From: Lachnitt Date: Tue, 9 Nov 2021 22:37:35 +0000 (-0800) Subject: [proofs] Alethe: Translate Further Equality rules (#7606) X-Git-Tag: cvc5-1.0.0~842 X-Git-Url: https://git.libre-soc.org/?a=commitdiff_plain;h=f826638031ae919a03bd48c2003eed82cea7279a;p=cvc5.git [proofs] Alethe: Translate Further Equality rules (#7606) Implementation of the translation of FALSE_INTRO, FALSE_ELIM, TRUE_INTRO and TRUE_ELIM rules into the Alethe calculus. Co-authored-by: Haniel Barbosa --- diff --git a/src/proof/alethe/alethe_post_processor.cpp b/src/proof/alethe/alethe_post_processor.cpp index c60b53ed7..c97dc2313 100644 --- a/src/proof/alethe/alethe_post_processor.cpp +++ b/src/proof/alethe/alethe_post_processor.cpp @@ -1251,6 +1251,118 @@ bool AletheProofPostprocessCallback::update(Node res, {}, *cdp); } + // ======== True intro + // + // ------------------------------- EQUIV_SIMPLIFY + // (VP1:(cl (= (= F true) F))) + // ------------------------------- EQUIV2 + // (VP2:(cl (= F true) (not F))) P + // -------------------------------------------- RESOLUTION + // (cl (= F true))* + // + // * the corresponding proof node is (= F true) + case PfRule::TRUE_INTRO: + { + Node vp1 = nm->mkNode(kind::SEXPR, d_cl, res.eqNode(children[0])); + Node vp2 = nm->mkNode(kind::SEXPR, d_cl, res, children[0].notNode()); + return addAletheStep(AletheRule::EQUIV_SIMPLIFY, vp1, vp1, {}, {}, *cdp) + && addAletheStep(AletheRule::EQUIV2, vp2, vp2, {vp1}, {}, *cdp) + && addAletheStep(AletheRule::RESOLUTION, + res, + nm->mkNode(kind::SEXPR, d_cl, res), + {vp2, children[0]}, + {}, + *cdp); + } + // ======== True elim + // + // ------------------------------- EQUIV_SIMPLIFY + // (VP1:(cl (= (= F true) F))) + // ------------------------------- EQUIV1 + // (VP2:(cl (not (= F true)) F)) P + // -------------------------------------------- RESOLUTION + // (cl F)* + // + // * the corresponding proof node is F + case PfRule::TRUE_ELIM: + { + Node vp1 = nm->mkNode(kind::SEXPR, d_cl, children[0].eqNode(res)); + Node vp2 = nm->mkNode(kind::SEXPR, d_cl, children[0].notNode(), res); + return addAletheStep(AletheRule::EQUIV_SIMPLIFY, vp1, vp1, {}, {}, *cdp) + && addAletheStep(AletheRule::EQUIV1, vp2, vp2, {vp1}, {}, *cdp) + && addAletheStep(AletheRule::RESOLUTION, + res, + nm->mkNode(kind::SEXPR, d_cl, res), + {vp2, children[0]}, + {}, + *cdp); + } + // ======== False intro + // + // ----- EQUIV_SIMPLIFY + // VP1 + // ----- EQUIV2 ----- NOT_NOT + // VP2 VP3 + // ---------------------- RESOLUTION + // VP4 P + // -------------------------------------- RESOLUTION + // (cl (= F false))* + // + // VP1: (cl (= (= F false) (not F))) + // VP2: (cl (= F false) (not (not F))) + // VP3: (cl (not (not (not F))) F) + // VP4: (cl (= F false) F) + // + // * the corresponding proof node is (= F false) + case PfRule::FALSE_INTRO: + { + Node vp1 = nm->mkNode(kind::SEXPR, d_cl, res.eqNode(children[0])); + Node vp2 = nm->mkNode(kind::SEXPR, d_cl, res, children[0].notNode()); + Node vp3 = nm->mkNode( + kind::SEXPR, d_cl, children[0].notNode().notNode(), children[0][0]); + Node vp4 = nm->mkNode(kind::SEXPR, d_cl, res, children[0][0]); + + return addAletheStep(AletheRule::EQUIV_SIMPLIFY, vp1, vp1, {}, {}, *cdp) + && addAletheStep(AletheRule::EQUIV2, vp2, vp2, {vp1}, {}, *cdp) + && addAletheStep(AletheRule::NOT_NOT, vp3, vp3, {}, {}, *cdp) + && addAletheStep( + AletheRule::RESOLUTION, vp4, vp4, {vp2, vp3}, {}, *cdp) + && addAletheStep(AletheRule::RESOLUTION, + res, + nm->mkNode(kind::SEXPR, d_cl, res), + {vp4, children[0]}, + {}, + *cdp); + } + // ======== False elim + // + // ----- EQUIV_SIMPLIFY + // VP1 + // ----- EQUIV1 + // VP2 P + // ---------------------- RESOLUTION + // (cl (not F))* + // + // VP1: (cl (= (= F false) (not F))) + // VP2: (cl (not (= F false)) (not F)) + // VP3: (cl (not (not (not F))) F) + // VP4: (cl (= F false) F) + // + // * the corresponding proof node is (not F) + case PfRule::FALSE_ELIM: + { + Node vp1 = nm->mkNode(kind::SEXPR, d_cl, children[0].eqNode(res)); + Node vp2 = nm->mkNode(kind::SEXPR, d_cl, children[0].notNode(), res); + + return addAletheStep(AletheRule::EQUIV_SIMPLIFY, vp1, vp1, {}, {}, *cdp) + && addAletheStep(AletheRule::EQUIV1, vp2, vp2, {vp1}, {}, *cdp) + && addAletheStep(AletheRule::RESOLUTION, + res, + nm->mkNode(kind::SEXPR, d_cl, res), + {vp2, children[0]}, + {}, + *cdp); + } default: { return addAletheStep(AletheRule::UNDEFINED,