From 1ab106cdc46e598261d9ffa0673936d35af923db Mon Sep 17 00:00:00 2001 From: Steve Kargl Date: Sun, 16 May 2004 11:26:25 +0000 Subject: [PATCH] * arith.c: Fix comment typos. From-SVN: r81912 --- gcc/fortran/ChangeLog | 4 ++++ gcc/fortran/arith.c | 8 ++++---- 2 files changed, 8 insertions(+), 4 deletions(-) diff --git a/gcc/fortran/ChangeLog b/gcc/fortran/ChangeLog index ee25a940b77..b183b8d6b13 100644 --- a/gcc/fortran/ChangeLog +++ b/gcc/fortran/ChangeLog @@ -1,3 +1,7 @@ +2004-05-16 Steve Kargl + + * arith.c: Fix comment typos. + 2004-05-15 Tobias Schlueter PR fortran/13742 diff --git a/gcc/fortran/arith.c b/gcc/fortran/arith.c index b4041a61151..30957b585f8 100644 --- a/gcc/fortran/arith.c +++ b/gcc/fortran/arith.c @@ -87,7 +87,7 @@ int gfc_index_integer_kind; We first get the argument into the range 0.5 to 1.5 by successive multiplications or divisions by e. Then we use the series: - ln(x) = (x-1) - (x-1)^/2 + (x-1)^3/3 - (x-1)^4/4 + ... + ln(x) = (x-1) - (x-1)^2/2 + (x-1)^3/3 - (x-1)^4/4 + ... Because we are expanding in powers of (x-1), and 0.5 < x < 1.5, we have -0.5 < (x-1) < 0.5. Ignoring the harmonic term, this means @@ -179,7 +179,7 @@ common_logarithm (mpf_t * arg, mpf_t * result) x = Nln2 + r - Then we obtain exp(r) from the McLaurin series. + Then we obtain exp(r) from the Maclaurin series. exp(x) is then recovered from the identity exp(x) = 2^N*exp(r). */ @@ -266,7 +266,7 @@ exponential (mpf_t * arg, mpf_t * result) x= N*2pi + r - Then we obtain sin(r) from the McLaurin series. */ + Then we obtain sin(r) from the Maclaurin series. */ void sine (mpf_t * arg, mpf_t * result) @@ -1173,7 +1173,7 @@ gfc_arith_neqv (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) /* Make sure a constant numeric expression is within the range for - it's type and kind. Note that there's also a gfc_check_range(), + its type and kind. Note that there's also a gfc_check_range(), but that one deals with the intrinsic RANGE function. */ arith -- 2.30.2