From: Haniel Barbosa Date: Fri, 1 Apr 2022 20:27:47 +0000 (-0300) Subject: [proofs] [doc] Document string rules (#8498) X-Git-Tag: cvc5-1.0.0~57 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=f01250d341937155679ae32638907d147fd61088;p=cvc5.git [proofs] [doc] Document string rules (#8498) Also replaces negation of equality literals by disequality literals. --- diff --git a/src/proof/proof_rule.h b/src/proof/proof_rule.h index a7b423638..32fd6c4bc 100644 --- a/src/proof/proof_rule.h +++ b/src/proof/proof_rule.h @@ -676,7 +676,7 @@ enum class PfRule : uint32_t * **Boolean -- Not Equivalence elimination version 1** * * .. math:: - * \inferrule{\neg(F_1 = F_2) \mid -}{F_1 \lor F_2} + * \inferrule{F_1 \neq F_2 \mid -}{F_1 \lor F_2} * * \endverbatim */ @@ -686,7 +686,7 @@ enum class PfRule : uint32_t * **Boolean -- Not Equivalence elimination version 2** * * .. math:: - * \inferrule{\neg(F_1 = F_2) \mid -}{\neg F_1 \lor \neg F_2} + * \inferrule{F_1 \neq F_2 \mid -}{\neg F_1 \lor \neg F_2} * * \endverbatim */ @@ -863,7 +863,7 @@ enum class PfRule : uint32_t * **Boolean -- CNF -- Equiv Positive 1** * * .. math:: - * \inferrule{- \mid F_1 = F_2}{\neg(F_1 = F_2) \lor \neg F_1 \lor F_2} + * \inferrule{- \mid F_1 = F_2}{F_1 \neq F_2 \lor \neg F_1 \lor F_2} * * \endverbatim */ @@ -873,7 +873,7 @@ enum class PfRule : uint32_t * **Boolean -- CNF -- Equiv Positive 2** * * .. math:: - * \inferrule{- \mid F_1 = F_2}{\neg(F_1 = F_2) \lor F_1 \lor \neg F_2} + * \inferrule{- \mid F_1 = F_2}{F_1 \neq F_2 \lor F_1 \lor \neg F_2} * * \endverbatim */ @@ -1028,7 +1028,7 @@ enum class PfRule : uint32_t * * .. math:: * - * \inferrule{\neg (t_1 = t_2)\mid -}{\neg (t_2 = t_1)} + * \inferrule{t_1 \neq t_2\mid -}{t_2 \neq t_1} * * \endverbatim */ @@ -1132,7 +1132,7 @@ enum class PfRule : uint32_t * * .. math:: * - * \inferrule{\neg (i_1 = i_2)\mid \mathit{select}(\mathit{store}(a,i_1,e),i_2)} + * \inferrule{i_1 \neq i_2\mid \mathit{select}(\mathit{store}(a,i_1,e),i_2)} * {\mathit{select}(\mathit{store}(a,i_1,e),i_2) = \mathit{select}(a,i_2)} * \endverbatim */ @@ -1143,8 +1143,8 @@ enum class PfRule : uint32_t * * .. math:: * - * \inferrule{\neg (\mathit{select}(\mathit{store}(a,i_2,e),i_1) = - * \mathit{select}(a,i_1))\mid -}{i_1=i_2} + * \inferrule{\mathit{select}(\mathit{store}(a,i_2,e),i_1) \neq + * \mathit{select}(a,i_1)\mid -}{i_1=i_2} * \endverbatim */ ARRAYS_READ_OVER_WRITE_CONTRA, @@ -1165,11 +1165,11 @@ enum class PfRule : uint32_t * * .. math:: * - * \inferrule{\neg(a = b)\mid -} - * {\neg (\mathit{select}(a,k)=\mathit{select}(b,k))} + * \inferrule{a \neq b\mid -} + * {\mathit{select}(a,k)\neq\mathit{select}(b,k)} * * where :math:`k` is - * :math:`\texttt{arrays::SkolemCache::getExtIndexSkolem}(\neg(a=b))`. + * :math:`\texttt{arrays::SkolemCache::getExtIndexSkolem}(a\neq b)`. * \endverbatim */ ARRAYS_EXT, @@ -1385,241 +1385,347 @@ enum class PfRule : uint32_t * \endverbatim */ QUANTIFIERS_PREPROCESS, - //================================================= String rules - //======================== Core solver - // ======== Concat eq - // Children: (P1:(= (str.++ t1 ... tn t) (str.++ t1 ... tn s))) - // Arguments: (b), indicating if reverse direction - // --------------------- - // Conclusion: (= t s) - // - // Notice that t or s may be empty, in which case they are implicit in the - // concatenation above. For example, if - // P1 concludes (= x (str.++ x z)), then - // (CONCAT_EQ P1 :args false) concludes (= "" z) - // - // Also note that constants are split, such that if - // P1 concludes (= (str.++ "abc" x) (str.++ "a" y)), then - // (CONCAT_EQ P1 :args false) concludes (= (str.++ "bc" x) y) - // This splitting is done only for constants such that Word::splitConstant - // returns non-null. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- Concatenation equality** + * + * .. math:: + * + * \inferrule{(t_1\cdot\ldots \cdot t_n \cdot t) = (t_1 \cdot\ldots + * \cdot t_n\cdot s)\mid b}{t = s} + * + * where :math:`\cdot` stands for string concatenation and :math:`b` indicates + * if the direction is reversed. + * + * Notice that :math:`t` or :math:`s` may be empty, in which case they are + * implicit in the concatenation above. For example, if the premise is + * :math:`x\cdot z = x`, then this rule, with argument :math:`\bot`, concludes + * :math:`z = ''`. + * + * Also note that constants are split, such that for :math:`(\mathsf{'abc'} + * \cdot x) = (\mathsf{'a'} \cdot y)`, this rule, with argument :math:`\bot`, + * concludes :math:`(\mathsf{'bc'} \cdot x) = y`. This splitting is done only + * for constants such that ``Word::splitConstant`` returns non-null. + * \endverbatim + */ CONCAT_EQ, - // ======== Concat unify - // Children: (P1:(= (str.++ t1 t2) (str.++ s1 s2)), - // P2:(= (str.len t1) (str.len s1))) - // Arguments: (b), indicating if reverse direction - // --------------------- - // Conclusion: (= t1 s1) + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- Concatenation unification** + * + * .. math:: + * + * \inferrule{(t_1\cdot t_2) = (s_1 \cdot s_2),\, \mathit{len}(t_1) = + * \mathit{len}(s_1)\mid b}{t_1 = s_1} + * + * where :math:`b` indicates if the direction is reversed. + * \endverbatim + */ CONCAT_UNIFY, - // ======== Concat conflict - // Children: (P1:(= (str.++ c1 t) (str.++ c2 s))) - // Arguments: (b), indicating if reverse direction - // --------------------- - // Conclusion: false - // Where c1, c2 are constants such that Word::splitConstant(c1,c2,index,b) - // is null, in other words, neither is a prefix of the other. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- Concatenation conflict** + * + * .. math:: + * + * \inferrule{(c_1\cdot t) = (c_2 \cdot s)\mid b}{\bot} + * + * where :math:`b` indicates if the direction is reversed, :math:`c_1,\,c_2` + * are constants such that :math:`\texttt{Word::splitConstant}(c_1,c_2, + * \mathit{index},b)` is null, in other words, neither is a prefix of the + * other. + * \endverbatim + */ CONCAT_CONFLICT, - // ======== Concat split - // Children: (P1:(= (str.++ t1 t2) (str.++ s1 s2)), - // P2:(not (= (str.len t1) (str.len s1)))) - // Arguments: (false) - // --------------------- - // Conclusion: (or (= t1 (str.++ s1 r_t)) (= s1 (str.++ t1 r_s))) - // where - // r_t = (skolem (suf t1 (str.len s1)))), - // r_s = (skolem (suf s1 (str.len t1)))). - // - // or the reverse form of the above: - // - // Children: (P1:(= (str.++ t1 t2) (str.++ s1 s2)), - // P2:(not (= (str.len t2) (str.len s2)))) - // Arguments: (true) - // --------------------- - // Conclusion: (or (= t2 (str.++ r_t s2)) (= s2 (str.++ r_s t2))) - // where - // r_t = (skolem (pre t2 (- (str.len t2) (str.len s2))))), - // r_s = (skolem (pre s2 (- (str.len s2) (str.len t2))))). - // - // Above, (suf x n) is shorthand for (str.substr x n (- (str.len x) n)) and - // (pre x n) is shorthand for (str.substr x 0 n). + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- Concatenation split** + * + * .. math:: + * + * \inferruleSC{(t_1\cdot t_2) = (s_1 \cdot s_2),\, + * \mathit{len}(t_1) \neq \mathit{len}(s_1)\mid b}{(t_1 = s_1\cdot r_t) + * \vee (s_1 = t_1\cdot r_s)}{if $b=\bot$} + * + * where :math:`r_t` is + * :math:`\mathit{skolem}(\mathit{suf}(t_1,\mathit{len}(s_1)))` and + * :math:`r_s` is :math:`\mathit{skolem}(\mathit{suf}(s_1,\mathit{len}(t_1)))`. + * + * .. math:: + * + * \inferruleSC{(t_1\cdot t_2) = (s_1 \cdot s_2),\, + * \mathit{len}(t_1) \neq \mathit{len}(s_1)\mid b}{(t_1 = s_1\cdot r_t) + * \vee (s_1 = t_1\cdot r_s)}{if $b=\top$} + * + * where :math:`r_t` is + * :math:`\mathit{skolem}(\mathit{pre}(t_2,\mathit{len}(t_2) - + * \mathit{len}(s_2)))` and :math:`r_s` is + * :math:`\mathit{skolem}(\mathit{pre}(s_2,\mathit{len}(s_2) - + * \mathit{len}(t_2)))`. + * + * Above, :math:`\mathit{suf}(x,n)` is shorthand for + * :math:`\mathit{substr}(x,n, \mathit{len}(x) - n)` and + * :math:`\mathit{pre}(x,n)` is shorthand for :math:`\mathit{substr}(x,0,n)`. + * \endverbatim + */ CONCAT_SPLIT, - // ======== Concat constant split - // Children: (P1:(= (str.++ t1 t2) (str.++ c s2)), - // P2:(not (= (str.len t1) 0))) - // Arguments: (false) - // --------------------- - // Conclusion: (= t1 (str.++ c r)) - // where - // r = (skolem (suf t1 1)). - // - // or the reverse form of the above: - // - // Children: (P1:(= (str.++ t1 t2) (str.++ s1 c)), - // P2:(not (= (str.len t2) 0))) - // Arguments: (true) - // --------------------- - // Conclusion: (= t2 (str.++ r c)) - // where - // r = (skolem (pre t2 (- (str.len t2) 1))). + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- Concatenation split for constants** + * + * .. math:: + * + * \inferrule{(t_1\cdot t_2) = (c \cdot s_2),\, + * \mathit{len}(t_1) \neq 0\mid \bot}{(t_1 = c\cdot r)} + * + * where :math:`r` is :math:`\mathit{skolem}(\mathit{suf}(t_1,1))`. + * + * Alternatively for the reverse: + * + * .. math:: + * + * \inferrule{(t_1\cdot t_2) = (s_1 \cdot c),\, + * \mathit{len}(t_2) \neq 0\mid \top}{(t_2 = r\cdot c)} + * + * where :math:`r` is + * :math:`\mathit{skolem}(\mathit{pre}(t_2,\mathit{len}(t_2) - 1))`. + * \endverbatim + */ CONCAT_CSPLIT, - // ======== Concat length propagate - // Children: (P1:(= (str.++ t1 t2) (str.++ s1 s2)), - // P2:(> (str.len t1) (str.len s1))) - // Arguments: (false) - // --------------------- - // Conclusion: (= t1 (str.++ s1 r_t)) - // where - // r_t = (skolem (suf t1 (str.len s1))) - // - // or the reverse form of the above: - // - // Children: (P1:(= (str.++ t1 t2) (str.++ s1 s2)), - // P2:(> (str.len t2) (str.len s2))) - // Arguments: (false) - // --------------------- - // Conclusion: (= t2 (str.++ r_t s2)) - // where - // r_t = (skolem (pre t2 (- (str.len t2) (str.len s2)))). + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- Concatenation length propagation** + * + * .. math:: + * + * \inferrule{(t_1\cdot t_2) = (s_1 \cdot s_2),\, + * \mathit{len}(t_1) > \mathit{len}(s_1)\mid \bot}{(t_1 = s_1\cdot r_t)} + * + * where :math:`r_t` is + * :math:`\mathit{skolem}(\mathit{suf}(t_1,\mathit{len}(s_1)))`. + * + * Alternatively for the reverse: + * + * .. math:: + * + * \inferrule{(t_1\cdot t_2) = (s_1 \cdot s_2),\, + * \mathit{len}(t_2) > \mathit{len}(s_2)\mid \top}{(t_2 = r_t\cdot s_2)} + * + * where :math:`r_t` is + * :math:`\mathit{skolem}(\mathit{pre}(t_2,\mathit{len}(t_2) - + * \mathit{len}(s_2)))`. + * \endverbatim + */ CONCAT_LPROP, - // ======== Concat constant propagate - // Children: (P1:(= (str.++ t1 w1 t2) (str.++ w2 s)), - // P2:(not (= (str.len t1) 0))) - // Arguments: (false) - // --------------------- - // Conclusion: (= t1 (str.++ w3 r)) - // where - // w1, w2, w3, w4 are words, - // w3 is (pre w2 p), - // w4 is (suf w2 p), - // p = Word::overlap((suf w2 1), w1), - // r = (skolem (suf t1 (str.len w3))). - // In other words, w4 is the largest suffix of (suf w2 1) that can contain a - // prefix of w1; since t1 is non-empty, w3 must therefore be contained in t1. - // - // or the reverse form of the above: - // - // Children: (P1:(= (str.++ t1 w1 t2) (str.++ s w2)), - // P2:(not (= (str.len t2) 0))) - // Arguments: (true) - // --------------------- - // Conclusion: (= t2 (str.++ r w3)) - // where - // w1, w2, w3, w4 are words, - // w3 is (suf w2 (- (str.len w2) p)), - // w4 is (pre w2 (- (str.len w2) p)), - // p = Word::roverlap((pre w2 (- (str.len w2) 1)), w1), - // r = (skolem (pre t2 (- (str.len t2) (str.len w3)))). - // In other words, w4 is the largest prefix of (pre w2 (- (str.len w2) 1)) - // that can contain a suffix of w1; since t2 is non-empty, w3 must therefore - // be contained in t2. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- Concatenation constant propagation** + * + * .. math:: + * + * \inferrule{(t_1\cdot w_1\cdot t_2) = (w_2 \cdot s),\, + * \mathit{len}(t_1) \neq 0\mid \bot}{(t_1 = w_3\cdot r)} + * + * where :math:`w_1,\,w_2,\,w_3` are words, :math:`w_3` is + * :math:`\mathit{pre}(w_2,p)`, :math:`p` is + * :math:`\texttt{Word::overlap}(\mathit{suf}(w_2,1), w_1)`, and :math:`r` is + * :math:`\mathit{skolem}(\mathit{suf}(t_1,\mathit{len}(w_3)))`. Note that + * :math:`\mathit{suf}(w_2,p)` is the largest suffix of + * :math:`\mathit{suf}(w_2,1)` that can contain a prefix of :math:`w_1`; since + * :math:`t_1` is non-empty, :math:`w_3` must therefore be contained in + * :math:`t_1`. + * + * Alternatively for the reverse: + * + * .. math:: + * + * \inferrule{(t_1\cdot w_1\cdot t_2) = (s \cdot w_2),\, + * \mathit{len}(t_2) \neq 0\mid \top}{(t_2 = r\cdot w_3)} + * + * where :math:`w_1,\,w_2,\,w_3` are words, :math:`w_3` is + * :math:`\mathit{suf}(w_2, \mathit{len}(w_2) - p)`, :math:`p` is + * :math:`\texttt{Word::roverlap}(\mathit{pre}(w_2, \mathit{len}(w_2) - 1), + * w_1)`, and :math:`r` is :math:`\mathit{skolem}(\mathit{pre}(t_2, + * \mathit{len}(t_2) - \mathit{len}(w_3)))`. Note that + * :math:`\mathit{pre}(w_2, \mathit{len}(w_2) - p)` is the largest prefix of + * :math:`\mathit{pre}(w_2, \mathit{len}(w_2) - 1)` that can contain a suffix + * of :math:`w_1`; since :math:`t_2` is non-empty, :math:`w_3` must therefore + * be contained in :math:`t_2`. + * \endverbatim + */ CONCAT_CPROP, - // ======== String decompose - // Children: (P1: (>= (str.len t) n) - // Arguments: (false) - // --------------------- - // Conclusion: (and (= t (str.++ w1 w2)) (= (str.len w1) n)) - // or - // Children: (P1: (>= (str.len t) n) - // Arguments: (true) - // --------------------- - // Conclusion: (and (= t (str.++ w1 w2)) (= (str.len w2) n)) - // where - // w1 is (skolem (pre t n)) - // w2 is (skolem (suf t n)) + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- String decomposition** + * + * .. math:: + * + * \inferrule{\mathit{len}(t) \geq n\mid \bot}{t = w_1\cdot w_2 \wedge + * \mathit{len}(w_1) = n} + * + * or alternatively for the reverse: + * + * .. math:: + * + * \inferrule{\mathit{len}(t) \geq n\mid \top}{t = w_1\cdot w_2 \wedge + * \mathit{len}(w_2) = n} + * + * where :math:`w_1` is :math:`\mathit{skolem}(\mathit{pre}(t,n)` and + * :math:`w_2` is :math:`\mathit{skolem}(\mathit{suf}(t,n)`. + * \endverbatim + */ STRING_DECOMPOSE, - // ======== Length positive - // Children: none - // Arguments: (t) - // --------------------- - // Conclusion: (or (and (= (str.len t) 0) (= t "")) (> (str.len t) 0)) + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- Length positive** + * + * .. math:: + * + * \inferrule{-\mid t}{(\mathit{len}(t) = 0\wedge t= '')\vee \mathit{len}(t) + * > 0} + * \endverbatim + */ STRING_LENGTH_POS, - // ======== Length non-empty - // Children: (P1:(not (= t ""))) - // Arguments: none - // --------------------- - // Conclusion: (not (= (str.len t) 0)) + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Core rules -- Length non-empty** + * + * .. math:: + * + * \inferrule{t\neq ''\mid -}{\mathit{len}(t) \neq 0} + * \endverbatim + */ STRING_LENGTH_NON_EMPTY, - //======================== Extended functions - // ======== Reduction - // Children: none - // Arguments: (t) - // --------------------- - // Conclusion: (and R (= t w)) - // where w = strings::StringsPreprocess::reduce(t, R, ...). - // In other words, R is the reduction predicate for extended term t, and w is - // (skolem t) - // Notice that the free variables of R are w and the free variables of t. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Extended functions -- Reduction** + * + * .. math:: + * + * \inferrule{-\mid t}{R\wedge t = w} + * + * where :math:`w` is :math:`\texttt{strings::StringsPreprocess::reduce}(t, R, + * \dots)`. In other words, :math:`R` is the reduction predicate for extended + * term :math:`t`, and :math:`w` is :math:`skolem(t)`. + * + * Notice that the free variables of :math:`R` are :math:`w` and the free + * variables of :math:`t`. + * \endverbatim + */ STRING_REDUCTION, - // ======== Eager Reduction - // Children: none - // Arguments: (t) - // --------------------- - // Conclusion: R - // where R = strings::TermRegistry::eagerReduce(t). + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Extended functions -- Eager reduction** + * + * .. math:: + * + * \inferrule{-\mid t}{R} + * + * where :math:`R` is :math:`\texttt{strings::TermRegistry::eagerReduce}(t)`. + * \endverbatim + */ STRING_EAGER_REDUCTION, - //======================== Regular expressions - // ======== Regular expression intersection - // Children: (P:(str.in.re t R1), P:(str.in.re t R2)) - // Arguments: none - // --------------------- - // Conclusion: (str.in.re t (re.inter R1 R2)). + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Regular expressions -- Intersection** + * + * .. math:: + * + * \inferrule{t\in R_1,\,t\in R_2\mid -}{t\in \mathit{inter}(R_1,R_2)} + * \endverbatim + */ RE_INTER, - // ======== Regular expression unfold positive - // Children: (P:(str.in.re t R)) - // Arguments: none - // --------------------- - // Conclusion:(RegExpOpr::reduceRegExpPos((str.in.re t R))), - // corresponding to the one-step unfolding of the premise. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Regular expressions -- Positive Unfold** + * + * .. math:: + * + * \inferrule{t\in R\mid -}{\texttt{RegExpOpr::reduceRegExpPos}(t\in R)} + * + * corresponding to the one-step unfolding of the premise. + * \endverbatim + */ RE_UNFOLD_POS, - // ======== Regular expression unfold negative - // Children: (P:(not (str.in.re t R))) - // Arguments: none - // --------------------- - // Conclusion:(RegExpOpr::reduceRegExpNeg((not (str.in.re t R)))), - // corresponding to the one-step unfolding of the premise. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Regular expressions -- Negative Unfold** + * + * .. math:: + * + * \inferrule{t\not\in R\mid -}{\texttt{RegExpOpr::reduceRegExpNeg}(t\not\in R)} + * + * corresponding to the one-step unfolding of the premise. + * \endverbatim + */ RE_UNFOLD_NEG, - // ======== Regular expression unfold negative concat fixed - // Children: (P:(not (str.in.re t R))) - // Arguments: none - // --------------------- - // Conclusion:(RegExpOpr::reduceRegExpNegConcatFixed((not (str.in.re t - // R)),L,i)) where RegExpOpr::getRegExpConcatFixed((not (str.in.re t R)), i) = - // L. corresponding to the one-step unfolding of the premise, optimized for - // fixed length of component i of the regular expression concatenation R. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Regular expressions -- Unfold negative concatenation, fixed** + * + * .. math:: + * + * \inferrule{t\not\in R\mid + * -}{\texttt{RegExpOpr::reduceRegExpNegConcatFixed}(t\not\in R,L,i)} + * + * where :math:`\texttt{RegExpOpr::getRegExpConcatFixed}(t\not\in R, i) = L`, + * corresponding to the one-step unfolding of the premise, optimized for fixed + * length of component :math:`i` of the regular expression concatenation + * :math:`R`. + * \endverbatim + */ RE_UNFOLD_NEG_CONCAT_FIXED, - // ======== Regular expression elimination - // Children: none - // Arguments: (F, b) - // --------------------- - // Conclusion: (= F strings::RegExpElimination::eliminate(F, b)) - // where b is a Boolean indicating whether we are using aggressive - // eliminations. Notice this rule concludes (= F F) if no eliminations - // are performed for F. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Regular expressions -- Elimination** + * + * .. math:: + * + * \inferrule{-\mid F,b}{F = + * \texttt{strings::RegExpElimination::eliminate}(F, b)} + * + * where :math:`b` is a Boolean indicating whether we are using aggressive + * eliminations. Notice this rule concludes :math:`F = F` if no eliminations + * are performed for :math:`F`. + * \endverbatim + */ RE_ELIM, - //======================== Code points - // Children: none - // Arguments: (t, s) - // --------------------- - // Conclusion:(or (= (str.code t) (- 1)) - // (not (= (str.code t) (str.code s))) - // (not (= t s))) + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Code points** + * + * .. math:: + * + * \inferrule{-\mid t,s}{\mathit{to\_code}(t) = -1 \vee \mathit{to\_code}(t) \neq + * \mathit{to\_code}(s) \vee t\neq s} + * \endverbatim + */ STRING_CODE_INJ, - //======================== Sequence unit - // Children: (P:(= (seq.unit x) (seq.unit y))) - // Arguments: none - // --------------------- - // Conclusion:(= x y) - // Also applies to the case where (seq.unit y) is a constant sequence - // of length one. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- Sequence unit** + * + * .. math:: + * + * \inferrule{\mathit{unit}(x) = \mathit{unit}(y)\mid -}{x = y} + * + * Also applies to the case where :math:`\mathit{unit}(y)` is a constant + * sequence of length one. + * \endverbatim + */ STRING_SEQ_UNIT_INJ, - //======================== Trusted - // ======== String inference - // Children: ? - // Arguments: (F id isRev exp) - // --------------------- - // Conclusion: F - // used to bookkeep an inference that has not yet been converted via - // strings::InferProofCons::convert. + /** + * \verbatim embed:rst:leading-asterisk + * **Strings -- (Trusted) String inference** + * + * .. math:: + * + * \inferrule{?\mid F,\mathit{id},\mathit{isRev},\mathit{exp}}{F} + * + * used to bookkeep an inference that has not yet been converted via + * :math:`\texttt{strings::InferProofCons::convert}`. + * \endverbatim + */ STRING_INFERENCE, /**