0359dc1
[binutils-gdb.git] /
1 /* MI Command Set.
2
3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56 #include "observer.h"
57 #include "common/gdb_optional.h"
58 #include "common/byte-vector.h"
59
60 #include <ctype.h>
61 #include "run-time-clock.h"
62 #include <chrono>
63 #include "progspace-and-thread.h"
64 #include "common/rsp-low.h"
65
66 enum
67 {
68 FROM_TTY = 0
69 };
70
71 int mi_debug_p;
72
73 /* This is used to pass the current command timestamp down to
74 continuation routines. */
75 static struct mi_timestamp *current_command_ts;
76
77 static int do_timings = 0;
78
79 char *current_token;
80 /* Few commands would like to know if options like --thread-group were
81 explicitly specified. This variable keeps the current parsed
82 command including all option, and make it possible. */
83 static struct mi_parse *current_context;
84
85 int running_result_record_printed = 1;
86
87 /* Flag indicating that the target has proceeded since the last
88 command was issued. */
89 int mi_proceeded;
90
91 static void mi_cmd_execute (struct mi_parse *parse);
92
93 static void mi_execute_cli_command (const char *cmd, int args_p,
94 const char *args);
95 static void mi_execute_async_cli_command (const char *cli_command,
96 char **argv, int argc);
97 static int register_changed_p (int regnum, struct regcache *,
98 struct regcache *);
99 static void output_register (struct frame_info *, int regnum, int format,
100 int skip_unavailable);
101
102 /* Controls whether the frontend wants MI in async mode. */
103 static int mi_async = 0;
104
105 /* The set command writes to this variable. If the inferior is
106 executing, mi_async is *not* updated. */
107 static int mi_async_1 = 0;
108
109 static void
110 set_mi_async_command (char *args, int from_tty,
111 struct cmd_list_element *c)
112 {
113 if (have_live_inferiors ())
114 {
115 mi_async_1 = mi_async;
116 error (_("Cannot change this setting while the inferior is running."));
117 }
118
119 mi_async = mi_async_1;
120 }
121
122 static void
123 show_mi_async_command (struct ui_file *file, int from_tty,
124 struct cmd_list_element *c,
125 const char *value)
126 {
127 fprintf_filtered (file,
128 _("Whether MI is in asynchronous mode is %s.\n"),
129 value);
130 }
131
132 /* A wrapper for target_can_async_p that takes the MI setting into
133 account. */
134
135 int
136 mi_async_p (void)
137 {
138 return mi_async && target_can_async_p ();
139 }
140
141 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
142 layer that calls libgdb. Any operation used in the below should be
143 formalized. */
144
145 static void timestamp (struct mi_timestamp *tv);
146
147 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
148 struct mi_timestamp *end);
149
150 void
151 mi_cmd_gdb_exit (const char *command, char **argv, int argc)
152 {
153 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
154
155 /* We have to print everything right here because we never return. */
156 if (current_token)
157 fputs_unfiltered (current_token, mi->raw_stdout);
158 fputs_unfiltered ("^exit\n", mi->raw_stdout);
159 mi_out_put (current_uiout, mi->raw_stdout);
160 gdb_flush (mi->raw_stdout);
161 /* FIXME: The function called is not yet a formal libgdb function. */
162 quit_force (NULL, FROM_TTY);
163 }
164
165 void
166 mi_cmd_exec_next (const char *command, char **argv, int argc)
167 {
168 /* FIXME: Should call a libgdb function, not a cli wrapper. */
169 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
170 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
171 else
172 mi_execute_async_cli_command ("next", argv, argc);
173 }
174
175 void
176 mi_cmd_exec_next_instruction (const char *command, char **argv, int argc)
177 {
178 /* FIXME: Should call a libgdb function, not a cli wrapper. */
179 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
180 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
181 else
182 mi_execute_async_cli_command ("nexti", argv, argc);
183 }
184
185 void
186 mi_cmd_exec_step (const char *command, char **argv, int argc)
187 {
188 /* FIXME: Should call a libgdb function, not a cli wrapper. */
189 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
190 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
191 else
192 mi_execute_async_cli_command ("step", argv, argc);
193 }
194
195 void
196 mi_cmd_exec_step_instruction (const char *command, char **argv, int argc)
197 {
198 /* FIXME: Should call a libgdb function, not a cli wrapper. */
199 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
200 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
201 else
202 mi_execute_async_cli_command ("stepi", argv, argc);
203 }
204
205 void
206 mi_cmd_exec_finish (const char *command, char **argv, int argc)
207 {
208 /* FIXME: Should call a libgdb function, not a cli wrapper. */
209 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
210 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
211 else
212 mi_execute_async_cli_command ("finish", argv, argc);
213 }
214
215 void
216 mi_cmd_exec_return (const char *command, char **argv, int argc)
217 {
218 /* This command doesn't really execute the target, it just pops the
219 specified number of frames. */
220 if (argc)
221 /* Call return_command with from_tty argument equal to 0 so as to
222 avoid being queried. */
223 return_command (*argv, 0);
224 else
225 /* Call return_command with from_tty argument equal to 0 so as to
226 avoid being queried. */
227 return_command (NULL, 0);
228
229 /* Because we have called return_command with from_tty = 0, we need
230 to print the frame here. */
231 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
232 }
233
234 void
235 mi_cmd_exec_jump (const char *args, char **argv, int argc)
236 {
237 /* FIXME: Should call a libgdb function, not a cli wrapper. */
238 mi_execute_async_cli_command ("jump", argv, argc);
239 }
240
241 static void
242 proceed_thread (struct thread_info *thread, int pid)
243 {
244 if (!is_stopped (thread->ptid))
245 return;
246
247 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
248 return;
249
250 switch_to_thread (thread->ptid);
251 clear_proceed_status (0);
252 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
253 }
254
255 static int
256 proceed_thread_callback (struct thread_info *thread, void *arg)
257 {
258 int pid = *(int *)arg;
259
260 proceed_thread (thread, pid);
261 return 0;
262 }
263
264 static void
265 exec_continue (char **argv, int argc)
266 {
267 prepare_execution_command (&current_target, mi_async_p ());
268
269 if (non_stop)
270 {
271 /* In non-stop mode, 'resume' always resumes a single thread.
272 Therefore, to resume all threads of the current inferior, or
273 all threads in all inferiors, we need to iterate over
274 threads.
275
276 See comment on infcmd.c:proceed_thread_callback for rationale. */
277 if (current_context->all || current_context->thread_group != -1)
278 {
279 scoped_restore_current_thread restore_thread;
280 int pid = 0;
281
282 if (!current_context->all)
283 {
284 struct inferior *inf
285 = find_inferior_id (current_context->thread_group);
286
287 pid = inf->pid;
288 }
289 iterate_over_threads (proceed_thread_callback, &pid);
290 }
291 else
292 {
293 continue_1 (0);
294 }
295 }
296 else
297 {
298 scoped_restore save_multi = make_scoped_restore (&sched_multi);
299
300 if (current_context->all)
301 {
302 sched_multi = 1;
303 continue_1 (0);
304 }
305 else
306 {
307 /* In all-stop mode, -exec-continue traditionally resumed
308 either all threads, or one thread, depending on the
309 'scheduler-locking' variable. Let's continue to do the
310 same. */
311 continue_1 (1);
312 }
313 }
314 }
315
316 static void
317 exec_reverse_continue (char **argv, int argc)
318 {
319 enum exec_direction_kind dir = execution_direction;
320
321 if (dir == EXEC_REVERSE)
322 error (_("Already in reverse mode."));
323
324 if (!target_can_execute_reverse)
325 error (_("Target %s does not support this command."), target_shortname);
326
327 scoped_restore save_exec_dir = make_scoped_restore (&execution_direction,
328 EXEC_REVERSE);
329 exec_continue (argv, argc);
330 }
331
332 void
333 mi_cmd_exec_continue (const char *command, char **argv, int argc)
334 {
335 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
336 exec_reverse_continue (argv + 1, argc - 1);
337 else
338 exec_continue (argv, argc);
339 }
340
341 static int
342 interrupt_thread_callback (struct thread_info *thread, void *arg)
343 {
344 int pid = *(int *)arg;
345
346 if (!is_running (thread->ptid))
347 return 0;
348
349 if (ptid_get_pid (thread->ptid) != pid)
350 return 0;
351
352 target_stop (thread->ptid);
353 return 0;
354 }
355
356 /* Interrupt the execution of the target. Note how we must play
357 around with the token variables, in order to display the current
358 token in the result of the interrupt command, and the previous
359 execution token when the target finally stops. See comments in
360 mi_cmd_execute. */
361
362 void
363 mi_cmd_exec_interrupt (const char *command, char **argv, int argc)
364 {
365 /* In all-stop mode, everything stops, so we don't need to try
366 anything specific. */
367 if (!non_stop)
368 {
369 interrupt_target_1 (0);
370 return;
371 }
372
373 if (current_context->all)
374 {
375 /* This will interrupt all threads in all inferiors. */
376 interrupt_target_1 (1);
377 }
378 else if (current_context->thread_group != -1)
379 {
380 struct inferior *inf = find_inferior_id (current_context->thread_group);
381
382 iterate_over_threads (interrupt_thread_callback, &inf->pid);
383 }
384 else
385 {
386 /* Interrupt just the current thread -- either explicitly
387 specified via --thread or whatever was current before
388 MI command was sent. */
389 interrupt_target_1 (0);
390 }
391 }
392
393 /* Callback for iterate_over_inferiors which starts the execution
394 of the given inferior.
395
396 ARG is a pointer to an integer whose value, if non-zero, indicates
397 that the program should be stopped when reaching the main subprogram
398 (similar to what the CLI "start" command does). */
399
400 static int
401 run_one_inferior (struct inferior *inf, void *arg)
402 {
403 int start_p = *(int *) arg;
404 const char *run_cmd = start_p ? "start" : "run";
405 struct target_ops *run_target = find_run_target ();
406 int async_p = mi_async && run_target->to_can_async_p (run_target);
407
408 if (inf->pid != 0)
409 {
410 if (inf->pid != ptid_get_pid (inferior_ptid))
411 {
412 struct thread_info *tp;
413
414 tp = any_thread_of_process (inf->pid);
415 if (!tp)
416 error (_("Inferior has no threads."));
417
418 switch_to_thread (tp->ptid);
419 }
420 }
421 else
422 {
423 set_current_inferior (inf);
424 switch_to_thread (null_ptid);
425 set_current_program_space (inf->pspace);
426 }
427 mi_execute_cli_command (run_cmd, async_p,
428 async_p ? "&" : NULL);
429 return 0;
430 }
431
432 void
433 mi_cmd_exec_run (const char *command, char **argv, int argc)
434 {
435 int start_p = 0;
436
437 /* Parse the command options. */
438 enum opt
439 {
440 START_OPT,
441 };
442 static const struct mi_opt opts[] =
443 {
444 {"-start", START_OPT, 0},
445 {NULL, 0, 0},
446 };
447
448 int oind = 0;
449 char *oarg;
450
451 while (1)
452 {
453 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
454
455 if (opt < 0)
456 break;
457 switch ((enum opt) opt)
458 {
459 case START_OPT:
460 start_p = 1;
461 break;
462 }
463 }
464
465 /* This command does not accept any argument. Make sure the user
466 did not provide any. */
467 if (oind != argc)
468 error (_("Invalid argument: %s"), argv[oind]);
469
470 if (current_context->all)
471 {
472 scoped_restore_current_pspace_and_thread restore_pspace_thread;
473
474 iterate_over_inferiors (run_one_inferior, &start_p);
475 }
476 else
477 {
478 const char *run_cmd = start_p ? "start" : "run";
479 struct target_ops *run_target = find_run_target ();
480 int async_p = mi_async && run_target->to_can_async_p (run_target);
481
482 mi_execute_cli_command (run_cmd, async_p,
483 async_p ? "&" : NULL);
484 }
485 }
486
487
488 static int
489 find_thread_of_process (struct thread_info *ti, void *p)
490 {
491 int pid = *(int *)p;
492
493 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
494 return 1;
495
496 return 0;
497 }
498
499 void
500 mi_cmd_target_detach (const char *command, char **argv, int argc)
501 {
502 if (argc != 0 && argc != 1)
503 error (_("Usage: -target-detach [pid | thread-group]"));
504
505 if (argc == 1)
506 {
507 struct thread_info *tp;
508 char *end = argv[0];
509 int pid;
510
511 /* First see if we are dealing with a thread-group id. */
512 if (*argv[0] == 'i')
513 {
514 struct inferior *inf;
515 int id = strtoul (argv[0] + 1, &end, 0);
516
517 if (*end != '\0')
518 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
519
520 inf = find_inferior_id (id);
521 if (!inf)
522 error (_("Non-existent thread-group id '%d'"), id);
523
524 pid = inf->pid;
525 }
526 else
527 {
528 /* We must be dealing with a pid. */
529 pid = strtol (argv[0], &end, 10);
530
531 if (*end != '\0')
532 error (_("Invalid identifier '%s'"), argv[0]);
533 }
534
535 /* Pick any thread in the desired process. Current
536 target_detach detaches from the parent of inferior_ptid. */
537 tp = iterate_over_threads (find_thread_of_process, &pid);
538 if (!tp)
539 error (_("Thread group is empty"));
540
541 switch_to_thread (tp->ptid);
542 }
543
544 detach_command (NULL, 0);
545 }
546
547 void
548 mi_cmd_target_flash_erase (const char *command, char **argv, int argc)
549 {
550 flash_erase_command (NULL, 0);
551 }
552
553 void
554 mi_cmd_thread_select (const char *command, char **argv, int argc)
555 {
556 enum gdb_rc rc;
557 char *mi_error_message;
558 ptid_t previous_ptid = inferior_ptid;
559
560 if (argc != 1)
561 error (_("-thread-select: USAGE: threadnum."));
562
563 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
564
565 /* If thread switch did not succeed don't notify or print. */
566 if (rc == GDB_RC_FAIL)
567 {
568 make_cleanup (xfree, mi_error_message);
569 error ("%s", mi_error_message);
570 }
571
572 print_selected_thread_frame (current_uiout,
573 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
574
575 /* Notify if the thread has effectively changed. */
576 if (!ptid_equal (inferior_ptid, previous_ptid))
577 {
578 observer_notify_user_selected_context_changed (USER_SELECTED_THREAD
579 | USER_SELECTED_FRAME);
580 }
581 }
582
583 void
584 mi_cmd_thread_list_ids (const char *command, char **argv, int argc)
585 {
586 enum gdb_rc rc;
587 char *mi_error_message;
588
589 if (argc != 0)
590 error (_("-thread-list-ids: No arguments required."));
591
592 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
593
594 if (rc == GDB_RC_FAIL)
595 {
596 make_cleanup (xfree, mi_error_message);
597 error ("%s", mi_error_message);
598 }
599 }
600
601 void
602 mi_cmd_thread_info (const char *command, char **argv, int argc)
603 {
604 if (argc != 0 && argc != 1)
605 error (_("Invalid MI command"));
606
607 print_thread_info (current_uiout, argv[0], -1);
608 }
609
610 struct collect_cores_data
611 {
612 int pid;
613
614 VEC (int) *cores;
615 };
616
617 static int
618 collect_cores (struct thread_info *ti, void *xdata)
619 {
620 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
621
622 if (ptid_get_pid (ti->ptid) == data->pid)
623 {
624 int core = target_core_of_thread (ti->ptid);
625
626 if (core != -1)
627 VEC_safe_push (int, data->cores, core);
628 }
629
630 return 0;
631 }
632
633 static int *
634 unique (int *b, int *e)
635 {
636 int *d = b;
637
638 while (++b != e)
639 if (*d != *b)
640 *++d = *b;
641 return ++d;
642 }
643
644 struct print_one_inferior_data
645 {
646 int recurse;
647 VEC (int) *inferiors;
648 };
649
650 static int
651 print_one_inferior (struct inferior *inferior, void *xdata)
652 {
653 struct print_one_inferior_data *top_data
654 = (struct print_one_inferior_data *) xdata;
655 struct ui_out *uiout = current_uiout;
656
657 if (VEC_empty (int, top_data->inferiors)
658 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
659 VEC_length (int, top_data->inferiors), sizeof (int),
660 compare_positive_ints))
661 {
662 struct collect_cores_data data;
663 ui_out_emit_tuple tuple_emitter (uiout, NULL);
664
665 uiout->field_fmt ("id", "i%d", inferior->num);
666 uiout->field_string ("type", "process");
667 if (inferior->has_exit_code)
668 uiout->field_string ("exit-code",
669 int_string (inferior->exit_code, 8, 0, 0, 1));
670 if (inferior->pid != 0)
671 uiout->field_int ("pid", inferior->pid);
672
673 if (inferior->pspace->pspace_exec_filename != NULL)
674 {
675 uiout->field_string ("executable",
676 inferior->pspace->pspace_exec_filename);
677 }
678
679 data.cores = 0;
680 if (inferior->pid != 0)
681 {
682 data.pid = inferior->pid;
683 iterate_over_threads (collect_cores, &data);
684 }
685
686 if (!VEC_empty (int, data.cores))
687 {
688 int *b, *e;
689 ui_out_emit_list list_emitter (uiout, "cores");
690
691 qsort (VEC_address (int, data.cores),
692 VEC_length (int, data.cores), sizeof (int),
693 compare_positive_ints);
694
695 b = VEC_address (int, data.cores);
696 e = b + VEC_length (int, data.cores);
697 e = unique (b, e);
698
699 for (; b != e; ++b)
700 uiout->field_int (NULL, *b);
701 }
702
703 if (top_data->recurse)
704 print_thread_info (uiout, NULL, inferior->pid);
705 }
706
707 return 0;
708 }
709
710 /* Output a field named 'cores' with a list as the value. The
711 elements of the list are obtained by splitting 'cores' on
712 comma. */
713
714 static void
715 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
716 {
717 ui_out_emit_list list_emitter (uiout, field_name);
718 gdb::unique_xmalloc_ptr<char> cores (xstrdup (xcores));
719 char *p = cores.get ();
720
721 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
722 uiout->field_string (NULL, p);
723 }
724
725 static void
726 free_vector_of_ints (void *xvector)
727 {
728 VEC (int) **vector = (VEC (int) **) xvector;
729
730 VEC_free (int, *vector);
731 }
732
733 static void
734 do_nothing (splay_tree_key k)
735 {
736 }
737
738 static void
739 free_vector_of_osdata_items (splay_tree_value xvalue)
740 {
741 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
742
743 /* We don't free the items itself, it will be done separately. */
744 VEC_free (osdata_item_s, value);
745 }
746
747 static int
748 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
749 {
750 int a = xa;
751 int b = xb;
752
753 return a - b;
754 }
755
756 static void
757 free_splay_tree (void *xt)
758 {
759 splay_tree t = (splay_tree) xt;
760 splay_tree_delete (t);
761 }
762
763 static void
764 list_available_thread_groups (VEC (int) *ids, int recurse)
765 {
766 struct osdata *data;
767 struct osdata_item *item;
768 int ix_items;
769 struct ui_out *uiout = current_uiout;
770 struct cleanup *cleanup;
771
772 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
773 The vector contains information about all threads for the given pid.
774 This is assigned an initial value to avoid "may be used uninitialized"
775 warning from gcc. */
776 splay_tree tree = NULL;
777
778 /* get_osdata will throw if it cannot return data. */
779 data = get_osdata ("processes");
780 cleanup = make_cleanup_osdata_free (data);
781
782 if (recurse)
783 {
784 struct osdata *threads = get_osdata ("threads");
785
786 make_cleanup_osdata_free (threads);
787 tree = splay_tree_new (splay_tree_int_comparator,
788 do_nothing,
789 free_vector_of_osdata_items);
790 make_cleanup (free_splay_tree, tree);
791
792 for (ix_items = 0;
793 VEC_iterate (osdata_item_s, threads->items,
794 ix_items, item);
795 ix_items++)
796 {
797 const char *pid = get_osdata_column (item, "pid");
798 int pid_i = strtoul (pid, NULL, 0);
799 VEC (osdata_item_s) *vec = 0;
800
801 splay_tree_node n = splay_tree_lookup (tree, pid_i);
802 if (!n)
803 {
804 VEC_safe_push (osdata_item_s, vec, item);
805 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
806 }
807 else
808 {
809 vec = (VEC (osdata_item_s) *) n->value;
810 VEC_safe_push (osdata_item_s, vec, item);
811 n->value = (splay_tree_value) vec;
812 }
813 }
814 }
815
816 ui_out_emit_list list_emitter (uiout, "groups");
817
818 for (ix_items = 0;
819 VEC_iterate (osdata_item_s, data->items,
820 ix_items, item);
821 ix_items++)
822 {
823 const char *pid = get_osdata_column (item, "pid");
824 const char *cmd = get_osdata_column (item, "command");
825 const char *user = get_osdata_column (item, "user");
826 const char *cores = get_osdata_column (item, "cores");
827
828 int pid_i = strtoul (pid, NULL, 0);
829
830 /* At present, the target will return all available processes
831 and if information about specific ones was required, we filter
832 undesired processes here. */
833 if (ids && bsearch (&pid_i, VEC_address (int, ids),
834 VEC_length (int, ids),
835 sizeof (int), compare_positive_ints) == NULL)
836 continue;
837
838
839 ui_out_emit_tuple tuple_emitter (uiout, NULL);
840
841 uiout->field_fmt ("id", "%s", pid);
842 uiout->field_string ("type", "process");
843 if (cmd)
844 uiout->field_string ("description", cmd);
845 if (user)
846 uiout->field_string ("user", user);
847 if (cores)
848 output_cores (uiout, "cores", cores);
849
850 if (recurse)
851 {
852 splay_tree_node n = splay_tree_lookup (tree, pid_i);
853 if (n)
854 {
855 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
856 struct osdata_item *child;
857 int ix_child;
858
859 ui_out_emit_list thread_list_emitter (uiout, "threads");
860
861 for (ix_child = 0;
862 VEC_iterate (osdata_item_s, children, ix_child, child);
863 ++ix_child)
864 {
865 ui_out_emit_tuple tuple_emitter (uiout, NULL);
866 const char *tid = get_osdata_column (child, "tid");
867 const char *tcore = get_osdata_column (child, "core");
868
869 uiout->field_string ("id", tid);
870 if (tcore)
871 uiout->field_string ("core", tcore);
872 }
873 }
874 }
875 }
876
877 do_cleanups (cleanup);
878 }
879
880 void
881 mi_cmd_list_thread_groups (const char *command, char **argv, int argc)
882 {
883 struct ui_out *uiout = current_uiout;
884 struct cleanup *back_to;
885 int available = 0;
886 int recurse = 0;
887 VEC (int) *ids = 0;
888
889 enum opt
890 {
891 AVAILABLE_OPT, RECURSE_OPT
892 };
893 static const struct mi_opt opts[] =
894 {
895 {"-available", AVAILABLE_OPT, 0},
896 {"-recurse", RECURSE_OPT, 1},
897 { 0, 0, 0 }
898 };
899
900 int oind = 0;
901 char *oarg;
902
903 while (1)
904 {
905 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
906 &oind, &oarg);
907
908 if (opt < 0)
909 break;
910 switch ((enum opt) opt)
911 {
912 case AVAILABLE_OPT:
913 available = 1;
914 break;
915 case RECURSE_OPT:
916 if (strcmp (oarg, "0") == 0)
917 ;
918 else if (strcmp (oarg, "1") == 0)
919 recurse = 1;
920 else
921 error (_("only '0' and '1' are valid values "
922 "for the '--recurse' option"));
923 break;
924 }
925 }
926
927 for (; oind < argc; ++oind)
928 {
929 char *end;
930 int inf;
931
932 if (*(argv[oind]) != 'i')
933 error (_("invalid syntax of group id '%s'"), argv[oind]);
934
935 inf = strtoul (argv[oind] + 1, &end, 0);
936
937 if (*end != '\0')
938 error (_("invalid syntax of group id '%s'"), argv[oind]);
939 VEC_safe_push (int, ids, inf);
940 }
941 if (VEC_length (int, ids) > 1)
942 qsort (VEC_address (int, ids),
943 VEC_length (int, ids),
944 sizeof (int), compare_positive_ints);
945
946 back_to = make_cleanup (free_vector_of_ints, &ids);
947
948 if (available)
949 {
950 list_available_thread_groups (ids, recurse);
951 }
952 else if (VEC_length (int, ids) == 1)
953 {
954 /* Local thread groups, single id. */
955 int id = *VEC_address (int, ids);
956 struct inferior *inf = find_inferior_id (id);
957
958 if (!inf)
959 error (_("Non-existent thread group id '%d'"), id);
960
961 print_thread_info (uiout, NULL, inf->pid);
962 }
963 else
964 {
965 struct print_one_inferior_data data;
966
967 data.recurse = recurse;
968 data.inferiors = ids;
969
970 /* Local thread groups. Either no explicit ids -- and we
971 print everything, or several explicit ids. In both cases,
972 we print more than one group, and have to use 'groups'
973 as the top-level element. */
974 ui_out_emit_list list_emitter (uiout, "groups");
975 update_thread_list ();
976 iterate_over_inferiors (print_one_inferior, &data);
977 }
978
979 do_cleanups (back_to);
980 }
981
982 void
983 mi_cmd_data_list_register_names (const char *command, char **argv, int argc)
984 {
985 struct gdbarch *gdbarch;
986 struct ui_out *uiout = current_uiout;
987 int regnum, numregs;
988 int i;
989
990 /* Note that the test for a valid register must include checking the
991 gdbarch_register_name because gdbarch_num_regs may be allocated
992 for the union of the register sets within a family of related
993 processors. In this case, some entries of gdbarch_register_name
994 will change depending upon the particular processor being
995 debugged. */
996
997 gdbarch = get_current_arch ();
998 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
999
1000 ui_out_emit_list list_emitter (uiout, "register-names");
1001
1002 if (argc == 0) /* No args, just do all the regs. */
1003 {
1004 for (regnum = 0;
1005 regnum < numregs;
1006 regnum++)
1007 {
1008 if (gdbarch_register_name (gdbarch, regnum) == NULL
1009 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1010 uiout->field_string (NULL, "");
1011 else
1012 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1013 }
1014 }
1015
1016 /* Else, list of register #s, just do listed regs. */
1017 for (i = 0; i < argc; i++)
1018 {
1019 regnum = atoi (argv[i]);
1020 if (regnum < 0 || regnum >= numregs)
1021 error (_("bad register number"));
1022
1023 if (gdbarch_register_name (gdbarch, regnum) == NULL
1024 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1025 uiout->field_string (NULL, "");
1026 else
1027 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1028 }
1029 }
1030
1031 void
1032 mi_cmd_data_list_changed_registers (const char *command, char **argv, int argc)
1033 {
1034 static struct regcache *this_regs = NULL;
1035 struct ui_out *uiout = current_uiout;
1036 struct regcache *prev_regs;
1037 struct gdbarch *gdbarch;
1038 int regnum, numregs, changed;
1039 int i;
1040 struct cleanup *cleanup;
1041
1042 /* The last time we visited this function, the current frame's
1043 register contents were saved in THIS_REGS. Move THIS_REGS over
1044 to PREV_REGS, and refresh THIS_REGS with the now-current register
1045 contents. */
1046
1047 prev_regs = this_regs;
1048 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1049 cleanup = make_cleanup_regcache_xfree (prev_regs);
1050
1051 /* Note that the test for a valid register must include checking the
1052 gdbarch_register_name because gdbarch_num_regs may be allocated
1053 for the union of the register sets within a family of related
1054 processors. In this case, some entries of gdbarch_register_name
1055 will change depending upon the particular processor being
1056 debugged. */
1057
1058 gdbarch = get_regcache_arch (this_regs);
1059 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1060
1061 ui_out_emit_list list_emitter (uiout, "changed-registers");
1062
1063 if (argc == 0)
1064 {
1065 /* No args, just do all the regs. */
1066 for (regnum = 0;
1067 regnum < numregs;
1068 regnum++)
1069 {
1070 if (gdbarch_register_name (gdbarch, regnum) == NULL
1071 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1072 continue;
1073 changed = register_changed_p (regnum, prev_regs, this_regs);
1074 if (changed < 0)
1075 error (_("-data-list-changed-registers: "
1076 "Unable to read register contents."));
1077 else if (changed)
1078 uiout->field_int (NULL, regnum);
1079 }
1080 }
1081
1082 /* Else, list of register #s, just do listed regs. */
1083 for (i = 0; i < argc; i++)
1084 {
1085 regnum = atoi (argv[i]);
1086
1087 if (regnum >= 0
1088 && regnum < numregs
1089 && gdbarch_register_name (gdbarch, regnum) != NULL
1090 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1091 {
1092 changed = register_changed_p (regnum, prev_regs, this_regs);
1093 if (changed < 0)
1094 error (_("-data-list-changed-registers: "
1095 "Unable to read register contents."));
1096 else if (changed)
1097 uiout->field_int (NULL, regnum);
1098 }
1099 else
1100 error (_("bad register number"));
1101 }
1102 do_cleanups (cleanup);
1103 }
1104
1105 static int
1106 register_changed_p (int regnum, struct regcache *prev_regs,
1107 struct regcache *this_regs)
1108 {
1109 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1110 struct value *prev_value, *this_value;
1111 int ret;
1112
1113 /* First time through or after gdbarch change consider all registers
1114 as changed. */
1115 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1116 return 1;
1117
1118 /* Get register contents and compare. */
1119 prev_value = prev_regs->cooked_read_value (regnum);
1120 this_value = this_regs->cooked_read_value (regnum);
1121 gdb_assert (prev_value != NULL);
1122 gdb_assert (this_value != NULL);
1123
1124 ret = value_contents_eq (prev_value, 0, this_value, 0,
1125 register_size (gdbarch, regnum)) == 0;
1126
1127 release_value (prev_value);
1128 release_value (this_value);
1129 value_free (prev_value);
1130 value_free (this_value);
1131 return ret;
1132 }
1133
1134 /* Return a list of register number and value pairs. The valid
1135 arguments expected are: a letter indicating the format in which to
1136 display the registers contents. This can be one of: x
1137 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1138 (raw). After the format argument there can be a sequence of
1139 numbers, indicating which registers to fetch the content of. If
1140 the format is the only argument, a list of all the registers with
1141 their values is returned. */
1142
1143 void
1144 mi_cmd_data_list_register_values (const char *command, char **argv, int argc)
1145 {
1146 struct ui_out *uiout = current_uiout;
1147 struct frame_info *frame;
1148 struct gdbarch *gdbarch;
1149 int regnum, numregs, format;
1150 int i;
1151 int skip_unavailable = 0;
1152 int oind = 0;
1153 enum opt
1154 {
1155 SKIP_UNAVAILABLE,
1156 };
1157 static const struct mi_opt opts[] =
1158 {
1159 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1160 { 0, 0, 0 }
1161 };
1162
1163 /* Note that the test for a valid register must include checking the
1164 gdbarch_register_name because gdbarch_num_regs may be allocated
1165 for the union of the register sets within a family of related
1166 processors. In this case, some entries of gdbarch_register_name
1167 will change depending upon the particular processor being
1168 debugged. */
1169
1170 while (1)
1171 {
1172 char *oarg;
1173 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1174 opts, &oind, &oarg);
1175
1176 if (opt < 0)
1177 break;
1178 switch ((enum opt) opt)
1179 {
1180 case SKIP_UNAVAILABLE:
1181 skip_unavailable = 1;
1182 break;
1183 }
1184 }
1185
1186 if (argc - oind < 1)
1187 error (_("-data-list-register-values: Usage: "
1188 "-data-list-register-values [--skip-unavailable] <format>"
1189 " [<regnum1>...<regnumN>]"));
1190
1191 format = (int) argv[oind][0];
1192
1193 frame = get_selected_frame (NULL);
1194 gdbarch = get_frame_arch (frame);
1195 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1196
1197 ui_out_emit_list list_emitter (uiout, "register-values");
1198
1199 if (argc - oind == 1)
1200 {
1201 /* No args, beside the format: do all the regs. */
1202 for (regnum = 0;
1203 regnum < numregs;
1204 regnum++)
1205 {
1206 if (gdbarch_register_name (gdbarch, regnum) == NULL
1207 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1208 continue;
1209
1210 output_register (frame, regnum, format, skip_unavailable);
1211 }
1212 }
1213
1214 /* Else, list of register #s, just do listed regs. */
1215 for (i = 1 + oind; i < argc; i++)
1216 {
1217 regnum = atoi (argv[i]);
1218
1219 if (regnum >= 0
1220 && regnum < numregs
1221 && gdbarch_register_name (gdbarch, regnum) != NULL
1222 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1223 output_register (frame, regnum, format, skip_unavailable);
1224 else
1225 error (_("bad register number"));
1226 }
1227 }
1228
1229 /* Output one register REGNUM's contents in the desired FORMAT. If
1230 SKIP_UNAVAILABLE is true, skip the register if it is
1231 unavailable. */
1232
1233 static void
1234 output_register (struct frame_info *frame, int regnum, int format,
1235 int skip_unavailable)
1236 {
1237 struct ui_out *uiout = current_uiout;
1238 struct value *val = value_of_register (regnum, frame);
1239 struct value_print_options opts;
1240
1241 if (skip_unavailable && !value_entirely_available (val))
1242 return;
1243
1244 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1245 uiout->field_int ("number", regnum);
1246
1247 if (format == 'N')
1248 format = 0;
1249
1250 if (format == 'r')
1251 format = 'z';
1252
1253 string_file stb;
1254
1255 get_formatted_print_options (&opts, format);
1256 opts.deref_ref = 1;
1257 val_print (value_type (val),
1258 value_embedded_offset (val), 0,
1259 &stb, 0, val, &opts, current_language);
1260 uiout->field_stream ("value", stb);
1261 }
1262
1263 /* Write given values into registers. The registers and values are
1264 given as pairs. The corresponding MI command is
1265 -data-write-register-values <format>
1266 [<regnum1> <value1>...<regnumN> <valueN>] */
1267 void
1268 mi_cmd_data_write_register_values (const char *command, char **argv, int argc)
1269 {
1270 struct regcache *regcache;
1271 struct gdbarch *gdbarch;
1272 int numregs, i;
1273
1274 /* Note that the test for a valid register must include checking the
1275 gdbarch_register_name because gdbarch_num_regs may be allocated
1276 for the union of the register sets within a family of related
1277 processors. In this case, some entries of gdbarch_register_name
1278 will change depending upon the particular processor being
1279 debugged. */
1280
1281 regcache = get_current_regcache ();
1282 gdbarch = get_regcache_arch (regcache);
1283 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1284
1285 if (argc == 0)
1286 error (_("-data-write-register-values: Usage: -data-write-register-"
1287 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1288
1289 if (!target_has_registers)
1290 error (_("-data-write-register-values: No registers."));
1291
1292 if (!(argc - 1))
1293 error (_("-data-write-register-values: No regs and values specified."));
1294
1295 if ((argc - 1) % 2)
1296 error (_("-data-write-register-values: "
1297 "Regs and vals are not in pairs."));
1298
1299 for (i = 1; i < argc; i = i + 2)
1300 {
1301 int regnum = atoi (argv[i]);
1302
1303 if (regnum >= 0 && regnum < numregs
1304 && gdbarch_register_name (gdbarch, regnum)
1305 && *gdbarch_register_name (gdbarch, regnum))
1306 {
1307 LONGEST value;
1308
1309 /* Get the value as a number. */
1310 value = parse_and_eval_address (argv[i + 1]);
1311
1312 /* Write it down. */
1313 regcache_cooked_write_signed (regcache, regnum, value);
1314 }
1315 else
1316 error (_("bad register number"));
1317 }
1318 }
1319
1320 /* Evaluate the value of the argument. The argument is an
1321 expression. If the expression contains spaces it needs to be
1322 included in double quotes. */
1323
1324 void
1325 mi_cmd_data_evaluate_expression (const char *command, char **argv, int argc)
1326 {
1327 struct value *val;
1328 struct value_print_options opts;
1329 struct ui_out *uiout = current_uiout;
1330
1331 if (argc != 1)
1332 error (_("-data-evaluate-expression: "
1333 "Usage: -data-evaluate-expression expression"));
1334
1335 expression_up expr = parse_expression (argv[0]);
1336
1337 val = evaluate_expression (expr.get ());
1338
1339 string_file stb;
1340
1341 /* Print the result of the expression evaluation. */
1342 get_user_print_options (&opts);
1343 opts.deref_ref = 0;
1344 common_val_print (val, &stb, 0, &opts, current_language);
1345
1346 uiout->field_stream ("value", stb);
1347 }
1348
1349 /* This is the -data-read-memory command.
1350
1351 ADDR: start address of data to be dumped.
1352 WORD-FORMAT: a char indicating format for the ``word''. See
1353 the ``x'' command.
1354 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1355 NR_ROW: Number of rows.
1356 NR_COL: The number of colums (words per row).
1357 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1358 ASCHAR for unprintable characters.
1359
1360 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1361 displayes them. Returns:
1362
1363 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1364
1365 Returns:
1366 The number of bytes read is SIZE*ROW*COL. */
1367
1368 void
1369 mi_cmd_data_read_memory (const char *command, char **argv, int argc)
1370 {
1371 struct gdbarch *gdbarch = get_current_arch ();
1372 struct ui_out *uiout = current_uiout;
1373 CORE_ADDR addr;
1374 long total_bytes, nr_cols, nr_rows;
1375 char word_format;
1376 struct type *word_type;
1377 long word_size;
1378 char word_asize;
1379 char aschar;
1380 int nr_bytes;
1381 long offset = 0;
1382 int oind = 0;
1383 char *oarg;
1384 enum opt
1385 {
1386 OFFSET_OPT
1387 };
1388 static const struct mi_opt opts[] =
1389 {
1390 {"o", OFFSET_OPT, 1},
1391 { 0, 0, 0 }
1392 };
1393
1394 while (1)
1395 {
1396 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1397 &oind, &oarg);
1398
1399 if (opt < 0)
1400 break;
1401 switch ((enum opt) opt)
1402 {
1403 case OFFSET_OPT:
1404 offset = atol (oarg);
1405 break;
1406 }
1407 }
1408 argv += oind;
1409 argc -= oind;
1410
1411 if (argc < 5 || argc > 6)
1412 error (_("-data-read-memory: Usage: "
1413 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1414
1415 /* Extract all the arguments. */
1416
1417 /* Start address of the memory dump. */
1418 addr = parse_and_eval_address (argv[0]) + offset;
1419 /* The format character to use when displaying a memory word. See
1420 the ``x'' command. */
1421 word_format = argv[1][0];
1422 /* The size of the memory word. */
1423 word_size = atol (argv[2]);
1424 switch (word_size)
1425 {
1426 case 1:
1427 word_type = builtin_type (gdbarch)->builtin_int8;
1428 word_asize = 'b';
1429 break;
1430 case 2:
1431 word_type = builtin_type (gdbarch)->builtin_int16;
1432 word_asize = 'h';
1433 break;
1434 case 4:
1435 word_type = builtin_type (gdbarch)->builtin_int32;
1436 word_asize = 'w';
1437 break;
1438 case 8:
1439 word_type = builtin_type (gdbarch)->builtin_int64;
1440 word_asize = 'g';
1441 break;
1442 default:
1443 word_type = builtin_type (gdbarch)->builtin_int8;
1444 word_asize = 'b';
1445 }
1446 /* The number of rows. */
1447 nr_rows = atol (argv[3]);
1448 if (nr_rows <= 0)
1449 error (_("-data-read-memory: invalid number of rows."));
1450
1451 /* Number of bytes per row. */
1452 nr_cols = atol (argv[4]);
1453 if (nr_cols <= 0)
1454 error (_("-data-read-memory: invalid number of columns."));
1455
1456 /* The un-printable character when printing ascii. */
1457 if (argc == 6)
1458 aschar = *argv[5];
1459 else
1460 aschar = 0;
1461
1462 /* Create a buffer and read it in. */
1463 total_bytes = word_size * nr_rows * nr_cols;
1464
1465 gdb::byte_vector mbuf (total_bytes);
1466
1467 /* Dispatch memory reads to the topmost target, not the flattened
1468 current_target. */
1469 nr_bytes = target_read (current_target.beneath,
1470 TARGET_OBJECT_MEMORY, NULL, mbuf.data (),
1471 addr, total_bytes);
1472 if (nr_bytes <= 0)
1473 error (_("Unable to read memory."));
1474
1475 /* Output the header information. */
1476 uiout->field_core_addr ("addr", gdbarch, addr);
1477 uiout->field_int ("nr-bytes", nr_bytes);
1478 uiout->field_int ("total-bytes", total_bytes);
1479 uiout->field_core_addr ("next-row", gdbarch, addr + word_size * nr_cols);
1480 uiout->field_core_addr ("prev-row", gdbarch, addr - word_size * nr_cols);
1481 uiout->field_core_addr ("next-page", gdbarch, addr + total_bytes);
1482 uiout->field_core_addr ("prev-page", gdbarch, addr - total_bytes);
1483
1484 /* Build the result as a two dimentional table. */
1485 {
1486 int row;
1487 int row_byte;
1488
1489 string_file stream;
1490
1491 ui_out_emit_list list_emitter (uiout, "memory");
1492 for (row = 0, row_byte = 0;
1493 row < nr_rows;
1494 row++, row_byte += nr_cols * word_size)
1495 {
1496 int col;
1497 int col_byte;
1498 struct value_print_options opts;
1499
1500 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1501 uiout->field_core_addr ("addr", gdbarch, addr + row_byte);
1502 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1503 row_byte); */
1504 {
1505 ui_out_emit_list list_data_emitter (uiout, "data");
1506 get_formatted_print_options (&opts, word_format);
1507 for (col = 0, col_byte = row_byte;
1508 col < nr_cols;
1509 col++, col_byte += word_size)
1510 {
1511 if (col_byte + word_size > nr_bytes)
1512 {
1513 uiout->field_string (NULL, "N/A");
1514 }
1515 else
1516 {
1517 stream.clear ();
1518 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1519 word_asize, &stream);
1520 uiout->field_stream (NULL, stream);
1521 }
1522 }
1523 }
1524
1525 if (aschar)
1526 {
1527 int byte;
1528
1529 stream.clear ();
1530 for (byte = row_byte;
1531 byte < row_byte + word_size * nr_cols; byte++)
1532 {
1533 if (byte >= nr_bytes)
1534 stream.putc ('X');
1535 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1536 stream.putc (aschar);
1537 else
1538 stream.putc (mbuf[byte]);
1539 }
1540 uiout->field_stream ("ascii", stream);
1541 }
1542 }
1543 }
1544 }
1545
1546 void
1547 mi_cmd_data_read_memory_bytes (const char *command, char **argv, int argc)
1548 {
1549 struct gdbarch *gdbarch = get_current_arch ();
1550 struct ui_out *uiout = current_uiout;
1551 struct cleanup *cleanups;
1552 CORE_ADDR addr;
1553 LONGEST length;
1554 memory_read_result_s *read_result;
1555 int ix;
1556 VEC(memory_read_result_s) *result;
1557 long offset = 0;
1558 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1559 int oind = 0;
1560 char *oarg;
1561 enum opt
1562 {
1563 OFFSET_OPT
1564 };
1565 static const struct mi_opt opts[] =
1566 {
1567 {"o", OFFSET_OPT, 1},
1568 { 0, 0, 0 }
1569 };
1570
1571 while (1)
1572 {
1573 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1574 &oind, &oarg);
1575 if (opt < 0)
1576 break;
1577 switch ((enum opt) opt)
1578 {
1579 case OFFSET_OPT:
1580 offset = atol (oarg);
1581 break;
1582 }
1583 }
1584 argv += oind;
1585 argc -= oind;
1586
1587 if (argc != 2)
1588 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1589
1590 addr = parse_and_eval_address (argv[0]) + offset;
1591 length = atol (argv[1]);
1592
1593 result = read_memory_robust (current_target.beneath, addr, length);
1594
1595 cleanups = make_cleanup (free_memory_read_result_vector, &result);
1596
1597 if (VEC_length (memory_read_result_s, result) == 0)
1598 error (_("Unable to read memory."));
1599
1600 ui_out_emit_list list_emitter (uiout, "memory");
1601 for (ix = 0;
1602 VEC_iterate (memory_read_result_s, result, ix, read_result);
1603 ++ix)
1604 {
1605 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1606 char *data, *p;
1607 int i;
1608 int alloc_len;
1609
1610 uiout->field_core_addr ("begin", gdbarch, read_result->begin);
1611 uiout->field_core_addr ("offset", gdbarch, read_result->begin - addr);
1612 uiout->field_core_addr ("end", gdbarch, read_result->end);
1613
1614 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1615 data = (char *) xmalloc (alloc_len);
1616
1617 for (i = 0, p = data;
1618 i < ((read_result->end - read_result->begin) * unit_size);
1619 ++i, p += 2)
1620 {
1621 sprintf (p, "%02x", read_result->data[i]);
1622 }
1623 uiout->field_string ("contents", data);
1624 xfree (data);
1625 }
1626 do_cleanups (cleanups);
1627 }
1628
1629 /* Implementation of the -data-write_memory command.
1630
1631 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1632 offset from the beginning of the memory grid row where the cell to
1633 be written is.
1634 ADDR: start address of the row in the memory grid where the memory
1635 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1636 the location to write to.
1637 FORMAT: a char indicating format for the ``word''. See
1638 the ``x'' command.
1639 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1640 VALUE: value to be written into the memory address.
1641
1642 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1643
1644 Prints nothing. */
1645
1646 void
1647 mi_cmd_data_write_memory (const char *command, char **argv, int argc)
1648 {
1649 struct gdbarch *gdbarch = get_current_arch ();
1650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1651 CORE_ADDR addr;
1652 long word_size;
1653 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1654 enough when using a compiler other than GCC. */
1655 LONGEST value;
1656 long offset = 0;
1657 int oind = 0;
1658 char *oarg;
1659 enum opt
1660 {
1661 OFFSET_OPT
1662 };
1663 static const struct mi_opt opts[] =
1664 {
1665 {"o", OFFSET_OPT, 1},
1666 { 0, 0, 0 }
1667 };
1668
1669 while (1)
1670 {
1671 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1672 &oind, &oarg);
1673
1674 if (opt < 0)
1675 break;
1676 switch ((enum opt) opt)
1677 {
1678 case OFFSET_OPT:
1679 offset = atol (oarg);
1680 break;
1681 }
1682 }
1683 argv += oind;
1684 argc -= oind;
1685
1686 if (argc != 4)
1687 error (_("-data-write-memory: Usage: "
1688 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1689
1690 /* Extract all the arguments. */
1691 /* Start address of the memory dump. */
1692 addr = parse_and_eval_address (argv[0]);
1693 /* The size of the memory word. */
1694 word_size = atol (argv[2]);
1695
1696 /* Calculate the real address of the write destination. */
1697 addr += (offset * word_size);
1698
1699 /* Get the value as a number. */
1700 value = parse_and_eval_address (argv[3]);
1701 /* Get the value into an array. */
1702 gdb::byte_vector buffer (word_size);
1703 store_signed_integer (buffer.data (), word_size, byte_order, value);
1704 /* Write it down to memory. */
1705 write_memory_with_notification (addr, buffer.data (), word_size);
1706 }
1707
1708 /* Implementation of the -data-write-memory-bytes command.
1709
1710 ADDR: start address
1711 DATA: string of bytes to write at that address
1712 COUNT: number of bytes to be filled (decimal integer). */
1713
1714 void
1715 mi_cmd_data_write_memory_bytes (const char *command, char **argv, int argc)
1716 {
1717 CORE_ADDR addr;
1718 char *cdata;
1719 gdb_byte *data;
1720 gdb_byte *databuf;
1721 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1722 long int count_units;
1723 struct cleanup *back_to;
1724 int unit_size;
1725
1726 if (argc != 2 && argc != 3)
1727 error (_("Usage: ADDR DATA [COUNT]."));
1728
1729 addr = parse_and_eval_address (argv[0]);
1730 cdata = argv[1];
1731 len_hex = strlen (cdata);
1732 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1733
1734 if (len_hex % (unit_size * 2) != 0)
1735 error (_("Hex-encoded '%s' must represent an integral number of "
1736 "addressable memory units."),
1737 cdata);
1738
1739 len_bytes = len_hex / 2;
1740 len_units = len_bytes / unit_size;
1741
1742 if (argc == 3)
1743 count_units = strtoul (argv[2], NULL, 10);
1744 else
1745 count_units = len_units;
1746
1747 databuf = XNEWVEC (gdb_byte, len_bytes);
1748 back_to = make_cleanup (xfree, databuf);
1749
1750 for (i = 0; i < len_bytes; ++i)
1751 {
1752 int x;
1753 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1754 error (_("Invalid argument"));
1755 databuf[i] = (gdb_byte) x;
1756 }
1757
1758 if (len_units < count_units)
1759 {
1760 /* Pattern is made of less units than count:
1761 repeat pattern to fill memory. */
1762 data = (gdb_byte *) xmalloc (count_units * unit_size);
1763 make_cleanup (xfree, data);
1764
1765 /* Number of times the pattern is entirely repeated. */
1766 steps = count_units / len_units;
1767 /* Number of remaining addressable memory units. */
1768 remaining_units = count_units % len_units;
1769 for (i = 0; i < steps; i++)
1770 memcpy (data + i * len_bytes, databuf, len_bytes);
1771
1772 if (remaining_units > 0)
1773 memcpy (data + steps * len_bytes, databuf,
1774 remaining_units * unit_size);
1775 }
1776 else
1777 {
1778 /* Pattern is longer than or equal to count:
1779 just copy count addressable memory units. */
1780 data = databuf;
1781 }
1782
1783 write_memory_with_notification (addr, data, count_units);
1784
1785 do_cleanups (back_to);
1786 }
1787
1788 void
1789 mi_cmd_enable_timings (const char *command, char **argv, int argc)
1790 {
1791 if (argc == 0)
1792 do_timings = 1;
1793 else if (argc == 1)
1794 {
1795 if (strcmp (argv[0], "yes") == 0)
1796 do_timings = 1;
1797 else if (strcmp (argv[0], "no") == 0)
1798 do_timings = 0;
1799 else
1800 goto usage_error;
1801 }
1802 else
1803 goto usage_error;
1804
1805 return;
1806
1807 usage_error:
1808 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1809 }
1810
1811 void
1812 mi_cmd_list_features (const char *command, char **argv, int argc)
1813 {
1814 if (argc == 0)
1815 {
1816 struct ui_out *uiout = current_uiout;
1817
1818 ui_out_emit_list list_emitter (uiout, "features");
1819 uiout->field_string (NULL, "frozen-varobjs");
1820 uiout->field_string (NULL, "pending-breakpoints");
1821 uiout->field_string (NULL, "thread-info");
1822 uiout->field_string (NULL, "data-read-memory-bytes");
1823 uiout->field_string (NULL, "breakpoint-notifications");
1824 uiout->field_string (NULL, "ada-task-info");
1825 uiout->field_string (NULL, "language-option");
1826 uiout->field_string (NULL, "info-gdb-mi-command");
1827 uiout->field_string (NULL, "undefined-command-error-code");
1828 uiout->field_string (NULL, "exec-run-start-option");
1829
1830 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1831 uiout->field_string (NULL, "python");
1832
1833 return;
1834 }
1835
1836 error (_("-list-features should be passed no arguments"));
1837 }
1838
1839 void
1840 mi_cmd_list_target_features (const char *command, char **argv, int argc)
1841 {
1842 if (argc == 0)
1843 {
1844 struct ui_out *uiout = current_uiout;
1845
1846 ui_out_emit_list list_emitter (uiout, "features");
1847 if (mi_async_p ())
1848 uiout->field_string (NULL, "async");
1849 if (target_can_execute_reverse)
1850 uiout->field_string (NULL, "reverse");
1851 return;
1852 }
1853
1854 error (_("-list-target-features should be passed no arguments"));
1855 }
1856
1857 void
1858 mi_cmd_add_inferior (const char *command, char **argv, int argc)
1859 {
1860 struct inferior *inf;
1861
1862 if (argc != 0)
1863 error (_("-add-inferior should be passed no arguments"));
1864
1865 inf = add_inferior_with_spaces ();
1866
1867 current_uiout->field_fmt ("inferior", "i%d", inf->num);
1868 }
1869
1870 /* Callback used to find the first inferior other than the current
1871 one. */
1872
1873 static int
1874 get_other_inferior (struct inferior *inf, void *arg)
1875 {
1876 if (inf == current_inferior ())
1877 return 0;
1878
1879 return 1;
1880 }
1881
1882 void
1883 mi_cmd_remove_inferior (const char *command, char **argv, int argc)
1884 {
1885 int id;
1886 struct inferior *inf;
1887
1888 if (argc != 1)
1889 error (_("-remove-inferior should be passed a single argument"));
1890
1891 if (sscanf (argv[0], "i%d", &id) != 1)
1892 error (_("the thread group id is syntactically invalid"));
1893
1894 inf = find_inferior_id (id);
1895 if (!inf)
1896 error (_("the specified thread group does not exist"));
1897
1898 if (inf->pid != 0)
1899 error (_("cannot remove an active inferior"));
1900
1901 if (inf == current_inferior ())
1902 {
1903 struct thread_info *tp = 0;
1904 struct inferior *new_inferior
1905 = iterate_over_inferiors (get_other_inferior, NULL);
1906
1907 if (new_inferior == NULL)
1908 error (_("Cannot remove last inferior"));
1909
1910 set_current_inferior (new_inferior);
1911 if (new_inferior->pid != 0)
1912 tp = any_thread_of_process (new_inferior->pid);
1913 switch_to_thread (tp ? tp->ptid : null_ptid);
1914 set_current_program_space (new_inferior->pspace);
1915 }
1916
1917 delete_inferior (inf);
1918 }
1919
1920 \f
1921
1922 /* Execute a command within a safe environment.
1923 Return <0 for error; >=0 for ok.
1924
1925 args->action will tell mi_execute_command what action
1926 to perfrom after the given command has executed (display/suppress
1927 prompt, display error). */
1928
1929 static void
1930 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1931 {
1932 struct mi_interp *mi = (struct mi_interp *) command_interp ();
1933 struct cleanup *cleanup;
1934
1935 if (do_timings)
1936 current_command_ts = context->cmd_start;
1937
1938 current_token = xstrdup (context->token);
1939 cleanup = make_cleanup (free_current_contents, &current_token);
1940
1941 running_result_record_printed = 0;
1942 mi_proceeded = 0;
1943 switch (context->op)
1944 {
1945 case MI_COMMAND:
1946 /* A MI command was read from the input stream. */
1947 if (mi_debug_p)
1948 /* FIXME: gdb_???? */
1949 fprintf_unfiltered (mi->raw_stdout,
1950 " token=`%s' command=`%s' args=`%s'\n",
1951 context->token, context->command, context->args);
1952
1953 mi_cmd_execute (context);
1954
1955 /* Print the result if there were no errors.
1956
1957 Remember that on the way out of executing a command, you have
1958 to directly use the mi_interp's uiout, since the command
1959 could have reset the interpreter, in which case the current
1960 uiout will most likely crash in the mi_out_* routines. */
1961 if (!running_result_record_printed)
1962 {
1963 fputs_unfiltered (context->token, mi->raw_stdout);
1964 /* There's no particularly good reason why target-connect results
1965 in not ^done. Should kill ^connected for MI3. */
1966 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1967 ? "^connected" : "^done", mi->raw_stdout);
1968 mi_out_put (uiout, mi->raw_stdout);
1969 mi_out_rewind (uiout);
1970 mi_print_timing_maybe (mi->raw_stdout);
1971 fputs_unfiltered ("\n", mi->raw_stdout);
1972 }
1973 else
1974 /* The command does not want anything to be printed. In that
1975 case, the command probably should not have written anything
1976 to uiout, but in case it has written something, discard it. */
1977 mi_out_rewind (uiout);
1978 break;
1979
1980 case CLI_COMMAND:
1981 {
1982 char *argv[2];
1983
1984 /* A CLI command was read from the input stream. */
1985 /* This "feature" will be removed as soon as we have a
1986 complete set of mi commands. */
1987 /* Echo the command on the console. */
1988 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1989 /* Call the "console" interpreter. */
1990 argv[0] = (char *) INTERP_CONSOLE;
1991 argv[1] = context->command;
1992 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1993
1994 /* If we changed interpreters, DON'T print out anything. */
1995 if (current_interp_named_p (INTERP_MI)
1996 || current_interp_named_p (INTERP_MI1)
1997 || current_interp_named_p (INTERP_MI2)
1998 || current_interp_named_p (INTERP_MI3))
1999 {
2000 if (!running_result_record_printed)
2001 {
2002 fputs_unfiltered (context->token, mi->raw_stdout);
2003 fputs_unfiltered ("^done", mi->raw_stdout);
2004 mi_out_put (uiout, mi->raw_stdout);
2005 mi_out_rewind (uiout);
2006 mi_print_timing_maybe (mi->raw_stdout);
2007 fputs_unfiltered ("\n", mi->raw_stdout);
2008 }
2009 else
2010 mi_out_rewind (uiout);
2011 }
2012 break;
2013 }
2014 }
2015
2016 do_cleanups (cleanup);
2017 }
2018
2019 /* Print a gdb exception to the MI output stream. */
2020
2021 static void
2022 mi_print_exception (const char *token, struct gdb_exception exception)
2023 {
2024 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2025
2026 fputs_unfiltered (token, mi->raw_stdout);
2027 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
2028 if (exception.message == NULL)
2029 fputs_unfiltered ("unknown error", mi->raw_stdout);
2030 else
2031 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
2032 fputs_unfiltered ("\"", mi->raw_stdout);
2033
2034 switch (exception.error)
2035 {
2036 case UNDEFINED_COMMAND_ERROR:
2037 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
2038 break;
2039 }
2040
2041 fputs_unfiltered ("\n", mi->raw_stdout);
2042 }
2043
2044 /* Determine whether the parsed command already notifies the
2045 user_selected_context_changed observer. */
2046
2047 static int
2048 command_notifies_uscc_observer (struct mi_parse *command)
2049 {
2050 if (command->op == CLI_COMMAND)
2051 {
2052 /* CLI commands "thread" and "inferior" already send it. */
2053 return (strncmp (command->command, "thread ", 7) == 0
2054 || strncmp (command->command, "inferior ", 9) == 0);
2055 }
2056 else /* MI_COMMAND */
2057 {
2058 if (strcmp (command->command, "interpreter-exec") == 0
2059 && command->argc > 1)
2060 {
2061 /* "thread" and "inferior" again, but through -interpreter-exec. */
2062 return (strncmp (command->argv[1], "thread ", 7) == 0
2063 || strncmp (command->argv[1], "inferior ", 9) == 0);
2064 }
2065
2066 else
2067 /* -thread-select already sends it. */
2068 return strcmp (command->command, "thread-select") == 0;
2069 }
2070 }
2071
2072 void
2073 mi_execute_command (const char *cmd, int from_tty)
2074 {
2075 char *token;
2076 std::unique_ptr<struct mi_parse> command;
2077
2078 /* This is to handle EOF (^D). We just quit gdb. */
2079 /* FIXME: we should call some API function here. */
2080 if (cmd == 0)
2081 quit_force (NULL, from_tty);
2082
2083 target_log_command (cmd);
2084
2085 TRY
2086 {
2087 command = mi_parse (cmd, &token);
2088 }
2089 CATCH (exception, RETURN_MASK_ALL)
2090 {
2091 mi_print_exception (token, exception);
2092 xfree (token);
2093 }
2094 END_CATCH
2095
2096 if (command != NULL)
2097 {
2098 ptid_t previous_ptid = inferior_ptid;
2099
2100 gdb::optional<scoped_restore_tmpl<int>> restore_suppress;
2101
2102 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
2103 restore_suppress.emplace (command->cmd->suppress_notification, 1);
2104
2105 command->token = token;
2106
2107 if (do_timings)
2108 {
2109 command->cmd_start = new mi_timestamp ();
2110 timestamp (command->cmd_start);
2111 }
2112
2113 TRY
2114 {
2115 captured_mi_execute_command (current_uiout, command.get ());
2116 }
2117 CATCH (result, RETURN_MASK_ALL)
2118 {
2119 /* Like in start_event_loop, enable input and force display
2120 of the prompt. Otherwise, any command that calls
2121 async_disable_stdin, and then throws, will leave input
2122 disabled. */
2123 async_enable_stdin ();
2124 current_ui->prompt_state = PROMPT_NEEDED;
2125
2126 /* The command execution failed and error() was called
2127 somewhere. */
2128 mi_print_exception (command->token, result);
2129 mi_out_rewind (current_uiout);
2130 }
2131 END_CATCH
2132
2133 bpstat_do_actions ();
2134
2135 if (/* The notifications are only output when the top-level
2136 interpreter (specified on the command line) is MI. */
2137 interp_ui_out (top_level_interpreter ())->is_mi_like_p ()
2138 /* Don't try report anything if there are no threads --
2139 the program is dead. */
2140 && thread_count () != 0
2141 /* If the command already reports the thread change, no need to do it
2142 again. */
2143 && !command_notifies_uscc_observer (command.get ()))
2144 {
2145 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter ();
2146 int report_change = 0;
2147
2148 if (command->thread == -1)
2149 {
2150 report_change = (!ptid_equal (previous_ptid, null_ptid)
2151 && !ptid_equal (inferior_ptid, previous_ptid)
2152 && !ptid_equal (inferior_ptid, null_ptid));
2153 }
2154 else if (!ptid_equal (inferior_ptid, null_ptid))
2155 {
2156 struct thread_info *ti = inferior_thread ();
2157
2158 report_change = (ti->global_num != command->thread);
2159 }
2160
2161 if (report_change)
2162 {
2163 observer_notify_user_selected_context_changed
2164 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2165 }
2166 }
2167 }
2168 }
2169
2170 static void
2171 mi_cmd_execute (struct mi_parse *parse)
2172 {
2173 struct cleanup *cleanup;
2174
2175 cleanup = prepare_execute_command ();
2176
2177 if (parse->all && parse->thread_group != -1)
2178 error (_("Cannot specify --thread-group together with --all"));
2179
2180 if (parse->all && parse->thread != -1)
2181 error (_("Cannot specify --thread together with --all"));
2182
2183 if (parse->thread_group != -1 && parse->thread != -1)
2184 error (_("Cannot specify --thread together with --thread-group"));
2185
2186 if (parse->frame != -1 && parse->thread == -1)
2187 error (_("Cannot specify --frame without --thread"));
2188
2189 if (parse->thread_group != -1)
2190 {
2191 struct inferior *inf = find_inferior_id (parse->thread_group);
2192 struct thread_info *tp = 0;
2193
2194 if (!inf)
2195 error (_("Invalid thread group for the --thread-group option"));
2196
2197 set_current_inferior (inf);
2198 /* This behaviour means that if --thread-group option identifies
2199 an inferior with multiple threads, then a random one will be
2200 picked. This is not a problem -- frontend should always
2201 provide --thread if it wishes to operate on a specific
2202 thread. */
2203 if (inf->pid != 0)
2204 tp = any_live_thread_of_process (inf->pid);
2205 switch_to_thread (tp ? tp->ptid : null_ptid);
2206 set_current_program_space (inf->pspace);
2207 }
2208
2209 if (parse->thread != -1)
2210 {
2211 struct thread_info *tp = find_thread_global_id (parse->thread);
2212
2213 if (!tp)
2214 error (_("Invalid thread id: %d"), parse->thread);
2215
2216 if (is_exited (tp->ptid))
2217 error (_("Thread id: %d has terminated"), parse->thread);
2218
2219 switch_to_thread (tp->ptid);
2220 }
2221
2222 if (parse->frame != -1)
2223 {
2224 struct frame_info *fid;
2225 int frame = parse->frame;
2226
2227 fid = find_relative_frame (get_current_frame (), &frame);
2228 if (frame == 0)
2229 /* find_relative_frame was successful */
2230 select_frame (fid);
2231 else
2232 error (_("Invalid frame id: %d"), frame);
2233 }
2234
2235 gdb::optional<scoped_restore_current_language> lang_saver;
2236 if (parse->language != language_unknown)
2237 {
2238 lang_saver.emplace ();
2239 set_language (parse->language);
2240 }
2241
2242 current_context = parse;
2243
2244 if (parse->cmd->argv_func != NULL)
2245 {
2246 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2247 }
2248 else if (parse->cmd->cli.cmd != 0)
2249 {
2250 /* FIXME: DELETE THIS. */
2251 /* The operation is still implemented by a cli command. */
2252 /* Must be a synchronous one. */
2253 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2254 parse->args);
2255 }
2256 else
2257 {
2258 /* FIXME: DELETE THIS. */
2259 string_file stb;
2260
2261 stb.puts ("Undefined mi command: ");
2262 stb.putstr (parse->command, '"');
2263 stb.puts (" (missing implementation)");
2264
2265 error_stream (stb);
2266 }
2267 do_cleanups (cleanup);
2268 }
2269
2270 /* FIXME: This is just a hack so we can get some extra commands going.
2271 We don't want to channel things through the CLI, but call libgdb directly.
2272 Use only for synchronous commands. */
2273
2274 void
2275 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2276 {
2277 if (cmd != 0)
2278 {
2279 struct cleanup *old_cleanups;
2280 char *run;
2281
2282 if (args_p)
2283 run = xstrprintf ("%s %s", cmd, args);
2284 else
2285 run = xstrdup (cmd);
2286 if (mi_debug_p)
2287 /* FIXME: gdb_???? */
2288 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2289 cmd, run);
2290 old_cleanups = make_cleanup (xfree, run);
2291 execute_command (run, 0 /* from_tty */ );
2292 do_cleanups (old_cleanups);
2293 return;
2294 }
2295 }
2296
2297 void
2298 mi_execute_async_cli_command (const char *cli_command, char **argv, int argc)
2299 {
2300 struct cleanup *old_cleanups;
2301 char *run;
2302
2303 if (mi_async_p ())
2304 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2305 else
2306 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2307 old_cleanups = make_cleanup (xfree, run);
2308
2309 execute_command (run, 0 /* from_tty */ );
2310
2311 /* Do this before doing any printing. It would appear that some
2312 print code leaves garbage around in the buffer. */
2313 do_cleanups (old_cleanups);
2314 }
2315
2316 void
2317 mi_load_progress (const char *section_name,
2318 unsigned long sent_so_far,
2319 unsigned long total_section,
2320 unsigned long total_sent,
2321 unsigned long grand_total)
2322 {
2323 using namespace std::chrono;
2324 static steady_clock::time_point last_update;
2325 static char *previous_sect_name = NULL;
2326 int new_section;
2327 struct ui_out *saved_uiout;
2328 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2329
2330 /* This function is called through deprecated_show_load_progress
2331 which means uiout may not be correct. Fix it for the duration
2332 of this function. */
2333 saved_uiout = current_uiout;
2334
2335 std::unique_ptr<ui_out> uiout;
2336
2337 if (current_interp_named_p (INTERP_MI)
2338 || current_interp_named_p (INTERP_MI2))
2339 uiout.reset (mi_out_new (2));
2340 else if (current_interp_named_p (INTERP_MI1))
2341 uiout.reset (mi_out_new (1));
2342 else if (current_interp_named_p (INTERP_MI3))
2343 uiout.reset (mi_out_new (3));
2344 else
2345 return;
2346
2347 current_uiout = uiout.get ();
2348
2349 new_section = (previous_sect_name ?
2350 strcmp (previous_sect_name, section_name) : 1);
2351 if (new_section)
2352 {
2353 xfree (previous_sect_name);
2354 previous_sect_name = xstrdup (section_name);
2355
2356 if (current_token)
2357 fputs_unfiltered (current_token, mi->raw_stdout);
2358 fputs_unfiltered ("+download", mi->raw_stdout);
2359 {
2360 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2361 uiout->field_string ("section", section_name);
2362 uiout->field_int ("section-size", total_section);
2363 uiout->field_int ("total-size", grand_total);
2364 }
2365 mi_out_put (uiout.get (), mi->raw_stdout);
2366 fputs_unfiltered ("\n", mi->raw_stdout);
2367 gdb_flush (mi->raw_stdout);
2368 }
2369
2370 steady_clock::time_point time_now = steady_clock::now ();
2371 if (time_now - last_update > milliseconds (500))
2372 {
2373 last_update = time_now;
2374 if (current_token)
2375 fputs_unfiltered (current_token, mi->raw_stdout);
2376 fputs_unfiltered ("+download", mi->raw_stdout);
2377 {
2378 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2379 uiout->field_string ("section", section_name);
2380 uiout->field_int ("section-sent", sent_so_far);
2381 uiout->field_int ("section-size", total_section);
2382 uiout->field_int ("total-sent", total_sent);
2383 uiout->field_int ("total-size", grand_total);
2384 }
2385 mi_out_put (uiout.get (), mi->raw_stdout);
2386 fputs_unfiltered ("\n", mi->raw_stdout);
2387 gdb_flush (mi->raw_stdout);
2388 }
2389
2390 current_uiout = saved_uiout;
2391 }
2392
2393 static void
2394 timestamp (struct mi_timestamp *tv)
2395 {
2396 using namespace std::chrono;
2397
2398 tv->wallclock = steady_clock::now ();
2399 run_time_clock::now (tv->utime, tv->stime);
2400 }
2401
2402 static void
2403 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2404 {
2405 struct mi_timestamp now;
2406
2407 timestamp (&now);
2408 print_diff (file, start, &now);
2409 }
2410
2411 void
2412 mi_print_timing_maybe (struct ui_file *file)
2413 {
2414 /* If the command is -enable-timing then do_timings may be true
2415 whilst current_command_ts is not initialized. */
2416 if (do_timings && current_command_ts)
2417 print_diff_now (file, current_command_ts);
2418 }
2419
2420 static void
2421 print_diff (struct ui_file *file, struct mi_timestamp *start,
2422 struct mi_timestamp *end)
2423 {
2424 using namespace std::chrono;
2425
2426 duration<double> wallclock = end->wallclock - start->wallclock;
2427 duration<double> utime = end->utime - start->utime;
2428 duration<double> stime = end->stime - start->stime;
2429
2430 fprintf_unfiltered
2431 (file,
2432 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2433 wallclock.count (), utime.count (), stime.count ());
2434 }
2435
2436 void
2437 mi_cmd_trace_define_variable (const char *command, char **argv, int argc)
2438 {
2439 LONGEST initval = 0;
2440 struct trace_state_variable *tsv;
2441 char *name = 0;
2442
2443 if (argc != 1 && argc != 2)
2444 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2445
2446 name = argv[0];
2447 if (*name++ != '$')
2448 error (_("Name of trace variable should start with '$'"));
2449
2450 validate_trace_state_variable_name (name);
2451
2452 tsv = find_trace_state_variable (name);
2453 if (!tsv)
2454 tsv = create_trace_state_variable (name);
2455
2456 if (argc == 2)
2457 initval = value_as_long (parse_and_eval (argv[1]));
2458
2459 tsv->initial_value = initval;
2460 }
2461
2462 void
2463 mi_cmd_trace_list_variables (const char *command, char **argv, int argc)
2464 {
2465 if (argc != 0)
2466 error (_("-trace-list-variables: no arguments allowed"));
2467
2468 tvariables_info_1 ();
2469 }
2470
2471 void
2472 mi_cmd_trace_find (const char *command, char **argv, int argc)
2473 {
2474 char *mode;
2475
2476 if (argc == 0)
2477 error (_("trace selection mode is required"));
2478
2479 mode = argv[0];
2480
2481 if (strcmp (mode, "none") == 0)
2482 {
2483 tfind_1 (tfind_number, -1, 0, 0, 0);
2484 return;
2485 }
2486
2487 check_trace_running (current_trace_status ());
2488
2489 if (strcmp (mode, "frame-number") == 0)
2490 {
2491 if (argc != 2)
2492 error (_("frame number is required"));
2493 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2494 }
2495 else if (strcmp (mode, "tracepoint-number") == 0)
2496 {
2497 if (argc != 2)
2498 error (_("tracepoint number is required"));
2499 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2500 }
2501 else if (strcmp (mode, "pc") == 0)
2502 {
2503 if (argc != 2)
2504 error (_("PC is required"));
2505 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2506 }
2507 else if (strcmp (mode, "pc-inside-range") == 0)
2508 {
2509 if (argc != 3)
2510 error (_("Start and end PC are required"));
2511 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2512 parse_and_eval_address (argv[2]), 0);
2513 }
2514 else if (strcmp (mode, "pc-outside-range") == 0)
2515 {
2516 if (argc != 3)
2517 error (_("Start and end PC are required"));
2518 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2519 parse_and_eval_address (argv[2]), 0);
2520 }
2521 else if (strcmp (mode, "line") == 0)
2522 {
2523 if (argc != 2)
2524 error (_("Line is required"));
2525
2526 std::vector<symtab_and_line> sals
2527 = decode_line_with_current_source (argv[1],
2528 DECODE_LINE_FUNFIRSTLINE);
2529 const symtab_and_line &sal = sals[0];
2530
2531 if (sal.symtab == 0)
2532 error (_("Could not find the specified line"));
2533
2534 CORE_ADDR start_pc, end_pc;
2535 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2536 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2537 else
2538 error (_("Could not find the specified line"));
2539 }
2540 else
2541 error (_("Invalid mode '%s'"), mode);
2542
2543 if (has_stack_frames () || get_traceframe_number () >= 0)
2544 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2545 }
2546
2547 void
2548 mi_cmd_trace_save (const char *command, char **argv, int argc)
2549 {
2550 int target_saves = 0;
2551 int generate_ctf = 0;
2552 char *filename;
2553 int oind = 0;
2554 char *oarg;
2555
2556 enum opt
2557 {
2558 TARGET_SAVE_OPT, CTF_OPT
2559 };
2560 static const struct mi_opt opts[] =
2561 {
2562 {"r", TARGET_SAVE_OPT, 0},
2563 {"ctf", CTF_OPT, 0},
2564 { 0, 0, 0 }
2565 };
2566
2567 while (1)
2568 {
2569 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2570 &oind, &oarg);
2571
2572 if (opt < 0)
2573 break;
2574 switch ((enum opt) opt)
2575 {
2576 case TARGET_SAVE_OPT:
2577 target_saves = 1;
2578 break;
2579 case CTF_OPT:
2580 generate_ctf = 1;
2581 break;
2582 }
2583 }
2584
2585 if (argc - oind != 1)
2586 error (_("Exactly one argument required "
2587 "(file in which to save trace data)"));
2588
2589 filename = argv[oind];
2590
2591 if (generate_ctf)
2592 trace_save_ctf (filename, target_saves);
2593 else
2594 trace_save_tfile (filename, target_saves);
2595 }
2596
2597 void
2598 mi_cmd_trace_start (const char *command, char **argv, int argc)
2599 {
2600 start_tracing (NULL);
2601 }
2602
2603 void
2604 mi_cmd_trace_status (const char *command, char **argv, int argc)
2605 {
2606 trace_status_mi (0);
2607 }
2608
2609 void
2610 mi_cmd_trace_stop (const char *command, char **argv, int argc)
2611 {
2612 stop_tracing (NULL);
2613 trace_status_mi (1);
2614 }
2615
2616 /* Implement the "-ada-task-info" command. */
2617
2618 void
2619 mi_cmd_ada_task_info (const char *command, char **argv, int argc)
2620 {
2621 if (argc != 0 && argc != 1)
2622 error (_("Invalid MI command"));
2623
2624 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2625 }
2626
2627 /* Print EXPRESSION according to VALUES. */
2628
2629 static void
2630 print_variable_or_computed (const char *expression, enum print_values values)
2631 {
2632 struct value *val;
2633 struct type *type;
2634 struct ui_out *uiout = current_uiout;
2635
2636 string_file stb;
2637
2638 expression_up expr = parse_expression (expression);
2639
2640 if (values == PRINT_SIMPLE_VALUES)
2641 val = evaluate_type (expr.get ());
2642 else
2643 val = evaluate_expression (expr.get ());
2644
2645 gdb::optional<ui_out_emit_tuple> tuple_emitter;
2646 if (values != PRINT_NO_VALUES)
2647 tuple_emitter.emplace (uiout, nullptr);
2648 uiout->field_string ("name", expression);
2649
2650 switch (values)
2651 {
2652 case PRINT_SIMPLE_VALUES:
2653 type = check_typedef (value_type (val));
2654 type_print (value_type (val), "", &stb, -1);
2655 uiout->field_stream ("type", stb);
2656 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2657 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2658 && TYPE_CODE (type) != TYPE_CODE_UNION)
2659 {
2660 struct value_print_options opts;
2661
2662 get_no_prettyformat_print_options (&opts);
2663 opts.deref_ref = 1;
2664 common_val_print (val, &stb, 0, &opts, current_language);
2665 uiout->field_stream ("value", stb);
2666 }
2667 break;
2668 case PRINT_ALL_VALUES:
2669 {
2670 struct value_print_options opts;
2671
2672 get_no_prettyformat_print_options (&opts);
2673 opts.deref_ref = 1;
2674 common_val_print (val, &stb, 0, &opts, current_language);
2675 uiout->field_stream ("value", stb);
2676 }
2677 break;
2678 }
2679 }
2680
2681 /* Implement the "-trace-frame-collected" command. */
2682
2683 void
2684 mi_cmd_trace_frame_collected (const char *command, char **argv, int argc)
2685 {
2686 struct bp_location *tloc;
2687 int stepping_frame;
2688 struct collection_list *clist;
2689 struct collection_list tracepoint_list, stepping_list;
2690 struct traceframe_info *tinfo;
2691 int oind = 0;
2692 enum print_values var_print_values = PRINT_ALL_VALUES;
2693 enum print_values comp_print_values = PRINT_ALL_VALUES;
2694 int registers_format = 'x';
2695 int memory_contents = 0;
2696 struct ui_out *uiout = current_uiout;
2697 enum opt
2698 {
2699 VAR_PRINT_VALUES,
2700 COMP_PRINT_VALUES,
2701 REGISTERS_FORMAT,
2702 MEMORY_CONTENTS,
2703 };
2704 static const struct mi_opt opts[] =
2705 {
2706 {"-var-print-values", VAR_PRINT_VALUES, 1},
2707 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2708 {"-registers-format", REGISTERS_FORMAT, 1},
2709 {"-memory-contents", MEMORY_CONTENTS, 0},
2710 { 0, 0, 0 }
2711 };
2712
2713 while (1)
2714 {
2715 char *oarg;
2716 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2717 &oind, &oarg);
2718 if (opt < 0)
2719 break;
2720 switch ((enum opt) opt)
2721 {
2722 case VAR_PRINT_VALUES:
2723 var_print_values = mi_parse_print_values (oarg);
2724 break;
2725 case COMP_PRINT_VALUES:
2726 comp_print_values = mi_parse_print_values (oarg);
2727 break;
2728 case REGISTERS_FORMAT:
2729 registers_format = oarg[0];
2730 case MEMORY_CONTENTS:
2731 memory_contents = 1;
2732 break;
2733 }
2734 }
2735
2736 if (oind != argc)
2737 error (_("Usage: -trace-frame-collected "
2738 "[--var-print-values PRINT_VALUES] "
2739 "[--comp-print-values PRINT_VALUES] "
2740 "[--registers-format FORMAT]"
2741 "[--memory-contents]"));
2742
2743 /* This throws an error is not inspecting a trace frame. */
2744 tloc = get_traceframe_location (&stepping_frame);
2745
2746 /* This command only makes sense for the current frame, not the
2747 selected frame. */
2748 scoped_restore_current_thread restore_thread;
2749 select_frame (get_current_frame ());
2750
2751 encode_actions (tloc, &tracepoint_list, &stepping_list);
2752
2753 if (stepping_frame)
2754 clist = &stepping_list;
2755 else
2756 clist = &tracepoint_list;
2757
2758 tinfo = get_traceframe_info ();
2759
2760 /* Explicitly wholly collected variables. */
2761 {
2762 int i;
2763
2764 ui_out_emit_list list_emitter (uiout, "explicit-variables");
2765 const std::vector<std::string> &wholly_collected
2766 = clist->wholly_collected ();
2767 for (size_t i = 0; i < wholly_collected.size (); i++)
2768 {
2769 const std::string &str = wholly_collected[i];
2770 print_variable_or_computed (str.c_str (), var_print_values);
2771 }
2772 }
2773
2774 /* Computed expressions. */
2775 {
2776 char *p;
2777 int i;
2778
2779 ui_out_emit_list list_emitter (uiout, "computed-expressions");
2780
2781 const std::vector<std::string> &computed = clist->computed ();
2782 for (size_t i = 0; i < computed.size (); i++)
2783 {
2784 const std::string &str = computed[i];
2785 print_variable_or_computed (str.c_str (), comp_print_values);
2786 }
2787 }
2788
2789 /* Registers. Given pseudo-registers, and that some architectures
2790 (like MIPS) actually hide the raw registers, we don't go through
2791 the trace frame info, but instead consult the register cache for
2792 register availability. */
2793 {
2794 struct frame_info *frame;
2795 struct gdbarch *gdbarch;
2796 int regnum;
2797 int numregs;
2798
2799 ui_out_emit_list list_emitter (uiout, "registers");
2800
2801 frame = get_selected_frame (NULL);
2802 gdbarch = get_frame_arch (frame);
2803 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2804
2805 for (regnum = 0; regnum < numregs; regnum++)
2806 {
2807 if (gdbarch_register_name (gdbarch, regnum) == NULL
2808 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2809 continue;
2810
2811 output_register (frame, regnum, registers_format, 1);
2812 }
2813 }
2814
2815 /* Trace state variables. */
2816 {
2817 struct cleanup *cleanups;
2818 int tvar;
2819 char *tsvname;
2820 int i;
2821
2822 ui_out_emit_list list_emitter (uiout, "tvars");
2823
2824 tsvname = NULL;
2825 cleanups = make_cleanup (free_current_contents, &tsvname);
2826
2827 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2828 {
2829 struct trace_state_variable *tsv;
2830
2831 tsv = find_trace_state_variable_by_number (tvar);
2832
2833 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2834
2835 if (tsv != NULL)
2836 {
2837 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2838 tsvname[0] = '$';
2839 strcpy (tsvname + 1, tsv->name);
2840 uiout->field_string ("name", tsvname);
2841
2842 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2843 &tsv->value);
2844 uiout->field_int ("current", tsv->value);
2845 }
2846 else
2847 {
2848 uiout->field_skip ("name");
2849 uiout->field_skip ("current");
2850 }
2851 }
2852
2853 do_cleanups (cleanups);
2854 }
2855
2856 /* Memory. */
2857 {
2858 struct cleanup *cleanups;
2859 VEC(mem_range_s) *available_memory = NULL;
2860 struct mem_range *r;
2861 int i;
2862
2863 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2864 cleanups = make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2865
2866 ui_out_emit_list list_emitter (uiout, "memory");
2867
2868 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2869 {
2870 struct gdbarch *gdbarch = target_gdbarch ();
2871
2872 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2873
2874 uiout->field_core_addr ("address", gdbarch, r->start);
2875 uiout->field_int ("length", r->length);
2876
2877 gdb::byte_vector data (r->length);
2878
2879 if (memory_contents)
2880 {
2881 if (target_read_memory (r->start, data.data (), r->length) == 0)
2882 {
2883 std::string data_str = bin2hex (data.data (), r->length);
2884 uiout->field_string ("contents", data_str.c_str ());
2885 }
2886 else
2887 uiout->field_skip ("contents");
2888 }
2889 }
2890
2891 do_cleanups (cleanups);
2892 }
2893 }
2894
2895 void
2896 _initialize_mi_main (void)
2897 {
2898 struct cmd_list_element *c;
2899
2900 add_setshow_boolean_cmd ("mi-async", class_run,
2901 &mi_async_1, _("\
2902 Set whether MI asynchronous mode is enabled."), _("\
2903 Show whether MI asynchronous mode is enabled."), _("\
2904 Tells GDB whether MI should be in asynchronous mode."),
2905 set_mi_async_command,
2906 show_mi_async_command,
2907 &setlist,
2908 &showlist);
2909
2910 /* Alias old "target-async" to "mi-async". */
2911 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2912 deprecate_cmd (c, "set mi-async");
2913 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
2914 deprecate_cmd (c, "show mi-async");
2915 }