From e6f9de8791eced5ebe0dde5a06bd4b132757fe1a Mon Sep 17 00:00:00 2001 From: Doug Evans Date: Tue, 30 Jun 2009 21:31:32 +0000 Subject: [PATCH] Add h/w watchpoint support to x86-linux, win32-i386. * Makefile.in (SFILES): Add i386-low.c (i386_low_h): Define. (i386-low.o): Add dependencies. (linux-x86-low.o): Add i386-low.h dependency. (win32-i386-low.o): Ditto. * i386-low.c: New file. * i386-low.h: New file. * configure.srv (i[34567]86-*-cygwin*): Add i386-low.o to srv_tgtobj. (i[34567]86-*-linux*, i[34567]86-*-mingw*, x86_64-*-linux*): Ditto. * linux-low.c (linux_add_process): Initialize arch_private. (linux_remove_process): Free arch_private. (add_lwp): Initialize arch_private. (delete_lwp): Free arch_private. (linux_resume_one_lwp): Call the_low_target.prepare_to_resume if provided. * linux-low.h (process_info_private): New member arch_private. (lwp_info): New member arch_private. (linux_target_ops): New members new_process, new_thread, prepare_to_resume. (ptid_of): New macro. * linux-x86-low.c: Include stddef.h, i386-low.h. (arch_process_info): New struct. (arch_lwp_info): New struct. (x86_linux_dr_get, x86_linux_dr_set): New functions. (i386_dr_low_set_addr, i386_dr_low_set_control): New functions. (i386_dr_low_get_status): New function. (x86_insert_point, x86_remove_point): New functions. (x86_stopped_by_watchpoint): New function. (x86_stopped_data_address): New function. (x86_linux_new_process, x86_linux_new_thread): New functions. (x86_linux_prepare_to_resume): New function. (the_low_target): Add entries for insert_point, remove_point, stopped_by_watchpoint, stopped_data_address, new_process, new_thread, prepare_to_resume. * server.c (debug_hw_points): New global. (monitor_show_help): Document set debug-hw-points. (handle_query): Process "set debug-hw-points". * server.h (debug_hw_points): Declare. (paddress): Declare. * utils.c (NUMCELLS, CELLSIZE): New macros. (get_sell, xsnprintf, paddress): New functions. * win32-arm-low.c (the_low_target): Add entries for insert_point, remove_point, stopped_by_watchpoint, stopped_data_address. * win32-i386-low.c: Include i386-low.h. (debug_reg_state): Replaces dr. (i386_dr_low_set_addr, i386_dr_low_set_control): New functions. (i386_dr_low_get_status): New function. (i386_insert_point, i386_remove_point): New functions. (i386_stopped_by_watchpoint): New function. (i386_stopped_data_address): New function. (i386_initial_stuff): Update. (get_thread_context,set_thread_context,i386_thread_added): Update. (the_low_target): Add entries for insert_point, remove_point, stopped_by_watchpoint, stopped_data_address. * win32-low.c (win32_insert_watchpoint): New function. (win32_remove_watchpoint): New function. (win32_stopped_by_watchpoint): New function. (win32_stopped_data_address): New function. (win32_target_ops): Add entries for insert_watchpoint, remove_watchpoint, stopped_by_watchpoint, stopped_data_address. * win32-low.h (win32_target_ops): New members insert_point, remove_point, stopped_by_watchpoint, stopped_data_address. --- gdb/gdbserver/i386-low.c | 577 +++++++++++++++++++++++++++++++++++++++ gdb/gdbserver/i386-low.h | 109 ++++++++ 2 files changed, 686 insertions(+) create mode 100644 gdb/gdbserver/i386-low.c create mode 100644 gdb/gdbserver/i386-low.h diff --git a/gdb/gdbserver/i386-low.c b/gdb/gdbserver/i386-low.c new file mode 100644 index 00000000000..c3d0336cfb0 --- /dev/null +++ b/gdb/gdbserver/i386-low.c @@ -0,0 +1,577 @@ +/* Debug register code for the i386. + + Copyright (C) 2009 + Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ + +#include "server.h" +#include "target.h" +#include "i386-low.h" + +/* Support for 8-byte wide hw watchpoints. */ +#ifndef TARGET_HAS_DR_LEN_8 +/* NOTE: sizeof (long) == 4 on win64. */ +#define TARGET_HAS_DR_LEN_8 (sizeof (void *) == 8) +#endif + +enum target_hw_bp_type + { + hw_write = 0, /* Common HW watchpoint */ + hw_read = 1, /* Read HW watchpoint */ + hw_access = 2, /* Access HW watchpoint */ + hw_execute = 3 /* Execute HW breakpoint */ + }; + +/* DR7 Debug Control register fields. */ + +/* How many bits to skip in DR7 to get to R/W and LEN fields. */ +#define DR_CONTROL_SHIFT 16 +/* How many bits in DR7 per R/W and LEN field for each watchpoint. */ +#define DR_CONTROL_SIZE 4 + +/* Watchpoint/breakpoint read/write fields in DR7. */ +#define DR_RW_EXECUTE (0x0) /* Break on instruction execution. */ +#define DR_RW_WRITE (0x1) /* Break on data writes. */ +#define DR_RW_READ (0x3) /* Break on data reads or writes. */ + +/* This is here for completeness. No platform supports this + functionality yet (as of March 2001). Note that the DE flag in the + CR4 register needs to be set to support this. */ +#ifndef DR_RW_IORW +#define DR_RW_IORW (0x2) /* Break on I/O reads or writes. */ +#endif + +/* Watchpoint/breakpoint length fields in DR7. The 2-bit left shift + is so we could OR this with the read/write field defined above. */ +#define DR_LEN_1 (0x0 << 2) /* 1-byte region watch or breakpoint. */ +#define DR_LEN_2 (0x1 << 2) /* 2-byte region watch. */ +#define DR_LEN_4 (0x3 << 2) /* 4-byte region watch. */ +#define DR_LEN_8 (0x2 << 2) /* 8-byte region watch (AMD64). */ + +/* Local and Global Enable flags in DR7. + + When the Local Enable flag is set, the breakpoint/watchpoint is + enabled only for the current task; the processor automatically + clears this flag on every task switch. When the Global Enable flag + is set, the breakpoint/watchpoint is enabled for all tasks; the + processor never clears this flag. + + Currently, all watchpoint are locally enabled. If you need to + enable them globally, read the comment which pertains to this in + i386_insert_aligned_watchpoint below. */ +#define DR_LOCAL_ENABLE_SHIFT 0 /* Extra shift to the local enable bit. */ +#define DR_GLOBAL_ENABLE_SHIFT 1 /* Extra shift to the global enable bit. */ +#define DR_ENABLE_SIZE 2 /* Two enable bits per debug register. */ + +/* Local and global exact breakpoint enable flags (a.k.a. slowdown + flags). These are only required on i386, to allow detection of the + exact instruction which caused a watchpoint to break; i486 and + later processors do that automatically. We set these flags for + backwards compatibility. */ +#define DR_LOCAL_SLOWDOWN (0x100) +#define DR_GLOBAL_SLOWDOWN (0x200) + +/* Fields reserved by Intel. This includes the GD (General Detect + Enable) flag, which causes a debug exception to be generated when a + MOV instruction accesses one of the debug registers. + + FIXME: My Intel manual says we should use 0xF800, not 0xFC00. */ +#define DR_CONTROL_RESERVED (0xFC00) + +/* Auxiliary helper macros. */ + +/* A value that masks all fields in DR7 that are reserved by Intel. */ +#define I386_DR_CONTROL_MASK (~DR_CONTROL_RESERVED) + +/* The I'th debug register is vacant if its Local and Global Enable + bits are reset in the Debug Control register. */ +#define I386_DR_VACANT(state, i) \ + (((state)->dr_control_mirror & (3 << (DR_ENABLE_SIZE * (i)))) == 0) + +/* Locally enable the break/watchpoint in the I'th debug register. */ +#define I386_DR_LOCAL_ENABLE(state, i) \ + do { \ + (state)->dr_control_mirror |= \ + (1 << (DR_LOCAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \ + } while (0) + +/* Globally enable the break/watchpoint in the I'th debug register. */ +#define I386_DR_GLOBAL_ENABLE(state, i) \ + do { \ + (state)->dr_control_mirror |= \ + (1 << (DR_GLOBAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \ + } while (0) + +/* Disable the break/watchpoint in the I'th debug register. */ +#define I386_DR_DISABLE(state, i) \ + do { \ + (state)->dr_control_mirror &= \ + ~(3 << (DR_ENABLE_SIZE * (i))); \ + } while (0) + +/* Set in DR7 the RW and LEN fields for the I'th debug register. */ +#define I386_DR_SET_RW_LEN(state, i,rwlen) \ + do { \ + (state)->dr_control_mirror &= \ + ~(0x0f << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \ + (state)->dr_control_mirror |= \ + ((rwlen) << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \ + } while (0) + +/* Get from DR7 the RW and LEN fields for the I'th debug register. */ +#define I386_DR_GET_RW_LEN(state, i) \ + (((state)->dr_control_mirror \ + >> (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))) & 0x0f) + +/* Did the watchpoint whose address is in the I'th register break? */ +#define I386_DR_WATCH_HIT(state,i) ((state)->dr_status_mirror & (1 << (i))) + +/* A macro to loop over all debug registers. */ +#define ALL_DEBUG_REGISTERS(i) for (i = 0; i < DR_NADDR; i++) + +/* Types of operations supported by i386_handle_nonaligned_watchpoint. */ +typedef enum { WP_INSERT, WP_REMOVE, WP_COUNT } i386_wp_op_t; + +/* Implementation. */ + +/* Clear the reference counts and forget everything we knew about the + debug registers. */ + +void +i386_low_init_dregs (struct i386_debug_reg_state *state) +{ + int i; + + ALL_DEBUG_REGISTERS (i) + { + state->dr_mirror[i] = 0; + state->dr_ref_count[i] = 0; + } + state->dr_control_mirror = 0; + state->dr_status_mirror = 0; +} + +/* Print the values of the mirrored debug registers. This is enabled via + the "set debug-hw-points 1" monitor command. */ + +static void +i386_show_dr (struct i386_debug_reg_state *state, + const char *func, CORE_ADDR addr, + int len, enum target_hw_bp_type type) +{ + int i; + + fprintf (stderr, "%s", func); + if (addr || len) + fprintf (stderr, " (addr=%lx, len=%d, type=%s)", + (unsigned long) addr, len, + type == hw_write ? "data-write" + : (type == hw_read ? "data-read" + : (type == hw_access ? "data-read/write" + : (type == hw_execute ? "instruction-execute" + /* FIXME: if/when I/O read/write + watchpoints are supported, add them + here. */ + : "??unknown??")))); + fprintf (stderr, ":\n"); + fprintf (stderr, "\tCONTROL (DR7): %08x STATUS (DR6): %08x\n", + state->dr_control_mirror, state->dr_status_mirror); + ALL_DEBUG_REGISTERS (i) + { + fprintf (stderr, "\ +\tDR%d: addr=0x%s, ref.count=%d DR%d: addr=0x%s, ref.count=%d\n", + i, paddress (state->dr_mirror[i]), + state->dr_ref_count[i], + i + 1, paddress (state->dr_mirror[i + 1]), + state->dr_ref_count[i + 1]); + i++; + } +} + +/* Return the value of a 4-bit field for DR7 suitable for watching a + region of LEN bytes for accesses of type TYPE. LEN is assumed to + have the value of 1, 2, or 4. */ + +static unsigned +i386_length_and_rw_bits (int len, enum target_hw_bp_type type) +{ + unsigned rw; + + switch (type) + { + case hw_execute: + rw = DR_RW_EXECUTE; + break; + case hw_write: + rw = DR_RW_WRITE; + break; + case hw_read: + /* The i386 doesn't support data-read watchpoints. */ + case hw_access: + rw = DR_RW_READ; + break; +#if 0 + /* Not yet supported. */ + case hw_io_access: + rw = DR_RW_IORW; + break; +#endif + default: + error ("\ +Invalid hardware breakpoint type %d in i386_length_and_rw_bits.\n", + (int) type); + } + + switch (len) + { + case 1: + return (DR_LEN_1 | rw); + case 2: + return (DR_LEN_2 | rw); + case 4: + return (DR_LEN_4 | rw); + case 8: + if (TARGET_HAS_DR_LEN_8) + return (DR_LEN_8 | rw); + default: + error ("\ +Invalid hardware breakpoint length %d in i386_length_and_rw_bits.\n", len); + } +} + +/* Insert a watchpoint at address ADDR, which is assumed to be aligned + according to the length of the region to watch. LEN_RW_BITS is the + value of the bits from DR7 which describes the length and access + type of the region to be watched by this watchpoint. Return 0 on + success, -1 on failure. */ + +static int +i386_insert_aligned_watchpoint (struct i386_debug_reg_state *state, + CORE_ADDR addr, unsigned len_rw_bits) +{ + int i; + + /* First, look for an occupied debug register with the same address + and the same RW and LEN definitions. If we find one, we can + reuse it for this watchpoint as well (and save a register). */ + ALL_DEBUG_REGISTERS (i) + { + if (!I386_DR_VACANT (state, i) + && state->dr_mirror[i] == addr + && I386_DR_GET_RW_LEN (state, i) == len_rw_bits) + { + state->dr_ref_count[i]++; + return 0; + } + } + + /* Next, look for a vacant debug register. */ + ALL_DEBUG_REGISTERS (i) + { + if (I386_DR_VACANT (state, i)) + break; + } + + /* No more debug registers! */ + if (i >= DR_NADDR) + return -1; + + /* Now set up the register I to watch our region. */ + + /* Record the info in our local mirrored array. */ + state->dr_mirror[i] = addr; + state->dr_ref_count[i] = 1; + I386_DR_SET_RW_LEN (state, i, len_rw_bits); + /* Note: we only enable the watchpoint locally, i.e. in the current + task. Currently, no i386 target allows or supports global + watchpoints; however, if any target would want that in the + future, GDB should probably provide a command to control whether + to enable watchpoints globally or locally, and the code below + should use global or local enable and slow-down flags as + appropriate. */ + I386_DR_LOCAL_ENABLE (state, i); + state->dr_control_mirror |= DR_LOCAL_SLOWDOWN; + state->dr_control_mirror &= I386_DR_CONTROL_MASK; + + /* Finally, actually pass the info to the inferior. */ + i386_dr_low_set_addr (state, i); + i386_dr_low_set_control (state); + + return 0; +} + +/* Remove a watchpoint at address ADDR, which is assumed to be aligned + according to the length of the region to watch. LEN_RW_BITS is the + value of the bits from DR7 which describes the length and access + type of the region watched by this watchpoint. Return 0 on + success, -1 on failure. */ + +static int +i386_remove_aligned_watchpoint (struct i386_debug_reg_state *state, + CORE_ADDR addr, unsigned len_rw_bits) +{ + int i, retval = -1; + + ALL_DEBUG_REGISTERS (i) + { + if (!I386_DR_VACANT (state, i) + && state->dr_mirror[i] == addr + && I386_DR_GET_RW_LEN (state, i) == len_rw_bits) + { + if (--state->dr_ref_count[i] == 0) /* No longer in use? */ + { + /* Reset our mirror. */ + state->dr_mirror[i] = 0; + I386_DR_DISABLE (state, i); + /* Reset it in the inferior. */ + i386_dr_low_set_control (state); + i386_dr_low_set_addr (state, i); + } + retval = 0; + } + } + + return retval; +} + +/* Insert or remove a (possibly non-aligned) watchpoint, or count the + number of debug registers required to watch a region at address + ADDR whose length is LEN for accesses of type TYPE. Return 0 on + successful insertion or removal, a positive number when queried + about the number of registers, or -1 on failure. If WHAT is not a + valid value, bombs through internal_error. */ + +static int +i386_handle_nonaligned_watchpoint (struct i386_debug_reg_state *state, + i386_wp_op_t what, CORE_ADDR addr, int len, + enum target_hw_bp_type type) +{ + int retval = 0, status = 0; + int max_wp_len = TARGET_HAS_DR_LEN_8 ? 8 : 4; + + static const int size_try_array[8][8] = + { + {1, 1, 1, 1, 1, 1, 1, 1}, /* Trying size one. */ + {2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size two. */ + {2, 1, 2, 1, 2, 1, 2, 1}, /* Trying size three. */ + {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size four. */ + {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size five. */ + {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size six. */ + {4, 1, 2, 1, 4, 1, 2, 1}, /* Trying size seven. */ + {8, 1, 2, 1, 4, 1, 2, 1}, /* Trying size eight. */ + }; + + while (len > 0) + { + int align = addr % max_wp_len; + /* Four (eight on AMD64) is the maximum length a debug register + can watch. */ + int try = (len > max_wp_len ? (max_wp_len - 1) : len - 1); + int size = size_try_array[try][align]; + + if (what == WP_COUNT) + { + /* size_try_array[] is defined such that each iteration + through the loop is guaranteed to produce an address and a + size that can be watched with a single debug register. + Thus, for counting the registers required to watch a + region, we simply need to increment the count on each + iteration. */ + retval++; + } + else + { + unsigned len_rw = i386_length_and_rw_bits (size, type); + + if (what == WP_INSERT) + status = i386_insert_aligned_watchpoint (state, addr, len_rw); + else if (what == WP_REMOVE) + status = i386_remove_aligned_watchpoint (state, addr, len_rw); + else + fatal ("\ +Invalid value %d of operation in i386_handle_nonaligned_watchpoint.\n", + (int) what); + + /* We keep the loop going even after a failure, because some + of the other aligned watchpoints might still succeed + (e.g. if they watch addresses that are already watched, + in which case we just increment the reference counts of + occupied debug registers). If we break out of the loop + too early, we could cause those addresses watched by + other watchpoints to be disabled when breakpoint.c reacts + to our failure to insert this watchpoint and tries to + remove it. */ + if (status) + retval = status; + } + + addr += size; + len -= size; + } + + return retval; +} + +#define Z_PACKET_WRITE_WP '2' +#define Z_PACKET_READ_WP '3' +#define Z_PACKET_ACCESS_WP '4' + +/* Map the protocol watchpoint type TYPE to enum target_hw_bp_type. */ + +static enum target_hw_bp_type +Z_packet_to_hw_type (char type) +{ + switch (type) + { + case Z_PACKET_WRITE_WP: + return hw_write; + case Z_PACKET_READ_WP: + return hw_read; + case Z_PACKET_ACCESS_WP: + return hw_access; + default: + fatal ("Z_packet_to_hw_type: bad watchpoint type %c", type); + } +} + +/* Insert a watchpoint to watch a memory region which starts at + address ADDR and whose length is LEN bytes. Watch memory accesses + of the type TYPE_FROM_PACKET. Return 0 on success, -1 on failure. */ + +int +i386_low_insert_watchpoint (struct i386_debug_reg_state *state, + char type_from_packet, CORE_ADDR addr, int len) +{ + int retval; + enum target_hw_bp_type type = Z_packet_to_hw_type (type_from_packet); + + if (((len != 1 && len != 2 && len != 4) + && !(TARGET_HAS_DR_LEN_8 && len == 8)) + || addr % len != 0) + { + retval = i386_handle_nonaligned_watchpoint (state, WP_INSERT, + addr, len, type); + } + else + { + unsigned len_rw = i386_length_and_rw_bits (len, type); + + retval = i386_insert_aligned_watchpoint (state, addr, len_rw); + } + + if (debug_hw_points) + i386_show_dr (state, "insert_watchpoint", addr, len, type); + + return retval; +} + +/* Remove a watchpoint that watched the memory region which starts at + address ADDR, whose length is LEN bytes, and for accesses of the + type TYPE_FROM_PACKET. Return 0 on success, -1 on failure. */ + +int +i386_low_remove_watchpoint (struct i386_debug_reg_state *state, + char type_from_packet, CORE_ADDR addr, int len) +{ + int retval; + enum target_hw_bp_type type = Z_packet_to_hw_type (type_from_packet); + + if (((len != 1 && len != 2 && len != 4) + && !(TARGET_HAS_DR_LEN_8 && len == 8)) + || addr % len != 0) + { + retval = i386_handle_nonaligned_watchpoint (state, WP_REMOVE, + addr, len, type); + } + else + { + unsigned len_rw = i386_length_and_rw_bits (len, type); + + retval = i386_remove_aligned_watchpoint (state, addr, len_rw); + } + + if (debug_hw_points) + i386_show_dr (state, "remove_watchpoint", addr, len, type); + + return retval; +} + +/* Return non-zero if we can watch a memory region that starts at + address ADDR and whose length is LEN bytes. */ + +int +i386_low_region_ok_for_watchpoint (struct i386_debug_reg_state *state, + CORE_ADDR addr, int len) +{ + int nregs; + + /* Compute how many aligned watchpoints we would need to cover this + region. */ + nregs = i386_handle_nonaligned_watchpoint (state, WP_COUNT, + addr, len, hw_write); + return nregs <= DR_NADDR ? 1 : 0; +} + +/* If the inferior has some break/watchpoint that triggered, set the + address associated with that break/watchpoint and return true. + Otherwise, return false. */ + +int +i386_low_stopped_data_address (struct i386_debug_reg_state *state, + CORE_ADDR *addr_p) +{ + CORE_ADDR addr = 0; + int i; + int rc = 0; + + /* Get dr_status_mirror for use by I386_DR_WATCH_HIT. */ + i386_dr_low_get_status (state); + + ALL_DEBUG_REGISTERS (i) + { + if (I386_DR_WATCH_HIT (state, i) + /* This second condition makes sure DRi is set up for a data + watchpoint, not a hardware breakpoint. The reason is + that GDB doesn't call the target_stopped_data_address + method except for data watchpoints. In other words, I'm + being paranoiac. */ + && I386_DR_GET_RW_LEN (state, i) != 0) + { + addr = state->dr_mirror[i]; + rc = 1; + if (debug_hw_points) + i386_show_dr (state, "watchpoint_hit", addr, -1, hw_write); + } + } + + if (debug_hw_points && addr == 0) + i386_show_dr (state, "stopped_data_addr", 0, 0, hw_write); + + if (rc) + *addr_p = addr; + return rc; +} + +/* Return true if the inferior has some watchpoint that triggered. + Otherwise return false. */ + +int +i386_low_stopped_by_watchpoint (struct i386_debug_reg_state *state) +{ + CORE_ADDR addr = 0; + return i386_low_stopped_data_address (state, &addr); +} diff --git a/gdb/gdbserver/i386-low.h b/gdb/gdbserver/i386-low.h new file mode 100644 index 00000000000..8b56ad0fa1b --- /dev/null +++ b/gdb/gdbserver/i386-low.h @@ -0,0 +1,109 @@ +/* Misc. low level support for i386. + + Copyright (C) 2009 + Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ + +/* Support for hardware watchpoints and breakpoints using the i386 + debug registers. + + This provides several functions for inserting and removing + hardware-assisted breakpoints and watchpoints, testing if one or + more of the watchpoints triggered and at what address, checking + whether a given region can be watched, etc. + + The functions below implement debug registers sharing by reference + counts, and allow to watch regions up to 16 bytes long + (32 bytes on 64 bit hosts). */ + + +/* Debug registers' indices. */ +#define DR_FIRSTADDR 0 +#define DR_LASTADDR 3 +#define DR_NADDR 4 /* The number of debug address registers. */ +#define DR_STATUS 6 +#define DR_CONTROL 7 + +/* Global state needed to track h/w watchpoints. */ + +struct i386_debug_reg_state +{ + /* Mirror the inferior's DRi registers. We keep the status and + control registers separated because they don't hold addresses. */ + CORE_ADDR dr_mirror[DR_NADDR]; + unsigned dr_status_mirror, dr_control_mirror; + + /* Reference counts for each debug register. */ + int dr_ref_count[DR_NADDR]; +}; + +/* Initialize STATE. */ +extern void i386_low_init_dregs (struct i386_debug_reg_state *state); + +/* Insert a watchpoint to watch a memory region which starts at + address ADDR and whose length is LEN bytes. Watch memory accesses + of the type TYPE_FROM_PACKET. Return 0 on success, -1 on failure. */ +extern int i386_low_insert_watchpoint (struct i386_debug_reg_state *state, + char type_from_packet, CORE_ADDR addr, + int len); + +/* Remove a watchpoint that watched the memory region which starts at + address ADDR, whose length is LEN bytes, and for accesses of the + type TYPE_FROM_PACKET. Return 0 on success, -1 on failure. */ +extern int i386_low_remove_watchpoint (struct i386_debug_reg_state *state, + char type_from_packet, CORE_ADDR addr, + int len); + +/* Return non-zero if we can watch a memory region that starts at + address ADDR and whose length is LEN bytes. */ +extern int i386_low_region_ok_for_watchpoint (struct i386_debug_reg_state *state, + CORE_ADDR addr, int len); + +/* If the inferior has some break/watchpoint that triggered, set the + address associated with that break/watchpoint and return true. + Otherwise, return false. */ +extern int i386_low_stopped_data_address (struct i386_debug_reg_state *state, + CORE_ADDR *addr_p); + +/* Return true if the inferior has some watchpoint that triggered. + Otherwise return false. */ +extern int i386_low_stopped_by_watchpoint (struct i386_debug_reg_state *state); + +/* Each target needs to provide several low-level functions + that will be called to insert watchpoints and hardware breakpoints + into the inferior, remove them, and check their status. These + functions are: + + i386_dr_low_set_control -- set the debug control (DR7) + register to a given value + + i386_dr_low_set_addr -- put an address into one debug register + + i386_dr_low_get_status -- return the value of the debug + status (DR6) register. +*/ + +/* Update the inferior's debug register REGNUM from STATE. */ +extern void i386_dr_low_set_addr (const struct i386_debug_reg_state *state, + int regnum); + +/* Update the inferior's DR7 debug control register from STATE. */ +extern void i386_dr_low_set_control (const struct i386_debug_reg_state *state); + +/* Get the value of the inferior's DR6 debug status register + and record it in STATE. */ +extern void i386_dr_low_get_status (struct i386_debug_reg_state *state); -- 2.30.2