From 57391ddaf39f7cb85825c32e83feb1435889da51 Mon Sep 17 00:00:00 2001 From: Fritz Reese Date: Tue, 7 Apr 2020 11:59:36 -0400 Subject: [PATCH] Fix PR fortran/93871 and re-implement degree-valued trigonometric intrinsics. 2020-04-01 Fritz Reese Steven G. Kargl gcc/fortran/ChangeLog PR fortran/93871 * gfortran.h (GFC_ISYM_ACOSD, GFC_ISYM_ASIND, GFC_ISYM_ATAN2D, GFC_ISYM_ATAND, GFC_ISYM_COSD, GFC_ISYM_COTAND, GFC_ISYM_SIND, GFC_ISYM_TAND): New. * intrinsic.c (add_functions): Remove check for flag_dec_math. Give degree trig functions simplification and name resolution functions (e.g, gfc_simplify_atrigd () and gfc_resolve_atrigd ()). (do_simplify): Remove special casing of degree trig functions. * intrinsic.h (gfc_simplify_acosd, gfc_simplify_asind, gfc_simplify_atand, gfc_simplify_cosd, gfc_simplify_cotand, gfc_simplify_sind, gfc_simplify_tand, gfc_resolve_trigd2): Add new prototypes. (gfc_simplify_atrigd, gfc_simplify_trigd, gfc_resolve_cotan, resolve_atrigd): Remove prototypes of deleted functions. * iresolve.c (is_trig_resolved, copy_replace_function_shallow, gfc_resolve_cotan, get_radians, get_degrees, resolve_trig_call, gfc_resolve_atrigd, gfc_resolve_atan2d): Delete functions. (gfc_resolve_trigd, gfc_resolve_trigd2): Resolve to library functions. * simplify.c (rad2deg, deg2rad, gfc_simplify_acosd, gfc_simplify_asind, gfc_simplify_atand, gfc_simplify_atan2d, gfc_simplify_cosd, gfc_simplify_sind, gfc_simplify_tand, gfc_simplify_cotand): New functions. (gfc_simplify_atan2): Fix error message. (simplify_trig_call, gfc_simplify_trigd, gfc_simplify_atrigd, radians_f): Delete functions. * trans-intrinsic.c: Add LIB_FUNCTION decls for sind, cosd, tand. (rad2deg, gfc_conv_intrinsic_atrigd, gfc_conv_intrinsic_cotan, gfc_conv_intrinsic_cotand, gfc_conv_intrinsic_atan2d): New functions. (gfc_conv_intrinsic_function): Handle ACOSD, ASIND, ATAND, COTAN, COTAND, ATAN2D. * trigd_fe.inc: New file. Included by simplify.c to implement simplify_sind, simplify_cosd, simplify_tand with code common to the libgfortran implementation. gcc/testsuite/ChangeLog PR fortran/93871 * gfortran.dg/dec_math.f90: Extend coverage to real(10) and real(16). * gfortran.dg/dec_math_2.f90: New test. * gfortran.dg/dec_math_3.f90: Likewise. * gfortran.dg/dec_math_4.f90: Likewise. * gfortran.dg/dec_math_5.f90: Likewise. libgfortran/ChangeLog PR fortran/93871 * Makefile.am, Makefile.in: New make rule for intrinsics/trigd.c. * gfortran.map: New routines for {sind, cosd, tand}X{r4, r8, r10, r16}. * intrinsics/trigd.c, intrinsics/trigd_lib.inc, intrinsics/trigd.inc: New files. Defines native degree-valued trig functions. --- gcc/fortran/ChangeLog | 37 ++ gcc/fortran/gfortran.h | 8 + gcc/fortran/intrinsic.c | 193 +++--- gcc/fortran/intrinsic.h | 12 +- gcc/fortran/iresolve.c | 256 +------- gcc/fortran/simplify.c | 300 +++++---- gcc/fortran/trans-intrinsic.c | 196 ++++++ gcc/fortran/trigd_fe.inc | 50 ++ gcc/testsuite/ChangeLog | 9 + gcc/testsuite/gfortran.dg/dec_math.f90 | 801 +++++++++++++++++------ gcc/testsuite/gfortran.dg/dec_math_2.f90 | 14 + gcc/testsuite/gfortran.dg/dec_math_3.f90 | 8 + gcc/testsuite/gfortran.dg/dec_math_4.f90 | 8 + gcc/testsuite/gfortran.dg/dec_math_5.f90 | 228 +++++++ libgfortran/ChangeLog | 9 + libgfortran/Makefile.am | 1 + libgfortran/Makefile.in | 19 +- libgfortran/gfortran.map | 12 + libgfortran/intrinsics/trigd.c | 205 ++++++ libgfortran/intrinsics/trigd.inc | 464 +++++++++++++ libgfortran/intrinsics/trigd_lib.inc | 147 +++++ 21 files changed, 2331 insertions(+), 646 deletions(-) create mode 100644 gcc/fortran/trigd_fe.inc create mode 100644 gcc/testsuite/gfortran.dg/dec_math_2.f90 create mode 100644 gcc/testsuite/gfortran.dg/dec_math_3.f90 create mode 100644 gcc/testsuite/gfortran.dg/dec_math_4.f90 create mode 100644 gcc/testsuite/gfortran.dg/dec_math_5.f90 create mode 100644 libgfortran/intrinsics/trigd.c create mode 100644 libgfortran/intrinsics/trigd.inc create mode 100644 libgfortran/intrinsics/trigd_lib.inc diff --git a/gcc/fortran/ChangeLog b/gcc/fortran/ChangeLog index 435f93d0d9e..fdbb8dad82c 100644 --- a/gcc/fortran/ChangeLog +++ b/gcc/fortran/ChangeLog @@ -1,3 +1,40 @@ +2020-04-07 Fritz Reese + Steven G. Kargl + + PR fortran/93871 + * gfortran.h (GFC_ISYM_ACOSD, GFC_ISYM_ASIND, GFC_ISYM_ATAN2D, + GFC_ISYM_ATAND, GFC_ISYM_COSD, GFC_ISYM_COTAND, GFC_ISYM_SIND, + GFC_ISYM_TAND): New. + * intrinsic.c (add_functions): Remove check for flag_dec_math. + Give degree trig functions simplification and name resolution + functions (e.g, gfc_simplify_atrigd () and gfc_resolve_atrigd ()). + (do_simplify): Remove special casing of degree trig functions. + * intrinsic.h (gfc_simplify_acosd, gfc_simplify_asind, + gfc_simplify_atand, gfc_simplify_cosd, gfc_simplify_cotand, + gfc_simplify_sind, gfc_simplify_tand, gfc_resolve_trigd2): Add new + prototypes. + (gfc_simplify_atrigd, gfc_simplify_trigd, gfc_resolve_cotan, + resolve_atrigd): Remove prototypes of deleted functions. + * iresolve.c (is_trig_resolved, copy_replace_function_shallow, + gfc_resolve_cotan, get_radians, get_degrees, resolve_trig_call, + gfc_resolve_atrigd, gfc_resolve_atan2d): Delete functions. + (gfc_resolve_trigd, gfc_resolve_trigd2): Resolve to library functions. + * simplify.c (rad2deg, deg2rad, gfc_simplify_acosd, gfc_simplify_asind, + gfc_simplify_atand, gfc_simplify_atan2d, gfc_simplify_cosd, + gfc_simplify_sind, gfc_simplify_tand, gfc_simplify_cotand): New + functions. + (gfc_simplify_atan2): Fix error message. + (simplify_trig_call, gfc_simplify_trigd, gfc_simplify_atrigd, + radians_f): Delete functions. + * trans-intrinsic.c: Add LIB_FUNCTION decls for sind, cosd, tand. + (rad2deg, gfc_conv_intrinsic_atrigd, gfc_conv_intrinsic_cotan, + gfc_conv_intrinsic_cotand, gfc_conv_intrinsic_atan2d): New functions. + (gfc_conv_intrinsic_function): Handle ACOSD, ASIND, ATAND, COTAN, + COTAND, ATAN2D. + * trigd_fe.inc: New file. Included by simplify.c to implement + simplify_sind, simplify_cosd, simplify_tand with code common to the + libgfortran implementation. + 2020-04-06 Steven G. Kargl PR fortran/93686 diff --git a/gcc/fortran/gfortran.h b/gcc/fortran/gfortran.h index 88e4d9236f3..70a64054c95 100644 --- a/gcc/fortran/gfortran.h +++ b/gcc/fortran/gfortran.h @@ -357,6 +357,7 @@ enum gfc_isym_id GFC_ISYM_ACCESS, GFC_ISYM_ACHAR, GFC_ISYM_ACOS, + GFC_ISYM_ACOSD, GFC_ISYM_ACOSH, GFC_ISYM_ADJUSTL, GFC_ISYM_ADJUSTR, @@ -369,10 +370,13 @@ enum gfc_isym_id GFC_ISYM_ANINT, GFC_ISYM_ANY, GFC_ISYM_ASIN, + GFC_ISYM_ASIND, GFC_ISYM_ASINH, GFC_ISYM_ASSOCIATED, GFC_ISYM_ATAN, GFC_ISYM_ATAN2, + GFC_ISYM_ATAN2D, + GFC_ISYM_ATAND, GFC_ISYM_ATANH, GFC_ISYM_ATOMIC_ADD, GFC_ISYM_ATOMIC_AND, @@ -410,8 +414,10 @@ enum gfc_isym_id GFC_ISYM_CONJG, GFC_ISYM_CONVERSION, GFC_ISYM_COS, + GFC_ISYM_COSD, GFC_ISYM_COSH, GFC_ISYM_COTAN, + GFC_ISYM_COTAND, GFC_ISYM_COUNT, GFC_ISYM_CPU_TIME, GFC_ISYM_CSHIFT, @@ -598,6 +604,7 @@ enum gfc_isym_id GFC_ISYM_SIGNAL, GFC_ISYM_SI_KIND, GFC_ISYM_SIN, + GFC_ISYM_SIND, GFC_ISYM_SINH, GFC_ISYM_SIZE, GFC_ISYM_SLEEP, @@ -618,6 +625,7 @@ enum gfc_isym_id GFC_ISYM_SYSTEM, GFC_ISYM_SYSTEM_CLOCK, GFC_ISYM_TAN, + GFC_ISYM_TAND, GFC_ISYM_TANH, GFC_ISYM_TEAM_NUMBER, GFC_ISYM_THIS_IMAGE, diff --git a/gcc/fortran/intrinsic.c b/gcc/fortran/intrinsic.c index 3012187ddae..17f5efc6566 100644 --- a/gcc/fortran/intrinsic.c +++ b/gcc/fortran/intrinsic.c @@ -3281,116 +3281,130 @@ add_functions (void) make_generic ("loc", GFC_ISYM_LOC, GFC_STD_GNU); - if (flag_dec_math) - { - add_sym_1 ("acosd", GFC_ISYM_ACOS, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dr, GFC_STD_GNU, - gfc_check_fn_r, gfc_simplify_atrigd, gfc_resolve_atrigd, - x, BT_REAL, dr, REQUIRED); - - add_sym_1 ("dacosd", GFC_ISYM_ACOS, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dd, GFC_STD_GNU, - gfc_check_fn_d, gfc_simplify_atrigd, gfc_resolve_atrigd, - x, BT_REAL, dd, REQUIRED); - make_generic ("acosd", GFC_ISYM_ACOS, GFC_STD_GNU); + /* The next of intrinsic subprogram are the degree trignometric functions. + These were hidden behind the -fdec-math option, but are now simply + included as extensions to the set of intrinsic subprograms. */ - add_sym_1 ("asind", GFC_ISYM_ASIN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dr, GFC_STD_GNU, - gfc_check_fn_r, gfc_simplify_atrigd, gfc_resolve_atrigd, - x, BT_REAL, dr, REQUIRED); + add_sym_1 ("acosd", GFC_ISYM_ACOSD, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dr, GFC_STD_GNU, + gfc_check_fn_r, gfc_simplify_acosd, gfc_resolve_trigd, + x, BT_REAL, dr, REQUIRED); - add_sym_1 ("dasind", GFC_ISYM_ASIN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dd, GFC_STD_GNU, - gfc_check_fn_d, gfc_simplify_atrigd, gfc_resolve_atrigd, - x, BT_REAL, dd, REQUIRED); + add_sym_1 ("dacosd", GFC_ISYM_ACOSD, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dd, GFC_STD_GNU, + gfc_check_fn_d, gfc_simplify_acosd, gfc_resolve_trigd, + x, BT_REAL, dd, REQUIRED); - make_generic ("asind", GFC_ISYM_ASIN, GFC_STD_GNU); + make_generic ("acosd", GFC_ISYM_ACOSD, GFC_STD_GNU); - add_sym_1 ("atand", GFC_ISYM_ATAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dr, GFC_STD_GNU, - gfc_check_fn_r, gfc_simplify_atrigd, gfc_resolve_atrigd, - x, BT_REAL, dr, REQUIRED); + add_sym_1 ("asind", GFC_ISYM_ASIND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dr, GFC_STD_GNU, + gfc_check_fn_r, gfc_simplify_asind, gfc_resolve_trigd, + x, BT_REAL, dr, REQUIRED); - add_sym_1 ("datand", GFC_ISYM_ATAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dd, GFC_STD_GNU, - gfc_check_fn_d, gfc_simplify_atrigd, gfc_resolve_atrigd, - x, BT_REAL, dd, REQUIRED); + add_sym_1 ("dasind", GFC_ISYM_ASIND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dd, GFC_STD_GNU, + gfc_check_fn_d, gfc_simplify_asind, gfc_resolve_trigd, + x, BT_REAL, dd, REQUIRED); - make_generic ("atand", GFC_ISYM_ATAN, GFC_STD_GNU); + make_generic ("asind", GFC_ISYM_ASIND, GFC_STD_GNU); - add_sym_2 ("atan2d",GFC_ISYM_ATAN2,CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dr, GFC_STD_GNU, - gfc_check_atan2, gfc_simplify_atan2d, gfc_resolve_atan2d, - y, BT_REAL, dr, REQUIRED, x, BT_REAL, dr, REQUIRED); + add_sym_1 ("atand", GFC_ISYM_ATAND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dr, GFC_STD_GNU, + gfc_check_fn_r, gfc_simplify_atand, gfc_resolve_trigd, + x, BT_REAL, dr, REQUIRED); - add_sym_2 ("datan2d",GFC_ISYM_ATAN2,CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dd, GFC_STD_GNU, - gfc_check_datan2, gfc_simplify_atan2d, gfc_resolve_atan2d, - y, BT_REAL, dd, REQUIRED, x, BT_REAL, dd, REQUIRED); + add_sym_1 ("datand", GFC_ISYM_ATAND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dd, GFC_STD_GNU, + gfc_check_fn_d, gfc_simplify_atand, gfc_resolve_trigd, + x, BT_REAL, dd, REQUIRED); - make_generic ("atan2d", GFC_ISYM_ATAN2, GFC_STD_GNU); + make_generic ("atand", GFC_ISYM_ATAND, GFC_STD_GNU); - add_sym_1 ("cosd", GFC_ISYM_COS, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dr, GFC_STD_GNU, - gfc_check_fn_r, gfc_simplify_trigd, gfc_resolve_trigd, - x, BT_REAL, dr, REQUIRED); + add_sym_2 ("atan2d", GFC_ISYM_ATAN2D, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dr, GFC_STD_GNU, + gfc_check_atan2, gfc_simplify_atan2d, gfc_resolve_trigd2, + y, BT_REAL, dr, REQUIRED, + x, BT_REAL, dr, REQUIRED); - add_sym_1 ("dcosd", GFC_ISYM_COS, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dd, GFC_STD_GNU, - gfc_check_fn_d, gfc_simplify_trigd, gfc_resolve_trigd, - x, BT_REAL, dd, REQUIRED); + add_sym_2 ("datan2d", GFC_ISYM_ATAN2D, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dd, GFC_STD_GNU, + gfc_check_datan2, gfc_simplify_atan2d, gfc_resolve_trigd2, + y, BT_REAL, dd, REQUIRED, + x, BT_REAL, dd, REQUIRED); - make_generic ("cosd", GFC_ISYM_COS, GFC_STD_GNU); + make_generic ("atan2d", GFC_ISYM_ATAN2D, GFC_STD_GNU); - add_sym_1 ("cotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dr, GFC_STD_GNU, - gfc_check_fn_rc2008, gfc_simplify_cotan, gfc_resolve_cotan, - x, BT_REAL, dr, REQUIRED); + add_sym_1 ("cosd", GFC_ISYM_COSD, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dr, GFC_STD_GNU, + gfc_check_fn_r, gfc_simplify_cosd, gfc_resolve_trigd, + x, BT_REAL, dr, REQUIRED); - add_sym_1 ("dcotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dd, GFC_STD_GNU, - gfc_check_fn_d, gfc_simplify_cotan, gfc_resolve_cotan, - x, BT_REAL, dd, REQUIRED); + add_sym_1 ("dcosd", GFC_ISYM_COSD, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dd, GFC_STD_GNU, + gfc_check_fn_d, gfc_simplify_cosd, gfc_resolve_trigd, + x, BT_REAL, dd, REQUIRED); - make_generic ("cotan", GFC_ISYM_COTAN, GFC_STD_GNU); + make_generic ("cosd", GFC_ISYM_COSD, GFC_STD_GNU); - add_sym_1 ("cotand", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dr, GFC_STD_GNU, - gfc_check_fn_r, gfc_simplify_trigd, gfc_resolve_trigd, - x, BT_REAL, dr, REQUIRED); + add_sym_1 ("cotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dr, GFC_STD_GNU, + gfc_check_fn_rc2008, gfc_simplify_cotan, gfc_resolve_trigd, + x, BT_REAL, dr, REQUIRED); - add_sym_1 ("dcotand",GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dd, GFC_STD_GNU, - gfc_check_fn_d, gfc_simplify_trigd, gfc_resolve_trigd, - x, BT_REAL, dd, REQUIRED); + add_sym_1 ("dcotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dd, GFC_STD_GNU, + gfc_check_fn_d, gfc_simplify_cotan, gfc_resolve_trigd, + x, BT_REAL, dd, REQUIRED); - make_generic ("cotand", GFC_ISYM_COTAN, GFC_STD_GNU); + add_sym_1 ("ccotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, + BT_COMPLEX, dz, GFC_STD_GNU, + NULL, gfc_simplify_cotan, gfc_resolve_trigd, + x, BT_COMPLEX, dz, REQUIRED); - add_sym_1 ("sind", GFC_ISYM_SIN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dr, GFC_STD_GNU, - gfc_check_fn_r, gfc_simplify_trigd, gfc_resolve_trigd, - x, BT_REAL, dr, REQUIRED); + add_sym_1 ("zcotan", GFC_ISYM_COTAN, CLASS_ELEMENTAL, ACTUAL_YES, + BT_COMPLEX, dd, GFC_STD_GNU, + NULL, gfc_simplify_cotan, gfc_resolve_trigd, + x, BT_COMPLEX, dd, REQUIRED); - add_sym_1 ("dsind", GFC_ISYM_SIN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dd, GFC_STD_GNU, - gfc_check_fn_d, gfc_simplify_trigd, gfc_resolve_trigd, - x, BT_REAL, dd, REQUIRED); + make_generic ("cotan", GFC_ISYM_COTAN, GFC_STD_GNU); - make_generic ("sind", GFC_ISYM_SIN, GFC_STD_GNU); + add_sym_1 ("cotand", GFC_ISYM_COTAND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dr, GFC_STD_GNU, + gfc_check_fn_r, gfc_simplify_cotand, gfc_resolve_trigd, + x, BT_REAL, dr, REQUIRED); - add_sym_1 ("tand", GFC_ISYM_TAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dr, GFC_STD_GNU, - gfc_check_fn_r, gfc_simplify_trigd, gfc_resolve_trigd, - x, BT_REAL, dr, REQUIRED); + add_sym_1 ("dcotand", GFC_ISYM_COTAND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dd, GFC_STD_GNU, + gfc_check_fn_d, gfc_simplify_cotand, gfc_resolve_trigd, + x, BT_REAL, dd, REQUIRED); - add_sym_1 ("dtand", GFC_ISYM_TAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, - dd, GFC_STD_GNU, - gfc_check_fn_d, gfc_simplify_trigd, gfc_resolve_trigd, - x, BT_REAL, dd, REQUIRED); + make_generic ("cotand", GFC_ISYM_COTAND, GFC_STD_GNU); - make_generic ("tand", GFC_ISYM_TAN, GFC_STD_GNU); - } + add_sym_1 ("sind", GFC_ISYM_SIND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dr, GFC_STD_GNU, + gfc_check_fn_r, gfc_simplify_sind, gfc_resolve_trigd, + x, BT_REAL, dr, REQUIRED); + + add_sym_1 ("dsind", GFC_ISYM_SIND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dd, GFC_STD_GNU, + gfc_check_fn_d, gfc_simplify_sind, gfc_resolve_trigd, + x, BT_REAL, dd, REQUIRED); + + make_generic ("sind", GFC_ISYM_SIND, GFC_STD_GNU); + + add_sym_1 ("tand", GFC_ISYM_TAND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dr, GFC_STD_GNU, + gfc_check_fn_r, gfc_simplify_tand, gfc_resolve_trigd, + x, BT_REAL, dr, REQUIRED); + + add_sym_1 ("dtand", GFC_ISYM_TAND, CLASS_ELEMENTAL, ACTUAL_YES, + BT_REAL, dd, GFC_STD_GNU, + gfc_check_fn_d, gfc_simplify_tand, gfc_resolve_trigd, + x, BT_REAL, dd, REQUIRED); + + make_generic ("tand", GFC_ISYM_TAND, GFC_STD_GNU); /* The following function is internally used for coarray libray functions. "make_from_module" makes it inaccessible for external users. */ @@ -4566,15 +4580,6 @@ do_simplify (gfc_intrinsic_sym *specific, gfc_expr *e) goto finish; } - /* Some math intrinsics need to wrap the original expression. */ - if (specific->simplify.f1 == gfc_simplify_trigd - || specific->simplify.f1 == gfc_simplify_atrigd - || specific->simplify.f1 == gfc_simplify_cotan) - { - result = (*specific->simplify.f1) (e); - goto finish; - } - if (specific->simplify.f1 == NULL) { result = NULL; diff --git a/gcc/fortran/intrinsic.h b/gcc/fortran/intrinsic.h index d0456742a56..166ae792939 100644 --- a/gcc/fortran/intrinsic.h +++ b/gcc/fortran/intrinsic.h @@ -237,13 +237,14 @@ bool gfc_check_unlink_sub (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_abs (gfc_expr *); gfc_expr *gfc_simplify_achar (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_acos (gfc_expr *); +gfc_expr *gfc_simplify_acosd (gfc_expr *); gfc_expr *gfc_simplify_acosh (gfc_expr *); gfc_expr *gfc_simplify_adjustl (gfc_expr *); gfc_expr *gfc_simplify_adjustr (gfc_expr *); gfc_expr *gfc_simplify_aimag (gfc_expr *); gfc_expr *gfc_simplify_aint (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_all (gfc_expr *, gfc_expr *); -gfc_expr *gfc_simplify_atrigd (gfc_expr *); +gfc_expr *gfc_simplify_asind (gfc_expr *); gfc_expr *gfc_simplify_dint (gfc_expr *); gfc_expr *gfc_simplify_anint (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_dnint (gfc_expr *); @@ -252,6 +253,7 @@ gfc_expr *gfc_simplify_any (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_asin (gfc_expr *); gfc_expr *gfc_simplify_asinh (gfc_expr *); gfc_expr *gfc_simplify_atan (gfc_expr *); +gfc_expr *gfc_simplify_atand (gfc_expr *); gfc_expr *gfc_simplify_atanh (gfc_expr *); gfc_expr *gfc_simplify_atan2 (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_atan2d (gfc_expr *, gfc_expr *); @@ -277,8 +279,10 @@ gfc_expr *gfc_simplify_compiler_version (void); gfc_expr *gfc_simplify_complex (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_conjg (gfc_expr *); gfc_expr *gfc_simplify_cos (gfc_expr *); +gfc_expr *gfc_simplify_cosd (gfc_expr *); gfc_expr *gfc_simplify_cosh (gfc_expr *); gfc_expr *gfc_simplify_cotan (gfc_expr *); +gfc_expr *gfc_simplify_cotand (gfc_expr *); gfc_expr *gfc_simplify_count (gfc_expr *, gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_cshift (gfc_expr *, gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_dcmplx (gfc_expr *, gfc_expr *); @@ -404,6 +408,7 @@ gfc_expr *gfc_simplify_shifta (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_shiftl (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_shiftr (gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_sin (gfc_expr *); +gfc_expr *gfc_simplify_sind (gfc_expr *); gfc_expr *gfc_simplify_sinh (gfc_expr *); gfc_expr *gfc_simplify_size (gfc_expr *, gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_sizeof (gfc_expr *); @@ -414,13 +419,13 @@ gfc_expr *gfc_simplify_spread (gfc_expr *, gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_sqrt (gfc_expr *); gfc_expr *gfc_simplify_sum (gfc_expr *, gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_tan (gfc_expr *); +gfc_expr *gfc_simplify_tand (gfc_expr *); gfc_expr *gfc_simplify_tanh (gfc_expr *); gfc_expr *gfc_simplify_this_image (gfc_expr *, gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_tiny (gfc_expr *); gfc_expr *gfc_simplify_trailz (gfc_expr *); gfc_expr *gfc_simplify_transfer (gfc_expr *, gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_transpose (gfc_expr *); -gfc_expr *gfc_simplify_trigd (gfc_expr *); gfc_expr *gfc_simplify_trim (gfc_expr *); gfc_expr *gfc_simplify_ubound (gfc_expr *, gfc_expr *, gfc_expr *); gfc_expr *gfc_simplify_ucobound (gfc_expr *, gfc_expr *, gfc_expr *); @@ -473,7 +478,6 @@ void gfc_resolve_conjg (gfc_expr *, gfc_expr *); void gfc_resolve_cos (gfc_expr *, gfc_expr *); void gfc_resolve_cosh (gfc_expr *, gfc_expr *); void gfc_resolve_count (gfc_expr *, gfc_expr *, gfc_expr *, gfc_expr *); -void gfc_resolve_cotan (gfc_expr *, gfc_expr *); void gfc_resolve_cshift (gfc_expr *, gfc_expr *, gfc_expr *, gfc_expr *); void gfc_resolve_ctime (gfc_expr *, gfc_expr *); void gfc_resolve_dble (gfc_expr *, gfc_expr *); @@ -612,7 +616,7 @@ void gfc_resolve_time8 (gfc_expr *); void gfc_resolve_transfer (gfc_expr *, gfc_expr *, gfc_expr *, gfc_expr *); void gfc_resolve_transpose (gfc_expr *, gfc_expr *); void gfc_resolve_trigd (gfc_expr *, gfc_expr *); -void gfc_resolve_atrigd (gfc_expr *, gfc_expr *); +void gfc_resolve_trigd2 (gfc_expr *, gfc_expr *, gfc_expr *); void gfc_resolve_trim (gfc_expr *, gfc_expr *); void gfc_resolve_ttynam (gfc_expr *, gfc_expr *); void gfc_resolve_ubound (gfc_expr *, gfc_expr *, gfc_expr *, gfc_expr *); diff --git a/gcc/fortran/iresolve.c b/gcc/fortran/iresolve.c index a991c3a5ab4..7ecb6595f59 100644 --- a/gcc/fortran/iresolve.c +++ b/gcc/fortran/iresolve.c @@ -689,86 +689,6 @@ gfc_resolve_cosh (gfc_expr *f, gfc_expr *x) } -/* Our replacement of elements of a trig call with an EXPR_OP (e.g. - multiplying the result or operands by a factor to convert to/from degrees) - will cause the resolve_* function to be invoked again when resolving the - freshly created EXPR_OP. See gfc_resolve_trigd, gfc_resolve_atrigd, - gfc_resolve_cotan. We must observe this and avoid recursively creating - layers of nested EXPR_OP expressions. */ - -static bool -is_trig_resolved (gfc_expr *f) -{ - /* We know we've already resolved the function if we see the lib call - starting with '__'. */ - return (f->value.function.name != NULL - && gfc_str_startswith (f->value.function.name, "__")); -} - -/* Return a shallow copy of the function expression f. The original expression - has its pointers cleared so that it may be freed without affecting the - shallow copy. This is similar to gfc_copy_expr, but doesn't perform a deep - copy of the argument list, allowing it to be reused somewhere else, - setting the expression up nicely for gfc_replace_expr. */ - -static gfc_expr * -copy_replace_function_shallow (gfc_expr *f) -{ - gfc_expr *fcopy; - gfc_actual_arglist *args; - - /* The only thing deep-copied in gfc_copy_expr is args. */ - args = f->value.function.actual; - f->value.function.actual = NULL; - fcopy = gfc_copy_expr (f); - fcopy->value.function.actual = args; - - /* Clear the old function so the shallow copy is not affected if the old - expression is freed. */ - f->value.function.name = NULL; - f->value.function.isym = NULL; - f->value.function.actual = NULL; - f->value.function.esym = NULL; - f->shape = NULL; - f->ref = NULL; - - return fcopy; -} - - -/* Resolve cotan = cos / sin. */ - -void -gfc_resolve_cotan (gfc_expr *f, gfc_expr *x) -{ - gfc_expr *result, *fcopy, *sin; - gfc_actual_arglist *sin_args; - - if (is_trig_resolved (f)) - return; - - /* Compute cotan (x) = cos (x) / sin (x). */ - f->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_COS); - gfc_resolve_cos (f, x); - - sin_args = gfc_get_actual_arglist (); - sin_args->expr = gfc_copy_expr (x); - - sin = gfc_get_expr (); - sin->ts = f->ts; - sin->where = f->where; - sin->expr_type = EXPR_FUNCTION; - sin->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_SIN); - sin->value.function.actual = sin_args; - gfc_resolve_sin (sin, sin_args->expr); - - /* Replace f with cos/sin - we do this in place in f for the caller. */ - fcopy = copy_replace_function_shallow (f); - result = gfc_divide (fcopy, sin); - gfc_replace_expr (f, result); -} - - void gfc_resolve_count (gfc_expr *f, gfc_expr *mask, gfc_expr *dim, gfc_expr *kind) { @@ -2912,158 +2832,6 @@ gfc_resolve_tanh (gfc_expr *f, gfc_expr *x) } -/* Build an expression for converting degrees to radians. */ - -static gfc_expr * -get_radians (gfc_expr *deg) -{ - gfc_expr *result, *factor; - gfc_actual_arglist *mod_args; - - gcc_assert (deg->ts.type == BT_REAL); - - /* Set deg = deg % 360 to avoid offsets from large angles. */ - factor = gfc_get_constant_expr (deg->ts.type, deg->ts.kind, °->where); - mpfr_set_d (factor->value.real, 360.0, GFC_RND_MODE); - - mod_args = gfc_get_actual_arglist (); - mod_args->expr = deg; - mod_args->next = gfc_get_actual_arglist (); - mod_args->next->expr = factor; - - result = gfc_get_expr (); - result->ts = deg->ts; - result->where = deg->where; - result->expr_type = EXPR_FUNCTION; - result->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_MOD); - result->value.function.actual = mod_args; - - /* Set factor = pi / 180. */ - factor = gfc_get_constant_expr (deg->ts.type, deg->ts.kind, °->where); - mpfr_const_pi (factor->value.real, GFC_RND_MODE); - mpfr_div_ui (factor->value.real, factor->value.real, 180, GFC_RND_MODE); - - /* Result is rad = (deg % 360) * (pi / 180). */ - result = gfc_multiply (result, factor); - return result; -} - - -/* Build an expression for converting radians to degrees. */ - -static gfc_expr * -get_degrees (gfc_expr *rad) -{ - gfc_expr *result, *factor; - gfc_actual_arglist *mod_args; - mpfr_t tmp; - - gcc_assert (rad->ts.type == BT_REAL); - - /* Set rad = rad % 2pi to avoid offsets from large angles. */ - factor = gfc_get_constant_expr (rad->ts.type, rad->ts.kind, &rad->where); - mpfr_const_pi (factor->value.real, GFC_RND_MODE); - mpfr_mul_ui (factor->value.real, factor->value.real, 2, GFC_RND_MODE); - - mod_args = gfc_get_actual_arglist (); - mod_args->expr = rad; - mod_args->next = gfc_get_actual_arglist (); - mod_args->next->expr = factor; - - result = gfc_get_expr (); - result->ts = rad->ts; - result->where = rad->where; - result->expr_type = EXPR_FUNCTION; - result->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_MOD); - result->value.function.actual = mod_args; - - /* Set factor = 180 / pi. */ - factor = gfc_get_constant_expr (rad->ts.type, rad->ts.kind, &rad->where); - mpfr_set_ui (factor->value.real, 180, GFC_RND_MODE); - mpfr_init (tmp); - mpfr_const_pi (tmp, GFC_RND_MODE); - mpfr_div (factor->value.real, factor->value.real, tmp, GFC_RND_MODE); - mpfr_clear (tmp); - - /* Result is deg = (rad % 2pi) * (180 / pi). */ - result = gfc_multiply (result, factor); - return result; -} - - -/* Resolve a call to a trig function. */ - -static void -resolve_trig_call (gfc_expr *f, gfc_expr *x) -{ - switch (f->value.function.isym->id) - { - case GFC_ISYM_ACOS: - return gfc_resolve_acos (f, x); - case GFC_ISYM_ASIN: - return gfc_resolve_asin (f, x); - case GFC_ISYM_ATAN: - return gfc_resolve_atan (f, x); - case GFC_ISYM_ATAN2: - /* NB. arg3 is unused for atan2 */ - return gfc_resolve_atan2 (f, x, NULL); - case GFC_ISYM_COS: - return gfc_resolve_cos (f, x); - case GFC_ISYM_COTAN: - return gfc_resolve_cotan (f, x); - case GFC_ISYM_SIN: - return gfc_resolve_sin (f, x); - case GFC_ISYM_TAN: - return gfc_resolve_tan (f, x); - default: - gcc_unreachable (); - } -} - -/* Resolve degree trig function as trigd (x) = trig (radians (x)). */ - -void -gfc_resolve_trigd (gfc_expr *f, gfc_expr *x) -{ - if (is_trig_resolved (f)) - return; - - x = get_radians (x); - f->value.function.actual->expr = x; - - resolve_trig_call (f, x); -} - - -/* Resolve degree inverse trig function as atrigd (x) = degrees (atrig (x)). */ - -void -gfc_resolve_atrigd (gfc_expr *f, gfc_expr *x) -{ - gfc_expr *result, *fcopy; - - if (is_trig_resolved (f)) - return; - - resolve_trig_call (f, x); - - fcopy = copy_replace_function_shallow (f); - result = get_degrees (fcopy); - gfc_replace_expr (f, result); -} - - -/* Resolve atan2d(x) = degrees(atan2(x)). */ - -void -gfc_resolve_atan2d (gfc_expr *f, gfc_expr *x, gfc_expr *y ATTRIBUTE_UNUSED) -{ - /* Note that we lose the second arg here - that's okay because it is - unused in gfc_resolve_atan2 anyway. */ - gfc_resolve_atrigd (f, x); -} - - /* Resolve failed_images (team, kind). */ void @@ -3298,6 +3066,30 @@ gfc_resolve_trim (gfc_expr *f, gfc_expr *string) } +/* Resolve the degree trignometric functions. This amounts to setting + the function return type-spec from its argument and building a + library function names of the form _gfortran_sind_r4. */ + +void +gfc_resolve_trigd (gfc_expr *f, gfc_expr *x) +{ + f->ts = x->ts; + f->value.function.name + = gfc_get_string (PREFIX ("%s_%c%d"), f->value.function.isym->name, + gfc_type_letter (x->ts.type), x->ts.kind); +} + + +void +gfc_resolve_trigd2 (gfc_expr *f, gfc_expr *y, gfc_expr *x) +{ + f->ts = y->ts; + f->value.function.name + = gfc_get_string (PREFIX ("%s_%d"), f->value.function.isym->name, + x->ts.kind); +} + + void gfc_resolve_ubound (gfc_expr *f, gfc_expr *array, gfc_expr *dim, gfc_expr *kind) { diff --git a/gcc/fortran/simplify.c b/gcc/fortran/simplify.c index 66ed925c10d..f63f63c9ef6 100644 --- a/gcc/fortran/simplify.c +++ b/gcc/fortran/simplify.c @@ -1107,6 +1107,91 @@ gfc_simplify_asin (gfc_expr *x) } +/* Convert radians to degrees, i.e., x * 180 / pi. */ + +static void +rad2deg (mpfr_t x) +{ + mpfr_t tmp; + + mpfr_init (tmp); + mpfr_const_pi (tmp, GFC_RND_MODE); + mpfr_mul_ui (x, x, 180, GFC_RND_MODE); + mpfr_div (x, x, tmp, GFC_RND_MODE); + mpfr_clear (tmp); +} + + +/* Simplify ACOSD(X) where the returned value has units of degree. */ + +gfc_expr * +gfc_simplify_acosd (gfc_expr *x) +{ + gfc_expr *result; + + if (x->expr_type != EXPR_CONSTANT) + return NULL; + + if (mpfr_cmp_si (x->value.real, 1) > 0 + || mpfr_cmp_si (x->value.real, -1) < 0) + { + gfc_error ("Argument of ACOSD at %L must be between -1 and 1", + &x->where); + return &gfc_bad_expr; + } + + result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); + mpfr_acos (result->value.real, x->value.real, GFC_RND_MODE); + rad2deg (result->value.real); + + return range_check (result, "ACOSD"); +} + + +/* Simplify asind (x) where the returned value has units of degree. */ + +gfc_expr * +gfc_simplify_asind (gfc_expr *x) +{ + gfc_expr *result; + + if (x->expr_type != EXPR_CONSTANT) + return NULL; + + if (mpfr_cmp_si (x->value.real, 1) > 0 + || mpfr_cmp_si (x->value.real, -1) < 0) + { + gfc_error ("Argument of ASIND at %L must be between -1 and 1", + &x->where); + return &gfc_bad_expr; + } + + result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); + mpfr_asin (result->value.real, x->value.real, GFC_RND_MODE); + rad2deg (result->value.real); + + return range_check (result, "ASIND"); +} + + +/* Simplify atand (x) where the returned value has units of degree. */ + +gfc_expr * +gfc_simplify_atand (gfc_expr *x) +{ + gfc_expr *result; + + if (x->expr_type != EXPR_CONSTANT) + return NULL; + + result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); + mpfr_atan (result->value.real, x->value.real, GFC_RND_MODE); + rad2deg (result->value.real); + + return range_check (result, "ATAND"); +} + + gfc_expr * gfc_simplify_asinh (gfc_expr *x) { @@ -1208,8 +1293,8 @@ gfc_simplify_atan2 (gfc_expr *y, gfc_expr *x) if (mpfr_zero_p (y->value.real) && mpfr_zero_p (x->value.real)) { - gfc_error ("If first argument of ATAN2 %L is zero, then the " - "second argument must not be zero", &x->where); + gfc_error ("If first argument of ATAN2 at %L is zero, then the " + "second argument must not be zero", &y->where); return &gfc_bad_expr; } @@ -1736,172 +1821,153 @@ gfc_simplify_conjg (gfc_expr *e) return range_check (result, "CONJG"); } -/* Return the simplification of the constant expression in icall, or NULL - if the expression is not constant. */ -static gfc_expr * -simplify_trig_call (gfc_expr *icall) -{ - gfc_isym_id func = icall->value.function.isym->id; - gfc_expr *x = icall->value.function.actual->expr; - - /* The actual simplifiers will return NULL for non-constant x. */ - switch (func) - { - case GFC_ISYM_ACOS: - return gfc_simplify_acos (x); - case GFC_ISYM_ASIN: - return gfc_simplify_asin (x); - case GFC_ISYM_ATAN: - return gfc_simplify_atan (x); - case GFC_ISYM_COS: - return gfc_simplify_cos (x); - case GFC_ISYM_COTAN: - return gfc_simplify_cotan (x); - case GFC_ISYM_SIN: - return gfc_simplify_sin (x); - case GFC_ISYM_TAN: - return gfc_simplify_tan (x); - default: - gfc_internal_error ("in simplify_trig_call(): Bad intrinsic"); +/* Simplify atan2d (x) where the unit is degree. */ + +gfc_expr * +gfc_simplify_atan2d (gfc_expr *y, gfc_expr *x) +{ + gfc_expr *result; + + if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT) + return NULL; + + if (mpfr_zero_p (y->value.real) && mpfr_zero_p (x->value.real)) + { + gfc_error ("If first argument of ATAN2D at %L is zero, then the " + "second argument must not be zero", &y->where); + return &gfc_bad_expr; } + + result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); + mpfr_atan2 (result->value.real, y->value.real, x->value.real, GFC_RND_MODE); + rad2deg (result->value.real); + + return range_check (result, "ATAN2D"); } -/* Convert a floating-point number from radians to degrees. */ -static void -degrees_f (mpfr_t x, mpfr_rnd_t rnd_mode) +gfc_expr * +gfc_simplify_cos (gfc_expr *x) { - mpfr_t tmp; - mpfr_init (tmp); + gfc_expr *result; - /* Set x = x * 180. */ - mpfr_mul_ui (x, x, 180, rnd_mode); + if (x->expr_type != EXPR_CONSTANT) + return NULL; - /* Set x = x / pi. */ - mpfr_const_pi (tmp, rnd_mode); - mpfr_div (x, x, tmp, rnd_mode); + result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); - mpfr_clear (tmp); + switch (x->ts.type) + { + case BT_REAL: + mpfr_cos (result->value.real, x->value.real, GFC_RND_MODE); + break; + + case BT_COMPLEX: + gfc_set_model_kind (x->ts.kind); + mpc_cos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE); + break; + + default: + gfc_internal_error ("in gfc_simplify_cos(): Bad type"); + } + + return range_check (result, "COS"); } -/* Convert a floating-point number from degrees to radians. */ static void -radians_f (mpfr_t x, mpfr_rnd_t rnd_mode) +deg2rad (mpfr_t x) { - mpfr_t tmp; - mpfr_init (tmp); + mpfr_t d2r; - /* Set x = x % 360 to avoid offsets with large angles. */ - mpfr_set_ui (tmp, 360, rnd_mode); - mpfr_fmod (tmp, x, tmp, rnd_mode); + mpfr_init (d2r); + mpfr_const_pi (d2r, GFC_RND_MODE); + mpfr_div_ui (d2r, d2r, 180, GFC_RND_MODE); + mpfr_mul (x, x, d2r, GFC_RND_MODE); + mpfr_clear (d2r); +} - /* Set x = x * pi. */ - mpfr_const_pi (tmp, rnd_mode); - mpfr_mul (x, x, tmp, rnd_mode); - /* Set x = x / 180. */ - mpfr_div_ui (x, x, 180, rnd_mode); - - mpfr_clear (tmp); -} +/* Simplification routines for SIND, COSD, TAND. */ +#include "trigd_fe.inc" -/* Convert argument to radians before calling a trig function. */ +/* Simplify COSD(X) where X has the unit of degree. */ gfc_expr * -gfc_simplify_trigd (gfc_expr *icall) +gfc_simplify_cosd (gfc_expr *x) { - gfc_expr *arg; - - arg = icall->value.function.actual->expr; + gfc_expr *result; - if (arg->ts.type != BT_REAL) - gfc_internal_error ("in gfc_simplify_trigd(): Bad type"); + if (x->expr_type != EXPR_CONSTANT) + return NULL; - if (arg->expr_type == EXPR_CONSTANT) - /* Convert constant to radians before passing off to simplifier. */ - radians_f (arg->value.real, GFC_RND_MODE); + result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); + mpfr_set (result->value.real, x->value.real, GFC_RND_MODE); + simplify_cosd (result->value.real); - /* Let the usual simplifier take over - we just simplified the arg. */ - return simplify_trig_call (icall); + return range_check (result, "COSD"); } -/* Convert result of an inverse trig function to degrees. */ + +/* Simplify SIND(X) where X has the unit of degree. */ gfc_expr * -gfc_simplify_atrigd (gfc_expr *icall) +gfc_simplify_sind (gfc_expr *x) { gfc_expr *result; - if (icall->value.function.actual->expr->ts.type != BT_REAL) - gfc_internal_error ("in gfc_simplify_atrigd(): Bad type"); - - /* See if another simplifier has work to do first. */ - result = simplify_trig_call (icall); + if (x->expr_type != EXPR_CONSTANT) + return NULL; - if (result && result->expr_type == EXPR_CONSTANT) - { - /* Convert constant to degrees after passing off to actual simplifier. */ - degrees_f (result->value.real, GFC_RND_MODE); - return result; - } + result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); + mpfr_set (result->value.real, x->value.real, GFC_RND_MODE); + simplify_sind (result->value.real); - /* Let gfc_resolve_atrigd take care of the non-constant case. */ - return NULL; + return range_check (result, "SIND"); } -/* Convert the result of atan2 to degrees. */ + +/* Simplify TAND(X) where X has the unit of degree. */ gfc_expr * -gfc_simplify_atan2d (gfc_expr *y, gfc_expr *x) +gfc_simplify_tand (gfc_expr *x) { gfc_expr *result; - if (x->ts.type != BT_REAL || y->ts.type != BT_REAL) - gfc_internal_error ("in gfc_simplify_atan2d(): Bad type"); + if (x->expr_type != EXPR_CONSTANT) + return NULL; - if (x->expr_type == EXPR_CONSTANT && y->expr_type == EXPR_CONSTANT) - { - result = gfc_simplify_atan2 (y, x); - if (result != NULL) - { - degrees_f (result->value.real, GFC_RND_MODE); - return result; - } - } + result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); + mpfr_set (result->value.real, x->value.real, GFC_RND_MODE); + simplify_tand (result->value.real); - /* Let gfc_resolve_atan2d take care of the non-constant case. */ - return NULL; + return range_check (result, "TAND"); } + +/* Simplify COTAND(X) where X has the unit of degree. */ + gfc_expr * -gfc_simplify_cos (gfc_expr *x) +gfc_simplify_cotand (gfc_expr *x) { gfc_expr *result; if (x->expr_type != EXPR_CONSTANT) return NULL; + /* Implement COTAND = -TAND(x+90). + TAND offers correct exact values for multiples of 30 degrees. + This implementation is also compatible with the behavior of some legacy + compilers. Keep this consistent with gfc_conv_intrinsic_cotand. */ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where); + mpfr_set (result->value.real, x->value.real, GFC_RND_MODE); + mpfr_add_ui (result->value.real, result->value.real, 90, GFC_RND_MODE); + simplify_tand (result->value.real); + mpfr_neg (result->value.real, result->value.real, GFC_RND_MODE); - switch (x->ts.type) - { - case BT_REAL: - mpfr_cos (result->value.real, x->value.real, GFC_RND_MODE); - break; - - case BT_COMPLEX: - gfc_set_model_kind (x->ts.kind); - mpc_cos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE); - break; - - default: - gfc_internal_error ("in gfc_simplify_cos(): Bad type"); - } - - return range_check (result, "COS"); + return range_check (result, "COTAND"); } @@ -7778,6 +7844,8 @@ gfc_simplify_sum (gfc_expr *array, gfc_expr *dim, gfc_expr *mask) } +/* Simplify COTAN(X) where X has the unit of radian. */ + gfc_expr * gfc_simplify_cotan (gfc_expr *x) { @@ -7799,8 +7867,8 @@ gfc_simplify_cotan (gfc_expr *x) /* There is no builtin mpc_cot, so compute cot = cos / sin. */ val = &result->value.complex; mpc_init2 (swp, mpfr_get_default_prec ()); - mpc_cos (swp, x->value.complex, GFC_MPC_RND_MODE); - mpc_sin (*val, x->value.complex, GFC_MPC_RND_MODE); + mpc_sin_cos (*val, swp, x->value.complex, GFC_MPC_RND_MODE, + GFC_MPC_RND_MODE); mpc_div (*val, swp, *val, GFC_MPC_RND_MODE); mpc_clear (swp); break; diff --git a/gcc/fortran/trans-intrinsic.c b/gcc/fortran/trans-intrinsic.c index 00bec1ec1df..fd8809902b7 100644 --- a/gcc/fortran/trans-intrinsic.c +++ b/gcc/fortran/trans-intrinsic.c @@ -120,6 +120,9 @@ static GTY(()) gfc_intrinsic_map_t gfc_intrinsic_map[] = /* Functions in libgfortran. */ LIB_FUNCTION (ERFC_SCALED, "erfc_scaled", false), + LIB_FUNCTION (SIND, "sind", false), + LIB_FUNCTION (COSD, "cosd", false), + LIB_FUNCTION (TAND, "tand", false), /* End the list. */ LIB_FUNCTION (NONE, NULL, false) @@ -4385,6 +4388,181 @@ gfc_conv_intrinsic_anyall (gfc_se * se, gfc_expr * expr, enum tree_code op) se->expr = resvar; } + +/* Generate the constant 180 / pi, which is used in the conversion + of acosd(), asind(), atand(), atan2d(). */ + +static tree +rad2deg (int kind) +{ + tree retval; + mpfr_t pi, t0; + + gfc_set_model_kind (kind); + mpfr_init (pi); + mpfr_init (t0); + mpfr_set_si (t0, 180, GFC_RND_MODE); + mpfr_const_pi (pi, GFC_RND_MODE); + mpfr_div (t0, t0, pi, GFC_RND_MODE); + retval = gfc_conv_mpfr_to_tree (t0, kind, 0); + mpfr_clear (t0); + mpfr_clear (pi); + return retval; +} + + +/* ACOSD(x) is translated into ACOS(x) * 180 / pi. + ASIND(x) is translated into ASIN(x) * 180 / pi. + ATAND(x) is translated into ATAN(x) * 180 / pi. */ + +static void +gfc_conv_intrinsic_atrigd (gfc_se * se, gfc_expr * expr, gfc_isym_id id) +{ + tree arg; + tree atrigd; + tree type; + + type = gfc_typenode_for_spec (&expr->ts); + + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + + if (id == GFC_ISYM_ACOSD) + atrigd = gfc_builtin_decl_for_float_kind (BUILT_IN_ACOS, expr->ts.kind); + else if (id == GFC_ISYM_ASIND) + atrigd = gfc_builtin_decl_for_float_kind (BUILT_IN_ASIN, expr->ts.kind); + else if (id == GFC_ISYM_ATAND) + atrigd = gfc_builtin_decl_for_float_kind (BUILT_IN_ATAN, expr->ts.kind); + else + gcc_unreachable (); + + atrigd = build_call_expr_loc (input_location, atrigd, 1, arg); + + se->expr = fold_build2_loc (input_location, MULT_EXPR, type, atrigd, + fold_convert (type, rad2deg (expr->ts.kind))); +} + + +/* COTAN(X) is translated into -TAN(X+PI/2) for REAL argument and + COS(X) / SIN(X) for COMPLEX argument. */ + +static void +gfc_conv_intrinsic_cotan (gfc_se *se, gfc_expr *expr) +{ + gfc_intrinsic_map_t *m; + tree arg; + tree type; + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + + if (expr->ts.type == BT_REAL) + { + tree tan; + tree tmp; + mpfr_t pio2; + + /* Create pi/2. */ + gfc_set_model_kind (expr->ts.kind); + mpfr_init (pio2); + mpfr_const_pi (pio2, GFC_RND_MODE); + mpfr_div_ui (pio2, pio2, 2, GFC_RND_MODE); + tmp = gfc_conv_mpfr_to_tree (pio2, expr->ts.kind, 0); + mpfr_clear (pio2); + + /* Find tan builtin function. */ + m = gfc_intrinsic_map; + for (; m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++) + if (GFC_ISYM_TAN == m->id) + break; + + tmp = fold_build2_loc (input_location, PLUS_EXPR, type, arg, tmp); + tan = gfc_get_intrinsic_lib_fndecl (m, expr); + tan = build_call_expr_loc (input_location, tan, 1, tmp); + se->expr = fold_build1_loc (input_location, NEGATE_EXPR, type, tan); + } + else + { + tree sin; + tree cos; + + /* Find cos builtin function. */ + m = gfc_intrinsic_map; + for (; m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++) + if (GFC_ISYM_COS == m->id) + break; + + cos = gfc_get_intrinsic_lib_fndecl (m, expr); + cos = build_call_expr_loc (input_location, cos, 1, arg); + + /* Find sin builtin function. */ + m = gfc_intrinsic_map; + for (; m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++) + if (GFC_ISYM_SIN == m->id) + break; + + sin = gfc_get_intrinsic_lib_fndecl (m, expr); + sin = build_call_expr_loc (input_location, sin, 1, arg); + + /* Divide cos by sin. */ + se->expr = fold_build2_loc (input_location, RDIV_EXPR, type, cos, sin); + } +} + + +/* COTAND(X) is translated into -TAND(X+90) for REAL argument. */ + +static void +gfc_conv_intrinsic_cotand (gfc_se *se, gfc_expr *expr) +{ + tree arg; + tree type; + tree ninety_tree; + mpfr_t ninety; + + type = gfc_typenode_for_spec (&expr->ts); + gfc_conv_intrinsic_function_args (se, expr, &arg, 1); + + gfc_set_model_kind (expr->ts.kind); + + /* Build the tree for x + 90. */ + mpfr_init_set_ui (ninety, 90, GFC_RND_MODE); + ninety_tree = gfc_conv_mpfr_to_tree (ninety, expr->ts.kind, 0); + arg = fold_build2_loc (input_location, PLUS_EXPR, type, arg, ninety_tree); + mpfr_clear (ninety); + + /* Find tand. */ + gfc_intrinsic_map_t *m = gfc_intrinsic_map; + for (; m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++) + if (GFC_ISYM_TAND == m->id) + break; + + tree tand = gfc_get_intrinsic_lib_fndecl (m, expr); + tand = build_call_expr_loc (input_location, tand, 1, arg); + + se->expr = fold_build1_loc (input_location, NEGATE_EXPR, type, tand); +} + + +/* ATAN2D(Y,X) is translated into ATAN2(Y,X) * 180 / PI. */ + +static void +gfc_conv_intrinsic_atan2d (gfc_se *se, gfc_expr *expr) +{ + tree args[2]; + tree atan2d; + tree type; + + gfc_conv_intrinsic_function_args (se, expr, args, 2); + type = TREE_TYPE (args[0]); + + atan2d = gfc_builtin_decl_for_float_kind (BUILT_IN_ATAN2, expr->ts.kind); + atan2d = build_call_expr_loc (input_location, atan2d, 2, args[0], args[1]); + + se->expr = fold_build2_loc (input_location, MULT_EXPR, type, atan2d, + rad2deg (expr->ts.kind)); +} + + /* COUNT(A) = Number of true elements in A. */ static void gfc_conv_intrinsic_count (gfc_se * se, gfc_expr * expr) @@ -9895,6 +10073,24 @@ gfc_conv_intrinsic_function (gfc_se * se, gfc_expr * expr) gfc_conv_intrinsic_anyall (se, expr, NE_EXPR); break; + case GFC_ISYM_ACOSD: + case GFC_ISYM_ASIND: + case GFC_ISYM_ATAND: + gfc_conv_intrinsic_atrigd (se, expr, expr->value.function.isym->id); + break; + + case GFC_ISYM_COTAN: + gfc_conv_intrinsic_cotan (se, expr); + break; + + case GFC_ISYM_COTAND: + gfc_conv_intrinsic_cotand (se, expr); + break; + + case GFC_ISYM_ATAN2D: + gfc_conv_intrinsic_atan2d (se, expr); + break; + case GFC_ISYM_BTEST: gfc_conv_intrinsic_btest (se, expr); break; diff --git a/gcc/fortran/trigd_fe.inc b/gcc/fortran/trigd_fe.inc new file mode 100644 index 00000000000..78ca4416a21 --- /dev/null +++ b/gcc/fortran/trigd_fe.inc @@ -0,0 +1,50 @@ + + +/* Stub for defining degree-valued trigonemetric functions using MPFR. + Copyright (C) 2000-2020 Free Software Foundation, Inc. + Contributed by Fritz Reese + and Steven G. Kargl + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#define FTYPE mpfr_t +#define RETTYPE void +#define RETURN(x) do { } while (0) +#define ITYPE mpz_t + +#define ISFINITE(x) mpfr_number_p(x) +#define D2R(x) deg2rad(x) + +#define SIND simplify_sind +#define COSD simplify_cosd +#define TAND simplify_tand + +#ifdef HAVE_GFC_REAL_16 +#define COSD30 8.66025403784438646763723170752936183e-01Q +#else +#define COSD30 8.66025403784438646763723170752936183e-01L +#endif + +#define SET_COSD30(x) mpfr_set_ld((x), COSD30, GFC_RND_MODE) + +static RETTYPE SIND (FTYPE); +static RETTYPE COSD (FTYPE); +static RETTYPE TAND (FTYPE); + +#include "../../libgfortran/intrinsics/trigd.inc" + +/* vim: set ft=c: */ diff --git a/gcc/testsuite/ChangeLog b/gcc/testsuite/ChangeLog index ab04cc08f43..096cfce891e 100644 --- a/gcc/testsuite/ChangeLog +++ b/gcc/testsuite/ChangeLog @@ -1,3 +1,12 @@ +2020-04-01 Fritz Reese + + PR fortran/93871 + * gfortran.dg/dec_math.f90: Extend coverage to real(10) and real(16). + * gfortran.dg/dec_math_2.f90: New test. + * gfortran.dg/dec_math_3.f90: Likewise. + * gfortran.dg/dec_math_4.f90: Likewise. + * gfortran.dg/dec_math_5.f90: Likewise. + 2020-04-07 Andre Vieira * g++.target/arm/mve.exp: New. diff --git a/gcc/testsuite/gfortran.dg/dec_math.f90 b/gcc/testsuite/gfortran.dg/dec_math.f90 index 2a50f976543..cc141aba412 100644 --- a/gcc/testsuite/gfortran.dg/dec_math.f90 +++ b/gcc/testsuite/gfortran.dg/dec_math.f90 @@ -1,289 +1,700 @@ -! { dg-options "-fdec-math" } +! { dg-options "-cpp -std=gnu" } ! { dg-do run } ! -! Test extra math intrinsics offered by -fdec-math. +! Test extra math intrinsics formerly offered by -fdec-math, +! now included with -std=gnu or -std=legacy. ! - subroutine cmpf(f1, f2, tolerance, str) +module dec_math + + implicit none + + real(4), parameter :: pi_f = 3.14159274_4 + real(8), parameter :: pi_d = 3.1415926535897931_8 +#ifdef __GFC_REAL_10__ + real(10), parameter :: pi_l = 3.1415926535897932383_10 +#endif +#ifdef __GFC_REAL_16__ + real(16), parameter :: pi_q = 3.1415926535897932384626433832795028_16 +#endif + + real(4), parameter :: r2d_f = 180.0_4 / pi_f + real(8), parameter :: r2d_d = 180.0_8 / pi_d +#ifdef __GFC_REAL_10__ + real(10), parameter :: r2d_l = 180.0_10 / pi_l +#endif +#ifdef __GFC_REAL_16__ + real(16), parameter :: r2d_q = 180.0_16 / pi_q +#endif + +contains + + function d2rf(x) + implicit none + real(4), intent(in) :: x + real(4) :: d2rf + d2rf = (x * pi_f) / 180.0_4 + endfunction + + subroutine cmpf(x, f1, f2, tolerance, str) implicit none - real(4), intent(in) :: f1, f2, tolerance + real(4), intent(in) :: x, f1, f2, tolerance character(len=*), intent(in) :: str if ( abs(f2 - f1) .gt. tolerance ) then - write (*, '(A,F12.6,F12.6)') str, f1, f2 + write (*, '(A,A,F12.6,A,F12.6,F12.6)') str, "(", x, ")", f1, f2 STOP 1 endif endsubroutine - subroutine cmpd(d1, d2, tolerance, str) + function d2rd(x) implicit none - real(8), intent(in) :: d1, d2, tolerance + real(8), intent(in) :: x + real(8) :: d2rd + d2rd = (x * pi_d) / 180.0_8 + endfunction + + subroutine cmpd(x, d1, d2, tolerance, str) + implicit none + real(8), intent(in) :: x, d1, d2, tolerance character(len=*), intent(in) :: str if ( dabs(d2 - d1) .gt. tolerance ) then - write (*, '(A,F12.6,F12.6)') str, d1, d2 + write (*, '(A,A,F18.14,A,F18.14,F18.14)') str, "(", x, ")", d1, d2 STOP 2 endif endsubroutine -implicit none +#ifdef __GFC_REAL_10__ + function d2rl(x) + implicit none + real(10), intent(in) :: x + real(10) :: d2rl + d2rl = (x * pi_l) / 180.0_10 + endfunction - real(4), parameter :: pi_f = (4.0_4 * atan(1.0_4)) - real(8), parameter :: pi_d = (4.0_8 * datan(1.0_8)) - real(4), parameter :: r2d_f = 180.0_4 / pi_f - real(8), parameter :: r2d_d = 180.0_8 / pi_d - real(4), parameter :: d2r_f = pi_f / 180.0_4 - real(8), parameter :: d2r_d = pi_d / 180.0_8 + subroutine cmpl(x, f1, f2, tolerance, str) + implicit none + real(10), intent(in) :: x, f1, f2, tolerance + character(len=*), intent(in) :: str + if ( abs(f2 - f1) .gt. tolerance ) then + write (*, '(A,A,F21.17,A,F21.17,F21.17)') str, "(", x, ")", f1, f2 + STOP 1 + endif + endsubroutine +#endif + +#ifdef __GFC_REAL_16__ + function d2rq(x) + implicit none + real(16), intent(in) :: x + real(16) :: d2rq + d2rq = (x * pi_q) / 180.0_16 + endfunction + + subroutine cmpq(x, f1, f2, tolerance, str) + implicit none + real(16), intent(in) :: x, f1, f2, tolerance + character(len=*), intent(in) :: str + if ( abs(f2 - f1) .gt. tolerance ) then + write (*, '(A,A,F34.30,A,F34.30,F34.30)') str, "(", x, ")", f1, f2 + STOP 1 + endif + endsubroutine +#endif + +end module + +use dec_math + +implicit none ! inputs real(4) :: f_i1, f_i2 real(4), volatile :: xf real(8) :: d_i1, d_i2 real(8), volatile :: xd +#ifdef __GFC_REAL_10__ +real(10) :: l_i1, l_i2 +real(10), volatile :: xl +#endif +#ifdef __GFC_REAL_16__ +real(16) :: q_i1, q_i2 +real(16), volatile :: xq +#endif ! expected outputs from (oe) default (oxe) expression real(4) :: f_oe, f_oxe real(8) :: d_oe, d_oxe +#ifdef __GFC_REAL_10__ +real(10) :: l_oe, l_oxe +#endif +#ifdef __GFC_REAL_16__ +real(16) :: q_oe, q_oxe +#endif ! actual outputs from (oa) default (oc) constant (ox) expression real(4) :: f_oa, f_oc, f_ox real(8) :: d_oa, d_oc, d_ox +#ifdef __GFC_REAL_10__ +real(10) :: l_oa, l_oc, l_ox +#endif +#ifdef __GFC_REAL_16__ +real(16) :: q_oa, q_oc, q_ox +#endif ! tolerance of the answer: assert |exp-act| <= tol -real(4) :: f_tol -real(8) :: d_tol - -! equivalence tolerance -f_tol = 5e-5_4 -d_tol = 5e-6_8 - -! multiplication factors to test non-constant expressions +! accept loss of ~four decimal places +real(4), parameter :: f_tol = 5e-3_4 +real(8), parameter :: d_tol = 5e-10_8 +#ifdef __GFC_REAL_10__ +real(10), parameter :: l_tol = 5e-15_10 +#endif +#ifdef __GFC_REAL_16__ +real(16), parameter :: q_tol = 5e-20_16 +#endif + +! volatile multiplication factors to test non-constant expressions xf = 2.0_4 xd = 2.0_8 - -! Input -f_i1 = 0.68032123_4 -d_i1 = 0.68032123_8 - -! Expected -f_oe = r2d_f*acos (f_i1) -f_oxe = xf*r2d_f*acos (f_i1) -d_oe = r2d_d*dacos(d_i1) -d_oxe = xd*r2d_d*dacos(d_i1) +#ifdef __GFC_REAL_10__ +xl = 2.0_10 +#endif +#ifdef __GFC_REAL_16__ +xq = 2.0_16 +#endif + +! Input -- cos(pi/4) +f_i1 = 0.707107_4 +d_i1 = 0.707106781186548_8 +#ifdef __GFC_REAL_10__ +l_i1 = 0.707106781186547573_10 +#endif +#ifdef __GFC_REAL_16__ +q_i1 = 0.707106781186547572737310929369414_16 +#endif + +! Expected -- pi/4 +f_oe = r2d_f * acos (f_i1) +f_oxe = r2d_f * acos (xf * f_i1) +d_oe = r2d_d * acos (d_i1) +d_oxe = r2d_d * acos (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oe = r2d_l * acos (l_i1) +l_oxe = r2d_l * acos (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oe = r2d_q * acos (q_i1) +q_oxe = r2d_q * acos (xq * q_i1) +#endif ! Actual f_oa = acosd (f_i1) -f_oc = acosd (0.68032123_4) -f_ox = xf*acosd (f_i1) -d_oa = dacosd (d_i1) -d_oc = dacosd (0.68032123_8) -d_ox = xd*dacosd (0.68032123_8) - -call cmpf(f_oe, f_oa, f_tol, "( ) acosd") -call cmpf(f_oe, f_oc, f_tol, "(c) acosd") -call cmpf(f_oxe, f_ox, f_tol, "(x) acosd") -call cmpd(d_oe, d_oa, d_tol, "( ) dacosd") -call cmpd(d_oe, d_oc, d_tol, "(c) dacosd") -call cmpd(d_oxe, d_ox, d_tol, "(x) dacosd") +f_oc = acosd (0.707107_4) +f_ox = acosd (xf * f_i1) +d_oa = acosd (d_i1) +d_oc = acosd (0.707106781186548_8) +d_ox = acosd (xd * 0.707106781186548_8) +#ifdef __GFC_REAL_10__ +l_oa = acosd (l_i1) +l_oc = acosd (0.707106781186547573_10) +l_ox = acosd (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oa = acosd (q_i1) +q_oc = acosd (0.707106781186547572737310929369414_16) +q_ox = acosd (xq * 0.707106781186547572737310929369414_16) +#endif + +call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) facosd") +call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) facosd") +call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) facosd") +call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dacosd") +call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dacosd") +call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) dacosd") +#ifdef __GFC_REAL_10__ +call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lacosd") +call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lacosd") +call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lacosd") +#endif +#ifdef __GFC_REAL_16__ +call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qacosd") +call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qacosd") +call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qacosd") +#endif ! Input f_i1 = 60.0_4 d_i1 = 60.0_8 +#ifdef __GFC_REAL_10__ +l_i1 = 60.0_10 +#endif +#ifdef __GFC_REAL_16__ +q_i1 = 60.0_16 +#endif ! Expected -f_oe = cos (d2r_f*f_i1) -f_oxe = xf*cos (d2r_f*f_i1) -d_oe = cos (d2r_d*d_i1) -d_oxe = xd*cos (d2r_d*d_i1) +f_oe = cos (d2rf(f_i1)) +f_oxe = cos (d2rf(xf * f_i1)) +d_oe = cos (d2rd(d_i1)) +d_oxe = cos (d2rd(xd * d_i1)) +#ifdef __GFC_REAL_10__ +l_oe = cos (d2rl(l_i1)) +l_oxe = cos (d2rl(xl * l_i1)) +#endif +#ifdef __GFC_REAL_16__ +q_oe = cos (d2rq(q_i1)) +q_oxe = cos (d2rq(xq * q_i1)) +#endif ! Actual -f_oa = cosd (f_i1) -f_oc = cosd (60.0_4) -f_ox = xf* cosd (f_i1) -d_oa = dcosd (d_i1) -d_oc = dcosd (60.0_8) -d_ox = xd* cosd (d_i1) - -call cmpf(f_oe, f_oa, f_tol, "( ) cosd") -call cmpf(f_oe, f_oc, f_tol, "(c) cosd") -call cmpf(f_oxe, f_ox, f_tol, "(x) cosd") -call cmpd(d_oe, d_oa, d_tol, "( ) dcosd") -call cmpd(d_oe, d_oc, d_tol, "(c) dcosd") -call cmpd(d_oxe, d_ox, d_tol, "(x) cosd") - -! Input -f_i1 = 0.79345021_4 -d_i1 = 0.79345021_8 - -! Expected -f_oe = r2d_f*asin (f_i1) -f_oxe = xf*r2d_f*asin (f_i1) -d_oe = r2d_d*asin (d_i1) -d_oxe = xd*r2d_d*asin (d_i1) +f_oa = cosd (f_i1) +f_oc = cosd (60.0_4) +f_ox = cosd (xf * f_i1) +d_oa = cosd (d_i1) +d_oc = cosd (60.0_8) +d_ox = cosd (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oa = cosd (l_i1) +l_oc = cosd (60.0_10) +l_ox = cosd (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oa = cosd (q_i1) +q_oc = cosd (60.0_16) +q_ox = cosd (xq * q_i1) +#endif + +call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fcosd") +call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fcosd") +call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fcosd") +call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dcosd") +call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dcosd") +call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) cosd") +#ifdef __GFC_REAL_10__ +call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lcosd") +call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lcosd") +call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lcosd") +#endif +#ifdef __GFC_REAL_16__ +call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qcosd") +call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qcosd") +call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qcosd") +#endif + +! Input -- sin(pi/4) +f_i1 = 0.707107_4 +d_i1 = 0.707106781186548_8 +#ifdef __GFC_REAL_10__ +l_i1 = 0.707106781186547573_10 +#endif +#ifdef __GFC_REAL_16__ +q_i1 = 0.707106781186547572737310929369414_16 +#endif + +! Expected -- pi/4 +f_oe = r2d_f * asin (f_i1) +f_oxe = r2d_f * asin (xf * f_i1) +d_oe = r2d_d * asin (d_i1) +d_oxe = r2d_d * asin (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oe = r2d_l * asin (l_i1) +l_oxe = r2d_l * asin (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oe = r2d_q * asin (q_i1) +q_oxe = r2d_q * asin (xq * q_i1) +#endif ! Actual -f_oa = asind (f_i1) -f_oc = asind (0.79345021_4) -f_ox = xf* asind (f_i1) -d_oa = dasind (d_i1) -d_oc = dasind (0.79345021_8) -d_ox = xd* asind (d_i1) - -call cmpf(f_oe, f_oa, f_tol, "( ) asind") -call cmpf(f_oe, f_oc, f_tol, "(c) asind") -call cmpf(f_oxe, f_ox, f_tol, "(x) asind") -call cmpd(d_oe, d_oa, d_tol, "( ) dasind") -call cmpd(d_oe, d_oc, d_tol, "(c) dasind") -call cmpd(d_oxe, d_ox, d_tol, "(x) asind") +f_oa = asind (f_i1) +f_oc = asind (0.707107_4) +f_ox = asind (xf * f_i1) +d_oa = asind (d_i1) +d_oc = asind (0.707106781186548_8) +d_ox = asind (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oa = asind (l_i1) +l_oc = asind (0.707106781186547573_10) +l_ox = asind (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oa = asind (q_i1) +q_oc = asind (0.707106781186547572737310929369414_16) +q_ox = asind (xq * q_i1) +#endif + +call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fasind") +call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fasind") +call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fasind") +call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dasind") +call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dasind") +call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) asind") +#ifdef __GFC_REAL_10__ +call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lasind") +call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lasind") +call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lasind") +#endif +#ifdef __GFC_REAL_16__ +call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qasind") +call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qasind") +call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qasind") +#endif ! Input f_i1 = 60.0_4 d_i1 = 60.0_8 +#ifdef __GFC_REAL_10__ +l_i1 = 60.0_10 +#endif +#ifdef __GFC_REAL_16__ +q_i1 = 60.0_16 +#endif ! Expected -f_oe = sin (d2r_f*f_i1) -f_oxe = xf*sin (d2r_f*f_i1) -d_oe = sin (d2r_d*d_i1) -d_oxe = xd*sin (d2r_d*d_i1) +f_oe = sin (d2rf(f_i1)) +f_oxe = sin (d2rf(xf * f_i1)) +d_oe = sin (d2rd(d_i1)) +d_oxe = sin (d2rd(xd * d_i1)) +#ifdef __GFC_REAL_10__ +l_oe = sin (d2rl(l_i1)) +l_oxe = sin (d2rl(xl * l_i1)) +#endif +#ifdef __GFC_REAL_16__ +q_oe = sin (d2rq(q_i1)) +q_oxe = sin (d2rq(xq * q_i1)) +#endif ! Actual -f_oa = sind (f_i1) -f_oc = sind (60.0_4) -f_ox = xf* sind (f_i1) -d_oa = dsind (d_i1) -d_oc = dsind (60.0_8) -d_ox = xd* sind (d_i1) - -call cmpf(f_oe, f_oa, f_tol, "( ) sind") -call cmpf(f_oe, f_oc, f_tol, "(c) sind") -call cmpf(f_oxe, f_ox, f_tol, "(x) sind") -call cmpd(d_oe, d_oa, d_tol, "( ) dsind") -call cmpd(d_oe, d_oc, d_tol, "(c) dsind") -call cmpd(d_oxe, d_ox, d_tol, "(x) sind") +f_oa = sind (f_i1) +f_oc = sind (60.0_4) +f_ox = sind (xf * f_i1) +d_oa = sind (d_i1) +d_oc = sind (60.0_8) +d_ox = sind (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oa = sind (l_i1) +l_oc = sind (60.0_10) +l_ox = sind (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oa = sind (q_i1) +q_oc = sind (60.0_16) +q_ox = sind (xq * q_i1) +#endif + +call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fsind") +call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fsind") +call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fsind") +call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dsind") +call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dsind") +call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) sind") +#ifdef __GFC_REAL_10__ +call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lsind") +call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lsind") +call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lsind") +#endif +#ifdef __GFC_REAL_16__ +call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qsind") +call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qsind") +call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qsind") +#endif ! Input -f_i1 = 2.679676_4 -f_i2 = 1.0_4 -d_i1 = 2.679676_8 -d_i2 = 1.0_8 +f_i1 = 1.0_4 +f_i2 = 2.0_4 +d_i1 = 1.0_8 +d_i2 = 2.0_8 +#ifdef __GFC_REAL_10__ +l_i1 = 1.0_10 +l_i2 = 2.0_10 +#endif +#ifdef __GFC_REAL_16__ +q_i1 = 1.0_16 +q_i2 = 2.0_16 +#endif ! Expected -f_oe = r2d_f*atan2 (f_i1, f_i2) -f_oxe = xf*r2d_f*atan2 (f_i1, f_i2) -d_oe = r2d_d*atan2 (d_i1, d_i2) -d_oxe = xd*r2d_d*atan2 (d_i1, d_i2) +f_oe = r2d_f * atan2 (f_i1, f_i2) +f_oxe = r2d_f * atan2 (xf * f_i1, f_i2) +d_oe = r2d_d * atan2 (d_i1, d_i2) +d_oxe = r2d_d * atan2 (xd * d_i1, d_i2) +#ifdef __GFC_REAL_10__ +l_oe = r2d_l * atan2 (l_i1, l_i2) +l_oxe = r2d_l * atan2 (xl * l_i1, l_i2) +#endif +#ifdef __GFC_REAL_16__ +q_oe = r2d_q * atan2 (q_i1, q_i2) +q_oxe = r2d_q * atan2 (xq * q_i1, q_i2) +#endif ! Actual -f_oa = atan2d (f_i1, f_i2) -f_oc = atan2d (2.679676_4, 1.0_4) -f_ox = xf* atan2d (f_i1, f_i2) -d_oa = datan2d (d_i1, d_i2) -d_oc = datan2d (2.679676_8, 1.0_8) -d_ox = xd* atan2d (d_i1, d_i2) - -call cmpf(f_oe, f_oa, f_tol, "( ) atan2d") -call cmpf(f_oe, f_oc, f_tol, "(c) atan2d") -call cmpf(f_oxe, f_ox, f_tol, "(x) atan2d") -call cmpd(d_oe, d_oa, d_tol, "( ) datan2d") -call cmpd(d_oe, d_oc, d_tol, "(c) datan2d") -call cmpd(d_oxe, d_ox, d_tol, "(x) atan2d") +f_oa = atan2d (f_i1, f_i2) +f_oc = atan2d (1.0_4, 2.0_4) +f_ox = atan2d (xf * f_i1, f_i2) +d_oa = atan2d (d_i1, d_i2) +d_oc = atan2d (1.0_8, 2.0_8) +d_ox = atan2d (xd * d_i1, d_i2) +#ifdef __GFC_REAL_10__ +l_oa = atan2d (l_i1, l_i2) +l_oc = atan2d (1.0_10, 2.0_10) +l_ox = atan2d (xl * l_i1, l_i2) +#endif +#ifdef __GFC_REAL_16__ +q_oa = atan2d (q_i1, q_i2) +q_oc = atan2d (1.0_16, 2.0_16) +q_ox = atan2d (xq * q_i1, q_i2) +#endif + +call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fatan2d") +call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fatan2d") +call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fatan2d") +call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) datan2d") +call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) datan2d") +call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) atan2d") +#ifdef __GFC_REAL_10__ +call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) latan2d") +call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) latan2d") +call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) latan2d") +#endif +#ifdef __GFC_REAL_16__ +call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qatan2d") +call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qatan2d") +call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qatan2d") +#endif ! Input -f_i1 = 1.5874993_4 -d_i1 = 1.5874993_8 +f_i1 = 1.55741_4 +d_i1 = 1.5574077246549_8 +#ifdef __GFC_REAL_10__ +l_i1 = 1.55740772465490229_10 +#endif +#ifdef __GFC_REAL_16__ +q_i1 = 1.55740772465490229237161656783428_16 +#endif ! Expected -f_oe = r2d_f*atan (f_i1) -f_oxe = xf*r2d_f*atan (f_i1) -d_oe = r2d_d*atan (d_i1) -d_oxe = xd*r2d_d*atan (d_i1) +f_oe = r2d_f * atan (f_i1) +f_oxe = r2d_f * atan (xf * f_i1) +d_oe = r2d_d * atan (d_i1) +d_oxe = r2d_d * atan (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oe = r2d_l * atan (l_i1) +l_oxe = r2d_l * atan (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oe = r2d_q * atan (q_i1) +q_oxe = r2d_q * atan (xq * q_i1) +#endif ! Actual -f_oa = atand (f_i1) -f_oc = atand (1.5874993_4) -f_ox = xf* atand (f_i1) -d_oa = datand (d_i1) -d_oc = datand (1.5874993_8) -d_ox = xd* atand (d_i1) - -call cmpf(f_oe, f_oa, f_tol, "( ) atand") -call cmpf(f_oe, f_oc, f_tol, "(c) atand") -call cmpf(f_oxe, f_ox, f_tol, "(x) atand") -call cmpd(d_oe, d_oa, d_tol, "( ) datand") -call cmpd(d_oe, d_oc, d_tol, "(c) datand") -call cmpd(d_oxe, d_ox, d_tol, "(x) atand") +f_oa = atand (f_i1) +f_oc = atand (1.55741_4) +f_ox = atand (xf * f_i1) +d_oa = atand (d_i1) +d_oc = atand (1.5574077246549_8) +d_ox = atand (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oa = atand (l_i1) +l_oc = atand (1.55740772465490229_10) +l_ox = atand (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oa = atand (q_i1) +q_oc = atand (1.55740772465490229237161656783428_16) +q_ox = atand (xq * q_i1) +#endif + +call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fatand") +call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fatand") +call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fatand") +call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) datand") +call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) datand") +call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) atand") +#ifdef __GFC_REAL_10__ +call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) latand") +call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) latand") +call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) latand") +#endif +#ifdef __GFC_REAL_16__ +call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qatand") +call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qatand") +call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qatand") +#endif ! Input -f_i1 = 0.6_4 -d_i1 = 0.6_8 +f_i1 = 34.3775_4 +d_i1 = 34.3774677078494_8 +#ifdef __GFC_REAL_10__ +l_i1 = 34.3774677078493909_10 +#endif +#ifdef __GFC_REAL_16__ +q_i1 = 34.3774677078493908766176900826395_16 +#endif ! Expected -f_oe = cotan (d2r_f*f_i1) -f_oxe = xf*cotan (d2r_f*f_i1) -d_oe = cotan (d2r_d*d_i1) -d_oxe = xd*cotan (d2r_d*d_i1) +f_oe = 1.0_4/tan (f_i1) +f_oxe = 1.0_4/tan (xf * f_i1) +d_oe = 1.0_8/tan (d_i1) +d_oxe = 1.0_8/tan (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oe = 1.0_10/tan (l_i1) +l_oxe = 1.0_10/tan (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oe = 1.0_16/tan (q_i1) +q_oxe = 1.0_16/tan (xq * q_i1) +#endif ! Actual -f_oa = cotand (f_i1) -f_oc = cotand (0.6_4) -f_ox = xf* cotand (f_i1) -d_oa = dcotand (d_i1) -d_oc = dcotand (0.6_8) -d_ox = xd* cotand (d_i1) - -call cmpf(f_oe, f_oa, f_tol, "( ) cotand") -call cmpf(f_oe, f_oc, f_tol, "(c) cotand") -call cmpf(f_oxe, f_ox, f_tol, "(x) cotand") -call cmpd(d_oe, d_oa, d_tol, "( ) dcotand") -call cmpd(d_oe, d_oc, d_tol, "(c) dcotand") -call cmpd(d_oxe, d_ox, d_tol, "(x) cotand") +f_oa = cotan (f_i1) +f_oc = cotan (34.3775_4) +f_ox = cotan (xf * f_i1) +d_oa = cotan (d_i1) +d_oc = cotan (34.3774677078494_8) +d_ox = cotan (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oa = cotan (l_i1) +l_oc = cotan (34.3774677078493909_10) +l_ox = cotan (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oa = cotan (q_i1) +q_oc = cotan (34.3774677078493908766176900826395_16) +q_ox = cotan (xq * q_i1) +#endif + +call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fcotan") +call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fcotan") +call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fcotan") +call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dcotan") +call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dcotan") +call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) cotan") +#ifdef __GFC_REAL_10__ +call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lcotan") +call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lcotan") +call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lcotan") +#endif +#ifdef __GFC_REAL_16__ +call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qcotan") +call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qcotan") +call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qcotan") +#endif ! Input f_i1 = 0.6_4 d_i1 = 0.6_8 +#ifdef __GFC_REAL_10__ +l_i1 = 0.6_10 +#endif +#ifdef __GFC_REAL_16__ +q_i1 = 0.6_16 +#endif ! Expected -f_oe = 1.0_4/tan (f_i1) -f_oxe = xf* 1.0_4/tan (f_i1) -d_oe = 1.0_8/dtan (d_i1) -d_oxe = xd*1.0_8/dtan (d_i1) +f_oe = cotan (d2rf(f_i1)) +f_oxe = cotan (d2rf(xf * f_i1)) +d_oe = cotan (d2rd(d_i1)) +d_oxe = cotan (d2rd(xd * d_i1)) +#ifdef __GFC_REAL_10__ +l_oe = cotan (d2rl(l_i1)) +l_oxe = cotan (d2rl(xl * l_i1)) +#endif +#ifdef __GFC_REAL_16__ +q_oe = cotan (d2rq(q_i1)) +q_oxe = cotan (d2rq(xq * q_i1)) +#endif ! Actual -f_oa = cotan (f_i1) -f_oc = cotan (0.6_4) -f_ox = xf* cotan (f_i1) -d_oa = dcotan (d_i1) -d_oc = dcotan (0.6_8) -d_ox = xd* cotan (d_i1) - -call cmpf(f_oe, f_oa, f_tol, "( ) cotan") -call cmpf(f_oe, f_oc, f_tol, "(c) cotan") -call cmpf(f_oxe, f_ox, f_tol, "(x) cotan") -call cmpd(d_oe, d_oa, d_tol, "( ) dcotan") -call cmpd(d_oe, d_oc, d_tol, "(c) dcotan") -call cmpd(d_oxe, d_ox, d_tol, "(x) cotan") +f_oa = cotand (f_i1) +f_oc = cotand (0.6_4) +f_ox = cotand (xf * f_i1) +d_oa = cotand (d_i1) +d_oc = cotand (0.6_8) +d_ox = cotand (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oa = cotand (l_i1) +l_oc = cotand (0.6_10) +l_ox = cotand (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oa = cotand (q_i1) +q_oc = cotand (0.6_16) +q_ox = cotand (xq * q_i1) +#endif + +call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) fcotand") +call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) fcotand") +call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) fcotand") +call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dcotand") +call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dcotand") +call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) cotand") +#ifdef __GFC_REAL_10__ +call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) lcotand") +call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) lcotand") +call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) lcotand") +#endif +#ifdef __GFC_REAL_16__ +call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qcotand") +call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qcotand") +call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qcotand") +#endif ! Input f_i1 = 60.0_4 d_i1 = 60.0_8 +#ifdef __GFC_REAL_10__ +l_i1 = 60.0_10 +#endif +#ifdef __GFC_REAL_16__ +q_i1 = 60.0_16 +#endif ! Expected -f_oe = tan (d2r_f*f_i1) -f_oxe = xf*tan (d2r_f*f_i1) -d_oe = tan (d2r_d*d_i1) -d_oxe = xd*tan (d2r_d*d_i1) +f_oe = tan (d2rf(f_i1)) +f_oxe = tan (d2rf(xf * f_i1)) +d_oe = tan (d2rd(d_i1)) +d_oxe = tan (d2rd(xd * d_i1)) +#ifdef __GFC_REAL_10__ +l_oe = tan (d2rl(l_i1)) +l_oxe = tan (d2rl(xl * l_i1)) +#endif +#ifdef __GFC_REAL_16__ +q_oe = tan (d2rq(q_i1)) +q_oxe = tan (d2rq(xq * q_i1)) +#endif ! Actual -f_oa = tand (f_i1) -f_oc = tand (60.0_4) -f_ox = xf* tand (f_i1) -d_oa = dtand (d_i1) -d_oc = dtand (60.0_8) -d_ox = xd* tand (d_i1) - -call cmpf(f_oe, f_oa, f_tol, "( ) tand") -call cmpf(f_oe, f_oc, f_tol, "(c) tand") -call cmpf(f_oxe, f_ox, f_tol, "(x) tand") -call cmpd(d_oe, d_oa, d_tol, "( ) dtand") -call cmpd(d_oe, d_oc, d_tol, "(c) dtand") -call cmpd(d_oxe, d_ox, d_tol, "(x) tand") +f_oa = tand (f_i1) +f_oc = tand (60.0_4) +f_ox = tand (xf * f_i1) +d_oa = tand (d_i1) +d_oc = tand (60.0_8) +d_ox = tand (xd * d_i1) +#ifdef __GFC_REAL_10__ +l_oa = tand (l_i1) +l_oc = tand (60.0_10) +l_ox = tand (xl * l_i1) +#endif +#ifdef __GFC_REAL_16__ +q_oa = tand (q_i1) +q_oc = tand (60.0_16) +q_ox = tand (xq * q_i1) +#endif + +call cmpf(f_i1, f_oe, f_oa, f_tol, "( ) ftand") +call cmpf(f_i1, f_oe, f_oc, f_tol, "(c) ftand") +call cmpf(f_i1, f_oxe, f_ox, f_tol, "(x) ftand") +call cmpd(d_i1, d_oe, d_oa, d_tol, "( ) dtand") +call cmpd(d_i1, d_oe, d_oc, d_tol, "(c) dtand") +call cmpd(d_i1, d_oxe, d_ox, d_tol, "(x) dtand") +#ifdef __GFC_REAL_10__ +call cmpl(l_i1, l_oe, l_oa, l_tol, "( ) ltand") +call cmpl(l_i1, l_oe, l_oc, l_tol, "(c) ltand") +call cmpl(l_i1, l_oxe, l_ox, l_tol, "(x) ltand") +#endif +#ifdef __GFC_REAL_16__ +call cmpq(q_i1, q_oe, q_oa, q_tol, "( ) qtand") +call cmpq(q_i1, q_oe, q_oc, q_tol, "(c) qtand") +call cmpq(q_i1, q_oxe, q_ox, q_tol, "(x) qtand") +#endif end diff --git a/gcc/testsuite/gfortran.dg/dec_math_2.f90 b/gcc/testsuite/gfortran.dg/dec_math_2.f90 new file mode 100644 index 00000000000..ac49e273dd7 --- /dev/null +++ b/gcc/testsuite/gfortran.dg/dec_math_2.f90 @@ -0,0 +1,14 @@ +! { dg-options "-fdec-math" } +! { dg-do compile } +! +! Ensure extra math intrinsics formerly offered by -fdec-math +! are still available with -fdec-math. +! + +print *, sind(0.0) +print *, cosd(0.0) +print *, tand(0.0) +print *, cotan(1.0) +print *, cotand(90.0) + +end diff --git a/gcc/testsuite/gfortran.dg/dec_math_3.f90 b/gcc/testsuite/gfortran.dg/dec_math_3.f90 new file mode 100644 index 00000000000..5bf4398d0f2 --- /dev/null +++ b/gcc/testsuite/gfortran.dg/dec_math_3.f90 @@ -0,0 +1,8 @@ +! { dg-options "-std=gnu" } +! { dg-do compile } + +! Former ICE when simplifying asind, plus wrong function name in error message +real, parameter :: d = asind(1.1) ! { dg-error "Argument of ASIND at.*must be between -1 and 1" } +print *, d + +end diff --git a/gcc/testsuite/gfortran.dg/dec_math_4.f90 b/gcc/testsuite/gfortran.dg/dec_math_4.f90 new file mode 100644 index 00000000000..f83210a4732 --- /dev/null +++ b/gcc/testsuite/gfortran.dg/dec_math_4.f90 @@ -0,0 +1,8 @@ +! { dg-options "-std=gnu" } +! { dg-do compile } + +! Former ICE when simplifying complex cotan +complex, parameter :: z = cotan((1., 1.)) +print *, z + +end diff --git a/gcc/testsuite/gfortran.dg/dec_math_5.f90 b/gcc/testsuite/gfortran.dg/dec_math_5.f90 new file mode 100644 index 00000000000..d761e039cc8 --- /dev/null +++ b/gcc/testsuite/gfortran.dg/dec_math_5.f90 @@ -0,0 +1,228 @@ +! { dg-options "-cpp -std=gnu" } +! { dg-do run } +! +! Test values for degree-valued trigonometric intrinsics. +! + +module dec_math_5 + + + ! Use the highest precision available. + ! Note however that if both __GFC_REAL_10__ and __GFC_REAL_16__ are defined, + ! the size of real(16) is actually that of REAL(10) (80 bits) in which case + ! we should not over-estimate the precision available, or the test will fail. +#if defined(__GFC_REAL_10__) + integer, parameter :: real_kind = 10 + real(real_kind), parameter :: eps = 5e-11_10 + + real(real_kind), parameter :: pi_2 = 1.57079632679489656_10 + real(real_kind), parameter :: pi = 3.14159265358979312_10 + real(real_kind), parameter :: tau = 6.28318530717958623_10 + +#elif defined(__GFC_REAL_16__) + integer, parameter :: real_kind = 16 + real(real_kind), parameter :: eps = 5e-16_16 + + real(real_kind), parameter :: pi_2 = 1.5707963267948966192313216916397514_16 + real(real_kind), parameter :: pi = 3.1415926535897932384626433832795_16 + real(real_kind), parameter :: tau = 6.28318530717958647692528676655900559_16 + +#else + integer, parameter :: real_kind = 8 + real(real_kind), parameter :: eps = 5e-10_8 + + real(real_kind), parameter :: pi_2 = 1.57079632679490_8 + real(real_kind), parameter :: pi = 3.14159265358979_8 + real(real_kind), parameter :: tau = 6.28318530717959_8 + +#endif + + ! Important angles in canonical form. + + integer, parameter :: nangle = 16 + + real(real_kind), dimension(nangle), parameter :: degrees = (/ & + 0, & ! 180 * 0 + 30, & ! 180 * 1/6 + 45, & ! 180 * 1/4 + 60, & ! 180 * 1/3 + 90, & ! 180 * 1/2 + 120, & ! 180 * 2/3 + 135, & ! 180 * 3/4 + 150, & ! 180 * 5/6 + 180, & ! 180 + 210, & ! 180 * 7/6 + 225, & ! 180 * 5/4 + 240, & ! 180 * 4/3 + 270, & ! 180 * 3/2 + 300, & ! 180 * 5/3 + 315, & ! 180 * 7/4 + 330 & ! 180 * 11/6 + /) + + real(real_kind), dimension(nangle), parameter :: radians = (/ & +#ifdef __GFC_REAL_10__ + 0.000000000000000000_10, & ! pi * 0 + 0.523598775598298873_10, & ! pi * 1/6 + 0.785398163397448310_10, & ! pi * 1/4 + 1.047197551196597750_10, & ! pi * 1/3 + 1.570796326794896620_10, & ! pi * 1/2 + 2.094395102393195490_10, & ! pi * 2/3 + 2.356194490192344930_10, & ! pi * 3/4 + 2.617993877991494370_10, & ! pi * 5/6 + 3.141592653589793240_10, & ! pi + 3.665191429188092110_10, & ! pi * 7/6 + 3.926990816987241550_10, & ! pi * 5/4 + 4.188790204786390980_10, & ! pi * 4/3 + 4.712388980384689860_10, & ! pi * 3/2 + 5.235987755982988730_10, & ! pi * 5/3 + 5.497787143782138170_10, & ! pi * 7/4 + 5.759586531581287600_10 & ! pi * 11/6 + +#elif defined(__GFC_REAL_16__) + 0.000000000000000000000000000000000_16, & ! pi * 0 + 0.523598775598298873077107230546584_16, & ! pi * 1/6 + 0.785398163397448309615660845819876_16, & ! pi * 1/4 + 1.047197551196597746154214461093170_16, & ! pi * 1/3 + 1.570796326794896619231321691639750_16, & ! pi * 1/2 + 2.094395102393195492308428922186330_16, & ! pi * 2/3 + 2.356194490192344928846982537459630_16, & ! pi * 3/4 + 2.617993877991494365385536152732920_16, & ! pi * 5/6 + 3.141592653589793238462643383279500_16, & ! pi + 3.665191429188092111539750613826090_16, & ! pi * 7/6 + 3.926990816987241548078304229099380_16, & ! pi * 5/4 + 4.188790204786390984616857844372670_16, & ! pi * 4/3 + 4.712388980384689857693965074919250_16, & ! pi * 3/2 + 5.235987755982988730771072305465840_16, & ! pi * 5/3 + 5.497787143782138167309625920739130_16, & ! pi * 7/4 + 5.759586531581287603848179536012420_16 & ! pi * 11/6 + +#else + 0.000000000000000_8, & ! pi * 0 + 0.523598775598299_8, & ! pi * 1/6 + 0.785398163397448_8, & ! pi * 1/4 + 1.047197551196600_8, & ! pi * 1/3 + 1.570796326794900_8, & ! pi * 1/2 + 2.094395102393200_8, & ! pi * 2/3 + 2.356194490192340_8, & ! pi * 3/4 + 2.617993877991490_8, & ! pi * 5/6 + 3.141592653589790_8, & ! pi + 3.665191429188090_8, & ! pi * 7/6 + 3.926990816987240_8, & ! pi * 5/4 + 4.188790204786390_8, & ! pi * 4/3 + 4.712388980384690_8, & ! pi * 3/2 + 5.235987755982990_8, & ! pi * 5/3 + 5.497787143782140_8, & ! pi * 7/4 + 5.759586531581290_8 & ! pi * 11/6 +#endif + /) + + ! sind, cosd, tand, cotand + + ! Ensure precision degrades minimally for large values. + integer, parameter :: nphase = 5 + + integer, dimension(nphase), parameter :: phases = (/ & + 0, 1, 5, 100, 10000 & + /) + +contains + + subroutine compare(strl, xl_in, xl_out, strr, xr_in, xr_out, eps) + use ieee_arithmetic + implicit none + character(*), intent(in) :: strl, strr + real(real_kind), intent(in) :: xl_in, xl_out, xr_in, xr_out, eps + + if ((ieee_is_nan(xl_out) .neqv. ieee_is_nan(xr_out)) & + .or. (ieee_is_finite(xl_out) .neqv. ieee_is_finite(xr_out)) & + .or. (abs(xl_out - xr_out) .gt. eps)) then + write (*, 100) strl, "(", xl_in, "): ", xl_out + write (*, 100) strr, "(", xr_in, "): ", xr_out + + if ((ieee_is_nan(xl_out) .eqv. ieee_is_nan(xr_out)) & + .and. ieee_is_finite(xl_out) .and. ieee_is_finite(xr_out)) then + write (*, 300) "|xl - xr| = ", abs(xl_out - xr_out) + write (*, 300) " > eps = ", eps + endif + + call abort() + endif + +#ifdef __GFC_REAL_16__ + 100 format((A8,A,F34.30,A,F34.30,F34.30)) + 200 format((A12,F34.30)) + !500 format((A8,A,G34.29,A,G34.29,G34.29)) +#elif defined(__GFC_REAL_10__) + 100 format((A8,A,F21.17,A,F21.17,F21.17)) + 200 format((A12,F21.17)) + !500 format((A8,A,G21.16,A,G21.16,G21.16)) +#else + 100 format((A8,A,F18.14,A,F18.14,F18.14)) + 200 format((A12,F18.14)) + !500 format((A8,A,G18.13,A,G18.13,G18.13)) +#endif + 300 format((A12,G8.2)) + endsubroutine + +endmodule + +use dec_math_5 +use ieee_arithmetic +implicit none + +integer :: phase_index, angle_index, phase +real(real_kind) :: deg_in, deg_out, deg_out2, rad_in, rad_out + +! Try every value in degrees, and make sure they are correct compared to the +! corresponding radian function. + +do phase_index = 1, size(phases) + phase = phases(phase_index) + + do angle_index = 1, size(degrees) + ! eqv to degrees(angle_index) modulo 360 + deg_in = degrees(angle_index) + phase * 360 + rad_in = radians(angle_index) + phase * tau + + ! sind vs. sin + deg_out = sind(deg_in) + rad_out = sin(rad_in) + call compare("sind", deg_in, deg_out, "sin", rad_in, rad_out, eps) + + ! cosd vs. cos + deg_out = cosd(deg_in) + rad_out = cos(rad_in) + call compare("cosd", deg_in, deg_out, "cos", rad_in, rad_out, eps) + + ! tand vs. tan + deg_out = tand(deg_in) + rad_out = tan(rad_in) + if ( ieee_is_finite(deg_out) ) then + call compare("tand", deg_in, deg_out, "tan", rad_in, rad_out, eps) + endif + + ! cotand vs. cotan + deg_out = cotand(deg_in) + rad_out = cotan(rad_in) + + ! Skip comparing infinity, because cotan does not return infinity + if ( ieee_is_finite(deg_out) ) then + call compare("cotand", deg_in, deg_out, "cotan", rad_in, rad_out, eps) + + ! cotand vs. tand + deg_out = cotand(deg_in) + deg_out2 = -tand(deg_in + 90) + + call compare("cotand", deg_in, deg_out, "-tand+90", deg_in, deg_out2, eps) + deg_out2 = 1 / tand(deg_in) + call compare("cotand", deg_in, deg_out, "1/tand", deg_in, deg_out2, eps) + endif + + enddo + + +enddo + + +end diff --git a/libgfortran/ChangeLog b/libgfortran/ChangeLog index bef6306fbc6..e33d3495028 100644 --- a/libgfortran/ChangeLog +++ b/libgfortran/ChangeLog @@ -1,3 +1,12 @@ +2020-04-01 Fritz Reese + Steven G. Kargl + + PR fortran/93871 + * Makefile.am, Makefile.in: New make rule for intrinsics/trigd.c. + * gfortran.map: New routines for {sind, cosd, tand}X{r4, r8, r10, r16}. + * intrinsics/trigd.c, intrinsics/trigd_lib.inc, intrinsics/trigd.inc: + New files. Defines native degree-valued trig functions. + 2020-02-18 Thomas Koenig PR fortran/93599 diff --git a/libgfortran/Makefile.am b/libgfortran/Makefile.am index 295a2d43564..8ca0f6c290d 100644 --- a/libgfortran/Makefile.am +++ b/libgfortran/Makefile.am @@ -141,6 +141,7 @@ intrinsics/reshape_generic.c \ intrinsics/reshape_packed.c \ intrinsics/selected_int_kind.f90 \ intrinsics/selected_real_kind.f90 \ +intrinsics/trigd.c \ intrinsics/unpack_generic.c \ runtime/in_pack_generic.c \ runtime/in_unpack_generic.c diff --git a/libgfortran/Makefile.in b/libgfortran/Makefile.in index a6804c1d4cf..97a978aa80f 100644 --- a/libgfortran/Makefile.in +++ b/libgfortran/Makefile.in @@ -422,8 +422,9 @@ am__objects_58 = associated.lo abort.lo args.lo cshift0.lo eoshift0.lo \ pack_generic.lo selected_char_kind.lo size.lo \ spread_generic.lo string_intrinsics.lo rand.lo random.lo \ reshape_generic.lo reshape_packed.lo selected_int_kind.lo \ - selected_real_kind.lo unpack_generic.lo in_pack_generic.lo \ - in_unpack_generic.lo $(am__objects_56) $(am__objects_57) + selected_real_kind.lo trigd.lo unpack_generic.lo \ + in_pack_generic.lo in_unpack_generic.lo $(am__objects_56) \ + $(am__objects_57) @IEEE_SUPPORT_TRUE@am__objects_59 = ieee_arithmetic.lo \ @IEEE_SUPPORT_TRUE@ ieee_exceptions.lo ieee_features.lo am__objects_60 = @@ -771,9 +772,9 @@ gfor_helper_src = intrinsics/associated.c intrinsics/abort.c \ intrinsics/rand.c intrinsics/random.c \ intrinsics/reshape_generic.c intrinsics/reshape_packed.c \ intrinsics/selected_int_kind.f90 \ - intrinsics/selected_real_kind.f90 intrinsics/unpack_generic.c \ - runtime/in_pack_generic.c runtime/in_unpack_generic.c \ - $(am__append_3) $(am__append_4) + intrinsics/selected_real_kind.f90 intrinsics/trigd.c \ + intrinsics/unpack_generic.c runtime/in_pack_generic.c \ + runtime/in_unpack_generic.c $(am__append_3) $(am__append_4) @IEEE_SUPPORT_FALSE@gfor_ieee_src = @IEEE_SUPPORT_TRUE@gfor_ieee_src = \ @IEEE_SUPPORT_TRUE@ieee/ieee_arithmetic.F90 \ @@ -2252,6 +2253,7 @@ distclean-compile: @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/time.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/transfer.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/transfer128.Plo@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/trigd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/umask.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unit.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unix.Plo@am__quote@ @@ -6404,6 +6406,13 @@ reshape_packed.lo: intrinsics/reshape_packed.c @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o reshape_packed.lo `test -f 'intrinsics/reshape_packed.c' || echo '$(srcdir)/'`intrinsics/reshape_packed.c +trigd.lo: intrinsics/trigd.c +@am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT trigd.lo -MD -MP -MF $(DEPDIR)/trigd.Tpo -c -o trigd.lo `test -f 'intrinsics/trigd.c' || echo '$(srcdir)/'`intrinsics/trigd.c +@am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/trigd.Tpo $(DEPDIR)/trigd.Plo +@AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='intrinsics/trigd.c' object='trigd.lo' libtool=yes @AMDEPBACKSLASH@ +@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ +@am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o trigd.lo `test -f 'intrinsics/trigd.c' || echo '$(srcdir)/'`intrinsics/trigd.c + unpack_generic.lo: intrinsics/unpack_generic.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_generic.lo -MD -MP -MF $(DEPDIR)/unpack_generic.Tpo -c -o unpack_generic.lo `test -f 'intrinsics/unpack_generic.c' || echo '$(srcdir)/'`intrinsics/unpack_generic.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/unpack_generic.Tpo $(DEPDIR)/unpack_generic.Plo diff --git a/libgfortran/gfortran.map b/libgfortran/gfortran.map index 3601bc24414..ebf1a6ff40b 100644 --- a/libgfortran/gfortran.map +++ b/libgfortran/gfortran.map @@ -1606,4 +1606,16 @@ GFORTRAN_9.2 { GFORTRAN_10 { global: _gfortran_os_error_at; + _gfortran_sind_r4; + _gfortran_sind_r8; + _gfortran_sind_r10; + _gfortran_sind_r16; + _gfortran_cosd_r4; + _gfortran_cosd_r8; + _gfortran_cosd_r10; + _gfortran_cosd_r16; + _gfortran_tand_r4; + _gfortran_tand_r8; + _gfortran_tand_r10; + _gfortran_tand_r16; } GFORTRAN_9.2; diff --git a/libgfortran/intrinsics/trigd.c b/libgfortran/intrinsics/trigd.c new file mode 100644 index 00000000000..81699069545 --- /dev/null +++ b/libgfortran/intrinsics/trigd.c @@ -0,0 +1,205 @@ +/* Implementation of the degree trignometric functions COSD, SIND, TAND. + Copyright (C) 2020 Free Software Foundation, Inc. + Contributed by Steven G. Kargl + +This file is part of the GNU Fortran runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +Libgfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +. */ + +#include "libgfortran.h" + +#include + + +/* + For real x, let {x}_P or x_P be the closest representible number in the + floating point representation which uses P binary bits of fractional + precision (with IEEE rounding semantics). + + Similarly, let f_P(x) be shorthand for {f(x)}_P. + + Let ulp_P(x) be the unit of least precision for x: in other words the + maximal value of |a_P - b_P| where a_P <= x <= b_P and a_P != b_P. + + Let x ~= y <-> | x - y | < ulp_P(x - y). + + Let deg(x) be the value of x radians in degrees. + + Values for each precision P were selected as follows. + + + COSD_SMALL = 2**{-N} such that for all x <= COSD_SMALL: + + * cos(deg(x)) ~= 1, or equivalently: + + | 1 - cos(deg(x)) | < ulp_P(1). + + Unfortunately for SIND (and therefore TAND) a similar relation is only + possible for REAL(4) and REAL(8). With REAL(10) and REAL(16), enough + precision is available such that sin_P(x) != x_P for some x less than any + value. (There are values where this equality holds, but the distance has + inflection points.) + + For REAL(4) and REAL(8), we can select SIND_SMALL such that: + + * sin(deg(x)) ~= deg(x), or equivalently: + + | deg(x) - sin(deg(x)) | < ulp_P(deg(x)). + + */ + +/* Build _gfortran_sind_r4, _gfortran_cosd_r4, and _gfortran_tand_r4 */ + +#define FTYPE GFC_REAL_4 +#define SIND sind_r4 +#define COSD cosd_r4 +#define TAND tand_r4 +#define SUFFIX(x) x ## f + +#define TINY 0x1.p-100f /* ~= 7.889e-31 */ +#define COSD_SMALL 0x1.p-7f /* = 7.8125e-3 */ +#define SIND_SMALL 0x1.p-5f /* = 3.125e-2 */ +#define COSD30 8.66025388e-01f + +#define PIO180H 1.74560547e-02f /* high 12 bits. */ +#define PIO180L -2.76216747e-06f /* Next 24 bits. */ + +#include "trigd_lib.inc" + +#undef FTYPE +#undef TINY +#undef COSD_SMALL +#undef SIND_SMALL +#undef COSD30 +#undef PIO180H +#undef PIO180L +#undef SIND +#undef COSD +#undef TAND +#undef SUFFIX + + +/* Build _gfortran_sind_r8, _gfortran_cosd_r8, and _gfortran_tand_r8. */ + +#define FTYPE GFC_REAL_8 +#define SIND sind_r8 +#define COSD cosd_r8 +#define TAND tand_r8 +#define SUFFIX(x) x + +#define TINY 0x1.p-1000 /* ~= 9.33e-302 (min exp -1074) */ +#define COSD_SMALL 0x1.p-21 /* ~= 4.768e-7 */ +#define SIND_SMALL 0x1.p-19 /* ~= 9.537e-7 */ +#define COSD30 8.6602540378443860e-01 + +#define PIO180H 1.7453283071517944e-02 /* high 21 bits. */ +#define PIO180L 9.4484253514332993e-09 /* Next 53 bits. */ + +#include "trigd_lib.inc" + +#undef FTYPE +#undef TINY +#undef COSD_SMALL +#undef SIND_SMALL +#undef COSD30 +#undef PIO180H +#undef PIO180L +#undef SIND +#undef COSD +#undef TAND +#undef SUFFIX + + +/* Build _gfortran_sind_r10, _gfortran_cosd_r10, and _gfortran_tand_r10. */ + +#ifdef HAVE_GFC_REAL_10 + +#define FTYPE GFC_REAL_10 +#define SIND sind_r10 +#define COSD cosd_r10 +#define TAND tand_r10 +#define SUFFIX(x) x ## l /* L */ + +#define TINY 0x1.p-16400L /* ~= 1.28e-4937 (min exp -16494) */ +#define COSD_SMALL 0x1.p-26L /* ~= 1.490e-8 */ +#undef SIND_SMALL /* not precise */ +#define COSD30 8.66025403784438646787e-01L + +#define PIO180H 1.74532925229868851602e-02L /* high 32 bits */ +#define PIO180L -3.04358939097084072823e-12L /* Next 64 bits */ + +#include "trigd_lib.inc" +#undef FTYPE +#undef TINY +#undef COSD_SMALL +#undef SIND_SMALL +#undef COSD30 +#undef PIO180H +#undef PIO180L +#undef SIND +#undef COSD +#undef TAND +#undef SUFFIX +#endif /* HAVE_GFC_REAL_10 */ + + +/* Build _gfortran_sind_r16, _gfortran_cosd_r16, and _gfortran_tand_r16. */ + +#ifdef HAVE_GFC_REAL_16 + +#define FTYPE GFC_REAL_16 +#define SIND sind_r16 +#define COSD cosd_r16 +#define TAND tand_r16 + +#ifdef GFC_REAL_16_IS_FLOAT128 /* libquadmath. */ +#define SUFFIX(x) x ## q +#else +#define SUFFIX(x) x ## l +#endif /* GFC_REAL_16_IS_FLOAT128 */ + +#define TINY SUFFIX(0x1.p-16400) /* ~= 1.28e-4937 */ +#define COSD_SMALL SUFFIX(0x1.p-51) /* ~= 4.441e-16 */ +#undef SIND_SMALL /* not precise */ +#define COSD30 SUFFIX(8.66025403784438646763723170752936183e-01) +#define PIO180H SUFFIX(1.74532925199433197605003442731685936e-02) +#define PIO180L SUFFIX(-2.39912634365882824665106671063098954e-17) + +#include "trigd_lib.inc" + +#undef FTYPE +#undef COSD_SMALL +#undef SIND_SMALL +#undef COSD30 +#undef PIO180H +#undef PIO180L +#undef PIO180 +#undef D2R +#undef CPYSGN +#undef FABS +#undef FMOD +#undef SIN +#undef COS +#undef TAN +#undef SIND +#undef COSD +#undef TAND +#undef SUFFIX +#endif /* HAVE_GFC_REAL_16 */ diff --git a/libgfortran/intrinsics/trigd.inc b/libgfortran/intrinsics/trigd.inc new file mode 100644 index 00000000000..98bfae7e839 --- /dev/null +++ b/libgfortran/intrinsics/trigd.inc @@ -0,0 +1,464 @@ +/* Implementation of the degree trignometric functions COSD, SIND, TAND. + Copyright (C) 2020 Free Software Foundation, Inc. + Contributed by Steven G. Kargl + and Fritz Reese + +This file is part of the GNU Fortran runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +Libgfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +. */ + + +/* + +This file is included from both the FE and the runtime library code. +Operations are generalized using GMP/MPFR functions. When included from +libgfortran, these should be overridden using macros which will use native +operations conforming to the same API. From the FE, the GMP/MPFR functions can +be used as-is. + +The following macros and GMP/FMPR functions are used and must be defined. + + +Types and names: + +FTYPE + Type name for the real-valued parameter. + Variables of this type are constructed/destroyed using mpfr_init() + and mpfr_clear. + +RETTYPE + Return type of the functions. + +RETURN(x) + Insert code to return a value. + The parameter x is the result variable, which was also the input parameter. + +ITYPE + Type name for integer types. + +SIND, COSD, TRIGD + Names for the degree-valued trig functions defined by this module. + + +Literal values: + +TINY [optional] + Value subtracted from 1 to cause rase INEXACT for COSD(x) + for x << 1. If not set, COSD(x) for x <= COSD_SMALL simply returns 1. + +COSD_SMALL [optional] + Value such that x <= COSD_SMALL implies COSD(x) = 1 to within the + precision of FTYPE. If not set, this condition is not checked. + +SIND_SMALL [optional] + Value such that x <= SIND_SMALL implies SIND(x) = D2R(x) to within + the precision of FTYPE. If not set, this condition is not checked. + +COSD30 + Value of SIND(60) and COSD(30). + +*/ + + +/* Compute sind(x) = sin(x * pi / 180). */ + +RETTYPE +SIND (FTYPE x) +{ + if (ISFINITE (x)) + { + FTYPE s, one; + + /* sin(-x) = - sin(x). */ + mpfr_init (s); + mpfr_init_set_ui (one, 1, GFC_RND_MODE); + mpfr_copysign (s, one, x, GFC_RND_MODE); + mpfr_clear (one); + +#ifdef SIND_SMALL + /* sin(x) = x as x -> 0; but only for some precisions. */ + FTYPE ax; + mpfr_init (ax); + mpfr_abs (ax, x, GFC_RND_MODE); + if (mpfr_cmp_ld (ax, SIND_SMALL) < 0) + { + D2R (x); + mpfr_clear (ax); + return x; + } + + mpfr_swap (x, ax); + mpfr_clear (ax); + +#else + mpfr_abs (x, x, GFC_RND_MODE); +#endif /* SIND_SMALL */ + + /* Reduce angle to x in [0,360]. */ + FTYPE period; + mpfr_init_set_ui (period, 360, GFC_RND_MODE); + mpfr_fmod (x, x, period, GFC_RND_MODE); + mpfr_clear (period); + + /* Special cases with exact results. */ + ITYPE n; + mpz_init (n); + if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30)) + { + /* Flip sign for odd n*pi (x is % 360 so this is only for 180). + This respects sgn(sin(x)) = sgn(d/dx sin(x)) = sgn(cos(x)). */ + if (mpz_divisible_ui_p (n, 180)) + { + mpfr_set_ui (x, 0, GFC_RND_MODE); + if (mpz_cmp_ui (n, 180) == 0) + mpfr_neg (s, s, GFC_RND_MODE); + } + else if (mpz_divisible_ui_p (n, 90)) + mpfr_set_si (x, (mpz_cmp_ui (n, 90) == 0 ? 1 : -1), GFC_RND_MODE); + else if (mpz_divisible_ui_p (n, 60)) + { + SET_COSD30 (x); + if (mpz_cmp_ui (n, 180) >= 0) + mpfr_neg (x, x, GFC_RND_MODE); + } + else + mpfr_set_ld (x, (mpz_cmp_ui (n, 180) < 0 ? 0.5L : -0.5L), + GFC_RND_MODE); + } + + /* Fold [0,360] into the range [0,45], and compute either SIN() or + COS() depending on symmetry of shifting into the [0,45] range. */ + else + { + bool fold_cos = false; + if (mpfr_cmp_ui (x, 180) <= 0) + { + if (mpfr_cmp_ui (x, 90) <= 0) + { + if (mpfr_cmp_ui (x, 45) > 0) + { + /* x = COS(D2R(90 - x)) */ + mpfr_ui_sub (x, 90, x, GFC_RND_MODE); + fold_cos = true; + } + } + else + { + if (mpfr_cmp_ui (x, 135) <= 0) + { + mpfr_sub_ui (x, x, 90, GFC_RND_MODE); + fold_cos = true; + } + else + mpfr_ui_sub (x, 180, x, GFC_RND_MODE); + } + } + + else if (mpfr_cmp_ui (x, 270) <= 0) + { + if (mpfr_cmp_ui (x, 225) <= 0) + mpfr_sub_ui (x, x, 180, GFC_RND_MODE); + else + { + mpfr_ui_sub (x, 270, x, GFC_RND_MODE); + fold_cos = true; + } + mpfr_neg (s, s, GFC_RND_MODE); + } + + else + { + if (mpfr_cmp_ui (x, 315) <= 0) + { + mpfr_sub_ui (x, x, 270, GFC_RND_MODE); + fold_cos = true; + } + else + mpfr_ui_sub (x, 360, x, GFC_RND_MODE); + mpfr_neg (s, s, GFC_RND_MODE); + } + + D2R (x); + + if (fold_cos) + mpfr_cos (x, x, GFC_RND_MODE); + else + mpfr_sin (x, x, GFC_RND_MODE); + } + + mpfr_mul (x, x, s, GFC_RND_MODE); + mpz_clear (n); + mpfr_clear (s); + } + + /* Return NaN for +-Inf and NaN and raise exception. */ + else + mpfr_sub (x, x, x, GFC_RND_MODE); + + RETURN (x); +} + + +/* Compute cosd(x) = cos(x * pi / 180). */ + +RETTYPE +COSD (FTYPE x) +{ +#if defined(TINY) && defined(COSD_SMALL) + static const volatile FTYPE tiny = TINY; +#endif + + if (ISFINITE (x)) + { +#ifdef COSD_SMALL + FTYPE ax; + mpfr_init (ax); + + mpfr_abs (ax, x, GFC_RND_MODE); + /* No spurious underflows!. In radians, cos(x) = 1-x*x/2 as x -> 0. */ + if (mpfr_cmp_ld (ax, COSD_SMALL) <= 0) + { + mpfr_set_ui (x, 1, GFC_RND_MODE); +#ifdef TINY + /* Cause INEXACT. */ + if (!mpfr_zero_p (ax)) + mpfr_sub_d (x, x, tiny, GFC_RND_MODE); +#endif + + mpfr_clear (ax); + return x; + } + + mpfr_swap (x, ax); + mpfr_clear (ax); +#else + mpfr_abs (x, x, GFC_RND_MODE); +#endif /* COSD_SMALL */ + + /* Reduce angle to ax in [0,360]. */ + FTYPE period; + mpfr_init_set_ui (period, 360, GFC_RND_MODE); + mpfr_fmod (x, x, period, GFC_RND_MODE); + mpfr_clear (period); + + /* Special cases with exact results. + Return negative zero for cosd(270) for consistency with libm cos(). */ + ITYPE n; + mpz_init (n); + if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30)) + { + if (mpz_divisible_ui_p (n, 180)) + mpfr_set_si (x, (mpz_cmp_ui (n, 180) == 0 ? -1 : 1), + GFC_RND_MODE); + else if (mpz_divisible_ui_p (n, 90)) + mpfr_set_zero (x, 0); + else if (mpz_divisible_ui_p (n, 60)) + { + mpfr_set_ld (x, 0.5, GFC_RND_MODE); + if (mpz_cmp_ui (n, 60) != 0 && mpz_cmp_ui (n, 300) != 0) + mpfr_neg (x, x, GFC_RND_MODE); + } + else + { + SET_COSD30 (x); + if (mpz_cmp_ui (n, 30) != 0 && mpz_cmp_ui (n, 330) != 0) + mpfr_neg (x, x, GFC_RND_MODE); + } + } + + /* Fold [0,360] into the range [0,45], and compute either SIN() or + COS() depending on symmetry of shifting into the [0,45] range. */ + else + { + bool neg = false; + bool fold_sin = false; + if (mpfr_cmp_ui (x, 180) <= 0) + { + if (mpfr_cmp_ui (x, 90) <= 0) + { + if (mpfr_cmp_ui (x, 45) > 0) + { + mpfr_ui_sub (x, 90, x, GFC_RND_MODE); + fold_sin = true; + } + } + else + { + if (mpfr_cmp_ui (x, 135) <= 0) + { + mpfr_sub_ui (x, x, 90, GFC_RND_MODE); + fold_sin = true; + } + else + mpfr_ui_sub (x, 180, x, GFC_RND_MODE); + neg = true; + } + } + + else if (mpfr_cmp_ui (x, 270) <= 0) + { + if (mpfr_cmp_ui (x, 225) <= 0) + mpfr_sub_ui (x, x, 180, GFC_RND_MODE); + else + { + mpfr_ui_sub (x, 270, x, GFC_RND_MODE); + fold_sin = true; + } + neg = true; + } + + else + { + if (mpfr_cmp_ui (x, 315) <= 0) + { + mpfr_sub_ui (x, x, 270, GFC_RND_MODE); + fold_sin = true; + } + else + mpfr_ui_sub (x, 360, x, GFC_RND_MODE); + } + + D2R (x); + + if (fold_sin) + mpfr_sin (x, x, GFC_RND_MODE); + else + mpfr_cos (x, x, GFC_RND_MODE); + + if (neg) + mpfr_neg (x, x, GFC_RND_MODE); + } + + mpz_clear (n); + } + + /* Return NaN for +-Inf and NaN and raise exception. */ + else + mpfr_sub (x, x, x, GFC_RND_MODE); + + RETURN (x); +} + + +/* Compute tand(x) = tan(x * pi / 180). */ + +RETTYPE +TAND (FTYPE x) +{ + if (ISFINITE (x)) + { + FTYPE s, one; + + /* tan(-x) = - tan(x). */ + mpfr_init (s); + mpfr_init_set_ui (one, 1, GFC_RND_MODE); + mpfr_copysign (s, one, x, GFC_RND_MODE); + mpfr_clear (one); + +#ifdef SIND_SMALL + /* tan(x) = x as x -> 0; but only for some precisions. */ + FTYPE ax; + mpfr_init (ax); + mpfr_abs (ax, x, GFC_RND_MODE); + if (mpfr_cmp_ld (ax, SIND_SMALL) < 0) + { + D2R (x); + mpfr_clear (ax); + return x; + } + + mpfr_swap (x, ax); + mpfr_clear (ax); + +#else + mpfr_abs (x, x, GFC_RND_MODE); +#endif /* SIND_SMALL */ + + /* Reduce angle to x in [0,360]. */ + FTYPE period; + mpfr_init_set_ui (period, 360, GFC_RND_MODE); + mpfr_fmod (x, x, period, GFC_RND_MODE); + mpfr_clear (period); + + /* Special cases with exact results. */ + ITYPE n; + mpz_init (n); + if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 45)) + { + if (mpz_divisible_ui_p (n, 180)) + mpfr_set_zero (x, 0); + + /* Though mathematically NaN is more appropriate for tan(n*90), + returning +/-Inf offers the advantage that 1/tan(n*90) returns 0, + which is mathematically sound. In fact we rely on this behavior + to implement COTAND(x) = 1 / TAND(x). + */ + else if (mpz_divisible_ui_p (n, 90)) + mpfr_set_inf (x, mpz_cmp_ui (n, 90) == 0 ? 0 : 1); + + else + { + mpfr_set_ui (x, 1, GFC_RND_MODE); + if (mpz_cmp_ui (n, 45) != 0 && mpz_cmp_ui (n, 225) != 0) + mpfr_neg (x, x, GFC_RND_MODE); + } + } + + else + { + /* Fold [0,360] into the range [0,90], and compute TAN(). */ + if (mpfr_cmp_ui (x, 180) <= 0) + { + if (mpfr_cmp_ui (x, 90) > 0) + { + mpfr_ui_sub (x, 180, x, GFC_RND_MODE); + mpfr_neg (s, s, GFC_RND_MODE); + } + } + else + { + if (mpfr_cmp_ui (x, 270) <= 0) + { + mpfr_sub_ui (x, x, 180, GFC_RND_MODE); + } + else + { + mpfr_ui_sub (x, 360, x, GFC_RND_MODE); + mpfr_neg (s, s, GFC_RND_MODE); + } + } + + D2R (x); + mpfr_tan (x, x, GFC_RND_MODE); + } + + mpfr_mul (x, x, s, GFC_RND_MODE); + mpz_clear (n); + mpfr_clear (s); + } + + /* Return NaN for +-Inf and NaN and raise exception. */ + else + mpfr_sub (x, x, x, GFC_RND_MODE); + + RETURN (x); +} + +/* vim: set ft=c: */ diff --git a/libgfortran/intrinsics/trigd_lib.inc b/libgfortran/intrinsics/trigd_lib.inc new file mode 100644 index 00000000000..b6d4145b995 --- /dev/null +++ b/libgfortran/intrinsics/trigd_lib.inc @@ -0,0 +1,147 @@ +/* Stub for defining degree-valued trigonometric functions in libgfortran. + Copyright (C) 2020 Free Software Foundation, Inc. + Contributed by Steven G. Kargl + and Fritz Reese + +This file is part of the GNU Fortran runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +Libgfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +. */ + +/* +This replaces all GMP/MPFR functions used by trigd.inc with native versions. +The precision is defined by FTYPE defined before including this file. +The module which includes this file must define the following: + +FTYPE -- floating point type +SIND, COSD, TAND -- names of the functions to define +SUFFIX(x) -- add a literal suffix for floating point constants (f, ...) + +COSD_SMALL [optional] -- for x <= COSD_SMALL, COSD(x) = 1 if set +TINY [optional] -- subtract from 1 under the above condition if set +SIND_SMALL [optional] -- for x <= SIND_SMALL, SIND(x) = D2R(x) if set +COSD30 -- literal value of COSD(30) to the precision of FTYPE +PIO180H -- upper bits of pi/180 for FMA +PIO180L -- lower bits of pi/180 for FMA + + */ + +#define ITYPE int +#define GFC_RND_MODE 0 +#define RETTYPE FTYPE +#define RETURN(x) return (x) + +#define ISFINITE(x) isfinite(x) +#define mpfr_init(x) do { } while (0) +#define mpfr_init_set_ui(x, v, rnd) (x = (v)) +#define mpfr_clear(x) do { } while (0) +#define mpfr_swap(x, y) do { FTYPE z = y; y = x; x = z; } while (0) +#define mpfr_copysign(rop, op1, op2, rnd) rop = SUFFIX(copysign)((op1), (op2)) +#define mpfr_fmod(rop, x, d, rnd) (rop = SUFFIX(fmod)((x), (d))) +#define mpfr_abs(rop, op, rnd) (rop = SUFFIX(fabs)(op)) +#define mpfr_cmp_ld(x, y) ((x) - (y)) +#define mpfr_cmp_ui(x, n) ((x) - (n)) +#define mpfr_zero_p(x) ((x) == 0) +#define mpfr_set(rop, x, rnd) (rop = (x)) +#define mpfr_set_zero(rop, s) (rop = SUFFIX(copysign)(0, (s))) +#define mpfr_set_inf(rop, s) (rop = ((s)*-2 + 1) * INFINITY) +#define mpfr_set_ui(rop, n, rnd) (rop = (n)) +#define mpfr_set_si(rop, n, rnd) (rop = (n)) +#define mpfr_set_ld(rop, x, rnd) (rop = (x)) +#define mpfr_set_si_2exp(rop, op, exp, rnd) (rop = (0x1.p##exp)) +#define mpfr_get_z(rop, x, rnd) ((rop = (int)(x)), (rop - (x))) +#define mpfr_mul(rop, op1, op2, rnd) (rop = ((op1) * (op2))) +#define mpfr_sub_d(rop, op1, op2, rnd) (rop = ((op1) - (op2))) +#define mpfr_sub_ui(rop, op1, op2, rnd) (rop = ((op1) - (op2))) +#define mpfr_sub(rop, op1, op2, rnd) (rop = ((op1) - (op2))) +#define mpfr_ui_sub(rop, op1, op2, rnd) (rop = ((op1) - (op2))) +#define mpfr_neg(rop, op, rnd) (rop = -(op)) +#define mpfr_sin(rop, x, rnd) (rop = SUFFIX(sin)(x)) +#define mpfr_cos(rop, x, rnd) (rop = SUFFIX(cos)(x)) +#define mpfr_tan(rop, x, rnd) (rop = SUFFIX(tan)(x)) + +#define mpz_init(n) do { } while (0) +#define mpz_clear(x) do { } while (0) +#define mpz_cmp_ui(x, y) ((x) - (y)) +#define mpz_divisible_ui_p(n, d) ((n) % (d) == 0) + +#define FMA(x,y,z) SUFFIX(fma)((x), (y), (z)) +#define D2R(x) (x = FMA((x), PIO180H, (x) * PIO180L)) + +#define SET_COSD30(x) (x = COSD30) + + +extern FTYPE SIND (FTYPE); +export_proto (SIND); + +extern FTYPE COSD (FTYPE); +export_proto (COSD); + +extern FTYPE TAND (FTYPE); +export_proto (TAND); + +#include "trigd.inc" + +#undef ITYPE +#undef GFC_RND_MODE +#undef RETTYPE +#undef RETURN + +#undef ISFINITE +#undef mpfr_signbit + +#undef mpfr_init +#undef mpfr_init_set_ui +#undef mpfr_clear +#undef mpfr_swap +#undef mpfr_fmod +#undef mpfr_abs +#undef mpfr_cmp_ld +#undef mpfr_cmp_ui +#undef mpfr_zero_p +#undef mpfr_set +#undef mpfr_set_zero +#undef mpfr_set_inf +#undef mpfr_set_ui +#undef mpfr_set_si +#undef mpfr_set_ld +#undef mpfr_set_si_2exp +#undef mpfr_get_z +#undef mpfr_mul_si +#undef mpfr_sub_d +#undef mpfr_sub_ui +#undef mpfr_sub +#undef mpfr_ui_sub +#undef mpfr_neg +#undef mpfr_sin +#undef mpfr_cos +#undef mpfr_tan + +#undef mpz_init +#undef mpz_clear +#undef mpz_cmp_ui +#undef mpz_divisible_ui_p + +#undef FMA +#undef D2R + +#undef SET_COSD30 + + +/* vim: set ft=c: */ -- 2.30.2