include/drm-uapi: bump headers
[mesa.git] / include / drm-uapi / drm_fourcc.h
1 /*
2 * Copyright 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26
27 #include "drm.h"
28
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32
33 /**
34 * DOC: overview
35 *
36 * In the DRM subsystem, framebuffer pixel formats are described using the
37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38 * fourcc code, a Format Modifier may optionally be provided, in order to
39 * further describe the buffer's format - for example tiling or compression.
40 *
41 * Format Modifiers
42 * ----------------
43 *
44 * Format modifiers are used in conjunction with a fourcc code, forming a
45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46 * format and data layout of the buffer, and should be the only way to describe
47 * that particular buffer.
48 *
49 * Having multiple fourcc:modifier pairs which describe the same layout should
50 * be avoided, as such aliases run the risk of different drivers exposing
51 * different names for the same data format, forcing userspace to understand
52 * that they are aliases.
53 *
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
57 * modifier is specific to the modifer being used. For example, some modifiers
58 * may preserve meaning - such as number of planes - from the fourcc code,
59 * whereas others may not.
60 *
61 * Vendors should document their modifier usage in as much detail as
62 * possible, to ensure maximum compatibility across devices, drivers and
63 * applications.
64 *
65 * The authoritative list of format modifier codes is found in
66 * `include/uapi/drm/drm_fourcc.h`
67 */
68
69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
70 ((__u32)(c) << 16) | ((__u32)(d) << 24))
71
72 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
73
74 /* Reserve 0 for the invalid format specifier */
75 #define DRM_FORMAT_INVALID 0
76
77 /* color index */
78 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
79
80 /* 8 bpp Red */
81 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
82
83 /* 16 bpp Red */
84 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
85
86 /* 16 bpp RG */
87 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
88 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
89
90 /* 32 bpp RG */
91 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
92 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
93
94 /* 8 bpp RGB */
95 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
96 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
97
98 /* 16 bpp RGB */
99 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
100 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
101 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
102 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
103
104 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
105 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
106 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
107 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
108
109 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
110 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
111 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
112 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
113
114 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
115 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
116 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
117 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
118
119 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
120 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
121
122 /* 24 bpp RGB */
123 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
124 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
125
126 /* 32 bpp RGB */
127 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
128 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
129 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
130 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
131
132 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
133 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
134 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
135 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
136
137 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
138 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
139 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
140 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
141
142 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
143 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
144 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
145 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
146
147 /*
148 * Floating point 64bpp RGB
149 * IEEE 754-2008 binary16 half-precision float
150 * [15:0] sign:exponent:mantissa 1:5:10
151 */
152 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
153 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
154
155 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
156 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
157
158 /* packed YCbCr */
159 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
160 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
161 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
162 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
163
164 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
165 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
166 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
167 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
168
169 /*
170 * packed Y2xx indicate for each component, xx valid data occupy msb
171 * 16-xx padding occupy lsb
172 */
173 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
174 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
175 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
176
177 /*
178 * packed Y4xx indicate for each component, xx valid data occupy msb
179 * 16-xx padding occupy lsb except Y410
180 */
181 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
182 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
183 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
184
185 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
186 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
187 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
188
189 /*
190 * packed YCbCr420 2x2 tiled formats
191 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
192 */
193 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
194 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
195 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
196 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
197
198 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
199 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
200 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
201 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
202
203 /*
204 * 1-plane YUV 4:2:0
205 * In these formats, the component ordering is specified (Y, followed by U
206 * then V), but the exact Linear layout is undefined.
207 * These formats can only be used with a non-Linear modifier.
208 */
209 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
210 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
211
212 /*
213 * 2 plane RGB + A
214 * index 0 = RGB plane, same format as the corresponding non _A8 format has
215 * index 1 = A plane, [7:0] A
216 */
217 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
218 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
219 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
220 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
221 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
222 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
223 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
224 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
225
226 /*
227 * 2 plane YCbCr
228 * index 0 = Y plane, [7:0] Y
229 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
230 * or
231 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
232 */
233 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
234 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
235 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
236 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
237 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
238 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
239 /*
240 * 2 plane YCbCr
241 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
242 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
243 */
244 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
245
246 /*
247 * 2 plane YCbCr MSB aligned
248 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
249 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
250 */
251 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
252
253 /*
254 * 2 plane YCbCr MSB aligned
255 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
256 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
257 */
258 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
259
260 /*
261 * 2 plane YCbCr MSB aligned
262 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
263 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
264 */
265 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
266
267 /*
268 * 2 plane YCbCr MSB aligned
269 * index 0 = Y plane, [15:0] Y little endian
270 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
271 */
272 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
273
274 /* 3 plane non-subsampled (444) YCbCr
275 * 16 bits per component, but only 10 bits are used and 6 bits are padded
276 * index 0: Y plane, [15:0] Y:x [10:6] little endian
277 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
278 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
279 */
280 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
281
282 /* 3 plane non-subsampled (444) YCrCb
283 * 16 bits per component, but only 10 bits are used and 6 bits are padded
284 * index 0: Y plane, [15:0] Y:x [10:6] little endian
285 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
286 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
287 */
288 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
289
290 /*
291 * 3 plane YCbCr
292 * index 0: Y plane, [7:0] Y
293 * index 1: Cb plane, [7:0] Cb
294 * index 2: Cr plane, [7:0] Cr
295 * or
296 * index 1: Cr plane, [7:0] Cr
297 * index 2: Cb plane, [7:0] Cb
298 */
299 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
300 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
301 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
302 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
303 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
304 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
305 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
306 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
307 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
308 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
309
310
311 /*
312 * Format Modifiers:
313 *
314 * Format modifiers describe, typically, a re-ordering or modification
315 * of the data in a plane of an FB. This can be used to express tiled/
316 * swizzled formats, or compression, or a combination of the two.
317 *
318 * The upper 8 bits of the format modifier are a vendor-id as assigned
319 * below. The lower 56 bits are assigned as vendor sees fit.
320 */
321
322 /* Vendor Ids: */
323 #define DRM_FORMAT_MOD_NONE 0
324 #define DRM_FORMAT_MOD_VENDOR_NONE 0
325 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
326 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02
327 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
328 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
329 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
330 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
331 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
332 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08
333 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
334 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
335
336 /* add more to the end as needed */
337
338 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
339
340 #define fourcc_mod_code(vendor, val) \
341 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
342
343 /*
344 * Format Modifier tokens:
345 *
346 * When adding a new token please document the layout with a code comment,
347 * similar to the fourcc codes above. drm_fourcc.h is considered the
348 * authoritative source for all of these.
349 *
350 * Generic modifier names:
351 *
352 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
353 * for layouts which are common across multiple vendors. To preserve
354 * compatibility, in cases where a vendor-specific definition already exists and
355 * a generic name for it is desired, the common name is a purely symbolic alias
356 * and must use the same numerical value as the original definition.
357 *
358 * Note that generic names should only be used for modifiers which describe
359 * generic layouts (such as pixel re-ordering), which may have
360 * independently-developed support across multiple vendors.
361 *
362 * In future cases where a generic layout is identified before merging with a
363 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
364 * 'NONE' could be considered. This should only be for obvious, exceptional
365 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
366 * apply to a single vendor.
367 *
368 * Generic names should not be used for cases where multiple hardware vendors
369 * have implementations of the same standardised compression scheme (such as
370 * AFBC). In those cases, all implementations should use the same format
371 * modifier(s), reflecting the vendor of the standard.
372 */
373
374 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
375
376 /*
377 * Invalid Modifier
378 *
379 * This modifier can be used as a sentinel to terminate the format modifiers
380 * list, or to initialize a variable with an invalid modifier. It might also be
381 * used to report an error back to userspace for certain APIs.
382 */
383 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
384
385 /*
386 * Linear Layout
387 *
388 * Just plain linear layout. Note that this is different from no specifying any
389 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
390 * which tells the driver to also take driver-internal information into account
391 * and so might actually result in a tiled framebuffer.
392 */
393 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
394
395 /* Intel framebuffer modifiers */
396
397 /*
398 * Intel X-tiling layout
399 *
400 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
401 * in row-major layout. Within the tile bytes are laid out row-major, with
402 * a platform-dependent stride. On top of that the memory can apply
403 * platform-depending swizzling of some higher address bits into bit6.
404 *
405 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
406 * On earlier platforms the is highly platforms specific and not useful for
407 * cross-driver sharing. It exists since on a given platform it does uniquely
408 * identify the layout in a simple way for i915-specific userspace, which
409 * facilitated conversion of userspace to modifiers. Additionally the exact
410 * format on some really old platforms is not known.
411 */
412 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
413
414 /*
415 * Intel Y-tiling layout
416 *
417 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
418 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
419 * chunks column-major, with a platform-dependent height. On top of that the
420 * memory can apply platform-depending swizzling of some higher address bits
421 * into bit6.
422 *
423 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
424 * On earlier platforms the is highly platforms specific and not useful for
425 * cross-driver sharing. It exists since on a given platform it does uniquely
426 * identify the layout in a simple way for i915-specific userspace, which
427 * facilitated conversion of userspace to modifiers. Additionally the exact
428 * format on some really old platforms is not known.
429 */
430 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
431
432 /*
433 * Intel Yf-tiling layout
434 *
435 * This is a tiled layout using 4Kb tiles in row-major layout.
436 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
437 * are arranged in four groups (two wide, two high) with column-major layout.
438 * Each group therefore consits out of four 256 byte units, which are also laid
439 * out as 2x2 column-major.
440 * 256 byte units are made out of four 64 byte blocks of pixels, producing
441 * either a square block or a 2:1 unit.
442 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
443 * in pixel depends on the pixel depth.
444 */
445 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
446
447 /*
448 * Intel color control surface (CCS) for render compression
449 *
450 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
451 * The main surface will be plane index 0 and must be Y/Yf-tiled,
452 * the CCS will be plane index 1.
453 *
454 * Each CCS tile matches a 1024x512 pixel area of the main surface.
455 * To match certain aspects of the 3D hardware the CCS is
456 * considered to be made up of normal 128Bx32 Y tiles, Thus
457 * the CCS pitch must be specified in multiples of 128 bytes.
458 *
459 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
460 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
461 * But that fact is not relevant unless the memory is accessed
462 * directly.
463 */
464 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
465 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
466
467 /*
468 * Intel color control surfaces (CCS) for Gen-12 render compression.
469 *
470 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
471 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
472 * main surface. In other words, 4 bits in CCS map to a main surface cache
473 * line pair. The main surface pitch is required to be a multiple of four
474 * Y-tile widths.
475 */
476 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
477
478 /*
479 * Intel color control surfaces (CCS) for Gen-12 media compression
480 *
481 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
482 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
483 * main surface. In other words, 4 bits in CCS map to a main surface cache
484 * line pair. The main surface pitch is required to be a multiple of four
485 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
486 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
487 * planes 2 and 3 for the respective CCS.
488 */
489 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
490
491 /*
492 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
493 *
494 * Macroblocks are laid in a Z-shape, and each pixel data is following the
495 * standard NV12 style.
496 * As for NV12, an image is the result of two frame buffers: one for Y,
497 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
498 * Alignment requirements are (for each buffer):
499 * - multiple of 128 pixels for the width
500 * - multiple of 32 pixels for the height
501 *
502 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
503 */
504 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
505
506 /*
507 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
508 *
509 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
510 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
511 * they correspond to their 16x16 luma block.
512 */
513 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
514
515 /*
516 * Qualcomm Compressed Format
517 *
518 * Refers to a compressed variant of the base format that is compressed.
519 * Implementation may be platform and base-format specific.
520 *
521 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
522 * Pixel data pitch/stride is aligned with macrotile width.
523 * Pixel data height is aligned with macrotile height.
524 * Entire pixel data buffer is aligned with 4k(bytes).
525 */
526 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
527
528 /* Vivante framebuffer modifiers */
529
530 /*
531 * Vivante 4x4 tiling layout
532 *
533 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
534 * layout.
535 */
536 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
537
538 /*
539 * Vivante 64x64 super-tiling layout
540 *
541 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
542 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
543 * major layout.
544 *
545 * For more information: see
546 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
547 */
548 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
549
550 /*
551 * Vivante 4x4 tiling layout for dual-pipe
552 *
553 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
554 * different base address. Offsets from the base addresses are therefore halved
555 * compared to the non-split tiled layout.
556 */
557 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
558
559 /*
560 * Vivante 64x64 super-tiling layout for dual-pipe
561 *
562 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
563 * starts at a different base address. Offsets from the base addresses are
564 * therefore halved compared to the non-split super-tiled layout.
565 */
566 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
567
568 /* NVIDIA frame buffer modifiers */
569
570 /*
571 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
572 *
573 * Pixels are arranged in simple tiles of 16 x 16 bytes.
574 */
575 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
576
577 /*
578 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
579 * and Tegra GPUs starting with Tegra K1.
580 *
581 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
582 * based on the architecture generation. GOBs themselves are then arranged in
583 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
584 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
585 * a block depth or height of "4").
586 *
587 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
588 * in full detail.
589 *
590 * Macro
591 * Bits Param Description
592 * ---- ----- -----------------------------------------------------------------
593 *
594 * 3:0 h log2(height) of each block, in GOBs. Placed here for
595 * compatibility with the existing
596 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
597 *
598 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
599 * compatibility with the existing
600 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
601 *
602 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
603 * size). Must be zero.
604 *
605 * Note there is no log2(width) parameter. Some portions of the
606 * hardware support a block width of two gobs, but it is impractical
607 * to use due to lack of support elsewhere, and has no known
608 * benefits.
609 *
610 * 11:9 - Reserved (To support 2D-array textures with variable array stride
611 * in blocks, specified via log2(tile width in blocks)). Must be
612 * zero.
613 *
614 * 19:12 k Page Kind. This value directly maps to a field in the page
615 * tables of all GPUs >= NV50. It affects the exact layout of bits
616 * in memory and can be derived from the tuple
617 *
618 * (format, GPU model, compression type, samples per pixel)
619 *
620 * Where compression type is defined below. If GPU model were
621 * implied by the format modifier, format, or memory buffer, page
622 * kind would not need to be included in the modifier itself, but
623 * since the modifier should define the layout of the associated
624 * memory buffer independent from any device or other context, it
625 * must be included here.
626 *
627 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
628 * starting with Fermi GPUs. Additionally, the mapping between page
629 * kind and bit layout has changed at various points.
630 *
631 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
632 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
633 * 2 = Gob Height 8, Turing+ Page Kind mapping
634 * 3 = Reserved for future use.
635 *
636 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
637 * bit remapping step that occurs at an even lower level than the
638 * page kind and block linear swizzles. This causes the layout of
639 * surfaces mapped in those SOC's GPUs to be incompatible with the
640 * equivalent mapping on other GPUs in the same system.
641 *
642 * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
643 * 1 = Desktop GPU and Tegra Xavier+ Layout
644 *
645 * 25:23 c Lossless Framebuffer Compression type.
646 *
647 * 0 = none
648 * 1 = ROP/3D, layout 1, exact compression format implied by Page
649 * Kind field
650 * 2 = ROP/3D, layout 2, exact compression format implied by Page
651 * Kind field
652 * 3 = CDE horizontal
653 * 4 = CDE vertical
654 * 5 = Reserved for future use
655 * 6 = Reserved for future use
656 * 7 = Reserved for future use
657 *
658 * 55:25 - Reserved for future use. Must be zero.
659 */
660 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
661 fourcc_mod_code(NVIDIA, (0x10 | \
662 ((h) & 0xf) | \
663 (((k) & 0xff) << 12) | \
664 (((g) & 0x3) << 20) | \
665 (((s) & 0x1) << 22) | \
666 (((c) & 0x7) << 23)))
667
668 /* To grandfather in prior block linear format modifiers to the above layout,
669 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
670 * with block-linear layouts, is remapped within drivers to the value 0xfe,
671 * which corresponds to the "generic" kind used for simple single-sample
672 * uncompressed color formats on Fermi - Volta GPUs.
673 */
674 static __inline__ __u64
675 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
676 {
677 if (!(modifier & 0x10) || (modifier & (0xff << 12)))
678 return modifier;
679 else
680 return modifier | (0xfe << 12);
681 }
682
683 /*
684 * 16Bx2 Block Linear layout, used by Tegra K1 and later
685 *
686 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
687 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
688 *
689 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
690 *
691 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
692 * Valid values are:
693 *
694 * 0 == ONE_GOB
695 * 1 == TWO_GOBS
696 * 2 == FOUR_GOBS
697 * 3 == EIGHT_GOBS
698 * 4 == SIXTEEN_GOBS
699 * 5 == THIRTYTWO_GOBS
700 *
701 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
702 * in full detail.
703 */
704 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
705 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
706
707 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
708 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
709 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
710 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
711 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
712 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
713 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
714 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
715 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
716 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
717 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
718 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
719
720 /*
721 * Some Broadcom modifiers take parameters, for example the number of
722 * vertical lines in the image. Reserve the lower 32 bits for modifier
723 * type, and the next 24 bits for parameters. Top 8 bits are the
724 * vendor code.
725 */
726 #define __fourcc_mod_broadcom_param_shift 8
727 #define __fourcc_mod_broadcom_param_bits 48
728 #define fourcc_mod_broadcom_code(val, params) \
729 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
730 #define fourcc_mod_broadcom_param(m) \
731 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
732 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
733 #define fourcc_mod_broadcom_mod(m) \
734 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
735 __fourcc_mod_broadcom_param_shift))
736
737 /*
738 * Broadcom VC4 "T" format
739 *
740 * This is the primary layout that the V3D GPU can texture from (it
741 * can't do linear). The T format has:
742 *
743 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
744 * pixels at 32 bit depth.
745 *
746 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
747 * 16x16 pixels).
748 *
749 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
750 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
751 * they're (TR, BR, BL, TL), where bottom left is start of memory.
752 *
753 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
754 * tiles) or right-to-left (odd rows of 4k tiles).
755 */
756 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
757
758 /*
759 * Broadcom SAND format
760 *
761 * This is the native format that the H.264 codec block uses. For VC4
762 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
763 *
764 * The image can be considered to be split into columns, and the
765 * columns are placed consecutively into memory. The width of those
766 * columns can be either 32, 64, 128, or 256 pixels, but in practice
767 * only 128 pixel columns are used.
768 *
769 * The pitch between the start of each column is set to optimally
770 * switch between SDRAM banks. This is passed as the number of lines
771 * of column width in the modifier (we can't use the stride value due
772 * to various core checks that look at it , so you should set the
773 * stride to width*cpp).
774 *
775 * Note that the column height for this format modifier is the same
776 * for all of the planes, assuming that each column contains both Y
777 * and UV. Some SAND-using hardware stores UV in a separate tiled
778 * image from Y to reduce the column height, which is not supported
779 * with these modifiers.
780 */
781
782 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
783 fourcc_mod_broadcom_code(2, v)
784 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
785 fourcc_mod_broadcom_code(3, v)
786 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
787 fourcc_mod_broadcom_code(4, v)
788 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
789 fourcc_mod_broadcom_code(5, v)
790
791 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
792 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
793 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
794 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
795 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
796 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
797 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
798 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
799
800 /* Broadcom UIF format
801 *
802 * This is the common format for the current Broadcom multimedia
803 * blocks, including V3D 3.x and newer, newer video codecs, and
804 * displays.
805 *
806 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
807 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
808 * stored in columns, with padding between the columns to ensure that
809 * moving from one column to the next doesn't hit the same SDRAM page
810 * bank.
811 *
812 * To calculate the padding, it is assumed that each hardware block
813 * and the software driving it knows the platform's SDRAM page size,
814 * number of banks, and XOR address, and that it's identical between
815 * all blocks using the format. This tiling modifier will use XOR as
816 * necessary to reduce the padding. If a hardware block can't do XOR,
817 * the assumption is that a no-XOR tiling modifier will be created.
818 */
819 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
820
821 /*
822 * Arm Framebuffer Compression (AFBC) modifiers
823 *
824 * AFBC is a proprietary lossless image compression protocol and format.
825 * It provides fine-grained random access and minimizes the amount of data
826 * transferred between IP blocks.
827 *
828 * AFBC has several features which may be supported and/or used, which are
829 * represented using bits in the modifier. Not all combinations are valid,
830 * and different devices or use-cases may support different combinations.
831 *
832 * Further information on the use of AFBC modifiers can be found in
833 * Documentation/gpu/afbc.rst
834 */
835
836 /*
837 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
838 * modifiers) denote the category for modifiers. Currently we have only two
839 * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
840 * different categories.
841 */
842 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
843 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
844
845 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
846 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
847
848 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
849 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
850
851 /*
852 * AFBC superblock size
853 *
854 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
855 * size (in pixels) must be aligned to a multiple of the superblock size.
856 * Four lowest significant bits(LSBs) are reserved for block size.
857 *
858 * Where one superblock size is specified, it applies to all planes of the
859 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
860 * the first applies to the Luma plane and the second applies to the Chroma
861 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
862 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
863 */
864 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
865 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
866 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
867 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
868 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
869
870 /*
871 * AFBC lossless colorspace transform
872 *
873 * Indicates that the buffer makes use of the AFBC lossless colorspace
874 * transform.
875 */
876 #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
877
878 /*
879 * AFBC block-split
880 *
881 * Indicates that the payload of each superblock is split. The second
882 * half of the payload is positioned at a predefined offset from the start
883 * of the superblock payload.
884 */
885 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
886
887 /*
888 * AFBC sparse layout
889 *
890 * This flag indicates that the payload of each superblock must be stored at a
891 * predefined position relative to the other superblocks in the same AFBC
892 * buffer. This order is the same order used by the header buffer. In this mode
893 * each superblock is given the same amount of space as an uncompressed
894 * superblock of the particular format would require, rounding up to the next
895 * multiple of 128 bytes in size.
896 */
897 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
898
899 /*
900 * AFBC copy-block restrict
901 *
902 * Buffers with this flag must obey the copy-block restriction. The restriction
903 * is such that there are no copy-blocks referring across the border of 8x8
904 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
905 */
906 #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
907
908 /*
909 * AFBC tiled layout
910 *
911 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
912 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
913 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
914 * larger bpp formats. The order between the tiles is scan line.
915 * When the tiled layout is used, the buffer size (in pixels) must be aligned
916 * to the tile size.
917 */
918 #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
919
920 /*
921 * AFBC solid color blocks
922 *
923 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
924 * can be reduced if a whole superblock is a single color.
925 */
926 #define AFBC_FORMAT_MOD_SC (1ULL << 9)
927
928 /*
929 * AFBC double-buffer
930 *
931 * Indicates that the buffer is allocated in a layout safe for front-buffer
932 * rendering.
933 */
934 #define AFBC_FORMAT_MOD_DB (1ULL << 10)
935
936 /*
937 * AFBC buffer content hints
938 *
939 * Indicates that the buffer includes per-superblock content hints.
940 */
941 #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
942
943 /* AFBC uncompressed storage mode
944 *
945 * Indicates that the buffer is using AFBC uncompressed storage mode.
946 * In this mode all superblock payloads in the buffer use the uncompressed
947 * storage mode, which is usually only used for data which cannot be compressed.
948 * The buffer layout is the same as for AFBC buffers without USM set, this only
949 * affects the storage mode of the individual superblocks. Note that even a
950 * buffer without USM set may use uncompressed storage mode for some or all
951 * superblocks, USM just guarantees it for all.
952 */
953 #define AFBC_FORMAT_MOD_USM (1ULL << 12)
954
955 /*
956 * Arm 16x16 Block U-Interleaved modifier
957 *
958 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
959 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
960 * in the block are reordered.
961 */
962 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
963 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
964
965 /*
966 * Allwinner tiled modifier
967 *
968 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
969 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
970 * planes.
971 *
972 * With this tiling, the luminance samples are disposed in tiles representing
973 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
974 * The pixel order in each tile is linear and the tiles are disposed linearly,
975 * both in row-major order.
976 */
977 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
978
979 /*
980 * Amlogic Video Framebuffer Compression modifiers
981 *
982 * Amlogic uses a proprietary lossless image compression protocol and format
983 * for their hardware video codec accelerators, either video decoders or
984 * video input encoders.
985 *
986 * It considerably reduces memory bandwidth while writing and reading
987 * frames in memory.
988 *
989 * The underlying storage is considered to be 3 components, 8bit or 10-bit
990 * per component YCbCr 420, single plane :
991 * - DRM_FORMAT_YUV420_8BIT
992 * - DRM_FORMAT_YUV420_10BIT
993 *
994 * The first 8 bits of the mode defines the layout, then the following 8 bits
995 * defines the options changing the layout.
996 *
997 * Not all combinations are valid, and different SoCs may support different
998 * combinations of layout and options.
999 */
1000 #define __fourcc_mod_amlogic_layout_mask 0xf
1001 #define __fourcc_mod_amlogic_options_shift 8
1002 #define __fourcc_mod_amlogic_options_mask 0xf
1003
1004 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1005 fourcc_mod_code(AMLOGIC, \
1006 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1007 (((__options) & __fourcc_mod_amlogic_options_mask) \
1008 << __fourcc_mod_amlogic_options_shift))
1009
1010 /* Amlogic FBC Layouts */
1011
1012 /*
1013 * Amlogic FBC Basic Layout
1014 *
1015 * The basic layout is composed of:
1016 * - a body content organized in 64x32 superblocks with 4096 bytes per
1017 * superblock in default mode.
1018 * - a 32 bytes per 128x64 header block
1019 *
1020 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1021 */
1022 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1023
1024 /*
1025 * Amlogic FBC Scatter Memory layout
1026 *
1027 * Indicates the header contains IOMMU references to the compressed
1028 * frames content to optimize memory access and layout.
1029 *
1030 * In this mode, only the header memory address is needed, thus the
1031 * content memory organization is tied to the current producer
1032 * execution and cannot be saved/dumped neither transferrable between
1033 * Amlogic SoCs supporting this modifier.
1034 *
1035 * Due to the nature of the layout, these buffers are not expected to
1036 * be accessible by the user-space clients, but only accessible by the
1037 * hardware producers and consumers.
1038 *
1039 * The user-space clients should expect a failure while trying to mmap
1040 * the DMA-BUF handle returned by the producer.
1041 */
1042 #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
1043
1044 /* Amlogic FBC Layout Options Bit Mask */
1045
1046 /*
1047 * Amlogic FBC Memory Saving mode
1048 *
1049 * Indicates the storage is packed when pixel size is multiple of word
1050 * boudaries, i.e. 8bit should be stored in this mode to save allocation
1051 * memory.
1052 *
1053 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1054 * the basic layout and 3200 bytes per 64x32 superblock combined with
1055 * the scatter layout.
1056 */
1057 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1058
1059 #if defined(__cplusplus)
1060 }
1061 #endif
1062
1063 #endif /* DRM_FOURCC_H */