aco: rework barriers and replace can_reorder
[mesa.git] / src / amd / compiler / aco_insert_waitcnt.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <algorithm>
26 #include <map>
27 #include <stack>
28 #include <math.h>
29
30 #include "aco_ir.h"
31 #include "vulkan/radv_shader.h"
32
33 namespace aco {
34
35 namespace {
36
37 /**
38 * The general idea of this pass is:
39 * The CFG is traversed in reverse postorder (forward) and loops are processed
40 * several times until no progress is made.
41 * Per BB two wait_ctx is maintained: an in-context and out-context.
42 * The in-context is the joined out-contexts of the predecessors.
43 * The context contains a map: gpr -> wait_entry
44 * consisting of the information about the cnt values to be waited for.
45 * Note: After merge-nodes, it might occur that for the same register
46 * multiple cnt values are to be waited for.
47 *
48 * The values are updated according to the encountered instructions:
49 * - additional events increment the counter of waits of the same type
50 * - or erase gprs with counters higher than to be waited for.
51 */
52
53 // TODO: do a more clever insertion of wait_cnt (lgkm_cnt) when there is a load followed by a use of a previous load
54
55 /* Instructions of the same event will finish in-order except for smem
56 * and maybe flat. Instructions of different events may not finish in-order. */
57 enum wait_event : uint16_t {
58 event_smem = 1 << 0,
59 event_lds = 1 << 1,
60 event_gds = 1 << 2,
61 event_vmem = 1 << 3,
62 event_vmem_store = 1 << 4, /* GFX10+ */
63 event_flat = 1 << 5,
64 event_exp_pos = 1 << 6,
65 event_exp_param = 1 << 7,
66 event_exp_mrt_null = 1 << 8,
67 event_gds_gpr_lock = 1 << 9,
68 event_vmem_gpr_lock = 1 << 10,
69 event_sendmsg = 1 << 11,
70 num_events = 12,
71 };
72
73 enum counter_type : uint8_t {
74 counter_exp = 1 << 0,
75 counter_lgkm = 1 << 1,
76 counter_vm = 1 << 2,
77 counter_vs = 1 << 3,
78 num_counters = 4,
79 };
80
81 static const uint16_t exp_events = event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock;
82 static const uint16_t lgkm_events = event_smem | event_lds | event_gds | event_flat | event_sendmsg;
83 static const uint16_t vm_events = event_vmem | event_flat;
84 static const uint16_t vs_events = event_vmem_store;
85
86 uint8_t get_counters_for_event(wait_event ev)
87 {
88 switch (ev) {
89 case event_smem:
90 case event_lds:
91 case event_gds:
92 case event_sendmsg:
93 return counter_lgkm;
94 case event_vmem:
95 return counter_vm;
96 case event_vmem_store:
97 return counter_vs;
98 case event_flat:
99 return counter_vm | counter_lgkm;
100 case event_exp_pos:
101 case event_exp_param:
102 case event_exp_mrt_null:
103 case event_gds_gpr_lock:
104 case event_vmem_gpr_lock:
105 return counter_exp;
106 default:
107 return 0;
108 }
109 }
110
111 uint16_t get_events_for_counter(counter_type ctr)
112 {
113 switch (ctr) {
114 case counter_exp:
115 return exp_events;
116 case counter_lgkm:
117 return lgkm_events;
118 case counter_vm:
119 return vm_events;
120 case counter_vs:
121 return vs_events;
122 }
123 return 0;
124 }
125
126 struct wait_imm {
127 static const uint8_t unset_counter = 0xff;
128
129 uint8_t vm;
130 uint8_t exp;
131 uint8_t lgkm;
132 uint8_t vs;
133
134 wait_imm() :
135 vm(unset_counter), exp(unset_counter), lgkm(unset_counter), vs(unset_counter) {}
136 wait_imm(uint16_t vm_, uint16_t exp_, uint16_t lgkm_, uint16_t vs_) :
137 vm(vm_), exp(exp_), lgkm(lgkm_), vs(vs_) {}
138
139 wait_imm(enum chip_class chip, uint16_t packed) : vs(unset_counter)
140 {
141 vm = packed & 0xf;
142 if (chip >= GFX9)
143 vm |= (packed >> 10) & 0x30;
144
145 exp = (packed >> 4) & 0x7;
146
147 lgkm = (packed >> 8) & 0xf;
148 if (chip >= GFX10)
149 lgkm |= (packed >> 8) & 0x30;
150 }
151
152 uint16_t pack(enum chip_class chip) const
153 {
154 uint16_t imm = 0;
155 assert(exp == unset_counter || exp <= 0x7);
156 switch (chip) {
157 case GFX10:
158 assert(lgkm == unset_counter || lgkm <= 0x3f);
159 assert(vm == unset_counter || vm <= 0x3f);
160 imm = ((vm & 0x30) << 10) | ((lgkm & 0x3f) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
161 break;
162 case GFX9:
163 assert(lgkm == unset_counter || lgkm <= 0xf);
164 assert(vm == unset_counter || vm <= 0x3f);
165 imm = ((vm & 0x30) << 10) | ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
166 break;
167 default:
168 assert(lgkm == unset_counter || lgkm <= 0xf);
169 assert(vm == unset_counter || vm <= 0xf);
170 imm = ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
171 break;
172 }
173 if (chip < GFX9 && vm == wait_imm::unset_counter)
174 imm |= 0xc000; /* should have no effect on pre-GFX9 and now we won't have to worry about the architecture when interpreting the immediate */
175 if (chip < GFX10 && lgkm == wait_imm::unset_counter)
176 imm |= 0x3000; /* should have no effect on pre-GFX10 and now we won't have to worry about the architecture when interpreting the immediate */
177 return imm;
178 }
179
180 bool combine(const wait_imm& other)
181 {
182 bool changed = other.vm < vm || other.exp < exp || other.lgkm < lgkm || other.vs < vs;
183 vm = std::min(vm, other.vm);
184 exp = std::min(exp, other.exp);
185 lgkm = std::min(lgkm, other.lgkm);
186 vs = std::min(vs, other.vs);
187 return changed;
188 }
189
190 bool empty() const
191 {
192 return vm == unset_counter && exp == unset_counter &&
193 lgkm == unset_counter && vs == unset_counter;
194 }
195 };
196
197 struct wait_entry {
198 wait_imm imm;
199 uint16_t events; /* use wait_event notion */
200 uint8_t counters; /* use counter_type notion */
201 bool wait_on_read:1;
202 bool logical:1;
203 bool has_vmem_nosampler:1;
204 bool has_vmem_sampler:1;
205
206 wait_entry(wait_event event, wait_imm imm, bool logical, bool wait_on_read)
207 : imm(imm), events(event), counters(get_counters_for_event(event)),
208 wait_on_read(wait_on_read), logical(logical),
209 has_vmem_nosampler(false), has_vmem_sampler(false) {}
210
211 bool join(const wait_entry& other)
212 {
213 bool changed = (other.events & ~events) ||
214 (other.counters & ~counters) ||
215 (other.wait_on_read && !wait_on_read) ||
216 (other.has_vmem_nosampler && !has_vmem_nosampler) ||
217 (other.has_vmem_sampler && !has_vmem_sampler);
218 events |= other.events;
219 counters |= other.counters;
220 changed |= imm.combine(other.imm);
221 wait_on_read |= other.wait_on_read;
222 has_vmem_nosampler |= other.has_vmem_nosampler;
223 has_vmem_sampler |= other.has_vmem_sampler;
224 assert(logical == other.logical);
225 return changed;
226 }
227
228 void remove_counter(counter_type counter)
229 {
230 counters &= ~counter;
231
232 if (counter == counter_lgkm) {
233 imm.lgkm = wait_imm::unset_counter;
234 events &= ~(event_smem | event_lds | event_gds | event_sendmsg);
235 }
236
237 if (counter == counter_vm) {
238 imm.vm = wait_imm::unset_counter;
239 events &= ~event_vmem;
240 has_vmem_nosampler = false;
241 has_vmem_sampler = false;
242 }
243
244 if (counter == counter_exp) {
245 imm.exp = wait_imm::unset_counter;
246 events &= ~(event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock);
247 }
248
249 if (counter == counter_vs) {
250 imm.vs = wait_imm::unset_counter;
251 events &= ~event_vmem_store;
252 }
253
254 if (!(counters & counter_lgkm) && !(counters & counter_vm))
255 events &= ~event_flat;
256 }
257 };
258
259 struct wait_ctx {
260 Program *program;
261 enum chip_class chip_class;
262 uint16_t max_vm_cnt;
263 uint16_t max_exp_cnt;
264 uint16_t max_lgkm_cnt;
265 uint16_t max_vs_cnt;
266 uint16_t unordered_events = event_smem | event_flat;
267
268 uint8_t vm_cnt = 0;
269 uint8_t exp_cnt = 0;
270 uint8_t lgkm_cnt = 0;
271 uint8_t vs_cnt = 0;
272 bool pending_flat_lgkm = false;
273 bool pending_flat_vm = false;
274 bool pending_s_buffer_store = false; /* GFX10 workaround */
275
276 wait_imm barrier_imm[storage_count];
277 uint16_t barrier_events[storage_count] = {}; /* use wait_event notion */
278
279 std::map<PhysReg,wait_entry> gpr_map;
280
281 /* used for vmem/smem scores */
282 bool collect_statistics;
283 Instruction *gen_instr;
284 std::map<Instruction *, unsigned> unwaited_instrs[num_counters];
285 std::map<PhysReg,std::set<Instruction *>> reg_instrs[num_counters];
286 std::vector<unsigned> wait_distances[num_events];
287
288 wait_ctx() {}
289 wait_ctx(Program *program_)
290 : program(program_),
291 chip_class(program_->chip_class),
292 max_vm_cnt(program_->chip_class >= GFX9 ? 62 : 14),
293 max_exp_cnt(6),
294 max_lgkm_cnt(program_->chip_class >= GFX10 ? 62 : 14),
295 max_vs_cnt(program_->chip_class >= GFX10 ? 62 : 0),
296 unordered_events(event_smem | (program_->chip_class < GFX10 ? event_flat : 0)),
297 collect_statistics(program_->collect_statistics) {}
298
299 bool join(const wait_ctx* other, bool logical)
300 {
301 bool changed = other->exp_cnt > exp_cnt ||
302 other->vm_cnt > vm_cnt ||
303 other->lgkm_cnt > lgkm_cnt ||
304 other->vs_cnt > vs_cnt ||
305 (other->pending_flat_lgkm && !pending_flat_lgkm) ||
306 (other->pending_flat_vm && !pending_flat_vm);
307
308 exp_cnt = std::max(exp_cnt, other->exp_cnt);
309 vm_cnt = std::max(vm_cnt, other->vm_cnt);
310 lgkm_cnt = std::max(lgkm_cnt, other->lgkm_cnt);
311 vs_cnt = std::max(vs_cnt, other->vs_cnt);
312 pending_flat_lgkm |= other->pending_flat_lgkm;
313 pending_flat_vm |= other->pending_flat_vm;
314 pending_s_buffer_store |= other->pending_s_buffer_store;
315
316 for (std::pair<PhysReg,wait_entry> entry : other->gpr_map)
317 {
318 std::map<PhysReg,wait_entry>::iterator it = gpr_map.find(entry.first);
319 if (entry.second.logical != logical)
320 continue;
321
322 if (it != gpr_map.end()) {
323 changed |= it->second.join(entry.second);
324 } else {
325 gpr_map.insert(entry);
326 changed = true;
327 }
328 }
329
330 for (unsigned i = 0; i < storage_count; i++) {
331 changed |= barrier_imm[i].combine(other->barrier_imm[i]);
332 changed |= other->barrier_events[i] & ~barrier_events[i];
333 barrier_events[i] |= other->barrier_events[i];
334 }
335
336 /* these are used for statistics, so don't update "changed" */
337 for (unsigned i = 0; i < num_counters; i++) {
338 for (std::pair<Instruction *, unsigned> instr : other->unwaited_instrs[i]) {
339 auto pos = unwaited_instrs[i].find(instr.first);
340 if (pos == unwaited_instrs[i].end())
341 unwaited_instrs[i].insert(instr);
342 else
343 pos->second = std::min(pos->second, instr.second);
344 }
345 /* don't use a foreach loop to avoid copies */
346 for (auto it = other->reg_instrs[i].begin(); it != other->reg_instrs[i].end(); ++it)
347 reg_instrs[i][it->first].insert(it->second.begin(), it->second.end());
348 }
349
350 return changed;
351 }
352
353 void wait_and_remove_from_entry(PhysReg reg, wait_entry& entry, counter_type counter) {
354 if (collect_statistics && (entry.counters & counter)) {
355 unsigned counter_idx = ffs(counter) - 1;
356 for (Instruction *instr : reg_instrs[counter_idx][reg]) {
357 auto pos = unwaited_instrs[counter_idx].find(instr);
358 if (pos == unwaited_instrs[counter_idx].end())
359 continue;
360
361 unsigned distance = pos->second;
362 unsigned events = entry.events & get_events_for_counter(counter);
363 while (events) {
364 unsigned event_idx = u_bit_scan(&events);
365 wait_distances[event_idx].push_back(distance);
366 }
367
368 unwaited_instrs[counter_idx].erase(instr);
369 }
370 reg_instrs[counter_idx][reg].clear();
371 }
372
373 entry.remove_counter(counter);
374 }
375
376 void advance_unwaited_instrs()
377 {
378 for (unsigned i = 0; i < num_counters; i++) {
379 for (auto it = unwaited_instrs[i].begin(); it != unwaited_instrs[i].end(); ++it)
380 it->second++;
381 }
382 }
383 };
384
385 wait_imm check_instr(Instruction* instr, wait_ctx& ctx)
386 {
387 wait_imm wait;
388
389 for (const Operand op : instr->operands) {
390 if (op.isConstant() || op.isUndefined())
391 continue;
392
393 /* check consecutively read gprs */
394 for (unsigned j = 0; j < op.size(); j++) {
395 PhysReg reg{op.physReg() + j};
396 std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
397 if (it == ctx.gpr_map.end() || !it->second.wait_on_read)
398 continue;
399
400 wait.combine(it->second.imm);
401 }
402 }
403
404 for (const Definition& def : instr->definitions) {
405 /* check consecutively written gprs */
406 for (unsigned j = 0; j < def.getTemp().size(); j++)
407 {
408 PhysReg reg{def.physReg() + j};
409
410 std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
411 if (it == ctx.gpr_map.end())
412 continue;
413
414 /* Vector Memory reads and writes return in the order they were issued */
415 bool has_sampler = instr->format == Format::MIMG && !instr->operands[1].isUndefined() && instr->operands[1].regClass() == s4;
416 if (instr->isVMEM() && ((it->second.events & vm_events) == event_vmem) &&
417 it->second.has_vmem_nosampler == !has_sampler && it->second.has_vmem_sampler == has_sampler)
418 continue;
419
420 /* LDS reads and writes return in the order they were issued. same for GDS */
421 if (instr->format == Format::DS) {
422 bool gds = static_cast<DS_instruction*>(instr)->gds;
423 if ((it->second.events & lgkm_events) == (gds ? event_gds : event_lds))
424 continue;
425 }
426
427 wait.combine(it->second.imm);
428 }
429 }
430
431 return wait;
432 }
433
434 wait_imm parse_wait_instr(wait_ctx& ctx, Instruction *instr)
435 {
436 if (instr->opcode == aco_opcode::s_waitcnt_vscnt &&
437 instr->definitions[0].physReg() == sgpr_null) {
438 wait_imm imm;
439 imm.vs = std::min<uint8_t>(imm.vs, static_cast<SOPK_instruction*>(instr)->imm);
440 return imm;
441 } else if (instr->opcode == aco_opcode::s_waitcnt) {
442 return wait_imm(ctx.chip_class, static_cast<SOPP_instruction*>(instr)->imm);
443 }
444 return wait_imm();
445 }
446
447 wait_imm perform_barrier(wait_ctx& ctx, memory_sync_info sync, unsigned semantics)
448 {
449 wait_imm imm;
450 sync_scope subgroup_scope = ctx.program->workgroup_size <= ctx.program->wave_size ? scope_workgroup : scope_subgroup;
451 if (sync.semantics & semantics) {
452 unsigned storage = sync.storage;
453 while (storage) {
454 unsigned idx = u_bit_scan(&storage);
455
456 /* LDS is private to the workgroup */
457 sync_scope bar_scope_lds = MIN2(sync.scope, scope_workgroup);
458
459 uint16_t events = ctx.barrier_events[idx];
460 if (bar_scope_lds <= subgroup_scope)
461 events &= ~event_lds;
462
463 if (events)
464 imm.combine(ctx.barrier_imm[idx]);
465 }
466 }
467
468 return imm;
469 }
470
471 wait_imm kill(Instruction* instr, wait_ctx& ctx, memory_sync_info sync_info)
472 {
473 wait_imm imm;
474 if (ctx.exp_cnt || ctx.vm_cnt || ctx.lgkm_cnt)
475 imm.combine(check_instr(instr, ctx));
476
477 imm.combine(parse_wait_instr(ctx, instr));
478
479
480 /* It's required to wait for scalar stores before "writing back" data.
481 * It shouldn't cost anything anyways since we're about to do s_endpgm.
482 */
483 if (ctx.lgkm_cnt && instr->opcode == aco_opcode::s_dcache_wb) {
484 assert(ctx.chip_class >= GFX8);
485 imm.lgkm = 0;
486 }
487
488 if (ctx.chip_class >= GFX10 && instr->format == Format::SMEM) {
489 /* GFX10: A store followed by a load at the same address causes a problem because
490 * the load doesn't load the correct values unless we wait for the store first.
491 * This is NOT mitigated by an s_nop.
492 *
493 * TODO: Refine this when we have proper alias analysis.
494 */
495 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr);
496 if (ctx.pending_s_buffer_store &&
497 !smem->definitions.empty() &&
498 !smem->sync.can_reorder()) {
499 imm.lgkm = 0;
500 }
501 }
502
503 if (instr->opcode == aco_opcode::p_barrier)
504 imm.combine(perform_barrier(ctx, static_cast<Pseudo_barrier_instruction *>(instr)->sync, semantic_acqrel));
505 else
506 imm.combine(perform_barrier(ctx, sync_info, semantic_release));
507
508 if (!imm.empty()) {
509 if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
510 imm.vm = 0;
511 if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
512 imm.lgkm = 0;
513
514 /* reset counters */
515 ctx.exp_cnt = std::min(ctx.exp_cnt, imm.exp);
516 ctx.vm_cnt = std::min(ctx.vm_cnt, imm.vm);
517 ctx.lgkm_cnt = std::min(ctx.lgkm_cnt, imm.lgkm);
518 ctx.vs_cnt = std::min(ctx.vs_cnt, imm.vs);
519
520 /* update barrier wait imms */
521 for (unsigned i = 0; i < storage_count; i++) {
522 wait_imm& bar = ctx.barrier_imm[i];
523 uint16_t& bar_ev = ctx.barrier_events[i];
524 if (bar.exp != wait_imm::unset_counter && imm.exp <= bar.exp) {
525 bar.exp = wait_imm::unset_counter;
526 bar_ev &= ~exp_events;
527 }
528 if (bar.vm != wait_imm::unset_counter && imm.vm <= bar.vm) {
529 bar.vm = wait_imm::unset_counter;
530 bar_ev &= ~(vm_events & ~event_flat);
531 }
532 if (bar.lgkm != wait_imm::unset_counter && imm.lgkm <= bar.lgkm) {
533 bar.lgkm = wait_imm::unset_counter;
534 bar_ev &= ~(lgkm_events & ~event_flat);
535 }
536 if (bar.vs != wait_imm::unset_counter && imm.vs <= bar.vs) {
537 bar.vs = wait_imm::unset_counter;
538 bar_ev &= ~vs_events;
539 }
540 if (bar.vm == wait_imm::unset_counter && bar.lgkm == wait_imm::unset_counter)
541 bar_ev &= ~event_flat;
542 }
543
544 /* remove all gprs with higher counter from map */
545 std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.begin();
546 while (it != ctx.gpr_map.end())
547 {
548 if (imm.exp != wait_imm::unset_counter && imm.exp <= it->second.imm.exp)
549 ctx.wait_and_remove_from_entry(it->first, it->second, counter_exp);
550 if (imm.vm != wait_imm::unset_counter && imm.vm <= it->second.imm.vm)
551 ctx.wait_and_remove_from_entry(it->first, it->second, counter_vm);
552 if (imm.lgkm != wait_imm::unset_counter && imm.lgkm <= it->second.imm.lgkm)
553 ctx.wait_and_remove_from_entry(it->first, it->second, counter_lgkm);
554 if (imm.vs != wait_imm::unset_counter && imm.vs <= it->second.imm.vs)
555 ctx.wait_and_remove_from_entry(it->first, it->second, counter_vs);
556 if (!it->second.counters)
557 it = ctx.gpr_map.erase(it);
558 else
559 it++;
560 }
561 }
562
563 if (imm.vm == 0)
564 ctx.pending_flat_vm = false;
565 if (imm.lgkm == 0) {
566 ctx.pending_flat_lgkm = false;
567 ctx.pending_s_buffer_store = false;
568 }
569
570 return imm;
571 }
572
573 void update_barrier_counter(uint8_t *ctr, unsigned max)
574 {
575 if (*ctr != wait_imm::unset_counter && *ctr < max)
576 (*ctr)++;
577 }
578
579 void update_barrier_imm(wait_ctx& ctx, uint8_t counters, wait_event event, memory_sync_info sync)
580 {
581 for (unsigned i = 0; i < storage_count; i++) {
582 wait_imm& bar = ctx.barrier_imm[i];
583 uint16_t& bar_ev = ctx.barrier_events[i];
584 if (sync.storage & (1 << i) && !(sync.semantics & semantic_private)) {
585 bar_ev |= event;
586 if (counters & counter_lgkm)
587 bar.lgkm = 0;
588 if (counters & counter_vm)
589 bar.vm = 0;
590 if (counters & counter_exp)
591 bar.exp = 0;
592 if (counters & counter_vs)
593 bar.vs = 0;
594 } else if (!(bar_ev & ctx.unordered_events) && !(ctx.unordered_events & event)) {
595 if (counters & counter_lgkm && (bar_ev & lgkm_events) == event)
596 update_barrier_counter(&bar.lgkm, ctx.max_lgkm_cnt);
597 if (counters & counter_vm && (bar_ev & vm_events) == event)
598 update_barrier_counter(&bar.vm, ctx.max_vm_cnt);
599 if (counters & counter_exp && (bar_ev & exp_events) == event)
600 update_barrier_counter(&bar.exp, ctx.max_exp_cnt);
601 if (counters & counter_vs && (bar_ev & vs_events) == event)
602 update_barrier_counter(&bar.vs, ctx.max_vs_cnt);
603 }
604 }
605 }
606
607 void update_counters(wait_ctx& ctx, wait_event event, memory_sync_info sync=memory_sync_info())
608 {
609 uint8_t counters = get_counters_for_event(event);
610
611 if (counters & counter_lgkm && ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
612 ctx.lgkm_cnt++;
613 if (counters & counter_vm && ctx.vm_cnt <= ctx.max_vm_cnt)
614 ctx.vm_cnt++;
615 if (counters & counter_exp && ctx.exp_cnt <= ctx.max_exp_cnt)
616 ctx.exp_cnt++;
617 if (counters & counter_vs && ctx.vs_cnt <= ctx.max_vs_cnt)
618 ctx.vs_cnt++;
619
620 update_barrier_imm(ctx, counters, event, sync);
621
622 if (ctx.unordered_events & event)
623 return;
624
625 if (ctx.pending_flat_lgkm)
626 counters &= ~counter_lgkm;
627 if (ctx.pending_flat_vm)
628 counters &= ~counter_vm;
629
630 for (std::pair<const PhysReg,wait_entry>& e : ctx.gpr_map) {
631 wait_entry& entry = e.second;
632
633 if (entry.events & ctx.unordered_events)
634 continue;
635
636 assert(entry.events);
637
638 if ((counters & counter_exp) && (entry.events & exp_events) == event && entry.imm.exp < ctx.max_exp_cnt)
639 entry.imm.exp++;
640 if ((counters & counter_lgkm) && (entry.events & lgkm_events) == event && entry.imm.lgkm < ctx.max_lgkm_cnt)
641 entry.imm.lgkm++;
642 if ((counters & counter_vm) && (entry.events & vm_events) == event && entry.imm.vm < ctx.max_vm_cnt)
643 entry.imm.vm++;
644 if ((counters & counter_vs) && (entry.events & vs_events) == event && entry.imm.vs < ctx.max_vs_cnt)
645 entry.imm.vs++;
646 }
647 }
648
649 void update_counters_for_flat_load(wait_ctx& ctx, memory_sync_info sync=memory_sync_info())
650 {
651 assert(ctx.chip_class < GFX10);
652
653 if (ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
654 ctx.lgkm_cnt++;
655 if (ctx.vm_cnt <= ctx.max_vm_cnt)
656 ctx.vm_cnt++;
657
658 update_barrier_imm(ctx, counter_vm | counter_lgkm, event_flat, sync);
659
660 for (std::pair<PhysReg,wait_entry> e : ctx.gpr_map)
661 {
662 if (e.second.counters & counter_vm)
663 e.second.imm.vm = 0;
664 if (e.second.counters & counter_lgkm)
665 e.second.imm.lgkm = 0;
666 }
667 ctx.pending_flat_lgkm = true;
668 ctx.pending_flat_vm = true;
669 }
670
671 void insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read,
672 bool has_sampler=false)
673 {
674 uint16_t counters = get_counters_for_event(event);
675 wait_imm imm;
676 if (counters & counter_lgkm)
677 imm.lgkm = 0;
678 if (counters & counter_vm)
679 imm.vm = 0;
680 if (counters & counter_exp)
681 imm.exp = 0;
682 if (counters & counter_vs)
683 imm.vs = 0;
684
685 wait_entry new_entry(event, imm, !rc.is_linear(), wait_on_read);
686 new_entry.has_vmem_nosampler = (event & event_vmem) && !has_sampler;
687 new_entry.has_vmem_sampler = (event & event_vmem) && has_sampler;
688
689 for (unsigned i = 0; i < rc.size(); i++) {
690 auto it = ctx.gpr_map.emplace(PhysReg{reg.reg()+i}, new_entry);
691 if (!it.second)
692 it.first->second.join(new_entry);
693 }
694
695 if (ctx.collect_statistics) {
696 unsigned counters_todo = counters;
697 while (counters_todo) {
698 unsigned i = u_bit_scan(&counters_todo);
699 ctx.unwaited_instrs[i].insert(std::make_pair(ctx.gen_instr, 0u));
700 for (unsigned j = 0; j < rc.size(); j++)
701 ctx.reg_instrs[i][PhysReg{reg.reg()+j}].insert(ctx.gen_instr);
702 }
703 }
704 }
705
706 void insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event, bool has_sampler=false)
707 {
708 if (!op.isConstant() && !op.isUndefined())
709 insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false, has_sampler);
710 }
711
712 void insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event, bool has_sampler=false)
713 {
714 insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true, has_sampler);
715 }
716
717 void gen(Instruction* instr, wait_ctx& ctx)
718 {
719 switch (instr->format) {
720 case Format::EXP: {
721 Export_instruction* exp_instr = static_cast<Export_instruction*>(instr);
722
723 wait_event ev;
724 if (exp_instr->dest <= 9)
725 ev = event_exp_mrt_null;
726 else if (exp_instr->dest <= 15)
727 ev = event_exp_pos;
728 else
729 ev = event_exp_param;
730 update_counters(ctx, ev);
731
732 /* insert new entries for exported vgprs */
733 for (unsigned i = 0; i < 4; i++)
734 {
735 if (exp_instr->enabled_mask & (1 << i)) {
736 unsigned idx = exp_instr->compressed ? i >> 1 : i;
737 assert(idx < exp_instr->operands.size());
738 insert_wait_entry(ctx, exp_instr->operands[idx], ev);
739
740 }
741 }
742 insert_wait_entry(ctx, exec, s2, ev, false);
743 break;
744 }
745 case Format::FLAT: {
746 FLAT_instruction *flat = static_cast<FLAT_instruction*>(instr);
747 if (ctx.chip_class < GFX10 && !instr->definitions.empty())
748 update_counters_for_flat_load(ctx, flat->sync);
749 else
750 update_counters(ctx, event_flat, flat->sync);
751
752 if (!instr->definitions.empty())
753 insert_wait_entry(ctx, instr->definitions[0], event_flat);
754 break;
755 }
756 case Format::SMEM: {
757 SMEM_instruction *smem = static_cast<SMEM_instruction*>(instr);
758 update_counters(ctx, event_smem, smem->sync);
759
760 if (!instr->definitions.empty())
761 insert_wait_entry(ctx, instr->definitions[0], event_smem);
762 else if (ctx.chip_class >= GFX10 &&
763 !smem->sync.can_reorder())
764 ctx.pending_s_buffer_store = true;
765
766 break;
767 }
768 case Format::DS: {
769 DS_instruction *ds = static_cast<DS_instruction*>(instr);
770 update_counters(ctx, ds->gds ? event_gds : event_lds, ds->sync);
771 if (ds->gds)
772 update_counters(ctx, event_gds_gpr_lock);
773
774 if (!instr->definitions.empty())
775 insert_wait_entry(ctx, instr->definitions[0], ds->gds ? event_gds : event_lds);
776
777 if (ds->gds) {
778 for (const Operand& op : instr->operands)
779 insert_wait_entry(ctx, op, event_gds_gpr_lock);
780 insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
781 }
782 break;
783 }
784 case Format::MUBUF:
785 case Format::MTBUF:
786 case Format::MIMG:
787 case Format::GLOBAL: {
788 wait_event ev = !instr->definitions.empty() || ctx.chip_class < GFX10 ? event_vmem : event_vmem_store;
789 update_counters(ctx, ev, get_sync_info(instr));
790
791 bool has_sampler = instr->format == Format::MIMG && !instr->operands[1].isUndefined() && instr->operands[1].regClass() == s4;
792
793 if (!instr->definitions.empty())
794 insert_wait_entry(ctx, instr->definitions[0], ev, has_sampler);
795
796 if (ctx.chip_class == GFX6 &&
797 instr->format != Format::MIMG &&
798 instr->operands.size() == 4) {
799 ctx.exp_cnt++;
800 update_counters(ctx, event_vmem_gpr_lock);
801 insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
802 } else if (ctx.chip_class == GFX6 &&
803 instr->format == Format::MIMG &&
804 instr->operands[1].regClass().type() == RegType::vgpr) {
805 ctx.exp_cnt++;
806 update_counters(ctx, event_vmem_gpr_lock);
807 insert_wait_entry(ctx, instr->operands[1], event_vmem_gpr_lock);
808 }
809
810 break;
811 }
812 case Format::SOPP: {
813 if (instr->opcode == aco_opcode::s_sendmsg ||
814 instr->opcode == aco_opcode::s_sendmsghalt)
815 update_counters(ctx, event_sendmsg);
816 }
817 default:
818 break;
819 }
820 }
821
822 void emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm imm)
823 {
824 if (imm.vs != wait_imm::unset_counter) {
825 assert(ctx.chip_class >= GFX10);
826 SOPK_instruction* waitcnt_vs = create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1);
827 waitcnt_vs->definitions[0] = Definition(sgpr_null, s1);
828 waitcnt_vs->imm = imm.vs;
829 instructions.emplace_back(waitcnt_vs);
830 imm.vs = wait_imm::unset_counter;
831 }
832 if (!imm.empty()) {
833 SOPP_instruction* waitcnt = create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt, Format::SOPP, 0, 0);
834 waitcnt->imm = imm.pack(ctx.chip_class);
835 waitcnt->block = -1;
836 instructions.emplace_back(waitcnt);
837 }
838 }
839
840 void handle_block(Program *program, Block& block, wait_ctx& ctx)
841 {
842 std::vector<aco_ptr<Instruction>> new_instructions;
843
844 wait_imm queued_imm;
845
846 for (aco_ptr<Instruction>& instr : block.instructions) {
847 bool is_wait = !parse_wait_instr(ctx, instr.get()).empty();
848
849 memory_sync_info sync_info = get_sync_info(instr.get());
850 queued_imm.combine(kill(instr.get(), ctx, sync_info));
851
852 ctx.gen_instr = instr.get();
853 gen(instr.get(), ctx);
854
855 if (instr->format != Format::PSEUDO_BARRIER && !is_wait) {
856 if (!queued_imm.empty()) {
857 emit_waitcnt(ctx, new_instructions, queued_imm);
858 queued_imm = wait_imm();
859 }
860 new_instructions.emplace_back(std::move(instr));
861
862 queued_imm.combine(perform_barrier(ctx, sync_info, semantic_acquire));
863
864 if (ctx.collect_statistics)
865 ctx.advance_unwaited_instrs();
866 }
867 }
868
869 if (!queued_imm.empty())
870 emit_waitcnt(ctx, new_instructions, queued_imm);
871
872 block.instructions.swap(new_instructions);
873 }
874
875 } /* end namespace */
876
877 static uint32_t calculate_score(std::vector<wait_ctx> &ctx_vec, uint32_t event_mask)
878 {
879 double result = 0.0;
880 unsigned num_waits = 0;
881 while (event_mask) {
882 unsigned event_index = u_bit_scan(&event_mask);
883 for (const wait_ctx &ctx : ctx_vec) {
884 for (unsigned dist : ctx.wait_distances[event_index]) {
885 double score = dist;
886 /* for many events, excessive distances provide little benefit, so
887 * decrease the score in that case. */
888 double threshold = INFINITY;
889 double inv_strength = 0.000001;
890 switch (1 << event_index) {
891 case event_smem:
892 threshold = 70.0;
893 inv_strength = 75.0;
894 break;
895 case event_vmem:
896 case event_vmem_store:
897 case event_flat:
898 threshold = 230.0;
899 inv_strength = 150.0;
900 break;
901 case event_lds:
902 threshold = 16.0;
903 break;
904 default:
905 break;
906 }
907 if (score > threshold) {
908 score -= threshold;
909 score = threshold + score / (1.0 + score / inv_strength);
910 }
911
912 /* we don't want increases in high scores to hide decreases in low scores,
913 * so raise to the power of 0.1 before averaging. */
914 result += pow(score, 0.1);
915 num_waits++;
916 }
917 }
918 }
919 return round(pow(result / num_waits, 10.0) * 10.0);
920 }
921
922 void insert_wait_states(Program* program)
923 {
924 /* per BB ctx */
925 std::vector<bool> done(program->blocks.size());
926 std::vector<wait_ctx> in_ctx(program->blocks.size(), wait_ctx(program));
927 std::vector<wait_ctx> out_ctx(program->blocks.size(), wait_ctx(program));
928
929 std::stack<unsigned> loop_header_indices;
930 unsigned loop_progress = 0;
931
932 for (unsigned i = 0; i < program->blocks.size();) {
933 Block& current = program->blocks[i++];
934 wait_ctx ctx = in_ctx[current.index];
935
936 if (current.kind & block_kind_loop_header) {
937 loop_header_indices.push(current.index);
938 } else if (current.kind & block_kind_loop_exit) {
939 bool repeat = false;
940 if (loop_progress == loop_header_indices.size()) {
941 i = loop_header_indices.top();
942 repeat = true;
943 }
944 loop_header_indices.pop();
945 loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size());
946 if (repeat)
947 continue;
948 }
949
950 bool changed = false;
951 for (unsigned b : current.linear_preds)
952 changed |= ctx.join(&out_ctx[b], false);
953 for (unsigned b : current.logical_preds)
954 changed |= ctx.join(&out_ctx[b], true);
955
956 if (done[current.index] && !changed) {
957 in_ctx[current.index] = std::move(ctx);
958 continue;
959 } else {
960 in_ctx[current.index] = ctx;
961 }
962
963 if (current.instructions.empty()) {
964 out_ctx[current.index] = std::move(ctx);
965 continue;
966 }
967
968 loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth);
969 done[current.index] = true;
970
971 handle_block(program, current, ctx);
972
973 out_ctx[current.index] = std::move(ctx);
974 }
975
976 if (program->collect_statistics) {
977 program->statistics[statistic_vmem_score] =
978 calculate_score(out_ctx, event_vmem | event_flat | event_vmem_store);
979 program->statistics[statistic_smem_score] =
980 calculate_score(out_ctx, event_smem);
981 }
982 }
983
984 }
985