drm-uapi: Update headers from drm-next
[mesa.git] / include / drm-uapi / drm_fourcc.h
1 /*
2 * Copyright 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26
27 #include "drm.h"
28
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32
33 /**
34 * DOC: overview
35 *
36 * In the DRM subsystem, framebuffer pixel formats are described using the
37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38 * fourcc code, a Format Modifier may optionally be provided, in order to
39 * further describe the buffer's format - for example tiling or compression.
40 *
41 * Format Modifiers
42 * ----------------
43 *
44 * Format modifiers are used in conjunction with a fourcc code, forming a
45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46 * format and data layout of the buffer, and should be the only way to describe
47 * that particular buffer.
48 *
49 * Having multiple fourcc:modifier pairs which describe the same layout should
50 * be avoided, as such aliases run the risk of different drivers exposing
51 * different names for the same data format, forcing userspace to understand
52 * that they are aliases.
53 *
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
57 * modifier is specific to the modifer being used. For example, some modifiers
58 * may preserve meaning - such as number of planes - from the fourcc code,
59 * whereas others may not.
60 *
61 * Vendors should document their modifier usage in as much detail as
62 * possible, to ensure maximum compatibility across devices, drivers and
63 * applications.
64 *
65 * The authoritative list of format modifier codes is found in
66 * `include/uapi/drm/drm_fourcc.h`
67 */
68
69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
70 ((__u32)(c) << 16) | ((__u32)(d) << 24))
71
72 #define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */
73
74 /* Reserve 0 for the invalid format specifier */
75 #define DRM_FORMAT_INVALID 0
76
77 /* color index */
78 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
79
80 /* 8 bpp Red */
81 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
82
83 /* 16 bpp Red */
84 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
85
86 /* 16 bpp RG */
87 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
88 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
89
90 /* 32 bpp RG */
91 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
92 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
93
94 /* 8 bpp RGB */
95 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
96 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
97
98 /* 16 bpp RGB */
99 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
100 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
101 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
102 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
103
104 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
105 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
106 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
107 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
108
109 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
110 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
111 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
112 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
113
114 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
115 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
116 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
117 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
118
119 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
120 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
121
122 /* 24 bpp RGB */
123 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
124 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
125
126 /* 32 bpp RGB */
127 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
128 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
129 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
130 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
131
132 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
133 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
134 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
135 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
136
137 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
138 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
139 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
140 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
141
142 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
143 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
144 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
145 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
146
147 /* packed YCbCr */
148 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
149 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
150 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
151 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
152
153 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
154 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
155
156 /*
157 * packed YCbCr420 2x2 tiled formats
158 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
159 */
160 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
161 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
162 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
163 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
164
165 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
166 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
167 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
168 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
169
170 /*
171 * 2 plane RGB + A
172 * index 0 = RGB plane, same format as the corresponding non _A8 format has
173 * index 1 = A plane, [7:0] A
174 */
175 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
176 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
177 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
178 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
179 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
180 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
181 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
182 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
183
184 /*
185 * 2 plane YCbCr
186 * index 0 = Y plane, [7:0] Y
187 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
188 * or
189 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
190 */
191 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
192 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
193 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
194 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
195 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
196 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
197
198 /*
199 * 2 plane YCbCr MSB aligned
200 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
201 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
202 */
203 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
204
205 /*
206 * 2 plane YCbCr MSB aligned
207 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
208 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
209 */
210 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
211
212 /*
213 * 2 plane YCbCr MSB aligned
214 * index 0 = Y plane, [15:0] Y little endian
215 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
216 */
217 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
218
219 /*
220 * 3 plane YCbCr
221 * index 0: Y plane, [7:0] Y
222 * index 1: Cb plane, [7:0] Cb
223 * index 2: Cr plane, [7:0] Cr
224 * or
225 * index 1: Cr plane, [7:0] Cr
226 * index 2: Cb plane, [7:0] Cb
227 */
228 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
229 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
230 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
231 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
232 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
233 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
234 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
235 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
236 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
237 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
238
239
240 /*
241 * Format Modifiers:
242 *
243 * Format modifiers describe, typically, a re-ordering or modification
244 * of the data in a plane of an FB. This can be used to express tiled/
245 * swizzled formats, or compression, or a combination of the two.
246 *
247 * The upper 8 bits of the format modifier are a vendor-id as assigned
248 * below. The lower 56 bits are assigned as vendor sees fit.
249 */
250
251 /* Vendor Ids: */
252 #define DRM_FORMAT_MOD_NONE 0
253 #define DRM_FORMAT_MOD_VENDOR_NONE 0
254 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
255 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02
256 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
257 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
258 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
259 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
260 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
261 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08
262 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
263
264 /* add more to the end as needed */
265
266 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
267
268 #define fourcc_mod_code(vendor, val) \
269 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
270
271 /*
272 * Format Modifier tokens:
273 *
274 * When adding a new token please document the layout with a code comment,
275 * similar to the fourcc codes above. drm_fourcc.h is considered the
276 * authoritative source for all of these.
277 */
278
279 /*
280 * Invalid Modifier
281 *
282 * This modifier can be used as a sentinel to terminate the format modifiers
283 * list, or to initialize a variable with an invalid modifier. It might also be
284 * used to report an error back to userspace for certain APIs.
285 */
286 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
287
288 /*
289 * Linear Layout
290 *
291 * Just plain linear layout. Note that this is different from no specifying any
292 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
293 * which tells the driver to also take driver-internal information into account
294 * and so might actually result in a tiled framebuffer.
295 */
296 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
297
298 /* Intel framebuffer modifiers */
299
300 /*
301 * Intel X-tiling layout
302 *
303 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
304 * in row-major layout. Within the tile bytes are laid out row-major, with
305 * a platform-dependent stride. On top of that the memory can apply
306 * platform-depending swizzling of some higher address bits into bit6.
307 *
308 * This format is highly platforms specific and not useful for cross-driver
309 * sharing. It exists since on a given platform it does uniquely identify the
310 * layout in a simple way for i915-specific userspace.
311 */
312 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
313
314 /*
315 * Intel Y-tiling layout
316 *
317 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
318 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
319 * chunks column-major, with a platform-dependent height. On top of that the
320 * memory can apply platform-depending swizzling of some higher address bits
321 * into bit6.
322 *
323 * This format is highly platforms specific and not useful for cross-driver
324 * sharing. It exists since on a given platform it does uniquely identify the
325 * layout in a simple way for i915-specific userspace.
326 */
327 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
328
329 /*
330 * Intel Yf-tiling layout
331 *
332 * This is a tiled layout using 4Kb tiles in row-major layout.
333 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
334 * are arranged in four groups (two wide, two high) with column-major layout.
335 * Each group therefore consits out of four 256 byte units, which are also laid
336 * out as 2x2 column-major.
337 * 256 byte units are made out of four 64 byte blocks of pixels, producing
338 * either a square block or a 2:1 unit.
339 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
340 * in pixel depends on the pixel depth.
341 */
342 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
343
344 /*
345 * Intel color control surface (CCS) for render compression
346 *
347 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
348 * The main surface will be plane index 0 and must be Y/Yf-tiled,
349 * the CCS will be plane index 1.
350 *
351 * Each CCS tile matches a 1024x512 pixel area of the main surface.
352 * To match certain aspects of the 3D hardware the CCS is
353 * considered to be made up of normal 128Bx32 Y tiles, Thus
354 * the CCS pitch must be specified in multiples of 128 bytes.
355 *
356 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
357 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
358 * But that fact is not relevant unless the memory is accessed
359 * directly.
360 */
361 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
362 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
363
364 /*
365 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
366 *
367 * Macroblocks are laid in a Z-shape, and each pixel data is following the
368 * standard NV12 style.
369 * As for NV12, an image is the result of two frame buffers: one for Y,
370 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
371 * Alignment requirements are (for each buffer):
372 * - multiple of 128 pixels for the width
373 * - multiple of 32 pixels for the height
374 *
375 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
376 */
377 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
378
379 /*
380 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
381 *
382 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
383 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
384 * they correspond to their 16x16 luma block.
385 */
386 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
387
388 /*
389 * Qualcomm Compressed Format
390 *
391 * Refers to a compressed variant of the base format that is compressed.
392 * Implementation may be platform and base-format specific.
393 *
394 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
395 * Pixel data pitch/stride is aligned with macrotile width.
396 * Pixel data height is aligned with macrotile height.
397 * Entire pixel data buffer is aligned with 4k(bytes).
398 */
399 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
400
401 /* Vivante framebuffer modifiers */
402
403 /*
404 * Vivante 4x4 tiling layout
405 *
406 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
407 * layout.
408 */
409 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
410
411 /*
412 * Vivante 64x64 super-tiling layout
413 *
414 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
415 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
416 * major layout.
417 *
418 * For more information: see
419 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
420 */
421 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
422
423 /*
424 * Vivante 4x4 tiling layout for dual-pipe
425 *
426 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
427 * different base address. Offsets from the base addresses are therefore halved
428 * compared to the non-split tiled layout.
429 */
430 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
431
432 /*
433 * Vivante 64x64 super-tiling layout for dual-pipe
434 *
435 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
436 * starts at a different base address. Offsets from the base addresses are
437 * therefore halved compared to the non-split super-tiled layout.
438 */
439 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
440
441 /* NVIDIA frame buffer modifiers */
442
443 /*
444 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
445 *
446 * Pixels are arranged in simple tiles of 16 x 16 bytes.
447 */
448 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
449
450 /*
451 * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
452 *
453 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
454 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
455 *
456 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
457 *
458 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
459 * Valid values are:
460 *
461 * 0 == ONE_GOB
462 * 1 == TWO_GOBS
463 * 2 == FOUR_GOBS
464 * 3 == EIGHT_GOBS
465 * 4 == SIXTEEN_GOBS
466 * 5 == THIRTYTWO_GOBS
467 *
468 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
469 * in full detail.
470 */
471 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
472 fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
473
474 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
475 fourcc_mod_code(NVIDIA, 0x10)
476 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
477 fourcc_mod_code(NVIDIA, 0x11)
478 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
479 fourcc_mod_code(NVIDIA, 0x12)
480 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
481 fourcc_mod_code(NVIDIA, 0x13)
482 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
483 fourcc_mod_code(NVIDIA, 0x14)
484 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
485 fourcc_mod_code(NVIDIA, 0x15)
486
487 /*
488 * Some Broadcom modifiers take parameters, for example the number of
489 * vertical lines in the image. Reserve the lower 32 bits for modifier
490 * type, and the next 24 bits for parameters. Top 8 bits are the
491 * vendor code.
492 */
493 #define __fourcc_mod_broadcom_param_shift 8
494 #define __fourcc_mod_broadcom_param_bits 48
495 #define fourcc_mod_broadcom_code(val, params) \
496 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
497 #define fourcc_mod_broadcom_param(m) \
498 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
499 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
500 #define fourcc_mod_broadcom_mod(m) \
501 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
502 __fourcc_mod_broadcom_param_shift))
503
504 /*
505 * Broadcom VC4 "T" format
506 *
507 * This is the primary layout that the V3D GPU can texture from (it
508 * can't do linear). The T format has:
509 *
510 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
511 * pixels at 32 bit depth.
512 *
513 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
514 * 16x16 pixels).
515 *
516 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
517 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
518 * they're (TR, BR, BL, TL), where bottom left is start of memory.
519 *
520 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
521 * tiles) or right-to-left (odd rows of 4k tiles).
522 */
523 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
524
525 /*
526 * Broadcom SAND format
527 *
528 * This is the native format that the H.264 codec block uses. For VC4
529 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
530 *
531 * The image can be considered to be split into columns, and the
532 * columns are placed consecutively into memory. The width of those
533 * columns can be either 32, 64, 128, or 256 pixels, but in practice
534 * only 128 pixel columns are used.
535 *
536 * The pitch between the start of each column is set to optimally
537 * switch between SDRAM banks. This is passed as the number of lines
538 * of column width in the modifier (we can't use the stride value due
539 * to various core checks that look at it , so you should set the
540 * stride to width*cpp).
541 *
542 * Note that the column height for this format modifier is the same
543 * for all of the planes, assuming that each column contains both Y
544 * and UV. Some SAND-using hardware stores UV in a separate tiled
545 * image from Y to reduce the column height, which is not supported
546 * with these modifiers.
547 */
548
549 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
550 fourcc_mod_broadcom_code(2, v)
551 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
552 fourcc_mod_broadcom_code(3, v)
553 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
554 fourcc_mod_broadcom_code(4, v)
555 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
556 fourcc_mod_broadcom_code(5, v)
557
558 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
559 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
560 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
561 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
562 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
563 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
564 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
565 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
566
567 /* Broadcom UIF format
568 *
569 * This is the common format for the current Broadcom multimedia
570 * blocks, including V3D 3.x and newer, newer video codecs, and
571 * displays.
572 *
573 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
574 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
575 * stored in columns, with padding between the columns to ensure that
576 * moving from one column to the next doesn't hit the same SDRAM page
577 * bank.
578 *
579 * To calculate the padding, it is assumed that each hardware block
580 * and the software driving it knows the platform's SDRAM page size,
581 * number of banks, and XOR address, and that it's identical between
582 * all blocks using the format. This tiling modifier will use XOR as
583 * necessary to reduce the padding. If a hardware block can't do XOR,
584 * the assumption is that a no-XOR tiling modifier will be created.
585 */
586 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
587
588 /*
589 * Arm Framebuffer Compression (AFBC) modifiers
590 *
591 * AFBC is a proprietary lossless image compression protocol and format.
592 * It provides fine-grained random access and minimizes the amount of data
593 * transferred between IP blocks.
594 *
595 * AFBC has several features which may be supported and/or used, which are
596 * represented using bits in the modifier. Not all combinations are valid,
597 * and different devices or use-cases may support different combinations.
598 *
599 * Further information on the use of AFBC modifiers can be found in
600 * Documentation/gpu/afbc.rst
601 */
602 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) fourcc_mod_code(ARM, __afbc_mode)
603
604 /*
605 * AFBC superblock size
606 *
607 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
608 * size (in pixels) must be aligned to a multiple of the superblock size.
609 * Four lowest significant bits(LSBs) are reserved for block size.
610 *
611 * Where one superblock size is specified, it applies to all planes of the
612 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
613 * the first applies to the Luma plane and the second applies to the Chroma
614 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
615 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
616 */
617 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
618 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
619 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
620 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
621 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
622
623 /*
624 * AFBC lossless colorspace transform
625 *
626 * Indicates that the buffer makes use of the AFBC lossless colorspace
627 * transform.
628 */
629 #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
630
631 /*
632 * AFBC block-split
633 *
634 * Indicates that the payload of each superblock is split. The second
635 * half of the payload is positioned at a predefined offset from the start
636 * of the superblock payload.
637 */
638 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
639
640 /*
641 * AFBC sparse layout
642 *
643 * This flag indicates that the payload of each superblock must be stored at a
644 * predefined position relative to the other superblocks in the same AFBC
645 * buffer. This order is the same order used by the header buffer. In this mode
646 * each superblock is given the same amount of space as an uncompressed
647 * superblock of the particular format would require, rounding up to the next
648 * multiple of 128 bytes in size.
649 */
650 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
651
652 /*
653 * AFBC copy-block restrict
654 *
655 * Buffers with this flag must obey the copy-block restriction. The restriction
656 * is such that there are no copy-blocks referring across the border of 8x8
657 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
658 */
659 #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
660
661 /*
662 * AFBC tiled layout
663 *
664 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
665 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
666 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
667 * larger bpp formats. The order between the tiles is scan line.
668 * When the tiled layout is used, the buffer size (in pixels) must be aligned
669 * to the tile size.
670 */
671 #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
672
673 /*
674 * AFBC solid color blocks
675 *
676 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
677 * can be reduced if a whole superblock is a single color.
678 */
679 #define AFBC_FORMAT_MOD_SC (1ULL << 9)
680
681 /*
682 * AFBC double-buffer
683 *
684 * Indicates that the buffer is allocated in a layout safe for front-buffer
685 * rendering.
686 */
687 #define AFBC_FORMAT_MOD_DB (1ULL << 10)
688
689 /*
690 * AFBC buffer content hints
691 *
692 * Indicates that the buffer includes per-superblock content hints.
693 */
694 #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
695
696 /*
697 * Allwinner tiled modifier
698 *
699 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
700 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
701 * planes.
702 *
703 * With this tiling, the luminance samples are disposed in tiles representing
704 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
705 * The pixel order in each tile is linear and the tiles are disposed linearly,
706 * both in row-major order.
707 */
708 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
709
710 #if defined(__cplusplus)
711 }
712 #endif
713
714 #endif /* DRM_FOURCC_H */