62] = 0b0) then - SVSTATE[32:33] <- 0b00 - SVSTATE[34:35] <- 0b00 - SVSTATE[36:37] <- 0b00 - SVSTATE[38:39] <- 0b00 - SVSTATE[40:41] <- 0b00 - SVSTATE[42:46] <- 0b00000 - SVSTATE[62] <- 0b0 - SVSTATE[63] <- 0b0 - # clear out all SVSHAPEs - SVSHAPE0[0:31] <- [0] * 32 - SVSHAPE1[0:31] <- [0] * 32 - SVSHAPE2[0:31] <- [0] * 32 - SVSHAPE3[0:31] <- [0] * 32 - - # set schedule up for multiply - if (SVrm = 0b0000) then - # VL in Matrix Multiply is xd*yd*zd - xd <- (0b00 || SVxd) + 1 - yd <- (0b00 || SVyd) + 1 - zd <- (0b00 || SVzd) + 1 - n <- xd * yd * zd - vlen[0:6] <- n[14:20] - # set up template in SVSHAPE0, then copy to 1-3 - SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim - SVSHAPE0[6:11] <- (0b0 || SVyd) # ydim - SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - SVSHAPE0[28:29] <- 0b11 # skip z - # copy - SVSHAPE1[0:31] <- SVSHAPE0[0:31] - SVSHAPE2[0:31] <- SVSHAPE0[0:31] - SVSHAPE3[0:31] <- SVSHAPE0[0:31] - # set up FRA - SVSHAPE1[18:20] <- 0b001 # permute x,z,y - SVSHAPE1[28:29] <- 0b01 # skip z - # FRC - SVSHAPE2[18:20] <- 0b001 # permute x,z,y - SVSHAPE2[28:29] <- 0b11 # skip y - - # set schedule up for FFT butterfly - if (SVrm = 0b0001) then - # calculate O(N log2 N) - n <- [0] * 3 - do while n < 5 - if SVxd[4-n] = 0 then - leave - n <- n + 1 - n <- ((0b0 || SVxd) + 1) * n - vlen[0:6] <- n[1:7] - # set up template in SVSHAPE0, then copy to 1-3 - # for FRA and FRT - SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim - SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D FFT) - mscale <- (0b0 || SVzd) + 1 - SVSHAPE0[30:31] <- 0b01 # Butterfly mode - # copy - SVSHAPE1[0:31] <- SVSHAPE0[0:31] - SVSHAPE2[0:31] <- SVSHAPE0[0:31] - # set up FRB and FRS - SVSHAPE1[28:29] <- 0b01 # j+halfstep schedule - # FRC (coefficients) - SVSHAPE2[28:29] <- 0b10 # k schedule - - # set schedule up for (i)DCT Inner butterfly - # SVrm Mode 4 (Mode 12 for iDCT) is for on-the-fly (Vertical-First Mode) - if ((SVrm = 0b0100) | - (SVrm = 0b1100)) then - # calculate O(N log2 N) - n <- [0] * 3 - do while n < 5 - if SVxd[4-n] = 0 then - leave - n <- n + 1 - n <- ((0b0 || SVxd) + 1) * n - vlen[0:6] <- n[1:7] - # set up template in SVSHAPE0, then copy to 1-3 - # set up FRB and FRS - SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim - SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT) - mscale <- (0b0 || SVzd) + 1 - if (SVrm = 0b1100) then - SVSHAPE0[30:31] <- 0b11 # iDCT mode - SVSHAPE0[18:20] <- 0b011 # iDCT Inner Butterfly sub-mode - else - SVSHAPE0[30:31] <- 0b01 # DCT mode - SVSHAPE0[18:20] <- 0b001 # DCT Inner Butterfly sub-mode - SVSHAPE0[21:23] <- 0b001 # "inverse" on outer loop - SVSHAPE0[6:11] <- 0b000011 # (i)DCT Inner Butterfly mode 4 - # copy - SVSHAPE1[0:31] <- SVSHAPE0[0:31] - SVSHAPE2[0:31] <- SVSHAPE0[0:31] - if (SVrm != 0b0100) & (SVrm != 0b1100) then - SVSHAPE3[0:31] <- SVSHAPE0[0:31] - # for FRA and FRT - SVSHAPE0[28:29] <- 0b01 # j+halfstep schedule - # for cos coefficient - SVSHAPE2[28:29] <- 0b10 # ci (k for mode 4) schedule - SVSHAPE2[12:17] <- 0b000000 # reset costable "striding" to 1 - if (SVrm != 0b0100) & (SVrm != 0b1100) then - SVSHAPE3[28:29] <- 0b11 # size schedule - - # set schedule up for (i)DCT Outer butterfly - if (SVrm = 0b0011) | (SVrm = 0b1011) then - # calculate O(N log2 N) number of outer butterfly overlapping adds - vlen[0:6] <- [0] * 7 - n <- 0b000 - size <- 0b0000001 - itercount[0:6] <- (0b00 || SVxd) + 0b0000001 - itercount[0:6] <- (0b0 || itercount[0:5]) - do while n < 5 - if SVxd[4-n] = 0 then - leave - n <- n + 1 - count <- (itercount - 0b0000001) * size - vlen[0:6] <- vlen + count[7:13] - size[0:6] <- (size[1:6] || 0b0) - itercount[0:6] <- (0b0 || itercount[0:5]) - # set up template in SVSHAPE0, then copy to 1-3 - # set up FRB and FRS - SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim - SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT) - mscale <- (0b0 || SVzd) + 1 - if (SVrm = 0b1011) then - SVSHAPE0[30:31] <- 0b11 # iDCT mode - SVSHAPE0[18:20] <- 0b011 # iDCT Outer Butterfly sub-mode - SVSHAPE0[21:23] <- 0b101 # "inverse" on outer and inner loop - else - SVSHAPE0[30:31] <- 0b01 # DCT mode - SVSHAPE0[18:20] <- 0b100 # DCT Outer Butterfly sub-mode - SVSHAPE0[6:11] <- 0b000010 # DCT Butterfly mode - # copy - SVSHAPE1[0:31] <- SVSHAPE0[0:31] # j+halfstep schedule - SVSHAPE2[0:31] <- SVSHAPE0[0:31] # costable coefficients - # for FRA and FRT - SVSHAPE1[28:29] <- 0b01 # j+halfstep schedule - # reset costable "striding" to 1 - SVSHAPE2[12:17] <- 0b000000 - - # set schedule up for DCT COS table generation - if (SVrm = 0b0101) | (SVrm = 0b1101) then - # calculate O(N log2 N) - vlen[0:6] <- [0] * 7 - itercount[0:6] <- (0b00 || SVxd) + 0b0000001 - itercount[0:6] <- (0b0 || itercount[0:5]) - n <- [0] * 3 - do while n < 5 - if SVxd[4-n] = 0 then - leave - n <- n + 1 - vlen[0:6] <- vlen + itercount - itercount[0:6] <- (0b0 || itercount[0:5]) - # set up template in SVSHAPE0, then copy to 1-3 - # set up FRB and FRS - SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim - SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT) - mscale <- (0b0 || SVzd) + 1 - SVSHAPE0[30:31] <- 0b01 # DCT/FFT mode - SVSHAPE0[6:11] <- 0b000100 # DCT Inner Butterfly COS-gen mode - if (SVrm = 0b0101) then - SVSHAPE0[21:23] <- 0b001 # "inverse" on outer loop for DCT - # copy - SVSHAPE1[0:31] <- SVSHAPE0[0:31] - SVSHAPE2[0:31] <- SVSHAPE0[0:31] - # for cos coefficient - SVSHAPE1[28:29] <- 0b10 # ci schedule - SVSHAPE2[28:29] <- 0b11 # size schedule - - # set schedule up for iDCT / DCT inverse of half-swapped ordering - if (SVrm = 0b0110) | (SVrm = 0b1110) | (SVrm = 0b1111) then - vlen[0:6] <- (0b00 || SVxd) + 0b0000001 - # set up template in SVSHAPE0 - SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim - SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT) - mscale <- (0b0 || SVzd) + 1 - if (SVrm = 0b1110) then - SVSHAPE0[18:20] <- 0b001 # DCT opposite half-swap - if (SVrm = 0b1111) then - SVSHAPE0[30:31] <- 0b01 # FFT mode - else - SVSHAPE0[30:31] <- 0b11 # DCT mode - SVSHAPE0[6:11] <- 0b000101 # DCT "half-swap" mode - - # set schedule up for parallel reduction - if (SVrm = 0b0111) then - # calculate the total number of operations (brute-force) - vlen[0:6] <- [0] * 7 - itercount[0:6] <- (0b00 || SVxd) + 0b0000001 - step[0:6] <- 0b0000001 - i[0:6] <- 0b0000000 - do while step