From ea480a306d46efe3dd1839618137f0e73a80e9b3 Mon Sep 17 00:00:00 2001 From: Simon Marchi Date: Tue, 2 May 2017 13:30:07 -0400 Subject: [PATCH] Change field separator in gdbarch.sh The fields in the description of the gdbarch interface are separated using colons. That becomes a problem if we want to use things like std::vector in it. This patch changes the field separator to use semicolons instead. I think there's very little chance we'll ever want to use a semicolon in one of the fields, but if you think another character would be more appropriate, let me know. gdb/ChangeLog: * gdbarch.sh: Use semi-colon as field separator instead of colon. * gdbarch.h: Re-generate. --- gdb/ChangeLog | 5 + gdb/gdbarch.h | 2 +- gdb/gdbarch.sh | 386 ++++++++++++++++++++++++------------------------- 3 files changed, 199 insertions(+), 194 deletions(-) diff --git a/gdb/ChangeLog b/gdb/ChangeLog index 9f24245e373..20fe2d4d094 100644 --- a/gdb/ChangeLog +++ b/gdb/ChangeLog @@ -1,3 +1,8 @@ +2017-05-02 Simon Marchi + + * gdbarch.sh: Use semi-colon as field separator instead of colon. + * gdbarch.h: Re-generate. + 2017-05-01 Tim Wiederhake * Makefile.in (SUBDIR_PYTHON_OBS): Add py-instruction.o. diff --git a/gdb/gdbarch.h b/gdb/gdbarch.h index 761790828a5..d59e14905a9 100644 --- a/gdb/gdbarch.h +++ b/gdb/gdbarch.h @@ -129,7 +129,7 @@ extern void set_gdbarch_bits_big_endian (struct gdbarch *gdbarch, int bits_big_e /* Number of bits in a char or unsigned char for the target machine. Just like CHAR_BIT in but describes the target machine. - v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0: + v;TARGET_CHAR_BIT;int;char_bit;;;;8 * sizeof (char);8;;0; Number of bits in a short or unsigned short for the target machine. */ diff --git a/gdb/gdbarch.sh b/gdb/gdbarch.sh index fa85f7cc91b..170aae3a3fc 100755 --- a/gdb/gdbarch.sh +++ b/gdb/gdbarch.sh @@ -65,11 +65,11 @@ ${line}" else # The semantics of IFS varies between different SH's. Some - # treat ``::' as three fields while some treat it as just too. - # Work around this by eliminating ``::'' .... - line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`" + # treat ``;;' as three fields while some treat it as just two. + # Work around this by eliminating ``;;'' .... + line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`" - OFS="${IFS}" ; IFS="[:]" + OFS="${IFS}" ; IFS="[;]" eval read ${read} <printable_name +i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name # -i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG -i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG +i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG +i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG # -i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN +i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN # -i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc) +i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc) # The bit byte-order has to do just with numbering of bits in debugging symbols # and such. Conceptually, it's quite separate from byte/word byte order. -v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0 +v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0 # Number of bits in a char or unsigned char for the target machine. # Just like CHAR_BIT in but describes the target machine. -# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0: +# v;TARGET_CHAR_BIT;int;char_bit;;;;8 * sizeof (char);8;;0; # # Number of bits in a short or unsigned short for the target machine. -v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0 +v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0 # Number of bits in an int or unsigned int for the target machine. -v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0 +v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0 # Number of bits in a long or unsigned long for the target machine. -v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0 +v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0 # Number of bits in a long long or unsigned long long for the target # machine. -v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0 +v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0 # Alignment of a long long or unsigned long long for the target # machine. -v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0 +v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0 # The ABI default bit-size and format for "half", "float", "double", and # "long double". These bit/format pairs should eventually be combined @@ -374,25 +374,25 @@ v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0 # Each format describes both the big and little endian layouts (if # useful). -v:int:half_bit:::16:2*TARGET_CHAR_BIT::0 -v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format) -v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0 -v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format) -v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0 -v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format) -v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0 -v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format) +v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0 +v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format) +v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0 +v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format) +v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0 +v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format) +v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0 +v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format) # The ABI default bit-size for "wchar_t". wchar_t is a built-in type # starting with C++11. -v:int:wchar_bit:::8 * sizeof (wchar_t):4*TARGET_CHAR_BIT::0 +v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0 # One if \`wchar_t' is signed, zero if unsigned. -v:int:wchar_signed:::1:-1:1 +v;int;wchar_signed;;;1;-1;1 # Returns the floating-point format to be used for values of length LENGTH. # NAME, if non-NULL, is the type name, which may be used to distinguish # different target formats of the same length. -m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0 +m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0 # For most targets, a pointer on the target and its representation as an # address in GDB have the same size and "look the same". For such a @@ -404,9 +404,9 @@ m:const struct floatformat **:floatformat_for_type:const char *name, int length: # gdbarch_address_to_pointer as well. # # ptr_bit is the size of a pointer on the target -v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0 +v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0 # addr_bit is the size of a target address as represented in gdb -v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch): +v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch); # # dwarf2_addr_size is the target address size as used in the Dwarf debug # info. For .debug_frame FDEs, this is supposed to be the target address @@ -421,114 +421,114 @@ v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch): # Note that dwarf2_addr_size only needs to be redefined by a target if the # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size, # and if Dwarf versions < 4 need to be supported. -v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT: +v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; # # One if \`char' acts like \`signed char', zero if \`unsigned char'. -v:int:char_signed:::1:-1:1 +v;int;char_signed;;;1;-1;1 # -F:CORE_ADDR:read_pc:struct regcache *regcache:regcache -F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val +F;CORE_ADDR;read_pc;struct regcache *regcache;regcache +F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val # Function for getting target's idea of a frame pointer. FIXME: GDB's # whole scheme for dealing with "frames" and "frame pointers" needs a # serious shakedown. -m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0 +m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0 # -M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf +M;enum register_status;pseudo_register_read;struct regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf # Read a register into a new struct value. If the register is wholly # or partly unavailable, this should call mark_value_bytes_unavailable # as appropriate. If this is defined, then pseudo_register_read will # never be called. -M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum -M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf +M;struct value *;pseudo_register_read_value;struct regcache *regcache, int cookednum;regcache, cookednum +M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf # -v:int:num_regs:::0:-1 +v;int;num_regs;;;0;-1 # This macro gives the number of pseudo-registers that live in the # register namespace but do not get fetched or stored on the target. # These pseudo-registers may be aliases for other registers, # combinations of other registers, or they may be computed by GDB. -v:int:num_pseudo_regs:::0:0::0 +v;int;num_pseudo_regs;;;0;0;;0 # Assemble agent expression bytecode to collect pseudo-register REG. # Return -1 if something goes wrong, 0 otherwise. -M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg +M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg # Assemble agent expression bytecode to push the value of pseudo-register # REG on the interpreter stack. # Return -1 if something goes wrong, 0 otherwise. -M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg +M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg # Some targets/architectures can do extra processing/display of # segmentation faults. E.g., Intel MPX boundary faults. # Call the architecture dependent function to handle the fault. # UIOUT is the output stream where the handler will place information. -M:void:handle_segmentation_fault:struct ui_out *uiout:uiout +M;void;handle_segmentation_fault;struct ui_out *uiout;uiout # GDB's standard (or well known) register numbers. These can map onto # a real register or a pseudo (computed) register or not be defined at # all (-1). # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP. -v:int:sp_regnum:::-1:-1::0 -v:int:pc_regnum:::-1:-1::0 -v:int:ps_regnum:::-1:-1::0 -v:int:fp0_regnum:::0:-1::0 +v;int;sp_regnum;;;-1;-1;;0 +v;int;pc_regnum;;;-1;-1;;0 +v;int;ps_regnum;;;-1;-1;;0 +v;int;fp0_regnum;;;0;-1;;0 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM. -m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0 +m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0 # Provide a default mapping from a ecoff register number to a gdb REGNUM. -m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0 +m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0 # Convert from an sdb register number to an internal gdb register number. -m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0 +m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM. # Return -1 for bad REGNUM. Note: Several targets get this wrong. -m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0 -m:const char *:register_name:int regnr:regnr::0 +m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0 +m;const char *;register_name;int regnr;regnr;;0 # Return the type of a register specified by the architecture. Only # the register cache should call this function directly; others should # use "register_type". -M:struct type *:register_type:int reg_nr:reg_nr +M;struct type *;register_type;int reg_nr;reg_nr -M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame +M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete # deprecated_fp_regnum. -v:int:deprecated_fp_regnum:::-1:-1::0 +v;int;deprecated_fp_regnum;;;-1;-1;;0 -M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr -v:int:call_dummy_location::::AT_ENTRY_POINT::0 -M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache +M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr +v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0 +M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache # Return true if the code of FRAME is writable. -m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0 +m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0 -m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0 -m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0 -M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args +m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0 +m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0 +M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args # MAP a GDB RAW register number onto a simulator register number. See # also include/...-sim.h. -m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0 -m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0 -m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0 +m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0 +m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0 +m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0 # Determine the address where a longjmp will land and save this address # in PC. Return nonzero on success. # # FRAME corresponds to the longjmp frame. -F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc +F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc # -v:int:believe_pcc_promotion::::::: +v;int;believe_pcc_promotion;;;;;;; # -m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0 -f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0 -f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0 +m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0 +f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0 +f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0 # Construct a value representing the contents of register REGNUM in # frame FRAME_ID, interpreted as type TYPE. The routine needs to # allocate and return a struct value with all value attributes # (but not the value contents) filled in. -m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0 +m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0 # -m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0 -m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0 -M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf +m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0 +m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0 +M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf # Return the return-value convention that will be used by FUNCTION # to return a value of type VALTYPE. FUNCTION may be NULL in which @@ -540,17 +540,17 @@ M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf # stored into the appropriate register. This can be used when we want # to force the value returned by a function (see the "return" command # for instance). -M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf +M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf # Return true if the return value of function is stored in the first hidden # parameter. In theory, this feature should be language-dependent, specified # by language and its ABI, such as C++. Unfortunately, compiler may # implement it to a target-dependent feature. So that we need such hook here # to be aware of this in GDB. -m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0 +m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0 -m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0 -M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip +m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0 +M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip # On some platforms, a single function may provide multiple entry points, # e.g. one that is used for function-pointer calls and a different one # that is used for direct function calls. @@ -562,28 +562,28 @@ M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip # actual breakpoint needs to be set. Note that skip_entrypoint is used # by GDB common code even when debugging optimized code, where skip_prologue # is not used. -M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip +M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip -f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0 -m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:0:default_breakpoint_from_pc::0 +f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0 +m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0 # Return the breakpoint kind for this target based on *PCPTR. -m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0: +m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0; # Return the software breakpoint from KIND. KIND can have target # specific meaning like the Z0 kind parameter. # SIZE is set to the software breakpoint's length in memory. -m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0 +m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0 # Return the breakpoint kind for this target based on the current # processor state (e.g. the current instruction mode on ARM) and the # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc. -m:int:breakpoint_kind_from_current_state:struct regcache *regcache, CORE_ADDR *pcptr:regcache, pcptr:0:default_breakpoint_kind_from_current_state::0 +m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0 -M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr -m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0 -m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0 -v:CORE_ADDR:decr_pc_after_break:::0:::0 +M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr +m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0 +m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0 +v;CORE_ADDR;decr_pc_after_break;;;0;;;0 # A function can be addressed by either it's "pointer" (possibly a # descriptor address) or "entry point" (first executable instruction). @@ -593,27 +593,27 @@ v:CORE_ADDR:decr_pc_after_break:::0:::0 # corresponds to the "function pointer" and the function's start # corresponds to the "function entry point" - and hence is redundant. -v:CORE_ADDR:deprecated_function_start_offset:::0:::0 +v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0 # Return the remote protocol register number associated with this # register. Normally the identity mapping. -m:int:remote_register_number:int regno:regno::default_remote_register_number::0 +m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0 # Fetch the target specific address used to represent a load module. -F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile +F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile # -v:CORE_ADDR:frame_args_skip:::0:::0 -M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame -M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame +v;CORE_ADDR;frame_args_skip;;;0;;;0 +M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame +M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame # frame-base. Enable frame-base before frame-unwind. -F:int:frame_num_args:struct frame_info *frame:frame +F;int;frame_num_args;struct frame_info *frame;frame # -M:CORE_ADDR:frame_align:CORE_ADDR address:address -m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0 -v:int:frame_red_zone_size +M;CORE_ADDR;frame_align;CORE_ADDR address;address +m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0 +v;int;frame_red_zone_size # -m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0 +m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0 # On some machines there are bits in addresses which are not really # part of the address, but are used by the kernel, the hardware, etc. # for special purposes. gdbarch_addr_bits_remove takes out any such bits so @@ -623,7 +623,7 @@ m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:a # being a few stray bits in the PC which would mislead us, not as some # sort of generic thing to handle alignment or segmentation (it's # possible it should be in TARGET_READ_PC instead). -m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0 +m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0 # FIXME/cagney/2001-01-18: This should be split in two. A target method that # indicates if the target needs software single step. An ISA method to @@ -640,23 +640,23 @@ m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0 # the condition and only put the breakpoint at the branch destination if # the condition is true, so that we ensure forward progress when stepping # past a conditional branch to self. -F:VEC (CORE_ADDR) *:software_single_step:struct regcache *regcache:regcache +F;VEC (CORE_ADDR) *;software_single_step;struct regcache *regcache;regcache # Return non-zero if the processor is executing a delay slot and a # further single-step is needed before the instruction finishes. -M:int:single_step_through_delay:struct frame_info *frame:frame +M;int;single_step_through_delay;struct frame_info *frame;frame # FIXME: cagney/2003-08-28: Need to find a better way of selecting the # disassembler. Perhaps objdump can handle it? -f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0: -f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0 +f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;0; +f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER # evaluates non-zero, this is the address where the debugger will place # a step-resume breakpoint to get us past the dynamic linker. -m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0 +m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0 # Some systems also have trampoline code for returning from shared libs. -m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0 +m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0 # A target might have problems with watchpoints as soon as the stack # frame of the current function has been destroyed. This mostly happens @@ -667,7 +667,7 @@ m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generi # already been invalidated regardless of the value of addr. Targets # which don't suffer from that problem could just let this functionality # untouched. -m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0 +m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0 # Process an ELF symbol in the minimal symbol table in a backend-specific # way. Normally this hook is supposed to do nothing, however if required, # then this hook can be used to apply tranformations to symbols that are @@ -675,8 +675,8 @@ m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroye # to interpret \`st_other' information to mark compressed code symbols so # that they can be treated in the appropriate manner in the processing of # the main symbol table and DWARF-2 records. -F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym -f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0 +F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym +f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0 # Process a symbol in the main symbol table in a backend-specific way. # Normally this hook is supposed to do nothing, however if required, # then this hook can be used to apply tranformations to symbols that @@ -685,7 +685,7 @@ f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym: # set. This in turn is needed for symbol values seen in GDB to match # the values used at the runtime by the program itself, for function # and label references. -f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0 +f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0 # Adjust the address retrieved from a DWARF-2 record other than a line # entry in a backend-specific way. Normally this hook is supposed to # return the address passed unchanged, however if that is incorrect for @@ -694,7 +694,7 @@ f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objf # sure addresses in FDE, range records, etc. referring to compressed # code have the ISA bit set, matching line information and the symbol # table. -f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0 +f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0 # Adjust the address updated by a line entry in a backend-specific way. # Normally this hook is supposed to return the address passed unchanged, # however in the case of inconsistencies in these records, this hook can @@ -703,23 +703,23 @@ f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0 # are presented with the ISA bit set, which is not always the case. This # in turn ensures breakpoint addresses are correctly matched against the # stop PC. -f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0 -v:int:cannot_step_breakpoint:::0:0::0 -v:int:have_nonsteppable_watchpoint:::0:0::0 -F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class -M:const char *:address_class_type_flags_to_name:int type_flags:type_flags +f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0 +v;int;cannot_step_breakpoint;;;0;0;;0 +v;int;have_nonsteppable_watchpoint;;;0;0;;0 +F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class +M;const char *;address_class_type_flags_to_name;int type_flags;type_flags # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction. # FS are passed from the generic execute_cfa_program function. -m:bool:execute_dwarf_cfa_vendor_op:gdb_byte op, struct dwarf2_frame_state *fs:op, fs::default_execute_dwarf_cfa_vendor_op::0 +m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0 # Return the appropriate type_flags for the supplied address class. # This function should return 1 if the address class was recognized and # type_flags was set, zero otherwise. -M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr +M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr # Is a register in a group -m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0 +m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0 # Fetch the pointer to the ith function argument. -F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type +F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type # Iterate over all supported register notes in a core file. For each # supported register note section, the iterator must call CB and pass @@ -727,55 +727,55 @@ F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct ty # the supported register note sections based on the current register # values. Otherwise it should enumerate all supported register note # sections. -M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache +M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache # Create core file notes -M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size +M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size # The elfcore writer hook to use to write Linux prpsinfo notes to core # files. Most Linux architectures use the same prpsinfo32 or # prpsinfo64 layouts, and so won't need to provide this hook, as we # call the Linux generic routines in bfd to write prpsinfo notes by # default. -F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info +F;char *;elfcore_write_linux_prpsinfo;bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info;obfd, note_data, note_size, info # Find core file memory regions -M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data +M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from # core file into buffer READBUF with length LEN. Return the number of bytes read # (zero indicates failure). # failed, otherwise, return the red length of READBUF. -M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len +M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared # libraries list from core file into buffer READBUF with length LEN. # Return the number of bytes read (zero indicates failure). -M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len +M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len # How the core target converts a PTID from a core file to a string. -M:const char *:core_pid_to_str:ptid_t ptid:ptid +M;const char *;core_pid_to_str;ptid_t ptid;ptid # How the core target extracts the name of a thread from a core file. -M:const char *:core_thread_name:struct thread_info *thr:thr +M;const char *;core_thread_name;struct thread_info *thr;thr # BFD target to use when generating a core file. -V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target) +V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target) # If the elements of C++ vtables are in-place function descriptors rather # than normal function pointers (which may point to code or a descriptor), # set this to one. -v:int:vtable_function_descriptors:::0:0::0 +v;int;vtable_function_descriptors;;;0;0;;0 # Set if the least significant bit of the delta is used instead of the least # significant bit of the pfn for pointers to virtual member functions. -v:int:vbit_in_delta:::0:0::0 +v;int;vbit_in_delta;;;0;0;;0 # Advance PC to next instruction in order to skip a permanent breakpoint. -f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0 +f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0 # The maximum length of an instruction on this architecture in bytes. -V:ULONGEST:max_insn_length:::0:0 +V;ULONGEST;max_insn_length;;;0;0 # Copy the instruction at FROM to TO, and make any adjustments # necessary to single-step it at that address. @@ -806,7 +806,7 @@ V:ULONGEST:max_insn_length:::0:0 # If the instruction cannot execute out of line, return NULL. The # core falls back to stepping past the instruction in-line instead in # that case. -M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs +M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs # Return true if GDB should use hardware single-stepping to execute # the displaced instruction identified by CLOSURE. If false, @@ -817,7 +817,7 @@ M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ # # The default implementation returns false on all targets that # provide a gdbarch_software_single_step routine, and true otherwise. -m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0 +m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0 # Fix up the state resulting from successfully single-stepping a # displaced instruction, to give the result we would have gotten from @@ -835,7 +835,7 @@ m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closur # # For a general explanation of displaced stepping and how GDB uses it, # see the comments in infrun.c. -M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL +M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL # Free a closure returned by gdbarch_displaced_step_copy_insn. # @@ -847,7 +847,7 @@ M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR fr # # For a general explanation of displaced stepping and how GDB uses it, # see the comments in infrun.c. -m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn) +m;void;displaced_step_free_closure;struct displaced_step_closure *closure;closure;;NULL;;(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn) # Return the address of an appropriate place to put displaced # instructions while we step over them. There need only be one such @@ -856,7 +856,7 @@ m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closur # # For a general explanation of displaced stepping and how GDB uses it, # see the comments in infrun.c. -m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn) +m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn) # Relocate an instruction to execute at a different address. OLDLOC # is the address in the inferior memory where the instruction to @@ -869,27 +869,27 @@ m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_loca # should be adjusted to return to the instruction after OLDLOC; # relative branches, and other PC-relative instructions need the # offset adjusted; etc. -M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL +M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL # Refresh overlay mapped state for section OSECT. -F:void:overlay_update:struct obj_section *osect:osect +F;void;overlay_update;struct obj_section *osect;osect -M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd +M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd # Handle special encoding of static variables in stabs debug info. -F:const char *:static_transform_name:const char *name:name +F;const char *;static_transform_name;const char *name;name # Set if the address in N_SO or N_FUN stabs may be zero. -v:int:sofun_address_maybe_missing:::0:0::0 +v;int;sofun_address_maybe_missing;;;0;0;;0 # Parse the instruction at ADDR storing in the record execution log # the registers REGCACHE and memory ranges that will be affected when # the instruction executes, along with their current values. # Return -1 if something goes wrong, 0 otherwise. -M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr +M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr # Save process state after a signal. # Return -1 if something goes wrong, 0 otherwise. -M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal +M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal # Signal translation: translate inferior's signal (target's) number # into GDB's representation. The implementation of this method must @@ -898,7 +898,7 @@ M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:re # headers. This is mainly used when cross-debugging core files --- # "Live" targets hide the translation behind the target interface # (target_wait, target_resume, etc.). -M:enum gdb_signal:gdb_signal_from_target:int signo:signo +M;enum gdb_signal;gdb_signal_from_target;int signo;signo # Signal translation: translate the GDB's internal signal number into # the inferior's signal (target's) representation. The implementation @@ -907,26 +907,26 @@ M:enum gdb_signal:gdb_signal_from_target:int signo:signo # header, or similar headers. # Return the target signal number if found, or -1 if the GDB internal # signal number is invalid. -M:int:gdb_signal_to_target:enum gdb_signal signal:signal +M;int;gdb_signal_to_target;enum gdb_signal signal;signal # Extra signal info inspection. # # Return a type suitable to inspect extra signal information. -M:struct type *:get_siginfo_type:void: +M;struct type *;get_siginfo_type;void; # Record architecture-specific information from the symbol table. -M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym +M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym # Function for the 'catch syscall' feature. # Get architecture-specific system calls information from registers. -M:LONGEST:get_syscall_number:ptid_t ptid:ptid +M;LONGEST;get_syscall_number;ptid_t ptid;ptid # The filename of the XML syscall for this architecture. -v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file) +v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file) # Information about system calls from this architecture -v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info) +v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info) # SystemTap related fields and functions. @@ -937,11 +937,11 @@ v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch- # \$10 ;; integer constant 10 # # in this case, this prefix would be the character \`\$\'. -v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes) +v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes) # A NULL-terminated array of suffixes used to mark an integer constant # on the architecture's assembly. -v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes) +v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes) # A NULL-terminated array of prefixes used to mark a register name on # the architecture's assembly. @@ -950,11 +950,11 @@ v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap # \%eax ;; register eax # # in this case, this prefix would be the character \`\%\'. -v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes) +v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes) # A NULL-terminated array of suffixes used to mark a register name on # the architecture's assembly. -v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes) +v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes) # A NULL-terminated array of prefixes used to mark a register # indirection on the architecture's assembly. @@ -966,7 +966,7 @@ v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->sta # # Please note that we use the indirection prefix also for register # displacement, e.g., \`4\(\%eax\)\' on x86. -v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes) +v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes) # A NULL-terminated array of suffixes used to mark a register # indirection on the architecture's assembly. @@ -978,7 +978,7 @@ v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list ( # # Please note that we use the indirection suffix also for register # displacement, e.g., \`4\(\%eax\)\' on x86. -v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes) +v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes) # Prefix(es) used to name a register using GDB's nomenclature. # @@ -986,10 +986,10 @@ v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list ( # language (e.g., \`10\' is the 10th general-purpose register). However, # inside GDB this same register has an \`r\' appended to its name, so the 10th # register would be represented as \`r10\' internally. -v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix) +v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix) # Suffix used to name a register using GDB's nomenclature. -v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix) +v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix) # Check if S is a single operand. # @@ -1003,7 +1003,7 @@ v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_regi # and return 1 if some were found, or zero otherwise. Please try to match # as much info as you can from the string, i.e., if you have to match # something like \`\(\%\', do not match just the \`\(\'. -M:int:stap_is_single_operand:const char *s:s +M;int;stap_is_single_operand;const char *s;s # Function used to handle a "special case" in the parser. # @@ -1026,53 +1026,53 @@ M:int:stap_is_single_operand:const char *s:s # if the token was not recognized as a special token (in this case, returning # zero means that the special parser is deferring the parsing to the generic # parser), and should advance the buffer pointer (p->arg). -M:int:stap_parse_special_token:struct stap_parse_info *p:p +M;int;stap_parse_special_token;struct stap_parse_info *p;p # DTrace related functions. # The expression to compute the NARTGth+1 argument to a DTrace USDT probe. # NARG must be >= 0. -M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg +M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg # True if the given ADDR does not contain the instruction sequence # corresponding to a disabled DTrace is-enabled probe. -M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr +M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr # Enable a DTrace is-enabled probe at ADDR. -M:void:dtrace_enable_probe:CORE_ADDR addr:addr +M;void;dtrace_enable_probe;CORE_ADDR addr;addr # Disable a DTrace is-enabled probe at ADDR. -M:void:dtrace_disable_probe:CORE_ADDR addr:addr +M;void;dtrace_disable_probe;CORE_ADDR addr;addr # True if the list of shared libraries is one and only for all # processes, as opposed to a list of shared libraries per inferior. # This usually means that all processes, although may or may not share # an address space, will see the same set of symbols at the same # addresses. -v:int:has_global_solist:::0:0::0 +v;int;has_global_solist;;;0;0;;0 # On some targets, even though each inferior has its own private # address space, the debug interface takes care of making breakpoints # visible to all address spaces automatically. For such cases, # this property should be set to true. -v:int:has_global_breakpoints:::0:0::0 +v;int;has_global_breakpoints;;;0;0;;0 # True if inferiors share an address space (e.g., uClinux). -m:int:has_shared_address_space:void:::default_has_shared_address_space::0 +m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0 # True if a fast tracepoint can be set at an address. -m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0 +m;int;fast_tracepoint_valid_at;CORE_ADDR addr, char **msg;addr, msg;;default_fast_tracepoint_valid_at;;0 # Guess register state based on tracepoint location. Used for tracepoints # where no registers have been collected, but there's only one location, # allowing us to guess the PC value, and perhaps some other registers. # On entry, regcache has all registers marked as unavailable. -m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0 +m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0 # Return the "auto" target charset. -f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0 +f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0 # Return the "auto" target wide charset. -f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0 +f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0 # If non-empty, this is a file extension that will be opened in place # of the file extension reported by the shared library list. @@ -1080,27 +1080,27 @@ f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wi # This is most useful for toolchains that use a post-linker tool, # where the names of the files run on the target differ in extension # compared to the names of the files GDB should load for debug info. -v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension) +v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension) # If true, the target OS has DOS-based file system semantics. That # is, absolute paths include a drive name, and the backslash is # considered a directory separator. -v:int:has_dos_based_file_system:::0:0::0 +v;int;has_dos_based_file_system;;;0;0;;0 # Generate bytecodes to collect the return address in a frame. # Since the bytecodes run on the target, possibly with GDB not even # connected, the full unwinding machinery is not available, and # typically this function will issue bytecodes for one or more likely # places that the return address may be found. -m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0 +m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0 # Implement the "info proc" command. -M:void:info_proc:const char *args, enum info_proc_what what:args, what +M;void;info_proc;const char *args, enum info_proc_what what;args, what # Implement the "info proc" command for core files. Noe that there # are two "info_proc"-like methods on gdbarch -- one for core files, # one for live targets. -M:void:core_info_proc:const char *args, enum info_proc_what what:args, what +M;void;core_info_proc;const char *args, enum info_proc_what what;args, what # Iterate over all objfiles in the order that makes the most sense # for the architecture to make global symbol searches. @@ -1115,66 +1115,66 @@ M:void:core_info_proc:const char *args, enum info_proc_what what:args, what # # If not NULL, CURRENT_OBJFILE corresponds to the objfile being # inspected when the symbol search was requested. -m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0 +m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0 # Ravenscar arch-dependent ops. -v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops) +v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops) # Return non-zero if the instruction at ADDR is a call; zero otherwise. -m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0 +m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0 # Return non-zero if the instruction at ADDR is a return; zero otherwise. -m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0 +m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0 # Return non-zero if the instruction at ADDR is a jump; zero otherwise. -m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0 +m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR. # Return 0 if *READPTR is already at the end of the buffer. # Return -1 if there is insufficient buffer for a whole entry. # Return 1 if an entry was read into *TYPEP and *VALP. -M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp +M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp # Print the description of a single auxv entry described by TYPE and VAL # to FILE. -m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0 +m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0 # Find the address range of the current inferior's vsyscall/vDSO, and # write it to *RANGE. If the vsyscall's length can't be determined, a # range with zero length is returned. Returns true if the vsyscall is # found, false otherwise. -m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0 +m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0 # Allocate SIZE bytes of PROT protected page aligned memory in inferior. # PROT has GDB_MMAP_PROT_* bitmask format. # Throw an error if it is not possible. Returned address is always valid. -f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0 +f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap. # Print a warning if it is not possible. -f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0 +f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0 # Return string (caller has to use xfree for it) with options for GCC # to produce code for this target, typically "-m64", "-m32" or "-m31". # These options are put before CU's DW_AT_producer compilation options so that # they can override it. Method may also return NULL. -m:char *:gcc_target_options:void:::default_gcc_target_options::0 +m;char *;gcc_target_options;void;;;default_gcc_target_options;;0 # Return a regular expression that matches names used by this # architecture in GNU configury triplets. The result is statically # allocated and must not be freed. The default implementation simply # returns the BFD architecture name, which is correct in nearly every # case. -m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0 +m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0 # Return the size in 8-bit bytes of an addressable memory unit on this # architecture. This corresponds to the number of 8-bit bytes associated to # each address in memory. -m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0 +m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0 # Functions for allowing a target to modify its disassembler options. -v:char **:disassembler_options:::0:0::0:pstring_ptr (gdbarch->disassembler_options) -v:const disasm_options_t *:valid_disassembler_options:::0:0::0:host_address_to_string (gdbarch->valid_disassembler_options) +v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options) +v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options) EOF } @@ -1966,7 +1966,7 @@ gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file) "gdbarch_dump: GDB_NM_FILE = %s\\n", gdb_nm_file); EOF -function_list | sort -t: -k 3 | while do_read +function_list | sort '-t;' -k 3 | while do_read do # First the predicate if class_is_predicate_p -- 2.30.2