introduce svp64 prefixing
[binutils-gdb.git] / include / opcode / ppc.h
1 /* ppc.h -- Header file for PowerPC opcode table
2 Copyright (C) 1994-2021 Free Software Foundation, Inc.
3 Written by Ian Lance Taylor, Cygnus Support
4
5 This file is part of GDB, GAS, and the GNU binutils.
6
7 GDB, GAS, and the GNU binutils are free software; you can redistribute
8 them and/or modify them under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either version 3,
10 or (at your option) any later version.
11
12 GDB, GAS, and the GNU binutils are distributed in the hope that they
13 will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
15 the GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this file; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #ifndef PPC_H
23 #define PPC_H
24
25 #include "bfd_stdint.h"
26
27 #ifdef __cplusplus
28 extern "C" {
29 #endif
30
31 typedef uint64_t ppc_cpu_t;
32
33 /* The opcode table is an array of struct powerpc_opcode. */
34
35 struct powerpc_opcode
36 {
37 /* The opcode name. */
38 const char *name;
39
40 /* The opcode itself. Those bits which will be filled in with
41 operands are zeroes. */
42 uint64_t opcode;
43
44 /* The opcode mask. This is used by the disassembler. This is a
45 mask containing ones indicating those bits which must match the
46 opcode field, and zeroes indicating those bits which need not
47 match (and are presumably filled in by operands). */
48 uint64_t mask;
49
50 /* One bit flags for the opcode. These are used to indicate which
51 specific processors support the instructions. The defined values
52 are listed below. */
53 ppc_cpu_t flags;
54
55 /* One bit flags for the opcode. These are used to indicate which
56 specific processors no longer support the instructions. The defined
57 values are listed below. */
58 ppc_cpu_t deprecated;
59
60 /* An array of operand codes. Each code is an index into the
61 operand table. They appear in the order which the operands must
62 appear in assembly code, and are terminated by a zero. */
63 unsigned char operands[8];
64 };
65
66 /* The table itself is sorted by major opcode number, and is otherwise
67 in the order in which the disassembler should consider
68 instructions. */
69 extern const struct powerpc_opcode powerpc_opcodes[];
70 extern const unsigned int powerpc_num_opcodes;
71 extern const struct powerpc_opcode prefix_opcodes[];
72 extern const unsigned int prefix_num_opcodes;
73 extern const struct powerpc_opcode vle_opcodes[];
74 extern const unsigned int vle_num_opcodes;
75 extern const struct powerpc_opcode spe2_opcodes[];
76 extern const unsigned int spe2_num_opcodes;
77
78 /* Values defined for the flags field of a struct powerpc_opcode. */
79
80 /* Opcode is defined for the PowerPC architecture. */
81 #define PPC_OPCODE_PPC 0x1ull
82
83 /* Opcode is defined for the POWER (RS/6000) architecture. */
84 #define PPC_OPCODE_POWER 0x2ull
85
86 /* Opcode is defined for the POWER2 (Rios 2) architecture. */
87 #define PPC_OPCODE_POWER2 0x4ull
88
89 /* Opcode is only defined on 64 bit architectures. */
90 #define PPC_OPCODE_64 0x8ull
91
92 /* Opcode is supported by the Motorola PowerPC 601 processor. The 601
93 is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions,
94 but it also supports many additional POWER instructions. */
95 #define PPC_OPCODE_601 0x10ull
96
97 /* Opcode is supported in both the Power and PowerPC architectures
98 (ie, compiler's -mcpu=common or assembler's -mcom). More than just
99 the intersection of PPC_OPCODE_PPC with the union of PPC_OPCODE_POWER
100 and PPC_OPCODE_POWER2 because many instructions changed mnemonics
101 between POWER and POWERPC. */
102 #define PPC_OPCODE_COMMON 0x20ull
103
104 /* Opcode is supported for any Power or PowerPC platform (this is
105 for the assembler's -many option, and it eliminates duplicates). */
106 #define PPC_OPCODE_ANY 0x40ull
107
108 /* Opcode is supported as part of the 64-bit bridge. */
109 #define PPC_OPCODE_64_BRIDGE 0x80ull
110
111 /* Opcode is supported by Altivec Vector Unit */
112 #define PPC_OPCODE_ALTIVEC 0x100ull
113
114 /* Opcode is supported by PowerPC 403 processor. */
115 #define PPC_OPCODE_403 0x200ull
116
117 /* Opcode is supported by PowerPC BookE processor. */
118 #define PPC_OPCODE_BOOKE 0x400ull
119
120 /* Opcode is only supported by Power4 architecture. */
121 #define PPC_OPCODE_POWER4 0x800ull
122
123 /* Opcode is only supported by e500x2 Core.
124 This bit, PPC_OPCODE_EFS, PPC_OPCODE_VLE, and all those with APU in
125 their comment mark opcodes so that when those instructions are used
126 an APUinfo entry can be generated. */
127 #define PPC_OPCODE_SPE 0x1000ull
128
129 /* Opcode is supported by Integer select APU. */
130 #define PPC_OPCODE_ISEL 0x2000ull
131
132 /* Opcode is an e500 SPE floating point instruction. */
133 #define PPC_OPCODE_EFS 0x4000ull
134
135 /* Opcode is supported by branch locking APU. */
136 #define PPC_OPCODE_BRLOCK 0x8000ull
137
138 /* Opcode is supported by performance monitor APU. */
139 #define PPC_OPCODE_PMR 0x10000ull
140
141 /* Opcode is supported by cache locking APU. */
142 #define PPC_OPCODE_CACHELCK 0x20000ull
143
144 /* Opcode is supported by machine check APU. */
145 #define PPC_OPCODE_RFMCI 0x40000ull
146
147 /* Opcode is supported by PowerPC 440 processor. */
148 #define PPC_OPCODE_440 0x80000ull
149
150 /* Opcode is only supported by Power5 architecture. */
151 #define PPC_OPCODE_POWER5 0x100000ull
152
153 /* Opcode is supported by PowerPC e300 family. */
154 #define PPC_OPCODE_E300 0x200000ull
155
156 /* Opcode is only supported by Power6 architecture. */
157 #define PPC_OPCODE_POWER6 0x400000ull
158
159 /* Opcode is only supported by PowerPC Cell family. */
160 #define PPC_OPCODE_CELL 0x800000ull
161
162 /* Opcode is supported by CPUs with paired singles support. */
163 #define PPC_OPCODE_PPCPS 0x1000000ull
164
165 /* Opcode is supported by Power E500MC */
166 #define PPC_OPCODE_E500MC 0x2000000ull
167
168 /* Opcode is supported by PowerPC 405 processor. */
169 #define PPC_OPCODE_405 0x4000000ull
170
171 /* Opcode is supported by Vector-Scalar (VSX) Unit */
172 #define PPC_OPCODE_VSX 0x8000000ull
173
174 /* Opcode is only supported by Power7 architecture. */
175 #define PPC_OPCODE_POWER7 0x10000000ull
176
177 /* Opcode is supported by A2. */
178 #define PPC_OPCODE_A2 0x20000000ull
179
180 /* Opcode is supported by PowerPC 476 processor. */
181 #define PPC_OPCODE_476 0x40000000ull
182
183 /* Opcode is supported by AppliedMicro Titan core */
184 #define PPC_OPCODE_TITAN 0x80000000ull
185
186 /* Opcode which is supported by the e500 family */
187 #define PPC_OPCODE_E500 0x100000000ull
188
189 /* Opcode is supported by Power E6500 */
190 #define PPC_OPCODE_E6500 0x200000000ull
191
192 /* Opcode is supported by Thread management APU */
193 #define PPC_OPCODE_TMR 0x400000000ull
194
195 /* Opcode which is supported by the VLE extension. */
196 #define PPC_OPCODE_VLE 0x800000000ull
197
198 /* Opcode is only supported by Power8 architecture. */
199 #define PPC_OPCODE_POWER8 0x1000000000ull
200
201 /* Opcode is supported by ppc750cl/Gekko/Broadway. */
202 #define PPC_OPCODE_750 0x2000000000ull
203
204 /* Opcode is supported by ppc7450. */
205 #define PPC_OPCODE_7450 0x4000000000ull
206
207 /* Opcode is supported by ppc821/850/860. */
208 #define PPC_OPCODE_860 0x8000000000ull
209
210 /* Opcode is only supported by Power9 architecture. */
211 #define PPC_OPCODE_POWER9 0x10000000000ull
212
213 /* Opcode is supported by e200z4. */
214 #define PPC_OPCODE_E200Z4 0x20000000000ull
215
216 /* Disassemble to instructions matching later in the opcode table
217 with fewer "mask" bits set rather than the earlist match. Fewer
218 "mask" bits set imply a more general form of the opcode, in fact
219 the underlying machine instruction. */
220 #define PPC_OPCODE_RAW 0x40000000000ull
221
222 /* Opcode is supported by PowerPC LSP */
223 #define PPC_OPCODE_LSP 0x80000000000ull
224
225 /* Opcode is only supported by Freescale SPE2 APU. */
226 #define PPC_OPCODE_SPE2 0x100000000000ull
227
228 /* Opcode is supported by EFS2. */
229 #define PPC_OPCODE_EFS2 0x200000000000ull
230
231 /* Opcode is only supported by power10 architecture. */
232 #define PPC_OPCODE_POWER10 0x400000000000ull
233
234 /* Opcode is a standalone, unprefixed SVP64 opcode (e.g. setvl). */
235 #define PPC_OPCODE_SVP64OPC 0x800000000000ull
236
237 /* Opcode is SVP64-prefixed, with EXTRA2 encoding. */
238 #define PPC_OPCODE_SVP64XT2 0x1000000000000ull
239
240 /* Opcode is SVP64-prefixed, with EXTRA3 encoding. */
241 #define PPC_OPCODE_SVP64XT3 0x1800000000000ull
242
243 /* Opcode is SVP64-prefixed, with either EXTRA encoding. */
244 #define PPC_OPCODE_SVP64PFX 0x1000000000000ull
245
246 /* Opcode is SVP64-related, prefixed or standalone. */
247 #define PPC_OPCODE_SVP64MSK 0x1800000000000ull
248
249
250 /* A macro to extract the major opcode from an instruction. */
251 #define PPC_OP(i) (((i) >> 26) & 0x3f)
252
253 /* A macro to determine if the instruction is a 2-byte VLE insn. */
254 #define PPC_OP_SE_VLE(m) ((m) <= 0xffff)
255
256 /* A macro to extract the major opcode from a VLE instruction. */
257 #define VLE_OP(i,m) (((i) >> ((m) <= 0xffff ? 10 : 26)) & 0x3f)
258
259 /* A macro to convert a VLE opcode to a VLE opcode segment. */
260 #define VLE_OP_TO_SEG(i) ((i) >> 1)
261
262 /* A macro to extract the extended opcode from a SPE2 instruction. */
263 #define SPE2_XOP(i) ((i) & 0x7ff)
264
265 /* A macro to convert a SPE2 extended opcode to a SPE2 xopcode segment. */
266 #define SPE2_XOP_TO_SEG(i) ((i) >> 7)
267
268 /* A macro to extract the prefix word from an 8-byte PREFIX instruction. */
269 #define PPC_GET_PREFIX(i) (((i) >> 32) & ((1LL << 32) - 1))
270
271 /* A macro to extract the suffix word from an 8-byte PREFIX instruction. */
272 #define PPC_GET_SUFFIX(i) ((i) & ((1LL << 32) - 1))
273
274 /* A macro to determine whether insn I is an 8-byte prefix instruction. */
275 #define PPC_PREFIX_P(i) (PPC_OP (PPC_GET_PREFIX (i)) == 0x1)
276
277 /* A macro used to hash 8-byte PREFIX instructions. */
278 #define PPC_PREFIX_SEG(i) (PPC_OP (i) >> 1)
279
280 \f
281 /* The operands table is an array of struct powerpc_operand. */
282
283 struct powerpc_operand
284 {
285 /* A bitmask of bits in the operand. */
286 uint64_t bitm;
287
288 /* The shift operation to be applied to the operand. No shift
289 is made if this is zero. For positive values, the operand
290 is shifted left by SHIFT. For negative values, the operand
291 is shifted right by -SHIFT. Use PPC_OPSHIFT_INV to indicate
292 that BITM and SHIFT cannot be used to determine where the
293 operand goes in the insn. */
294 int shift;
295
296 /* Insertion function. This is used by the assembler. To insert an
297 operand value into an instruction, check this field.
298
299 If it is NULL, execute
300 if (o->shift >= 0)
301 i |= (op & o->bitm) << o->shift;
302 else
303 i |= (op & o->bitm) >> -o->shift;
304 (i is the instruction which we are filling in, o is a pointer to
305 this structure, and op is the operand value).
306
307 If this field is not NULL, then simply call it with the
308 instruction and the operand value. It will return the new value
309 of the instruction. If the operand value is illegal, *ERRMSG
310 will be set to a warning string (the operand will be inserted in
311 any case). If the operand value is legal, *ERRMSG will be
312 unchanged (most operands can accept any value). */
313 uint64_t (*insert)
314 (uint64_t instruction, int64_t op, ppc_cpu_t dialect, const char **errmsg);
315
316 /* Extraction function. This is used by the disassembler. To
317 extract this operand type from an instruction, check this field.
318
319 If it is NULL, compute
320 if (o->shift >= 0)
321 op = (i >> o->shift) & o->bitm;
322 else
323 op = (i << -o->shift) & o->bitm;
324 if ((o->flags & PPC_OPERAND_SIGNED) != 0)
325 sign_extend (op);
326 (i is the instruction, o is a pointer to this structure, and op
327 is the result).
328
329 If this field is not NULL, then simply call it with the
330 instruction value. It will return the value of the operand.
331 *INVALID will be set to one by the extraction function if this
332 operand type can not be extracted from this operand (i.e., the
333 instruction does not match). If the operand is valid, *INVALID
334 will not be changed. *INVALID will always be non-negative when
335 used to extract a field from an instruction.
336
337 The extraction function is also called by both the assembler and
338 disassembler if an operand is optional, in which case the
339 function should return the default value of the operand.
340 *INVALID is negative in this case, and is the negative count of
341 omitted optional operands up to and including this operand. */
342 int64_t (*extract) (uint64_t instruction, ppc_cpu_t dialect, int *invalid);
343
344 /* One bit syntax flags. */
345 unsigned long flags;
346 };
347
348 /* Elements in the table are retrieved by indexing with values from
349 the operands field of the powerpc_opcodes table. */
350
351 extern const struct powerpc_operand powerpc_operands[];
352 extern const unsigned int num_powerpc_operands;
353
354 /* Use with the shift field of a struct powerpc_operand to indicate
355 that BITM and SHIFT cannot be used to determine where the operand
356 goes in the insn. */
357 #define PPC_OPSHIFT_INV (-1U << 31)
358
359 /* Values defined for the flags field of a struct powerpc_operand.
360 Keep the register bits low: They need to fit in an unsigned short. */
361
362 /* This operand names a register. The disassembler uses this to print
363 register names with a leading 'r'. */
364 #define PPC_OPERAND_GPR (0x1)
365
366 /* Like PPC_OPERAND_GPR, but don't print a leading 'r' for r0. */
367 #define PPC_OPERAND_GPR_0 (0x2)
368
369 /* This operand names a floating point register. The disassembler
370 prints these with a leading 'f'. */
371 #define PPC_OPERAND_FPR (0x4)
372
373 /* This operand names a vector unit register. The disassembler
374 prints these with a leading 'v'. */
375 #define PPC_OPERAND_VR (0x8)
376
377 /* This operand names a vector-scalar unit register. The disassembler
378 prints these with a leading 'vs'. */
379 #define PPC_OPERAND_VSR (0x10)
380
381 /* This operand names a VSX accumulator. */
382 #define PPC_OPERAND_ACC (0x20)
383
384 /* This operand may use the symbolic names for the CR fields (even
385 without -mregnames), which are
386 lt 0 gt 1 eq 2 so 3 un 3
387 cr0 0 cr1 1 cr2 2 cr3 3
388 cr4 4 cr5 5 cr6 6 cr7 7
389 These may be combined arithmetically, as in cr2*4+gt. These are
390 only supported on the PowerPC, not the POWER. */
391 #define PPC_OPERAND_CR_BIT (0x40)
392
393 /* This is a CR FIELD that does not use symbolic names (unless
394 -mregnames is in effect). If both PPC_OPERAND_CR_BIT and
395 PPC_OPERAND_CR_REG are set then treat the field as per
396 PPC_OPERAND_CR_BIT for assembly, but as if neither of these
397 bits are set for disassembly. */
398 #define PPC_OPERAND_CR_REG (0x80)
399
400 /* This operand names a special purpose register. */
401 #define PPC_OPERAND_SPR (0x100)
402
403 /* This operand names a paired-single graphics quantization register. */
404 #define PPC_OPERAND_GQR (0x200)
405
406 /* This operand is a relative branch displacement. The disassembler
407 prints these symbolically if possible. */
408 #define PPC_OPERAND_RELATIVE (0x400)
409
410 /* This operand is an absolute branch address. The disassembler
411 prints these symbolically if possible. */
412 #define PPC_OPERAND_ABSOLUTE (0x800)
413
414 /* This operand takes signed values. */
415 #define PPC_OPERAND_SIGNED (0x1000)
416
417 /* This operand takes signed values, but also accepts a full positive
418 range of values when running in 32 bit mode. That is, if bits is
419 16, it takes any value from -0x8000 to 0xffff. In 64 bit mode,
420 this flag is ignored. */
421 #define PPC_OPERAND_SIGNOPT (0x2000)
422
423 /* The next operand should be wrapped in parentheses rather than
424 separated from this one by a comma. This is used for the load and
425 store instructions which want their operands to look like
426 reg,displacement(reg)
427 */
428 #define PPC_OPERAND_PARENS (0x4000)
429
430 /* This operand is for the DS field in a DS form instruction. */
431 #define PPC_OPERAND_DS (0x8000)
432
433 /* This operand is for the DQ field in a DQ form instruction. */
434 #define PPC_OPERAND_DQ (0x10000)
435
436 /* This operand should be regarded as a negative number for the
437 purposes of overflow checking (i.e., the normal most negative
438 number is disallowed and one more than the normal most positive
439 number is allowed). This flag will only be set for a signed
440 operand. */
441 #define PPC_OPERAND_NEGATIVE (0x20000)
442
443 /* Valid range of operand is 0..n rather than 0..n-1. */
444 #define PPC_OPERAND_PLUS1 (0x40000)
445
446 /* This operand is optional, and is zero if omitted. This is used for
447 example, in the optional BF field in the comparison instructions. The
448 assembler must count the number of operands remaining on the line,
449 and the number of operands remaining for the opcode, and decide
450 whether this operand is present or not. The disassembler should
451 print this operand out only if it is not zero. */
452 #define PPC_OPERAND_OPTIONAL (0x80000)
453
454 /* This flag is only used with PPC_OPERAND_OPTIONAL. If this operand
455 is omitted, then for the next operand use this operand value plus
456 1, ignoring the next operand field for the opcode. This wretched
457 hack is needed because the Power rotate instructions can take
458 either 4 or 5 operands. The disassembler should print this operand
459 out regardless of the PPC_OPERAND_OPTIONAL field. */
460 #define PPC_OPERAND_NEXT (0x100000)
461
462 /* This flag is only used with PPC_OPERAND_OPTIONAL. The operand is
463 only optional when generating 32-bit code. */
464 #define PPC_OPERAND_OPTIONAL32 (0x400000)
465
466 /* Xilinx APU and FSL related operands */
467 #define PPC_OPERAND_FSL (0x800000)
468 #define PPC_OPERAND_FCR (0x1000000)
469 #define PPC_OPERAND_UDI (0x2000000)
470 \f
471 /* The POWER and PowerPC assemblers use a few macros. We keep them
472 with the operands table for simplicity. The macro table is an
473 array of struct powerpc_macro. */
474
475 struct powerpc_macro
476 {
477 /* The macro name. */
478 const char *name;
479
480 /* The number of operands the macro takes. */
481 unsigned int operands;
482
483 /* One bit flags for the opcode. These are used to indicate which
484 specific processors support the instructions. The values are the
485 same as those for the struct powerpc_opcode flags field. */
486 ppc_cpu_t flags;
487
488 /* A format string to turn the macro into a normal instruction.
489 Each %N in the string is replaced with operand number N (zero
490 based). */
491 const char *format;
492 };
493
494 extern const struct powerpc_macro powerpc_macros[];
495 extern const int powerpc_num_macros;
496
497 extern ppc_cpu_t ppc_parse_cpu (ppc_cpu_t, ppc_cpu_t *, const char *);
498
499 static inline int64_t
500 ppc_optional_operand_value (const struct powerpc_operand *operand,
501 uint64_t insn,
502 ppc_cpu_t dialect,
503 int num_optional)
504 {
505 if (operand->extract)
506 return (*operand->extract) (insn, dialect, &num_optional);
507 return 0;
508 }
509
510 /* PowerPC VLE insns. */
511 #define E_OPCODE_MASK 0xfc00f800
512
513 /* Form I16L, uses 16A relocs. */
514 #define E_OR2I_INSN 0x7000C000
515 #define E_AND2I_DOT_INSN 0x7000C800
516 #define E_OR2IS_INSN 0x7000D000
517 #define E_LIS_INSN 0x7000E000
518 #define E_AND2IS_DOT_INSN 0x7000E800
519
520 /* Form I16A, uses 16D relocs. */
521 #define E_ADD2I_DOT_INSN 0x70008800
522 #define E_ADD2IS_INSN 0x70009000
523 #define E_CMP16I_INSN 0x70009800
524 #define E_MULL2I_INSN 0x7000A000
525 #define E_CMPL16I_INSN 0x7000A800
526 #define E_CMPH16I_INSN 0x7000B000
527 #define E_CMPHL16I_INSN 0x7000B800
528
529 #define E_LI_INSN 0x70000000
530 #define E_LI_MASK 0xfc008000
531
532 #ifdef __cplusplus
533 }
534 #endif
535
536 #endif /* PPC_H */