From baa835b4f40bef41208ec65bc74a6d09157947ac Mon Sep 17 00:00:00 2001 From: Kevin Buettner Date: Mon, 7 Dec 2009 19:58:41 +0000 Subject: [PATCH] * configure.tgt: Add rx-*-elf target. * rx-tdep.c: New target. --- gdb/ChangeLog | 5 + gdb/configure.tgt | 6 + gdb/rx-tdep.c | 864 ++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 875 insertions(+) create mode 100644 gdb/rx-tdep.c diff --git a/gdb/ChangeLog b/gdb/ChangeLog index d2785aad5dd..cd693dfc996 100644 --- a/gdb/ChangeLog +++ b/gdb/ChangeLog @@ -1,3 +1,8 @@ +2009-12-07 Kevin Buettner + + * configure.tgt: Add rx-*-elf target. + * rx-tdep.c: New target. + 2009-12-07 Tristan Gingold * symfile.h (struct sym_fns): Adjust comment on sym_read. diff --git a/gdb/configure.tgt b/gdb/configure.tgt index b18e3b28f4e..69b1f277ae4 100644 --- a/gdb/configure.tgt +++ b/gdb/configure.tgt @@ -408,6 +408,12 @@ s390*-*-*) build_gdbserver=yes ;; +rx-*-elf) + # Target: Renesas RX + gdb_target_obs="rx-tdep.o" + gdb_sim=../sim/rx/libsim.a + ;; + score-*-*) # Target: S+core embedded system gdb_target_obs="score-tdep.o corelow.o" diff --git a/gdb/rx-tdep.c b/gdb/rx-tdep.c new file mode 100644 index 00000000000..3d6f419a729 --- /dev/null +++ b/gdb/rx-tdep.c @@ -0,0 +1,864 @@ +/* Target-dependent code for the Renesas RX for GDB, the GNU debugger. + + Copyright (C) 2008, 2009 + Free Software Foundation, Inc. + + Contributed by Red Hat, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ + +#include "defs.h" +#include "arch-utils.h" +#include "prologue-value.h" +#include "target.h" +#include "regcache.h" +#include "opcode/rx.h" +#include "dis-asm.h" +#include "gdbtypes.h" +#include "frame.h" +#include "frame-unwind.h" +#include "frame-base.h" +#include "value.h" +#include "gdbcore.h" +#include "dwarf2-frame.h" + +#include "elf/rx.h" +#include "elf-bfd.h" + +/* Certain important register numbers. */ +enum +{ + RX_SP_REGNUM = 0, + RX_R1_REGNUM = 1, + RX_R4_REGNUM = 4, + RX_FP_REGNUM = 6, + RX_R15_REGNUM = 15, + RX_PC_REGNUM = 19, + RX_NUM_REGS = 25 +}; + +/* Architecture specific data. */ +struct gdbarch_tdep +{ + /* The ELF header flags specify the multilib used. */ + int elf_flags; +}; + +/* This structure holds the results of a prologue analysis. */ +struct rx_prologue +{ + /* The offset from the frame base to the stack pointer --- always + zero or negative. + + Calling this a "size" is a bit misleading, but given that the + stack grows downwards, using offsets for everything keeps one + from going completely sign-crazy: you never change anything's + sign for an ADD instruction; always change the second operand's + sign for a SUB instruction; and everything takes care of + itself. */ + int frame_size; + + /* Non-zero if this function has initialized the frame pointer from + the stack pointer, zero otherwise. */ + int has_frame_ptr; + + /* If has_frame_ptr is non-zero, this is the offset from the frame + base to where the frame pointer points. This is always zero or + negative. */ + int frame_ptr_offset; + + /* The address of the first instruction at which the frame has been + set up and the arguments are where the debug info says they are + --- as best as we can tell. */ + CORE_ADDR prologue_end; + + /* reg_offset[R] is the offset from the CFA at which register R is + saved, or 1 if register R has not been saved. (Real values are + always zero or negative.) */ + int reg_offset[RX_NUM_REGS]; +}; + +/* Implement the "register_name" gdbarch method. */ +static const char * +rx_register_name (struct gdbarch *gdbarch, int regnr) +{ + static const char *const reg_names[] = { + "r0", + "r1", + "r2", + "r3", + "r4", + "r5", + "r6", + "r7", + "r8", + "r9", + "r10", + "r11", + "r12", + "r13", + "r14", + "r15", + "isp", + "usp", + "intb", + "pc", + "psw", + "bpc", + "bpsw", + "vct", + "fpsw" + }; + + return reg_names[regnr]; +} + +/* Implement the "register_type" gdbarch method. */ +static struct type * +rx_register_type (struct gdbarch *gdbarch, int reg_nr) +{ + if (reg_nr == RX_PC_REGNUM) + return builtin_type (gdbarch)->builtin_func_ptr; + else + return builtin_type (gdbarch)->builtin_unsigned_long; +} + + +/* Function for finding saved registers in a 'struct pv_area'; this + function is passed to pv_area_scan. + + If VALUE is a saved register, ADDR says it was saved at a constant + offset from the frame base, and SIZE indicates that the whole + register was saved, record its offset. */ +static void +check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) +{ + struct rx_prologue *result = (struct rx_prologue *) result_untyped; + + if (value.kind == pvk_register + && value.k == 0 + && pv_is_register (addr, RX_SP_REGNUM) + && size == register_size (target_gdbarch, value.reg)) + result->reg_offset[value.reg] = addr.k; +} + +/* Define a "handle" struct for fetching the next opcode. */ +struct rx_get_opcode_byte_handle +{ + CORE_ADDR pc; +}; + +/* Fetch a byte on behalf of the opcode decoder. HANDLE contains + the memory address of the next byte to fetch. If successful, + the address in the handle is updated and the byte fetched is + returned as the value of the function. If not successful, -1 + is returned. */ +static int +rx_get_opcode_byte (void *handle) +{ + struct rx_get_opcode_byte_handle *opcdata = handle; + int status; + gdb_byte byte; + + status = target_read_memory (opcdata->pc, &byte, 1); + if (status == 0) + { + opcdata->pc += 1; + return byte; + } + else + return -1; +} + +/* Analyze a prologue starting at START_PC, going no further than + LIMIT_PC. Fill in RESULT as appropriate. */ +static void +rx_analyze_prologue (CORE_ADDR start_pc, + CORE_ADDR limit_pc, struct rx_prologue *result) +{ + CORE_ADDR pc, next_pc; + int rn; + pv_t reg[RX_NUM_REGS]; + struct pv_area *stack; + struct cleanup *back_to; + CORE_ADDR after_last_frame_setup_insn = start_pc; + + memset (result, 0, sizeof (*result)); + + for (rn = 0; rn < RX_NUM_REGS; rn++) + { + reg[rn] = pv_register (rn, 0); + result->reg_offset[rn] = 1; + } + + stack = make_pv_area (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch)); + back_to = make_cleanup_free_pv_area (stack); + + /* The call instruction has saved the return address on the stack. */ + reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); + pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]); + + pc = start_pc; + while (pc < limit_pc) + { + int bytes_read; + struct rx_get_opcode_byte_handle opcode_handle; + RX_Opcode_Decoded opc; + + opcode_handle.pc = pc; + bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte, + &opcode_handle); + next_pc = pc + bytes_read; + + if (opc.id == RXO_pushm /* pushm r1, r2 */ + && opc.op[1].type == RX_Operand_Register + && opc.op[2].type == RX_Operand_Register) + { + int r1, r2; + int r; + + r1 = opc.op[1].reg; + r2 = opc.op[2].reg; + for (r = r2; r >= r1; r--) + { + reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); + pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[r]); + } + after_last_frame_setup_insn = next_pc; + } + else if (opc.id == RXO_mov /* mov.l rdst, rsrc */ + && opc.op[0].type == RX_Operand_Register + && opc.op[1].type == RX_Operand_Register + && opc.size == RX_Long) + { + int rdst, rsrc; + + rdst = opc.op[0].reg; + rsrc = opc.op[1].reg; + reg[rdst] = reg[rsrc]; + if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM) + after_last_frame_setup_insn = next_pc; + } + else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */ + && opc.op[0].type == RX_Operand_Predec + && opc.op[0].reg == RX_SP_REGNUM + && opc.op[1].type == RX_Operand_Register + && opc.size == RX_Long) + { + int rsrc; + + rsrc = opc.op[1].reg; + reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); + pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[rsrc]); + after_last_frame_setup_insn = next_pc; + } + else if (opc.id == RXO_add /* add #const, rsrc, rdst */ + && opc.op[0].type == RX_Operand_Register + && opc.op[1].type == RX_Operand_Immediate + && opc.op[2].type == RX_Operand_Register) + { + int rdst = opc.op[0].reg; + int addend = opc.op[1].addend; + int rsrc = opc.op[2].reg; + reg[rdst] = pv_add_constant (reg[rsrc], addend); + /* Negative adjustments to the stack pointer or frame pointer + are (most likely) part of the prologue. */ + if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0) + after_last_frame_setup_insn = next_pc; + } + else if (opc.id == RXO_mov + && opc.op[0].type == RX_Operand_Indirect + && opc.op[1].type == RX_Operand_Register + && opc.size == RX_Long + && (opc.op[0].reg == RX_SP_REGNUM + || opc.op[0].reg == RX_FP_REGNUM) + && (RX_R1_REGNUM <= opc.op[1].reg + && opc.op[1].reg <= RX_R4_REGNUM)) + { + /* This moves an argument register to the stack. Don't + record it, but allow it to be a part of the prologue. */ + } + else if (opc.id == RXO_branch + && opc.op[0].type == RX_Operand_Immediate + && opc.op[1].type == RX_Operand_Condition + && next_pc < opc.op[0].addend) + { + /* When a loop appears as the first statement of a function + body, gcc 4.x will use a BRA instruction to branch to the + loop condition checking code. This BRA instruction is + marked as part of the prologue. We therefore set next_pc + to this branch target and also stop the prologue scan. + The instructions at and beyond the branch target should + no longer be associated with the prologue. + + Note that we only consider forward branches here. We + presume that a forward branch is being used to skip over + a loop body. + + A backwards branch is covered by the default case below. + If we were to encounter a backwards branch, that would + most likely mean that we've scanned through a loop body. + We definitely want to stop the prologue scan when this + happens and that is precisely what is done by the default + case below. */ + + after_last_frame_setup_insn = opc.op[0].addend; + break; /* Scan no further if we hit this case. */ + } + else + { + /* Terminate the prologue scan. */ + break; + } + + pc = next_pc; + } + + /* Is the frame size (offset, really) a known constant? */ + if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM)) + result->frame_size = reg[RX_SP_REGNUM].k; + + /* Was the frame pointer initialized? */ + if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM)) + { + result->has_frame_ptr = 1; + result->frame_ptr_offset = reg[RX_FP_REGNUM].k; + } + + /* Record where all the registers were saved. */ + pv_area_scan (stack, check_for_saved, (void *) result); + + result->prologue_end = after_last_frame_setup_insn; + + do_cleanups (back_to); +} + + +/* Implement the "skip_prologue" gdbarch method. */ +static CORE_ADDR +rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + char *name; + CORE_ADDR func_addr, func_end; + struct rx_prologue p; + + /* Try to find the extent of the function that contains PC. */ + if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) + return pc; + + rx_analyze_prologue (pc, func_end, &p); + return p.prologue_end; +} + +/* Given a frame described by THIS_FRAME, decode the prologue of its + associated function if there is not cache entry as specified by + THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and + return that struct as the value of this function. */ +static struct rx_prologue * +rx_analyze_frame_prologue (struct frame_info *this_frame, + void **this_prologue_cache) +{ + if (!*this_prologue_cache) + { + CORE_ADDR func_start, stop_addr; + + *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue); + + func_start = get_frame_func (this_frame); + stop_addr = get_frame_pc (this_frame); + + /* If we couldn't find any function containing the PC, then + just initialize the prologue cache, but don't do anything. */ + if (!func_start) + stop_addr = func_start; + + rx_analyze_prologue (func_start, stop_addr, *this_prologue_cache); + } + + return *this_prologue_cache; +} + +/* Given the next frame and a prologue cache, return this frame's + base. */ +static CORE_ADDR +rx_frame_base (struct frame_info *this_frame, void **this_prologue_cache) +{ + struct rx_prologue *p + = rx_analyze_frame_prologue (this_frame, this_prologue_cache); + + /* In functions that use alloca, the distance between the stack + pointer and the frame base varies dynamically, so we can't use + the SP plus static information like prologue analysis to find the + frame base. However, such functions must have a frame pointer, + to be able to restore the SP on exit. So whenever we do have a + frame pointer, use that to find the base. */ + if (p->has_frame_ptr) + { + CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM); + return fp - p->frame_ptr_offset; + } + else + { + CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM); + return sp - p->frame_size; + } +} + +/* Implement the "frame_this_id" method for unwinding frames. */ +static void +rx_frame_this_id (struct frame_info *this_frame, + void **this_prologue_cache, struct frame_id *this_id) +{ + *this_id = frame_id_build (rx_frame_base (this_frame, this_prologue_cache), + get_frame_func (this_frame)); +} + +/* Implement the "frame_prev_register" method for unwinding frames. */ +static struct value * +rx_frame_prev_register (struct frame_info *this_frame, + void **this_prologue_cache, int regnum) +{ + struct rx_prologue *p + = rx_analyze_frame_prologue (this_frame, this_prologue_cache); + CORE_ADDR frame_base = rx_frame_base (this_frame, this_prologue_cache); + int reg_size = register_size (get_frame_arch (this_frame), regnum); + + if (regnum == RX_SP_REGNUM) + return frame_unwind_got_constant (this_frame, regnum, frame_base); + + /* If prologue analysis says we saved this register somewhere, + return a description of the stack slot holding it. */ + else if (p->reg_offset[regnum] != 1) + return frame_unwind_got_memory (this_frame, regnum, + frame_base + p->reg_offset[regnum]); + + /* Otherwise, presume we haven't changed the value of this + register, and get it from the next frame. */ + else + return frame_unwind_got_register (this_frame, regnum, regnum); +} + +static const struct frame_unwind rx_frame_unwind = { + NORMAL_FRAME, + rx_frame_this_id, + rx_frame_prev_register, + NULL, + default_frame_sniffer +}; + +/* Implement the "unwind_pc" gdbarch method. */ +static CORE_ADDR +rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) +{ + ULONGEST pc; + + pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM); + return pc; +} + +/* Implement the "unwind_sp" gdbarch method. */ +static CORE_ADDR +rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) +{ + ULONGEST sp; + + sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM); + return sp; +} + +/* Implement the "dummy_id" gdbarch method. */ +static struct frame_id +rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) +{ + return + frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM), + get_frame_pc (this_frame)); +} + +/* Implement the "push_dummy_call" gdbarch method. */ +static CORE_ADDR +rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function, + struct regcache *regcache, CORE_ADDR bp_addr, int nargs, + struct value **args, CORE_ADDR sp, int struct_return, + CORE_ADDR struct_addr) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int write_pass; + int sp_off = 0; + CORE_ADDR cfa; + int num_register_candidate_args; + + struct type *func_type = value_type (function); + + /* Dereference function pointer types. */ + while (TYPE_CODE (func_type) == TYPE_CODE_PTR) + func_type = TYPE_TARGET_TYPE (func_type); + + /* The end result had better be a function or a method. */ + gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC + || TYPE_CODE (func_type) == TYPE_CODE_METHOD); + + /* Functions with a variable number of arguments have all of their + variable arguments and the last non-variable argument passed + on the stack. + + Otherwise, we can pass up to four arguments on the stack. + + Once computed, we leave this value alone. I.e. we don't update + it in case of a struct return going in a register or an argument + requiring multiple registers, etc. We rely instead on the value + of the ``arg_reg'' variable to get these other details correct. */ + + if (TYPE_VARARGS (func_type)) + num_register_candidate_args = TYPE_NFIELDS (func_type) - 1; + else + num_register_candidate_args = 4; + + /* We make two passes; the first does the stack allocation, + the second actually stores the arguments. */ + for (write_pass = 0; write_pass <= 1; write_pass++) + { + int i; + int arg_reg = RX_R1_REGNUM; + + if (write_pass) + sp = align_down (sp - sp_off, 4); + sp_off = 0; + + if (struct_return) + { + struct type *return_type = TYPE_TARGET_TYPE (func_type); + + gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT + || TYPE_CODE (func_type) == TYPE_CODE_UNION); + + if (TYPE_LENGTH (return_type) > 16 + || TYPE_LENGTH (return_type) % 4 != 0) + { + if (write_pass) + regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, + struct_addr); + } + } + + /* Push the arguments. */ + for (i = 0; i < nargs; i++) + { + struct value *arg = args[i]; + const gdb_byte *arg_bits = value_contents_all (arg); + struct type *arg_type = check_typedef (value_type (arg)); + ULONGEST arg_size = TYPE_LENGTH (arg_type); + + if (i == 0 && struct_addr != 0 && !struct_return + && TYPE_CODE (arg_type) == TYPE_CODE_PTR + && extract_unsigned_integer (arg_bits, 4, + byte_order) == struct_addr) + { + /* This argument represents the address at which C++ (and + possibly other languages) store their return value. + Put this value in R15. */ + if (write_pass) + regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, + struct_addr); + } + else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT + && TYPE_CODE (arg_type) != TYPE_CODE_UNION) + { + /* Argument is a scalar. */ + if (arg_size == 8) + { + if (i < num_register_candidate_args + && arg_reg <= RX_R4_REGNUM - 1) + { + /* If argument registers are going to be used to pass + an 8 byte scalar, the ABI specifies that two registers + must be available. */ + if (write_pass) + { + regcache_cooked_write_unsigned (regcache, arg_reg, + extract_unsigned_integer + (arg_bits, 4, + byte_order)); + regcache_cooked_write_unsigned (regcache, + arg_reg + 1, + extract_unsigned_integer + (arg_bits + 4, 4, + byte_order)); + } + arg_reg += 2; + } + else + { + sp_off = align_up (sp_off, 4); + /* Otherwise, pass the 8 byte scalar on the stack. */ + if (write_pass) + write_memory (sp + sp_off, arg_bits, 8); + sp_off += 8; + } + } + else + { + ULONGEST u; + + gdb_assert (arg_size <= 4); + + u = + extract_unsigned_integer (arg_bits, arg_size, byte_order); + + if (i < num_register_candidate_args + && arg_reg <= RX_R4_REGNUM) + { + if (write_pass) + regcache_cooked_write_unsigned (regcache, arg_reg, u); + arg_reg += 1; + } + else + { + int p_arg_size = 4; + + if (TYPE_PROTOTYPED (func_type) + && i < TYPE_NFIELDS (func_type)) + { + struct type *p_arg_type = + TYPE_FIELD_TYPE (func_type, i); + p_arg_size = TYPE_LENGTH (p_arg_type); + } + + sp_off = align_up (sp_off, p_arg_size); + + if (write_pass) + write_memory_unsigned_integer (sp + sp_off, + p_arg_size, byte_order, + u); + sp_off += p_arg_size; + } + } + } + else + { + /* Argument is a struct or union. Pass as much of the struct + in registers, if possible. Pass the rest on the stack. */ + while (arg_size > 0) + { + if (i < num_register_candidate_args + && arg_reg <= RX_R4_REGNUM + && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1) + && arg_size % 4 == 0) + { + int len = min (arg_size, 4); + + if (write_pass) + regcache_cooked_write_unsigned (regcache, arg_reg, + extract_unsigned_integer + (arg_bits, len, + byte_order)); + arg_bits += len; + arg_size -= len; + arg_reg++; + } + else + { + sp_off = align_up (sp_off, 4); + if (write_pass) + write_memory (sp + sp_off, arg_bits, arg_size); + sp_off += align_up (arg_size, 4); + arg_size = 0; + } + } + } + } + } + + /* Keep track of the stack address prior to pushing the return address. + This is the value that we'll return. */ + cfa = sp; + + /* Push the return address. */ + sp = sp - 4; + write_memory_unsigned_integer (sp, 4, byte_order, bp_addr); + + /* Update the stack pointer. */ + regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp); + + return cfa; +} + +/* Implement the "return_value" gdbarch method. */ +static enum return_value_convention +rx_return_value (struct gdbarch *gdbarch, + struct type *func_type, + struct type *valtype, + struct regcache *regcache, + gdb_byte *readbuf, const gdb_byte *writebuf) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + ULONGEST valtype_len = TYPE_LENGTH (valtype); + + if (TYPE_LENGTH (valtype) > 16 + || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT + || TYPE_CODE (valtype) == TYPE_CODE_UNION) + && TYPE_LENGTH (valtype) % 4 != 0)) + return RETURN_VALUE_STRUCT_CONVENTION; + + if (readbuf) + { + ULONGEST u; + int argreg = RX_R1_REGNUM; + int offset = 0; + + while (valtype_len > 0) + { + int len = min (valtype_len, 4); + + regcache_cooked_read_unsigned (regcache, argreg, &u); + store_unsigned_integer (readbuf + offset, len, byte_order, u); + valtype_len -= len; + offset += len; + argreg++; + } + } + + if (writebuf) + { + ULONGEST u; + int argreg = RX_R1_REGNUM; + int offset = 0; + + while (valtype_len > 0) + { + int len = min (valtype_len, 4); + + u = extract_unsigned_integer (writebuf + offset, len, byte_order); + regcache_cooked_write_unsigned (regcache, argreg, u); + valtype_len -= len; + offset += len; + argreg++; + } + } + + return RETURN_VALUE_REGISTER_CONVENTION; +} + +/* Implement the "breakpoint_from_pc" gdbarch method. */ +const gdb_byte * +rx_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) +{ + static gdb_byte breakpoint[] = { 0x00 }; + *lenptr = sizeof breakpoint; + return breakpoint; +} + +/* Allocate and initialize a gdbarch object. */ +static struct gdbarch * +rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +{ + struct gdbarch *gdbarch; + struct gdbarch_tdep *tdep; + int elf_flags; + + /* Extract the elf_flags if available. */ + if (info.abfd != NULL + && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) + elf_flags = elf_elfheader (info.abfd)->e_flags; + else + elf_flags = 0; + + + /* Try to find the architecture in the list of already defined + architectures. */ + for (arches = gdbarch_list_lookup_by_info (arches, &info); + arches != NULL; + arches = gdbarch_list_lookup_by_info (arches->next, &info)) + { + if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) + continue; + + return arches->gdbarch; + } + + /* None found, create a new architecture from the information + provided. */ + tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); + gdbarch = gdbarch_alloc (&info, tdep); + tdep->elf_flags = elf_flags; + + set_gdbarch_num_regs (gdbarch, RX_NUM_REGS); + set_gdbarch_num_pseudo_regs (gdbarch, 0); + set_gdbarch_register_name (gdbarch, rx_register_name); + set_gdbarch_register_type (gdbarch, rx_register_type); + set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM); + set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM); + set_gdbarch_inner_than (gdbarch, core_addr_lessthan); + set_gdbarch_decr_pc_after_break (gdbarch, 1); + set_gdbarch_breakpoint_from_pc (gdbarch, rx_breakpoint_from_pc); + set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue); + + set_gdbarch_print_insn (gdbarch, print_insn_rx); + + set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc); + set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp); + + /* Target builtin data types. */ + set_gdbarch_char_signed (gdbarch, 0); + set_gdbarch_short_bit (gdbarch, 16); + set_gdbarch_int_bit (gdbarch, 32); + set_gdbarch_long_bit (gdbarch, 32); + set_gdbarch_long_long_bit (gdbarch, 64); + set_gdbarch_ptr_bit (gdbarch, 32); + set_gdbarch_float_bit (gdbarch, 32); + set_gdbarch_float_format (gdbarch, floatformats_ieee_single); + if (elf_flags & E_FLAG_RX_64BIT_DOUBLES) + { + set_gdbarch_double_bit (gdbarch, 64); + set_gdbarch_long_double_bit (gdbarch, 64); + set_gdbarch_double_format (gdbarch, floatformats_ieee_double); + set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); + } + else + { + set_gdbarch_double_bit (gdbarch, 32); + set_gdbarch_long_double_bit (gdbarch, 32); + set_gdbarch_double_format (gdbarch, floatformats_ieee_single); + set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); + } + + /* Frame unwinding. */ +#if 0 + /* Note: The test results are better with the dwarf2 unwinder disabled, + so it's turned off for now. */ + dwarf2_append_unwinders (gdbarch); +#endif + frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind); + + /* Methods for saving / extracting a dummy frame's ID. + The ID's stack address must match the SP value returned by + PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ + set_gdbarch_dummy_id (gdbarch, rx_dummy_id); + set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call); + set_gdbarch_return_value (gdbarch, rx_return_value); + + /* Virtual tables. */ + set_gdbarch_vbit_in_delta (gdbarch, 1); + + return gdbarch; +} + +/* Register the above initialization routine. */ +void +_initialize_rx_tdep (void) +{ + register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init); +} -- 2.30.2