radv/aco,aco: implement GS on GFX9+
[mesa.git] / src / amd / compiler / aco_insert_waitcnt.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <algorithm>
26 #include <map>
27 #include <stack>
28
29 #include "aco_ir.h"
30 #include "vulkan/radv_shader.h"
31
32 namespace aco {
33
34 namespace {
35
36 /**
37 * The general idea of this pass is:
38 * The CFG is traversed in reverse postorder (forward) and loops are processed
39 * several times until no progress is made.
40 * Per BB two wait_ctx is maintained: an in-context and out-context.
41 * The in-context is the joined out-contexts of the predecessors.
42 * The context contains a map: gpr -> wait_entry
43 * consisting of the information about the cnt values to be waited for.
44 * Note: After merge-nodes, it might occur that for the same register
45 * multiple cnt values are to be waited for.
46 *
47 * The values are updated according to the encountered instructions:
48 * - additional events increment the counter of waits of the same type
49 * - or erase gprs with counters higher than to be waited for.
50 */
51
52 // TODO: do a more clever insertion of wait_cnt (lgkm_cnt) when there is a load followed by a use of a previous load
53
54 /* Instructions of the same event will finish in-order except for smem
55 * and maybe flat. Instructions of different events may not finish in-order. */
56 enum wait_event : uint16_t {
57 event_smem = 1 << 0,
58 event_lds = 1 << 1,
59 event_gds = 1 << 2,
60 event_vmem = 1 << 3,
61 event_vmem_store = 1 << 4, /* GFX10+ */
62 event_flat = 1 << 5,
63 event_exp_pos = 1 << 6,
64 event_exp_param = 1 << 7,
65 event_exp_mrt_null = 1 << 8,
66 event_gds_gpr_lock = 1 << 9,
67 event_vmem_gpr_lock = 1 << 10,
68 event_sendmsg = 1 << 11,
69 };
70
71 enum counter_type : uint8_t {
72 counter_exp = 1 << 0,
73 counter_lgkm = 1 << 1,
74 counter_vm = 1 << 2,
75 counter_vs = 1 << 3,
76 };
77
78 static const uint16_t exp_events = event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock;
79 static const uint16_t lgkm_events = event_smem | event_lds | event_gds | event_flat | event_sendmsg;
80 static const uint16_t vm_events = event_vmem | event_flat;
81 static const uint16_t vs_events = event_vmem_store;
82
83 uint8_t get_counters_for_event(wait_event ev)
84 {
85 switch (ev) {
86 case event_smem:
87 case event_lds:
88 case event_gds:
89 case event_sendmsg:
90 return counter_lgkm;
91 case event_vmem:
92 return counter_vm;
93 case event_vmem_store:
94 return counter_vs;
95 case event_flat:
96 return counter_vm | counter_lgkm;
97 case event_exp_pos:
98 case event_exp_param:
99 case event_exp_mrt_null:
100 case event_gds_gpr_lock:
101 case event_vmem_gpr_lock:
102 return counter_exp;
103 default:
104 return 0;
105 }
106 }
107
108 struct wait_imm {
109 static const uint8_t unset_counter = 0xff;
110
111 uint8_t vm;
112 uint8_t exp;
113 uint8_t lgkm;
114 uint8_t vs;
115
116 wait_imm() :
117 vm(unset_counter), exp(unset_counter), lgkm(unset_counter), vs(unset_counter) {}
118 wait_imm(uint16_t vm_, uint16_t exp_, uint16_t lgkm_, uint16_t vs_) :
119 vm(vm_), exp(exp_), lgkm(lgkm_), vs(vs_) {}
120
121 wait_imm(enum chip_class chip, uint16_t packed) : vs(unset_counter)
122 {
123 vm = packed & 0xf;
124 if (chip >= GFX9)
125 vm |= (packed >> 10) & 0x30;
126
127 exp = (packed >> 4) & 0x7;
128
129 lgkm = (packed >> 8) & 0xf;
130 if (chip >= GFX10)
131 lgkm |= (packed >> 8) & 0x30;
132 }
133
134 uint16_t pack(enum chip_class chip) const
135 {
136 uint16_t imm = 0;
137 assert(exp == unset_counter || exp <= 0x7);
138 switch (chip) {
139 case GFX10:
140 assert(lgkm == unset_counter || lgkm <= 0x3f);
141 assert(vm == unset_counter || vm <= 0x3f);
142 imm = ((vm & 0x30) << 10) | ((lgkm & 0x3f) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
143 break;
144 case GFX9:
145 assert(lgkm == unset_counter || lgkm <= 0xf);
146 assert(vm == unset_counter || vm <= 0x3f);
147 imm = ((vm & 0x30) << 10) | ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
148 break;
149 default:
150 assert(lgkm == unset_counter || lgkm <= 0xf);
151 assert(vm == unset_counter || vm <= 0xf);
152 imm = ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
153 break;
154 }
155 if (chip < GFX9 && vm == wait_imm::unset_counter)
156 imm |= 0xc000; /* should have no effect on pre-GFX9 and now we won't have to worry about the architecture when interpreting the immediate */
157 if (chip < GFX10 && lgkm == wait_imm::unset_counter)
158 imm |= 0x3000; /* should have no effect on pre-GFX10 and now we won't have to worry about the architecture when interpreting the immediate */
159 return imm;
160 }
161
162 bool combine(const wait_imm& other)
163 {
164 bool changed = other.vm < vm || other.exp < exp || other.lgkm < lgkm || other.vs < vs;
165 vm = std::min(vm, other.vm);
166 exp = std::min(exp, other.exp);
167 lgkm = std::min(lgkm, other.lgkm);
168 vs = std::min(vs, other.vs);
169 return changed;
170 }
171
172 bool empty() const
173 {
174 return vm == unset_counter && exp == unset_counter &&
175 lgkm == unset_counter && vs == unset_counter;
176 }
177 };
178
179 struct wait_entry {
180 wait_imm imm;
181 uint16_t events; /* use wait_event notion */
182 uint8_t counters; /* use counter_type notion */
183 bool wait_on_read:1;
184 bool logical:1;
185
186 wait_entry(wait_event event, wait_imm imm, bool logical, bool wait_on_read)
187 : imm(imm), events(event), counters(get_counters_for_event(event)),
188 wait_on_read(wait_on_read), logical(logical) {}
189
190 bool join(const wait_entry& other)
191 {
192 bool changed = (other.events & ~events) ||
193 (other.counters & ~counters) ||
194 (other.wait_on_read && !wait_on_read);
195 events |= other.events;
196 counters |= other.counters;
197 changed |= imm.combine(other.imm);
198 wait_on_read = wait_on_read || other.wait_on_read;
199 assert(logical == other.logical);
200 return changed;
201 }
202
203 void remove_counter(counter_type counter)
204 {
205 counters &= ~counter;
206
207 if (counter == counter_lgkm) {
208 imm.lgkm = wait_imm::unset_counter;
209 events &= ~(event_smem | event_lds | event_gds | event_sendmsg);
210 }
211
212 if (counter == counter_vm) {
213 imm.vm = wait_imm::unset_counter;
214 events &= ~event_vmem;
215 }
216
217 if (counter == counter_exp) {
218 imm.exp = wait_imm::unset_counter;
219 events &= ~(event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock);
220 }
221
222 if (counter == counter_vs) {
223 imm.vs = wait_imm::unset_counter;
224 events &= ~event_vmem_store;
225 }
226
227 if (!(counters & counter_lgkm) && !(counters & counter_vm))
228 events &= ~event_flat;
229 }
230 };
231
232 struct wait_ctx {
233 Program *program;
234 enum chip_class chip_class;
235 uint16_t max_vm_cnt;
236 uint16_t max_exp_cnt;
237 uint16_t max_lgkm_cnt;
238 uint16_t max_vs_cnt;
239 uint16_t unordered_events = event_smem | event_flat;
240
241 uint8_t vm_cnt = 0;
242 uint8_t exp_cnt = 0;
243 uint8_t lgkm_cnt = 0;
244 uint8_t vs_cnt = 0;
245 bool pending_flat_lgkm = false;
246 bool pending_flat_vm = false;
247 bool pending_s_buffer_store = false; /* GFX10 workaround */
248
249 wait_imm barrier_imm[barrier_count];
250
251 std::map<PhysReg,wait_entry> gpr_map;
252
253 wait_ctx() {}
254 wait_ctx(Program *program_)
255 : program(program_),
256 chip_class(program_->chip_class),
257 max_vm_cnt(program_->chip_class >= GFX9 ? 62 : 14),
258 max_exp_cnt(6),
259 max_lgkm_cnt(program_->chip_class >= GFX10 ? 62 : 14),
260 max_vs_cnt(program_->chip_class >= GFX10 ? 62 : 0),
261 unordered_events(event_smem | (program_->chip_class < GFX10 ? event_flat : 0)) {}
262
263 bool join(const wait_ctx* other, bool logical)
264 {
265 bool changed = other->exp_cnt > exp_cnt ||
266 other->vm_cnt > vm_cnt ||
267 other->lgkm_cnt > lgkm_cnt ||
268 other->vs_cnt > vs_cnt ||
269 (other->pending_flat_lgkm && !pending_flat_lgkm) ||
270 (other->pending_flat_vm && !pending_flat_vm);
271
272 exp_cnt = std::max(exp_cnt, other->exp_cnt);
273 vm_cnt = std::max(vm_cnt, other->vm_cnt);
274 lgkm_cnt = std::max(lgkm_cnt, other->lgkm_cnt);
275 vs_cnt = std::max(vs_cnt, other->vs_cnt);
276 pending_flat_lgkm |= other->pending_flat_lgkm;
277 pending_flat_vm |= other->pending_flat_vm;
278 pending_s_buffer_store |= other->pending_s_buffer_store;
279
280 for (std::pair<PhysReg,wait_entry> entry : other->gpr_map)
281 {
282 std::map<PhysReg,wait_entry>::iterator it = gpr_map.find(entry.first);
283 if (entry.second.logical != logical)
284 continue;
285
286 if (it != gpr_map.end()) {
287 changed |= it->second.join(entry.second);
288 } else {
289 gpr_map.insert(entry);
290 changed = true;
291 }
292 }
293
294 for (unsigned i = 0; i < barrier_count; i++)
295 changed |= barrier_imm[i].combine(other->barrier_imm[i]);
296
297 return changed;
298 }
299 };
300
301 wait_imm check_instr(Instruction* instr, wait_ctx& ctx)
302 {
303 wait_imm wait;
304
305 for (const Operand op : instr->operands) {
306 if (op.isConstant() || op.isUndefined())
307 continue;
308
309 /* check consecutively read gprs */
310 for (unsigned j = 0; j < op.size(); j++) {
311 PhysReg reg{op.physReg() + j};
312 std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
313 if (it == ctx.gpr_map.end() || !it->second.wait_on_read)
314 continue;
315
316 wait.combine(it->second.imm);
317 }
318 }
319
320 for (const Definition& def : instr->definitions) {
321 /* check consecutively written gprs */
322 for (unsigned j = 0; j < def.getTemp().size(); j++)
323 {
324 PhysReg reg{def.physReg() + j};
325
326 std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
327 if (it == ctx.gpr_map.end())
328 continue;
329
330 /* Vector Memory reads and writes return in the order they were issued */
331 if (instr->isVMEM() && ((it->second.events & vm_events) == event_vmem)) {
332 it->second.remove_counter(counter_vm);
333 if (!it->second.counters)
334 it = ctx.gpr_map.erase(it);
335 continue;
336 }
337
338 /* LDS reads and writes return in the order they were issued. same for GDS */
339 if (instr->format == Format::DS) {
340 bool gds = static_cast<DS_instruction*>(instr)->gds;
341 if ((it->second.events & lgkm_events) == (gds ? event_gds : event_lds)) {
342 it->second.remove_counter(counter_lgkm);
343 if (!it->second.counters)
344 it = ctx.gpr_map.erase(it);
345 continue;
346 }
347 }
348
349 wait.combine(it->second.imm);
350 }
351 }
352
353 return wait;
354 }
355
356 wait_imm parse_wait_instr(wait_ctx& ctx, Instruction *instr)
357 {
358 if (instr->opcode == aco_opcode::s_waitcnt_vscnt &&
359 instr->definitions[0].physReg() == sgpr_null) {
360 wait_imm imm;
361 imm.vs = std::min<uint8_t>(imm.vs, static_cast<SOPK_instruction*>(instr)->imm);
362 return imm;
363 } else if (instr->opcode == aco_opcode::s_waitcnt) {
364 return wait_imm(ctx.chip_class, static_cast<SOPP_instruction*>(instr)->imm);
365 }
366 return wait_imm();
367 }
368
369 wait_imm kill(Instruction* instr, wait_ctx& ctx)
370 {
371 wait_imm imm;
372 if (ctx.exp_cnt || ctx.vm_cnt || ctx.lgkm_cnt)
373 imm.combine(check_instr(instr, ctx));
374
375 imm.combine(parse_wait_instr(ctx, instr));
376
377 if (ctx.chip_class >= GFX10) {
378 /* Seems to be required on GFX10 to achieve correct behaviour.
379 * It shouldn't cost anything anyways since we're about to do s_endpgm.
380 */
381 if (ctx.lgkm_cnt && instr->opcode == aco_opcode::s_dcache_wb)
382 imm.lgkm = 0;
383
384 /* GFX10: A store followed by a load at the same address causes a problem because
385 * the load doesn't load the correct values unless we wait for the store first.
386 * This is NOT mitigated by an s_nop.
387 *
388 * TODO: Refine this when we have proper alias analysis.
389 */
390 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr);
391 if (ctx.pending_s_buffer_store &&
392 !smem->definitions.empty() &&
393 !smem->can_reorder && smem->barrier == barrier_buffer) {
394 imm.lgkm = 0;
395 }
396 }
397
398 if (instr->format == Format::PSEUDO_BARRIER) {
399 uint32_t workgroup_size = UINT32_MAX;
400 if (ctx.program->stage & sw_cs) {
401 unsigned* bsize = ctx.program->info->cs.block_size;
402 workgroup_size = bsize[0] * bsize[1] * bsize[2];
403 }
404 switch (instr->opcode) {
405 case aco_opcode::p_memory_barrier_common:
406 imm.combine(ctx.barrier_imm[ffs(barrier_atomic) - 1]);
407 imm.combine(ctx.barrier_imm[ffs(barrier_buffer) - 1]);
408 imm.combine(ctx.barrier_imm[ffs(barrier_image) - 1]);
409 if (workgroup_size > ctx.program->wave_size)
410 imm.combine(ctx.barrier_imm[ffs(barrier_shared) - 1]);
411 break;
412 case aco_opcode::p_memory_barrier_atomic:
413 imm.combine(ctx.barrier_imm[ffs(barrier_atomic) - 1]);
414 break;
415 /* see comment in aco_scheduler.cpp's can_move_instr() on why these barriers are merged */
416 case aco_opcode::p_memory_barrier_buffer:
417 case aco_opcode::p_memory_barrier_image:
418 imm.combine(ctx.barrier_imm[ffs(barrier_buffer) - 1]);
419 imm.combine(ctx.barrier_imm[ffs(barrier_image) - 1]);
420 break;
421 case aco_opcode::p_memory_barrier_shared:
422 if (workgroup_size > ctx.program->wave_size)
423 imm.combine(ctx.barrier_imm[ffs(barrier_shared) - 1]);
424 break;
425 case aco_opcode::p_memory_barrier_gs_data:
426 imm.combine(ctx.barrier_imm[ffs(barrier_gs_data) - 1]);
427 break;
428 case aco_opcode::p_memory_barrier_gs_sendmsg:
429 imm.combine(ctx.barrier_imm[ffs(barrier_gs_sendmsg) - 1]);
430 break;
431 default:
432 assert(false);
433 break;
434 }
435 }
436
437 if (!imm.empty()) {
438 if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
439 imm.vm = 0;
440 if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
441 imm.lgkm = 0;
442
443 /* reset counters */
444 ctx.exp_cnt = std::min(ctx.exp_cnt, imm.exp);
445 ctx.vm_cnt = std::min(ctx.vm_cnt, imm.vm);
446 ctx.lgkm_cnt = std::min(ctx.lgkm_cnt, imm.lgkm);
447 ctx.vs_cnt = std::min(ctx.vs_cnt, imm.vs);
448
449 /* update barrier wait imms */
450 for (unsigned i = 0; i < barrier_count; i++) {
451 wait_imm& bar = ctx.barrier_imm[i];
452 if (bar.exp != wait_imm::unset_counter && imm.exp <= bar.exp)
453 bar.exp = wait_imm::unset_counter;
454 if (bar.vm != wait_imm::unset_counter && imm.vm <= bar.vm)
455 bar.vm = wait_imm::unset_counter;
456 if (bar.lgkm != wait_imm::unset_counter && imm.lgkm <= bar.lgkm)
457 bar.lgkm = wait_imm::unset_counter;
458 if (bar.vs != wait_imm::unset_counter && imm.vs <= bar.vs)
459 bar.vs = wait_imm::unset_counter;
460 }
461
462 /* remove all gprs with higher counter from map */
463 std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.begin();
464 while (it != ctx.gpr_map.end())
465 {
466 if (imm.exp != wait_imm::unset_counter && imm.exp <= it->second.imm.exp)
467 it->second.remove_counter(counter_exp);
468 if (imm.vm != wait_imm::unset_counter && imm.vm <= it->second.imm.vm)
469 it->second.remove_counter(counter_vm);
470 if (imm.lgkm != wait_imm::unset_counter && imm.lgkm <= it->second.imm.lgkm)
471 it->second.remove_counter(counter_lgkm);
472 if (imm.lgkm != wait_imm::unset_counter && imm.vs <= it->second.imm.vs)
473 it->second.remove_counter(counter_vs);
474 if (!it->second.counters)
475 it = ctx.gpr_map.erase(it);
476 else
477 it++;
478 }
479 }
480
481 if (imm.vm == 0)
482 ctx.pending_flat_vm = false;
483 if (imm.lgkm == 0) {
484 ctx.pending_flat_lgkm = false;
485 ctx.pending_s_buffer_store = false;
486 }
487
488 return imm;
489 }
490
491 void update_barrier_imm(wait_ctx& ctx, uint8_t counters, barrier_interaction barrier)
492 {
493 unsigned barrier_index = ffs(barrier) - 1;
494 for (unsigned i = 0; i < barrier_count; i++) {
495 wait_imm& bar = ctx.barrier_imm[i];
496 if (i == barrier_index) {
497 if (counters & counter_lgkm)
498 bar.lgkm = 0;
499 if (counters & counter_vm)
500 bar.vm = 0;
501 if (counters & counter_exp)
502 bar.exp = 0;
503 if (counters & counter_vs)
504 bar.vs = 0;
505 } else {
506 if (counters & counter_lgkm && bar.lgkm != wait_imm::unset_counter && bar.lgkm < ctx.max_lgkm_cnt)
507 bar.lgkm++;
508 if (counters & counter_vm && bar.vm != wait_imm::unset_counter && bar.vm < ctx.max_vm_cnt)
509 bar.vm++;
510 if (counters & counter_exp && bar.exp != wait_imm::unset_counter && bar.exp < ctx.max_exp_cnt)
511 bar.exp++;
512 if (counters & counter_vs && bar.vs != wait_imm::unset_counter && bar.vs < ctx.max_vs_cnt)
513 bar.vs++;
514 }
515 }
516 }
517
518 void update_counters(wait_ctx& ctx, wait_event event, barrier_interaction barrier=barrier_none)
519 {
520 uint8_t counters = get_counters_for_event(event);
521
522 if (counters & counter_lgkm && ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
523 ctx.lgkm_cnt++;
524 if (counters & counter_vm && ctx.vm_cnt <= ctx.max_vm_cnt)
525 ctx.vm_cnt++;
526 if (counters & counter_exp && ctx.exp_cnt <= ctx.max_exp_cnt)
527 ctx.exp_cnt++;
528 if (counters & counter_vs && ctx.vs_cnt <= ctx.max_vs_cnt)
529 ctx.vs_cnt++;
530
531 update_barrier_imm(ctx, counters, barrier);
532
533 if (ctx.unordered_events & event)
534 return;
535
536 if (ctx.pending_flat_lgkm)
537 counters &= ~counter_lgkm;
538 if (ctx.pending_flat_vm)
539 counters &= ~counter_vm;
540
541 for (std::pair<const PhysReg,wait_entry>& e : ctx.gpr_map) {
542 wait_entry& entry = e.second;
543
544 if (entry.events & ctx.unordered_events)
545 continue;
546
547 assert(entry.events);
548
549 if ((counters & counter_exp) && (entry.events & exp_events) == event && entry.imm.exp < ctx.max_exp_cnt)
550 entry.imm.exp++;
551 if ((counters & counter_lgkm) && (entry.events & lgkm_events) == event && entry.imm.lgkm < ctx.max_lgkm_cnt)
552 entry.imm.lgkm++;
553 if ((counters & counter_vm) && (entry.events & vm_events) == event && entry.imm.vm < ctx.max_vm_cnt)
554 entry.imm.vm++;
555 if ((counters & counter_vs) && (entry.events & vs_events) == event && entry.imm.vs < ctx.max_vs_cnt)
556 entry.imm.vs++;
557 }
558 }
559
560 void update_counters_for_flat_load(wait_ctx& ctx, barrier_interaction barrier=barrier_none)
561 {
562 assert(ctx.chip_class < GFX10);
563
564 if (ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
565 ctx.lgkm_cnt++;
566 if (ctx.vm_cnt <= ctx.max_vm_cnt)
567 ctx.vm_cnt++;
568
569 update_barrier_imm(ctx, counter_vm | counter_lgkm, barrier);
570
571 for (std::pair<PhysReg,wait_entry> e : ctx.gpr_map)
572 {
573 if (e.second.counters & counter_vm)
574 e.second.imm.vm = 0;
575 if (e.second.counters & counter_lgkm)
576 e.second.imm.lgkm = 0;
577 }
578 ctx.pending_flat_lgkm = true;
579 ctx.pending_flat_vm = true;
580 }
581
582 void insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read)
583 {
584 uint16_t counters = get_counters_for_event(event);
585 wait_imm imm;
586 if (counters & counter_lgkm)
587 imm.lgkm = 0;
588 if (counters & counter_vm)
589 imm.vm = 0;
590 if (counters & counter_exp)
591 imm.exp = 0;
592 if (counters & counter_vs)
593 imm.vs = 0;
594
595 wait_entry new_entry(event, imm, !rc.is_linear(), wait_on_read);
596
597 for (unsigned i = 0; i < rc.size(); i++) {
598 auto it = ctx.gpr_map.emplace(PhysReg{reg.reg+i}, new_entry);
599 if (!it.second)
600 it.first->second.join(new_entry);
601 }
602 }
603
604 void insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event)
605 {
606 if (!op.isConstant() && !op.isUndefined())
607 insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false);
608 }
609
610 void insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event)
611 {
612 insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true);
613 }
614
615 void gen(Instruction* instr, wait_ctx& ctx)
616 {
617 switch (instr->format) {
618 case Format::EXP: {
619 Export_instruction* exp_instr = static_cast<Export_instruction*>(instr);
620
621 wait_event ev;
622 if (exp_instr->dest <= 9)
623 ev = event_exp_mrt_null;
624 else if (exp_instr->dest <= 15)
625 ev = event_exp_pos;
626 else
627 ev = event_exp_param;
628 update_counters(ctx, ev);
629
630 /* insert new entries for exported vgprs */
631 for (unsigned i = 0; i < 4; i++)
632 {
633 if (exp_instr->enabled_mask & (1 << i)) {
634 unsigned idx = exp_instr->compressed ? i >> 1 : i;
635 assert(idx < exp_instr->operands.size());
636 insert_wait_entry(ctx, exp_instr->operands[idx], ev);
637
638 }
639 }
640 insert_wait_entry(ctx, exec, s2, ev, false);
641 break;
642 }
643 case Format::FLAT: {
644 if (ctx.chip_class < GFX10 && !instr->definitions.empty())
645 update_counters_for_flat_load(ctx, barrier_buffer);
646 else
647 update_counters(ctx, event_flat, barrier_buffer);
648
649 if (!instr->definitions.empty())
650 insert_wait_entry(ctx, instr->definitions[0], event_flat);
651 break;
652 }
653 case Format::SMEM: {
654 SMEM_instruction *smem = static_cast<SMEM_instruction*>(instr);
655 update_counters(ctx, event_smem, static_cast<SMEM_instruction*>(instr)->barrier);
656
657 if (!instr->definitions.empty())
658 insert_wait_entry(ctx, instr->definitions[0], event_smem);
659 else if (ctx.chip_class >= GFX10 &&
660 !smem->can_reorder &&
661 smem->barrier == barrier_buffer)
662 ctx.pending_s_buffer_store = true;
663
664 break;
665 }
666 case Format::DS: {
667 bool gds = static_cast<DS_instruction*>(instr)->gds;
668 update_counters(ctx, gds ? event_gds : event_lds, gds ? barrier_none : barrier_shared);
669 if (gds)
670 update_counters(ctx, event_gds_gpr_lock);
671
672 if (!instr->definitions.empty())
673 insert_wait_entry(ctx, instr->definitions[0], gds ? event_gds : event_lds);
674
675 if (gds) {
676 for (const Operand& op : instr->operands)
677 insert_wait_entry(ctx, op, event_gds_gpr_lock);
678 insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
679 }
680 break;
681 }
682 case Format::MUBUF:
683 case Format::MTBUF:
684 case Format::MIMG:
685 case Format::GLOBAL: {
686 wait_event ev = !instr->definitions.empty() || ctx.chip_class < GFX10 ? event_vmem : event_vmem_store;
687 update_counters(ctx, ev, get_barrier_interaction(instr));
688
689 if (!instr->definitions.empty())
690 insert_wait_entry(ctx, instr->definitions[0], ev);
691
692 if (instr->operands.size() == 4 && ctx.chip_class == GFX6) {
693 ctx.exp_cnt++;
694 update_counters(ctx, event_vmem_gpr_lock);
695 insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
696 }
697 break;
698 }
699 case Format::SOPP: {
700 if (instr->opcode == aco_opcode::s_sendmsg ||
701 instr->opcode == aco_opcode::s_sendmsghalt)
702 update_counters(ctx, event_sendmsg, get_barrier_interaction(instr));
703 }
704 default:
705 break;
706 }
707 }
708
709 void emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm imm)
710 {
711 if (imm.vs != wait_imm::unset_counter) {
712 assert(ctx.chip_class >= GFX10);
713 SOPK_instruction* waitcnt_vs = create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1);
714 waitcnt_vs->definitions[0] = Definition(sgpr_null, s1);
715 waitcnt_vs->imm = imm.vs;
716 instructions.emplace_back(waitcnt_vs);
717 imm.vs = wait_imm::unset_counter;
718 }
719 if (!imm.empty()) {
720 SOPP_instruction* waitcnt = create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt, Format::SOPP, 0, 0);
721 waitcnt->imm = imm.pack(ctx.chip_class);
722 waitcnt->block = -1;
723 instructions.emplace_back(waitcnt);
724 }
725 }
726
727 void handle_block(Program *program, Block& block, wait_ctx& ctx)
728 {
729 std::vector<aco_ptr<Instruction>> new_instructions;
730
731 wait_imm queued_imm;
732 for (aco_ptr<Instruction>& instr : block.instructions) {
733 bool is_wait = !parse_wait_instr(ctx, instr.get()).empty();
734
735 queued_imm.combine(kill(instr.get(), ctx));
736
737 gen(instr.get(), ctx);
738
739 if (instr->format != Format::PSEUDO_BARRIER && !is_wait) {
740 if (!queued_imm.empty()) {
741 emit_waitcnt(ctx, new_instructions, queued_imm);
742 queued_imm = wait_imm();
743 }
744 new_instructions.emplace_back(std::move(instr));
745 }
746 }
747
748 if (!queued_imm.empty())
749 emit_waitcnt(ctx, new_instructions, queued_imm);
750
751 block.instructions.swap(new_instructions);
752 }
753
754 } /* end namespace */
755
756 void insert_wait_states(Program* program)
757 {
758 /* per BB ctx */
759 std::vector<bool> done(program->blocks.size());
760 wait_ctx in_ctx[program->blocks.size()];
761 wait_ctx out_ctx[program->blocks.size()];
762 for (unsigned i = 0; i < program->blocks.size(); i++)
763 in_ctx[i] = wait_ctx(program);
764 std::stack<unsigned> loop_header_indices;
765 unsigned loop_progress = 0;
766
767 for (unsigned i = 0; i < program->blocks.size();) {
768 Block& current = program->blocks[i++];
769 wait_ctx ctx = in_ctx[current.index];
770
771 if (current.kind & block_kind_loop_header) {
772 loop_header_indices.push(current.index);
773 } else if (current.kind & block_kind_loop_exit) {
774 bool repeat = false;
775 if (loop_progress == loop_header_indices.size()) {
776 i = loop_header_indices.top();
777 repeat = true;
778 }
779 loop_header_indices.pop();
780 loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size());
781 if (repeat)
782 continue;
783 }
784
785 bool changed = false;
786 for (unsigned b : current.linear_preds)
787 changed |= ctx.join(&out_ctx[b], false);
788 for (unsigned b : current.logical_preds)
789 changed |= ctx.join(&out_ctx[b], true);
790
791 in_ctx[current.index] = ctx;
792
793 if (done[current.index] && !changed)
794 continue;
795
796 if (current.instructions.empty()) {
797 out_ctx[current.index] = ctx;
798 continue;
799 }
800
801 loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth);
802 done[current.index] = true;
803
804 handle_block(program, current, ctx);
805
806 out_ctx[current.index] = ctx;
807 }
808 }
809
810 }
811