3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
5 Contributed by Cygnus Solutions (a Red Hat company).
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
28 #include "gdbthread.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
44 #include "mi-common.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
54 #include "extension.h"
57 #include "common/gdb_optional.h"
58 #include "common/byte-vector.h"
61 #include "run-time-clock.h"
63 #include "progspace-and-thread.h"
64 #include "common/rsp-low.h"
73 /* This is used to pass the current command timestamp down to
74 continuation routines. */
75 static struct mi_timestamp *current_command_ts;
77 static int do_timings = 0;
80 /* Few commands would like to know if options like --thread-group were
81 explicitly specified. This variable keeps the current parsed
82 command including all option, and make it possible. */
83 static struct mi_parse *current_context;
85 int running_result_record_printed = 1;
87 /* Flag indicating that the target has proceeded since the last
88 command was issued. */
91 static void mi_cmd_execute (struct mi_parse *parse);
93 static void mi_execute_cli_command (const char *cmd, int args_p,
95 static void mi_execute_async_cli_command (const char *cli_command,
96 char **argv, int argc);
97 static int register_changed_p (int regnum, struct regcache *,
99 static void output_register (struct frame_info *, int regnum, int format,
100 int skip_unavailable);
102 /* Controls whether the frontend wants MI in async mode. */
103 static int mi_async = 0;
105 /* The set command writes to this variable. If the inferior is
106 executing, mi_async is *not* updated. */
107 static int mi_async_1 = 0;
110 set_mi_async_command (char *args, int from_tty,
111 struct cmd_list_element *c)
113 if (have_live_inferiors ())
115 mi_async_1 = mi_async;
116 error (_("Cannot change this setting while the inferior is running."));
119 mi_async = mi_async_1;
123 show_mi_async_command (struct ui_file *file, int from_tty,
124 struct cmd_list_element *c,
127 fprintf_filtered (file,
128 _("Whether MI is in asynchronous mode is %s.\n"),
132 /* A wrapper for target_can_async_p that takes the MI setting into
138 return mi_async && target_can_async_p ();
141 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
142 layer that calls libgdb. Any operation used in the below should be
145 static void timestamp (struct mi_timestamp *tv);
147 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
148 struct mi_timestamp *end);
151 mi_cmd_gdb_exit (const char *command, char **argv, int argc)
153 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
155 /* We have to print everything right here because we never return. */
157 fputs_unfiltered (current_token, mi->raw_stdout);
158 fputs_unfiltered ("^exit\n", mi->raw_stdout);
159 mi_out_put (current_uiout, mi->raw_stdout);
160 gdb_flush (mi->raw_stdout);
161 /* FIXME: The function called is not yet a formal libgdb function. */
162 quit_force (NULL, FROM_TTY);
166 mi_cmd_exec_next (const char *command, char **argv, int argc)
168 /* FIXME: Should call a libgdb function, not a cli wrapper. */
169 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
170 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
172 mi_execute_async_cli_command ("next", argv, argc);
176 mi_cmd_exec_next_instruction (const char *command, char **argv, int argc)
178 /* FIXME: Should call a libgdb function, not a cli wrapper. */
179 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
180 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
182 mi_execute_async_cli_command ("nexti", argv, argc);
186 mi_cmd_exec_step (const char *command, char **argv, int argc)
188 /* FIXME: Should call a libgdb function, not a cli wrapper. */
189 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
190 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
192 mi_execute_async_cli_command ("step", argv, argc);
196 mi_cmd_exec_step_instruction (const char *command, char **argv, int argc)
198 /* FIXME: Should call a libgdb function, not a cli wrapper. */
199 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
200 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
202 mi_execute_async_cli_command ("stepi", argv, argc);
206 mi_cmd_exec_finish (const char *command, char **argv, int argc)
208 /* FIXME: Should call a libgdb function, not a cli wrapper. */
209 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
210 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
212 mi_execute_async_cli_command ("finish", argv, argc);
216 mi_cmd_exec_return (const char *command, char **argv, int argc)
218 /* This command doesn't really execute the target, it just pops the
219 specified number of frames. */
221 /* Call return_command with from_tty argument equal to 0 so as to
222 avoid being queried. */
223 return_command (*argv, 0);
225 /* Call return_command with from_tty argument equal to 0 so as to
226 avoid being queried. */
227 return_command (NULL, 0);
229 /* Because we have called return_command with from_tty = 0, we need
230 to print the frame here. */
231 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
235 mi_cmd_exec_jump (const char *args, char **argv, int argc)
237 /* FIXME: Should call a libgdb function, not a cli wrapper. */
238 mi_execute_async_cli_command ("jump", argv, argc);
242 proceed_thread (struct thread_info *thread, int pid)
244 if (!is_stopped (thread->ptid))
247 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
250 switch_to_thread (thread->ptid);
251 clear_proceed_status (0);
252 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
256 proceed_thread_callback (struct thread_info *thread, void *arg)
258 int pid = *(int *)arg;
260 proceed_thread (thread, pid);
265 exec_continue (char **argv, int argc)
267 prepare_execution_command (¤t_target, mi_async_p ());
271 /* In non-stop mode, 'resume' always resumes a single thread.
272 Therefore, to resume all threads of the current inferior, or
273 all threads in all inferiors, we need to iterate over
276 See comment on infcmd.c:proceed_thread_callback for rationale. */
277 if (current_context->all || current_context->thread_group != -1)
279 scoped_restore_current_thread restore_thread;
282 if (!current_context->all)
285 = find_inferior_id (current_context->thread_group);
289 iterate_over_threads (proceed_thread_callback, &pid);
298 scoped_restore save_multi = make_scoped_restore (&sched_multi);
300 if (current_context->all)
307 /* In all-stop mode, -exec-continue traditionally resumed
308 either all threads, or one thread, depending on the
309 'scheduler-locking' variable. Let's continue to do the
317 exec_reverse_continue (char **argv, int argc)
319 enum exec_direction_kind dir = execution_direction;
321 if (dir == EXEC_REVERSE)
322 error (_("Already in reverse mode."));
324 if (!target_can_execute_reverse)
325 error (_("Target %s does not support this command."), target_shortname);
327 scoped_restore save_exec_dir = make_scoped_restore (&execution_direction,
329 exec_continue (argv, argc);
333 mi_cmd_exec_continue (const char *command, char **argv, int argc)
335 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
336 exec_reverse_continue (argv + 1, argc - 1);
338 exec_continue (argv, argc);
342 interrupt_thread_callback (struct thread_info *thread, void *arg)
344 int pid = *(int *)arg;
346 if (!is_running (thread->ptid))
349 if (ptid_get_pid (thread->ptid) != pid)
352 target_stop (thread->ptid);
356 /* Interrupt the execution of the target. Note how we must play
357 around with the token variables, in order to display the current
358 token in the result of the interrupt command, and the previous
359 execution token when the target finally stops. See comments in
363 mi_cmd_exec_interrupt (const char *command, char **argv, int argc)
365 /* In all-stop mode, everything stops, so we don't need to try
366 anything specific. */
369 interrupt_target_1 (0);
373 if (current_context->all)
375 /* This will interrupt all threads in all inferiors. */
376 interrupt_target_1 (1);
378 else if (current_context->thread_group != -1)
380 struct inferior *inf = find_inferior_id (current_context->thread_group);
382 iterate_over_threads (interrupt_thread_callback, &inf->pid);
386 /* Interrupt just the current thread -- either explicitly
387 specified via --thread or whatever was current before
388 MI command was sent. */
389 interrupt_target_1 (0);
393 /* Callback for iterate_over_inferiors which starts the execution
394 of the given inferior.
396 ARG is a pointer to an integer whose value, if non-zero, indicates
397 that the program should be stopped when reaching the main subprogram
398 (similar to what the CLI "start" command does). */
401 run_one_inferior (struct inferior *inf, void *arg)
403 int start_p = *(int *) arg;
404 const char *run_cmd = start_p ? "start" : "run";
405 struct target_ops *run_target = find_run_target ();
406 int async_p = mi_async && run_target->to_can_async_p (run_target);
410 if (inf->pid != ptid_get_pid (inferior_ptid))
412 struct thread_info *tp;
414 tp = any_thread_of_process (inf->pid);
416 error (_("Inferior has no threads."));
418 switch_to_thread (tp->ptid);
423 set_current_inferior (inf);
424 switch_to_thread (null_ptid);
425 set_current_program_space (inf->pspace);
427 mi_execute_cli_command (run_cmd, async_p,
428 async_p ? "&" : NULL);
433 mi_cmd_exec_run (const char *command, char **argv, int argc)
437 /* Parse the command options. */
442 static const struct mi_opt opts[] =
444 {"-start", START_OPT, 0},
453 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
457 switch ((enum opt) opt)
465 /* This command does not accept any argument. Make sure the user
466 did not provide any. */
468 error (_("Invalid argument: %s"), argv[oind]);
470 if (current_context->all)
472 scoped_restore_current_pspace_and_thread restore_pspace_thread;
474 iterate_over_inferiors (run_one_inferior, &start_p);
478 const char *run_cmd = start_p ? "start" : "run";
479 struct target_ops *run_target = find_run_target ();
480 int async_p = mi_async && run_target->to_can_async_p (run_target);
482 mi_execute_cli_command (run_cmd, async_p,
483 async_p ? "&" : NULL);
489 find_thread_of_process (struct thread_info *ti, void *p)
493 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
500 mi_cmd_target_detach (const char *command, char **argv, int argc)
502 if (argc != 0 && argc != 1)
503 error (_("Usage: -target-detach [pid | thread-group]"));
507 struct thread_info *tp;
511 /* First see if we are dealing with a thread-group id. */
514 struct inferior *inf;
515 int id = strtoul (argv[0] + 1, &end, 0);
518 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
520 inf = find_inferior_id (id);
522 error (_("Non-existent thread-group id '%d'"), id);
528 /* We must be dealing with a pid. */
529 pid = strtol (argv[0], &end, 10);
532 error (_("Invalid identifier '%s'"), argv[0]);
535 /* Pick any thread in the desired process. Current
536 target_detach detaches from the parent of inferior_ptid. */
537 tp = iterate_over_threads (find_thread_of_process, &pid);
539 error (_("Thread group is empty"));
541 switch_to_thread (tp->ptid);
544 detach_command (NULL, 0);
548 mi_cmd_target_flash_erase (const char *command, char **argv, int argc)
550 flash_erase_command (NULL, 0);
554 mi_cmd_thread_select (const char *command, char **argv, int argc)
557 char *mi_error_message;
558 ptid_t previous_ptid = inferior_ptid;
561 error (_("-thread-select: USAGE: threadnum."));
563 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
565 /* If thread switch did not succeed don't notify or print. */
566 if (rc == GDB_RC_FAIL)
568 make_cleanup (xfree, mi_error_message);
569 error ("%s", mi_error_message);
572 print_selected_thread_frame (current_uiout,
573 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
575 /* Notify if the thread has effectively changed. */
576 if (!ptid_equal (inferior_ptid, previous_ptid))
578 observer_notify_user_selected_context_changed (USER_SELECTED_THREAD
579 | USER_SELECTED_FRAME);
584 mi_cmd_thread_list_ids (const char *command, char **argv, int argc)
587 char *mi_error_message;
590 error (_("-thread-list-ids: No arguments required."));
592 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
594 if (rc == GDB_RC_FAIL)
596 make_cleanup (xfree, mi_error_message);
597 error ("%s", mi_error_message);
602 mi_cmd_thread_info (const char *command, char **argv, int argc)
604 if (argc != 0 && argc != 1)
605 error (_("Invalid MI command"));
607 print_thread_info (current_uiout, argv[0], -1);
610 struct collect_cores_data
618 collect_cores (struct thread_info *ti, void *xdata)
620 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
622 if (ptid_get_pid (ti->ptid) == data->pid)
624 int core = target_core_of_thread (ti->ptid);
627 VEC_safe_push (int, data->cores, core);
634 unique (int *b, int *e)
644 struct print_one_inferior_data
647 VEC (int) *inferiors;
651 print_one_inferior (struct inferior *inferior, void *xdata)
653 struct print_one_inferior_data *top_data
654 = (struct print_one_inferior_data *) xdata;
655 struct ui_out *uiout = current_uiout;
657 if (VEC_empty (int, top_data->inferiors)
658 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
659 VEC_length (int, top_data->inferiors), sizeof (int),
660 compare_positive_ints))
662 struct collect_cores_data data;
663 ui_out_emit_tuple tuple_emitter (uiout, NULL);
665 uiout->field_fmt ("id", "i%d", inferior->num);
666 uiout->field_string ("type", "process");
667 if (inferior->has_exit_code)
668 uiout->field_string ("exit-code",
669 int_string (inferior->exit_code, 8, 0, 0, 1));
670 if (inferior->pid != 0)
671 uiout->field_int ("pid", inferior->pid);
673 if (inferior->pspace->pspace_exec_filename != NULL)
675 uiout->field_string ("executable",
676 inferior->pspace->pspace_exec_filename);
680 if (inferior->pid != 0)
682 data.pid = inferior->pid;
683 iterate_over_threads (collect_cores, &data);
686 if (!VEC_empty (int, data.cores))
689 ui_out_emit_list list_emitter (uiout, "cores");
691 qsort (VEC_address (int, data.cores),
692 VEC_length (int, data.cores), sizeof (int),
693 compare_positive_ints);
695 b = VEC_address (int, data.cores);
696 e = b + VEC_length (int, data.cores);
700 uiout->field_int (NULL, *b);
703 if (top_data->recurse)
704 print_thread_info (uiout, NULL, inferior->pid);
710 /* Output a field named 'cores' with a list as the value. The
711 elements of the list are obtained by splitting 'cores' on
715 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
717 ui_out_emit_list list_emitter (uiout, field_name);
718 gdb::unique_xmalloc_ptr<char> cores (xstrdup (xcores));
719 char *p = cores.get ();
721 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
722 uiout->field_string (NULL, p);
726 free_vector_of_ints (void *xvector)
728 VEC (int) **vector = (VEC (int) **) xvector;
730 VEC_free (int, *vector);
734 do_nothing (splay_tree_key k)
739 free_vector_of_osdata_items (splay_tree_value xvalue)
741 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
743 /* We don't free the items itself, it will be done separately. */
744 VEC_free (osdata_item_s, value);
748 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
757 free_splay_tree (void *xt)
759 splay_tree t = (splay_tree) xt;
760 splay_tree_delete (t);
764 list_available_thread_groups (VEC (int) *ids, int recurse)
767 struct osdata_item *item;
769 struct ui_out *uiout = current_uiout;
770 struct cleanup *cleanup;
772 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
773 The vector contains information about all threads for the given pid.
774 This is assigned an initial value to avoid "may be used uninitialized"
776 splay_tree tree = NULL;
778 /* get_osdata will throw if it cannot return data. */
779 data = get_osdata ("processes");
780 cleanup = make_cleanup_osdata_free (data);
784 struct osdata *threads = get_osdata ("threads");
786 make_cleanup_osdata_free (threads);
787 tree = splay_tree_new (splay_tree_int_comparator,
789 free_vector_of_osdata_items);
790 make_cleanup (free_splay_tree, tree);
793 VEC_iterate (osdata_item_s, threads->items,
797 const char *pid = get_osdata_column (item, "pid");
798 int pid_i = strtoul (pid, NULL, 0);
799 VEC (osdata_item_s) *vec = 0;
801 splay_tree_node n = splay_tree_lookup (tree, pid_i);
804 VEC_safe_push (osdata_item_s, vec, item);
805 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
809 vec = (VEC (osdata_item_s) *) n->value;
810 VEC_safe_push (osdata_item_s, vec, item);
811 n->value = (splay_tree_value) vec;
816 ui_out_emit_list list_emitter (uiout, "groups");
819 VEC_iterate (osdata_item_s, data->items,
823 const char *pid = get_osdata_column (item, "pid");
824 const char *cmd = get_osdata_column (item, "command");
825 const char *user = get_osdata_column (item, "user");
826 const char *cores = get_osdata_column (item, "cores");
828 int pid_i = strtoul (pid, NULL, 0);
830 /* At present, the target will return all available processes
831 and if information about specific ones was required, we filter
832 undesired processes here. */
833 if (ids && bsearch (&pid_i, VEC_address (int, ids),
834 VEC_length (int, ids),
835 sizeof (int), compare_positive_ints) == NULL)
839 ui_out_emit_tuple tuple_emitter (uiout, NULL);
841 uiout->field_fmt ("id", "%s", pid);
842 uiout->field_string ("type", "process");
844 uiout->field_string ("description", cmd);
846 uiout->field_string ("user", user);
848 output_cores (uiout, "cores", cores);
852 splay_tree_node n = splay_tree_lookup (tree, pid_i);
855 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
856 struct osdata_item *child;
859 ui_out_emit_list thread_list_emitter (uiout, "threads");
862 VEC_iterate (osdata_item_s, children, ix_child, child);
865 ui_out_emit_tuple tuple_emitter (uiout, NULL);
866 const char *tid = get_osdata_column (child, "tid");
867 const char *tcore = get_osdata_column (child, "core");
869 uiout->field_string ("id", tid);
871 uiout->field_string ("core", tcore);
877 do_cleanups (cleanup);
881 mi_cmd_list_thread_groups (const char *command, char **argv, int argc)
883 struct ui_out *uiout = current_uiout;
884 struct cleanup *back_to;
891 AVAILABLE_OPT, RECURSE_OPT
893 static const struct mi_opt opts[] =
895 {"-available", AVAILABLE_OPT, 0},
896 {"-recurse", RECURSE_OPT, 1},
905 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
910 switch ((enum opt) opt)
916 if (strcmp (oarg, "0") == 0)
918 else if (strcmp (oarg, "1") == 0)
921 error (_("only '0' and '1' are valid values "
922 "for the '--recurse' option"));
927 for (; oind < argc; ++oind)
932 if (*(argv[oind]) != 'i')
933 error (_("invalid syntax of group id '%s'"), argv[oind]);
935 inf = strtoul (argv[oind] + 1, &end, 0);
938 error (_("invalid syntax of group id '%s'"), argv[oind]);
939 VEC_safe_push (int, ids, inf);
941 if (VEC_length (int, ids) > 1)
942 qsort (VEC_address (int, ids),
943 VEC_length (int, ids),
944 sizeof (int), compare_positive_ints);
946 back_to = make_cleanup (free_vector_of_ints, &ids);
950 list_available_thread_groups (ids, recurse);
952 else if (VEC_length (int, ids) == 1)
954 /* Local thread groups, single id. */
955 int id = *VEC_address (int, ids);
956 struct inferior *inf = find_inferior_id (id);
959 error (_("Non-existent thread group id '%d'"), id);
961 print_thread_info (uiout, NULL, inf->pid);
965 struct print_one_inferior_data data;
967 data.recurse = recurse;
968 data.inferiors = ids;
970 /* Local thread groups. Either no explicit ids -- and we
971 print everything, or several explicit ids. In both cases,
972 we print more than one group, and have to use 'groups'
973 as the top-level element. */
974 ui_out_emit_list list_emitter (uiout, "groups");
975 update_thread_list ();
976 iterate_over_inferiors (print_one_inferior, &data);
979 do_cleanups (back_to);
983 mi_cmd_data_list_register_names (const char *command, char **argv, int argc)
985 struct gdbarch *gdbarch;
986 struct ui_out *uiout = current_uiout;
990 /* Note that the test for a valid register must include checking the
991 gdbarch_register_name because gdbarch_num_regs may be allocated
992 for the union of the register sets within a family of related
993 processors. In this case, some entries of gdbarch_register_name
994 will change depending upon the particular processor being
997 gdbarch = get_current_arch ();
998 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1000 ui_out_emit_list list_emitter (uiout, "register-names");
1002 if (argc == 0) /* No args, just do all the regs. */
1008 if (gdbarch_register_name (gdbarch, regnum) == NULL
1009 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1010 uiout->field_string (NULL, "");
1012 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1016 /* Else, list of register #s, just do listed regs. */
1017 for (i = 0; i < argc; i++)
1019 regnum = atoi (argv[i]);
1020 if (regnum < 0 || regnum >= numregs)
1021 error (_("bad register number"));
1023 if (gdbarch_register_name (gdbarch, regnum) == NULL
1024 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1025 uiout->field_string (NULL, "");
1027 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1032 mi_cmd_data_list_changed_registers (const char *command, char **argv, int argc)
1034 static struct regcache *this_regs = NULL;
1035 struct ui_out *uiout = current_uiout;
1036 struct regcache *prev_regs;
1037 struct gdbarch *gdbarch;
1038 int regnum, numregs, changed;
1040 struct cleanup *cleanup;
1042 /* The last time we visited this function, the current frame's
1043 register contents were saved in THIS_REGS. Move THIS_REGS over
1044 to PREV_REGS, and refresh THIS_REGS with the now-current register
1047 prev_regs = this_regs;
1048 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1049 cleanup = make_cleanup_regcache_xfree (prev_regs);
1051 /* Note that the test for a valid register must include checking the
1052 gdbarch_register_name because gdbarch_num_regs may be allocated
1053 for the union of the register sets within a family of related
1054 processors. In this case, some entries of gdbarch_register_name
1055 will change depending upon the particular processor being
1058 gdbarch = get_regcache_arch (this_regs);
1059 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1061 ui_out_emit_list list_emitter (uiout, "changed-registers");
1065 /* No args, just do all the regs. */
1070 if (gdbarch_register_name (gdbarch, regnum) == NULL
1071 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1073 changed = register_changed_p (regnum, prev_regs, this_regs);
1075 error (_("-data-list-changed-registers: "
1076 "Unable to read register contents."));
1078 uiout->field_int (NULL, regnum);
1082 /* Else, list of register #s, just do listed regs. */
1083 for (i = 0; i < argc; i++)
1085 regnum = atoi (argv[i]);
1089 && gdbarch_register_name (gdbarch, regnum) != NULL
1090 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1092 changed = register_changed_p (regnum, prev_regs, this_regs);
1094 error (_("-data-list-changed-registers: "
1095 "Unable to read register contents."));
1097 uiout->field_int (NULL, regnum);
1100 error (_("bad register number"));
1102 do_cleanups (cleanup);
1106 register_changed_p (int regnum, struct regcache *prev_regs,
1107 struct regcache *this_regs)
1109 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1110 struct value *prev_value, *this_value;
1113 /* First time through or after gdbarch change consider all registers
1115 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1118 /* Get register contents and compare. */
1119 prev_value = prev_regs->cooked_read_value (regnum);
1120 this_value = this_regs->cooked_read_value (regnum);
1121 gdb_assert (prev_value != NULL);
1122 gdb_assert (this_value != NULL);
1124 ret = value_contents_eq (prev_value, 0, this_value, 0,
1125 register_size (gdbarch, regnum)) == 0;
1127 release_value (prev_value);
1128 release_value (this_value);
1129 value_free (prev_value);
1130 value_free (this_value);
1134 /* Return a list of register number and value pairs. The valid
1135 arguments expected are: a letter indicating the format in which to
1136 display the registers contents. This can be one of: x
1137 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1138 (raw). After the format argument there can be a sequence of
1139 numbers, indicating which registers to fetch the content of. If
1140 the format is the only argument, a list of all the registers with
1141 their values is returned. */
1144 mi_cmd_data_list_register_values (const char *command, char **argv, int argc)
1146 struct ui_out *uiout = current_uiout;
1147 struct frame_info *frame;
1148 struct gdbarch *gdbarch;
1149 int regnum, numregs, format;
1151 int skip_unavailable = 0;
1157 static const struct mi_opt opts[] =
1159 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1163 /* Note that the test for a valid register must include checking the
1164 gdbarch_register_name because gdbarch_num_regs may be allocated
1165 for the union of the register sets within a family of related
1166 processors. In this case, some entries of gdbarch_register_name
1167 will change depending upon the particular processor being
1173 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1174 opts, &oind, &oarg);
1178 switch ((enum opt) opt)
1180 case SKIP_UNAVAILABLE:
1181 skip_unavailable = 1;
1186 if (argc - oind < 1)
1187 error (_("-data-list-register-values: Usage: "
1188 "-data-list-register-values [--skip-unavailable] <format>"
1189 " [<regnum1>...<regnumN>]"));
1191 format = (int) argv[oind][0];
1193 frame = get_selected_frame (NULL);
1194 gdbarch = get_frame_arch (frame);
1195 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1197 ui_out_emit_list list_emitter (uiout, "register-values");
1199 if (argc - oind == 1)
1201 /* No args, beside the format: do all the regs. */
1206 if (gdbarch_register_name (gdbarch, regnum) == NULL
1207 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1210 output_register (frame, regnum, format, skip_unavailable);
1214 /* Else, list of register #s, just do listed regs. */
1215 for (i = 1 + oind; i < argc; i++)
1217 regnum = atoi (argv[i]);
1221 && gdbarch_register_name (gdbarch, regnum) != NULL
1222 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1223 output_register (frame, regnum, format, skip_unavailable);
1225 error (_("bad register number"));
1229 /* Output one register REGNUM's contents in the desired FORMAT. If
1230 SKIP_UNAVAILABLE is true, skip the register if it is
1234 output_register (struct frame_info *frame, int regnum, int format,
1235 int skip_unavailable)
1237 struct ui_out *uiout = current_uiout;
1238 struct value *val = value_of_register (regnum, frame);
1239 struct value_print_options opts;
1241 if (skip_unavailable && !value_entirely_available (val))
1244 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1245 uiout->field_int ("number", regnum);
1255 get_formatted_print_options (&opts, format);
1257 val_print (value_type (val),
1258 value_embedded_offset (val), 0,
1259 &stb, 0, val, &opts, current_language);
1260 uiout->field_stream ("value", stb);
1263 /* Write given values into registers. The registers and values are
1264 given as pairs. The corresponding MI command is
1265 -data-write-register-values <format>
1266 [<regnum1> <value1>...<regnumN> <valueN>] */
1268 mi_cmd_data_write_register_values (const char *command, char **argv, int argc)
1270 struct regcache *regcache;
1271 struct gdbarch *gdbarch;
1274 /* Note that the test for a valid register must include checking the
1275 gdbarch_register_name because gdbarch_num_regs may be allocated
1276 for the union of the register sets within a family of related
1277 processors. In this case, some entries of gdbarch_register_name
1278 will change depending upon the particular processor being
1281 regcache = get_current_regcache ();
1282 gdbarch = get_regcache_arch (regcache);
1283 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1286 error (_("-data-write-register-values: Usage: -data-write-register-"
1287 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1289 if (!target_has_registers)
1290 error (_("-data-write-register-values: No registers."));
1293 error (_("-data-write-register-values: No regs and values specified."));
1296 error (_("-data-write-register-values: "
1297 "Regs and vals are not in pairs."));
1299 for (i = 1; i < argc; i = i + 2)
1301 int regnum = atoi (argv[i]);
1303 if (regnum >= 0 && regnum < numregs
1304 && gdbarch_register_name (gdbarch, regnum)
1305 && *gdbarch_register_name (gdbarch, regnum))
1309 /* Get the value as a number. */
1310 value = parse_and_eval_address (argv[i + 1]);
1312 /* Write it down. */
1313 regcache_cooked_write_signed (regcache, regnum, value);
1316 error (_("bad register number"));
1320 /* Evaluate the value of the argument. The argument is an
1321 expression. If the expression contains spaces it needs to be
1322 included in double quotes. */
1325 mi_cmd_data_evaluate_expression (const char *command, char **argv, int argc)
1328 struct value_print_options opts;
1329 struct ui_out *uiout = current_uiout;
1332 error (_("-data-evaluate-expression: "
1333 "Usage: -data-evaluate-expression expression"));
1335 expression_up expr = parse_expression (argv[0]);
1337 val = evaluate_expression (expr.get ());
1341 /* Print the result of the expression evaluation. */
1342 get_user_print_options (&opts);
1344 common_val_print (val, &stb, 0, &opts, current_language);
1346 uiout->field_stream ("value", stb);
1349 /* This is the -data-read-memory command.
1351 ADDR: start address of data to be dumped.
1352 WORD-FORMAT: a char indicating format for the ``word''. See
1354 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1355 NR_ROW: Number of rows.
1356 NR_COL: The number of colums (words per row).
1357 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1358 ASCHAR for unprintable characters.
1360 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1361 displayes them. Returns:
1363 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1366 The number of bytes read is SIZE*ROW*COL. */
1369 mi_cmd_data_read_memory (const char *command, char **argv, int argc)
1371 struct gdbarch *gdbarch = get_current_arch ();
1372 struct ui_out *uiout = current_uiout;
1374 long total_bytes, nr_cols, nr_rows;
1376 struct type *word_type;
1388 static const struct mi_opt opts[] =
1390 {"o", OFFSET_OPT, 1},
1396 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1401 switch ((enum opt) opt)
1404 offset = atol (oarg);
1411 if (argc < 5 || argc > 6)
1412 error (_("-data-read-memory: Usage: "
1413 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1415 /* Extract all the arguments. */
1417 /* Start address of the memory dump. */
1418 addr = parse_and_eval_address (argv[0]) + offset;
1419 /* The format character to use when displaying a memory word. See
1420 the ``x'' command. */
1421 word_format = argv[1][0];
1422 /* The size of the memory word. */
1423 word_size = atol (argv[2]);
1427 word_type = builtin_type (gdbarch)->builtin_int8;
1431 word_type = builtin_type (gdbarch)->builtin_int16;
1435 word_type = builtin_type (gdbarch)->builtin_int32;
1439 word_type = builtin_type (gdbarch)->builtin_int64;
1443 word_type = builtin_type (gdbarch)->builtin_int8;
1446 /* The number of rows. */
1447 nr_rows = atol (argv[3]);
1449 error (_("-data-read-memory: invalid number of rows."));
1451 /* Number of bytes per row. */
1452 nr_cols = atol (argv[4]);
1454 error (_("-data-read-memory: invalid number of columns."));
1456 /* The un-printable character when printing ascii. */
1462 /* Create a buffer and read it in. */
1463 total_bytes = word_size * nr_rows * nr_cols;
1465 gdb::byte_vector mbuf (total_bytes);
1467 /* Dispatch memory reads to the topmost target, not the flattened
1469 nr_bytes = target_read (current_target.beneath,
1470 TARGET_OBJECT_MEMORY, NULL, mbuf.data (),
1473 error (_("Unable to read memory."));
1475 /* Output the header information. */
1476 uiout->field_core_addr ("addr", gdbarch, addr);
1477 uiout->field_int ("nr-bytes", nr_bytes);
1478 uiout->field_int ("total-bytes", total_bytes);
1479 uiout->field_core_addr ("next-row", gdbarch, addr + word_size * nr_cols);
1480 uiout->field_core_addr ("prev-row", gdbarch, addr - word_size * nr_cols);
1481 uiout->field_core_addr ("next-page", gdbarch, addr + total_bytes);
1482 uiout->field_core_addr ("prev-page", gdbarch, addr - total_bytes);
1484 /* Build the result as a two dimentional table. */
1491 ui_out_emit_list list_emitter (uiout, "memory");
1492 for (row = 0, row_byte = 0;
1494 row++, row_byte += nr_cols * word_size)
1498 struct value_print_options opts;
1500 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1501 uiout->field_core_addr ("addr", gdbarch, addr + row_byte);
1502 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1505 ui_out_emit_list list_data_emitter (uiout, "data");
1506 get_formatted_print_options (&opts, word_format);
1507 for (col = 0, col_byte = row_byte;
1509 col++, col_byte += word_size)
1511 if (col_byte + word_size > nr_bytes)
1513 uiout->field_string (NULL, "N/A");
1518 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1519 word_asize, &stream);
1520 uiout->field_stream (NULL, stream);
1530 for (byte = row_byte;
1531 byte < row_byte + word_size * nr_cols; byte++)
1533 if (byte >= nr_bytes)
1535 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1536 stream.putc (aschar);
1538 stream.putc (mbuf[byte]);
1540 uiout->field_stream ("ascii", stream);
1547 mi_cmd_data_read_memory_bytes (const char *command, char **argv, int argc)
1549 struct gdbarch *gdbarch = get_current_arch ();
1550 struct ui_out *uiout = current_uiout;
1551 struct cleanup *cleanups;
1554 memory_read_result_s *read_result;
1556 VEC(memory_read_result_s) *result;
1558 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1565 static const struct mi_opt opts[] =
1567 {"o", OFFSET_OPT, 1},
1573 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1577 switch ((enum opt) opt)
1580 offset = atol (oarg);
1588 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1590 addr = parse_and_eval_address (argv[0]) + offset;
1591 length = atol (argv[1]);
1593 result = read_memory_robust (current_target.beneath, addr, length);
1595 cleanups = make_cleanup (free_memory_read_result_vector, &result);
1597 if (VEC_length (memory_read_result_s, result) == 0)
1598 error (_("Unable to read memory."));
1600 ui_out_emit_list list_emitter (uiout, "memory");
1602 VEC_iterate (memory_read_result_s, result, ix, read_result);
1605 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1610 uiout->field_core_addr ("begin", gdbarch, read_result->begin);
1611 uiout->field_core_addr ("offset", gdbarch, read_result->begin - addr);
1612 uiout->field_core_addr ("end", gdbarch, read_result->end);
1614 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1615 data = (char *) xmalloc (alloc_len);
1617 for (i = 0, p = data;
1618 i < ((read_result->end - read_result->begin) * unit_size);
1621 sprintf (p, "%02x", read_result->data[i]);
1623 uiout->field_string ("contents", data);
1626 do_cleanups (cleanups);
1629 /* Implementation of the -data-write_memory command.
1631 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1632 offset from the beginning of the memory grid row where the cell to
1634 ADDR: start address of the row in the memory grid where the memory
1635 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1636 the location to write to.
1637 FORMAT: a char indicating format for the ``word''. See
1639 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1640 VALUE: value to be written into the memory address.
1642 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1647 mi_cmd_data_write_memory (const char *command, char **argv, int argc)
1649 struct gdbarch *gdbarch = get_current_arch ();
1650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1653 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1654 enough when using a compiler other than GCC. */
1663 static const struct mi_opt opts[] =
1665 {"o", OFFSET_OPT, 1},
1671 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1676 switch ((enum opt) opt)
1679 offset = atol (oarg);
1687 error (_("-data-write-memory: Usage: "
1688 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1690 /* Extract all the arguments. */
1691 /* Start address of the memory dump. */
1692 addr = parse_and_eval_address (argv[0]);
1693 /* The size of the memory word. */
1694 word_size = atol (argv[2]);
1696 /* Calculate the real address of the write destination. */
1697 addr += (offset * word_size);
1699 /* Get the value as a number. */
1700 value = parse_and_eval_address (argv[3]);
1701 /* Get the value into an array. */
1702 gdb::byte_vector buffer (word_size);
1703 store_signed_integer (buffer.data (), word_size, byte_order, value);
1704 /* Write it down to memory. */
1705 write_memory_with_notification (addr, buffer.data (), word_size);
1708 /* Implementation of the -data-write-memory-bytes command.
1711 DATA: string of bytes to write at that address
1712 COUNT: number of bytes to be filled (decimal integer). */
1715 mi_cmd_data_write_memory_bytes (const char *command, char **argv, int argc)
1721 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1722 long int count_units;
1723 struct cleanup *back_to;
1726 if (argc != 2 && argc != 3)
1727 error (_("Usage: ADDR DATA [COUNT]."));
1729 addr = parse_and_eval_address (argv[0]);
1731 len_hex = strlen (cdata);
1732 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1734 if (len_hex % (unit_size * 2) != 0)
1735 error (_("Hex-encoded '%s' must represent an integral number of "
1736 "addressable memory units."),
1739 len_bytes = len_hex / 2;
1740 len_units = len_bytes / unit_size;
1743 count_units = strtoul (argv[2], NULL, 10);
1745 count_units = len_units;
1747 databuf = XNEWVEC (gdb_byte, len_bytes);
1748 back_to = make_cleanup (xfree, databuf);
1750 for (i = 0; i < len_bytes; ++i)
1753 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1754 error (_("Invalid argument"));
1755 databuf[i] = (gdb_byte) x;
1758 if (len_units < count_units)
1760 /* Pattern is made of less units than count:
1761 repeat pattern to fill memory. */
1762 data = (gdb_byte *) xmalloc (count_units * unit_size);
1763 make_cleanup (xfree, data);
1765 /* Number of times the pattern is entirely repeated. */
1766 steps = count_units / len_units;
1767 /* Number of remaining addressable memory units. */
1768 remaining_units = count_units % len_units;
1769 for (i = 0; i < steps; i++)
1770 memcpy (data + i * len_bytes, databuf, len_bytes);
1772 if (remaining_units > 0)
1773 memcpy (data + steps * len_bytes, databuf,
1774 remaining_units * unit_size);
1778 /* Pattern is longer than or equal to count:
1779 just copy count addressable memory units. */
1783 write_memory_with_notification (addr, data, count_units);
1785 do_cleanups (back_to);
1789 mi_cmd_enable_timings (const char *command, char **argv, int argc)
1795 if (strcmp (argv[0], "yes") == 0)
1797 else if (strcmp (argv[0], "no") == 0)
1808 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1812 mi_cmd_list_features (const char *command, char **argv, int argc)
1816 struct ui_out *uiout = current_uiout;
1818 ui_out_emit_list list_emitter (uiout, "features");
1819 uiout->field_string (NULL, "frozen-varobjs");
1820 uiout->field_string (NULL, "pending-breakpoints");
1821 uiout->field_string (NULL, "thread-info");
1822 uiout->field_string (NULL, "data-read-memory-bytes");
1823 uiout->field_string (NULL, "breakpoint-notifications");
1824 uiout->field_string (NULL, "ada-task-info");
1825 uiout->field_string (NULL, "language-option");
1826 uiout->field_string (NULL, "info-gdb-mi-command");
1827 uiout->field_string (NULL, "undefined-command-error-code");
1828 uiout->field_string (NULL, "exec-run-start-option");
1830 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1831 uiout->field_string (NULL, "python");
1836 error (_("-list-features should be passed no arguments"));
1840 mi_cmd_list_target_features (const char *command, char **argv, int argc)
1844 struct ui_out *uiout = current_uiout;
1846 ui_out_emit_list list_emitter (uiout, "features");
1848 uiout->field_string (NULL, "async");
1849 if (target_can_execute_reverse)
1850 uiout->field_string (NULL, "reverse");
1854 error (_("-list-target-features should be passed no arguments"));
1858 mi_cmd_add_inferior (const char *command, char **argv, int argc)
1860 struct inferior *inf;
1863 error (_("-add-inferior should be passed no arguments"));
1865 inf = add_inferior_with_spaces ();
1867 current_uiout->field_fmt ("inferior", "i%d", inf->num);
1870 /* Callback used to find the first inferior other than the current
1874 get_other_inferior (struct inferior *inf, void *arg)
1876 if (inf == current_inferior ())
1883 mi_cmd_remove_inferior (const char *command, char **argv, int argc)
1886 struct inferior *inf;
1889 error (_("-remove-inferior should be passed a single argument"));
1891 if (sscanf (argv[0], "i%d", &id) != 1)
1892 error (_("the thread group id is syntactically invalid"));
1894 inf = find_inferior_id (id);
1896 error (_("the specified thread group does not exist"));
1899 error (_("cannot remove an active inferior"));
1901 if (inf == current_inferior ())
1903 struct thread_info *tp = 0;
1904 struct inferior *new_inferior
1905 = iterate_over_inferiors (get_other_inferior, NULL);
1907 if (new_inferior == NULL)
1908 error (_("Cannot remove last inferior"));
1910 set_current_inferior (new_inferior);
1911 if (new_inferior->pid != 0)
1912 tp = any_thread_of_process (new_inferior->pid);
1913 switch_to_thread (tp ? tp->ptid : null_ptid);
1914 set_current_program_space (new_inferior->pspace);
1917 delete_inferior (inf);
1922 /* Execute a command within a safe environment.
1923 Return <0 for error; >=0 for ok.
1925 args->action will tell mi_execute_command what action
1926 to perfrom after the given command has executed (display/suppress
1927 prompt, display error). */
1930 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1932 struct mi_interp *mi = (struct mi_interp *) command_interp ();
1933 struct cleanup *cleanup;
1936 current_command_ts = context->cmd_start;
1938 current_token = xstrdup (context->token);
1939 cleanup = make_cleanup (free_current_contents, ¤t_token);
1941 running_result_record_printed = 0;
1943 switch (context->op)
1946 /* A MI command was read from the input stream. */
1948 /* FIXME: gdb_???? */
1949 fprintf_unfiltered (mi->raw_stdout,
1950 " token=`%s' command=`%s' args=`%s'\n",
1951 context->token, context->command, context->args);
1953 mi_cmd_execute (context);
1955 /* Print the result if there were no errors.
1957 Remember that on the way out of executing a command, you have
1958 to directly use the mi_interp's uiout, since the command
1959 could have reset the interpreter, in which case the current
1960 uiout will most likely crash in the mi_out_* routines. */
1961 if (!running_result_record_printed)
1963 fputs_unfiltered (context->token, mi->raw_stdout);
1964 /* There's no particularly good reason why target-connect results
1965 in not ^done. Should kill ^connected for MI3. */
1966 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1967 ? "^connected" : "^done", mi->raw_stdout);
1968 mi_out_put (uiout, mi->raw_stdout);
1969 mi_out_rewind (uiout);
1970 mi_print_timing_maybe (mi->raw_stdout);
1971 fputs_unfiltered ("\n", mi->raw_stdout);
1974 /* The command does not want anything to be printed. In that
1975 case, the command probably should not have written anything
1976 to uiout, but in case it has written something, discard it. */
1977 mi_out_rewind (uiout);
1984 /* A CLI command was read from the input stream. */
1985 /* This "feature" will be removed as soon as we have a
1986 complete set of mi commands. */
1987 /* Echo the command on the console. */
1988 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1989 /* Call the "console" interpreter. */
1990 argv[0] = (char *) INTERP_CONSOLE;
1991 argv[1] = context->command;
1992 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1994 /* If we changed interpreters, DON'T print out anything. */
1995 if (current_interp_named_p (INTERP_MI)
1996 || current_interp_named_p (INTERP_MI1)
1997 || current_interp_named_p (INTERP_MI2)
1998 || current_interp_named_p (INTERP_MI3))
2000 if (!running_result_record_printed)
2002 fputs_unfiltered (context->token, mi->raw_stdout);
2003 fputs_unfiltered ("^done", mi->raw_stdout);
2004 mi_out_put (uiout, mi->raw_stdout);
2005 mi_out_rewind (uiout);
2006 mi_print_timing_maybe (mi->raw_stdout);
2007 fputs_unfiltered ("\n", mi->raw_stdout);
2010 mi_out_rewind (uiout);
2016 do_cleanups (cleanup);
2019 /* Print a gdb exception to the MI output stream. */
2022 mi_print_exception (const char *token, struct gdb_exception exception)
2024 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2026 fputs_unfiltered (token, mi->raw_stdout);
2027 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
2028 if (exception.message == NULL)
2029 fputs_unfiltered ("unknown error", mi->raw_stdout);
2031 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
2032 fputs_unfiltered ("\"", mi->raw_stdout);
2034 switch (exception.error)
2036 case UNDEFINED_COMMAND_ERROR:
2037 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
2041 fputs_unfiltered ("\n", mi->raw_stdout);
2044 /* Determine whether the parsed command already notifies the
2045 user_selected_context_changed observer. */
2048 command_notifies_uscc_observer (struct mi_parse *command)
2050 if (command->op == CLI_COMMAND)
2052 /* CLI commands "thread" and "inferior" already send it. */
2053 return (strncmp (command->command, "thread ", 7) == 0
2054 || strncmp (command->command, "inferior ", 9) == 0);
2056 else /* MI_COMMAND */
2058 if (strcmp (command->command, "interpreter-exec") == 0
2059 && command->argc > 1)
2061 /* "thread" and "inferior" again, but through -interpreter-exec. */
2062 return (strncmp (command->argv[1], "thread ", 7) == 0
2063 || strncmp (command->argv[1], "inferior ", 9) == 0);
2067 /* -thread-select already sends it. */
2068 return strcmp (command->command, "thread-select") == 0;
2073 mi_execute_command (const char *cmd, int from_tty)
2076 std::unique_ptr<struct mi_parse> command;
2078 /* This is to handle EOF (^D). We just quit gdb. */
2079 /* FIXME: we should call some API function here. */
2081 quit_force (NULL, from_tty);
2083 target_log_command (cmd);
2087 command = mi_parse (cmd, &token);
2089 CATCH (exception, RETURN_MASK_ALL)
2091 mi_print_exception (token, exception);
2096 if (command != NULL)
2098 ptid_t previous_ptid = inferior_ptid;
2100 gdb::optional<scoped_restore_tmpl<int>> restore_suppress;
2102 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
2103 restore_suppress.emplace (command->cmd->suppress_notification, 1);
2105 command->token = token;
2109 command->cmd_start = new mi_timestamp ();
2110 timestamp (command->cmd_start);
2115 captured_mi_execute_command (current_uiout, command.get ());
2117 CATCH (result, RETURN_MASK_ALL)
2119 /* Like in start_event_loop, enable input and force display
2120 of the prompt. Otherwise, any command that calls
2121 async_disable_stdin, and then throws, will leave input
2123 async_enable_stdin ();
2124 current_ui->prompt_state = PROMPT_NEEDED;
2126 /* The command execution failed and error() was called
2128 mi_print_exception (command->token, result);
2129 mi_out_rewind (current_uiout);
2133 bpstat_do_actions ();
2135 if (/* The notifications are only output when the top-level
2136 interpreter (specified on the command line) is MI. */
2137 interp_ui_out (top_level_interpreter ())->is_mi_like_p ()
2138 /* Don't try report anything if there are no threads --
2139 the program is dead. */
2140 && thread_count () != 0
2141 /* If the command already reports the thread change, no need to do it
2143 && !command_notifies_uscc_observer (command.get ()))
2145 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter ();
2146 int report_change = 0;
2148 if (command->thread == -1)
2150 report_change = (!ptid_equal (previous_ptid, null_ptid)
2151 && !ptid_equal (inferior_ptid, previous_ptid)
2152 && !ptid_equal (inferior_ptid, null_ptid));
2154 else if (!ptid_equal (inferior_ptid, null_ptid))
2156 struct thread_info *ti = inferior_thread ();
2158 report_change = (ti->global_num != command->thread);
2163 observer_notify_user_selected_context_changed
2164 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2171 mi_cmd_execute (struct mi_parse *parse)
2173 struct cleanup *cleanup;
2175 cleanup = prepare_execute_command ();
2177 if (parse->all && parse->thread_group != -1)
2178 error (_("Cannot specify --thread-group together with --all"));
2180 if (parse->all && parse->thread != -1)
2181 error (_("Cannot specify --thread together with --all"));
2183 if (parse->thread_group != -1 && parse->thread != -1)
2184 error (_("Cannot specify --thread together with --thread-group"));
2186 if (parse->frame != -1 && parse->thread == -1)
2187 error (_("Cannot specify --frame without --thread"));
2189 if (parse->thread_group != -1)
2191 struct inferior *inf = find_inferior_id (parse->thread_group);
2192 struct thread_info *tp = 0;
2195 error (_("Invalid thread group for the --thread-group option"));
2197 set_current_inferior (inf);
2198 /* This behaviour means that if --thread-group option identifies
2199 an inferior with multiple threads, then a random one will be
2200 picked. This is not a problem -- frontend should always
2201 provide --thread if it wishes to operate on a specific
2204 tp = any_live_thread_of_process (inf->pid);
2205 switch_to_thread (tp ? tp->ptid : null_ptid);
2206 set_current_program_space (inf->pspace);
2209 if (parse->thread != -1)
2211 struct thread_info *tp = find_thread_global_id (parse->thread);
2214 error (_("Invalid thread id: %d"), parse->thread);
2216 if (is_exited (tp->ptid))
2217 error (_("Thread id: %d has terminated"), parse->thread);
2219 switch_to_thread (tp->ptid);
2222 if (parse->frame != -1)
2224 struct frame_info *fid;
2225 int frame = parse->frame;
2227 fid = find_relative_frame (get_current_frame (), &frame);
2229 /* find_relative_frame was successful */
2232 error (_("Invalid frame id: %d"), frame);
2235 gdb::optional<scoped_restore_current_language> lang_saver;
2236 if (parse->language != language_unknown)
2238 lang_saver.emplace ();
2239 set_language (parse->language);
2242 current_context = parse;
2244 if (parse->cmd->argv_func != NULL)
2246 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2248 else if (parse->cmd->cli.cmd != 0)
2250 /* FIXME: DELETE THIS. */
2251 /* The operation is still implemented by a cli command. */
2252 /* Must be a synchronous one. */
2253 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2258 /* FIXME: DELETE THIS. */
2261 stb.puts ("Undefined mi command: ");
2262 stb.putstr (parse->command, '"');
2263 stb.puts (" (missing implementation)");
2267 do_cleanups (cleanup);
2270 /* FIXME: This is just a hack so we can get some extra commands going.
2271 We don't want to channel things through the CLI, but call libgdb directly.
2272 Use only for synchronous commands. */
2275 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2279 struct cleanup *old_cleanups;
2283 run = xstrprintf ("%s %s", cmd, args);
2285 run = xstrdup (cmd);
2287 /* FIXME: gdb_???? */
2288 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2290 old_cleanups = make_cleanup (xfree, run);
2291 execute_command (run, 0 /* from_tty */ );
2292 do_cleanups (old_cleanups);
2298 mi_execute_async_cli_command (const char *cli_command, char **argv, int argc)
2300 struct cleanup *old_cleanups;
2304 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2306 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2307 old_cleanups = make_cleanup (xfree, run);
2309 execute_command (run, 0 /* from_tty */ );
2311 /* Do this before doing any printing. It would appear that some
2312 print code leaves garbage around in the buffer. */
2313 do_cleanups (old_cleanups);
2317 mi_load_progress (const char *section_name,
2318 unsigned long sent_so_far,
2319 unsigned long total_section,
2320 unsigned long total_sent,
2321 unsigned long grand_total)
2323 using namespace std::chrono;
2324 static steady_clock::time_point last_update;
2325 static char *previous_sect_name = NULL;
2327 struct ui_out *saved_uiout;
2328 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2330 /* This function is called through deprecated_show_load_progress
2331 which means uiout may not be correct. Fix it for the duration
2332 of this function. */
2333 saved_uiout = current_uiout;
2335 std::unique_ptr<ui_out> uiout;
2337 if (current_interp_named_p (INTERP_MI)
2338 || current_interp_named_p (INTERP_MI2))
2339 uiout.reset (mi_out_new (2));
2340 else if (current_interp_named_p (INTERP_MI1))
2341 uiout.reset (mi_out_new (1));
2342 else if (current_interp_named_p (INTERP_MI3))
2343 uiout.reset (mi_out_new (3));
2347 current_uiout = uiout.get ();
2349 new_section = (previous_sect_name ?
2350 strcmp (previous_sect_name, section_name) : 1);
2353 xfree (previous_sect_name);
2354 previous_sect_name = xstrdup (section_name);
2357 fputs_unfiltered (current_token, mi->raw_stdout);
2358 fputs_unfiltered ("+download", mi->raw_stdout);
2360 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2361 uiout->field_string ("section", section_name);
2362 uiout->field_int ("section-size", total_section);
2363 uiout->field_int ("total-size", grand_total);
2365 mi_out_put (uiout.get (), mi->raw_stdout);
2366 fputs_unfiltered ("\n", mi->raw_stdout);
2367 gdb_flush (mi->raw_stdout);
2370 steady_clock::time_point time_now = steady_clock::now ();
2371 if (time_now - last_update > milliseconds (500))
2373 last_update = time_now;
2375 fputs_unfiltered (current_token, mi->raw_stdout);
2376 fputs_unfiltered ("+download", mi->raw_stdout);
2378 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2379 uiout->field_string ("section", section_name);
2380 uiout->field_int ("section-sent", sent_so_far);
2381 uiout->field_int ("section-size", total_section);
2382 uiout->field_int ("total-sent", total_sent);
2383 uiout->field_int ("total-size", grand_total);
2385 mi_out_put (uiout.get (), mi->raw_stdout);
2386 fputs_unfiltered ("\n", mi->raw_stdout);
2387 gdb_flush (mi->raw_stdout);
2390 current_uiout = saved_uiout;
2394 timestamp (struct mi_timestamp *tv)
2396 using namespace std::chrono;
2398 tv->wallclock = steady_clock::now ();
2399 run_time_clock::now (tv->utime, tv->stime);
2403 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2405 struct mi_timestamp now;
2408 print_diff (file, start, &now);
2412 mi_print_timing_maybe (struct ui_file *file)
2414 /* If the command is -enable-timing then do_timings may be true
2415 whilst current_command_ts is not initialized. */
2416 if (do_timings && current_command_ts)
2417 print_diff_now (file, current_command_ts);
2421 print_diff (struct ui_file *file, struct mi_timestamp *start,
2422 struct mi_timestamp *end)
2424 using namespace std::chrono;
2426 duration<double> wallclock = end->wallclock - start->wallclock;
2427 duration<double> utime = end->utime - start->utime;
2428 duration<double> stime = end->stime - start->stime;
2432 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2433 wallclock.count (), utime.count (), stime.count ());
2437 mi_cmd_trace_define_variable (const char *command, char **argv, int argc)
2439 LONGEST initval = 0;
2440 struct trace_state_variable *tsv;
2443 if (argc != 1 && argc != 2)
2444 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2448 error (_("Name of trace variable should start with '$'"));
2450 validate_trace_state_variable_name (name);
2452 tsv = find_trace_state_variable (name);
2454 tsv = create_trace_state_variable (name);
2457 initval = value_as_long (parse_and_eval (argv[1]));
2459 tsv->initial_value = initval;
2463 mi_cmd_trace_list_variables (const char *command, char **argv, int argc)
2466 error (_("-trace-list-variables: no arguments allowed"));
2468 tvariables_info_1 ();
2472 mi_cmd_trace_find (const char *command, char **argv, int argc)
2477 error (_("trace selection mode is required"));
2481 if (strcmp (mode, "none") == 0)
2483 tfind_1 (tfind_number, -1, 0, 0, 0);
2487 check_trace_running (current_trace_status ());
2489 if (strcmp (mode, "frame-number") == 0)
2492 error (_("frame number is required"));
2493 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2495 else if (strcmp (mode, "tracepoint-number") == 0)
2498 error (_("tracepoint number is required"));
2499 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2501 else if (strcmp (mode, "pc") == 0)
2504 error (_("PC is required"));
2505 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2507 else if (strcmp (mode, "pc-inside-range") == 0)
2510 error (_("Start and end PC are required"));
2511 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2512 parse_and_eval_address (argv[2]), 0);
2514 else if (strcmp (mode, "pc-outside-range") == 0)
2517 error (_("Start and end PC are required"));
2518 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2519 parse_and_eval_address (argv[2]), 0);
2521 else if (strcmp (mode, "line") == 0)
2524 error (_("Line is required"));
2526 std::vector<symtab_and_line> sals
2527 = decode_line_with_current_source (argv[1],
2528 DECODE_LINE_FUNFIRSTLINE);
2529 const symtab_and_line &sal = sals[0];
2531 if (sal.symtab == 0)
2532 error (_("Could not find the specified line"));
2534 CORE_ADDR start_pc, end_pc;
2535 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2536 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2538 error (_("Could not find the specified line"));
2541 error (_("Invalid mode '%s'"), mode);
2543 if (has_stack_frames () || get_traceframe_number () >= 0)
2544 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2548 mi_cmd_trace_save (const char *command, char **argv, int argc)
2550 int target_saves = 0;
2551 int generate_ctf = 0;
2558 TARGET_SAVE_OPT, CTF_OPT
2560 static const struct mi_opt opts[] =
2562 {"r", TARGET_SAVE_OPT, 0},
2563 {"ctf", CTF_OPT, 0},
2569 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2574 switch ((enum opt) opt)
2576 case TARGET_SAVE_OPT:
2585 if (argc - oind != 1)
2586 error (_("Exactly one argument required "
2587 "(file in which to save trace data)"));
2589 filename = argv[oind];
2592 trace_save_ctf (filename, target_saves);
2594 trace_save_tfile (filename, target_saves);
2598 mi_cmd_trace_start (const char *command, char **argv, int argc)
2600 start_tracing (NULL);
2604 mi_cmd_trace_status (const char *command, char **argv, int argc)
2606 trace_status_mi (0);
2610 mi_cmd_trace_stop (const char *command, char **argv, int argc)
2612 stop_tracing (NULL);
2613 trace_status_mi (1);
2616 /* Implement the "-ada-task-info" command. */
2619 mi_cmd_ada_task_info (const char *command, char **argv, int argc)
2621 if (argc != 0 && argc != 1)
2622 error (_("Invalid MI command"));
2624 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2627 /* Print EXPRESSION according to VALUES. */
2630 print_variable_or_computed (const char *expression, enum print_values values)
2634 struct ui_out *uiout = current_uiout;
2638 expression_up expr = parse_expression (expression);
2640 if (values == PRINT_SIMPLE_VALUES)
2641 val = evaluate_type (expr.get ());
2643 val = evaluate_expression (expr.get ());
2645 gdb::optional<ui_out_emit_tuple> tuple_emitter;
2646 if (values != PRINT_NO_VALUES)
2647 tuple_emitter.emplace (uiout, nullptr);
2648 uiout->field_string ("name", expression);
2652 case PRINT_SIMPLE_VALUES:
2653 type = check_typedef (value_type (val));
2654 type_print (value_type (val), "", &stb, -1);
2655 uiout->field_stream ("type", stb);
2656 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2657 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2658 && TYPE_CODE (type) != TYPE_CODE_UNION)
2660 struct value_print_options opts;
2662 get_no_prettyformat_print_options (&opts);
2664 common_val_print (val, &stb, 0, &opts, current_language);
2665 uiout->field_stream ("value", stb);
2668 case PRINT_ALL_VALUES:
2670 struct value_print_options opts;
2672 get_no_prettyformat_print_options (&opts);
2674 common_val_print (val, &stb, 0, &opts, current_language);
2675 uiout->field_stream ("value", stb);
2681 /* Implement the "-trace-frame-collected" command. */
2684 mi_cmd_trace_frame_collected (const char *command, char **argv, int argc)
2686 struct bp_location *tloc;
2688 struct collection_list *clist;
2689 struct collection_list tracepoint_list, stepping_list;
2690 struct traceframe_info *tinfo;
2692 enum print_values var_print_values = PRINT_ALL_VALUES;
2693 enum print_values comp_print_values = PRINT_ALL_VALUES;
2694 int registers_format = 'x';
2695 int memory_contents = 0;
2696 struct ui_out *uiout = current_uiout;
2704 static const struct mi_opt opts[] =
2706 {"-var-print-values", VAR_PRINT_VALUES, 1},
2707 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2708 {"-registers-format", REGISTERS_FORMAT, 1},
2709 {"-memory-contents", MEMORY_CONTENTS, 0},
2716 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2720 switch ((enum opt) opt)
2722 case VAR_PRINT_VALUES:
2723 var_print_values = mi_parse_print_values (oarg);
2725 case COMP_PRINT_VALUES:
2726 comp_print_values = mi_parse_print_values (oarg);
2728 case REGISTERS_FORMAT:
2729 registers_format = oarg[0];
2730 case MEMORY_CONTENTS:
2731 memory_contents = 1;
2737 error (_("Usage: -trace-frame-collected "
2738 "[--var-print-values PRINT_VALUES] "
2739 "[--comp-print-values PRINT_VALUES] "
2740 "[--registers-format FORMAT]"
2741 "[--memory-contents]"));
2743 /* This throws an error is not inspecting a trace frame. */
2744 tloc = get_traceframe_location (&stepping_frame);
2746 /* This command only makes sense for the current frame, not the
2748 scoped_restore_current_thread restore_thread;
2749 select_frame (get_current_frame ());
2751 encode_actions (tloc, &tracepoint_list, &stepping_list);
2754 clist = &stepping_list;
2756 clist = &tracepoint_list;
2758 tinfo = get_traceframe_info ();
2760 /* Explicitly wholly collected variables. */
2764 ui_out_emit_list list_emitter (uiout, "explicit-variables");
2765 const std::vector<std::string> &wholly_collected
2766 = clist->wholly_collected ();
2767 for (size_t i = 0; i < wholly_collected.size (); i++)
2769 const std::string &str = wholly_collected[i];
2770 print_variable_or_computed (str.c_str (), var_print_values);
2774 /* Computed expressions. */
2779 ui_out_emit_list list_emitter (uiout, "computed-expressions");
2781 const std::vector<std::string> &computed = clist->computed ();
2782 for (size_t i = 0; i < computed.size (); i++)
2784 const std::string &str = computed[i];
2785 print_variable_or_computed (str.c_str (), comp_print_values);
2789 /* Registers. Given pseudo-registers, and that some architectures
2790 (like MIPS) actually hide the raw registers, we don't go through
2791 the trace frame info, but instead consult the register cache for
2792 register availability. */
2794 struct frame_info *frame;
2795 struct gdbarch *gdbarch;
2799 ui_out_emit_list list_emitter (uiout, "registers");
2801 frame = get_selected_frame (NULL);
2802 gdbarch = get_frame_arch (frame);
2803 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2805 for (regnum = 0; regnum < numregs; regnum++)
2807 if (gdbarch_register_name (gdbarch, regnum) == NULL
2808 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2811 output_register (frame, regnum, registers_format, 1);
2815 /* Trace state variables. */
2817 struct cleanup *cleanups;
2822 ui_out_emit_list list_emitter (uiout, "tvars");
2825 cleanups = make_cleanup (free_current_contents, &tsvname);
2827 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2829 struct trace_state_variable *tsv;
2831 tsv = find_trace_state_variable_by_number (tvar);
2833 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2837 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2839 strcpy (tsvname + 1, tsv->name);
2840 uiout->field_string ("name", tsvname);
2842 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2844 uiout->field_int ("current", tsv->value);
2848 uiout->field_skip ("name");
2849 uiout->field_skip ("current");
2853 do_cleanups (cleanups);
2858 struct cleanup *cleanups;
2859 VEC(mem_range_s) *available_memory = NULL;
2860 struct mem_range *r;
2863 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2864 cleanups = make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2866 ui_out_emit_list list_emitter (uiout, "memory");
2868 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2870 struct gdbarch *gdbarch = target_gdbarch ();
2872 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2874 uiout->field_core_addr ("address", gdbarch, r->start);
2875 uiout->field_int ("length", r->length);
2877 gdb::byte_vector data (r->length);
2879 if (memory_contents)
2881 if (target_read_memory (r->start, data.data (), r->length) == 0)
2883 std::string data_str = bin2hex (data.data (), r->length);
2884 uiout->field_string ("contents", data_str.c_str ());
2887 uiout->field_skip ("contents");
2891 do_cleanups (cleanups);
2896 _initialize_mi_main (void)
2898 struct cmd_list_element *c;
2900 add_setshow_boolean_cmd ("mi-async", class_run,
2902 Set whether MI asynchronous mode is enabled."), _("\
2903 Show whether MI asynchronous mode is enabled."), _("\
2904 Tells GDB whether MI should be in asynchronous mode."),
2905 set_mi_async_command,
2906 show_mi_async_command,
2910 /* Alias old "target-async" to "mi-async". */
2911 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2912 deprecate_cmd (c, "set mi-async");
2913 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
2914 deprecate_cmd (c, "show mi-async");