2 * Copyright (c) 2014 Scott Mansell
3 * Copyright © 2014 Broadcom
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include "pipe/p_state.h"
27 #include "util/u_format.h"
28 #include "util/u_hash.h"
29 #include "util/u_memory.h"
30 #include "util/u_pack_color.h"
31 #include "util/format_srgb.h"
32 #include "util/ralloc.h"
33 #include "util/hash_table.h"
34 #include "tgsi/tgsi_dump.h"
35 #include "tgsi/tgsi_info.h"
36 #include "tgsi/tgsi_lowering.h"
38 #include "vc4_context.h"
41 #ifdef USE_VC4_SIMULATOR
42 #include "simpenrose/simpenrose.h"
46 struct vc4_uncompiled_shader *shader_state;
48 enum pipe_format format;
49 unsigned compare_mode:1;
50 unsigned compare_func:3;
54 } tex[VC4_MAX_TEXTURE_SAMPLERS];
60 enum pipe_format color_format;
64 bool stencil_full_writemasks;
68 bool point_coord_upper_left;
70 uint8_t alpha_test_func;
72 uint32_t point_sprite_mask;
74 struct pipe_rt_blend_state blend;
81 * This is a proxy for the array of FS input semantics, which is
82 * larger than we would want to put in the key.
84 uint64_t compiled_fs_id;
86 enum pipe_format attr_formats[8];
88 bool per_vertex_point_size;
92 resize_qreg_array(struct vc4_compile *c,
97 if (*size >= decl_size)
100 uint32_t old_size = *size;
101 *size = MAX2(*size * 2, decl_size);
102 *regs = reralloc(c, *regs, struct qreg, *size);
104 fprintf(stderr, "Malloc failure\n");
108 for (uint32_t i = old_size; i < *size; i++)
109 (*regs)[i] = c->undef;
113 add_uniform(struct vc4_compile *c,
114 enum quniform_contents contents,
117 for (int i = 0; i < c->num_uniforms; i++) {
118 if (c->uniform_contents[i] == contents &&
119 c->uniform_data[i] == data) {
120 return (struct qreg) { QFILE_UNIF, i };
124 uint32_t uniform = c->num_uniforms++;
125 struct qreg u = { QFILE_UNIF, uniform };
127 if (uniform >= c->uniform_array_size) {
128 c->uniform_array_size = MAX2(MAX2(16, uniform + 1),
129 c->uniform_array_size * 2);
131 c->uniform_data = reralloc(c, c->uniform_data,
133 c->uniform_array_size);
134 c->uniform_contents = reralloc(c, c->uniform_contents,
135 enum quniform_contents,
136 c->uniform_array_size);
139 c->uniform_contents[uniform] = contents;
140 c->uniform_data[uniform] = data;
146 get_temp_for_uniform(struct vc4_compile *c, enum quniform_contents contents,
149 struct qreg u = add_uniform(c, contents, data);
150 struct qreg t = qir_MOV(c, u);
155 qir_uniform_ui(struct vc4_compile *c, uint32_t ui)
157 return get_temp_for_uniform(c, QUNIFORM_CONSTANT, ui);
161 qir_uniform_f(struct vc4_compile *c, float f)
163 return qir_uniform_ui(c, fui(f));
167 indirect_uniform_load(struct vc4_compile *c,
168 struct tgsi_full_src_register *src, int swiz)
170 struct tgsi_ind_register *indirect = &src->Indirect;
171 struct vc4_compiler_ubo_range *range = &c->ubo_ranges[indirect->ArrayID];
174 range->dst_offset = c->next_ubo_dst_offset;
175 c->next_ubo_dst_offset += range->size;
179 assert(src->Register.Indirect);
180 assert(indirect->File == TGSI_FILE_ADDRESS);
182 struct qreg addr_val = c->addr[indirect->Swizzle];
183 struct qreg indirect_offset =
184 qir_ADD(c, addr_val, qir_uniform_ui(c,
186 (src->Register.Index * 16)+
188 indirect_offset = qir_MIN(c, indirect_offset, qir_uniform_ui(c, (range->dst_offset +
191 qir_TEX_DIRECT(c, indirect_offset, add_uniform(c, QUNIFORM_UBO_ADDR, 0));
192 struct qreg r4 = qir_TEX_RESULT(c);
193 c->num_texture_samples++;
194 return qir_MOV(c, r4);
198 get_src(struct vc4_compile *c, unsigned tgsi_op,
199 struct tgsi_full_src_register *full_src, int i)
201 struct tgsi_src_register *src = &full_src->Register;
202 struct qreg r = c->undef;
225 case TGSI_FILE_TEMPORARY:
226 r = c->temps[src->Index * 4 + s];
228 case TGSI_FILE_IMMEDIATE:
229 r = c->consts[src->Index * 4 + s];
231 case TGSI_FILE_CONSTANT:
233 r = indirect_uniform_load(c, full_src, s);
235 r = get_temp_for_uniform(c, QUNIFORM_UNIFORM,
239 case TGSI_FILE_INPUT:
240 r = c->inputs[src->Index * 4 + s];
242 case TGSI_FILE_SAMPLER:
243 case TGSI_FILE_SAMPLER_VIEW:
247 fprintf(stderr, "unknown src file %d\n", src->File);
252 r = qir_FMAXABS(c, r, r);
255 switch (tgsi_opcode_infer_src_type(tgsi_op)) {
256 case TGSI_TYPE_SIGNED:
257 case TGSI_TYPE_UNSIGNED:
258 r = qir_SUB(c, qir_uniform_ui(c, 0), r);
261 r = qir_FSUB(c, qir_uniform_f(c, 0.0), r);
271 update_dst(struct vc4_compile *c, struct tgsi_full_instruction *tgsi_inst,
272 int i, struct qreg val)
274 struct tgsi_dst_register *tgsi_dst = &tgsi_inst->Dst[0].Register;
276 assert(!tgsi_dst->Indirect);
278 switch (tgsi_dst->File) {
279 case TGSI_FILE_TEMPORARY:
280 c->temps[tgsi_dst->Index * 4 + i] = val;
282 case TGSI_FILE_OUTPUT:
283 c->outputs[tgsi_dst->Index * 4 + i] = val;
284 c->num_outputs = MAX2(c->num_outputs,
285 tgsi_dst->Index * 4 + i + 1);
287 case TGSI_FILE_ADDRESS:
288 assert(tgsi_dst->Index == 0);
292 fprintf(stderr, "unknown dst file %d\n", tgsi_dst->File);
298 get_swizzled_channel(struct vc4_compile *c,
299 struct qreg *srcs, int swiz)
303 case UTIL_FORMAT_SWIZZLE_NONE:
304 fprintf(stderr, "warning: unknown swizzle\n");
306 case UTIL_FORMAT_SWIZZLE_0:
307 return qir_uniform_f(c, 0.0);
308 case UTIL_FORMAT_SWIZZLE_1:
309 return qir_uniform_f(c, 1.0);
310 case UTIL_FORMAT_SWIZZLE_X:
311 case UTIL_FORMAT_SWIZZLE_Y:
312 case UTIL_FORMAT_SWIZZLE_Z:
313 case UTIL_FORMAT_SWIZZLE_W:
319 tgsi_to_qir_alu(struct vc4_compile *c,
320 struct tgsi_full_instruction *tgsi_inst,
321 enum qop op, struct qreg *src, int i)
323 struct qreg dst = qir_get_temp(c);
324 qir_emit(c, qir_inst4(op, dst,
333 tgsi_to_qir_scalar(struct vc4_compile *c,
334 struct tgsi_full_instruction *tgsi_inst,
335 enum qop op, struct qreg *src, int i)
337 struct qreg dst = qir_get_temp(c);
338 qir_emit(c, qir_inst(op, dst,
345 tgsi_to_qir_rcp(struct vc4_compile *c,
346 struct tgsi_full_instruction *tgsi_inst,
347 enum qop op, struct qreg *src, int i)
349 struct qreg x = src[0 * 4 + 0];
350 struct qreg r = qir_RCP(c, x);
352 /* Apply a Newton-Raphson step to improve the accuracy. */
353 r = qir_FMUL(c, r, qir_FSUB(c,
354 qir_uniform_f(c, 2.0),
361 tgsi_to_qir_rsq(struct vc4_compile *c,
362 struct tgsi_full_instruction *tgsi_inst,
363 enum qop op, struct qreg *src, int i)
365 struct qreg x = src[0 * 4 + 0];
366 struct qreg r = qir_RSQ(c, x);
368 /* Apply a Newton-Raphson step to improve the accuracy. */
369 r = qir_FMUL(c, r, qir_FSUB(c,
370 qir_uniform_f(c, 1.5),
372 qir_uniform_f(c, 0.5),
374 qir_FMUL(c, r, r)))));
380 qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
382 struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
383 struct qreg high = qir_POW(c,
387 qir_uniform_f(c, 0.055)),
388 qir_uniform_f(c, 1.0 / 1.055)),
389 qir_uniform_f(c, 2.4));
391 qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
392 return qir_SEL_X_Y_NS(c, low, high);
396 qir_srgb_encode(struct vc4_compile *c, struct qreg linear)
398 struct qreg low = qir_FMUL(c, linear, qir_uniform_f(c, 12.92));
399 struct qreg high = qir_FSUB(c,
401 qir_uniform_f(c, 1.055),
404 qir_uniform_f(c, 0.41666))),
405 qir_uniform_f(c, 0.055));
407 qir_SF(c, qir_FSUB(c, linear, qir_uniform_f(c, 0.0031308)));
408 return qir_SEL_X_Y_NS(c, low, high);
412 tgsi_to_qir_umul(struct vc4_compile *c,
413 struct tgsi_full_instruction *tgsi_inst,
414 enum qop op, struct qreg *src, int i)
416 struct qreg src0_hi = qir_SHR(c, src[0 * 4 + i],
417 qir_uniform_ui(c, 16));
418 struct qreg src0_lo = qir_AND(c, src[0 * 4 + i],
419 qir_uniform_ui(c, 0xffff));
420 struct qreg src1_hi = qir_SHR(c, src[1 * 4 + i],
421 qir_uniform_ui(c, 16));
422 struct qreg src1_lo = qir_AND(c, src[1 * 4 + i],
423 qir_uniform_ui(c, 0xffff));
425 struct qreg hilo = qir_MUL24(c, src0_hi, src1_lo);
426 struct qreg lohi = qir_MUL24(c, src0_lo, src1_hi);
427 struct qreg lolo = qir_MUL24(c, src0_lo, src1_lo);
429 return qir_ADD(c, lolo, qir_SHL(c,
430 qir_ADD(c, hilo, lohi),
431 qir_uniform_ui(c, 16)));
435 tgsi_to_qir_umad(struct vc4_compile *c,
436 struct tgsi_full_instruction *tgsi_inst,
437 enum qop op, struct qreg *src, int i)
439 return qir_ADD(c, tgsi_to_qir_umul(c, NULL, 0, src, i), src[2 * 4 + i]);
443 tgsi_to_qir_idiv(struct vc4_compile *c,
444 struct tgsi_full_instruction *tgsi_inst,
445 enum qop op, struct qreg *src, int i)
447 return qir_FTOI(c, qir_FMUL(c,
448 qir_ITOF(c, src[0 * 4 + i]),
449 qir_RCP(c, qir_ITOF(c, src[1 * 4 + i]))));
453 tgsi_to_qir_ineg(struct vc4_compile *c,
454 struct tgsi_full_instruction *tgsi_inst,
455 enum qop op, struct qreg *src, int i)
457 return qir_SUB(c, qir_uniform_ui(c, 0), src[0 * 4 + i]);
461 tgsi_to_qir_seq(struct vc4_compile *c,
462 struct tgsi_full_instruction *tgsi_inst,
463 enum qop op, struct qreg *src, int i)
465 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
466 return qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0));
470 tgsi_to_qir_sne(struct vc4_compile *c,
471 struct tgsi_full_instruction *tgsi_inst,
472 enum qop op, struct qreg *src, int i)
474 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
475 return qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0));
479 tgsi_to_qir_slt(struct vc4_compile *c,
480 struct tgsi_full_instruction *tgsi_inst,
481 enum qop op, struct qreg *src, int i)
483 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
484 return qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0));
488 tgsi_to_qir_sge(struct vc4_compile *c,
489 struct tgsi_full_instruction *tgsi_inst,
490 enum qop op, struct qreg *src, int i)
492 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
493 return qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0));
497 tgsi_to_qir_fseq(struct vc4_compile *c,
498 struct tgsi_full_instruction *tgsi_inst,
499 enum qop op, struct qreg *src, int i)
501 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
502 return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
506 tgsi_to_qir_fsne(struct vc4_compile *c,
507 struct tgsi_full_instruction *tgsi_inst,
508 enum qop op, struct qreg *src, int i)
510 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
511 return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
515 tgsi_to_qir_fslt(struct vc4_compile *c,
516 struct tgsi_full_instruction *tgsi_inst,
517 enum qop op, struct qreg *src, int i)
519 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
520 return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
524 tgsi_to_qir_fsge(struct vc4_compile *c,
525 struct tgsi_full_instruction *tgsi_inst,
526 enum qop op, struct qreg *src, int i)
528 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
529 return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
533 tgsi_to_qir_useq(struct vc4_compile *c,
534 struct tgsi_full_instruction *tgsi_inst,
535 enum qop op, struct qreg *src, int i)
537 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
538 return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
542 tgsi_to_qir_usne(struct vc4_compile *c,
543 struct tgsi_full_instruction *tgsi_inst,
544 enum qop op, struct qreg *src, int i)
546 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
547 return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
551 tgsi_to_qir_islt(struct vc4_compile *c,
552 struct tgsi_full_instruction *tgsi_inst,
553 enum qop op, struct qreg *src, int i)
555 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
556 return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
560 tgsi_to_qir_isge(struct vc4_compile *c,
561 struct tgsi_full_instruction *tgsi_inst,
562 enum qop op, struct qreg *src, int i)
564 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
565 return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
569 tgsi_to_qir_cmp(struct vc4_compile *c,
570 struct tgsi_full_instruction *tgsi_inst,
571 enum qop op, struct qreg *src, int i)
573 qir_SF(c, src[0 * 4 + i]);
574 return qir_SEL_X_Y_NS(c,
580 tgsi_to_qir_ucmp(struct vc4_compile *c,
581 struct tgsi_full_instruction *tgsi_inst,
582 enum qop op, struct qreg *src, int i)
584 qir_SF(c, src[0 * 4 + i]);
585 return qir_SEL_X_Y_ZC(c,
591 tgsi_to_qir_mad(struct vc4_compile *c,
592 struct tgsi_full_instruction *tgsi_inst,
593 enum qop op, struct qreg *src, int i)
603 tgsi_to_qir_lrp(struct vc4_compile *c,
604 struct tgsi_full_instruction *tgsi_inst,
605 enum qop op, struct qreg *src, int i)
607 struct qreg src0 = src[0 * 4 + i];
608 struct qreg src1 = src[1 * 4 + i];
609 struct qreg src2 = src[2 * 4 + i];
612 * src0 * src1 + (1 - src0) * src2.
613 * -> src0 * src1 + src2 - src0 * src2
614 * -> src2 + src0 * (src1 - src2)
616 return qir_FADD(c, src2, qir_FMUL(c, src0, qir_FSUB(c, src1, src2)));
621 tgsi_to_qir_tex(struct vc4_compile *c,
622 struct tgsi_full_instruction *tgsi_inst,
623 enum qop op, struct qreg *src)
625 assert(!tgsi_inst->Instruction.Saturate);
627 struct qreg s = src[0 * 4 + 0];
628 struct qreg t = src[0 * 4 + 1];
629 struct qreg r = src[0 * 4 + 2];
630 uint32_t unit = tgsi_inst->Src[1].Register.Index;
631 bool is_txl = tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL;
633 struct qreg proj = c->undef;
634 if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
635 proj = qir_RCP(c, src[0 * 4 + 3]);
636 s = qir_FMUL(c, s, proj);
637 t = qir_FMUL(c, t, proj);
640 struct qreg texture_u[] = {
641 add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
642 add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
643 add_uniform(c, QUNIFORM_CONSTANT, 0),
644 add_uniform(c, QUNIFORM_CONSTANT, 0),
646 uint32_t next_texture_u = 0;
648 /* There is no native support for GL texture rectangle coordinates, so
649 * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
652 if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_RECT ||
653 tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT) {
655 get_temp_for_uniform(c,
656 QUNIFORM_TEXRECT_SCALE_X,
659 get_temp_for_uniform(c,
660 QUNIFORM_TEXRECT_SCALE_Y,
664 if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
665 tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
667 texture_u[2] = add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
668 unit | (is_txl << 16));
671 if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
672 tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE) {
673 struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
674 struct qreg rcp_ma = qir_RCP(c, ma);
675 s = qir_FMUL(c, s, rcp_ma);
676 t = qir_FMUL(c, t, rcp_ma);
677 r = qir_FMUL(c, r, rcp_ma);
679 qir_TEX_R(c, r, texture_u[next_texture_u++]);
680 } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
681 c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
682 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
683 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
684 qir_TEX_R(c, get_temp_for_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
685 texture_u[next_texture_u++]);
688 if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
689 s = qir_FMIN(c, qir_FMAX(c, s, qir_uniform_f(c, 0.0)),
690 qir_uniform_f(c, 1.0));
693 if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
694 t = qir_FMIN(c, qir_FMAX(c, t, qir_uniform_f(c, 0.0)),
695 qir_uniform_f(c, 1.0));
698 qir_TEX_T(c, t, texture_u[next_texture_u++]);
700 if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXB ||
701 tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL)
702 qir_TEX_B(c, src[0 * 4 + 3], texture_u[next_texture_u++]);
704 qir_TEX_S(c, s, texture_u[next_texture_u++]);
706 c->num_texture_samples++;
707 struct qreg r4 = qir_TEX_RESULT(c);
709 enum pipe_format format = c->key->tex[unit].format;
711 struct qreg unpacked[4];
712 if (util_format_is_depth_or_stencil(format)) {
713 struct qreg depthf = qir_ITOF(c, qir_SHR(c, r4,
714 qir_uniform_ui(c, 8)));
715 struct qreg normalized = qir_FMUL(c, depthf,
716 qir_uniform_f(c, 1.0f/0xffffff));
718 struct qreg depth_output;
720 struct qreg one = qir_uniform_f(c, 1.0f);
721 if (c->key->tex[unit].compare_mode) {
722 struct qreg compare = src[0 * 4 + 2];
724 if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP)
725 compare = qir_FMUL(c, compare, proj);
727 switch (c->key->tex[unit].compare_func) {
728 case PIPE_FUNC_NEVER:
729 depth_output = qir_uniform_f(c, 0.0f);
731 case PIPE_FUNC_ALWAYS:
734 case PIPE_FUNC_EQUAL:
735 qir_SF(c, qir_FSUB(c, compare, normalized));
736 depth_output = qir_SEL_X_0_ZS(c, one);
738 case PIPE_FUNC_NOTEQUAL:
739 qir_SF(c, qir_FSUB(c, compare, normalized));
740 depth_output = qir_SEL_X_0_ZC(c, one);
742 case PIPE_FUNC_GREATER:
743 qir_SF(c, qir_FSUB(c, compare, normalized));
744 depth_output = qir_SEL_X_0_NC(c, one);
746 case PIPE_FUNC_GEQUAL:
747 qir_SF(c, qir_FSUB(c, normalized, compare));
748 depth_output = qir_SEL_X_0_NS(c, one);
751 qir_SF(c, qir_FSUB(c, compare, normalized));
752 depth_output = qir_SEL_X_0_NS(c, one);
754 case PIPE_FUNC_LEQUAL:
755 qir_SF(c, qir_FSUB(c, normalized, compare));
756 depth_output = qir_SEL_X_0_NC(c, one);
760 depth_output = normalized;
763 for (int i = 0; i < 4; i++)
764 unpacked[i] = depth_output;
766 for (int i = 0; i < 4; i++)
767 unpacked[i] = qir_R4_UNPACK(c, r4, i);
770 const uint8_t *format_swiz = vc4_get_format_swizzle(format);
771 struct qreg texture_output[4];
772 for (int i = 0; i < 4; i++) {
773 texture_output[i] = get_swizzled_channel(c, unpacked,
777 if (util_format_is_srgb(format)) {
778 for (int i = 0; i < 3; i++)
779 texture_output[i] = qir_srgb_decode(c,
783 for (int i = 0; i < 4; i++) {
784 if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
787 update_dst(c, tgsi_inst, i,
788 get_swizzled_channel(c, texture_output,
789 c->key->tex[unit].swizzle[i]));
794 tgsi_to_qir_trunc(struct vc4_compile *c,
795 struct tgsi_full_instruction *tgsi_inst,
796 enum qop op, struct qreg *src, int i)
798 return qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
802 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
806 tgsi_to_qir_frc(struct vc4_compile *c,
807 struct tgsi_full_instruction *tgsi_inst,
808 enum qop op, struct qreg *src, int i)
810 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
811 struct qreg diff = qir_FSUB(c, src[0 * 4 + i], trunc);
813 return qir_SEL_X_Y_NS(c,
814 qir_FADD(c, diff, qir_uniform_f(c, 1.0)),
819 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
823 tgsi_to_qir_flr(struct vc4_compile *c,
824 struct tgsi_full_instruction *tgsi_inst,
825 enum qop op, struct qreg *src, int i)
827 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
829 /* This will be < 0 if we truncated and the truncation was of a value
830 * that was < 0 in the first place.
832 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], trunc));
834 return qir_SEL_X_Y_NS(c,
835 qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)),
840 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
844 tgsi_to_qir_ceil(struct vc4_compile *c,
845 struct tgsi_full_instruction *tgsi_inst,
846 enum qop op, struct qreg *src, int i)
848 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
850 /* This will be < 0 if we truncated and the truncation was of a value
851 * that was > 0 in the first place.
853 qir_SF(c, qir_FSUB(c, trunc, src[0 * 4 + i]));
855 return qir_SEL_X_Y_NS(c,
856 qir_FADD(c, trunc, qir_uniform_f(c, 1.0)),
861 tgsi_to_qir_abs(struct vc4_compile *c,
862 struct tgsi_full_instruction *tgsi_inst,
863 enum qop op, struct qreg *src, int i)
865 struct qreg arg = src[0 * 4 + i];
866 return qir_FMAXABS(c, arg, arg);
869 /* Note that this instruction replicates its result from the x channel */
871 tgsi_to_qir_sin(struct vc4_compile *c,
872 struct tgsi_full_instruction *tgsi_inst,
873 enum qop op, struct qreg *src, int i)
877 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
878 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
879 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
880 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
883 struct qreg scaled_x =
886 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
888 struct qreg x = qir_FADD(c,
889 tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0),
890 qir_uniform_f(c, -0.5));
891 struct qreg x2 = qir_FMUL(c, x, x);
892 struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
893 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
894 x = qir_FMUL(c, x, x2);
899 qir_uniform_f(c, coeff[i])));
904 /* Note that this instruction replicates its result from the x channel */
906 tgsi_to_qir_cos(struct vc4_compile *c,
907 struct tgsi_full_instruction *tgsi_inst,
908 enum qop op, struct qreg *src, int i)
912 pow(2.0 * M_PI, 2) / (2 * 1),
913 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
914 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
915 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
916 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
919 struct qreg scaled_x =
920 qir_FMUL(c, src[0 * 4 + 0],
921 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
922 struct qreg x_frac = qir_FADD(c,
923 tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0),
924 qir_uniform_f(c, -0.5));
926 struct qreg sum = qir_uniform_f(c, coeff[0]);
927 struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
928 struct qreg x = x2; /* Current x^2, x^4, or x^6 */
929 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
931 x = qir_FMUL(c, x, x2);
933 struct qreg mul = qir_FMUL(c,
935 qir_uniform_f(c, coeff[i]));
939 sum = qir_FADD(c, sum, mul);
945 tgsi_to_qir_clamp(struct vc4_compile *c,
946 struct tgsi_full_instruction *tgsi_inst,
947 enum qop op, struct qreg *src, int i)
949 return qir_FMAX(c, qir_FMIN(c,
956 tgsi_to_qir_ssg(struct vc4_compile *c,
957 struct tgsi_full_instruction *tgsi_inst,
958 enum qop op, struct qreg *src, int i)
960 qir_SF(c, src[0 * 4 + i]);
961 return qir_SEL_X_Y_NC(c,
962 qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)),
963 qir_uniform_f(c, -1.0));
966 /* Compare to tgsi_to_qir_flr() for the floor logic. */
968 tgsi_to_qir_arl(struct vc4_compile *c,
969 struct tgsi_full_instruction *tgsi_inst,
970 enum qop op, struct qreg *src, int i)
972 struct qreg trunc = qir_FTOI(c, src[0 * 4 + i]);
973 struct qreg scaled = qir_SHL(c, trunc, qir_uniform_ui(c, 4));
975 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], qir_ITOF(c, trunc)));
977 return qir_SEL_X_Y_NS(c, qir_SUB(c, scaled, qir_uniform_ui(c, 4)),
982 tgsi_to_qir_uarl(struct vc4_compile *c,
983 struct tgsi_full_instruction *tgsi_inst,
984 enum qop op, struct qreg *src, int i)
986 return qir_SHL(c, src[0 * 4 + i], qir_uniform_ui(c, 4));
990 emit_vertex_input(struct vc4_compile *c, int attr)
992 enum pipe_format format = c->vs_key->attr_formats[attr];
993 struct qreg vpm_reads[4];
995 /* Right now, we're setting the VPM offsets to be 16 bytes wide every
996 * time, so we always read 4 32-bit VPM entries.
998 for (int i = 0; i < 4; i++) {
999 vpm_reads[i] = qir_get_temp(c);
1000 qir_emit(c, qir_inst(QOP_VPM_READ,
1007 bool format_warned = false;
1008 const struct util_format_description *desc =
1009 util_format_description(format);
1011 for (int i = 0; i < 4; i++) {
1012 uint8_t swiz = desc->swizzle[i];
1015 if (swiz > UTIL_FORMAT_SWIZZLE_W)
1016 result = get_swizzled_channel(c, vpm_reads, swiz);
1017 else if (desc->channel[swiz].size == 32 &&
1018 desc->channel[swiz].type == UTIL_FORMAT_TYPE_FLOAT) {
1019 result = get_swizzled_channel(c, vpm_reads, swiz);
1020 } else if (desc->channel[swiz].size == 8 &&
1021 (desc->channel[swiz].type == UTIL_FORMAT_TYPE_UNSIGNED ||
1022 desc->channel[swiz].type == UTIL_FORMAT_TYPE_SIGNED) &&
1023 desc->channel[swiz].normalized) {
1024 struct qreg vpm = vpm_reads[0];
1025 if (desc->channel[swiz].type == UTIL_FORMAT_TYPE_SIGNED)
1026 vpm = qir_XOR(c, vpm, qir_uniform_ui(c, 0x80808080));
1027 result = qir_UNPACK_8(c, vpm, swiz);
1029 if (!format_warned) {
1031 "vtx element %d unsupported type: %s\n",
1032 attr, util_format_name(format));
1033 format_warned = true;
1035 result = qir_uniform_f(c, 0.0);
1038 if (desc->channel[swiz].normalized &&
1039 desc->channel[swiz].type == UTIL_FORMAT_TYPE_SIGNED) {
1040 result = qir_FSUB(c,
1043 qir_uniform_f(c, 2.0)),
1044 qir_uniform_f(c, 1.0));
1047 c->inputs[attr * 4 + i] = result;
1052 tgsi_to_qir_kill_if(struct vc4_compile *c, struct qreg *src, int i)
1054 if (c->discard.file == QFILE_NULL)
1055 c->discard = qir_uniform_f(c, 0.0);
1056 qir_SF(c, src[0 * 4 + i]);
1057 c->discard = qir_SEL_X_Y_NS(c, qir_uniform_f(c, 1.0),
1062 emit_fragcoord_input(struct vc4_compile *c, int attr)
1064 c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
1065 c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
1066 c->inputs[attr * 4 + 2] =
1068 qir_ITOF(c, qir_FRAG_Z(c)),
1069 qir_uniform_f(c, 1.0 / 0xffffff));
1070 c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
1074 emit_point_coord_input(struct vc4_compile *c, int attr)
1076 if (c->point_x.file == QFILE_NULL) {
1077 c->point_x = qir_uniform_f(c, 0.0);
1078 c->point_y = qir_uniform_f(c, 0.0);
1081 c->inputs[attr * 4 + 0] = c->point_x;
1082 if (c->fs_key->point_coord_upper_left) {
1083 c->inputs[attr * 4 + 1] = qir_FSUB(c,
1084 qir_uniform_f(c, 1.0),
1087 c->inputs[attr * 4 + 1] = c->point_y;
1089 c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
1090 c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
1094 emit_fragment_varying(struct vc4_compile *c, uint8_t semantic,
1095 uint8_t index, uint8_t swizzle)
1097 uint32_t i = c->num_input_semantics++;
1098 struct qreg vary = {
1103 if (c->num_input_semantics >= c->input_semantics_array_size) {
1104 c->input_semantics_array_size =
1105 MAX2(4, c->input_semantics_array_size * 2);
1107 c->input_semantics = reralloc(c, c->input_semantics,
1108 struct vc4_varying_semantic,
1109 c->input_semantics_array_size);
1112 c->input_semantics[i].semantic = semantic;
1113 c->input_semantics[i].index = index;
1114 c->input_semantics[i].swizzle = swizzle;
1116 return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
1120 emit_fragment_input(struct vc4_compile *c, int attr,
1121 struct tgsi_full_declaration *decl)
1123 for (int i = 0; i < 4; i++) {
1124 c->inputs[attr * 4 + i] =
1125 emit_fragment_varying(c,
1126 decl->Semantic.Name,
1127 decl->Semantic.Index,
1134 emit_face_input(struct vc4_compile *c, int attr)
1136 c->inputs[attr * 4 + 0] = qir_FSUB(c,
1137 qir_uniform_f(c, 1.0),
1139 qir_ITOF(c, qir_FRAG_REV_FLAG(c)),
1140 qir_uniform_f(c, 2.0)));
1141 c->inputs[attr * 4 + 1] = qir_uniform_f(c, 0.0);
1142 c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
1143 c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
1147 add_output(struct vc4_compile *c,
1148 uint32_t decl_offset,
1149 uint8_t semantic_name,
1150 uint8_t semantic_index,
1151 uint8_t semantic_swizzle)
1153 uint32_t old_array_size = c->outputs_array_size;
1154 resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
1157 if (old_array_size != c->outputs_array_size) {
1158 c->output_semantics = reralloc(c,
1159 c->output_semantics,
1160 struct vc4_varying_semantic,
1161 c->outputs_array_size);
1164 c->output_semantics[decl_offset].semantic = semantic_name;
1165 c->output_semantics[decl_offset].index = semantic_index;
1166 c->output_semantics[decl_offset].swizzle = semantic_swizzle;
1170 add_array_info(struct vc4_compile *c, uint32_t array_id,
1171 uint32_t start, uint32_t size)
1173 if (array_id >= c->ubo_ranges_array_size) {
1174 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
1176 c->ubo_ranges = reralloc(c, c->ubo_ranges,
1177 struct vc4_compiler_ubo_range,
1178 c->ubo_ranges_array_size);
1181 c->ubo_ranges[array_id].dst_offset = 0;
1182 c->ubo_ranges[array_id].src_offset = start;
1183 c->ubo_ranges[array_id].size = size;
1184 c->ubo_ranges[array_id].used = false;
1188 emit_tgsi_declaration(struct vc4_compile *c,
1189 struct tgsi_full_declaration *decl)
1191 switch (decl->Declaration.File) {
1192 case TGSI_FILE_TEMPORARY: {
1193 uint32_t old_size = c->temps_array_size;
1194 resize_qreg_array(c, &c->temps, &c->temps_array_size,
1195 (decl->Range.Last + 1) * 4);
1197 for (int i = old_size; i < c->temps_array_size; i++)
1198 c->temps[i] = qir_uniform_ui(c, 0);
1202 case TGSI_FILE_INPUT:
1203 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1204 (decl->Range.Last + 1) * 4);
1206 for (int i = decl->Range.First;
1207 i <= decl->Range.Last;
1209 if (c->stage == QSTAGE_FRAG) {
1210 if (decl->Semantic.Name ==
1211 TGSI_SEMANTIC_POSITION) {
1212 emit_fragcoord_input(c, i);
1213 } else if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
1214 emit_face_input(c, i);
1215 } else if (decl->Semantic.Name == TGSI_SEMANTIC_GENERIC &&
1216 (c->fs_key->point_sprite_mask &
1217 (1 << decl->Semantic.Index))) {
1218 emit_point_coord_input(c, i);
1220 emit_fragment_input(c, i, decl);
1223 emit_vertex_input(c, i);
1228 case TGSI_FILE_OUTPUT: {
1229 for (int i = 0; i < 4; i++) {
1231 decl->Range.First * 4 + i,
1232 decl->Semantic.Name,
1233 decl->Semantic.Index,
1237 switch (decl->Semantic.Name) {
1238 case TGSI_SEMANTIC_POSITION:
1239 c->output_position_index = decl->Range.First * 4;
1241 case TGSI_SEMANTIC_CLIPVERTEX:
1242 c->output_clipvertex_index = decl->Range.First * 4;
1244 case TGSI_SEMANTIC_COLOR:
1245 c->output_color_index = decl->Range.First * 4;
1247 case TGSI_SEMANTIC_PSIZE:
1248 c->output_point_size_index = decl->Range.First * 4;
1254 case TGSI_FILE_CONSTANT:
1256 decl->Array.ArrayID,
1257 decl->Range.First * 16,
1259 decl->Range.First + 1) * 16);
1266 emit_tgsi_instruction(struct vc4_compile *c,
1267 struct tgsi_full_instruction *tgsi_inst)
1269 static const struct {
1271 struct qreg (*func)(struct vc4_compile *c,
1272 struct tgsi_full_instruction *tgsi_inst,
1274 struct qreg *src, int i);
1276 [TGSI_OPCODE_MOV] = { QOP_MOV, tgsi_to_qir_alu },
1277 [TGSI_OPCODE_ABS] = { 0, tgsi_to_qir_abs },
1278 [TGSI_OPCODE_MUL] = { QOP_FMUL, tgsi_to_qir_alu },
1279 [TGSI_OPCODE_ADD] = { QOP_FADD, tgsi_to_qir_alu },
1280 [TGSI_OPCODE_SUB] = { QOP_FSUB, tgsi_to_qir_alu },
1281 [TGSI_OPCODE_MIN] = { QOP_FMIN, tgsi_to_qir_alu },
1282 [TGSI_OPCODE_MAX] = { QOP_FMAX, tgsi_to_qir_alu },
1283 [TGSI_OPCODE_F2I] = { QOP_FTOI, tgsi_to_qir_alu },
1284 [TGSI_OPCODE_I2F] = { QOP_ITOF, tgsi_to_qir_alu },
1285 [TGSI_OPCODE_UADD] = { QOP_ADD, tgsi_to_qir_alu },
1286 [TGSI_OPCODE_USHR] = { QOP_SHR, tgsi_to_qir_alu },
1287 [TGSI_OPCODE_ISHR] = { QOP_ASR, tgsi_to_qir_alu },
1288 [TGSI_OPCODE_SHL] = { QOP_SHL, tgsi_to_qir_alu },
1289 [TGSI_OPCODE_IMIN] = { QOP_MIN, tgsi_to_qir_alu },
1290 [TGSI_OPCODE_IMAX] = { QOP_MAX, tgsi_to_qir_alu },
1291 [TGSI_OPCODE_AND] = { QOP_AND, tgsi_to_qir_alu },
1292 [TGSI_OPCODE_OR] = { QOP_OR, tgsi_to_qir_alu },
1293 [TGSI_OPCODE_XOR] = { QOP_XOR, tgsi_to_qir_alu },
1294 [TGSI_OPCODE_NOT] = { QOP_NOT, tgsi_to_qir_alu },
1296 [TGSI_OPCODE_UMUL] = { 0, tgsi_to_qir_umul },
1297 [TGSI_OPCODE_UMAD] = { 0, tgsi_to_qir_umad },
1298 [TGSI_OPCODE_IDIV] = { 0, tgsi_to_qir_idiv },
1299 [TGSI_OPCODE_INEG] = { 0, tgsi_to_qir_ineg },
1301 [TGSI_OPCODE_SEQ] = { 0, tgsi_to_qir_seq },
1302 [TGSI_OPCODE_SNE] = { 0, tgsi_to_qir_sne },
1303 [TGSI_OPCODE_SGE] = { 0, tgsi_to_qir_sge },
1304 [TGSI_OPCODE_SLT] = { 0, tgsi_to_qir_slt },
1305 [TGSI_OPCODE_FSEQ] = { 0, tgsi_to_qir_fseq },
1306 [TGSI_OPCODE_FSNE] = { 0, tgsi_to_qir_fsne },
1307 [TGSI_OPCODE_FSGE] = { 0, tgsi_to_qir_fsge },
1308 [TGSI_OPCODE_FSLT] = { 0, tgsi_to_qir_fslt },
1309 [TGSI_OPCODE_USEQ] = { 0, tgsi_to_qir_useq },
1310 [TGSI_OPCODE_USNE] = { 0, tgsi_to_qir_usne },
1311 [TGSI_OPCODE_ISGE] = { 0, tgsi_to_qir_isge },
1312 [TGSI_OPCODE_ISLT] = { 0, tgsi_to_qir_islt },
1314 [TGSI_OPCODE_CMP] = { 0, tgsi_to_qir_cmp },
1315 [TGSI_OPCODE_UCMP] = { 0, tgsi_to_qir_ucmp },
1316 [TGSI_OPCODE_MAD] = { 0, tgsi_to_qir_mad },
1317 [TGSI_OPCODE_RCP] = { QOP_RCP, tgsi_to_qir_rcp },
1318 [TGSI_OPCODE_RSQ] = { QOP_RSQ, tgsi_to_qir_rsq },
1319 [TGSI_OPCODE_EX2] = { QOP_EXP2, tgsi_to_qir_scalar },
1320 [TGSI_OPCODE_LG2] = { QOP_LOG2, tgsi_to_qir_scalar },
1321 [TGSI_OPCODE_LRP] = { 0, tgsi_to_qir_lrp },
1322 [TGSI_OPCODE_TRUNC] = { 0, tgsi_to_qir_trunc },
1323 [TGSI_OPCODE_CEIL] = { 0, tgsi_to_qir_ceil },
1324 [TGSI_OPCODE_FRC] = { 0, tgsi_to_qir_frc },
1325 [TGSI_OPCODE_FLR] = { 0, tgsi_to_qir_flr },
1326 [TGSI_OPCODE_SIN] = { 0, tgsi_to_qir_sin },
1327 [TGSI_OPCODE_COS] = { 0, tgsi_to_qir_cos },
1328 [TGSI_OPCODE_CLAMP] = { 0, tgsi_to_qir_clamp },
1329 [TGSI_OPCODE_SSG] = { 0, tgsi_to_qir_ssg },
1330 [TGSI_OPCODE_ARL] = { 0, tgsi_to_qir_arl },
1331 [TGSI_OPCODE_UARL] = { 0, tgsi_to_qir_uarl },
1333 static int asdf = 0;
1334 uint32_t tgsi_op = tgsi_inst->Instruction.Opcode;
1336 if (tgsi_op == TGSI_OPCODE_END)
1339 struct qreg src_regs[12];
1340 for (int s = 0; s < 3; s++) {
1341 for (int i = 0; i < 4; i++) {
1342 src_regs[4 * s + i] =
1343 get_src(c, tgsi_inst->Instruction.Opcode,
1344 &tgsi_inst->Src[s], i);
1349 case TGSI_OPCODE_TEX:
1350 case TGSI_OPCODE_TXP:
1351 case TGSI_OPCODE_TXB:
1352 case TGSI_OPCODE_TXL:
1353 tgsi_to_qir_tex(c, tgsi_inst,
1354 op_trans[tgsi_op].op, src_regs);
1356 case TGSI_OPCODE_KILL:
1357 c->discard = qir_uniform_f(c, 1.0);
1359 case TGSI_OPCODE_KILL_IF:
1360 for (int i = 0; i < 4; i++)
1361 tgsi_to_qir_kill_if(c, src_regs, i);
1367 if (tgsi_op > ARRAY_SIZE(op_trans) || !(op_trans[tgsi_op].func)) {
1368 fprintf(stderr, "unknown tgsi inst: ");
1369 tgsi_dump_instruction(tgsi_inst, asdf++);
1370 fprintf(stderr, "\n");
1374 for (int i = 0; i < 4; i++) {
1375 if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
1380 result = op_trans[tgsi_op].func(c, tgsi_inst,
1381 op_trans[tgsi_op].op,
1384 if (tgsi_inst->Instruction.Saturate) {
1385 float low = (tgsi_inst->Instruction.Saturate ==
1386 TGSI_SAT_MINUS_PLUS_ONE ? -1.0 : 0.0);
1387 result = qir_FMAX(c,
1390 qir_uniform_f(c, 1.0)),
1391 qir_uniform_f(c, low));
1394 update_dst(c, tgsi_inst, i, result);
1399 parse_tgsi_immediate(struct vc4_compile *c, struct tgsi_full_immediate *imm)
1401 for (int i = 0; i < 4; i++) {
1402 unsigned n = c->num_consts++;
1403 resize_qreg_array(c, &c->consts, &c->consts_array_size, n + 1);
1404 c->consts[n] = qir_uniform_ui(c, imm->u[i].Uint);
1409 vc4_blend_channel(struct vc4_compile *c,
1417 case PIPE_BLENDFACTOR_ONE:
1419 case PIPE_BLENDFACTOR_SRC_COLOR:
1420 return qir_FMUL(c, val, src[channel]);
1421 case PIPE_BLENDFACTOR_SRC_ALPHA:
1422 return qir_FMUL(c, val, src[3]);
1423 case PIPE_BLENDFACTOR_DST_ALPHA:
1424 return qir_FMUL(c, val, dst[3]);
1425 case PIPE_BLENDFACTOR_DST_COLOR:
1426 return qir_FMUL(c, val, dst[channel]);
1427 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1434 qir_uniform_f(c, 1.0),
1439 case PIPE_BLENDFACTOR_CONST_COLOR:
1440 return qir_FMUL(c, val,
1441 get_temp_for_uniform(c,
1442 QUNIFORM_BLEND_CONST_COLOR,
1444 case PIPE_BLENDFACTOR_CONST_ALPHA:
1445 return qir_FMUL(c, val,
1446 get_temp_for_uniform(c,
1447 QUNIFORM_BLEND_CONST_COLOR,
1449 case PIPE_BLENDFACTOR_ZERO:
1450 return qir_uniform_f(c, 0.0);
1451 case PIPE_BLENDFACTOR_INV_SRC_COLOR:
1452 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1454 case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
1455 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1457 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1458 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1460 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1461 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1463 case PIPE_BLENDFACTOR_INV_CONST_COLOR:
1464 return qir_FMUL(c, val,
1465 qir_FSUB(c, qir_uniform_f(c, 1.0),
1466 get_temp_for_uniform(c,
1467 QUNIFORM_BLEND_CONST_COLOR,
1469 case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
1470 return qir_FMUL(c, val,
1471 qir_FSUB(c, qir_uniform_f(c, 1.0),
1472 get_temp_for_uniform(c,
1473 QUNIFORM_BLEND_CONST_COLOR,
1477 case PIPE_BLENDFACTOR_SRC1_COLOR:
1478 case PIPE_BLENDFACTOR_SRC1_ALPHA:
1479 case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
1480 case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
1482 fprintf(stderr, "Unknown blend factor %d\n", factor);
1488 vc4_blend_func(struct vc4_compile *c,
1489 struct qreg src, struct qreg dst,
1493 case PIPE_BLEND_ADD:
1494 return qir_FADD(c, src, dst);
1495 case PIPE_BLEND_SUBTRACT:
1496 return qir_FSUB(c, src, dst);
1497 case PIPE_BLEND_REVERSE_SUBTRACT:
1498 return qir_FSUB(c, dst, src);
1499 case PIPE_BLEND_MIN:
1500 return qir_FMIN(c, src, dst);
1501 case PIPE_BLEND_MAX:
1502 return qir_FMAX(c, src, dst);
1506 fprintf(stderr, "Unknown blend func %d\n", func);
1513 * Implements fixed function blending in shader code.
1515 * VC4 doesn't have any hardware support for blending. Instead, you read the
1516 * current contents of the destination from the tile buffer after having
1517 * waited for the scoreboard (which is handled by vc4_qpu_emit.c), then do
1518 * math using your output color and that destination value, and update the
1519 * output color appropriately.
1522 vc4_blend(struct vc4_compile *c, struct qreg *result,
1523 struct qreg *dst_color, struct qreg *src_color)
1525 struct pipe_rt_blend_state *blend = &c->fs_key->blend;
1527 if (!blend->blend_enable) {
1528 for (int i = 0; i < 4; i++)
1529 result[i] = src_color[i];
1533 struct qreg src_blend[4], dst_blend[4];
1534 for (int i = 0; i < 3; i++) {
1535 src_blend[i] = vc4_blend_channel(c,
1536 dst_color, src_color,
1538 blend->rgb_src_factor, i);
1539 dst_blend[i] = vc4_blend_channel(c,
1540 dst_color, src_color,
1542 blend->rgb_dst_factor, i);
1544 src_blend[3] = vc4_blend_channel(c,
1545 dst_color, src_color,
1547 blend->alpha_src_factor, 3);
1548 dst_blend[3] = vc4_blend_channel(c,
1549 dst_color, src_color,
1551 blend->alpha_dst_factor, 3);
1553 for (int i = 0; i < 3; i++) {
1554 result[i] = vc4_blend_func(c,
1555 src_blend[i], dst_blend[i],
1558 result[3] = vc4_blend_func(c,
1559 src_blend[3], dst_blend[3],
1564 clip_distance_discard(struct vc4_compile *c)
1566 for (int i = 0; i < PIPE_MAX_CLIP_PLANES; i++) {
1567 if (!(c->key->ucp_enables & (1 << i)))
1570 struct qreg dist = emit_fragment_varying(c,
1571 TGSI_SEMANTIC_CLIPDIST,
1577 if (c->discard.file == QFILE_NULL)
1578 c->discard = qir_uniform_f(c, 0.0);
1580 c->discard = qir_SEL_X_Y_NS(c, qir_uniform_f(c, 1.0),
1586 alpha_test_discard(struct vc4_compile *c)
1588 struct qreg src_alpha;
1589 struct qreg alpha_ref = get_temp_for_uniform(c, QUNIFORM_ALPHA_REF, 0);
1591 if (!c->fs_key->alpha_test)
1594 if (c->output_color_index != -1)
1595 src_alpha = c->outputs[c->output_color_index + 3];
1597 src_alpha = qir_uniform_f(c, 1.0);
1599 if (c->discard.file == QFILE_NULL)
1600 c->discard = qir_uniform_f(c, 0.0);
1602 switch (c->fs_key->alpha_test_func) {
1603 case PIPE_FUNC_NEVER:
1604 c->discard = qir_uniform_f(c, 1.0);
1606 case PIPE_FUNC_ALWAYS:
1608 case PIPE_FUNC_EQUAL:
1609 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1610 c->discard = qir_SEL_X_Y_ZS(c, c->discard,
1611 qir_uniform_f(c, 1.0));
1613 case PIPE_FUNC_NOTEQUAL:
1614 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1615 c->discard = qir_SEL_X_Y_ZC(c, c->discard,
1616 qir_uniform_f(c, 1.0));
1618 case PIPE_FUNC_GREATER:
1619 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1620 c->discard = qir_SEL_X_Y_NC(c, c->discard,
1621 qir_uniform_f(c, 1.0));
1623 case PIPE_FUNC_GEQUAL:
1624 qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
1625 c->discard = qir_SEL_X_Y_NS(c, c->discard,
1626 qir_uniform_f(c, 1.0));
1628 case PIPE_FUNC_LESS:
1629 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1630 c->discard = qir_SEL_X_Y_NS(c, c->discard,
1631 qir_uniform_f(c, 1.0));
1633 case PIPE_FUNC_LEQUAL:
1634 qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
1635 c->discard = qir_SEL_X_Y_NC(c, c->discard,
1636 qir_uniform_f(c, 1.0));
1642 vc4_logicop(struct vc4_compile *c, struct qreg src, struct qreg dst)
1644 switch (c->fs_key->logicop_func) {
1645 case PIPE_LOGICOP_CLEAR:
1646 return qir_uniform_f(c, 0.0);
1647 case PIPE_LOGICOP_NOR:
1648 return qir_NOT(c, qir_OR(c, src, dst));
1649 case PIPE_LOGICOP_AND_INVERTED:
1650 return qir_AND(c, qir_NOT(c, src), dst);
1651 case PIPE_LOGICOP_COPY_INVERTED:
1652 return qir_NOT(c, src);
1653 case PIPE_LOGICOP_AND_REVERSE:
1654 return qir_AND(c, src, qir_NOT(c, dst));
1655 case PIPE_LOGICOP_INVERT:
1656 return qir_NOT(c, dst);
1657 case PIPE_LOGICOP_XOR:
1658 return qir_XOR(c, src, dst);
1659 case PIPE_LOGICOP_NAND:
1660 return qir_NOT(c, qir_AND(c, src, dst));
1661 case PIPE_LOGICOP_AND:
1662 return qir_AND(c, src, dst);
1663 case PIPE_LOGICOP_EQUIV:
1664 return qir_NOT(c, qir_XOR(c, src, dst));
1665 case PIPE_LOGICOP_NOOP:
1667 case PIPE_LOGICOP_OR_INVERTED:
1668 return qir_OR(c, qir_NOT(c, src), dst);
1669 case PIPE_LOGICOP_OR_REVERSE:
1670 return qir_OR(c, src, qir_NOT(c, dst));
1671 case PIPE_LOGICOP_OR:
1672 return qir_OR(c, src, dst);
1673 case PIPE_LOGICOP_SET:
1674 return qir_uniform_ui(c, ~0);
1675 case PIPE_LOGICOP_COPY:
1682 emit_frag_end(struct vc4_compile *c)
1684 clip_distance_discard(c);
1685 alpha_test_discard(c);
1687 enum pipe_format color_format = c->fs_key->color_format;
1688 const uint8_t *format_swiz = vc4_get_format_swizzle(color_format);
1689 struct qreg tlb_read_color[4] = { c->undef, c->undef, c->undef, c->undef };
1690 struct qreg dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
1691 struct qreg linear_dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
1692 struct qreg packed_dst_color = c->undef;
1694 if (c->fs_key->blend.blend_enable ||
1695 c->fs_key->blend.colormask != 0xf ||
1696 c->fs_key->logicop_func != PIPE_LOGICOP_COPY) {
1697 struct qreg r4 = qir_TLB_COLOR_READ(c);
1698 for (int i = 0; i < 4; i++)
1699 tlb_read_color[i] = qir_R4_UNPACK(c, r4, i);
1700 for (int i = 0; i < 4; i++) {
1701 dst_color[i] = get_swizzled_channel(c,
1704 if (util_format_is_srgb(color_format) && i != 3) {
1705 linear_dst_color[i] =
1706 qir_srgb_decode(c, dst_color[i]);
1708 linear_dst_color[i] = dst_color[i];
1712 /* Save the packed value for logic ops. Can't reuse r4
1713 * becuase other things might smash it (like sRGB)
1715 packed_dst_color = qir_MOV(c, r4);
1718 struct qreg blend_color[4];
1719 struct qreg undef_array[4] = {
1720 c->undef, c->undef, c->undef, c->undef
1722 vc4_blend(c, blend_color, linear_dst_color,
1723 (c->output_color_index != -1 ?
1724 c->outputs + c->output_color_index :
1727 if (util_format_is_srgb(color_format)) {
1728 for (int i = 0; i < 3; i++)
1729 blend_color[i] = qir_srgb_encode(c, blend_color[i]);
1732 /* If the bit isn't set in the color mask, then just return the
1733 * original dst color, instead.
1735 for (int i = 0; i < 4; i++) {
1736 if (!(c->fs_key->blend.colormask & (1 << i))) {
1737 blend_color[i] = dst_color[i];
1741 /* Debug: Sometimes you're getting a black output and just want to see
1742 * if the FS is getting executed at all. Spam magenta into the color
1746 blend_color[0] = qir_uniform_f(c, 1.0);
1747 blend_color[1] = qir_uniform_f(c, 0.0);
1748 blend_color[2] = qir_uniform_f(c, 1.0);
1749 blend_color[3] = qir_uniform_f(c, 0.5);
1752 struct qreg swizzled_outputs[4];
1753 for (int i = 0; i < 4; i++) {
1754 swizzled_outputs[i] = get_swizzled_channel(c, blend_color,
1758 if (c->discard.file != QFILE_NULL)
1759 qir_TLB_DISCARD_SETUP(c, c->discard);
1761 if (c->fs_key->stencil_enabled) {
1762 qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 0));
1763 if (c->fs_key->stencil_twoside) {
1764 qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 1));
1766 if (c->fs_key->stencil_full_writemasks) {
1767 qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 2));
1771 if (c->fs_key->depth_enabled) {
1773 if (c->output_position_index != -1) {
1774 z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
1775 qir_uniform_f(c, 0xffffff)));
1779 qir_TLB_Z_WRITE(c, z);
1782 bool color_written = false;
1783 for (int i = 0; i < 4; i++) {
1784 if (swizzled_outputs[i].file != QFILE_NULL)
1785 color_written = true;
1788 struct qreg packed_color;
1789 if (color_written) {
1790 /* Fill in any undefined colors. The simulator will assertion
1791 * fail if we read something that wasn't written, and I don't
1792 * know what hardware does.
1794 for (int i = 0; i < 4; i++) {
1795 if (swizzled_outputs[i].file == QFILE_NULL)
1796 swizzled_outputs[i] = qir_uniform_f(c, 0.0);
1798 packed_color = qir_get_temp(c);
1799 qir_emit(c, qir_inst4(QOP_PACK_COLORS, packed_color,
1800 swizzled_outputs[0],
1801 swizzled_outputs[1],
1802 swizzled_outputs[2],
1803 swizzled_outputs[3]));
1805 packed_color = qir_uniform_ui(c, 0);
1809 if (c->fs_key->logicop_func != PIPE_LOGICOP_COPY) {
1810 packed_color = vc4_logicop(c, packed_color, packed_dst_color);
1813 qir_emit(c, qir_inst(QOP_TLB_COLOR_WRITE, c->undef,
1814 packed_color, c->undef));
1818 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1822 for (int i = 0; i < 2; i++) {
1824 add_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1826 xyi[i] = qir_FTOI(c, qir_FMUL(c,
1828 c->outputs[c->output_position_index + i],
1833 qir_VPM_WRITE(c, qir_PACK_SCALED(c, xyi[0], xyi[1]));
1837 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1839 struct qreg zscale = add_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1840 struct qreg zoffset = add_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1842 qir_VPM_WRITE(c, qir_FMUL(c, qir_FADD(c, qir_FMUL(c,
1843 c->outputs[c->output_position_index + 2],
1850 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1852 qir_VPM_WRITE(c, rcp_w);
1856 emit_point_size_write(struct vc4_compile *c)
1858 struct qreg point_size;
1860 if (c->output_point_size_index)
1861 point_size = c->outputs[c->output_point_size_index + 3];
1863 point_size = qir_uniform_f(c, 1.0);
1865 /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1868 point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1870 qir_VPM_WRITE(c, point_size);
1874 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1876 * The simulator insists that there be at least one vertex attribute, so
1877 * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
1878 * insists that all vertex attributes loaded get read by the VS/CS, so we have
1879 * to consume it here.
1882 emit_stub_vpm_read(struct vc4_compile *c)
1887 for (int i = 0; i < 4; i++) {
1888 qir_emit(c, qir_inst(QOP_VPM_READ,
1897 emit_ucp_clipdistance(struct vc4_compile *c)
1900 if (c->output_clipvertex_index != -1)
1901 cv = c->output_clipvertex_index;
1902 else if (c->output_position_index != -1)
1903 cv = c->output_position_index;
1907 for (int plane = 0; plane < PIPE_MAX_CLIP_PLANES; plane++) {
1908 if (!(c->key->ucp_enables & (1 << plane)))
1911 /* Pick the next outputs[] that hasn't been written to, since
1912 * there are no other program writes left to be processed at
1913 * this point. If something had been declared but not written
1914 * (like a w component), we'll just smash over the top of it.
1916 uint32_t output_index = c->num_outputs++;
1917 add_output(c, output_index,
1918 TGSI_SEMANTIC_CLIPDIST,
1923 struct qreg dist = qir_uniform_f(c, 0.0);
1924 for (int i = 0; i < 4; i++) {
1925 struct qreg pos_chan = c->outputs[cv + i];
1927 add_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1929 dist = qir_FADD(c, dist, qir_FMUL(c, pos_chan, ucp));
1932 c->outputs[output_index] = dist;
1937 emit_vert_end(struct vc4_compile *c,
1938 struct vc4_varying_semantic *fs_inputs,
1939 uint32_t num_fs_inputs)
1941 struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1943 emit_stub_vpm_read(c);
1944 emit_ucp_clipdistance(c);
1946 emit_scaled_viewport_write(c, rcp_w);
1947 emit_zs_write(c, rcp_w);
1948 emit_rcp_wc_write(c, rcp_w);
1949 if (c->vs_key->per_vertex_point_size)
1950 emit_point_size_write(c);
1952 for (int i = 0; i < num_fs_inputs; i++) {
1953 struct vc4_varying_semantic *input = &fs_inputs[i];
1956 for (j = 0; j < c->num_outputs; j++) {
1957 struct vc4_varying_semantic *output =
1958 &c->output_semantics[j];
1960 if (input->semantic == output->semantic &&
1961 input->index == output->index &&
1962 input->swizzle == output->swizzle) {
1963 qir_VPM_WRITE(c, c->outputs[j]);
1967 /* Emit padding if we didn't find a declared VS output for
1970 if (j == c->num_outputs)
1971 qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1976 emit_coord_end(struct vc4_compile *c)
1978 struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1980 emit_stub_vpm_read(c);
1982 for (int i = 0; i < 4; i++)
1983 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1985 emit_scaled_viewport_write(c, rcp_w);
1986 emit_zs_write(c, rcp_w);
1987 emit_rcp_wc_write(c, rcp_w);
1988 if (c->vs_key->per_vertex_point_size)
1989 emit_point_size_write(c);
1992 static struct vc4_compile *
1993 vc4_shader_tgsi_to_qir(struct vc4_context *vc4, enum qstage stage,
1994 struct vc4_key *key)
1996 struct vc4_compile *c = qir_compile_init();
2000 for (int i = 0; i < 4; i++)
2001 c->addr[i] = qir_uniform_f(c, 0.0);
2003 c->shader_state = &key->shader_state->base;
2004 c->program_id = key->shader_state->program_id;
2005 c->variant_id = key->shader_state->compiled_variant_count++;
2010 c->fs_key = (struct vc4_fs_key *)key;
2011 if (c->fs_key->is_points) {
2012 c->point_x = emit_fragment_varying(c, ~0, ~0, 0);
2013 c->point_y = emit_fragment_varying(c, ~0, ~0, 0);
2014 } else if (c->fs_key->is_lines) {
2015 c->line_x = emit_fragment_varying(c, ~0, ~0, 0);
2019 c->vs_key = (struct vc4_vs_key *)key;
2022 c->vs_key = (struct vc4_vs_key *)key;
2026 const struct tgsi_token *tokens = key->shader_state->base.tokens;
2027 if (c->fs_key && c->fs_key->light_twoside) {
2028 if (!key->shader_state->twoside_tokens) {
2029 const struct tgsi_lowering_config lowering_config = {
2030 .color_two_side = true,
2032 struct tgsi_shader_info info;
2033 key->shader_state->twoside_tokens =
2034 tgsi_transform_lowering(&lowering_config,
2035 key->shader_state->base.tokens,
2038 /* If no transformation occurred, then NULL is
2039 * returned and we just use our original tokens.
2041 if (!key->shader_state->twoside_tokens) {
2042 key->shader_state->twoside_tokens =
2043 key->shader_state->base.tokens;
2046 tokens = key->shader_state->twoside_tokens;
2049 ret = tgsi_parse_init(&c->parser, tokens);
2050 assert(ret == TGSI_PARSE_OK);
2052 if (vc4_debug & VC4_DEBUG_TGSI) {
2053 fprintf(stderr, "%s prog %d/%d TGSI:\n",
2054 qir_get_stage_name(c->stage),
2055 c->program_id, c->variant_id);
2056 tgsi_dump(tokens, 0);
2059 while (!tgsi_parse_end_of_tokens(&c->parser)) {
2060 tgsi_parse_token(&c->parser);
2062 switch (c->parser.FullToken.Token.Type) {
2063 case TGSI_TOKEN_TYPE_DECLARATION:
2064 emit_tgsi_declaration(c,
2065 &c->parser.FullToken.FullDeclaration);
2068 case TGSI_TOKEN_TYPE_INSTRUCTION:
2069 emit_tgsi_instruction(c,
2070 &c->parser.FullToken.FullInstruction);
2073 case TGSI_TOKEN_TYPE_IMMEDIATE:
2074 parse_tgsi_immediate(c,
2075 &c->parser.FullToken.FullImmediate);
2086 vc4->prog.fs->input_semantics,
2087 vc4->prog.fs->num_inputs);
2094 tgsi_parse_free(&c->parser);
2098 if (vc4_debug & VC4_DEBUG_QIR) {
2099 fprintf(stderr, "%s prog %d/%d QIR:\n",
2100 qir_get_stage_name(c->stage),
2101 c->program_id, c->variant_id);
2104 qir_reorder_uniforms(c);
2105 vc4_generate_code(vc4, c);
2107 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2108 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2109 qir_get_stage_name(c->stage),
2110 c->program_id, c->variant_id,
2112 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2113 qir_get_stage_name(c->stage),
2114 c->program_id, c->variant_id,
2122 vc4_shader_state_create(struct pipe_context *pctx,
2123 const struct pipe_shader_state *cso)
2125 struct vc4_context *vc4 = vc4_context(pctx);
2126 struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2130 const struct tgsi_lowering_config lowering_config = {
2145 struct tgsi_shader_info info;
2146 so->base.tokens = tgsi_transform_lowering(&lowering_config, cso->tokens, &info);
2147 if (!so->base.tokens)
2148 so->base.tokens = tgsi_dup_tokens(cso->tokens);
2149 so->program_id = vc4->next_uncompiled_program_id++;
2155 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2156 struct vc4_compile *c)
2158 int count = c->num_uniforms;
2159 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2161 uinfo->count = count;
2162 uinfo->data = ralloc_array(shader, uint32_t, count);
2163 memcpy(uinfo->data, c->uniform_data,
2164 count * sizeof(*uinfo->data));
2165 uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2166 memcpy(uinfo->contents, c->uniform_contents,
2167 count * sizeof(*uinfo->contents));
2168 uinfo->num_texture_samples = c->num_texture_samples;
2171 static struct vc4_compiled_shader *
2172 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2173 struct vc4_key *key)
2175 struct hash_table *ht;
2177 if (stage == QSTAGE_FRAG) {
2179 key_size = sizeof(struct vc4_fs_key);
2182 key_size = sizeof(struct vc4_vs_key);
2185 struct vc4_compiled_shader *shader;
2186 struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2190 struct vc4_compile *c = vc4_shader_tgsi_to_qir(vc4, stage, key);
2191 shader = rzalloc(NULL, struct vc4_compiled_shader);
2193 shader->program_id = vc4->next_compiled_program_id++;
2194 if (stage == QSTAGE_FRAG) {
2195 bool input_live[c->num_input_semantics];
2196 struct simple_node *node;
2198 memset(input_live, 0, sizeof(input_live));
2199 foreach(node, &c->instructions) {
2200 struct qinst *inst = (struct qinst *)node;
2201 for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
2202 if (inst->src[i].file == QFILE_VARY)
2203 input_live[inst->src[i].index] = true;
2207 shader->input_semantics = ralloc_array(shader,
2208 struct vc4_varying_semantic,
2209 c->num_input_semantics);
2211 for (int i = 0; i < c->num_input_semantics; i++) {
2212 struct vc4_varying_semantic *sem = &c->input_semantics[i];
2217 /* Skip non-VS-output inputs. */
2218 if (sem->semantic == (uint8_t)~0)
2221 if (sem->semantic == TGSI_SEMANTIC_COLOR ||
2222 sem->semantic == TGSI_SEMANTIC_BCOLOR) {
2223 shader->color_inputs |= (1 << shader->num_inputs);
2226 shader->input_semantics[shader->num_inputs] = *sem;
2227 shader->num_inputs++;
2230 shader->num_inputs = c->num_inputs;
2233 copy_uniform_state_to_shader(shader, c);
2234 shader->bo = vc4_bo_alloc_mem(vc4->screen, c->qpu_insts,
2235 c->qpu_inst_count * sizeof(uint64_t),
2238 /* Copy the compiler UBO range state to the compiled shader, dropping
2239 * out arrays that were never referenced by an indirect load.
2241 * (Note that QIR dead code elimination of an array access still
2242 * leaves that array alive, though)
2244 if (c->num_ubo_ranges) {
2245 shader->num_ubo_ranges = c->num_ubo_ranges;
2246 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
2249 for (int i = 0; i < c->ubo_ranges_array_size; i++) {
2250 struct vc4_compiler_ubo_range *range =
2255 shader->ubo_ranges[j].dst_offset = range->dst_offset;
2256 shader->ubo_ranges[j].src_offset = range->src_offset;
2257 shader->ubo_ranges[j].size = range->size;
2258 shader->ubo_size += c->ubo_ranges[i].size;
2263 qir_compile_destroy(c);
2265 struct vc4_key *dup_key;
2266 dup_key = ralloc_size(shader, key_size);
2267 memcpy(dup_key, key, key_size);
2268 _mesa_hash_table_insert(ht, dup_key, shader);
2274 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2275 struct vc4_texture_stateobj *texstate)
2277 for (int i = 0; i < texstate->num_textures; i++) {
2278 struct pipe_sampler_view *sampler = texstate->textures[i];
2279 struct pipe_sampler_state *sampler_state =
2280 texstate->samplers[i];
2283 key->tex[i].format = sampler->format;
2284 key->tex[i].swizzle[0] = sampler->swizzle_r;
2285 key->tex[i].swizzle[1] = sampler->swizzle_g;
2286 key->tex[i].swizzle[2] = sampler->swizzle_b;
2287 key->tex[i].swizzle[3] = sampler->swizzle_a;
2288 key->tex[i].compare_mode = sampler_state->compare_mode;
2289 key->tex[i].compare_func = sampler_state->compare_func;
2290 key->tex[i].wrap_s = sampler_state->wrap_s;
2291 key->tex[i].wrap_t = sampler_state->wrap_t;
2295 key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2299 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2301 struct vc4_fs_key local_key;
2302 struct vc4_fs_key *key = &local_key;
2304 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2306 VC4_DIRTY_FRAMEBUFFER |
2308 VC4_DIRTY_RASTERIZER |
2310 VC4_DIRTY_TEXSTATE |
2315 memset(key, 0, sizeof(*key));
2316 vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2317 key->base.shader_state = vc4->prog.bind_fs;
2318 key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2319 key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2320 prim_mode <= PIPE_PRIM_LINE_STRIP);
2321 key->blend = vc4->blend->rt[0];
2322 if (vc4->blend->logicop_enable) {
2323 key->logicop_func = vc4->blend->logicop_func;
2325 key->logicop_func = PIPE_LOGICOP_COPY;
2327 if (vc4->framebuffer.cbufs[0])
2328 key->color_format = vc4->framebuffer.cbufs[0]->format;
2330 key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2331 key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2332 key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2333 key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2334 key->stencil_enabled);
2335 if (vc4->zsa->base.alpha.enabled) {
2336 key->alpha_test = true;
2337 key->alpha_test_func = vc4->zsa->base.alpha.func;
2340 if (key->is_points) {
2341 key->point_sprite_mask =
2342 vc4->rasterizer->base.sprite_coord_enable;
2343 key->point_coord_upper_left =
2344 (vc4->rasterizer->base.sprite_coord_mode ==
2345 PIPE_SPRITE_COORD_UPPER_LEFT);
2348 key->light_twoside = vc4->rasterizer->base.light_twoside;
2350 struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2351 vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2352 if (vc4->prog.fs == old_fs)
2355 if (vc4->rasterizer->base.flatshade &&
2356 old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
2357 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2362 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2364 struct vc4_vs_key local_key;
2365 struct vc4_vs_key *key = &local_key;
2367 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2368 VC4_DIRTY_RASTERIZER |
2370 VC4_DIRTY_TEXSTATE |
2371 VC4_DIRTY_VTXSTATE |
2376 memset(key, 0, sizeof(*key));
2377 vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2378 key->base.shader_state = vc4->prog.bind_vs;
2379 key->compiled_fs_id = vc4->prog.fs->program_id;
2381 for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2382 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2384 key->per_vertex_point_size =
2385 (prim_mode == PIPE_PRIM_POINTS &&
2386 vc4->rasterizer->base.point_size_per_vertex);
2388 vc4->prog.vs = vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2389 key->is_coord = true;
2390 vc4->prog.cs = vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2394 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2396 vc4_update_compiled_fs(vc4, prim_mode);
2397 vc4_update_compiled_vs(vc4, prim_mode);
2401 fs_cache_hash(const void *key)
2403 return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2407 vs_cache_hash(const void *key)
2409 return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2413 fs_cache_compare(const void *key1, const void *key2)
2415 return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2419 vs_cache_compare(const void *key1, const void *key2)
2421 return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2425 delete_from_cache_if_matches(struct hash_table *ht,
2426 struct hash_entry *entry,
2427 struct vc4_uncompiled_shader *so)
2429 struct vc4_key *key = entry->data;
2431 if (key->shader_state == so) {
2432 struct vc4_compiled_shader *shader = entry->data;
2433 _mesa_hash_table_remove(ht, entry);
2434 vc4_bo_unreference(&shader->bo);
2435 ralloc_free(shader);
2440 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2442 struct vc4_context *vc4 = vc4_context(pctx);
2443 struct vc4_uncompiled_shader *so = hwcso;
2445 struct hash_entry *entry;
2446 hash_table_foreach(vc4->fs_cache, entry)
2447 delete_from_cache_if_matches(vc4->fs_cache, entry, so);
2448 hash_table_foreach(vc4->vs_cache, entry)
2449 delete_from_cache_if_matches(vc4->vs_cache, entry, so);
2451 if (so->twoside_tokens != so->base.tokens)
2452 free((void *)so->twoside_tokens);
2453 free((void *)so->base.tokens);
2457 static uint32_t translate_wrap(uint32_t p_wrap, bool using_nearest)
2460 case PIPE_TEX_WRAP_REPEAT:
2462 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2464 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2466 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2468 case PIPE_TEX_WRAP_CLAMP:
2469 return (using_nearest ? 1 : 3);
2471 fprintf(stderr, "Unknown wrap mode %d\n", p_wrap);
2472 assert(!"not reached");
2478 write_texture_p0(struct vc4_context *vc4,
2479 struct vc4_texture_stateobj *texstate,
2482 struct pipe_sampler_view *texture = texstate->textures[unit];
2483 struct vc4_resource *rsc = vc4_resource(texture->texture);
2485 cl_reloc(vc4, &vc4->uniforms, rsc->bo,
2486 VC4_SET_FIELD(rsc->slices[0].offset >> 12, VC4_TEX_P0_OFFSET) |
2487 VC4_SET_FIELD(texture->u.tex.last_level -
2488 texture->u.tex.first_level, VC4_TEX_P0_MIPLVLS) |
2489 VC4_SET_FIELD(texture->target == PIPE_TEXTURE_CUBE,
2490 VC4_TEX_P0_CMMODE) |
2491 VC4_SET_FIELD(rsc->vc4_format & 7, VC4_TEX_P0_TYPE));
2495 write_texture_p1(struct vc4_context *vc4,
2496 struct vc4_texture_stateobj *texstate,
2499 struct pipe_sampler_view *texture = texstate->textures[unit];
2500 struct vc4_resource *rsc = vc4_resource(texture->texture);
2501 struct pipe_sampler_state *sampler = texstate->samplers[unit];
2502 static const uint8_t minfilter_map[6] = {
2503 VC4_TEX_P1_MINFILT_NEAR_MIP_NEAR,
2504 VC4_TEX_P1_MINFILT_LIN_MIP_NEAR,
2505 VC4_TEX_P1_MINFILT_NEAR_MIP_LIN,
2506 VC4_TEX_P1_MINFILT_LIN_MIP_LIN,
2507 VC4_TEX_P1_MINFILT_NEAREST,
2508 VC4_TEX_P1_MINFILT_LINEAR,
2510 static const uint32_t magfilter_map[] = {
2511 [PIPE_TEX_FILTER_NEAREST] = VC4_TEX_P1_MAGFILT_NEAREST,
2512 [PIPE_TEX_FILTER_LINEAR] = VC4_TEX_P1_MAGFILT_LINEAR,
2515 bool either_nearest =
2516 (sampler->mag_img_filter == PIPE_TEX_MIPFILTER_NEAREST ||
2517 sampler->min_img_filter == PIPE_TEX_MIPFILTER_NEAREST);
2519 cl_u32(&vc4->uniforms,
2520 VC4_SET_FIELD(rsc->vc4_format >> 4, VC4_TEX_P1_TYPE4) |
2521 VC4_SET_FIELD(texture->texture->height0 & 2047,
2522 VC4_TEX_P1_HEIGHT) |
2523 VC4_SET_FIELD(texture->texture->width0 & 2047,
2525 VC4_SET_FIELD(magfilter_map[sampler->mag_img_filter],
2526 VC4_TEX_P1_MAGFILT) |
2527 VC4_SET_FIELD(minfilter_map[sampler->min_mip_filter * 2 +
2528 sampler->min_img_filter],
2529 VC4_TEX_P1_MINFILT) |
2530 VC4_SET_FIELD(translate_wrap(sampler->wrap_s, either_nearest),
2531 VC4_TEX_P1_WRAP_S) |
2532 VC4_SET_FIELD(translate_wrap(sampler->wrap_t, either_nearest),
2533 VC4_TEX_P1_WRAP_T));
2537 write_texture_p2(struct vc4_context *vc4,
2538 struct vc4_texture_stateobj *texstate,
2541 uint32_t unit = data & 0xffff;
2542 struct pipe_sampler_view *texture = texstate->textures[unit];
2543 struct vc4_resource *rsc = vc4_resource(texture->texture);
2545 cl_u32(&vc4->uniforms,
2546 VC4_SET_FIELD(VC4_TEX_P2_PTYPE_CUBE_MAP_STRIDE,
2548 VC4_SET_FIELD(rsc->cube_map_stride >> 12, VC4_TEX_P2_CMST) |
2549 VC4_SET_FIELD((data >> 16) & 1, VC4_TEX_P2_BSLOD));
2553 #define SWIZ(x,y,z,w) { \
2554 UTIL_FORMAT_SWIZZLE_##x, \
2555 UTIL_FORMAT_SWIZZLE_##y, \
2556 UTIL_FORMAT_SWIZZLE_##z, \
2557 UTIL_FORMAT_SWIZZLE_##w \
2561 write_texture_border_color(struct vc4_context *vc4,
2562 struct vc4_texture_stateobj *texstate,
2565 struct pipe_sampler_state *sampler = texstate->samplers[unit];
2566 struct pipe_sampler_view *texture = texstate->textures[unit];
2567 struct vc4_resource *rsc = vc4_resource(texture->texture);
2568 union util_color uc;
2570 const struct util_format_description *tex_format_desc =
2571 util_format_description(texture->format);
2573 float border_color[4];
2574 for (int i = 0; i < 4; i++)
2575 border_color[i] = sampler->border_color.f[i];
2576 if (util_format_is_srgb(texture->format)) {
2577 for (int i = 0; i < 3; i++)
2579 util_format_linear_to_srgb_float(border_color[i]);
2582 /* Turn the border color into the layout of channels that it would
2583 * have when stored as texture contents.
2585 float storage_color[4];
2586 util_format_unswizzle_4f(storage_color,
2588 tex_format_desc->swizzle);
2590 /* Now, pack so that when the vc4_format-sampled texture contents are
2591 * replaced with our border color, the vc4_get_format_swizzle()
2592 * swizzling will get the right channels.
2594 if (util_format_is_depth_or_stencil(texture->format)) {
2595 uc.ui[0] = util_pack_z(PIPE_FORMAT_Z24X8_UNORM,
2596 sampler->border_color.f[0]) << 8;
2598 switch (rsc->vc4_format) {
2600 case VC4_TEXTURE_TYPE_RGBA8888:
2601 util_pack_color(storage_color,
2602 PIPE_FORMAT_R8G8B8A8_UNORM, &uc);
2604 case VC4_TEXTURE_TYPE_RGBA4444:
2605 util_pack_color(storage_color,
2606 PIPE_FORMAT_A8B8G8R8_UNORM, &uc);
2608 case VC4_TEXTURE_TYPE_RGB565:
2609 util_pack_color(storage_color,
2610 PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
2612 case VC4_TEXTURE_TYPE_ALPHA:
2613 uc.ui[0] = float_to_ubyte(storage_color[0]) << 24;
2615 case VC4_TEXTURE_TYPE_LUMALPHA:
2616 uc.ui[0] = ((float_to_ubyte(storage_color[1]) << 24) |
2617 (float_to_ubyte(storage_color[0]) << 0));
2622 cl_u32(&vc4->uniforms, uc.ui[0]);
2626 get_texrect_scale(struct vc4_texture_stateobj *texstate,
2627 enum quniform_contents contents,
2630 struct pipe_sampler_view *texture = texstate->textures[data];
2633 if (contents == QUNIFORM_TEXRECT_SCALE_X)
2634 dim = texture->texture->width0;
2636 dim = texture->texture->height0;
2638 return fui(1.0f / dim);
2641 static struct vc4_bo *
2642 vc4_upload_ubo(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
2643 const uint32_t *gallium_uniforms)
2645 if (!shader->ubo_size)
2648 struct vc4_bo *ubo = vc4_bo_alloc(vc4->screen, shader->ubo_size, "ubo");
2649 uint32_t *data = vc4_bo_map(ubo);
2650 for (uint32_t i = 0; i < shader->num_ubo_ranges; i++) {
2651 memcpy(data + shader->ubo_ranges[i].dst_offset,
2652 gallium_uniforms + shader->ubo_ranges[i].src_offset,
2653 shader->ubo_ranges[i].size);
2660 vc4_write_uniforms(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
2661 struct vc4_constbuf_stateobj *cb,
2662 struct vc4_texture_stateobj *texstate)
2664 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2665 const uint32_t *gallium_uniforms = cb->cb[0].user_buffer;
2666 struct vc4_bo *ubo = vc4_upload_ubo(vc4, shader, gallium_uniforms);
2668 cl_start_shader_reloc(&vc4->uniforms, uinfo->num_texture_samples);
2670 for (int i = 0; i < uinfo->count; i++) {
2672 switch (uinfo->contents[i]) {
2673 case QUNIFORM_CONSTANT:
2674 cl_u32(&vc4->uniforms, uinfo->data[i]);
2676 case QUNIFORM_UNIFORM:
2677 cl_u32(&vc4->uniforms,
2678 gallium_uniforms[uinfo->data[i]]);
2680 case QUNIFORM_VIEWPORT_X_SCALE:
2681 cl_f(&vc4->uniforms, vc4->viewport.scale[0] * 16.0f);
2683 case QUNIFORM_VIEWPORT_Y_SCALE:
2684 cl_f(&vc4->uniforms, vc4->viewport.scale[1] * 16.0f);
2687 case QUNIFORM_VIEWPORT_Z_OFFSET:
2688 cl_f(&vc4->uniforms, vc4->viewport.translate[2]);
2690 case QUNIFORM_VIEWPORT_Z_SCALE:
2691 cl_f(&vc4->uniforms, vc4->viewport.scale[2]);
2694 case QUNIFORM_USER_CLIP_PLANE:
2695 cl_f(&vc4->uniforms,
2696 vc4->clip.ucp[uinfo->data[i] / 4][uinfo->data[i] % 4]);
2699 case QUNIFORM_TEXTURE_CONFIG_P0:
2700 write_texture_p0(vc4, texstate, uinfo->data[i]);
2703 case QUNIFORM_TEXTURE_CONFIG_P1:
2704 write_texture_p1(vc4, texstate, uinfo->data[i]);
2707 case QUNIFORM_TEXTURE_CONFIG_P2:
2708 write_texture_p2(vc4, texstate, uinfo->data[i]);
2711 case QUNIFORM_UBO_ADDR:
2712 cl_reloc(vc4, &vc4->uniforms, ubo, 0);
2715 case QUNIFORM_TEXTURE_BORDER_COLOR:
2716 write_texture_border_color(vc4, texstate, uinfo->data[i]);
2719 case QUNIFORM_TEXRECT_SCALE_X:
2720 case QUNIFORM_TEXRECT_SCALE_Y:
2721 cl_u32(&vc4->uniforms,
2722 get_texrect_scale(texstate,
2727 case QUNIFORM_BLEND_CONST_COLOR:
2728 cl_f(&vc4->uniforms,
2729 vc4->blend_color.color[uinfo->data[i]]);
2732 case QUNIFORM_STENCIL:
2733 cl_u32(&vc4->uniforms,
2734 vc4->zsa->stencil_uniforms[uinfo->data[i]] |
2735 (uinfo->data[i] <= 1 ?
2736 (vc4->stencil_ref.ref_value[uinfo->data[i]] << 8) :
2740 case QUNIFORM_ALPHA_REF:
2741 cl_f(&vc4->uniforms, vc4->zsa->base.alpha.ref_value);
2745 uint32_t written_val = *(uint32_t *)(vc4->uniforms.next - 4);
2746 fprintf(stderr, "%p: %d / 0x%08x (%f)\n",
2747 shader, i, written_val, uif(written_val));
2753 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2755 struct vc4_context *vc4 = vc4_context(pctx);
2756 vc4->prog.bind_fs = hwcso;
2757 vc4->prog.dirty |= VC4_SHADER_DIRTY_FP;
2758 vc4->dirty |= VC4_DIRTY_PROG;
2762 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2764 struct vc4_context *vc4 = vc4_context(pctx);
2765 vc4->prog.bind_vs = hwcso;
2766 vc4->prog.dirty |= VC4_SHADER_DIRTY_VP;
2767 vc4->dirty |= VC4_DIRTY_PROG;
2771 vc4_program_init(struct pipe_context *pctx)
2773 struct vc4_context *vc4 = vc4_context(pctx);
2775 pctx->create_vs_state = vc4_shader_state_create;
2776 pctx->delete_vs_state = vc4_shader_state_delete;
2778 pctx->create_fs_state = vc4_shader_state_create;
2779 pctx->delete_fs_state = vc4_shader_state_delete;
2781 pctx->bind_fs_state = vc4_fp_state_bind;
2782 pctx->bind_vs_state = vc4_vp_state_bind;
2784 vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2786 vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2791 vc4_program_fini(struct pipe_context *pctx)
2793 struct vc4_context *vc4 = vc4_context(pctx);
2795 struct hash_entry *entry;
2796 hash_table_foreach(vc4->fs_cache, entry) {
2797 struct vc4_compiled_shader *shader = entry->data;
2798 vc4_bo_unreference(&shader->bo);
2799 ralloc_free(shader);
2800 _mesa_hash_table_remove(vc4->fs_cache, entry);
2803 hash_table_foreach(vc4->vs_cache, entry) {
2804 struct vc4_compiled_shader *shader = entry->data;
2805 vc4_bo_unreference(&shader->bo);
2806 ralloc_free(shader);
2807 _mesa_hash_table_remove(vc4->vs_cache, entry);