07c61a33d81cf65f3cf2ef4fcabdb7f3170a853f
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 #define isel_err(...) _isel_err(ctx, __FILE__, __LINE__, __VA_ARGS__)
42
43 static void _isel_err(isel_context *ctx, const char *file, unsigned line,
44 const nir_instr *instr, const char *msg)
45 {
46 char *out;
47 size_t outsize;
48 FILE *memf = open_memstream(&out, &outsize);
49
50 fprintf(memf, "%s: ", msg);
51 nir_print_instr(instr, memf);
52 fclose(memf);
53
54 _aco_err(ctx->program, file, line, out);
55 free(out);
56 }
57
58 class loop_info_RAII {
59 isel_context* ctx;
60 unsigned header_idx_old;
61 Block* exit_old;
62 bool divergent_cont_old;
63 bool divergent_branch_old;
64 bool divergent_if_old;
65
66 public:
67 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
68 : ctx(ctx),
69 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
70 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
71 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
72 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
73 {
74 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
75 ctx->cf_info.parent_loop.exit = loop_exit;
76 ctx->cf_info.parent_loop.has_divergent_continue = false;
77 ctx->cf_info.parent_loop.has_divergent_branch = false;
78 ctx->cf_info.parent_if.is_divergent = false;
79 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
80 }
81
82 ~loop_info_RAII()
83 {
84 ctx->cf_info.parent_loop.header_idx = header_idx_old;
85 ctx->cf_info.parent_loop.exit = exit_old;
86 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
87 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
88 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
89 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
90 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
91 ctx->cf_info.exec_potentially_empty_discard = false;
92 }
93 };
94
95 struct if_context {
96 Temp cond;
97
98 bool divergent_old;
99 bool exec_potentially_empty_discard_old;
100 bool exec_potentially_empty_break_old;
101 uint16_t exec_potentially_empty_break_depth_old;
102
103 unsigned BB_if_idx;
104 unsigned invert_idx;
105 bool uniform_has_then_branch;
106 bool then_branch_divergent;
107 Block BB_invert;
108 Block BB_endif;
109 };
110
111 static bool visit_cf_list(struct isel_context *ctx,
112 struct exec_list *list);
113
114 static void add_logical_edge(unsigned pred_idx, Block *succ)
115 {
116 succ->logical_preds.emplace_back(pred_idx);
117 }
118
119
120 static void add_linear_edge(unsigned pred_idx, Block *succ)
121 {
122 succ->linear_preds.emplace_back(pred_idx);
123 }
124
125 static void add_edge(unsigned pred_idx, Block *succ)
126 {
127 add_logical_edge(pred_idx, succ);
128 add_linear_edge(pred_idx, succ);
129 }
130
131 static void append_logical_start(Block *b)
132 {
133 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
134 }
135
136 static void append_logical_end(Block *b)
137 {
138 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
139 }
140
141 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
142 {
143 assert(ctx->allocated[def->index].id());
144 return ctx->allocated[def->index];
145 }
146
147 Temp emit_mbcnt(isel_context *ctx, Definition dst,
148 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
149 {
150 Builder bld(ctx->program, ctx->block);
151 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
152 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
153
154 if (ctx->program->wave_size == 32) {
155 return thread_id_lo;
156 } else if (ctx->program->chip_class <= GFX7) {
157 Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
158 return thread_id_hi;
159 } else {
160 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo);
161 return thread_id_hi;
162 }
163 }
164
165 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
166 {
167 Builder bld(ctx->program, ctx->block);
168
169 if (!dst.id())
170 dst = bld.tmp(src.regClass());
171
172 assert(src.size() == dst.size());
173
174 if (ctx->stage != fragment_fs) {
175 if (!dst.id())
176 return src;
177
178 bld.copy(Definition(dst), src);
179 return dst;
180 }
181
182 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
183 ctx->program->needs_wqm |= program_needs_wqm;
184 return dst;
185 }
186
187 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
188 {
189 if (index.regClass() == s1)
190 return bld.readlane(bld.def(s1), data, index);
191
192 if (ctx->options->chip_class <= GFX7) {
193 /* GFX6-7: there is no bpermute instruction */
194 Operand index_op(index);
195 Operand input_data(data);
196 index_op.setLateKill(true);
197 input_data.setLateKill(true);
198
199 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
200 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
201 /* GFX10 wave64 mode: emulate full-wave bpermute */
202 if (!ctx->has_gfx10_wave64_bpermute) {
203 ctx->has_gfx10_wave64_bpermute = true;
204 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
205 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
206 }
207
208 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
209 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
210 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
211 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
212 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
213 Operand input_data(data);
214
215 index_x4.setLateKill(true);
216 input_data.setLateKill(true);
217 same_half.setLateKill(true);
218
219 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
220 } else {
221 /* GFX8-9 or GFX10 wave32: bpermute works normally */
222 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
223 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
224 }
225 }
226
227 static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
228 {
229 if (ctx->options->chip_class >= GFX8) {
230 unsigned and_mask = mask & 0x1f;
231 unsigned or_mask = (mask >> 5) & 0x1f;
232 unsigned xor_mask = (mask >> 10) & 0x1f;
233
234 uint16_t dpp_ctrl = 0xffff;
235
236 // TODO: we could use DPP8 for some swizzles
237 if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
238 unsigned res[4] = {0, 1, 2, 3};
239 for (unsigned i = 0; i < 4; i++)
240 res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
241 dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
242 } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
243 dpp_ctrl = dpp_row_rr(8);
244 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
245 dpp_ctrl = dpp_row_mirror;
246 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
247 dpp_ctrl = dpp_row_half_mirror;
248 }
249
250 if (dpp_ctrl != 0xffff)
251 return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
252 }
253
254 return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
255 }
256
257 Temp as_vgpr(isel_context *ctx, Temp val)
258 {
259 if (val.type() == RegType::sgpr) {
260 Builder bld(ctx->program, ctx->block);
261 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
262 }
263 assert(val.type() == RegType::vgpr);
264 return val;
265 }
266
267 //assumes a != 0xffffffff
268 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
269 {
270 assert(b != 0);
271 Builder bld(ctx->program, ctx->block);
272
273 if (util_is_power_of_two_or_zero(b)) {
274 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
275 return;
276 }
277
278 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
279
280 assert(info.multiplier <= 0xffffffff);
281
282 bool pre_shift = info.pre_shift != 0;
283 bool increment = info.increment != 0;
284 bool multiply = true;
285 bool post_shift = info.post_shift != 0;
286
287 if (!pre_shift && !increment && !multiply && !post_shift) {
288 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
289 return;
290 }
291
292 Temp pre_shift_dst = a;
293 if (pre_shift) {
294 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
295 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
296 }
297
298 Temp increment_dst = pre_shift_dst;
299 if (increment) {
300 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
301 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
302 }
303
304 Temp multiply_dst = increment_dst;
305 if (multiply) {
306 multiply_dst = post_shift ? bld.tmp(v1) : dst;
307 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
308 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
309 }
310
311 if (post_shift) {
312 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
313 }
314 }
315
316 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
317 {
318 Builder bld(ctx->program, ctx->block);
319 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
320 }
321
322
323 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
324 {
325 /* no need to extract the whole vector */
326 if (src.regClass() == dst_rc) {
327 assert(idx == 0);
328 return src;
329 }
330
331 assert(src.bytes() > (idx * dst_rc.bytes()));
332 Builder bld(ctx->program, ctx->block);
333 auto it = ctx->allocated_vec.find(src.id());
334 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
335 if (it->second[idx].regClass() == dst_rc) {
336 return it->second[idx];
337 } else {
338 assert(!dst_rc.is_subdword());
339 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
340 return bld.copy(bld.def(dst_rc), it->second[idx]);
341 }
342 }
343
344 if (dst_rc.is_subdword())
345 src = as_vgpr(ctx, src);
346
347 if (src.bytes() == dst_rc.bytes()) {
348 assert(idx == 0);
349 return bld.copy(bld.def(dst_rc), src);
350 } else {
351 Temp dst = bld.tmp(dst_rc);
352 emit_extract_vector(ctx, src, idx, dst);
353 return dst;
354 }
355 }
356
357 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
358 {
359 if (num_components == 1)
360 return;
361 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
362 return;
363 RegClass rc;
364 if (num_components > vec_src.size()) {
365 if (vec_src.type() == RegType::sgpr) {
366 /* should still help get_alu_src() */
367 emit_split_vector(ctx, vec_src, vec_src.size());
368 return;
369 }
370 /* sub-dword split */
371 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
372 } else {
373 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
374 }
375 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
376 split->operands[0] = Operand(vec_src);
377 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
378 for (unsigned i = 0; i < num_components; i++) {
379 elems[i] = {ctx->program->allocateId(), rc};
380 split->definitions[i] = Definition(elems[i]);
381 }
382 ctx->block->instructions.emplace_back(std::move(split));
383 ctx->allocated_vec.emplace(vec_src.id(), elems);
384 }
385
386 /* This vector expansion uses a mask to determine which elements in the new vector
387 * come from the original vector. The other elements are undefined. */
388 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
389 {
390 emit_split_vector(ctx, vec_src, util_bitcount(mask));
391
392 if (vec_src == dst)
393 return;
394
395 Builder bld(ctx->program, ctx->block);
396 if (num_components == 1) {
397 if (dst.type() == RegType::sgpr)
398 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
399 else
400 bld.copy(Definition(dst), vec_src);
401 return;
402 }
403
404 unsigned component_size = dst.size() / num_components;
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406
407 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
408 vec->definitions[0] = Definition(dst);
409 unsigned k = 0;
410 for (unsigned i = 0; i < num_components; i++) {
411 if (mask & (1 << i)) {
412 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
413 if (dst.type() == RegType::sgpr)
414 src = bld.as_uniform(src);
415 vec->operands[i] = Operand(src);
416 } else {
417 vec->operands[i] = Operand(0u);
418 }
419 elems[i] = vec->operands[i].getTemp();
420 }
421 ctx->block->instructions.emplace_back(std::move(vec));
422 ctx->allocated_vec.emplace(dst.id(), elems);
423 }
424
425 /* adjust misaligned small bit size loads */
426 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
427 {
428 Builder bld(ctx->program, ctx->block);
429 Operand shift;
430 Temp select = Temp();
431 if (offset.isConstant()) {
432 assert(offset.constantValue() && offset.constantValue() < 4);
433 shift = Operand(offset.constantValue() * 8);
434 } else {
435 /* bit_offset = 8 * (offset & 0x3) */
436 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
437 select = bld.tmp(s1);
438 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
439 }
440
441 if (vec.size() == 1) {
442 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
443 } else if (vec.size() == 2) {
444 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
445 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
446 if (tmp == dst)
447 emit_split_vector(ctx, dst, 2);
448 else
449 emit_extract_vector(ctx, tmp, 0, dst);
450 } else if (vec.size() == 4) {
451 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
452 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
453 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
454 if (select != Temp())
455 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
456 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
457 Temp mid = bld.tmp(s1);
458 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
459 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
460 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
461 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
462 emit_split_vector(ctx, dst, 2);
463 }
464 }
465
466 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
467 {
468 Builder bld(ctx->program, ctx->block);
469 if (offset.isTemp()) {
470 Temp tmp[4] = {vec, vec, vec, vec};
471
472 if (vec.size() == 4) {
473 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
474 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
475 } else if (vec.size() == 3) {
476 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
477 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
478 } else if (vec.size() == 2) {
479 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
480 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
481 }
482 for (unsigned i = 0; i < dst.size(); i++)
483 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
484
485 vec = tmp[0];
486 if (dst.size() == 2)
487 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
488
489 offset = Operand(0u);
490 }
491
492 unsigned num_components = vec.bytes() / component_size;
493 if (vec.regClass() == dst.regClass()) {
494 assert(offset.constantValue() == 0);
495 bld.copy(Definition(dst), vec);
496 emit_split_vector(ctx, dst, num_components);
497 return;
498 }
499
500 emit_split_vector(ctx, vec, num_components);
501 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
502 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
503
504 assert(offset.constantValue() % component_size == 0);
505 unsigned skip = offset.constantValue() / component_size;
506 for (unsigned i = skip; i < num_components; i++)
507 elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
508
509 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
510 if (dst.type() == RegType::vgpr) {
511 num_components = dst.bytes() / component_size;
512 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
513 for (unsigned i = 0; i < num_components; i++)
514 create_vec->operands[i] = Operand(elems[i]);
515 create_vec->definitions[0] = Definition(dst);
516 bld.insert(std::move(create_vec));
517
518 /* if dst is sgpr - split the src, but move the original to sgpr. */
519 } else if (skip) {
520 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
521 byte_align_scalar(ctx, vec, offset, dst);
522 } else {
523 assert(dst.size() == vec.size());
524 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
525 }
526
527 ctx->allocated_vec.emplace(dst.id(), elems);
528 }
529
530 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
531 {
532 Builder bld(ctx->program, ctx->block);
533 if (!dst.id())
534 dst = bld.tmp(bld.lm);
535
536 assert(val.regClass() == s1);
537 assert(dst.regClass() == bld.lm);
538
539 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
540 }
541
542 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
543 {
544 Builder bld(ctx->program, ctx->block);
545 if (!dst.id())
546 dst = bld.tmp(s1);
547
548 assert(val.regClass() == bld.lm);
549 assert(dst.regClass() == s1);
550
551 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
552 Temp tmp = bld.tmp(s1);
553 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
554 return emit_wqm(ctx, tmp, dst);
555 }
556
557 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp())
558 {
559 if (!dst.id()) {
560 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
561 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
562 else
563 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
564 }
565
566 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
567 return bld.copy(Definition(dst), src);
568 else if (dst.bytes() < src.bytes())
569 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
570
571 Temp tmp = dst;
572 if (dst_bits == 64)
573 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
574
575 if (tmp == src) {
576 } else if (src.regClass() == s1) {
577 if (is_signed)
578 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
579 else
580 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
581 } else if (ctx->options->chip_class >= GFX8) {
582 assert(src_bits != 8 || src.regClass() == v1b);
583 assert(src_bits != 16 || src.regClass() == v2b);
584 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
585 sdwa->operands[0] = Operand(src);
586 sdwa->definitions[0] = Definition(tmp);
587 if (is_signed)
588 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
589 else
590 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
591 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
592 bld.insert(std::move(sdwa));
593 } else {
594 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
595 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
596 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
597 }
598
599 if (dst_bits == 64) {
600 if (is_signed && dst.regClass() == s2) {
601 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
602 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
603 } else if (is_signed && dst.regClass() == v2) {
604 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
605 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
606 } else {
607 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
608 }
609 }
610
611 return dst;
612 }
613
614 enum sgpr_extract_mode {
615 sgpr_extract_sext,
616 sgpr_extract_zext,
617 sgpr_extract_undef,
618 };
619
620 Temp extract_8_16_bit_sgpr_element(isel_context *ctx, Temp dst, nir_alu_src *src, sgpr_extract_mode mode)
621 {
622 Temp vec = get_ssa_temp(ctx, src->src.ssa);
623 unsigned src_size = src->src.ssa->bit_size;
624 unsigned swizzle = src->swizzle[0];
625
626 if (vec.size() > 1) {
627 assert(src_size == 16);
628 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
629 swizzle = swizzle & 1;
630 }
631
632 Builder bld(ctx->program, ctx->block);
633 unsigned offset = src_size * swizzle;
634 Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst;
635
636 if (mode == sgpr_extract_undef && swizzle == 0) {
637 bld.copy(Definition(tmp), vec);
638 } else if (mode == sgpr_extract_undef || (offset == 24 && mode == sgpr_extract_zext)) {
639 bld.sop2(aco_opcode::s_lshr_b32, Definition(tmp), bld.def(s1, scc), vec, Operand(offset));
640 } else if (src_size == 8 && swizzle == 0 && mode == sgpr_extract_sext) {
641 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(tmp), vec);
642 } else if (src_size == 16 && swizzle == 0 && mode == sgpr_extract_sext) {
643 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(tmp), vec);
644 } else {
645 aco_opcode op = mode == sgpr_extract_zext ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
646 bld.sop2(op, Definition(tmp), bld.def(s1, scc), vec, Operand((src_size << 16) | offset));
647 }
648
649 if (dst.regClass() == s2)
650 convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst);
651
652 return dst;
653 }
654
655 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
656 {
657 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
658 return get_ssa_temp(ctx, src.src.ssa);
659
660 if (src.src.ssa->num_components == size) {
661 bool identity_swizzle = true;
662 for (unsigned i = 0; identity_swizzle && i < size; i++) {
663 if (src.swizzle[i] != i)
664 identity_swizzle = false;
665 }
666 if (identity_swizzle)
667 return get_ssa_temp(ctx, src.src.ssa);
668 }
669
670 Temp vec = get_ssa_temp(ctx, src.src.ssa);
671 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
672 assert(elem_size > 0);
673 assert(vec.bytes() % elem_size == 0);
674
675 if (elem_size < 4 && vec.type() == RegType::sgpr) {
676 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
677 assert(size == 1);
678 return extract_8_16_bit_sgpr_element(
679 ctx, Temp(ctx->program->allocateId(), s1), &src, sgpr_extract_undef);
680 }
681
682 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
683 if (size == 1) {
684 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
685 } else {
686 assert(size <= 4);
687 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
688 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
689 for (unsigned i = 0; i < size; ++i) {
690 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
691 vec_instr->operands[i] = Operand{elems[i]};
692 }
693 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
694 vec_instr->definitions[0] = Definition(dst);
695 ctx->block->instructions.emplace_back(std::move(vec_instr));
696 ctx->allocated_vec.emplace(dst.id(), elems);
697 return dst;
698 }
699 }
700
701 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
702 {
703 if (ptr.size() == 2)
704 return ptr;
705 Builder bld(ctx->program, ctx->block);
706 if (ptr.type() == RegType::vgpr)
707 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
708 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
709 ptr, Operand((unsigned)ctx->options->address32_hi));
710 }
711
712 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
713 {
714 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
715 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
716 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
717 sop2->definitions[0] = Definition(dst);
718 if (instr->no_unsigned_wrap)
719 sop2->definitions[0].setNUW(true);
720 if (writes_scc)
721 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
722 ctx->block->instructions.emplace_back(std::move(sop2));
723 }
724
725 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
726 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
727 {
728 Builder bld(ctx->program, ctx->block);
729 bld.is_precise = instr->exact;
730
731 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
732 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
733 if (src1.type() == RegType::sgpr) {
734 if (commutative && src0.type() == RegType::vgpr) {
735 Temp t = src0;
736 src0 = src1;
737 src1 = t;
738 } else {
739 src1 = as_vgpr(ctx, src1);
740 }
741 }
742
743 if (flush_denorms && ctx->program->chip_class < GFX9) {
744 assert(dst.size() == 1);
745 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
746 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
747 } else {
748 bld.vop2(op, Definition(dst), src0, src1);
749 }
750 }
751
752 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
753 aco_opcode op, Temp dst)
754 {
755 Builder bld(ctx->program, ctx->block);
756 bld.is_precise = instr->exact;
757
758 Temp src0 = get_alu_src(ctx, instr->src[0]);
759 Temp src1 = get_alu_src(ctx, instr->src[1]);
760
761 if (src1.type() == RegType::sgpr) {
762 assert(src0.type() == RegType::vgpr);
763 std::swap(src0, src1);
764 }
765
766 Temp src00 = bld.tmp(src0.type(), 1);
767 Temp src01 = bld.tmp(src0.type(), 1);
768 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
769 Temp src10 = bld.tmp(v1);
770 Temp src11 = bld.tmp(v1);
771 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
772 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
773 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
774 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
775 }
776
777 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
778 bool flush_denorms = false)
779 {
780 Temp src0 = get_alu_src(ctx, instr->src[0]);
781 Temp src1 = get_alu_src(ctx, instr->src[1]);
782 Temp src2 = get_alu_src(ctx, instr->src[2]);
783
784 /* ensure that the instruction has at most 1 sgpr operand
785 * The optimizer will inline constants for us */
786 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
787 src0 = as_vgpr(ctx, src0);
788 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
789 src1 = as_vgpr(ctx, src1);
790 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
791 src2 = as_vgpr(ctx, src2);
792
793 Builder bld(ctx->program, ctx->block);
794 bld.is_precise = instr->exact;
795 if (flush_denorms && ctx->program->chip_class < GFX9) {
796 assert(dst.size() == 1);
797 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
798 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
799 } else {
800 bld.vop3(op, Definition(dst), src0, src1, src2);
801 }
802 }
803
804 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
805 {
806 Builder bld(ctx->program, ctx->block);
807 bld.is_precise = instr->exact;
808 if (dst.type() == RegType::sgpr)
809 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
810 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
811 else
812 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
813 }
814
815 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
816 {
817 Temp src0 = get_alu_src(ctx, instr->src[0]);
818 Temp src1 = get_alu_src(ctx, instr->src[1]);
819 assert(src0.size() == src1.size());
820
821 aco_ptr<Instruction> vopc;
822 if (src1.type() == RegType::sgpr) {
823 if (src0.type() == RegType::vgpr) {
824 /* to swap the operands, we might also have to change the opcode */
825 switch (op) {
826 case aco_opcode::v_cmp_lt_f16:
827 op = aco_opcode::v_cmp_gt_f16;
828 break;
829 case aco_opcode::v_cmp_ge_f16:
830 op = aco_opcode::v_cmp_le_f16;
831 break;
832 case aco_opcode::v_cmp_lt_i16:
833 op = aco_opcode::v_cmp_gt_i16;
834 break;
835 case aco_opcode::v_cmp_ge_i16:
836 op = aco_opcode::v_cmp_le_i16;
837 break;
838 case aco_opcode::v_cmp_lt_u16:
839 op = aco_opcode::v_cmp_gt_u16;
840 break;
841 case aco_opcode::v_cmp_ge_u16:
842 op = aco_opcode::v_cmp_le_u16;
843 break;
844 case aco_opcode::v_cmp_lt_f32:
845 op = aco_opcode::v_cmp_gt_f32;
846 break;
847 case aco_opcode::v_cmp_ge_f32:
848 op = aco_opcode::v_cmp_le_f32;
849 break;
850 case aco_opcode::v_cmp_lt_i32:
851 op = aco_opcode::v_cmp_gt_i32;
852 break;
853 case aco_opcode::v_cmp_ge_i32:
854 op = aco_opcode::v_cmp_le_i32;
855 break;
856 case aco_opcode::v_cmp_lt_u32:
857 op = aco_opcode::v_cmp_gt_u32;
858 break;
859 case aco_opcode::v_cmp_ge_u32:
860 op = aco_opcode::v_cmp_le_u32;
861 break;
862 case aco_opcode::v_cmp_lt_f64:
863 op = aco_opcode::v_cmp_gt_f64;
864 break;
865 case aco_opcode::v_cmp_ge_f64:
866 op = aco_opcode::v_cmp_le_f64;
867 break;
868 case aco_opcode::v_cmp_lt_i64:
869 op = aco_opcode::v_cmp_gt_i64;
870 break;
871 case aco_opcode::v_cmp_ge_i64:
872 op = aco_opcode::v_cmp_le_i64;
873 break;
874 case aco_opcode::v_cmp_lt_u64:
875 op = aco_opcode::v_cmp_gt_u64;
876 break;
877 case aco_opcode::v_cmp_ge_u64:
878 op = aco_opcode::v_cmp_le_u64;
879 break;
880 default: /* eq and ne are commutative */
881 break;
882 }
883 Temp t = src0;
884 src0 = src1;
885 src1 = t;
886 } else {
887 src1 = as_vgpr(ctx, src1);
888 }
889 }
890
891 Builder bld(ctx->program, ctx->block);
892 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
893 }
894
895 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
896 {
897 Temp src0 = get_alu_src(ctx, instr->src[0]);
898 Temp src1 = get_alu_src(ctx, instr->src[1]);
899 Builder bld(ctx->program, ctx->block);
900
901 assert(dst.regClass() == bld.lm);
902 assert(src0.type() == RegType::sgpr);
903 assert(src1.type() == RegType::sgpr);
904 assert(src0.regClass() == src1.regClass());
905
906 /* Emit the SALU comparison instruction */
907 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
908 /* Turn the result into a per-lane bool */
909 bool_to_vector_condition(ctx, cmp, dst);
910 }
911
912 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
913 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
914 {
915 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
916 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
917 bool use_valu = s_op == aco_opcode::num_opcodes ||
918 nir_dest_is_divergent(instr->dest.dest) ||
919 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
920 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
921 aco_opcode op = use_valu ? v_op : s_op;
922 assert(op != aco_opcode::num_opcodes);
923 assert(dst.regClass() == ctx->program->lane_mask);
924
925 if (use_valu)
926 emit_vopc_instruction(ctx, instr, op, dst);
927 else
928 emit_sopc_instruction(ctx, instr, op, dst);
929 }
930
931 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
932 {
933 Builder bld(ctx->program, ctx->block);
934 Temp src0 = get_alu_src(ctx, instr->src[0]);
935 Temp src1 = get_alu_src(ctx, instr->src[1]);
936
937 assert(dst.regClass() == bld.lm);
938 assert(src0.regClass() == bld.lm);
939 assert(src1.regClass() == bld.lm);
940
941 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
942 }
943
944 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
945 {
946 Builder bld(ctx->program, ctx->block);
947 Temp cond = get_alu_src(ctx, instr->src[0]);
948 Temp then = get_alu_src(ctx, instr->src[1]);
949 Temp els = get_alu_src(ctx, instr->src[2]);
950
951 assert(cond.regClass() == bld.lm);
952
953 if (dst.type() == RegType::vgpr) {
954 aco_ptr<Instruction> bcsel;
955 if (dst.size() == 1) {
956 then = as_vgpr(ctx, then);
957 els = as_vgpr(ctx, els);
958
959 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
960 } else if (dst.size() == 2) {
961 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
962 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
963 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
964 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
965
966 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
967 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
968
969 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
970 } else {
971 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
972 }
973 return;
974 }
975
976 if (instr->dest.dest.ssa.bit_size == 1) {
977 assert(dst.regClass() == bld.lm);
978 assert(then.regClass() == bld.lm);
979 assert(els.regClass() == bld.lm);
980 }
981
982 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
983 if (dst.regClass() == s1 || dst.regClass() == s2) {
984 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
985 assert(dst.size() == then.size());
986 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
987 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
988 } else {
989 isel_err(&instr->instr, "Unimplemented uniform bcsel bit size");
990 }
991 return;
992 }
993
994 /* divergent boolean bcsel
995 * this implements bcsel on bools: dst = s0 ? s1 : s2
996 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
997 assert(instr->dest.dest.ssa.bit_size == 1);
998
999 if (cond.id() != then.id())
1000 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
1001
1002 if (cond.id() == els.id())
1003 bld.sop1(Builder::s_mov, Definition(dst), then);
1004 else
1005 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
1006 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
1007 }
1008
1009 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
1010 aco_opcode op, uint32_t undo)
1011 {
1012 /* multiply by 16777216 to handle denormals */
1013 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
1014 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
1015 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
1016 scaled = bld.vop1(op, bld.def(v1), scaled);
1017 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
1018
1019 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
1020
1021 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
1022 }
1023
1024 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1025 {
1026 if (ctx->block->fp_mode.denorm32 == 0) {
1027 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
1028 return;
1029 }
1030
1031 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
1032 }
1033
1034 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1035 {
1036 if (ctx->block->fp_mode.denorm32 == 0) {
1037 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
1038 return;
1039 }
1040
1041 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
1042 }
1043
1044 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1045 {
1046 if (ctx->block->fp_mode.denorm32 == 0) {
1047 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
1048 return;
1049 }
1050
1051 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
1052 }
1053
1054 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1055 {
1056 if (ctx->block->fp_mode.denorm32 == 0) {
1057 bld.vop1(aco_opcode::v_log_f32, dst, val);
1058 return;
1059 }
1060
1061 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
1062 }
1063
1064 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1065 {
1066 if (ctx->options->chip_class >= GFX7)
1067 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
1068
1069 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
1070 /* TODO: create more efficient code! */
1071 if (val.type() == RegType::sgpr)
1072 val = as_vgpr(ctx, val);
1073
1074 /* Split the input value. */
1075 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
1076 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
1077
1078 /* Extract the exponent and compute the unbiased value. */
1079 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
1080 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
1081
1082 /* Extract the fractional part. */
1083 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
1084 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
1085
1086 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
1087 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
1088
1089 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
1090 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
1091 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
1092 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
1093 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
1094
1095 /* Get the sign bit. */
1096 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
1097
1098 /* Decide the operation to apply depending on the unbiased exponent. */
1099 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
1100 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
1101 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
1102 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
1103 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
1104 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
1105
1106 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
1107 }
1108
1109 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1110 {
1111 if (ctx->options->chip_class >= GFX7)
1112 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
1113
1114 /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
1115 * lowered at NIR level for precision reasons). */
1116 Temp src0 = as_vgpr(ctx, val);
1117
1118 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
1119 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
1120
1121 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
1122 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
1123 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
1124
1125 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
1126 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
1127 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
1128 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
1129
1130 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
1131 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
1132
1133 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1134
1135 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1136 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1137
1138 return add->definitions[0].getTemp();
1139 }
1140
1141 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1142 {
1143 if (!instr->dest.dest.is_ssa) {
1144 isel_err(&instr->instr, "nir alu dst not in ssa");
1145 abort();
1146 }
1147 Builder bld(ctx->program, ctx->block);
1148 bld.is_precise = instr->exact;
1149 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1150 switch(instr->op) {
1151 case nir_op_vec2:
1152 case nir_op_vec3:
1153 case nir_op_vec4: {
1154 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1155 unsigned num = instr->dest.dest.ssa.num_components;
1156 for (unsigned i = 0; i < num; ++i)
1157 elems[i] = get_alu_src(ctx, instr->src[i]);
1158
1159 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1160 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1161 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1162 for (unsigned i = 0; i < num; ++i) {
1163 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1164 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1165 else
1166 vec->operands[i] = Operand{elems[i]};
1167 }
1168 vec->definitions[0] = Definition(dst);
1169 ctx->block->instructions.emplace_back(std::move(vec));
1170 ctx->allocated_vec.emplace(dst.id(), elems);
1171 } else {
1172 // TODO: that is a bit suboptimal..
1173 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1174 for (unsigned i = 0; i < num - 1; ++i)
1175 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1176 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1177 for (unsigned i = 0; i < num; ++i) {
1178 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1179 if (bit % 32 == 0) {
1180 elems[bit / 32] = elems[i];
1181 } else {
1182 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1183 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1184 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1185 }
1186 }
1187 if (dst.size() == 1)
1188 bld.copy(Definition(dst), elems[0]);
1189 else
1190 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1191 }
1192 break;
1193 }
1194 case nir_op_mov: {
1195 Temp src = get_alu_src(ctx, instr->src[0]);
1196 aco_ptr<Instruction> mov;
1197 if (dst.type() == RegType::sgpr) {
1198 if (src.type() == RegType::vgpr)
1199 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1200 else if (src.regClass() == s1)
1201 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1202 else if (src.regClass() == s2)
1203 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1204 else
1205 unreachable("wrong src register class for nir_op_imov");
1206 } else {
1207 if (dst.regClass() == v1)
1208 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1209 else if (dst.regClass() == v1b ||
1210 dst.regClass() == v2b ||
1211 dst.regClass() == v2)
1212 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1213 else
1214 unreachable("wrong src register class for nir_op_imov");
1215 }
1216 break;
1217 }
1218 case nir_op_inot: {
1219 Temp src = get_alu_src(ctx, instr->src[0]);
1220 if (instr->dest.dest.ssa.bit_size == 1) {
1221 assert(src.regClass() == bld.lm);
1222 assert(dst.regClass() == bld.lm);
1223 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1224 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1225 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1226 } else if (dst.regClass() == v1) {
1227 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1228 } else if (dst.regClass() == v2) {
1229 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1230 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1231 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1232 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1233 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1234 } else if (dst.type() == RegType::sgpr) {
1235 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1236 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1237 } else {
1238 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1239 }
1240 break;
1241 }
1242 case nir_op_ineg: {
1243 Temp src = get_alu_src(ctx, instr->src[0]);
1244 if (dst.regClass() == v1) {
1245 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1246 } else if (dst.regClass() == s1) {
1247 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1248 } else if (dst.size() == 2) {
1249 Temp src0 = bld.tmp(dst.type(), 1);
1250 Temp src1 = bld.tmp(dst.type(), 1);
1251 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1252
1253 if (dst.regClass() == s2) {
1254 Temp carry = bld.tmp(s1);
1255 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1256 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1257 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1258 } else {
1259 Temp lower = bld.tmp(v1);
1260 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1261 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1262 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1263 }
1264 } else {
1265 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1266 }
1267 break;
1268 }
1269 case nir_op_iabs: {
1270 if (dst.regClass() == s1) {
1271 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1272 } else if (dst.regClass() == v1) {
1273 Temp src = get_alu_src(ctx, instr->src[0]);
1274 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1275 } else {
1276 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1277 }
1278 break;
1279 }
1280 case nir_op_isign: {
1281 Temp src = get_alu_src(ctx, instr->src[0]);
1282 if (dst.regClass() == s1) {
1283 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1284 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1285 } else if (dst.regClass() == s2) {
1286 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1287 Temp neqz;
1288 if (ctx->program->chip_class >= GFX8)
1289 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1290 else
1291 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1292 /* SCC gets zero-extended to 64 bit */
1293 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1294 } else if (dst.regClass() == v1) {
1295 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1296 } else if (dst.regClass() == v2) {
1297 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1298 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1299 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1300 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1301 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1302 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1303 } else {
1304 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1305 }
1306 break;
1307 }
1308 case nir_op_imax: {
1309 if (dst.regClass() == v1) {
1310 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1311 } else if (dst.regClass() == s1) {
1312 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1313 } else {
1314 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1315 }
1316 break;
1317 }
1318 case nir_op_umax: {
1319 if (dst.regClass() == v1) {
1320 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1321 } else if (dst.regClass() == s1) {
1322 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1323 } else {
1324 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1325 }
1326 break;
1327 }
1328 case nir_op_imin: {
1329 if (dst.regClass() == v1) {
1330 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1331 } else if (dst.regClass() == s1) {
1332 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1333 } else {
1334 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1335 }
1336 break;
1337 }
1338 case nir_op_umin: {
1339 if (dst.regClass() == v1) {
1340 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1341 } else if (dst.regClass() == s1) {
1342 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1343 } else {
1344 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1345 }
1346 break;
1347 }
1348 case nir_op_ior: {
1349 if (instr->dest.dest.ssa.bit_size == 1) {
1350 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1351 } else if (dst.regClass() == v1) {
1352 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1353 } else if (dst.regClass() == v2) {
1354 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1355 } else if (dst.regClass() == s1) {
1356 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1357 } else if (dst.regClass() == s2) {
1358 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1359 } else {
1360 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1361 }
1362 break;
1363 }
1364 case nir_op_iand: {
1365 if (instr->dest.dest.ssa.bit_size == 1) {
1366 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1367 } else if (dst.regClass() == v1) {
1368 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1369 } else if (dst.regClass() == v2) {
1370 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1371 } else if (dst.regClass() == s1) {
1372 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1373 } else if (dst.regClass() == s2) {
1374 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1375 } else {
1376 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1377 }
1378 break;
1379 }
1380 case nir_op_ixor: {
1381 if (instr->dest.dest.ssa.bit_size == 1) {
1382 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1383 } else if (dst.regClass() == v1) {
1384 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1385 } else if (dst.regClass() == v2) {
1386 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1387 } else if (dst.regClass() == s1) {
1388 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1389 } else if (dst.regClass() == s2) {
1390 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1391 } else {
1392 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1393 }
1394 break;
1395 }
1396 case nir_op_ushr: {
1397 if (dst.regClass() == v1) {
1398 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1399 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1400 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1401 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1402 } else if (dst.regClass() == v2) {
1403 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1404 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1405 } else if (dst.regClass() == s2) {
1406 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1407 } else if (dst.regClass() == s1) {
1408 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1409 } else {
1410 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1411 }
1412 break;
1413 }
1414 case nir_op_ishl: {
1415 if (dst.regClass() == v1) {
1416 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1417 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1418 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1419 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1420 } else if (dst.regClass() == v2) {
1421 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1422 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1423 } else if (dst.regClass() == s1) {
1424 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1425 } else if (dst.regClass() == s2) {
1426 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1427 } else {
1428 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1429 }
1430 break;
1431 }
1432 case nir_op_ishr: {
1433 if (dst.regClass() == v1) {
1434 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1435 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1436 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1437 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1438 } else if (dst.regClass() == v2) {
1439 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1440 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1441 } else if (dst.regClass() == s1) {
1442 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1443 } else if (dst.regClass() == s2) {
1444 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1445 } else {
1446 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1447 }
1448 break;
1449 }
1450 case nir_op_find_lsb: {
1451 Temp src = get_alu_src(ctx, instr->src[0]);
1452 if (src.regClass() == s1) {
1453 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1454 } else if (src.regClass() == v1) {
1455 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1456 } else if (src.regClass() == s2) {
1457 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1458 } else {
1459 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1460 }
1461 break;
1462 }
1463 case nir_op_ufind_msb:
1464 case nir_op_ifind_msb: {
1465 Temp src = get_alu_src(ctx, instr->src[0]);
1466 if (src.regClass() == s1 || src.regClass() == s2) {
1467 aco_opcode op = src.regClass() == s2 ?
1468 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1469 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1470 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1471
1472 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1473 Operand(src.size() * 32u - 1u), msb_rev);
1474 Temp msb = sub.def(0).getTemp();
1475 Temp carry = sub.def(1).getTemp();
1476
1477 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1478 } else if (src.regClass() == v1) {
1479 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1480 Temp msb_rev = bld.tmp(v1);
1481 emit_vop1_instruction(ctx, instr, op, msb_rev);
1482 Temp msb = bld.tmp(v1);
1483 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1484 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1485 } else {
1486 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1487 }
1488 break;
1489 }
1490 case nir_op_bitfield_reverse: {
1491 if (dst.regClass() == s1) {
1492 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1493 } else if (dst.regClass() == v1) {
1494 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1495 } else {
1496 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1497 }
1498 break;
1499 }
1500 case nir_op_iadd: {
1501 if (dst.regClass() == s1) {
1502 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1503 break;
1504 }
1505
1506 Temp src0 = get_alu_src(ctx, instr->src[0]);
1507 Temp src1 = get_alu_src(ctx, instr->src[1]);
1508 if (dst.regClass() == v1) {
1509 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1510 break;
1511 }
1512
1513 assert(src0.size() == 2 && src1.size() == 2);
1514 Temp src00 = bld.tmp(src0.type(), 1);
1515 Temp src01 = bld.tmp(dst.type(), 1);
1516 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1517 Temp src10 = bld.tmp(src1.type(), 1);
1518 Temp src11 = bld.tmp(dst.type(), 1);
1519 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1520
1521 if (dst.regClass() == s2) {
1522 Temp carry = bld.tmp(s1);
1523 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1524 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1525 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1526 } else if (dst.regClass() == v2) {
1527 Temp dst0 = bld.tmp(v1);
1528 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1529 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1530 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1531 } else {
1532 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1533 }
1534 break;
1535 }
1536 case nir_op_uadd_sat: {
1537 Temp src0 = get_alu_src(ctx, instr->src[0]);
1538 Temp src1 = get_alu_src(ctx, instr->src[1]);
1539 if (dst.regClass() == s1) {
1540 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1541 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1542 src0, src1);
1543 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1544 } else if (dst.regClass() == v1) {
1545 if (ctx->options->chip_class >= GFX9) {
1546 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1547 add->operands[0] = Operand(src0);
1548 add->operands[1] = Operand(src1);
1549 add->definitions[0] = Definition(dst);
1550 add->clamp = 1;
1551 ctx->block->instructions.emplace_back(std::move(add));
1552 } else {
1553 if (src1.regClass() != v1)
1554 std::swap(src0, src1);
1555 assert(src1.regClass() == v1);
1556 Temp tmp = bld.tmp(v1);
1557 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1558 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1559 }
1560 } else {
1561 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1562 }
1563 break;
1564 }
1565 case nir_op_uadd_carry: {
1566 Temp src0 = get_alu_src(ctx, instr->src[0]);
1567 Temp src1 = get_alu_src(ctx, instr->src[1]);
1568 if (dst.regClass() == s1) {
1569 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1570 break;
1571 }
1572 if (dst.regClass() == v1) {
1573 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1574 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1575 break;
1576 }
1577
1578 Temp src00 = bld.tmp(src0.type(), 1);
1579 Temp src01 = bld.tmp(dst.type(), 1);
1580 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1581 Temp src10 = bld.tmp(src1.type(), 1);
1582 Temp src11 = bld.tmp(dst.type(), 1);
1583 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1584 if (dst.regClass() == s2) {
1585 Temp carry = bld.tmp(s1);
1586 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1587 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1589 } else if (dst.regClass() == v2) {
1590 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1591 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1592 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1593 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1594 } else {
1595 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1596 }
1597 break;
1598 }
1599 case nir_op_isub: {
1600 if (dst.regClass() == s1) {
1601 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1602 break;
1603 }
1604
1605 Temp src0 = get_alu_src(ctx, instr->src[0]);
1606 Temp src1 = get_alu_src(ctx, instr->src[1]);
1607 if (dst.regClass() == v1) {
1608 bld.vsub32(Definition(dst), src0, src1);
1609 break;
1610 }
1611
1612 Temp src00 = bld.tmp(src0.type(), 1);
1613 Temp src01 = bld.tmp(dst.type(), 1);
1614 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1615 Temp src10 = bld.tmp(src1.type(), 1);
1616 Temp src11 = bld.tmp(dst.type(), 1);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1618 if (dst.regClass() == s2) {
1619 Temp carry = bld.tmp(s1);
1620 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1621 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1622 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1623 } else if (dst.regClass() == v2) {
1624 Temp lower = bld.tmp(v1);
1625 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1626 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1627 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1628 } else {
1629 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1630 }
1631 break;
1632 }
1633 case nir_op_usub_borrow: {
1634 Temp src0 = get_alu_src(ctx, instr->src[0]);
1635 Temp src1 = get_alu_src(ctx, instr->src[1]);
1636 if (dst.regClass() == s1) {
1637 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1638 break;
1639 } else if (dst.regClass() == v1) {
1640 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1641 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1642 break;
1643 }
1644
1645 Temp src00 = bld.tmp(src0.type(), 1);
1646 Temp src01 = bld.tmp(dst.type(), 1);
1647 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1648 Temp src10 = bld.tmp(src1.type(), 1);
1649 Temp src11 = bld.tmp(dst.type(), 1);
1650 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1651 if (dst.regClass() == s2) {
1652 Temp borrow = bld.tmp(s1);
1653 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1654 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1655 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1656 } else if (dst.regClass() == v2) {
1657 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1658 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1659 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1660 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1661 } else {
1662 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1663 }
1664 break;
1665 }
1666 case nir_op_imul: {
1667 if (dst.regClass() == v1) {
1668 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1669 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1670 } else if (dst.regClass() == s1) {
1671 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1672 } else {
1673 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1674 }
1675 break;
1676 }
1677 case nir_op_umul_high: {
1678 if (dst.regClass() == v1) {
1679 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1680 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1681 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1682 } else if (dst.regClass() == s1) {
1683 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1684 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1685 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1686 } else {
1687 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1688 }
1689 break;
1690 }
1691 case nir_op_imul_high: {
1692 if (dst.regClass() == v1) {
1693 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1694 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1695 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1696 } else if (dst.regClass() == s1) {
1697 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1698 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1699 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1700 } else {
1701 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1702 }
1703 break;
1704 }
1705 case nir_op_fmul: {
1706 Temp src0 = get_alu_src(ctx, instr->src[0]);
1707 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1708 if (dst.regClass() == v2b) {
1709 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1710 } else if (dst.regClass() == v1) {
1711 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1712 } else if (dst.regClass() == v2) {
1713 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1714 } else {
1715 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1716 }
1717 break;
1718 }
1719 case nir_op_fadd: {
1720 Temp src0 = get_alu_src(ctx, instr->src[0]);
1721 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1722 if (dst.regClass() == v2b) {
1723 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1724 } else if (dst.regClass() == v1) {
1725 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1726 } else if (dst.regClass() == v2) {
1727 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1728 } else {
1729 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1730 }
1731 break;
1732 }
1733 case nir_op_fsub: {
1734 Temp src0 = get_alu_src(ctx, instr->src[0]);
1735 Temp src1 = get_alu_src(ctx, instr->src[1]);
1736 if (dst.regClass() == v2b) {
1737 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1738 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1739 else
1740 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1741 } else if (dst.regClass() == v1) {
1742 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1743 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1744 else
1745 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1746 } else if (dst.regClass() == v2) {
1747 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1748 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1749 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1750 sub->neg[1] = true;
1751 } else {
1752 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1753 }
1754 break;
1755 }
1756 case nir_op_fmax: {
1757 Temp src0 = get_alu_src(ctx, instr->src[0]);
1758 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1759 if (dst.regClass() == v2b) {
1760 // TODO: check fp_mode.must_flush_denorms16_64
1761 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1762 } else if (dst.regClass() == v1) {
1763 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1764 } else if (dst.regClass() == v2) {
1765 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1766 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1767 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1768 } else {
1769 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1770 }
1771 } else {
1772 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1773 }
1774 break;
1775 }
1776 case nir_op_fmin: {
1777 Temp src0 = get_alu_src(ctx, instr->src[0]);
1778 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1779 if (dst.regClass() == v2b) {
1780 // TODO: check fp_mode.must_flush_denorms16_64
1781 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1782 } else if (dst.regClass() == v1) {
1783 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1784 } else if (dst.regClass() == v2) {
1785 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1786 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1787 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1788 } else {
1789 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1790 }
1791 } else {
1792 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1793 }
1794 break;
1795 }
1796 case nir_op_fmax3: {
1797 if (dst.regClass() == v2b) {
1798 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, dst, false);
1799 } else if (dst.regClass() == v1) {
1800 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1801 } else {
1802 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1803 }
1804 break;
1805 }
1806 case nir_op_fmin3: {
1807 if (dst.regClass() == v2b) {
1808 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, dst, false);
1809 } else if (dst.regClass() == v1) {
1810 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1811 } else {
1812 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1813 }
1814 break;
1815 }
1816 case nir_op_fmed3: {
1817 if (dst.regClass() == v2b) {
1818 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, dst, false);
1819 } else if (dst.regClass() == v1) {
1820 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1821 } else {
1822 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1823 }
1824 break;
1825 }
1826 case nir_op_umax3: {
1827 if (dst.size() == 1) {
1828 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1829 } else {
1830 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1831 }
1832 break;
1833 }
1834 case nir_op_umin3: {
1835 if (dst.size() == 1) {
1836 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1837 } else {
1838 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1839 }
1840 break;
1841 }
1842 case nir_op_umed3: {
1843 if (dst.size() == 1) {
1844 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1845 } else {
1846 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1847 }
1848 break;
1849 }
1850 case nir_op_imax3: {
1851 if (dst.size() == 1) {
1852 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1853 } else {
1854 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1855 }
1856 break;
1857 }
1858 case nir_op_imin3: {
1859 if (dst.size() == 1) {
1860 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1861 } else {
1862 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1863 }
1864 break;
1865 }
1866 case nir_op_imed3: {
1867 if (dst.size() == 1) {
1868 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1869 } else {
1870 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1871 }
1872 break;
1873 }
1874 case nir_op_cube_face_coord: {
1875 Temp in = get_alu_src(ctx, instr->src[0], 3);
1876 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1877 emit_extract_vector(ctx, in, 1, v1),
1878 emit_extract_vector(ctx, in, 2, v1) };
1879 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1880 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1881 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1882 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1883 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1884 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, ma), Operand(0x3f000000u/*0.5*/));
1885 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1886 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, ma), Operand(0x3f000000u/*0.5*/));
1887 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1888 break;
1889 }
1890 case nir_op_cube_face_index: {
1891 Temp in = get_alu_src(ctx, instr->src[0], 3);
1892 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1893 emit_extract_vector(ctx, in, 1, v1),
1894 emit_extract_vector(ctx, in, 2, v1) };
1895 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1896 break;
1897 }
1898 case nir_op_bcsel: {
1899 emit_bcsel(ctx, instr, dst);
1900 break;
1901 }
1902 case nir_op_frsq: {
1903 Temp src = get_alu_src(ctx, instr->src[0]);
1904 if (dst.regClass() == v2b) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1906 } else if (dst.regClass() == v1) {
1907 emit_rsq(ctx, bld, Definition(dst), src);
1908 } else if (dst.regClass() == v2) {
1909 /* Lowered at NIR level for precision reasons. */
1910 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1911 } else {
1912 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1913 }
1914 break;
1915 }
1916 case nir_op_fneg: {
1917 Temp src = get_alu_src(ctx, instr->src[0]);
1918 if (dst.regClass() == v2b) {
1919 if (ctx->block->fp_mode.must_flush_denorms16_64)
1920 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1921 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1922 } else if (dst.regClass() == v1) {
1923 if (ctx->block->fp_mode.must_flush_denorms32)
1924 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1925 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1926 } else if (dst.regClass() == v2) {
1927 if (ctx->block->fp_mode.must_flush_denorms16_64)
1928 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1929 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1930 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1931 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1932 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1933 } else {
1934 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1935 }
1936 break;
1937 }
1938 case nir_op_fabs: {
1939 Temp src = get_alu_src(ctx, instr->src[0]);
1940 if (dst.regClass() == v2b) {
1941 if (ctx->block->fp_mode.must_flush_denorms16_64)
1942 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1943 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1944 } else if (dst.regClass() == v1) {
1945 if (ctx->block->fp_mode.must_flush_denorms32)
1946 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1947 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1948 } else if (dst.regClass() == v2) {
1949 if (ctx->block->fp_mode.must_flush_denorms16_64)
1950 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1951 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1952 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1953 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1954 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1955 } else {
1956 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1957 }
1958 break;
1959 }
1960 case nir_op_fsat: {
1961 Temp src = get_alu_src(ctx, instr->src[0]);
1962 if (dst.regClass() == v2b) {
1963 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
1964 } else if (dst.regClass() == v1) {
1965 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1966 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1967 // TODO: confirm that this holds under any circumstances
1968 } else if (dst.regClass() == v2) {
1969 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1970 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1971 vop3->clamp = true;
1972 } else {
1973 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1974 }
1975 break;
1976 }
1977 case nir_op_flog2: {
1978 Temp src = get_alu_src(ctx, instr->src[0]);
1979 if (dst.regClass() == v2b) {
1980 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
1981 } else if (dst.regClass() == v1) {
1982 emit_log2(ctx, bld, Definition(dst), src);
1983 } else {
1984 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1985 }
1986 break;
1987 }
1988 case nir_op_frcp: {
1989 Temp src = get_alu_src(ctx, instr->src[0]);
1990 if (dst.regClass() == v2b) {
1991 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
1992 } else if (dst.regClass() == v1) {
1993 emit_rcp(ctx, bld, Definition(dst), src);
1994 } else if (dst.regClass() == v2) {
1995 /* Lowered at NIR level for precision reasons. */
1996 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1997 } else {
1998 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1999 }
2000 break;
2001 }
2002 case nir_op_fexp2: {
2003 if (dst.regClass() == v2b) {
2004 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
2005 } else if (dst.regClass() == v1) {
2006 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
2007 } else {
2008 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2009 }
2010 break;
2011 }
2012 case nir_op_fsqrt: {
2013 Temp src = get_alu_src(ctx, instr->src[0]);
2014 if (dst.regClass() == v2b) {
2015 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
2016 } else if (dst.regClass() == v1) {
2017 emit_sqrt(ctx, bld, Definition(dst), src);
2018 } else if (dst.regClass() == v2) {
2019 /* Lowered at NIR level for precision reasons. */
2020 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
2021 } else {
2022 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2023 }
2024 break;
2025 }
2026 case nir_op_ffract: {
2027 if (dst.regClass() == v2b) {
2028 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
2029 } else if (dst.regClass() == v1) {
2030 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
2031 } else if (dst.regClass() == v2) {
2032 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
2033 } else {
2034 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2035 }
2036 break;
2037 }
2038 case nir_op_ffloor: {
2039 Temp src = get_alu_src(ctx, instr->src[0]);
2040 if (dst.regClass() == v2b) {
2041 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
2042 } else if (dst.regClass() == v1) {
2043 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
2044 } else if (dst.regClass() == v2) {
2045 emit_floor_f64(ctx, bld, Definition(dst), src);
2046 } else {
2047 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2048 }
2049 break;
2050 }
2051 case nir_op_fceil: {
2052 Temp src0 = get_alu_src(ctx, instr->src[0]);
2053 if (dst.regClass() == v2b) {
2054 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
2055 } else if (dst.regClass() == v1) {
2056 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2057 } else if (dst.regClass() == v2) {
2058 if (ctx->options->chip_class >= GFX7) {
2059 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2060 } else {
2061 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2062 /* trunc = trunc(src0)
2063 * if (src0 > 0.0 && src0 != trunc)
2064 * trunc += 1.0
2065 */
2066 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2067 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2068 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2069 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2070 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2071 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2072 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2073 }
2074 } else {
2075 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2076 }
2077 break;
2078 }
2079 case nir_op_ftrunc: {
2080 Temp src = get_alu_src(ctx, instr->src[0]);
2081 if (dst.regClass() == v2b) {
2082 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2083 } else if (dst.regClass() == v1) {
2084 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2085 } else if (dst.regClass() == v2) {
2086 emit_trunc_f64(ctx, bld, Definition(dst), src);
2087 } else {
2088 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2089 }
2090 break;
2091 }
2092 case nir_op_fround_even: {
2093 Temp src0 = get_alu_src(ctx, instr->src[0]);
2094 if (dst.regClass() == v2b) {
2095 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2096 } else if (dst.regClass() == v1) {
2097 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2098 } else if (dst.regClass() == v2) {
2099 if (ctx->options->chip_class >= GFX7) {
2100 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2101 } else {
2102 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2103 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2104 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2105
2106 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2107 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2108 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2109 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2110 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2111 tmp = sub->definitions[0].getTemp();
2112
2113 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2114 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2115 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2116 Temp cond = vop3->definitions[0].getTemp();
2117
2118 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2119 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2120 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2121 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2122
2123 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2124 }
2125 } else {
2126 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2127 }
2128 break;
2129 }
2130 case nir_op_fsin:
2131 case nir_op_fcos: {
2132 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2133 aco_ptr<Instruction> norm;
2134 if (dst.regClass() == v2b) {
2135 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2136 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2137 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2138 bld.vop1(opcode, Definition(dst), tmp);
2139 } else if (dst.regClass() == v1) {
2140 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2141 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2142
2143 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2144 if (ctx->options->chip_class < GFX9)
2145 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2146
2147 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2148 bld.vop1(opcode, Definition(dst), tmp);
2149 } else {
2150 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2151 }
2152 break;
2153 }
2154 case nir_op_ldexp: {
2155 Temp src0 = get_alu_src(ctx, instr->src[0]);
2156 Temp src1 = get_alu_src(ctx, instr->src[1]);
2157 if (dst.regClass() == v2b) {
2158 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2159 } else if (dst.regClass() == v1) {
2160 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2161 } else if (dst.regClass() == v2) {
2162 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2163 } else {
2164 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2165 }
2166 break;
2167 }
2168 case nir_op_frexp_sig: {
2169 Temp src = get_alu_src(ctx, instr->src[0]);
2170 if (dst.regClass() == v2b) {
2171 bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
2172 } else if (dst.regClass() == v1) {
2173 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2174 } else if (dst.regClass() == v2) {
2175 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2176 } else {
2177 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2178 }
2179 break;
2180 }
2181 case nir_op_frexp_exp: {
2182 Temp src = get_alu_src(ctx, instr->src[0]);
2183 if (instr->src[0].src.ssa->bit_size == 16) {
2184 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2185 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2186 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2187 } else if (instr->src[0].src.ssa->bit_size == 32) {
2188 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2189 } else if (instr->src[0].src.ssa->bit_size == 64) {
2190 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2191 } else {
2192 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2193 }
2194 break;
2195 }
2196 case nir_op_fsign: {
2197 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2198 if (dst.regClass() == v2b) {
2199 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2200 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2201 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2202 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2203 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2204 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
2205 } else if (dst.regClass() == v1) {
2206 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2207 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2208 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2209 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2210 } else if (dst.regClass() == v2) {
2211 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2212 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2213 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2214
2215 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2216 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2217 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2218
2219 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2220 } else {
2221 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2222 }
2223 break;
2224 }
2225 case nir_op_f2f16:
2226 case nir_op_f2f16_rtne: {
2227 Temp src = get_alu_src(ctx, instr->src[0]);
2228 if (instr->src[0].src.ssa->bit_size == 64)
2229 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2230 if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
2231 /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
2232 * keep value numbering and the scheduler simpler.
2233 */
2234 bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
2235 else
2236 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2237 break;
2238 }
2239 case nir_op_f2f16_rtz: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 64)
2242 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2243 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
2244 break;
2245 }
2246 case nir_op_f2f32: {
2247 if (instr->src[0].src.ssa->bit_size == 16) {
2248 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2249 } else if (instr->src[0].src.ssa->bit_size == 64) {
2250 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2251 } else {
2252 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2253 }
2254 break;
2255 }
2256 case nir_op_f2f64: {
2257 Temp src = get_alu_src(ctx, instr->src[0]);
2258 if (instr->src[0].src.ssa->bit_size == 16)
2259 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2260 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2261 break;
2262 }
2263 case nir_op_i2f16: {
2264 assert(dst.regClass() == v2b);
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 if (instr->src[0].src.ssa->bit_size == 8)
2267 src = convert_int(ctx, bld, src, 8, 16, true);
2268 else if (instr->src[0].src.ssa->bit_size == 64)
2269 src = convert_int(ctx, bld, src, 64, 32, false);
2270 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2271 break;
2272 }
2273 case nir_op_i2f32: {
2274 assert(dst.size() == 1);
2275 Temp src = get_alu_src(ctx, instr->src[0]);
2276 if (instr->src[0].src.ssa->bit_size <= 16)
2277 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2278 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2279 break;
2280 }
2281 case nir_op_i2f64: {
2282 if (instr->src[0].src.ssa->bit_size <= 32) {
2283 Temp src = get_alu_src(ctx, instr->src[0]);
2284 if (instr->src[0].src.ssa->bit_size <= 16)
2285 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2286 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2287 } else if (instr->src[0].src.ssa->bit_size == 64) {
2288 Temp src = get_alu_src(ctx, instr->src[0]);
2289 RegClass rc = RegClass(src.type(), 1);
2290 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2291 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2292 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2293 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2294 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2295 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2296
2297 } else {
2298 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2299 }
2300 break;
2301 }
2302 case nir_op_u2f16: {
2303 assert(dst.regClass() == v2b);
2304 Temp src = get_alu_src(ctx, instr->src[0]);
2305 if (instr->src[0].src.ssa->bit_size == 8)
2306 src = convert_int(ctx, bld, src, 8, 16, false);
2307 else if (instr->src[0].src.ssa->bit_size == 64)
2308 src = convert_int(ctx, bld, src, 64, 32, false);
2309 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2310 break;
2311 }
2312 case nir_op_u2f32: {
2313 assert(dst.size() == 1);
2314 Temp src = get_alu_src(ctx, instr->src[0]);
2315 if (instr->src[0].src.ssa->bit_size == 8) {
2316 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2317 } else {
2318 if (instr->src[0].src.ssa->bit_size == 16)
2319 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2320 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2321 }
2322 break;
2323 }
2324 case nir_op_u2f64: {
2325 if (instr->src[0].src.ssa->bit_size <= 32) {
2326 Temp src = get_alu_src(ctx, instr->src[0]);
2327 if (instr->src[0].src.ssa->bit_size <= 16)
2328 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2329 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2330 } else if (instr->src[0].src.ssa->bit_size == 64) {
2331 Temp src = get_alu_src(ctx, instr->src[0]);
2332 RegClass rc = RegClass(src.type(), 1);
2333 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2334 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2335 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2336 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2337 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2338 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2339 } else {
2340 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2341 }
2342 break;
2343 }
2344 case nir_op_f2i8:
2345 case nir_op_f2i16: {
2346 if (instr->src[0].src.ssa->bit_size == 16)
2347 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2348 else if (instr->src[0].src.ssa->bit_size == 32)
2349 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2350 else
2351 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2352 break;
2353 }
2354 case nir_op_f2u8:
2355 case nir_op_f2u16: {
2356 if (instr->src[0].src.ssa->bit_size == 16)
2357 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2358 else if (instr->src[0].src.ssa->bit_size == 32)
2359 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2360 else
2361 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2362 break;
2363 }
2364 case nir_op_f2i32: {
2365 Temp src = get_alu_src(ctx, instr->src[0]);
2366 if (instr->src[0].src.ssa->bit_size == 16) {
2367 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2368 if (dst.type() == RegType::vgpr) {
2369 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2370 } else {
2371 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2372 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2373 }
2374 } else if (instr->src[0].src.ssa->bit_size == 32) {
2375 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2376 } else if (instr->src[0].src.ssa->bit_size == 64) {
2377 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2378 } else {
2379 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2380 }
2381 break;
2382 }
2383 case nir_op_f2u32: {
2384 Temp src = get_alu_src(ctx, instr->src[0]);
2385 if (instr->src[0].src.ssa->bit_size == 16) {
2386 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2387 if (dst.type() == RegType::vgpr) {
2388 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2389 } else {
2390 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2391 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2392 }
2393 } else if (instr->src[0].src.ssa->bit_size == 32) {
2394 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2395 } else if (instr->src[0].src.ssa->bit_size == 64) {
2396 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2397 } else {
2398 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2399 }
2400 break;
2401 }
2402 case nir_op_f2i64: {
2403 Temp src = get_alu_src(ctx, instr->src[0]);
2404 if (instr->src[0].src.ssa->bit_size == 16)
2405 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2406
2407 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2408 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2409 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2410 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2411 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2412 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2413 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2414 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2415 Temp new_exponent = bld.tmp(v1);
2416 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2417 if (ctx->program->chip_class >= GFX8)
2418 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2419 else
2420 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2421 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2422 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2423 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2424 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2425 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2426 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2427 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2428 Temp new_lower = bld.tmp(v1);
2429 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2430 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2431 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2432
2433 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2434 if (src.type() == RegType::vgpr)
2435 src = bld.as_uniform(src);
2436 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2437 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2438 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2439 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2440 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2441 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2442 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2443 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2444 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2445 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2446 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2447 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2448 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2449 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2450 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2451 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2452 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2453 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2454 Temp borrow = bld.tmp(s1);
2455 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2456 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2457 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2458
2459 } else if (instr->src[0].src.ssa->bit_size == 64) {
2460 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2461 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2462 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2463 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2464 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2465 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2466 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2467 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2468 if (dst.type() == RegType::sgpr) {
2469 lower = bld.as_uniform(lower);
2470 upper = bld.as_uniform(upper);
2471 }
2472 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2473
2474 } else {
2475 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2476 }
2477 break;
2478 }
2479 case nir_op_f2u64: {
2480 Temp src = get_alu_src(ctx, instr->src[0]);
2481 if (instr->src[0].src.ssa->bit_size == 16)
2482 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2483
2484 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2485 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2486 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2487 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2488 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2489 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2490 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2491 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2492 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2493 Temp new_exponent = bld.tmp(v1);
2494 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2495 if (ctx->program->chip_class >= GFX8)
2496 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2497 else
2498 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2499 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2500 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2501 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2502 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2503 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2504 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2505 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2506
2507 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2508 if (src.type() == RegType::vgpr)
2509 src = bld.as_uniform(src);
2510 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2511 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2512 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2513 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2514 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2515 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2516 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2517 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2518 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2519 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2520 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2521 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2522 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2523 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2524 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2525 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2526 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2527 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2528
2529 } else if (instr->src[0].src.ssa->bit_size == 64) {
2530 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2531 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2532 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2533 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2534 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2535 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2536 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2537 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2538 if (dst.type() == RegType::sgpr) {
2539 lower = bld.as_uniform(lower);
2540 upper = bld.as_uniform(upper);
2541 }
2542 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2543
2544 } else {
2545 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2546 }
2547 break;
2548 }
2549 case nir_op_b2f16: {
2550 Temp src = get_alu_src(ctx, instr->src[0]);
2551 assert(src.regClass() == bld.lm);
2552
2553 if (dst.regClass() == s1) {
2554 src = bool_to_scalar_condition(ctx, src);
2555 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2556 } else if (dst.regClass() == v2b) {
2557 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2558 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2559 } else {
2560 unreachable("Wrong destination register class for nir_op_b2f16.");
2561 }
2562 break;
2563 }
2564 case nir_op_b2f32: {
2565 Temp src = get_alu_src(ctx, instr->src[0]);
2566 assert(src.regClass() == bld.lm);
2567
2568 if (dst.regClass() == s1) {
2569 src = bool_to_scalar_condition(ctx, src);
2570 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2571 } else if (dst.regClass() == v1) {
2572 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2573 } else {
2574 unreachable("Wrong destination register class for nir_op_b2f32.");
2575 }
2576 break;
2577 }
2578 case nir_op_b2f64: {
2579 Temp src = get_alu_src(ctx, instr->src[0]);
2580 assert(src.regClass() == bld.lm);
2581
2582 if (dst.regClass() == s2) {
2583 src = bool_to_scalar_condition(ctx, src);
2584 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2585 } else if (dst.regClass() == v2) {
2586 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2587 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2589 } else {
2590 unreachable("Wrong destination register class for nir_op_b2f64.");
2591 }
2592 break;
2593 }
2594 case nir_op_i2i8:
2595 case nir_op_i2i16:
2596 case nir_op_i2i32:
2597 case nir_op_i2i64: {
2598 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2599 /* no need to do the extract in get_alu_src() */
2600 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2601 sgpr_extract_sext : sgpr_extract_undef;
2602 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2603 } else {
2604 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2605 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2606 }
2607 break;
2608 }
2609 case nir_op_u2u8:
2610 case nir_op_u2u16:
2611 case nir_op_u2u32:
2612 case nir_op_u2u64: {
2613 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2614 /* no need to do the extract in get_alu_src() */
2615 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2616 sgpr_extract_zext : sgpr_extract_undef;
2617 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2618 } else {
2619 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2620 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2621 }
2622 break;
2623 }
2624 case nir_op_b2b32:
2625 case nir_op_b2i8:
2626 case nir_op_b2i16:
2627 case nir_op_b2i32:
2628 case nir_op_b2i64: {
2629 Temp src = get_alu_src(ctx, instr->src[0]);
2630 assert(src.regClass() == bld.lm);
2631
2632 Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst;
2633 if (tmp.regClass() == s1) {
2634 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2635 bool_to_scalar_condition(ctx, src, tmp);
2636 } else if (tmp.type() == RegType::vgpr) {
2637 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src);
2638 } else {
2639 unreachable("Invalid register class for b2i32");
2640 }
2641
2642 if (tmp != dst)
2643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
2644 break;
2645 }
2646 case nir_op_b2b1:
2647 case nir_op_i2b1: {
2648 Temp src = get_alu_src(ctx, instr->src[0]);
2649 assert(dst.regClass() == bld.lm);
2650
2651 if (src.type() == RegType::vgpr) {
2652 assert(src.regClass() == v1 || src.regClass() == v2);
2653 assert(dst.regClass() == bld.lm);
2654 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2655 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2656 } else {
2657 assert(src.regClass() == s1 || src.regClass() == s2);
2658 Temp tmp;
2659 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2660 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2661 } else {
2662 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2663 bld.scc(bld.def(s1)), Operand(0u), src);
2664 }
2665 bool_to_vector_condition(ctx, tmp, dst);
2666 }
2667 break;
2668 }
2669 case nir_op_pack_64_2x32_split: {
2670 Temp src0 = get_alu_src(ctx, instr->src[0]);
2671 Temp src1 = get_alu_src(ctx, instr->src[1]);
2672
2673 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2674 break;
2675 }
2676 case nir_op_unpack_64_2x32_split_x:
2677 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2678 break;
2679 case nir_op_unpack_64_2x32_split_y:
2680 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2681 break;
2682 case nir_op_unpack_32_2x16_split_x:
2683 if (dst.type() == RegType::vgpr) {
2684 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2685 } else {
2686 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2687 }
2688 break;
2689 case nir_op_unpack_32_2x16_split_y:
2690 if (dst.type() == RegType::vgpr) {
2691 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2692 } else {
2693 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2694 }
2695 break;
2696 case nir_op_pack_32_2x16_split: {
2697 Temp src0 = get_alu_src(ctx, instr->src[0]);
2698 Temp src1 = get_alu_src(ctx, instr->src[1]);
2699 if (dst.regClass() == v1) {
2700 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2701 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2702 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2703 } else {
2704 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2705 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2706 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2707 }
2708 break;
2709 }
2710 case nir_op_pack_half_2x16: {
2711 Temp src = get_alu_src(ctx, instr->src[0], 2);
2712
2713 if (dst.regClass() == v1) {
2714 Temp src0 = bld.tmp(v1);
2715 Temp src1 = bld.tmp(v1);
2716 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2717 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2718 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2719 else
2720 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2721 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2722 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2723 } else {
2724 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2725 }
2726 break;
2727 }
2728 case nir_op_unpack_half_2x16_split_x: {
2729 if (dst.regClass() == v1) {
2730 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2731 } else {
2732 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2733 }
2734 break;
2735 }
2736 case nir_op_unpack_half_2x16_split_y: {
2737 if (dst.regClass() == v1) {
2738 /* TODO: use SDWA here */
2739 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2740 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2741 } else {
2742 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2743 }
2744 break;
2745 }
2746 case nir_op_fquantize2f16: {
2747 Temp src = get_alu_src(ctx, instr->src[0]);
2748 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2749 Temp f32, cmp_res;
2750
2751 if (ctx->program->chip_class >= GFX8) {
2752 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2753 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2754 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2755 } else {
2756 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2757 * so compare the result and flush to 0 if it's smaller.
2758 */
2759 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2760 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2761 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2762 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2763 cmp_res = vop3->definitions[0].getTemp();
2764 }
2765
2766 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2767 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2768 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2769 } else {
2770 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2771 }
2772 break;
2773 }
2774 case nir_op_bfm: {
2775 Temp bits = get_alu_src(ctx, instr->src[0]);
2776 Temp offset = get_alu_src(ctx, instr->src[1]);
2777
2778 if (dst.regClass() == s1) {
2779 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2780 } else if (dst.regClass() == v1) {
2781 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2782 } else {
2783 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2784 }
2785 break;
2786 }
2787 case nir_op_bitfield_select: {
2788 /* (mask & insert) | (~mask & base) */
2789 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2790 Temp insert = get_alu_src(ctx, instr->src[1]);
2791 Temp base = get_alu_src(ctx, instr->src[2]);
2792
2793 /* dst = (insert & bitmask) | (base & ~bitmask) */
2794 if (dst.regClass() == s1) {
2795 aco_ptr<Instruction> sop2;
2796 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2797 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2798 Operand lhs;
2799 if (const_insert && const_bitmask) {
2800 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2801 } else {
2802 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2803 lhs = Operand(insert);
2804 }
2805
2806 Operand rhs;
2807 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2808 if (const_base && const_bitmask) {
2809 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2810 } else {
2811 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2812 rhs = Operand(base);
2813 }
2814
2815 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2816
2817 } else if (dst.regClass() == v1) {
2818 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2819 base = as_vgpr(ctx, base);
2820 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2821 insert = as_vgpr(ctx, insert);
2822
2823 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2824
2825 } else {
2826 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2827 }
2828 break;
2829 }
2830 case nir_op_ubfe:
2831 case nir_op_ibfe: {
2832 Temp base = get_alu_src(ctx, instr->src[0]);
2833 Temp offset = get_alu_src(ctx, instr->src[1]);
2834 Temp bits = get_alu_src(ctx, instr->src[2]);
2835
2836 if (dst.type() == RegType::sgpr) {
2837 Operand extract;
2838 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2839 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2840 if (const_offset && const_bits) {
2841 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2842 extract = Operand(const_extract);
2843 } else {
2844 Operand width;
2845 if (const_bits) {
2846 width = Operand(const_bits->u32 << 16);
2847 } else {
2848 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2849 }
2850 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2851 }
2852
2853 aco_opcode opcode;
2854 if (dst.regClass() == s1) {
2855 if (instr->op == nir_op_ubfe)
2856 opcode = aco_opcode::s_bfe_u32;
2857 else
2858 opcode = aco_opcode::s_bfe_i32;
2859 } else if (dst.regClass() == s2) {
2860 if (instr->op == nir_op_ubfe)
2861 opcode = aco_opcode::s_bfe_u64;
2862 else
2863 opcode = aco_opcode::s_bfe_i64;
2864 } else {
2865 unreachable("Unsupported BFE bit size");
2866 }
2867
2868 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2869
2870 } else {
2871 aco_opcode opcode;
2872 if (dst.regClass() == v1) {
2873 if (instr->op == nir_op_ubfe)
2874 opcode = aco_opcode::v_bfe_u32;
2875 else
2876 opcode = aco_opcode::v_bfe_i32;
2877 } else {
2878 unreachable("Unsupported BFE bit size");
2879 }
2880
2881 emit_vop3a_instruction(ctx, instr, opcode, dst);
2882 }
2883 break;
2884 }
2885 case nir_op_bit_count: {
2886 Temp src = get_alu_src(ctx, instr->src[0]);
2887 if (src.regClass() == s1) {
2888 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2889 } else if (src.regClass() == v1) {
2890 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2891 } else if (src.regClass() == v2) {
2892 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2893 emit_extract_vector(ctx, src, 1, v1),
2894 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2895 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2896 } else if (src.regClass() == s2) {
2897 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2898 } else {
2899 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2900 }
2901 break;
2902 }
2903 case nir_op_flt: {
2904 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2905 break;
2906 }
2907 case nir_op_fge: {
2908 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2909 break;
2910 }
2911 case nir_op_feq: {
2912 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2913 break;
2914 }
2915 case nir_op_fne: {
2916 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2917 break;
2918 }
2919 case nir_op_ilt: {
2920 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2921 break;
2922 }
2923 case nir_op_ige: {
2924 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2925 break;
2926 }
2927 case nir_op_ieq: {
2928 if (instr->src[0].src.ssa->bit_size == 1)
2929 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2930 else
2931 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2932 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2933 break;
2934 }
2935 case nir_op_ine: {
2936 if (instr->src[0].src.ssa->bit_size == 1)
2937 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2938 else
2939 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2940 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2941 break;
2942 }
2943 case nir_op_ult: {
2944 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2945 break;
2946 }
2947 case nir_op_uge: {
2948 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2949 break;
2950 }
2951 case nir_op_fddx:
2952 case nir_op_fddy:
2953 case nir_op_fddx_fine:
2954 case nir_op_fddy_fine:
2955 case nir_op_fddx_coarse:
2956 case nir_op_fddy_coarse: {
2957 Temp src = get_alu_src(ctx, instr->src[0]);
2958 uint16_t dpp_ctrl1, dpp_ctrl2;
2959 if (instr->op == nir_op_fddx_fine) {
2960 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2961 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2962 } else if (instr->op == nir_op_fddy_fine) {
2963 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2964 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2965 } else {
2966 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2967 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2968 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2969 else
2970 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2971 }
2972
2973 Temp tmp;
2974 if (ctx->program->chip_class >= GFX8) {
2975 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2976 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2977 } else {
2978 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2979 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2980 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2981 }
2982 emit_wqm(ctx, tmp, dst, true);
2983 break;
2984 }
2985 default:
2986 isel_err(&instr->instr, "Unknown NIR ALU instr");
2987 }
2988 }
2989
2990 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2991 {
2992 Temp dst = get_ssa_temp(ctx, &instr->def);
2993
2994 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2995 // which get truncated the lsb if double and msb if int
2996 // for now, we only use s_mov_b64 with 64bit inline constants
2997 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2998 assert(dst.type() == RegType::sgpr);
2999
3000 Builder bld(ctx->program, ctx->block);
3001
3002 if (instr->def.bit_size == 1) {
3003 assert(dst.regClass() == bld.lm);
3004 int val = instr->value[0].b ? -1 : 0;
3005 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3006 bld.sop1(Builder::s_mov, Definition(dst), op);
3007 } else if (instr->def.bit_size == 8) {
3008 /* ensure that the value is correctly represented in the low byte of the register */
3009 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3010 } else if (instr->def.bit_size == 16) {
3011 /* ensure that the value is correctly represented in the low half of the register */
3012 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3013 } else if (dst.size() == 1) {
3014 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3015 } else {
3016 assert(dst.size() != 1);
3017 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3018 if (instr->def.bit_size == 64)
3019 for (unsigned i = 0; i < dst.size(); i++)
3020 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3021 else {
3022 for (unsigned i = 0; i < dst.size(); i++)
3023 vec->operands[i] = Operand{instr->value[i].u32};
3024 }
3025 vec->definitions[0] = Definition(dst);
3026 ctx->block->instructions.emplace_back(std::move(vec));
3027 }
3028 }
3029
3030 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3031 {
3032 uint32_t new_mask = 0;
3033 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3034 if (mask & (1u << i))
3035 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3036 return new_mask;
3037 }
3038
3039 struct LoadEmitInfo {
3040 Operand offset;
3041 Temp dst;
3042 unsigned num_components;
3043 unsigned component_size;
3044 Temp resource = Temp(0, s1);
3045 unsigned component_stride = 0;
3046 unsigned const_offset = 0;
3047 unsigned align_mul = 0;
3048 unsigned align_offset = 0;
3049
3050 bool glc = false;
3051 unsigned swizzle_component_size = 0;
3052 memory_sync_info sync;
3053 Temp soffset = Temp(0, s1);
3054 };
3055
3056 using LoadCallback = Temp(*)(
3057 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3058 unsigned align, unsigned const_offset, Temp dst_hint);
3059
3060 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3061 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3062 {
3063 unsigned load_size = info->num_components * info->component_size;
3064 unsigned component_size = info->component_size;
3065
3066 unsigned num_vals = 0;
3067 Temp vals[info->dst.bytes()];
3068
3069 unsigned const_offset = info->const_offset;
3070
3071 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3072 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3073
3074 unsigned bytes_read = 0;
3075 while (bytes_read < load_size) {
3076 unsigned bytes_needed = load_size - bytes_read;
3077
3078 /* add buffer for unaligned loads */
3079 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3080
3081 if (byte_align) {
3082 if ((bytes_needed > 2 ||
3083 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
3084 !supports_8bit_16bit_loads) && byte_align_loads) {
3085 if (info->component_stride) {
3086 assert(supports_8bit_16bit_loads && "unimplemented");
3087 bytes_needed = 2;
3088 byte_align = 0;
3089 } else {
3090 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3091 bytes_needed = align(bytes_needed, 4);
3092 }
3093 } else {
3094 byte_align = 0;
3095 }
3096 }
3097
3098 if (info->swizzle_component_size)
3099 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3100 if (info->component_stride)
3101 bytes_needed = MIN2(bytes_needed, info->component_size);
3102
3103 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3104
3105 /* reduce constant offset */
3106 Operand offset = info->offset;
3107 unsigned reduced_const_offset = const_offset;
3108 bool remove_const_offset_completely = need_to_align_offset;
3109 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3110 unsigned to_add = const_offset;
3111 if (remove_const_offset_completely) {
3112 reduced_const_offset = 0;
3113 } else {
3114 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3115 reduced_const_offset %= max_const_offset_plus_one;
3116 }
3117 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3118 if (offset.isConstant()) {
3119 offset = Operand(offset.constantValue() + to_add);
3120 } else if (offset_tmp.regClass() == s1) {
3121 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3122 offset_tmp, Operand(to_add));
3123 } else if (offset_tmp.regClass() == v1) {
3124 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3125 } else {
3126 Temp lo = bld.tmp(offset_tmp.type(), 1);
3127 Temp hi = bld.tmp(offset_tmp.type(), 1);
3128 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3129
3130 if (offset_tmp.regClass() == s2) {
3131 Temp carry = bld.tmp(s1);
3132 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3133 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3134 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3135 } else {
3136 Temp new_lo = bld.tmp(v1);
3137 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3138 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3139 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3140 }
3141 }
3142 }
3143
3144 /* align offset down if needed */
3145 Operand aligned_offset = offset;
3146 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3147 if (need_to_align_offset) {
3148 align = 4;
3149 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3150 if (offset.isConstant()) {
3151 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3152 } else if (offset_tmp.regClass() == s1) {
3153 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3154 } else if (offset_tmp.regClass() == s2) {
3155 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3156 } else if (offset_tmp.regClass() == v1) {
3157 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3158 } else if (offset_tmp.regClass() == v2) {
3159 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3160 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3161 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3162 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3163 }
3164 }
3165 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3166 bld.copy(bld.def(s1), aligned_offset);
3167
3168 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3169 reduced_const_offset, byte_align ? Temp() : info->dst);
3170
3171 /* the callback wrote directly to dst */
3172 if (val == info->dst) {
3173 assert(num_vals == 0);
3174 emit_split_vector(ctx, info->dst, info->num_components);
3175 return;
3176 }
3177
3178 /* shift result right if needed */
3179 if (info->component_size < 4 && byte_align_loads) {
3180 Operand align((uint32_t)byte_align);
3181 if (byte_align == -1) {
3182 if (offset.isConstant())
3183 align = Operand(offset.constantValue() % 4u);
3184 else if (offset.size() == 2)
3185 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3186 else
3187 align = offset;
3188 }
3189
3190 assert(val.bytes() >= load_size && "unimplemented");
3191 if (val.type() == RegType::sgpr)
3192 byte_align_scalar(ctx, val, align, info->dst);
3193 else
3194 byte_align_vector(ctx, val, align, info->dst, component_size);
3195 return;
3196 }
3197
3198 /* add result to list and advance */
3199 if (info->component_stride) {
3200 assert(val.bytes() == info->component_size && "unimplemented");
3201 const_offset += info->component_stride;
3202 align_offset = (align_offset + info->component_stride) % align_mul;
3203 } else {
3204 const_offset += val.bytes();
3205 align_offset = (align_offset + val.bytes()) % align_mul;
3206 }
3207 bytes_read += val.bytes();
3208 vals[num_vals++] = val;
3209 }
3210
3211 /* create array of components */
3212 unsigned components_split = 0;
3213 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3214 bool has_vgprs = false;
3215 for (unsigned i = 0; i < num_vals;) {
3216 Temp tmp[num_vals];
3217 unsigned num_tmps = 0;
3218 unsigned tmp_size = 0;
3219 RegType reg_type = RegType::sgpr;
3220 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3221 if (vals[i].type() == RegType::vgpr)
3222 reg_type = RegType::vgpr;
3223 tmp_size += vals[i].bytes();
3224 tmp[num_tmps++] = vals[i++];
3225 }
3226 if (num_tmps > 1) {
3227 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3228 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3229 for (unsigned i = 0; i < num_tmps; i++)
3230 vec->operands[i] = Operand(tmp[i]);
3231 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3232 vec->definitions[0] = Definition(tmp[0]);
3233 bld.insert(std::move(vec));
3234 }
3235
3236 if (tmp[0].bytes() % component_size) {
3237 /* trim tmp[0] */
3238 assert(i == num_vals);
3239 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3240 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3241 }
3242
3243 RegClass elem_rc = RegClass::get(reg_type, component_size);
3244
3245 unsigned start = components_split;
3246
3247 if (tmp_size == elem_rc.bytes()) {
3248 allocated_vec[components_split++] = tmp[0];
3249 } else {
3250 assert(tmp_size % elem_rc.bytes() == 0);
3251 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3252 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3253 for (unsigned i = 0; i < split->definitions.size(); i++) {
3254 Temp component = bld.tmp(elem_rc);
3255 allocated_vec[components_split++] = component;
3256 split->definitions[i] = Definition(component);
3257 }
3258 split->operands[0] = Operand(tmp[0]);
3259 bld.insert(std::move(split));
3260 }
3261
3262 /* try to p_as_uniform early so we can create more optimizable code and
3263 * also update allocated_vec */
3264 for (unsigned j = start; j < components_split; j++) {
3265 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3266 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3267 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3268 }
3269 }
3270
3271 /* concatenate components and p_as_uniform() result if needed */
3272 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3273 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3274
3275 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3276
3277 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3278 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3279 for (unsigned i = 0; i < info->num_components; i++)
3280 vec->operands[i] = Operand(allocated_vec[i]);
3281 if (padding_bytes)
3282 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3283 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3284 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3285 vec->definitions[0] = Definition(tmp);
3286 bld.insert(std::move(vec));
3287 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3288 } else {
3289 vec->definitions[0] = Definition(info->dst);
3290 bld.insert(std::move(vec));
3291 }
3292 }
3293
3294 Operand load_lds_size_m0(Builder& bld)
3295 {
3296 /* TODO: m0 does not need to be initialized on GFX9+ */
3297 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3298 }
3299
3300 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3301 Temp offset, unsigned bytes_needed,
3302 unsigned align, unsigned const_offset,
3303 Temp dst_hint)
3304 {
3305 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3306
3307 Operand m = load_lds_size_m0(bld);
3308
3309 bool large_ds_read = bld.program->chip_class >= GFX7;
3310 bool usable_read2 = bld.program->chip_class >= GFX7;
3311
3312 bool read2 = false;
3313 unsigned size = 0;
3314 aco_opcode op;
3315 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3316 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3317 size = 16;
3318 op = aco_opcode::ds_read_b128;
3319 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3320 size = 16;
3321 read2 = true;
3322 op = aco_opcode::ds_read2_b64;
3323 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3324 size = 12;
3325 op = aco_opcode::ds_read_b96;
3326 } else if (bytes_needed >= 8 && align % 8 == 0) {
3327 size = 8;
3328 op = aco_opcode::ds_read_b64;
3329 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3330 size = 8;
3331 read2 = true;
3332 op = aco_opcode::ds_read2_b32;
3333 } else if (bytes_needed >= 4 && align % 4 == 0) {
3334 size = 4;
3335 op = aco_opcode::ds_read_b32;
3336 } else if (bytes_needed >= 2 && align % 2 == 0) {
3337 size = 2;
3338 op = aco_opcode::ds_read_u16;
3339 } else {
3340 size = 1;
3341 op = aco_opcode::ds_read_u8;
3342 }
3343
3344 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3345 if (const_offset >= max_offset_plus_one) {
3346 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3347 const_offset %= max_offset_plus_one;
3348 }
3349
3350 if (read2)
3351 const_offset /= (size / 2u);
3352
3353 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3354 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3355 Instruction *instr;
3356 if (read2)
3357 instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3358 else
3359 instr = bld.ds(op, Definition(val), offset, m, const_offset);
3360 static_cast<DS_instruction *>(instr)->sync = info->sync;
3361
3362 if (size < 4)
3363 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3364
3365 return val;
3366 }
3367
3368 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3369
3370 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3371 Temp offset, unsigned bytes_needed,
3372 unsigned align, unsigned const_offset,
3373 Temp dst_hint)
3374 {
3375 unsigned size = 0;
3376 aco_opcode op;
3377 if (bytes_needed <= 4) {
3378 size = 1;
3379 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3380 } else if (bytes_needed <= 8) {
3381 size = 2;
3382 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3383 } else if (bytes_needed <= 16) {
3384 size = 4;
3385 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3386 } else if (bytes_needed <= 32) {
3387 size = 8;
3388 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3389 } else {
3390 size = 16;
3391 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3392 }
3393 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3394 if (info->resource.id()) {
3395 load->operands[0] = Operand(info->resource);
3396 load->operands[1] = Operand(offset);
3397 } else {
3398 load->operands[0] = Operand(offset);
3399 load->operands[1] = Operand(0u);
3400 }
3401 RegClass rc(RegType::sgpr, size);
3402 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3403 load->definitions[0] = Definition(val);
3404 load->glc = info->glc;
3405 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3406 load->sync = info->sync;
3407 bld.insert(std::move(load));
3408 return val;
3409 }
3410
3411 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3412
3413 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3414 Temp offset, unsigned bytes_needed,
3415 unsigned align_, unsigned const_offset,
3416 Temp dst_hint)
3417 {
3418 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3419 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3420
3421 if (info->soffset.id()) {
3422 if (soffset.isTemp())
3423 vaddr = bld.copy(bld.def(v1), soffset);
3424 soffset = Operand(info->soffset);
3425 }
3426
3427 unsigned bytes_size = 0;
3428 aco_opcode op;
3429 if (bytes_needed == 1 || align_ % 2) {
3430 bytes_size = 1;
3431 op = aco_opcode::buffer_load_ubyte;
3432 } else if (bytes_needed == 2 || align_ % 4) {
3433 bytes_size = 2;
3434 op = aco_opcode::buffer_load_ushort;
3435 } else if (bytes_needed <= 4) {
3436 bytes_size = 4;
3437 op = aco_opcode::buffer_load_dword;
3438 } else if (bytes_needed <= 8) {
3439 bytes_size = 8;
3440 op = aco_opcode::buffer_load_dwordx2;
3441 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3442 bytes_size = 12;
3443 op = aco_opcode::buffer_load_dwordx3;
3444 } else {
3445 bytes_size = 16;
3446 op = aco_opcode::buffer_load_dwordx4;
3447 }
3448 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3449 mubuf->operands[0] = Operand(info->resource);
3450 mubuf->operands[1] = vaddr;
3451 mubuf->operands[2] = soffset;
3452 mubuf->offen = (offset.type() == RegType::vgpr);
3453 mubuf->glc = info->glc;
3454 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3455 mubuf->sync = info->sync;
3456 mubuf->offset = const_offset;
3457 mubuf->swizzled = info->swizzle_component_size != 0;
3458 RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
3459 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3460 mubuf->definitions[0] = Definition(val);
3461 bld.insert(std::move(mubuf));
3462
3463 return val;
3464 }
3465
3466 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3467 static auto emit_scratch_load = emit_load<mubuf_load_callback, false, true, 4096>;
3468
3469 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3470 {
3471 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3472 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3473
3474 if (addr.type() == RegType::vgpr)
3475 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3476 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3477 }
3478
3479 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3480 Temp offset, unsigned bytes_needed,
3481 unsigned align_, unsigned const_offset,
3482 Temp dst_hint)
3483 {
3484 unsigned bytes_size = 0;
3485 bool mubuf = bld.program->chip_class == GFX6;
3486 bool global = bld.program->chip_class >= GFX9;
3487 aco_opcode op;
3488 if (bytes_needed == 1) {
3489 bytes_size = 1;
3490 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3491 } else if (bytes_needed == 2) {
3492 bytes_size = 2;
3493 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3494 } else if (bytes_needed <= 4) {
3495 bytes_size = 4;
3496 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3497 } else if (bytes_needed <= 8) {
3498 bytes_size = 8;
3499 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3500 } else if (bytes_needed <= 12 && !mubuf) {
3501 bytes_size = 12;
3502 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3503 } else {
3504 bytes_size = 16;
3505 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3506 }
3507 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3508 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3509 if (mubuf) {
3510 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3511 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3512 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3513 mubuf->operands[2] = Operand(0u);
3514 mubuf->glc = info->glc;
3515 mubuf->dlc = false;
3516 mubuf->offset = 0;
3517 mubuf->addr64 = offset.type() == RegType::vgpr;
3518 mubuf->disable_wqm = false;
3519 mubuf->sync = info->sync;
3520 mubuf->definitions[0] = Definition(val);
3521 bld.insert(std::move(mubuf));
3522 } else {
3523 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3524
3525 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3526 flat->operands[0] = Operand(offset);
3527 flat->operands[1] = Operand(s1);
3528 flat->glc = info->glc;
3529 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3530 flat->sync = info->sync;
3531 flat->offset = 0u;
3532 flat->definitions[0] = Definition(val);
3533 bld.insert(std::move(flat));
3534 }
3535
3536 return val;
3537 }
3538
3539 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3540
3541 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3542 Temp address, unsigned base_offset, unsigned align)
3543 {
3544 assert(util_is_power_of_two_nonzero(align));
3545
3546 Builder bld(ctx->program, ctx->block);
3547
3548 unsigned num_components = dst.bytes() / elem_size_bytes;
3549 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3550 info.align_mul = align;
3551 info.align_offset = 0;
3552 info.sync = memory_sync_info(storage_shared);
3553 info.const_offset = base_offset;
3554 emit_lds_load(ctx, bld, &info);
3555
3556 return dst;
3557 }
3558
3559 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3560 {
3561 if (!count)
3562 return;
3563
3564 Builder bld(ctx->program, ctx->block);
3565
3566 ASSERTED bool is_subdword = false;
3567 for (unsigned i = 0; i < count; i++)
3568 is_subdword |= offsets[i] % 4;
3569 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3570 assert(!is_subdword || dst_type == RegType::vgpr);
3571
3572 /* count == 1 fast path */
3573 if (count == 1) {
3574 if (dst_type == RegType::sgpr)
3575 dst[0] = bld.as_uniform(src);
3576 else
3577 dst[0] = as_vgpr(ctx, src);
3578 return;
3579 }
3580
3581 for (unsigned i = 0; i < count - 1; i++)
3582 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3583 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3584
3585 if (is_subdword && src.type() == RegType::sgpr) {
3586 src = as_vgpr(ctx, src);
3587 } else {
3588 /* use allocated_vec if possible */
3589 auto it = ctx->allocated_vec.find(src.id());
3590 if (it != ctx->allocated_vec.end()) {
3591 if (!it->second[0].id())
3592 goto split;
3593 unsigned elem_size = it->second[0].bytes();
3594 assert(src.bytes() % elem_size == 0);
3595
3596 for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
3597 if (!it->second[i].id())
3598 goto split;
3599 }
3600
3601 for (unsigned i = 0; i < count; i++) {
3602 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3603 goto split;
3604 }
3605
3606 for (unsigned i = 0; i < count; i++) {
3607 unsigned start_idx = offsets[i] / elem_size;
3608 unsigned op_count = dst[i].bytes() / elem_size;
3609 if (op_count == 1) {
3610 if (dst_type == RegType::sgpr)
3611 dst[i] = bld.as_uniform(it->second[start_idx]);
3612 else
3613 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3614 continue;
3615 }
3616
3617 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3618 for (unsigned j = 0; j < op_count; j++) {
3619 Temp tmp = it->second[start_idx + j];
3620 if (dst_type == RegType::sgpr)
3621 tmp = bld.as_uniform(tmp);
3622 vec->operands[j] = Operand(tmp);
3623 }
3624 vec->definitions[0] = Definition(dst[i]);
3625 bld.insert(std::move(vec));
3626 }
3627 return;
3628 }
3629 }
3630
3631 split:
3632
3633 if (dst_type == RegType::sgpr)
3634 src = bld.as_uniform(src);
3635
3636 /* just split it */
3637 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3638 split->operands[0] = Operand(src);
3639 for (unsigned i = 0; i < count; i++)
3640 split->definitions[i] = Definition(dst[i]);
3641 bld.insert(std::move(split));
3642 }
3643
3644 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3645 int *start, int *count)
3646 {
3647 unsigned start_elem = ffs(todo_mask) - 1;
3648 bool skip = !(mask & (1 << start_elem));
3649 if (skip)
3650 mask = ~mask & todo_mask;
3651
3652 mask &= todo_mask;
3653
3654 u_bit_scan_consecutive_range(&mask, start, count);
3655
3656 return !skip;
3657 }
3658
3659 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3660 {
3661 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3662 }
3663
3664 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3665 Temp address, unsigned base_offset, unsigned align)
3666 {
3667 assert(util_is_power_of_two_nonzero(align));
3668 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3669
3670 Builder bld(ctx->program, ctx->block);
3671 bool large_ds_write = ctx->options->chip_class >= GFX7;
3672 bool usable_write2 = ctx->options->chip_class >= GFX7;
3673
3674 unsigned write_count = 0;
3675 Temp write_datas[32];
3676 unsigned offsets[32];
3677 aco_opcode opcodes[32];
3678
3679 wrmask = widen_mask(wrmask, elem_size_bytes);
3680
3681 uint32_t todo = u_bit_consecutive(0, data.bytes());
3682 while (todo) {
3683 int offset, bytes;
3684 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3685 offsets[write_count] = offset;
3686 opcodes[write_count] = aco_opcode::num_opcodes;
3687 write_count++;
3688 advance_write_mask(&todo, offset, bytes);
3689 continue;
3690 }
3691
3692 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3693 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3694 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3695 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3696
3697 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3698 aco_opcode op = aco_opcode::num_opcodes;
3699 if (bytes >= 16 && aligned16 && large_ds_write) {
3700 op = aco_opcode::ds_write_b128;
3701 bytes = 16;
3702 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3703 op = aco_opcode::ds_write_b96;
3704 bytes = 12;
3705 } else if (bytes >= 8 && aligned8) {
3706 op = aco_opcode::ds_write_b64;
3707 bytes = 8;
3708 } else if (bytes >= 4 && aligned4) {
3709 op = aco_opcode::ds_write_b32;
3710 bytes = 4;
3711 } else if (bytes >= 2 && aligned2) {
3712 op = aco_opcode::ds_write_b16;
3713 bytes = 2;
3714 } else if (bytes >= 1) {
3715 op = aco_opcode::ds_write_b8;
3716 bytes = 1;
3717 } else {
3718 assert(false);
3719 }
3720
3721 offsets[write_count] = offset;
3722 opcodes[write_count] = op;
3723 write_count++;
3724 advance_write_mask(&todo, offset, bytes);
3725 }
3726
3727 Operand m = load_lds_size_m0(bld);
3728
3729 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3730
3731 for (unsigned i = 0; i < write_count; i++) {
3732 aco_opcode op = opcodes[i];
3733 if (op == aco_opcode::num_opcodes)
3734 continue;
3735
3736 Temp data = write_datas[i];
3737
3738 unsigned second = write_count;
3739 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3740 for (second = i + 1; second < write_count; second++) {
3741 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3742 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3743 opcodes[second] = aco_opcode::num_opcodes;
3744 break;
3745 }
3746 }
3747 }
3748
3749 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3750 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3751
3752 unsigned inline_offset = base_offset + offsets[i];
3753 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3754 Temp address_offset = address;
3755 if (inline_offset > max_offset) {
3756 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3757 inline_offset = offsets[i];
3758 }
3759 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3760
3761 Instruction *instr;
3762 if (write2) {
3763 Temp second_data = write_datas[second];
3764 inline_offset /= data.bytes();
3765 instr = bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3766 } else {
3767 instr = bld.ds(op, address_offset, data, m, inline_offset);
3768 }
3769 static_cast<DS_instruction *>(instr)->sync =
3770 memory_sync_info(storage_shared);
3771 }
3772 }
3773
3774 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3775 {
3776 unsigned align = 16;
3777 if (const_offset)
3778 align = std::min(align, 1u << (ffs(const_offset) - 1));
3779
3780 return align;
3781 }
3782
3783
3784 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3785 {
3786 switch (bytes) {
3787 case 1:
3788 assert(!smem);
3789 return aco_opcode::buffer_store_byte;
3790 case 2:
3791 assert(!smem);
3792 return aco_opcode::buffer_store_short;
3793 case 4:
3794 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3795 case 8:
3796 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3797 case 12:
3798 assert(!smem);
3799 return aco_opcode::buffer_store_dwordx3;
3800 case 16:
3801 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3802 }
3803 unreachable("Unexpected store size");
3804 return aco_opcode::num_opcodes;
3805 }
3806
3807 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3808 Temp data, unsigned writemask, int swizzle_element_size,
3809 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3810 {
3811 unsigned write_count_with_skips = 0;
3812 bool skips[16];
3813
3814 /* determine how to split the data */
3815 unsigned todo = u_bit_consecutive(0, data.bytes());
3816 while (todo) {
3817 int offset, bytes;
3818 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3819 offsets[write_count_with_skips] = offset;
3820 if (skips[write_count_with_skips]) {
3821 advance_write_mask(&todo, offset, bytes);
3822 write_count_with_skips++;
3823 continue;
3824 }
3825
3826 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3827 * larger than swizzle_element_size */
3828 bytes = MIN2(bytes, swizzle_element_size);
3829 if (bytes % 4)
3830 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3831
3832 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3833 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3834 bytes = 8;
3835
3836 /* dword or larger stores have to be dword-aligned */
3837 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3838 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3839 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3840 if (!dword_aligned)
3841 bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3842
3843 advance_write_mask(&todo, offset, bytes);
3844 write_count_with_skips++;
3845 }
3846
3847 /* actually split data */
3848 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3849
3850 /* remove skips */
3851 for (unsigned i = 0; i < write_count_with_skips; i++) {
3852 if (skips[i])
3853 continue;
3854 write_datas[*write_count] = write_datas[i];
3855 offsets[*write_count] = offsets[i];
3856 (*write_count)++;
3857 }
3858 }
3859
3860 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3861 unsigned split_cnt = 0u, Temp dst = Temp())
3862 {
3863 Builder bld(ctx->program, ctx->block);
3864 unsigned dword_size = elem_size_bytes / 4;
3865
3866 if (!dst.id())
3867 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3868
3869 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3870 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3871 instr->definitions[0] = Definition(dst);
3872
3873 for (unsigned i = 0; i < cnt; ++i) {
3874 if (arr[i].id()) {
3875 assert(arr[i].size() == dword_size);
3876 allocated_vec[i] = arr[i];
3877 instr->operands[i] = Operand(arr[i]);
3878 } else {
3879 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3880 allocated_vec[i] = zero;
3881 instr->operands[i] = Operand(zero);
3882 }
3883 }
3884
3885 bld.insert(std::move(instr));
3886
3887 if (split_cnt)
3888 emit_split_vector(ctx, dst, split_cnt);
3889 else
3890 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3891
3892 return dst;
3893 }
3894
3895 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3896 {
3897 if (const_offset >= 4096) {
3898 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3899 const_offset %= 4096u;
3900
3901 if (!voffset.id())
3902 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3903 else if (unlikely(voffset.regClass() == s1))
3904 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3905 else if (likely(voffset.regClass() == v1))
3906 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3907 else
3908 unreachable("Unsupported register class of voffset");
3909 }
3910
3911 return const_offset;
3912 }
3913
3914 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3915 unsigned const_offset = 0u, memory_sync_info sync=memory_sync_info(),
3916 bool slc = false, bool swizzled = false)
3917 {
3918 assert(vdata.id());
3919 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3920 assert(vdata.size() >= 1 && vdata.size() <= 4);
3921
3922 Builder bld(ctx->program, ctx->block);
3923 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
3924 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3925
3926 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3927 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3928 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3929 /* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled,
3930 /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true,
3931 /* dlc*/ false, /* slc */ slc);
3932
3933 static_cast<MUBUF_instruction *>(r.instr)->sync = sync;
3934 }
3935
3936 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3937 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3938 bool allow_combining = true, memory_sync_info sync=memory_sync_info(), bool slc = false)
3939 {
3940 Builder bld(ctx->program, ctx->block);
3941 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3942 assert(write_mask);
3943 write_mask = widen_mask(write_mask, elem_size_bytes);
3944
3945 unsigned write_count = 0;
3946 Temp write_datas[32];
3947 unsigned offsets[32];
3948 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
3949 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
3950
3951 for (unsigned i = 0; i < write_count; i++) {
3952 unsigned const_offset = offsets[i] + base_const_offset;
3953 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, sync, slc, !allow_combining);
3954 }
3955 }
3956
3957 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3958 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3959 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3960 {
3961 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3962 assert((num_components * elem_size_bytes) == dst.bytes());
3963 assert(!!stride != allow_combining);
3964
3965 Builder bld(ctx->program, ctx->block);
3966
3967 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
3968 info.component_stride = allow_combining ? 0 : stride;
3969 info.glc = true;
3970 info.swizzle_component_size = allow_combining ? 0 : 4;
3971 info.align_mul = MIN2(elem_size_bytes, 4);
3972 info.align_offset = 0;
3973 info.soffset = soffset;
3974 info.const_offset = base_const_offset;
3975 emit_mubuf_load(ctx, bld, &info);
3976 }
3977
3978 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3979 {
3980 Builder bld(ctx->program, ctx->block);
3981 Temp offset = base_offset.first;
3982 unsigned const_offset = base_offset.second;
3983
3984 if (!nir_src_is_const(*off_src)) {
3985 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3986 Temp with_stride;
3987
3988 /* Calculate indirect offset with stride */
3989 if (likely(indirect_offset_arg.regClass() == v1))
3990 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
3991 else if (indirect_offset_arg.regClass() == s1)
3992 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3993 else
3994 unreachable("Unsupported register class of indirect offset");
3995
3996 /* Add to the supplied base offset */
3997 if (offset.id() == 0)
3998 offset = with_stride;
3999 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
4000 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
4001 else if (offset.size() == 1 && with_stride.size() == 1)
4002 offset = bld.vadd32(bld.def(v1), with_stride, offset);
4003 else
4004 unreachable("Unsupported register class of indirect offset");
4005 } else {
4006 unsigned const_offset_arg = nir_src_as_uint(*off_src);
4007 const_offset += const_offset_arg * stride;
4008 }
4009
4010 return std::make_pair(offset, const_offset);
4011 }
4012
4013 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
4014 {
4015 Builder bld(ctx->program, ctx->block);
4016 Temp offset;
4017
4018 if (off1.first.id() && off2.first.id()) {
4019 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
4020 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
4021 else if (off1.first.size() == 1 && off2.first.size() == 1)
4022 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
4023 else
4024 unreachable("Unsupported register class of indirect offset");
4025 } else {
4026 offset = off1.first.id() ? off1.first : off2.first;
4027 }
4028
4029 return std::make_pair(offset, off1.second + off2.second);
4030 }
4031
4032 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
4033 {
4034 Builder bld(ctx->program, ctx->block);
4035 unsigned const_offset = offs.second * multiplier;
4036
4037 if (!offs.first.id())
4038 return std::make_pair(offs.first, const_offset);
4039
4040 Temp offset = unlikely(offs.first.regClass() == s1)
4041 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
4042 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
4043
4044 return std::make_pair(offset, const_offset);
4045 }
4046
4047 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
4048 {
4049 Builder bld(ctx->program, ctx->block);
4050
4051 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
4052 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
4053 /* component is in bytes */
4054 const_offset += nir_intrinsic_component(instr) * component_stride;
4055
4056 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
4057 nir_src *off_src = nir_get_io_offset_src(instr);
4058 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
4059 }
4060
4061 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
4062 {
4063 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
4064 }
4065
4066 Temp get_tess_rel_patch_id(isel_context *ctx)
4067 {
4068 Builder bld(ctx->program, ctx->block);
4069
4070 switch (ctx->shader->info.stage) {
4071 case MESA_SHADER_TESS_CTRL:
4072 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
4073 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
4074 case MESA_SHADER_TESS_EVAL:
4075 return get_arg(ctx, ctx->args->tes_rel_patch_id);
4076 default:
4077 unreachable("Unsupported stage in get_tess_rel_patch_id");
4078 }
4079 }
4080
4081 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4082 {
4083 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4084 Builder bld(ctx->program, ctx->block);
4085
4086 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4087 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4088
4089 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4090
4091 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4092 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4093
4094 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4095 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4096 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4097
4098 return offset_mul(ctx, offs, 4u);
4099 }
4100
4101 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4102 {
4103 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4104 Builder bld(ctx->program, ctx->block);
4105
4106 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4107 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4108 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4109 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4110
4111 std::pair<Temp, unsigned> offs = instr
4112 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4113 : std::make_pair(Temp(), 0u);
4114
4115 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4116 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4117
4118 if (per_vertex) {
4119 assert(instr);
4120
4121 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4122 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4123
4124 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4125 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4126 } else {
4127 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4128 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4129 }
4130
4131 return offs;
4132 }
4133
4134 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4135 {
4136 Builder bld(ctx->program, ctx->block);
4137
4138 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4139 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4140
4141 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4142
4143 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4144 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4145 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4146
4147 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4148 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4149
4150 return offs;
4151 }
4152
4153 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4154 {
4155 Builder bld(ctx->program, ctx->block);
4156
4157 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4158 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4159 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4160 unsigned attr_stride = ctx->tcs_num_patches;
4161
4162 std::pair<Temp, unsigned> offs = instr
4163 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4164 : std::make_pair(Temp(), 0u);
4165
4166 if (const_base_offset)
4167 offs.second += const_base_offset * attr_stride;
4168
4169 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4170 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4171 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4172
4173 return offs;
4174 }
4175
4176 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4177 {
4178 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4179
4180 if (mask == 0)
4181 return false;
4182
4183 unsigned drv_loc = nir_intrinsic_base(instr);
4184 nir_src *off_src = nir_get_io_offset_src(instr);
4185
4186 if (!nir_src_is_const(*off_src)) {
4187 *indirect = true;
4188 return false;
4189 }
4190
4191 *indirect = false;
4192 uint64_t slot = per_vertex
4193 ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
4194 : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
4195 return (((uint64_t) 1) << slot) & mask;
4196 }
4197
4198 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4199 {
4200 unsigned write_mask = nir_intrinsic_write_mask(instr);
4201 unsigned component = nir_intrinsic_component(instr);
4202 unsigned idx = nir_intrinsic_base(instr) + component;
4203
4204 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4205 if (off_instr->type != nir_instr_type_load_const)
4206 return false;
4207
4208 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4209 idx += nir_src_as_uint(instr->src[1]) * 4u;
4210
4211 if (instr->src[0].ssa->bit_size == 64)
4212 write_mask = widen_mask(write_mask, 2);
4213
4214 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4215
4216 for (unsigned i = 0; i < 8; ++i) {
4217 if (write_mask & (1 << i)) {
4218 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4219 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4220 }
4221 idx++;
4222 }
4223
4224 return true;
4225 }
4226
4227 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4228 {
4229 /* Only TCS per-vertex inputs are supported by this function.
4230 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4231 */
4232 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4233 return false;
4234
4235 nir_src *off_src = nir_get_io_offset_src(instr);
4236 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4237 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4238 bool can_use_temps = nir_src_is_const(*off_src) &&
4239 vertex_index_instr->type == nir_instr_type_intrinsic &&
4240 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4241
4242 if (!can_use_temps)
4243 return false;
4244
4245 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4246 Temp *src = &ctx->inputs.temps[idx];
4247 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4248
4249 return true;
4250 }
4251
4252 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4253 {
4254 Builder bld(ctx->program, ctx->block);
4255
4256 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4257 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4258 bool indirect_write;
4259 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4260 if (temp_only_input && !indirect_write)
4261 return;
4262 }
4263
4264 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4265 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4266 unsigned write_mask = nir_intrinsic_write_mask(instr);
4267 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4268
4269 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4270 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4271 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4272 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4273 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, memory_sync_info(), true);
4274 } else {
4275 Temp lds_base;
4276
4277 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4278 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4279 unsigned itemsize = ctx->stage == vertex_geometry_gs
4280 ? ctx->program->info->vs.es_info.esgs_itemsize
4281 : ctx->program->info->tes.es_info.esgs_itemsize;
4282 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4283 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4284 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4285 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4286 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4287 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4288 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4289 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4290 */
4291 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4292 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4293 } else {
4294 unreachable("Invalid LS or ES stage");
4295 }
4296
4297 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4298 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4299 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4300 }
4301 }
4302
4303 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4304 {
4305 if (per_vertex)
4306 return false;
4307
4308 unsigned off = nir_intrinsic_base(instr) * 4u;
4309 return off == ctx->tcs_tess_lvl_out_loc ||
4310 off == ctx->tcs_tess_lvl_in_loc;
4311
4312 }
4313
4314 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4315 {
4316 uint64_t mask = per_vertex
4317 ? ctx->program->info->tcs.tes_inputs_read
4318 : ctx->program->info->tcs.tes_patch_inputs_read;
4319
4320 bool indirect_write = false;
4321 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4322 return indirect_write || output_read_by_tes;
4323 }
4324
4325 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4326 {
4327 uint64_t mask = per_vertex
4328 ? ctx->shader->info.outputs_read
4329 : ctx->shader->info.patch_outputs_read;
4330
4331 bool indirect_write = false;
4332 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4333 return indirect_write || output_read;
4334 }
4335
4336 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4337 {
4338 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4339 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4340
4341 Builder bld(ctx->program, ctx->block);
4342
4343 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4344 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4345 unsigned write_mask = nir_intrinsic_write_mask(instr);
4346
4347 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4348 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4349 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4350
4351 if (write_to_vmem) {
4352 std::pair<Temp, unsigned> vmem_offs = per_vertex
4353 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4354 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4355
4356 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4357 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4358 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, memory_sync_info(storage_vmem_output));
4359 }
4360
4361 if (write_to_lds) {
4362 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4363 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4364 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4365 }
4366 }
4367
4368 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4369 {
4370 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4371 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4372
4373 Builder bld(ctx->program, ctx->block);
4374
4375 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4376 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4377 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4378 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4379
4380 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4381 }
4382
4383 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4384 {
4385 if (ctx->stage == vertex_vs ||
4386 ctx->stage == tess_eval_vs ||
4387 ctx->stage == fragment_fs ||
4388 ctx->stage == ngg_vertex_gs ||
4389 ctx->stage == ngg_tess_eval_gs ||
4390 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4391 bool stored_to_temps = store_output_to_temps(ctx, instr);
4392 if (!stored_to_temps) {
4393 isel_err(instr->src[1].ssa->parent_instr, "Unimplemented output offset instruction");
4394 abort();
4395 }
4396 } else if (ctx->stage == vertex_es ||
4397 ctx->stage == vertex_ls ||
4398 ctx->stage == tess_eval_es ||
4399 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4400 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4401 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4402 visit_store_ls_or_es_output(ctx, instr);
4403 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4404 visit_store_tcs_output(ctx, instr, false);
4405 } else {
4406 unreachable("Shader stage not implemented");
4407 }
4408 }
4409
4410 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4411 {
4412 visit_load_tcs_output(ctx, instr, false);
4413 }
4414
4415 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4416 {
4417 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4418 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4419
4420 Builder bld(ctx->program, ctx->block);
4421
4422 if (dst.regClass() == v2b) {
4423 if (ctx->program->has_16bank_lds) {
4424 assert(ctx->options->chip_class <= GFX8);
4425 Builder::Result interp_p1 =
4426 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4427 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4428 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4429 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4430 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4431 bld.m0(prim_mask), interp_p1, idx, component);
4432 } else {
4433 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4434
4435 if (ctx->options->chip_class == GFX8)
4436 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4437
4438 Builder::Result interp_p1 =
4439 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4440 coord1, bld.m0(prim_mask), idx, component);
4441 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4442 interp_p1, idx, component);
4443 }
4444 } else {
4445 Builder::Result interp_p1 =
4446 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4447 bld.m0(prim_mask), idx, component);
4448
4449 if (ctx->program->has_16bank_lds)
4450 interp_p1.instr->operands[0].setLateKill(true);
4451
4452 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4453 bld.m0(prim_mask), interp_p1, idx, component);
4454 }
4455 }
4456
4457 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4458 {
4459 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4460 for (unsigned i = 0; i < num_components; i++)
4461 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4462 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4463 assert(num_components == 4);
4464 Builder bld(ctx->program, ctx->block);
4465 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4466 }
4467
4468 for (Operand& op : vec->operands)
4469 op = op.isUndefined() ? Operand(0u) : op;
4470
4471 vec->definitions[0] = Definition(dst);
4472 ctx->block->instructions.emplace_back(std::move(vec));
4473 emit_split_vector(ctx, dst, num_components);
4474 return;
4475 }
4476
4477 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4478 {
4479 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4480 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4481 unsigned idx = nir_intrinsic_base(instr);
4482 unsigned component = nir_intrinsic_component(instr);
4483 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4484
4485 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4486 if (offset) {
4487 assert(offset->u32 == 0);
4488 } else {
4489 /* the lower 15bit of the prim_mask contain the offset into LDS
4490 * while the upper bits contain the number of prims */
4491 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4492 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4493 Builder bld(ctx->program, ctx->block);
4494 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4495 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4496 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4497 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4498 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4499 }
4500
4501 if (instr->dest.ssa.num_components == 1) {
4502 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4503 } else {
4504 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4505 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4506 {
4507 Temp tmp = {ctx->program->allocateId(), v1};
4508 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4509 vec->operands[i] = Operand(tmp);
4510 }
4511 vec->definitions[0] = Definition(dst);
4512 ctx->block->instructions.emplace_back(std::move(vec));
4513 }
4514 }
4515
4516 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4517 unsigned offset, unsigned stride, unsigned channels)
4518 {
4519 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4520 if (vtx_info->chan_byte_size != 4 && channels == 3)
4521 return false;
4522 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4523 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4524 }
4525
4526 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4527 unsigned offset, unsigned stride, unsigned *channels)
4528 {
4529 if (!vtx_info->chan_byte_size) {
4530 *channels = vtx_info->num_channels;
4531 return vtx_info->chan_format;
4532 }
4533
4534 unsigned num_channels = *channels;
4535 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4536 unsigned new_channels = num_channels + 1;
4537 /* first, assume more loads is worse and try using a larger data format */
4538 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4539 new_channels++;
4540 /* don't make the attribute potentially out-of-bounds */
4541 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4542 new_channels = 5;
4543 }
4544
4545 if (new_channels == 5) {
4546 /* then try decreasing load size (at the cost of more loads) */
4547 new_channels = *channels;
4548 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4549 new_channels--;
4550 }
4551
4552 if (new_channels < *channels)
4553 *channels = new_channels;
4554 num_channels = new_channels;
4555 }
4556
4557 switch (vtx_info->chan_format) {
4558 case V_008F0C_BUF_DATA_FORMAT_8:
4559 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4560 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4561 case V_008F0C_BUF_DATA_FORMAT_16:
4562 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4563 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4564 case V_008F0C_BUF_DATA_FORMAT_32:
4565 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4566 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4567 }
4568 unreachable("shouldn't reach here");
4569 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4570 }
4571
4572 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4573 * so we may need to fix it up. */
4574 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4575 {
4576 Builder bld(ctx->program, ctx->block);
4577
4578 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4579 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4580
4581 /* For the integer-like cases, do a natural sign extension.
4582 *
4583 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4584 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4585 * exponent.
4586 */
4587 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4588 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4589
4590 /* Convert back to the right type. */
4591 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4592 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4593 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4594 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4595 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4596 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4597 }
4598
4599 return alpha;
4600 }
4601
4602 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4603 {
4604 Builder bld(ctx->program, ctx->block);
4605 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4606 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4607
4608 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4609 if (off_instr->type != nir_instr_type_load_const) {
4610 isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
4611 }
4612 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4613
4614 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4615
4616 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4617 unsigned component = nir_intrinsic_component(instr);
4618 unsigned bitsize = instr->dest.ssa.bit_size;
4619 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4620 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4621 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4622 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4623
4624 unsigned dfmt = attrib_format & 0xf;
4625 unsigned nfmt = (attrib_format >> 4) & 0x7;
4626 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4627
4628 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4629 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4630 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4631 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4632 if (post_shuffle)
4633 num_channels = MAX2(num_channels, 3);
4634
4635 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4636 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4637
4638 Temp index;
4639 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4640 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4641 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4642 if (divisor) {
4643 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4644 if (divisor != 1) {
4645 Temp divided = bld.tmp(v1);
4646 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4647 index = bld.vadd32(bld.def(v1), start_instance, divided);
4648 } else {
4649 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4650 }
4651 } else {
4652 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4653 }
4654 } else {
4655 index = bld.vadd32(bld.def(v1),
4656 get_arg(ctx, ctx->args->ac.base_vertex),
4657 get_arg(ctx, ctx->args->ac.vertex_id));
4658 }
4659
4660 Temp channels[num_channels];
4661 unsigned channel_start = 0;
4662 bool direct_fetch = false;
4663
4664 /* skip unused channels at the start */
4665 if (vtx_info->chan_byte_size && !post_shuffle) {
4666 channel_start = ffs(mask) - 1;
4667 for (unsigned i = 0; i < channel_start; i++)
4668 channels[i] = Temp(0, s1);
4669 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4670 num_channels = 3 - (ffs(mask) - 1);
4671 }
4672
4673 /* load channels */
4674 while (channel_start < num_channels) {
4675 unsigned fetch_component = num_channels - channel_start;
4676 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4677 bool expanded = false;
4678
4679 /* use MUBUF when possible to avoid possible alignment issues */
4680 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4681 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4682 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4683 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4684 vtx_info->chan_byte_size == 4;
4685 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4686 if (!use_mubuf) {
4687 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4688 } else {
4689 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4690 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4691 fetch_component = 4;
4692 expanded = true;
4693 }
4694 }
4695
4696 unsigned fetch_bytes = fetch_component * bitsize / 8;
4697
4698 Temp fetch_index = index;
4699 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4700 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4701 fetch_offset = fetch_offset % attrib_stride;
4702 }
4703
4704 Operand soffset(0u);
4705 if (fetch_offset >= 4096) {
4706 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4707 fetch_offset %= 4096;
4708 }
4709
4710 aco_opcode opcode;
4711 switch (fetch_bytes) {
4712 case 2:
4713 assert(!use_mubuf && bitsize == 16);
4714 opcode = aco_opcode::tbuffer_load_format_d16_x;
4715 break;
4716 case 4:
4717 if (bitsize == 16) {
4718 assert(!use_mubuf);
4719 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4720 } else {
4721 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4722 }
4723 break;
4724 case 6:
4725 assert(!use_mubuf && bitsize == 16);
4726 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4727 break;
4728 case 8:
4729 if (bitsize == 16) {
4730 assert(!use_mubuf);
4731 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4732 } else {
4733 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4734 }
4735 break;
4736 case 12:
4737 assert(ctx->options->chip_class >= GFX7 ||
4738 (!use_mubuf && ctx->options->chip_class == GFX6));
4739 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4740 break;
4741 case 16:
4742 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4743 break;
4744 default:
4745 unreachable("Unimplemented load_input vector size");
4746 }
4747
4748 Temp fetch_dst;
4749 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4750 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4751 num_channels <= 3)) {
4752 direct_fetch = true;
4753 fetch_dst = dst;
4754 } else {
4755 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4756 }
4757
4758 if (use_mubuf) {
4759 bld.mubuf(opcode,
4760 Definition(fetch_dst), list, fetch_index, soffset,
4761 fetch_offset, false, false, true).instr;
4762 } else {
4763 bld.mtbuf(opcode,
4764 Definition(fetch_dst), list, fetch_index, soffset,
4765 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4766 }
4767
4768 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4769
4770 if (fetch_component == 1) {
4771 channels[channel_start] = fetch_dst;
4772 } else {
4773 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4774 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4775 bitsize == 16 ? v2b : v1);
4776 }
4777
4778 channel_start += fetch_component;
4779 }
4780
4781 if (!direct_fetch) {
4782 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4783 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4784
4785 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4786 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4787 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4788
4789 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4790 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4791 unsigned num_temp = 0;
4792 for (unsigned i = 0; i < dst.size(); i++) {
4793 unsigned idx = i + component;
4794 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4795 Temp channel = channels[swizzle[idx]];
4796 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4797 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4798 vec->operands[i] = Operand(channel);
4799
4800 num_temp++;
4801 elems[i] = channel;
4802 } else if (is_float && idx == 3) {
4803 vec->operands[i] = Operand(0x3f800000u);
4804 } else if (!is_float && idx == 3) {
4805 vec->operands[i] = Operand(1u);
4806 } else {
4807 vec->operands[i] = Operand(0u);
4808 }
4809 }
4810 vec->definitions[0] = Definition(dst);
4811 ctx->block->instructions.emplace_back(std::move(vec));
4812 emit_split_vector(ctx, dst, dst.size());
4813
4814 if (num_temp == dst.size())
4815 ctx->allocated_vec.emplace(dst.id(), elems);
4816 }
4817 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4818 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4819 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4820 if (off_instr->type != nir_instr_type_load_const ||
4821 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4822 isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
4823 }
4824
4825 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4826 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4827 if (offset) {
4828 assert(offset->u32 == 0);
4829 } else {
4830 /* the lower 15bit of the prim_mask contain the offset into LDS
4831 * while the upper bits contain the number of prims */
4832 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4833 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4834 Builder bld(ctx->program, ctx->block);
4835 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4836 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4837 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4838 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4839 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4840 }
4841
4842 unsigned idx = nir_intrinsic_base(instr);
4843 unsigned component = nir_intrinsic_component(instr);
4844 unsigned vertex_id = 2; /* P0 */
4845
4846 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4847 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4848 switch (src0->u32) {
4849 case 0:
4850 vertex_id = 2; /* P0 */
4851 break;
4852 case 1:
4853 vertex_id = 0; /* P10 */
4854 break;
4855 case 2:
4856 vertex_id = 1; /* P20 */
4857 break;
4858 default:
4859 unreachable("invalid vertex index");
4860 }
4861 }
4862
4863 if (dst.size() == 1) {
4864 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4865 } else {
4866 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4867 for (unsigned i = 0; i < dst.size(); i++)
4868 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4869 vec->definitions[0] = Definition(dst);
4870 bld.insert(std::move(vec));
4871 }
4872
4873 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4874 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4875 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4876 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4877 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4878
4879 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4880 } else {
4881 unreachable("Shader stage not implemented");
4882 }
4883 }
4884
4885 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4886 {
4887 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4888
4889 Builder bld(ctx->program, ctx->block);
4890 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4891 Temp vertex_offset;
4892
4893 if (!nir_src_is_const(*vertex_src)) {
4894 /* better code could be created, but this case probably doesn't happen
4895 * much in practice */
4896 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4897 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4898 Temp elem;
4899
4900 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4901 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4902 if (i % 2u)
4903 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4904 } else {
4905 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4906 }
4907
4908 if (vertex_offset.id()) {
4909 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4910 Operand(i), indirect_vertex);
4911 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4912 } else {
4913 vertex_offset = elem;
4914 }
4915 }
4916
4917 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4918 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4919 } else {
4920 unsigned vertex = nir_src_as_uint(*vertex_src);
4921 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4922 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4923 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4924 Operand((vertex % 2u) * 16u), Operand(16u));
4925 else
4926 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4927 }
4928
4929 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4930 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4931 return offset_mul(ctx, offs, 4u);
4932 }
4933
4934 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4935 {
4936 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4937
4938 Builder bld(ctx->program, ctx->block);
4939 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4940 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4941
4942 if (ctx->stage == geometry_gs) {
4943 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4944 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4945 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4946 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4947 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4948 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4949 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4950 } else {
4951 unreachable("Unsupported GS stage.");
4952 }
4953 }
4954
4955 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4956 {
4957 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4958
4959 Builder bld(ctx->program, ctx->block);
4960 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4961
4962 if (load_input_from_temps(ctx, instr, dst))
4963 return;
4964
4965 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4966 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4967 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4968
4969 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4970 }
4971
4972 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4973 {
4974 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4975
4976 Builder bld(ctx->program, ctx->block);
4977
4978 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4979 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4980 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4981
4982 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4983 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4984
4985 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4986 }
4987
4988 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4989 {
4990 switch (ctx->shader->info.stage) {
4991 case MESA_SHADER_GEOMETRY:
4992 visit_load_gs_per_vertex_input(ctx, instr);
4993 break;
4994 case MESA_SHADER_TESS_CTRL:
4995 visit_load_tcs_per_vertex_input(ctx, instr);
4996 break;
4997 case MESA_SHADER_TESS_EVAL:
4998 visit_load_tes_per_vertex_input(ctx, instr);
4999 break;
5000 default:
5001 unreachable("Unimplemented shader stage");
5002 }
5003 }
5004
5005 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5006 {
5007 visit_load_tcs_output(ctx, instr, true);
5008 }
5009
5010 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5011 {
5012 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
5013 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5014
5015 visit_store_tcs_output(ctx, instr, true);
5016 }
5017
5018 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
5019 {
5020 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5021
5022 Builder bld(ctx->program, ctx->block);
5023 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5024
5025 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
5026 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
5027 Operand tes_w(0u);
5028
5029 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
5030 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
5031 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
5032 tes_w = Operand(tmp);
5033 }
5034
5035 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
5036 emit_split_vector(ctx, tess_coord, 3);
5037 }
5038
5039 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
5040 {
5041 if (ctx->program->info->need_indirect_descriptor_sets) {
5042 Builder bld(ctx->program, ctx->block);
5043 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
5044 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
5045 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
5046 }
5047
5048 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
5049 }
5050
5051
5052 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
5053 {
5054 Builder bld(ctx->program, ctx->block);
5055 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
5056 if (!nir_dest_is_divergent(instr->dest))
5057 index = bld.as_uniform(index);
5058 unsigned desc_set = nir_intrinsic_desc_set(instr);
5059 unsigned binding = nir_intrinsic_binding(instr);
5060
5061 Temp desc_ptr;
5062 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
5063 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
5064 unsigned offset = layout->binding[binding].offset;
5065 unsigned stride;
5066 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
5067 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
5068 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
5069 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
5070 offset = pipeline_layout->push_constant_size + 16 * idx;
5071 stride = 16;
5072 } else {
5073 desc_ptr = load_desc_ptr(ctx, desc_set);
5074 stride = layout->binding[binding].size;
5075 }
5076
5077 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
5078 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
5079 if (stride != 1) {
5080 if (nir_const_index) {
5081 const_index = const_index * stride;
5082 } else if (index.type() == RegType::vgpr) {
5083 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
5084 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
5085 } else {
5086 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5087 }
5088 }
5089 if (offset) {
5090 if (nir_const_index) {
5091 const_index = const_index + offset;
5092 } else if (index.type() == RegType::vgpr) {
5093 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5094 } else {
5095 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5096 }
5097 }
5098
5099 if (nir_const_index && const_index == 0) {
5100 index = desc_ptr;
5101 } else if (index.type() == RegType::vgpr) {
5102 index = bld.vadd32(bld.def(v1),
5103 nir_const_index ? Operand(const_index) : Operand(index),
5104 Operand(desc_ptr));
5105 } else {
5106 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5107 nir_const_index ? Operand(const_index) : Operand(index),
5108 Operand(desc_ptr));
5109 }
5110
5111 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5112 }
5113
5114 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5115 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5116 bool glc=false, bool allow_smem=true, memory_sync_info sync=memory_sync_info())
5117 {
5118 Builder bld(ctx->program, ctx->block);
5119
5120 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5121 if (use_smem)
5122 offset = bld.as_uniform(offset);
5123
5124 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5125 info.glc = glc;
5126 info.sync = sync;
5127 info.align_mul = align_mul;
5128 info.align_offset = align_offset;
5129 if (use_smem)
5130 emit_smem_load(ctx, bld, &info);
5131 else
5132 emit_mubuf_load(ctx, bld, &info);
5133 }
5134
5135 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5136 {
5137 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5138 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5139
5140 Builder bld(ctx->program, ctx->block);
5141
5142 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5143 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5144 unsigned binding = nir_intrinsic_binding(idx_instr);
5145 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5146
5147 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5148 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5149 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5150 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5151 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5152 if (ctx->options->chip_class >= GFX10) {
5153 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5154 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5155 S_008F0C_RESOURCE_LEVEL(1);
5156 } else {
5157 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5158 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5159 }
5160 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5161 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5162 Operand(0xFFFFFFFFu),
5163 Operand(desc_type));
5164 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5165 rsrc, upper_dwords);
5166 } else {
5167 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5168 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5169 }
5170 unsigned size = instr->dest.ssa.bit_size / 8;
5171 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5172 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5173 }
5174
5175 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5176 {
5177 Builder bld(ctx->program, ctx->block);
5178 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5179 unsigned offset = nir_intrinsic_base(instr);
5180 unsigned count = instr->dest.ssa.num_components;
5181 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5182
5183 if (index_cv && instr->dest.ssa.bit_size == 32) {
5184 unsigned start = (offset + index_cv->u32) / 4u;
5185 start -= ctx->args->ac.base_inline_push_consts;
5186 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5187 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5188 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5189 for (unsigned i = 0; i < count; ++i) {
5190 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5191 vec->operands[i] = Operand{elems[i]};
5192 }
5193 vec->definitions[0] = Definition(dst);
5194 ctx->block->instructions.emplace_back(std::move(vec));
5195 ctx->allocated_vec.emplace(dst.id(), elems);
5196 return;
5197 }
5198 }
5199
5200 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5201 if (offset != 0) // TODO check if index != 0 as well
5202 index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5203 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5204 Temp vec = dst;
5205 bool trim = false;
5206 bool aligned = true;
5207
5208 if (instr->dest.ssa.bit_size == 8) {
5209 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5210 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5211 if (!aligned)
5212 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5213 } else if (instr->dest.ssa.bit_size == 16) {
5214 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5215 if (!aligned)
5216 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5217 }
5218
5219 aco_opcode op;
5220
5221 switch (vec.size()) {
5222 case 1:
5223 op = aco_opcode::s_load_dword;
5224 break;
5225 case 2:
5226 op = aco_opcode::s_load_dwordx2;
5227 break;
5228 case 3:
5229 vec = bld.tmp(s4);
5230 trim = true;
5231 case 4:
5232 op = aco_opcode::s_load_dwordx4;
5233 break;
5234 case 6:
5235 vec = bld.tmp(s8);
5236 trim = true;
5237 case 8:
5238 op = aco_opcode::s_load_dwordx8;
5239 break;
5240 default:
5241 unreachable("unimplemented or forbidden load_push_constant.");
5242 }
5243
5244 static_cast<SMEM_instruction*>(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true;
5245
5246 if (!aligned) {
5247 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5248 byte_align_scalar(ctx, vec, byte_offset, dst);
5249 return;
5250 }
5251
5252 if (trim) {
5253 emit_split_vector(ctx, vec, 4);
5254 RegClass rc = dst.size() == 3 ? s1 : s2;
5255 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5256 emit_extract_vector(ctx, vec, 0, rc),
5257 emit_extract_vector(ctx, vec, 1, rc),
5258 emit_extract_vector(ctx, vec, 2, rc));
5259
5260 }
5261 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5262 }
5263
5264 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5265 {
5266 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5267
5268 Builder bld(ctx->program, ctx->block);
5269
5270 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5271 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5272 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5273 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5274 if (ctx->options->chip_class >= GFX10) {
5275 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5276 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5277 S_008F0C_RESOURCE_LEVEL(1);
5278 } else {
5279 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5280 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5281 }
5282
5283 unsigned base = nir_intrinsic_base(instr);
5284 unsigned range = nir_intrinsic_range(instr);
5285
5286 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5287 if (base && offset.type() == RegType::sgpr)
5288 offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5289 else if (base && offset.type() == RegType::vgpr)
5290 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5291
5292 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5293 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5294 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5295 Operand(desc_type));
5296 unsigned size = instr->dest.ssa.bit_size / 8;
5297 // TODO: get alignment information for subdword constants
5298 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5299 }
5300
5301 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5302 {
5303 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5304 ctx->cf_info.exec_potentially_empty_discard = true;
5305
5306 ctx->program->needs_exact = true;
5307
5308 // TODO: optimize uniform conditions
5309 Builder bld(ctx->program, ctx->block);
5310 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5311 assert(src.regClass() == bld.lm);
5312 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5313 bld.pseudo(aco_opcode::p_discard_if, src);
5314 ctx->block->kind |= block_kind_uses_discard_if;
5315 return;
5316 }
5317
5318 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5319 {
5320 Builder bld(ctx->program, ctx->block);
5321
5322 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5323 ctx->cf_info.exec_potentially_empty_discard = true;
5324
5325 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5326 ctx->cf_info.parent_loop.has_divergent_continue;
5327
5328 if (ctx->block->loop_nest_depth &&
5329 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5330 /* we handle discards the same way as jump instructions */
5331 append_logical_end(ctx->block);
5332
5333 /* in loops, discard behaves like break */
5334 Block *linear_target = ctx->cf_info.parent_loop.exit;
5335 ctx->block->kind |= block_kind_discard;
5336
5337 if (!divergent) {
5338 /* uniform discard - loop ends here */
5339 assert(nir_instr_is_last(&instr->instr));
5340 ctx->block->kind |= block_kind_uniform;
5341 ctx->cf_info.has_branch = true;
5342 bld.branch(aco_opcode::p_branch);
5343 add_linear_edge(ctx->block->index, linear_target);
5344 return;
5345 }
5346
5347 /* we add a break right behind the discard() instructions */
5348 ctx->block->kind |= block_kind_break;
5349 unsigned idx = ctx->block->index;
5350
5351 ctx->cf_info.parent_loop.has_divergent_branch = true;
5352 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5353
5354 /* remove critical edges from linear CFG */
5355 bld.branch(aco_opcode::p_branch);
5356 Block* break_block = ctx->program->create_and_insert_block();
5357 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5358 break_block->kind |= block_kind_uniform;
5359 add_linear_edge(idx, break_block);
5360 add_linear_edge(break_block->index, linear_target);
5361 bld.reset(break_block);
5362 bld.branch(aco_opcode::p_branch);
5363
5364 Block* continue_block = ctx->program->create_and_insert_block();
5365 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5366 add_linear_edge(idx, continue_block);
5367 append_logical_start(continue_block);
5368 ctx->block = continue_block;
5369
5370 return;
5371 }
5372
5373 /* it can currently happen that NIR doesn't remove the unreachable code */
5374 if (!nir_instr_is_last(&instr->instr)) {
5375 ctx->program->needs_exact = true;
5376 /* save exec somewhere temporarily so that it doesn't get
5377 * overwritten before the discard from outer exec masks */
5378 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5379 bld.pseudo(aco_opcode::p_discard_if, cond);
5380 ctx->block->kind |= block_kind_uses_discard_if;
5381 return;
5382 }
5383
5384 /* This condition is incorrect for uniformly branched discards in a loop
5385 * predicated by a divergent condition, but the above code catches that case
5386 * and the discard would end up turning into a discard_if.
5387 * For example:
5388 * if (divergent) {
5389 * while (...) {
5390 * if (uniform) {
5391 * discard;
5392 * }
5393 * }
5394 * }
5395 */
5396 if (!ctx->cf_info.parent_if.is_divergent) {
5397 /* program just ends here */
5398 ctx->block->kind |= block_kind_uniform;
5399 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5400 0 /* enabled mask */, 9 /* dest */,
5401 false /* compressed */, true/* done */, true /* valid mask */);
5402 bld.sopp(aco_opcode::s_endpgm);
5403 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5404 } else {
5405 ctx->block->kind |= block_kind_discard;
5406 /* branch and linear edge is added by visit_if() */
5407 }
5408 }
5409
5410 enum aco_descriptor_type {
5411 ACO_DESC_IMAGE,
5412 ACO_DESC_FMASK,
5413 ACO_DESC_SAMPLER,
5414 ACO_DESC_BUFFER,
5415 ACO_DESC_PLANE_0,
5416 ACO_DESC_PLANE_1,
5417 ACO_DESC_PLANE_2,
5418 };
5419
5420 static bool
5421 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5422 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5423 return false;
5424 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5425 return dim == ac_image_cube ||
5426 dim == ac_image_1darray ||
5427 dim == ac_image_2darray ||
5428 dim == ac_image_2darraymsaa;
5429 }
5430
5431 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5432 enum aco_descriptor_type desc_type,
5433 const nir_tex_instr *tex_instr, bool image, bool write)
5434 {
5435 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5436 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5437 if (it != ctx->tex_desc.end())
5438 return it->second;
5439 */
5440 Temp index = Temp();
5441 bool index_set = false;
5442 unsigned constant_index = 0;
5443 unsigned descriptor_set;
5444 unsigned base_index;
5445 Builder bld(ctx->program, ctx->block);
5446
5447 if (!deref_instr) {
5448 assert(tex_instr && !image);
5449 descriptor_set = 0;
5450 base_index = tex_instr->sampler_index;
5451 } else {
5452 while(deref_instr->deref_type != nir_deref_type_var) {
5453 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5454 if (!array_size)
5455 array_size = 1;
5456
5457 assert(deref_instr->deref_type == nir_deref_type_array);
5458 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5459 if (const_value) {
5460 constant_index += array_size * const_value->u32;
5461 } else {
5462 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5463 if (indirect.type() == RegType::vgpr)
5464 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5465
5466 if (array_size != 1)
5467 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5468
5469 if (!index_set) {
5470 index = indirect;
5471 index_set = true;
5472 } else {
5473 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5474 }
5475 }
5476
5477 deref_instr = nir_src_as_deref(deref_instr->parent);
5478 }
5479 descriptor_set = deref_instr->var->data.descriptor_set;
5480 base_index = deref_instr->var->data.binding;
5481 }
5482
5483 Temp list = load_desc_ptr(ctx, descriptor_set);
5484 list = convert_pointer_to_64_bit(ctx, list);
5485
5486 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5487 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5488 unsigned offset = binding->offset;
5489 unsigned stride = binding->size;
5490 aco_opcode opcode;
5491 RegClass type;
5492
5493 assert(base_index < layout->binding_count);
5494
5495 switch (desc_type) {
5496 case ACO_DESC_IMAGE:
5497 type = s8;
5498 opcode = aco_opcode::s_load_dwordx8;
5499 break;
5500 case ACO_DESC_FMASK:
5501 type = s8;
5502 opcode = aco_opcode::s_load_dwordx8;
5503 offset += 32;
5504 break;
5505 case ACO_DESC_SAMPLER:
5506 type = s4;
5507 opcode = aco_opcode::s_load_dwordx4;
5508 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5509 offset += radv_combined_image_descriptor_sampler_offset(binding);
5510 break;
5511 case ACO_DESC_BUFFER:
5512 type = s4;
5513 opcode = aco_opcode::s_load_dwordx4;
5514 break;
5515 case ACO_DESC_PLANE_0:
5516 case ACO_DESC_PLANE_1:
5517 type = s8;
5518 opcode = aco_opcode::s_load_dwordx8;
5519 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5520 break;
5521 case ACO_DESC_PLANE_2:
5522 type = s4;
5523 opcode = aco_opcode::s_load_dwordx4;
5524 offset += 64;
5525 break;
5526 default:
5527 unreachable("invalid desc_type\n");
5528 }
5529
5530 offset += constant_index * stride;
5531
5532 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5533 (!index_set || binding->immutable_samplers_equal)) {
5534 if (binding->immutable_samplers_equal)
5535 constant_index = 0;
5536
5537 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5539 Operand(samplers[constant_index * 4 + 0]),
5540 Operand(samplers[constant_index * 4 + 1]),
5541 Operand(samplers[constant_index * 4 + 2]),
5542 Operand(samplers[constant_index * 4 + 3]));
5543 }
5544
5545 Operand off;
5546 if (!index_set) {
5547 off = bld.copy(bld.def(s1), Operand(offset));
5548 } else {
5549 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5550 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5551 }
5552
5553 Temp res = bld.smem(opcode, bld.def(type), list, off);
5554
5555 if (desc_type == ACO_DESC_PLANE_2) {
5556 Temp components[8];
5557 for (unsigned i = 0; i < 8; i++)
5558 components[i] = bld.tmp(s1);
5559 bld.pseudo(aco_opcode::p_split_vector,
5560 Definition(components[0]),
5561 Definition(components[1]),
5562 Definition(components[2]),
5563 Definition(components[3]),
5564 res);
5565
5566 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5567 bld.pseudo(aco_opcode::p_split_vector,
5568 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5569 Definition(components[4]),
5570 Definition(components[5]),
5571 Definition(components[6]),
5572 Definition(components[7]),
5573 desc2);
5574
5575 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5576 components[0], components[1], components[2], components[3],
5577 components[4], components[5], components[6], components[7]);
5578 }
5579
5580 return res;
5581 }
5582
5583 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5584 {
5585 switch (dim) {
5586 case GLSL_SAMPLER_DIM_BUF:
5587 return 1;
5588 case GLSL_SAMPLER_DIM_1D:
5589 return array ? 2 : 1;
5590 case GLSL_SAMPLER_DIM_2D:
5591 return array ? 3 : 2;
5592 case GLSL_SAMPLER_DIM_MS:
5593 return array ? 4 : 3;
5594 case GLSL_SAMPLER_DIM_3D:
5595 case GLSL_SAMPLER_DIM_CUBE:
5596 return 3;
5597 case GLSL_SAMPLER_DIM_RECT:
5598 case GLSL_SAMPLER_DIM_SUBPASS:
5599 return 2;
5600 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5601 return 3;
5602 default:
5603 break;
5604 }
5605 return 0;
5606 }
5607
5608
5609 /* Adjust the sample index according to FMASK.
5610 *
5611 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5612 * which is the identity mapping. Each nibble says which physical sample
5613 * should be fetched to get that sample.
5614 *
5615 * For example, 0x11111100 means there are only 2 samples stored and
5616 * the second sample covers 3/4 of the pixel. When reading samples 0
5617 * and 1, return physical sample 0 (determined by the first two 0s
5618 * in FMASK), otherwise return physical sample 1.
5619 *
5620 * The sample index should be adjusted as follows:
5621 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5622 */
5623 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5624 {
5625 Builder bld(ctx->program, ctx->block);
5626 Temp fmask = bld.tmp(v1);
5627 unsigned dim = ctx->options->chip_class >= GFX10
5628 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5629 : 0;
5630
5631 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5632 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5633 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5634 load->operands[0] = Operand(fmask_desc_ptr);
5635 load->operands[1] = Operand(s4); /* no sampler */
5636 load->operands[2] = Operand(coord);
5637 load->definitions[0] = Definition(fmask);
5638 load->glc = false;
5639 load->dlc = false;
5640 load->dmask = 0x1;
5641 load->unrm = true;
5642 load->da = da;
5643 load->dim = dim;
5644 ctx->block->instructions.emplace_back(std::move(load));
5645
5646 Operand sample_index4;
5647 if (sample_index.isConstant()) {
5648 if (sample_index.constantValue() < 16) {
5649 sample_index4 = Operand(sample_index.constantValue() << 2);
5650 } else {
5651 sample_index4 = Operand(0u);
5652 }
5653 } else if (sample_index.regClass() == s1) {
5654 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5655 } else {
5656 assert(sample_index.regClass() == v1);
5657 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5658 }
5659
5660 Temp final_sample;
5661 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5662 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5663 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5664 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5665 else
5666 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5667
5668 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5669 * resource descriptor is 0 (invalid),
5670 */
5671 Temp compare = bld.tmp(bld.lm);
5672 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5673 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5674
5675 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5676
5677 /* Replace the MSAA sample index. */
5678 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5679 }
5680
5681 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5682 {
5683
5684 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5685 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5686 bool is_array = glsl_sampler_type_is_array(type);
5687 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5688 assert(!add_frag_pos && "Input attachments should be lowered.");
5689 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5690 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5691 int count = image_type_to_components_count(dim, is_array);
5692 std::vector<Temp> coords(count);
5693 Builder bld(ctx->program, ctx->block);
5694
5695 if (is_ms) {
5696 count--;
5697 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5698 /* get sample index */
5699 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5700 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5701 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5702 std::vector<Temp> fmask_load_address;
5703 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5704 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5705
5706 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5707 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5708 } else {
5709 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5710 }
5711 }
5712
5713 if (gfx9_1d) {
5714 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5715 coords.resize(coords.size() + 1);
5716 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5717 if (is_array)
5718 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5719 } else {
5720 for (int i = 0; i < count; i++)
5721 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5722 }
5723
5724 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5725 instr->intrinsic == nir_intrinsic_image_deref_store) {
5726 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5727 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5728
5729 if (!level_zero)
5730 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5731 }
5732
5733 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5734 for (unsigned i = 0; i < coords.size(); i++)
5735 vec->operands[i] = Operand(coords[i]);
5736 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5737 vec->definitions[0] = Definition(res);
5738 ctx->block->instructions.emplace_back(std::move(vec));
5739 return res;
5740 }
5741
5742
5743 memory_sync_info get_memory_sync_info(nir_intrinsic_instr *instr, storage_class storage, unsigned semantics)
5744 {
5745 /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */
5746 if (semantics & semantic_atomicrmw)
5747 return memory_sync_info(storage, semantics);
5748
5749 unsigned access = nir_intrinsic_access(instr);
5750
5751 if (access & ACCESS_VOLATILE)
5752 semantics |= semantic_volatile;
5753 if (access & ACCESS_CAN_REORDER)
5754 semantics |= semantic_can_reorder | semantic_private;
5755
5756 return memory_sync_info(storage, semantics);
5757 }
5758
5759 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5760 {
5761 Builder bld(ctx->program, ctx->block);
5762 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5763 const struct glsl_type *type = glsl_without_array(var->type);
5764 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5765 bool is_array = glsl_sampler_type_is_array(type);
5766 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5767
5768 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5769 unsigned access = var->data.access | nir_intrinsic_access(instr);
5770
5771 if (dim == GLSL_SAMPLER_DIM_BUF) {
5772 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5773 unsigned num_channels = util_last_bit(mask);
5774 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5775 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5776
5777 aco_opcode opcode;
5778 switch (num_channels) {
5779 case 1:
5780 opcode = aco_opcode::buffer_load_format_x;
5781 break;
5782 case 2:
5783 opcode = aco_opcode::buffer_load_format_xy;
5784 break;
5785 case 3:
5786 opcode = aco_opcode::buffer_load_format_xyz;
5787 break;
5788 case 4:
5789 opcode = aco_opcode::buffer_load_format_xyzw;
5790 break;
5791 default:
5792 unreachable(">4 channel buffer image load");
5793 }
5794 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5795 load->operands[0] = Operand(rsrc);
5796 load->operands[1] = Operand(vindex);
5797 load->operands[2] = Operand((uint32_t) 0);
5798 Temp tmp;
5799 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5800 tmp = dst;
5801 else
5802 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5803 load->definitions[0] = Definition(tmp);
5804 load->idxen = true;
5805 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5806 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5807 load->sync = sync;
5808 ctx->block->instructions.emplace_back(std::move(load));
5809
5810 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5811 return;
5812 }
5813
5814 Temp coords = get_image_coords(ctx, instr, type);
5815 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5816
5817 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5818 unsigned num_components = util_bitcount(dmask);
5819 Temp tmp;
5820 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5821 tmp = dst;
5822 else
5823 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5824
5825 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5826 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5827
5828 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5829 load->operands[0] = Operand(resource);
5830 load->operands[1] = Operand(s4); /* no sampler */
5831 load->operands[2] = Operand(coords);
5832 load->definitions[0] = Definition(tmp);
5833 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5834 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5835 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5836 load->dmask = dmask;
5837 load->unrm = true;
5838 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5839 load->sync = sync;
5840 ctx->block->instructions.emplace_back(std::move(load));
5841
5842 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5843 return;
5844 }
5845
5846 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5847 {
5848 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5849 const struct glsl_type *type = glsl_without_array(var->type);
5850 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5851 bool is_array = glsl_sampler_type_is_array(type);
5852 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5853
5854 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5855 unsigned access = var->data.access | nir_intrinsic_access(instr);
5856 bool glc = ctx->options->chip_class == GFX6 || access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5857
5858 if (dim == GLSL_SAMPLER_DIM_BUF) {
5859 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5860 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5861 aco_opcode opcode;
5862 switch (data.size()) {
5863 case 1:
5864 opcode = aco_opcode::buffer_store_format_x;
5865 break;
5866 case 2:
5867 opcode = aco_opcode::buffer_store_format_xy;
5868 break;
5869 case 3:
5870 opcode = aco_opcode::buffer_store_format_xyz;
5871 break;
5872 case 4:
5873 opcode = aco_opcode::buffer_store_format_xyzw;
5874 break;
5875 default:
5876 unreachable(">4 channel buffer image store");
5877 }
5878 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5879 store->operands[0] = Operand(rsrc);
5880 store->operands[1] = Operand(vindex);
5881 store->operands[2] = Operand((uint32_t) 0);
5882 store->operands[3] = Operand(data);
5883 store->idxen = true;
5884 store->glc = glc;
5885 store->dlc = false;
5886 store->disable_wqm = true;
5887 store->sync = sync;
5888 ctx->program->needs_exact = true;
5889 ctx->block->instructions.emplace_back(std::move(store));
5890 return;
5891 }
5892
5893 assert(data.type() == RegType::vgpr);
5894 Temp coords = get_image_coords(ctx, instr, type);
5895 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5896
5897 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5898 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5899
5900 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5901 store->operands[0] = Operand(resource);
5902 store->operands[1] = Operand(data);
5903 store->operands[2] = Operand(coords);
5904 store->glc = glc;
5905 store->dlc = false;
5906 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5907 store->dmask = (1 << data.size()) - 1;
5908 store->unrm = true;
5909 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5910 store->disable_wqm = true;
5911 store->sync = sync;
5912 ctx->program->needs_exact = true;
5913 ctx->block->instructions.emplace_back(std::move(store));
5914 return;
5915 }
5916
5917 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5918 {
5919 /* return the previous value if dest is ever used */
5920 bool return_previous = false;
5921 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5922 return_previous = true;
5923 break;
5924 }
5925 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5926 return_previous = true;
5927 break;
5928 }
5929
5930 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5931 const struct glsl_type *type = glsl_without_array(var->type);
5932 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5933 bool is_array = glsl_sampler_type_is_array(type);
5934 Builder bld(ctx->program, ctx->block);
5935
5936 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5937 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5938
5939 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5940 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5941
5942 aco_opcode buf_op, image_op;
5943 switch (instr->intrinsic) {
5944 case nir_intrinsic_image_deref_atomic_add:
5945 buf_op = aco_opcode::buffer_atomic_add;
5946 image_op = aco_opcode::image_atomic_add;
5947 break;
5948 case nir_intrinsic_image_deref_atomic_umin:
5949 buf_op = aco_opcode::buffer_atomic_umin;
5950 image_op = aco_opcode::image_atomic_umin;
5951 break;
5952 case nir_intrinsic_image_deref_atomic_imin:
5953 buf_op = aco_opcode::buffer_atomic_smin;
5954 image_op = aco_opcode::image_atomic_smin;
5955 break;
5956 case nir_intrinsic_image_deref_atomic_umax:
5957 buf_op = aco_opcode::buffer_atomic_umax;
5958 image_op = aco_opcode::image_atomic_umax;
5959 break;
5960 case nir_intrinsic_image_deref_atomic_imax:
5961 buf_op = aco_opcode::buffer_atomic_smax;
5962 image_op = aco_opcode::image_atomic_smax;
5963 break;
5964 case nir_intrinsic_image_deref_atomic_and:
5965 buf_op = aco_opcode::buffer_atomic_and;
5966 image_op = aco_opcode::image_atomic_and;
5967 break;
5968 case nir_intrinsic_image_deref_atomic_or:
5969 buf_op = aco_opcode::buffer_atomic_or;
5970 image_op = aco_opcode::image_atomic_or;
5971 break;
5972 case nir_intrinsic_image_deref_atomic_xor:
5973 buf_op = aco_opcode::buffer_atomic_xor;
5974 image_op = aco_opcode::image_atomic_xor;
5975 break;
5976 case nir_intrinsic_image_deref_atomic_exchange:
5977 buf_op = aco_opcode::buffer_atomic_swap;
5978 image_op = aco_opcode::image_atomic_swap;
5979 break;
5980 case nir_intrinsic_image_deref_atomic_comp_swap:
5981 buf_op = aco_opcode::buffer_atomic_cmpswap;
5982 image_op = aco_opcode::image_atomic_cmpswap;
5983 break;
5984 default:
5985 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5986 }
5987
5988 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5989 memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw);
5990
5991 if (dim == GLSL_SAMPLER_DIM_BUF) {
5992 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5993 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5994 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5995 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5996 mubuf->operands[0] = Operand(resource);
5997 mubuf->operands[1] = Operand(vindex);
5998 mubuf->operands[2] = Operand((uint32_t)0);
5999 mubuf->operands[3] = Operand(data);
6000 if (return_previous)
6001 mubuf->definitions[0] = Definition(dst);
6002 mubuf->offset = 0;
6003 mubuf->idxen = true;
6004 mubuf->glc = return_previous;
6005 mubuf->dlc = false; /* Not needed for atomics */
6006 mubuf->disable_wqm = true;
6007 mubuf->sync = sync;
6008 ctx->program->needs_exact = true;
6009 ctx->block->instructions.emplace_back(std::move(mubuf));
6010 return;
6011 }
6012
6013 Temp coords = get_image_coords(ctx, instr, type);
6014 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
6015 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
6016 mimg->operands[0] = Operand(resource);
6017 mimg->operands[1] = Operand(data);
6018 mimg->operands[2] = Operand(coords);
6019 if (return_previous)
6020 mimg->definitions[0] = Definition(dst);
6021 mimg->glc = return_previous;
6022 mimg->dlc = false; /* Not needed for atomics */
6023 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6024 mimg->dmask = (1 << data.size()) - 1;
6025 mimg->unrm = true;
6026 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6027 mimg->disable_wqm = true;
6028 mimg->sync = sync;
6029 ctx->program->needs_exact = true;
6030 ctx->block->instructions.emplace_back(std::move(mimg));
6031 return;
6032 }
6033
6034 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
6035 {
6036 if (in_elements && ctx->options->chip_class == GFX8) {
6037 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
6038 Builder bld(ctx->program, ctx->block);
6039
6040 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6041
6042 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6043 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
6044
6045 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6046 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6047
6048 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6049 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6050
6051 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6052 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6053 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6054 if (dst.type() == RegType::vgpr)
6055 bld.copy(Definition(dst), shr_dst);
6056
6057 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6058 } else {
6059 emit_extract_vector(ctx, desc, 2, dst);
6060 }
6061 }
6062
6063 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6064 {
6065 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6066 const struct glsl_type *type = glsl_without_array(var->type);
6067 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6068 bool is_array = glsl_sampler_type_is_array(type);
6069 Builder bld(ctx->program, ctx->block);
6070
6071 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6072 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6073 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6074 }
6075
6076 /* LOD */
6077 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6078
6079 /* Resource */
6080 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6081
6082 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6083
6084 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6085 mimg->operands[0] = Operand(resource);
6086 mimg->operands[1] = Operand(s4); /* no sampler */
6087 mimg->operands[2] = Operand(lod);
6088 uint8_t& dmask = mimg->dmask;
6089 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6090 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6091 mimg->da = glsl_sampler_type_is_array(type);
6092 Definition& def = mimg->definitions[0];
6093 ctx->block->instructions.emplace_back(std::move(mimg));
6094
6095 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6096 glsl_sampler_type_is_array(type)) {
6097
6098 assert(instr->dest.ssa.num_components == 3);
6099 Temp tmp = {ctx->program->allocateId(), v3};
6100 def = Definition(tmp);
6101 emit_split_vector(ctx, tmp, 3);
6102
6103 /* divide 3rd value by 6 by multiplying with magic number */
6104 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6105 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6106
6107 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6108 emit_extract_vector(ctx, tmp, 0, v1),
6109 emit_extract_vector(ctx, tmp, 1, v1),
6110 by_6);
6111
6112 } else if (ctx->options->chip_class == GFX9 &&
6113 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6114 glsl_sampler_type_is_array(type)) {
6115 assert(instr->dest.ssa.num_components == 2);
6116 def = Definition(dst);
6117 dmask = 0x5;
6118 } else {
6119 def = Definition(dst);
6120 }
6121
6122 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6123 }
6124
6125 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6126 {
6127 Builder bld(ctx->program, ctx->block);
6128 unsigned num_components = instr->num_components;
6129
6130 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6131 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6132 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6133
6134 unsigned access = nir_intrinsic_access(instr);
6135 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6136 unsigned size = instr->dest.ssa.bit_size / 8;
6137
6138 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6139 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6140 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6141 */
6142 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6143 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6144
6145 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6146 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem,
6147 get_memory_sync_info(instr, storage_buffer, 0));
6148 }
6149
6150 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6151 {
6152 Builder bld(ctx->program, ctx->block);
6153 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6154 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6155 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6156 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6157
6158 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6159 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6160
6161 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6162 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6163 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6164 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6165 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6166 */
6167 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6168
6169 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6170 ctx->options->chip_class >= GFX8 &&
6171 ctx->options->chip_class < GFX10_3 &&
6172 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6173 allow_smem;
6174 if (smem)
6175 offset = bld.as_uniform(offset);
6176 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6177
6178 unsigned write_count = 0;
6179 Temp write_datas[32];
6180 unsigned offsets[32];
6181 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6182 data, writemask, 16, &write_count, write_datas, offsets);
6183
6184 for (unsigned i = 0; i < write_count; i++) {
6185 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6186 if (smem && ctx->stage == fragment_fs)
6187 op = aco_opcode::p_fs_buffer_store_smem;
6188
6189 if (smem) {
6190 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6191 store->operands[0] = Operand(rsrc);
6192 if (offsets[i]) {
6193 Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6194 offset, Operand(offsets[i]));
6195 store->operands[1] = Operand(off);
6196 } else {
6197 store->operands[1] = Operand(offset);
6198 }
6199 if (op != aco_opcode::p_fs_buffer_store_smem)
6200 store->operands[1].setFixed(m0);
6201 store->operands[2] = Operand(write_datas[i]);
6202 store->glc = glc;
6203 store->dlc = false;
6204 store->disable_wqm = true;
6205 store->sync = sync;
6206 ctx->block->instructions.emplace_back(std::move(store));
6207 ctx->program->wb_smem_l1_on_end = true;
6208 if (op == aco_opcode::p_fs_buffer_store_smem) {
6209 ctx->block->kind |= block_kind_needs_lowering;
6210 ctx->program->needs_exact = true;
6211 }
6212 } else {
6213 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6214 store->operands[0] = Operand(rsrc);
6215 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6216 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6217 store->operands[3] = Operand(write_datas[i]);
6218 store->offset = offsets[i];
6219 store->offen = (offset.type() == RegType::vgpr);
6220 store->glc = glc;
6221 store->dlc = false;
6222 store->disable_wqm = true;
6223 store->sync = sync;
6224 ctx->program->needs_exact = true;
6225 ctx->block->instructions.emplace_back(std::move(store));
6226 }
6227 }
6228 }
6229
6230 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6231 {
6232 /* return the previous value if dest is ever used */
6233 bool return_previous = false;
6234 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6235 return_previous = true;
6236 break;
6237 }
6238 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6239 return_previous = true;
6240 break;
6241 }
6242
6243 Builder bld(ctx->program, ctx->block);
6244 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6245
6246 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6247 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6248 get_ssa_temp(ctx, instr->src[3].ssa), data);
6249
6250 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6251 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6252 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6253
6254 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6255
6256 aco_opcode op32, op64;
6257 switch (instr->intrinsic) {
6258 case nir_intrinsic_ssbo_atomic_add:
6259 op32 = aco_opcode::buffer_atomic_add;
6260 op64 = aco_opcode::buffer_atomic_add_x2;
6261 break;
6262 case nir_intrinsic_ssbo_atomic_imin:
6263 op32 = aco_opcode::buffer_atomic_smin;
6264 op64 = aco_opcode::buffer_atomic_smin_x2;
6265 break;
6266 case nir_intrinsic_ssbo_atomic_umin:
6267 op32 = aco_opcode::buffer_atomic_umin;
6268 op64 = aco_opcode::buffer_atomic_umin_x2;
6269 break;
6270 case nir_intrinsic_ssbo_atomic_imax:
6271 op32 = aco_opcode::buffer_atomic_smax;
6272 op64 = aco_opcode::buffer_atomic_smax_x2;
6273 break;
6274 case nir_intrinsic_ssbo_atomic_umax:
6275 op32 = aco_opcode::buffer_atomic_umax;
6276 op64 = aco_opcode::buffer_atomic_umax_x2;
6277 break;
6278 case nir_intrinsic_ssbo_atomic_and:
6279 op32 = aco_opcode::buffer_atomic_and;
6280 op64 = aco_opcode::buffer_atomic_and_x2;
6281 break;
6282 case nir_intrinsic_ssbo_atomic_or:
6283 op32 = aco_opcode::buffer_atomic_or;
6284 op64 = aco_opcode::buffer_atomic_or_x2;
6285 break;
6286 case nir_intrinsic_ssbo_atomic_xor:
6287 op32 = aco_opcode::buffer_atomic_xor;
6288 op64 = aco_opcode::buffer_atomic_xor_x2;
6289 break;
6290 case nir_intrinsic_ssbo_atomic_exchange:
6291 op32 = aco_opcode::buffer_atomic_swap;
6292 op64 = aco_opcode::buffer_atomic_swap_x2;
6293 break;
6294 case nir_intrinsic_ssbo_atomic_comp_swap:
6295 op32 = aco_opcode::buffer_atomic_cmpswap;
6296 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6297 break;
6298 default:
6299 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6300 }
6301 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6302 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6303 mubuf->operands[0] = Operand(rsrc);
6304 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6305 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6306 mubuf->operands[3] = Operand(data);
6307 if (return_previous)
6308 mubuf->definitions[0] = Definition(dst);
6309 mubuf->offset = 0;
6310 mubuf->offen = (offset.type() == RegType::vgpr);
6311 mubuf->glc = return_previous;
6312 mubuf->dlc = false; /* Not needed for atomics */
6313 mubuf->disable_wqm = true;
6314 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6315 ctx->program->needs_exact = true;
6316 ctx->block->instructions.emplace_back(std::move(mubuf));
6317 }
6318
6319 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6320
6321 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6322 Builder bld(ctx->program, ctx->block);
6323 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6324 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6325 }
6326
6327 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6328 {
6329 Builder bld(ctx->program, ctx->block);
6330 unsigned num_components = instr->num_components;
6331 unsigned component_size = instr->dest.ssa.bit_size / 8;
6332
6333 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6334 get_ssa_temp(ctx, &instr->dest.ssa),
6335 num_components, component_size};
6336 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6337 info.align_mul = nir_intrinsic_align_mul(instr);
6338 info.align_offset = nir_intrinsic_align_offset(instr);
6339 info.sync = get_memory_sync_info(instr, storage_buffer, 0);
6340 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6341 * it's safe to use SMEM */
6342 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6343 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6344 emit_global_load(ctx, bld, &info);
6345 } else {
6346 info.offset = Operand(bld.as_uniform(info.offset));
6347 emit_smem_load(ctx, bld, &info);
6348 }
6349 }
6350
6351 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6352 {
6353 Builder bld(ctx->program, ctx->block);
6354 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6355 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6356
6357 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6358 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6359 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6360 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6361
6362 if (ctx->options->chip_class >= GFX7)
6363 addr = as_vgpr(ctx, addr);
6364
6365 unsigned write_count = 0;
6366 Temp write_datas[32];
6367 unsigned offsets[32];
6368 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6369 16, &write_count, write_datas, offsets);
6370
6371 for (unsigned i = 0; i < write_count; i++) {
6372 if (ctx->options->chip_class >= GFX7) {
6373 unsigned offset = offsets[i];
6374 Temp store_addr = addr;
6375 if (offset > 0 && ctx->options->chip_class < GFX9) {
6376 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6377 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6378 Temp carry = bld.tmp(bld.lm);
6379 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6380
6381 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6382 Operand(offset), addr0);
6383 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6384 Operand(0u), addr1,
6385 carry).def(1).setHint(vcc);
6386
6387 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6388
6389 offset = 0;
6390 }
6391
6392 bool global = ctx->options->chip_class >= GFX9;
6393 aco_opcode op;
6394 switch (write_datas[i].bytes()) {
6395 case 1:
6396 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6397 break;
6398 case 2:
6399 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6400 break;
6401 case 4:
6402 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6403 break;
6404 case 8:
6405 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6406 break;
6407 case 12:
6408 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6409 break;
6410 case 16:
6411 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6412 break;
6413 default:
6414 unreachable("store_global not implemented for this size.");
6415 }
6416
6417 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6418 flat->operands[0] = Operand(store_addr);
6419 flat->operands[1] = Operand(s1);
6420 flat->operands[2] = Operand(write_datas[i]);
6421 flat->glc = glc;
6422 flat->dlc = false;
6423 flat->offset = offset;
6424 flat->disable_wqm = true;
6425 flat->sync = sync;
6426 ctx->program->needs_exact = true;
6427 ctx->block->instructions.emplace_back(std::move(flat));
6428 } else {
6429 assert(ctx->options->chip_class == GFX6);
6430
6431 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6432
6433 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6434
6435 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6436 mubuf->operands[0] = Operand(rsrc);
6437 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6438 mubuf->operands[2] = Operand(0u);
6439 mubuf->operands[3] = Operand(write_datas[i]);
6440 mubuf->glc = glc;
6441 mubuf->dlc = false;
6442 mubuf->offset = offsets[i];
6443 mubuf->addr64 = addr.type() == RegType::vgpr;
6444 mubuf->disable_wqm = true;
6445 mubuf->sync = sync;
6446 ctx->program->needs_exact = true;
6447 ctx->block->instructions.emplace_back(std::move(mubuf));
6448 }
6449 }
6450 }
6451
6452 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6453 {
6454 /* return the previous value if dest is ever used */
6455 bool return_previous = false;
6456 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6457 return_previous = true;
6458 break;
6459 }
6460 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6461 return_previous = true;
6462 break;
6463 }
6464
6465 Builder bld(ctx->program, ctx->block);
6466 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6467 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6468
6469 if (ctx->options->chip_class >= GFX7)
6470 addr = as_vgpr(ctx, addr);
6471
6472 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6473 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6474 get_ssa_temp(ctx, instr->src[2].ssa), data);
6475
6476 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6477
6478 aco_opcode op32, op64;
6479
6480 if (ctx->options->chip_class >= GFX7) {
6481 bool global = ctx->options->chip_class >= GFX9;
6482 switch (instr->intrinsic) {
6483 case nir_intrinsic_global_atomic_add:
6484 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6485 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6486 break;
6487 case nir_intrinsic_global_atomic_imin:
6488 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6489 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6490 break;
6491 case nir_intrinsic_global_atomic_umin:
6492 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6493 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6494 break;
6495 case nir_intrinsic_global_atomic_imax:
6496 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6497 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6498 break;
6499 case nir_intrinsic_global_atomic_umax:
6500 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6501 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6502 break;
6503 case nir_intrinsic_global_atomic_and:
6504 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6505 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6506 break;
6507 case nir_intrinsic_global_atomic_or:
6508 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6509 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6510 break;
6511 case nir_intrinsic_global_atomic_xor:
6512 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6513 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6514 break;
6515 case nir_intrinsic_global_atomic_exchange:
6516 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6517 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6518 break;
6519 case nir_intrinsic_global_atomic_comp_swap:
6520 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6521 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6522 break;
6523 default:
6524 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6525 }
6526
6527 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6528 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6529 flat->operands[0] = Operand(addr);
6530 flat->operands[1] = Operand(s1);
6531 flat->operands[2] = Operand(data);
6532 if (return_previous)
6533 flat->definitions[0] = Definition(dst);
6534 flat->glc = return_previous;
6535 flat->dlc = false; /* Not needed for atomics */
6536 flat->offset = 0;
6537 flat->disable_wqm = true;
6538 flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6539 ctx->program->needs_exact = true;
6540 ctx->block->instructions.emplace_back(std::move(flat));
6541 } else {
6542 assert(ctx->options->chip_class == GFX6);
6543
6544 switch (instr->intrinsic) {
6545 case nir_intrinsic_global_atomic_add:
6546 op32 = aco_opcode::buffer_atomic_add;
6547 op64 = aco_opcode::buffer_atomic_add_x2;
6548 break;
6549 case nir_intrinsic_global_atomic_imin:
6550 op32 = aco_opcode::buffer_atomic_smin;
6551 op64 = aco_opcode::buffer_atomic_smin_x2;
6552 break;
6553 case nir_intrinsic_global_atomic_umin:
6554 op32 = aco_opcode::buffer_atomic_umin;
6555 op64 = aco_opcode::buffer_atomic_umin_x2;
6556 break;
6557 case nir_intrinsic_global_atomic_imax:
6558 op32 = aco_opcode::buffer_atomic_smax;
6559 op64 = aco_opcode::buffer_atomic_smax_x2;
6560 break;
6561 case nir_intrinsic_global_atomic_umax:
6562 op32 = aco_opcode::buffer_atomic_umax;
6563 op64 = aco_opcode::buffer_atomic_umax_x2;
6564 break;
6565 case nir_intrinsic_global_atomic_and:
6566 op32 = aco_opcode::buffer_atomic_and;
6567 op64 = aco_opcode::buffer_atomic_and_x2;
6568 break;
6569 case nir_intrinsic_global_atomic_or:
6570 op32 = aco_opcode::buffer_atomic_or;
6571 op64 = aco_opcode::buffer_atomic_or_x2;
6572 break;
6573 case nir_intrinsic_global_atomic_xor:
6574 op32 = aco_opcode::buffer_atomic_xor;
6575 op64 = aco_opcode::buffer_atomic_xor_x2;
6576 break;
6577 case nir_intrinsic_global_atomic_exchange:
6578 op32 = aco_opcode::buffer_atomic_swap;
6579 op64 = aco_opcode::buffer_atomic_swap_x2;
6580 break;
6581 case nir_intrinsic_global_atomic_comp_swap:
6582 op32 = aco_opcode::buffer_atomic_cmpswap;
6583 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6584 break;
6585 default:
6586 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6587 }
6588
6589 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6590
6591 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6592
6593 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6594 mubuf->operands[0] = Operand(rsrc);
6595 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6596 mubuf->operands[2] = Operand(0u);
6597 mubuf->operands[3] = Operand(data);
6598 if (return_previous)
6599 mubuf->definitions[0] = Definition(dst);
6600 mubuf->glc = return_previous;
6601 mubuf->dlc = false;
6602 mubuf->offset = 0;
6603 mubuf->addr64 = addr.type() == RegType::vgpr;
6604 mubuf->disable_wqm = true;
6605 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6606 ctx->program->needs_exact = true;
6607 ctx->block->instructions.emplace_back(std::move(mubuf));
6608 }
6609 }
6610
6611 sync_scope translate_nir_scope(nir_scope scope)
6612 {
6613 switch (scope) {
6614 case NIR_SCOPE_NONE:
6615 case NIR_SCOPE_INVOCATION:
6616 return scope_invocation;
6617 case NIR_SCOPE_SUBGROUP:
6618 return scope_subgroup;
6619 case NIR_SCOPE_WORKGROUP:
6620 return scope_workgroup;
6621 case NIR_SCOPE_QUEUE_FAMILY:
6622 return scope_queuefamily;
6623 case NIR_SCOPE_DEVICE:
6624 return scope_device;
6625 }
6626 unreachable("invalid scope");
6627 }
6628
6629 void emit_scoped_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6630 Builder bld(ctx->program, ctx->block);
6631
6632 unsigned semantics = 0;
6633 unsigned storage = 0;
6634 sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr));
6635 sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr));
6636
6637 unsigned nir_storage = nir_intrinsic_memory_modes(instr);
6638 if (nir_storage & (nir_var_mem_ssbo | nir_var_mem_global))
6639 storage |= storage_buffer | storage_image; //TODO: split this when NIR gets nir_var_mem_image
6640 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && (nir_storage & nir_var_mem_shared))
6641 storage |= storage_shared;
6642 if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL && (nir_storage & nir_var_shader_out))
6643 storage |= storage_shared;
6644
6645 unsigned nir_semantics = nir_intrinsic_memory_semantics(instr);
6646 if (nir_semantics & NIR_MEMORY_ACQUIRE)
6647 semantics |= semantic_acquire | semantic_release;
6648 if (nir_semantics & NIR_MEMORY_RELEASE)
6649 semantics |= semantic_acquire | semantic_release;
6650
6651 assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
6652
6653 bld.barrier(aco_opcode::p_barrier,
6654 memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope),
6655 exec_scope);
6656 }
6657
6658 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6659 {
6660 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6661 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6662 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6663 Builder bld(ctx->program, ctx->block);
6664
6665 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6666 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6667 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6668 }
6669
6670 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6671 {
6672 unsigned writemask = nir_intrinsic_write_mask(instr);
6673 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6674 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6675 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6676
6677 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6678 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6679 }
6680
6681 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6682 {
6683 unsigned offset = nir_intrinsic_base(instr);
6684 Builder bld(ctx->program, ctx->block);
6685 Operand m = load_lds_size_m0(bld);
6686 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6687 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6688
6689 unsigned num_operands = 3;
6690 aco_opcode op32, op64, op32_rtn, op64_rtn;
6691 switch(instr->intrinsic) {
6692 case nir_intrinsic_shared_atomic_add:
6693 op32 = aco_opcode::ds_add_u32;
6694 op64 = aco_opcode::ds_add_u64;
6695 op32_rtn = aco_opcode::ds_add_rtn_u32;
6696 op64_rtn = aco_opcode::ds_add_rtn_u64;
6697 break;
6698 case nir_intrinsic_shared_atomic_imin:
6699 op32 = aco_opcode::ds_min_i32;
6700 op64 = aco_opcode::ds_min_i64;
6701 op32_rtn = aco_opcode::ds_min_rtn_i32;
6702 op64_rtn = aco_opcode::ds_min_rtn_i64;
6703 break;
6704 case nir_intrinsic_shared_atomic_umin:
6705 op32 = aco_opcode::ds_min_u32;
6706 op64 = aco_opcode::ds_min_u64;
6707 op32_rtn = aco_opcode::ds_min_rtn_u32;
6708 op64_rtn = aco_opcode::ds_min_rtn_u64;
6709 break;
6710 case nir_intrinsic_shared_atomic_imax:
6711 op32 = aco_opcode::ds_max_i32;
6712 op64 = aco_opcode::ds_max_i64;
6713 op32_rtn = aco_opcode::ds_max_rtn_i32;
6714 op64_rtn = aco_opcode::ds_max_rtn_i64;
6715 break;
6716 case nir_intrinsic_shared_atomic_umax:
6717 op32 = aco_opcode::ds_max_u32;
6718 op64 = aco_opcode::ds_max_u64;
6719 op32_rtn = aco_opcode::ds_max_rtn_u32;
6720 op64_rtn = aco_opcode::ds_max_rtn_u64;
6721 break;
6722 case nir_intrinsic_shared_atomic_and:
6723 op32 = aco_opcode::ds_and_b32;
6724 op64 = aco_opcode::ds_and_b64;
6725 op32_rtn = aco_opcode::ds_and_rtn_b32;
6726 op64_rtn = aco_opcode::ds_and_rtn_b64;
6727 break;
6728 case nir_intrinsic_shared_atomic_or:
6729 op32 = aco_opcode::ds_or_b32;
6730 op64 = aco_opcode::ds_or_b64;
6731 op32_rtn = aco_opcode::ds_or_rtn_b32;
6732 op64_rtn = aco_opcode::ds_or_rtn_b64;
6733 break;
6734 case nir_intrinsic_shared_atomic_xor:
6735 op32 = aco_opcode::ds_xor_b32;
6736 op64 = aco_opcode::ds_xor_b64;
6737 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6738 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6739 break;
6740 case nir_intrinsic_shared_atomic_exchange:
6741 op32 = aco_opcode::ds_write_b32;
6742 op64 = aco_opcode::ds_write_b64;
6743 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6744 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6745 break;
6746 case nir_intrinsic_shared_atomic_comp_swap:
6747 op32 = aco_opcode::ds_cmpst_b32;
6748 op64 = aco_opcode::ds_cmpst_b64;
6749 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6750 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6751 num_operands = 4;
6752 break;
6753 case nir_intrinsic_shared_atomic_fadd:
6754 op32 = aco_opcode::ds_add_f32;
6755 op32_rtn = aco_opcode::ds_add_rtn_f32;
6756 op64 = aco_opcode::num_opcodes;
6757 op64_rtn = aco_opcode::num_opcodes;
6758 break;
6759 default:
6760 unreachable("Unhandled shared atomic intrinsic");
6761 }
6762
6763 /* return the previous value if dest is ever used */
6764 bool return_previous = false;
6765 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6766 return_previous = true;
6767 break;
6768 }
6769 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6770 return_previous = true;
6771 break;
6772 }
6773
6774 aco_opcode op;
6775 if (data.size() == 1) {
6776 assert(instr->dest.ssa.bit_size == 32);
6777 op = return_previous ? op32_rtn : op32;
6778 } else {
6779 assert(instr->dest.ssa.bit_size == 64);
6780 op = return_previous ? op64_rtn : op64;
6781 }
6782
6783 if (offset > 65535) {
6784 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6785 offset = 0;
6786 }
6787
6788 aco_ptr<DS_instruction> ds;
6789 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6790 ds->operands[0] = Operand(address);
6791 ds->operands[1] = Operand(data);
6792 if (num_operands == 4)
6793 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6794 ds->operands[num_operands - 1] = m;
6795 ds->offset0 = offset;
6796 if (return_previous)
6797 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6798 ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw);
6799 ctx->block->instructions.emplace_back(std::move(ds));
6800 }
6801
6802 Temp get_scratch_resource(isel_context *ctx)
6803 {
6804 Builder bld(ctx->program, ctx->block);
6805 Temp scratch_addr = ctx->program->private_segment_buffer;
6806 if (ctx->stage != compute_cs)
6807 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6808
6809 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6810 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
6811
6812 if (ctx->program->chip_class >= GFX10) {
6813 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6814 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6815 S_008F0C_RESOURCE_LEVEL(1);
6816 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6817 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6818 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6819 }
6820
6821 /* older generations need element size = 4 bytes. element size removed in GFX9 */
6822 if (ctx->program->chip_class <= GFX8)
6823 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
6824
6825 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6826 }
6827
6828 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6829 Builder bld(ctx->program, ctx->block);
6830 Temp rsrc = get_scratch_resource(ctx);
6831 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6832 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6833
6834 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6835 instr->dest.ssa.bit_size / 8u, rsrc};
6836 info.align_mul = nir_intrinsic_align_mul(instr);
6837 info.align_offset = nir_intrinsic_align_offset(instr);
6838 info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0;
6839 info.sync = memory_sync_info(storage_scratch, semantic_private);
6840 info.soffset = ctx->program->scratch_offset;
6841 emit_scratch_load(ctx, bld, &info);
6842 }
6843
6844 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6845 Builder bld(ctx->program, ctx->block);
6846 Temp rsrc = get_scratch_resource(ctx);
6847 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6848 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6849
6850 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6851 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6852
6853 unsigned write_count = 0;
6854 Temp write_datas[32];
6855 unsigned offsets[32];
6856 unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16;
6857 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6858 swizzle_component_size, &write_count, write_datas, offsets);
6859
6860 for (unsigned i = 0; i < write_count; i++) {
6861 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6862 Instruction *instr = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true);
6863 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_scratch, semantic_private);
6864 }
6865 }
6866
6867 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6868 uint8_t log2_ps_iter_samples;
6869 if (ctx->program->info->ps.force_persample) {
6870 log2_ps_iter_samples =
6871 util_logbase2(ctx->options->key.fs.num_samples);
6872 } else {
6873 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6874 }
6875
6876 /* The bit pattern matches that used by fixed function fragment
6877 * processing. */
6878 static const unsigned ps_iter_masks[] = {
6879 0xffff, /* not used */
6880 0x5555,
6881 0x1111,
6882 0x0101,
6883 0x0001,
6884 };
6885 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6886
6887 Builder bld(ctx->program, ctx->block);
6888
6889 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6890 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6891 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6892 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6893 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6894 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6895 }
6896
6897 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6898 Builder bld(ctx->program, ctx->block);
6899
6900 unsigned stream = nir_intrinsic_stream_id(instr);
6901 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6902 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6903 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6904
6905 /* get GSVS ring */
6906 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6907
6908 unsigned num_components =
6909 ctx->program->info->gs.num_stream_output_components[stream];
6910 assert(num_components);
6911
6912 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6913 unsigned stream_offset = 0;
6914 for (unsigned i = 0; i < stream; i++) {
6915 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6916 stream_offset += prev_stride * ctx->program->wave_size;
6917 }
6918
6919 /* Limit on the stride field for <= GFX7. */
6920 assert(stride < (1 << 14));
6921
6922 Temp gsvs_dwords[4];
6923 for (unsigned i = 0; i < 4; i++)
6924 gsvs_dwords[i] = bld.tmp(s1);
6925 bld.pseudo(aco_opcode::p_split_vector,
6926 Definition(gsvs_dwords[0]),
6927 Definition(gsvs_dwords[1]),
6928 Definition(gsvs_dwords[2]),
6929 Definition(gsvs_dwords[3]),
6930 gsvs_ring);
6931
6932 if (stream_offset) {
6933 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6934
6935 Temp carry = bld.tmp(s1);
6936 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6937 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6938 }
6939
6940 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6941 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6942
6943 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6944 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6945
6946 unsigned offset = 0;
6947 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6948 if (ctx->program->info->gs.output_streams[i] != stream)
6949 continue;
6950
6951 for (unsigned j = 0; j < 4; j++) {
6952 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6953 continue;
6954
6955 if (ctx->outputs.mask[i] & (1 << j)) {
6956 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6957 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6958 if (const_offset >= 4096u) {
6959 if (vaddr_offset.isUndefined())
6960 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6961 else
6962 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6963 const_offset %= 4096u;
6964 }
6965
6966 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6967 mtbuf->operands[0] = Operand(gsvs_ring);
6968 mtbuf->operands[1] = vaddr_offset;
6969 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6970 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6971 mtbuf->offen = !vaddr_offset.isUndefined();
6972 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6973 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6974 mtbuf->offset = const_offset;
6975 mtbuf->glc = true;
6976 mtbuf->slc = true;
6977 mtbuf->sync = memory_sync_info(storage_vmem_output, semantic_can_reorder);
6978 bld.insert(std::move(mtbuf));
6979 }
6980
6981 offset += ctx->shader->info.gs.vertices_out;
6982 }
6983
6984 /* outputs for the next vertex are undefined and keeping them around can
6985 * create invalid IR with control flow */
6986 ctx->outputs.mask[i] = 0;
6987 }
6988
6989 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6990 }
6991
6992 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6993 {
6994 Builder bld(ctx->program, ctx->block);
6995
6996 if (cluster_size == 1) {
6997 return src;
6998 } if (op == nir_op_iand && cluster_size == 4) {
6999 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7000 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7001 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7002 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7003 } else if (op == nir_op_ior && cluster_size == 4) {
7004 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7005 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7006 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7007 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7008 //subgroupAnd(val) -> (exec & ~val) == 0
7009 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7010 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7011 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7012 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7013 //subgroupOr(val) -> (val & exec) != 0
7014 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7015 return bool_to_vector_condition(ctx, tmp);
7016 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7017 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7018 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7019 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7020 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7021 return bool_to_vector_condition(ctx, tmp);
7022 } else {
7023 //subgroupClustered{And,Or,Xor}(val, n) ->
7024 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7025 //cluster_offset = ~(n - 1) & lane_id
7026 //cluster_mask = ((1 << n) - 1)
7027 //subgroupClusteredAnd():
7028 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7029 //subgroupClusteredOr():
7030 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7031 //subgroupClusteredXor():
7032 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7033 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7034 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7035
7036 Temp tmp;
7037 if (op == nir_op_iand)
7038 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7039 else
7040 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7041
7042 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7043
7044 if (ctx->program->chip_class <= GFX7)
7045 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7046 else if (ctx->program->wave_size == 64)
7047 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7048 else
7049 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7050 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7051 if (cluster_mask != 0xffffffff)
7052 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7053
7054 Definition cmp_def = Definition();
7055 if (op == nir_op_iand) {
7056 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7057 } else if (op == nir_op_ior) {
7058 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7059 } else if (op == nir_op_ixor) {
7060 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7061 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7062 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7063 }
7064 cmp_def.setHint(vcc);
7065 return cmp_def.getTemp();
7066 }
7067 }
7068
7069 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7070 {
7071 Builder bld(ctx->program, ctx->block);
7072
7073 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7074 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7075 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7076 Temp tmp;
7077 if (op == nir_op_iand)
7078 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7079 else
7080 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7081
7082 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7083 Temp lo = lohi.def(0).getTemp();
7084 Temp hi = lohi.def(1).getTemp();
7085 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7086
7087 Definition cmp_def = Definition();
7088 if (op == nir_op_iand)
7089 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7090 else if (op == nir_op_ior)
7091 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7092 else if (op == nir_op_ixor)
7093 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7094 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7095 cmp_def.setHint(vcc);
7096 return cmp_def.getTemp();
7097 }
7098
7099 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7100 {
7101 Builder bld(ctx->program, ctx->block);
7102
7103 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7104 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7105 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7106 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7107 if (op == nir_op_iand)
7108 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7109 else if (op == nir_op_ior)
7110 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7111 else if (op == nir_op_ixor)
7112 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7113
7114 assert(false);
7115 return Temp();
7116 }
7117
7118 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7119 {
7120 Builder bld(ctx->program, ctx->block);
7121 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7122 if (src.regClass().type() == RegType::vgpr) {
7123 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7124 } else if (src.regClass() == s1) {
7125 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7126 } else if (src.regClass() == s2) {
7127 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7128 } else {
7129 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7130 }
7131 }
7132
7133 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7134 {
7135 Builder bld(ctx->program, ctx->block);
7136 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7137 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7138 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7139
7140 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7141 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7142 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7143 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7144
7145 /* Build DD X/Y */
7146 if (ctx->program->chip_class >= GFX8) {
7147 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7148 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7149 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7150 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7151 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7152 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7153 } else {
7154 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7155 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7156 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7157 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7158 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7159 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7160 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7161 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7162 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7163 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7164 }
7165
7166 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7167 aco_opcode mad = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
7168 Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1);
7169 Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2);
7170 tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1);
7171 tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2);
7172 Temp wqm1 = bld.tmp(v1);
7173 emit_wqm(ctx, tmp1, wqm1, true);
7174 Temp wqm2 = bld.tmp(v1);
7175 emit_wqm(ctx, tmp2, wqm2, true);
7176 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7177 return;
7178 }
7179
7180 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7181 {
7182 Builder bld(ctx->program, ctx->block);
7183 switch(instr->intrinsic) {
7184 case nir_intrinsic_load_barycentric_sample:
7185 case nir_intrinsic_load_barycentric_pixel:
7186 case nir_intrinsic_load_barycentric_centroid: {
7187 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7188 Temp bary = Temp(0, s2);
7189 switch (mode) {
7190 case INTERP_MODE_SMOOTH:
7191 case INTERP_MODE_NONE:
7192 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7193 bary = get_arg(ctx, ctx->args->ac.persp_center);
7194 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7195 bary = ctx->persp_centroid;
7196 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7197 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7198 break;
7199 case INTERP_MODE_NOPERSPECTIVE:
7200 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7201 bary = get_arg(ctx, ctx->args->ac.linear_center);
7202 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7203 bary = ctx->linear_centroid;
7204 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7205 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7206 break;
7207 default:
7208 break;
7209 }
7210 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7211 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7212 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7213 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7214 Operand(p1), Operand(p2));
7215 emit_split_vector(ctx, dst, 2);
7216 break;
7217 }
7218 case nir_intrinsic_load_barycentric_model: {
7219 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7220
7221 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7222 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7223 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7224 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7225 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7226 Operand(p1), Operand(p2), Operand(p3));
7227 emit_split_vector(ctx, dst, 3);
7228 break;
7229 }
7230 case nir_intrinsic_load_barycentric_at_sample: {
7231 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7232 switch (ctx->options->key.fs.num_samples) {
7233 case 2: sample_pos_offset += 1 << 3; break;
7234 case 4: sample_pos_offset += 3 << 3; break;
7235 case 8: sample_pos_offset += 7 << 3; break;
7236 default: break;
7237 }
7238 Temp sample_pos;
7239 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7240 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7241 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7242 //TODO: bounds checking?
7243 if (addr.type() == RegType::sgpr) {
7244 Operand offset;
7245 if (const_addr) {
7246 sample_pos_offset += const_addr->u32 << 3;
7247 offset = Operand(sample_pos_offset);
7248 } else if (ctx->options->chip_class >= GFX9) {
7249 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7250 } else {
7251 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7252 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7253 }
7254
7255 Operand off = bld.copy(bld.def(s1), Operand(offset));
7256 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7257
7258 } else if (ctx->options->chip_class >= GFX9) {
7259 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7260 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7261 } else if (ctx->options->chip_class >= GFX7) {
7262 /* addr += private_segment_buffer + sample_pos_offset */
7263 Temp tmp0 = bld.tmp(s1);
7264 Temp tmp1 = bld.tmp(s1);
7265 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7266 Definition scc_tmp = bld.def(s1, scc);
7267 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7268 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7269 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7270 Temp pck0 = bld.tmp(v1);
7271 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7272 tmp1 = as_vgpr(ctx, tmp1);
7273 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7274 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7275
7276 /* sample_pos = flat_load_dwordx2 addr */
7277 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7278 } else {
7279 assert(ctx->options->chip_class == GFX6);
7280
7281 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7282 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7283 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7284
7285 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7286 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7287
7288 sample_pos = bld.tmp(v2);
7289
7290 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7291 load->definitions[0] = Definition(sample_pos);
7292 load->operands[0] = Operand(rsrc);
7293 load->operands[1] = Operand(addr);
7294 load->operands[2] = Operand(0u);
7295 load->offset = sample_pos_offset;
7296 load->offen = 0;
7297 load->addr64 = true;
7298 load->glc = false;
7299 load->dlc = false;
7300 load->disable_wqm = false;
7301 ctx->block->instructions.emplace_back(std::move(load));
7302 }
7303
7304 /* sample_pos -= 0.5 */
7305 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7306 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7307 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7308 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7309 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7310
7311 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7312 break;
7313 }
7314 case nir_intrinsic_load_barycentric_at_offset: {
7315 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7316 RegClass rc = RegClass(offset.type(), 1);
7317 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7318 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7319 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7320 break;
7321 }
7322 case nir_intrinsic_load_front_face: {
7323 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7324 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7325 break;
7326 }
7327 case nir_intrinsic_load_view_index: {
7328 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7329 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7330 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7331 break;
7332 }
7333
7334 /* fallthrough */
7335 }
7336 case nir_intrinsic_load_layer_id: {
7337 unsigned idx = nir_intrinsic_base(instr);
7338 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7339 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7340 break;
7341 }
7342 case nir_intrinsic_load_frag_coord: {
7343 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7344 break;
7345 }
7346 case nir_intrinsic_load_sample_pos: {
7347 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7348 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7349 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7350 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7351 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7352 break;
7353 }
7354 case nir_intrinsic_load_tess_coord:
7355 visit_load_tess_coord(ctx, instr);
7356 break;
7357 case nir_intrinsic_load_interpolated_input:
7358 visit_load_interpolated_input(ctx, instr);
7359 break;
7360 case nir_intrinsic_store_output:
7361 visit_store_output(ctx, instr);
7362 break;
7363 case nir_intrinsic_load_input:
7364 case nir_intrinsic_load_input_vertex:
7365 visit_load_input(ctx, instr);
7366 break;
7367 case nir_intrinsic_load_output:
7368 visit_load_output(ctx, instr);
7369 break;
7370 case nir_intrinsic_load_per_vertex_input:
7371 visit_load_per_vertex_input(ctx, instr);
7372 break;
7373 case nir_intrinsic_load_per_vertex_output:
7374 visit_load_per_vertex_output(ctx, instr);
7375 break;
7376 case nir_intrinsic_store_per_vertex_output:
7377 visit_store_per_vertex_output(ctx, instr);
7378 break;
7379 case nir_intrinsic_load_ubo:
7380 visit_load_ubo(ctx, instr);
7381 break;
7382 case nir_intrinsic_load_push_constant:
7383 visit_load_push_constant(ctx, instr);
7384 break;
7385 case nir_intrinsic_load_constant:
7386 visit_load_constant(ctx, instr);
7387 break;
7388 case nir_intrinsic_vulkan_resource_index:
7389 visit_load_resource(ctx, instr);
7390 break;
7391 case nir_intrinsic_discard:
7392 visit_discard(ctx, instr);
7393 break;
7394 case nir_intrinsic_discard_if:
7395 visit_discard_if(ctx, instr);
7396 break;
7397 case nir_intrinsic_load_shared:
7398 visit_load_shared(ctx, instr);
7399 break;
7400 case nir_intrinsic_store_shared:
7401 visit_store_shared(ctx, instr);
7402 break;
7403 case nir_intrinsic_shared_atomic_add:
7404 case nir_intrinsic_shared_atomic_imin:
7405 case nir_intrinsic_shared_atomic_umin:
7406 case nir_intrinsic_shared_atomic_imax:
7407 case nir_intrinsic_shared_atomic_umax:
7408 case nir_intrinsic_shared_atomic_and:
7409 case nir_intrinsic_shared_atomic_or:
7410 case nir_intrinsic_shared_atomic_xor:
7411 case nir_intrinsic_shared_atomic_exchange:
7412 case nir_intrinsic_shared_atomic_comp_swap:
7413 case nir_intrinsic_shared_atomic_fadd:
7414 visit_shared_atomic(ctx, instr);
7415 break;
7416 case nir_intrinsic_image_deref_load:
7417 visit_image_load(ctx, instr);
7418 break;
7419 case nir_intrinsic_image_deref_store:
7420 visit_image_store(ctx, instr);
7421 break;
7422 case nir_intrinsic_image_deref_atomic_add:
7423 case nir_intrinsic_image_deref_atomic_umin:
7424 case nir_intrinsic_image_deref_atomic_imin:
7425 case nir_intrinsic_image_deref_atomic_umax:
7426 case nir_intrinsic_image_deref_atomic_imax:
7427 case nir_intrinsic_image_deref_atomic_and:
7428 case nir_intrinsic_image_deref_atomic_or:
7429 case nir_intrinsic_image_deref_atomic_xor:
7430 case nir_intrinsic_image_deref_atomic_exchange:
7431 case nir_intrinsic_image_deref_atomic_comp_swap:
7432 visit_image_atomic(ctx, instr);
7433 break;
7434 case nir_intrinsic_image_deref_size:
7435 visit_image_size(ctx, instr);
7436 break;
7437 case nir_intrinsic_load_ssbo:
7438 visit_load_ssbo(ctx, instr);
7439 break;
7440 case nir_intrinsic_store_ssbo:
7441 visit_store_ssbo(ctx, instr);
7442 break;
7443 case nir_intrinsic_load_global:
7444 visit_load_global(ctx, instr);
7445 break;
7446 case nir_intrinsic_store_global:
7447 visit_store_global(ctx, instr);
7448 break;
7449 case nir_intrinsic_global_atomic_add:
7450 case nir_intrinsic_global_atomic_imin:
7451 case nir_intrinsic_global_atomic_umin:
7452 case nir_intrinsic_global_atomic_imax:
7453 case nir_intrinsic_global_atomic_umax:
7454 case nir_intrinsic_global_atomic_and:
7455 case nir_intrinsic_global_atomic_or:
7456 case nir_intrinsic_global_atomic_xor:
7457 case nir_intrinsic_global_atomic_exchange:
7458 case nir_intrinsic_global_atomic_comp_swap:
7459 visit_global_atomic(ctx, instr);
7460 break;
7461 case nir_intrinsic_ssbo_atomic_add:
7462 case nir_intrinsic_ssbo_atomic_imin:
7463 case nir_intrinsic_ssbo_atomic_umin:
7464 case nir_intrinsic_ssbo_atomic_imax:
7465 case nir_intrinsic_ssbo_atomic_umax:
7466 case nir_intrinsic_ssbo_atomic_and:
7467 case nir_intrinsic_ssbo_atomic_or:
7468 case nir_intrinsic_ssbo_atomic_xor:
7469 case nir_intrinsic_ssbo_atomic_exchange:
7470 case nir_intrinsic_ssbo_atomic_comp_swap:
7471 visit_atomic_ssbo(ctx, instr);
7472 break;
7473 case nir_intrinsic_load_scratch:
7474 visit_load_scratch(ctx, instr);
7475 break;
7476 case nir_intrinsic_store_scratch:
7477 visit_store_scratch(ctx, instr);
7478 break;
7479 case nir_intrinsic_get_buffer_size:
7480 visit_get_buffer_size(ctx, instr);
7481 break;
7482 case nir_intrinsic_scoped_barrier:
7483 emit_scoped_barrier(ctx, instr);
7484 break;
7485 case nir_intrinsic_load_num_work_groups: {
7486 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7487 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7488 emit_split_vector(ctx, dst, 3);
7489 break;
7490 }
7491 case nir_intrinsic_load_local_invocation_id: {
7492 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7493 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7494 emit_split_vector(ctx, dst, 3);
7495 break;
7496 }
7497 case nir_intrinsic_load_work_group_id: {
7498 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7499 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7500 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7501 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7502 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7503 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7504 emit_split_vector(ctx, dst, 3);
7505 break;
7506 }
7507 case nir_intrinsic_load_local_invocation_index: {
7508 Temp id = emit_mbcnt(ctx, bld.def(v1));
7509
7510 /* The tg_size bits [6:11] contain the subgroup id,
7511 * we need this multiplied by the wave size, and then OR the thread id to it.
7512 */
7513 if (ctx->program->wave_size == 64) {
7514 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7515 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7516 get_arg(ctx, ctx->args->ac.tg_size));
7517 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7518 } else {
7519 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7520 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7521 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7522 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7523 }
7524 break;
7525 }
7526 case nir_intrinsic_load_subgroup_id: {
7527 if (ctx->stage == compute_cs) {
7528 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7529 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7530 } else {
7531 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7532 }
7533 break;
7534 }
7535 case nir_intrinsic_load_subgroup_invocation: {
7536 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7537 break;
7538 }
7539 case nir_intrinsic_load_num_subgroups: {
7540 if (ctx->stage == compute_cs)
7541 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7542 get_arg(ctx, ctx->args->ac.tg_size));
7543 else
7544 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7545 break;
7546 }
7547 case nir_intrinsic_ballot: {
7548 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7549 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7550 Definition tmp = bld.def(dst.regClass());
7551 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7552 if (instr->src[0].ssa->bit_size == 1) {
7553 assert(src.regClass() == bld.lm);
7554 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7555 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7556 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7557 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7558 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7559 } else {
7560 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7561 }
7562 if (dst.size() != bld.lm.size()) {
7563 /* Wave32 with ballot size set to 64 */
7564 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7565 }
7566 emit_wqm(ctx, tmp.getTemp(), dst);
7567 break;
7568 }
7569 case nir_intrinsic_shuffle:
7570 case nir_intrinsic_read_invocation: {
7571 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7572 if (!nir_src_is_divergent(instr->src[0])) {
7573 emit_uniform_subgroup(ctx, instr, src);
7574 } else {
7575 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7576 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7577 tid = bld.as_uniform(tid);
7578 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7579 if (src.regClass() == v1b || src.regClass() == v2b) {
7580 Temp tmp = bld.tmp(v1);
7581 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7582 if (dst.type() == RegType::vgpr)
7583 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7584 else
7585 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7586 } else if (src.regClass() == v1) {
7587 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7588 } else if (src.regClass() == v2) {
7589 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7590 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7591 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7592 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7593 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7594 emit_split_vector(ctx, dst, 2);
7595 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7596 assert(src.regClass() == bld.lm);
7597 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7598 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7599 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7600 assert(src.regClass() == bld.lm);
7601 Temp tmp;
7602 if (ctx->program->chip_class <= GFX7)
7603 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7604 else if (ctx->program->wave_size == 64)
7605 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7606 else
7607 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7608 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7609 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7610 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7611 } else {
7612 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7613 }
7614 }
7615 break;
7616 }
7617 case nir_intrinsic_load_sample_id: {
7618 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7619 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7620 break;
7621 }
7622 case nir_intrinsic_load_sample_mask_in: {
7623 visit_load_sample_mask_in(ctx, instr);
7624 break;
7625 }
7626 case nir_intrinsic_read_first_invocation: {
7627 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7628 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7629 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7630 emit_wqm(ctx,
7631 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7632 dst);
7633 } else if (src.regClass() == v2) {
7634 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7635 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7636 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7637 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7638 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7639 emit_split_vector(ctx, dst, 2);
7640 } else if (instr->dest.ssa.bit_size == 1) {
7641 assert(src.regClass() == bld.lm);
7642 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7643 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7644 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7645 } else if (src.regClass() == s1) {
7646 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7647 } else if (src.regClass() == s2) {
7648 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7649 } else {
7650 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7651 }
7652 break;
7653 }
7654 case nir_intrinsic_vote_all: {
7655 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7656 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7657 assert(src.regClass() == bld.lm);
7658 assert(dst.regClass() == bld.lm);
7659
7660 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7661 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7662 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7663 break;
7664 }
7665 case nir_intrinsic_vote_any: {
7666 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7667 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7668 assert(src.regClass() == bld.lm);
7669 assert(dst.regClass() == bld.lm);
7670
7671 Temp tmp = bool_to_scalar_condition(ctx, src);
7672 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7673 break;
7674 }
7675 case nir_intrinsic_reduce:
7676 case nir_intrinsic_inclusive_scan:
7677 case nir_intrinsic_exclusive_scan: {
7678 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7679 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7680 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7681 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7682 nir_intrinsic_cluster_size(instr) : 0;
7683 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7684
7685 if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
7686 emit_uniform_subgroup(ctx, instr, src);
7687 } else if (instr->dest.ssa.bit_size == 1) {
7688 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7689 op = nir_op_iand;
7690 else if (op == nir_op_iadd)
7691 op = nir_op_ixor;
7692 else if (op == nir_op_umax || op == nir_op_imax)
7693 op = nir_op_ior;
7694 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7695
7696 switch (instr->intrinsic) {
7697 case nir_intrinsic_reduce:
7698 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7699 break;
7700 case nir_intrinsic_exclusive_scan:
7701 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7702 break;
7703 case nir_intrinsic_inclusive_scan:
7704 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7705 break;
7706 default:
7707 assert(false);
7708 }
7709 } else if (cluster_size == 1) {
7710 bld.copy(Definition(dst), src);
7711 } else {
7712 unsigned bit_size = instr->src[0].ssa->bit_size;
7713
7714 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
7715
7716 ReduceOp reduce_op;
7717 switch (op) {
7718 #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
7719 #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
7720 CASEI(iadd)
7721 CASEI(imul)
7722 CASEI(imin)
7723 CASEI(umin)
7724 CASEI(imax)
7725 CASEI(umax)
7726 CASEI(iand)
7727 CASEI(ior)
7728 CASEI(ixor)
7729 CASEF(fadd)
7730 CASEF(fmul)
7731 CASEF(fmin)
7732 CASEF(fmax)
7733 default:
7734 unreachable("unknown reduction op");
7735 #undef CASEI
7736 #undef CASEF
7737 }
7738
7739 aco_opcode aco_op;
7740 switch (instr->intrinsic) {
7741 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7742 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7743 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7744 default:
7745 unreachable("unknown reduce intrinsic");
7746 }
7747
7748 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7749 reduce->operands[0] = Operand(src);
7750 // filled in by aco_reduce_assign.cpp, used internally as part of the
7751 // reduce sequence
7752 assert(dst.size() == 1 || dst.size() == 2);
7753 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7754 reduce->operands[2] = Operand(v1.as_linear());
7755
7756 Temp tmp_dst = bld.tmp(dst.regClass());
7757 reduce->definitions[0] = Definition(tmp_dst);
7758 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7759 reduce->definitions[2] = Definition();
7760 reduce->definitions[3] = Definition(scc, s1);
7761 reduce->definitions[4] = Definition();
7762 reduce->reduce_op = reduce_op;
7763 reduce->cluster_size = cluster_size;
7764 ctx->block->instructions.emplace_back(std::move(reduce));
7765
7766 emit_wqm(ctx, tmp_dst, dst);
7767 }
7768 break;
7769 }
7770 case nir_intrinsic_quad_broadcast: {
7771 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7772 if (!nir_dest_is_divergent(instr->dest)) {
7773 emit_uniform_subgroup(ctx, instr, src);
7774 } else {
7775 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7776 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7777 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7778
7779 if (instr->dest.ssa.bit_size == 1) {
7780 assert(src.regClass() == bld.lm);
7781 assert(dst.regClass() == bld.lm);
7782 uint32_t half_mask = 0x11111111u << lane;
7783 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7784 Temp tmp = bld.tmp(bld.lm);
7785 bld.sop1(Builder::s_wqm, Definition(tmp),
7786 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7787 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7788 emit_wqm(ctx, tmp, dst);
7789 } else if (instr->dest.ssa.bit_size == 8) {
7790 Temp tmp = bld.tmp(v1);
7791 if (ctx->program->chip_class >= GFX8)
7792 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7793 else
7794 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7795 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7796 } else if (instr->dest.ssa.bit_size == 16) {
7797 Temp tmp = bld.tmp(v1);
7798 if (ctx->program->chip_class >= GFX8)
7799 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7800 else
7801 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7802 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7803 } else if (instr->dest.ssa.bit_size == 32) {
7804 if (ctx->program->chip_class >= GFX8)
7805 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7806 else
7807 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7808 } else if (instr->dest.ssa.bit_size == 64) {
7809 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7810 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7811 if (ctx->program->chip_class >= GFX8) {
7812 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7813 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7814 } else {
7815 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7816 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7817 }
7818 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7819 emit_split_vector(ctx, dst, 2);
7820 } else {
7821 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7822 }
7823 }
7824 break;
7825 }
7826 case nir_intrinsic_quad_swap_horizontal:
7827 case nir_intrinsic_quad_swap_vertical:
7828 case nir_intrinsic_quad_swap_diagonal:
7829 case nir_intrinsic_quad_swizzle_amd: {
7830 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7831 if (!nir_dest_is_divergent(instr->dest)) {
7832 emit_uniform_subgroup(ctx, instr, src);
7833 break;
7834 }
7835 uint16_t dpp_ctrl = 0;
7836 switch (instr->intrinsic) {
7837 case nir_intrinsic_quad_swap_horizontal:
7838 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7839 break;
7840 case nir_intrinsic_quad_swap_vertical:
7841 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7842 break;
7843 case nir_intrinsic_quad_swap_diagonal:
7844 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7845 break;
7846 case nir_intrinsic_quad_swizzle_amd:
7847 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7848 break;
7849 default:
7850 break;
7851 }
7852 if (ctx->program->chip_class < GFX8)
7853 dpp_ctrl |= (1 << 15);
7854
7855 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7856 if (instr->dest.ssa.bit_size == 1) {
7857 assert(src.regClass() == bld.lm);
7858 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7859 if (ctx->program->chip_class >= GFX8)
7860 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7861 else
7862 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7863 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7864 emit_wqm(ctx, tmp, dst);
7865 } else if (instr->dest.ssa.bit_size == 8) {
7866 Temp tmp = bld.tmp(v1);
7867 if (ctx->program->chip_class >= GFX8)
7868 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7869 else
7870 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7871 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7872 } else if (instr->dest.ssa.bit_size == 16) {
7873 Temp tmp = bld.tmp(v1);
7874 if (ctx->program->chip_class >= GFX8)
7875 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7876 else
7877 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7878 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7879 } else if (instr->dest.ssa.bit_size == 32) {
7880 Temp tmp;
7881 if (ctx->program->chip_class >= GFX8)
7882 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7883 else
7884 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7885 emit_wqm(ctx, tmp, dst);
7886 } else if (instr->dest.ssa.bit_size == 64) {
7887 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7888 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7889 if (ctx->program->chip_class >= GFX8) {
7890 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7891 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7892 } else {
7893 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7894 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7895 }
7896 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7897 emit_split_vector(ctx, dst, 2);
7898 } else {
7899 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7900 }
7901 break;
7902 }
7903 case nir_intrinsic_masked_swizzle_amd: {
7904 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7905 if (!nir_dest_is_divergent(instr->dest)) {
7906 emit_uniform_subgroup(ctx, instr, src);
7907 break;
7908 }
7909 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7910 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7911 if (instr->dest.ssa.bit_size == 1) {
7912 assert(src.regClass() == bld.lm);
7913 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7914 src = emit_masked_swizzle(ctx, bld, src, mask);
7915 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7916 emit_wqm(ctx, tmp, dst);
7917 } else if (dst.regClass() == v1b) {
7918 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7919 emit_extract_vector(ctx, tmp, 0, dst);
7920 } else if (dst.regClass() == v2b) {
7921 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7922 emit_extract_vector(ctx, tmp, 0, dst);
7923 } else if (dst.regClass() == v1) {
7924 emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
7925 } else if (dst.regClass() == v2) {
7926 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7927 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7928 lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
7929 hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
7930 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7931 emit_split_vector(ctx, dst, 2);
7932 } else {
7933 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7934 }
7935 break;
7936 }
7937 case nir_intrinsic_write_invocation_amd: {
7938 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7939 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7940 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7941 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7942 if (dst.regClass() == v1) {
7943 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7944 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7945 } else if (dst.regClass() == v2) {
7946 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7947 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7948 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7949 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7950 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7951 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7952 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7953 emit_split_vector(ctx, dst, 2);
7954 } else {
7955 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7956 }
7957 break;
7958 }
7959 case nir_intrinsic_mbcnt_amd: {
7960 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7961 RegClass rc = RegClass(src.type(), 1);
7962 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7963 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7964 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7965 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7966 emit_wqm(ctx, wqm_tmp, dst);
7967 break;
7968 }
7969 case nir_intrinsic_load_helper_invocation: {
7970 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7971 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7972 ctx->block->kind |= block_kind_needs_lowering;
7973 ctx->program->needs_exact = true;
7974 break;
7975 }
7976 case nir_intrinsic_is_helper_invocation: {
7977 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7978 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7979 ctx->block->kind |= block_kind_needs_lowering;
7980 ctx->program->needs_exact = true;
7981 break;
7982 }
7983 case nir_intrinsic_demote:
7984 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7985
7986 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7987 ctx->cf_info.exec_potentially_empty_discard = true;
7988 ctx->block->kind |= block_kind_uses_demote;
7989 ctx->program->needs_exact = true;
7990 break;
7991 case nir_intrinsic_demote_if: {
7992 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7993 assert(src.regClass() == bld.lm);
7994 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7995 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7996
7997 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7998 ctx->cf_info.exec_potentially_empty_discard = true;
7999 ctx->block->kind |= block_kind_uses_demote;
8000 ctx->program->needs_exact = true;
8001 break;
8002 }
8003 case nir_intrinsic_first_invocation: {
8004 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
8005 get_ssa_temp(ctx, &instr->dest.ssa));
8006 break;
8007 }
8008 case nir_intrinsic_shader_clock: {
8009 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8010 if (nir_intrinsic_memory_scope(instr) == NIR_SCOPE_SUBGROUP && ctx->options->chip_class >= GFX10_3) {
8011 /* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */
8012 Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29);
8013 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand(0u));
8014 } else {
8015 aco_opcode opcode =
8016 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
8017 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
8018 bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile));
8019 }
8020 emit_split_vector(ctx, dst, 2);
8021 break;
8022 }
8023 case nir_intrinsic_load_vertex_id_zero_base: {
8024 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8025 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8026 break;
8027 }
8028 case nir_intrinsic_load_first_vertex: {
8029 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8030 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8031 break;
8032 }
8033 case nir_intrinsic_load_base_instance: {
8034 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8035 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8036 break;
8037 }
8038 case nir_intrinsic_load_instance_id: {
8039 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8040 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8041 break;
8042 }
8043 case nir_intrinsic_load_draw_id: {
8044 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8045 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8046 break;
8047 }
8048 case nir_intrinsic_load_invocation_id: {
8049 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8050
8051 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8052 if (ctx->options->chip_class >= GFX10)
8053 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8054 else
8055 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8056 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8057 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8058 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8059 } else {
8060 unreachable("Unsupported stage for load_invocation_id");
8061 }
8062
8063 break;
8064 }
8065 case nir_intrinsic_load_primitive_id: {
8066 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8067
8068 switch (ctx->shader->info.stage) {
8069 case MESA_SHADER_GEOMETRY:
8070 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8071 break;
8072 case MESA_SHADER_TESS_CTRL:
8073 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8074 break;
8075 case MESA_SHADER_TESS_EVAL:
8076 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8077 break;
8078 default:
8079 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8080 }
8081
8082 break;
8083 }
8084 case nir_intrinsic_load_patch_vertices_in: {
8085 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8086 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8087
8088 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8089 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8090 break;
8091 }
8092 case nir_intrinsic_emit_vertex_with_counter: {
8093 visit_emit_vertex_with_counter(ctx, instr);
8094 break;
8095 }
8096 case nir_intrinsic_end_primitive_with_counter: {
8097 unsigned stream = nir_intrinsic_stream_id(instr);
8098 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8099 break;
8100 }
8101 case nir_intrinsic_set_vertex_count: {
8102 /* unused, the HW keeps track of this for us */
8103 break;
8104 }
8105 default:
8106 isel_err(&instr->instr, "Unimplemented intrinsic instr");
8107 abort();
8108
8109 break;
8110 }
8111 }
8112
8113
8114 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8115 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8116 enum glsl_base_type *stype)
8117 {
8118 nir_deref_instr *texture_deref_instr = NULL;
8119 nir_deref_instr *sampler_deref_instr = NULL;
8120 int plane = -1;
8121
8122 for (unsigned i = 0; i < instr->num_srcs; i++) {
8123 switch (instr->src[i].src_type) {
8124 case nir_tex_src_texture_deref:
8125 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8126 break;
8127 case nir_tex_src_sampler_deref:
8128 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8129 break;
8130 case nir_tex_src_plane:
8131 plane = nir_src_as_int(instr->src[i].src);
8132 break;
8133 default:
8134 break;
8135 }
8136 }
8137
8138 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8139
8140 if (!sampler_deref_instr)
8141 sampler_deref_instr = texture_deref_instr;
8142
8143 if (plane >= 0) {
8144 assert(instr->op != nir_texop_txf_ms &&
8145 instr->op != nir_texop_samples_identical);
8146 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8147 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8148 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8149 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8150 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8151 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8152 } else {
8153 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8154 }
8155 if (samp_ptr) {
8156 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8157
8158 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8159 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8160 Builder bld(ctx->program, ctx->block);
8161
8162 /* to avoid unnecessary moves, we split and recombine sampler and image */
8163 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8164 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8165 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8166 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8167 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8168 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8169 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8170 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8171
8172 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8173 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8174 img[0], img[1], img[2], img[3],
8175 img[4], img[5], img[6], img[7]);
8176 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8177 samp[0], samp[1], samp[2], samp[3]);
8178 }
8179 }
8180 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8181 instr->op == nir_texop_samples_identical))
8182 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8183 }
8184
8185 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8186 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8187 {
8188 Builder bld(ctx->program, ctx->block);
8189
8190 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8191 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8192 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8193
8194 Operand neg_one(0xbf800000u);
8195 Operand one(0x3f800000u);
8196 Operand two(0x40000000u);
8197 Operand four(0x40800000u);
8198
8199 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8200 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8201 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8202
8203 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8204 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8205 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8206 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8207
8208 // select sc
8209 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8210 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8211 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8212 one, is_ma_y);
8213 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8214
8215 // select tc
8216 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8217 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8218 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8219
8220 // select ma
8221 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8222 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8223 deriv_z, is_ma_z);
8224 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8225 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8226 }
8227
8228 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8229 {
8230 Builder bld(ctx->program, ctx->block);
8231 Temp ma, tc, sc, id;
8232 aco_opcode madak = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_madak_f32;
8233 aco_opcode madmk = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmamk_f32 : aco_opcode::v_madmk_f32;
8234
8235 if (is_array) {
8236 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8237
8238 // see comment in ac_prepare_cube_coords()
8239 if (ctx->options->chip_class <= GFX8)
8240 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8241 }
8242
8243 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8244
8245 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8246 vop3a->operands[0] = Operand(ma);
8247 vop3a->abs[0] = true;
8248 Temp invma = bld.tmp(v1);
8249 vop3a->definitions[0] = Definition(invma);
8250 ctx->block->instructions.emplace_back(std::move(vop3a));
8251
8252 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8253 if (!is_deriv)
8254 sc = bld.vop2(madak, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8255
8256 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8257 if (!is_deriv)
8258 tc = bld.vop2(madak, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8259
8260 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8261
8262 if (is_deriv) {
8263 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8264 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8265
8266 for (unsigned i = 0; i < 2; i++) {
8267 // see comment in ac_prepare_cube_coords()
8268 Temp deriv_ma;
8269 Temp deriv_sc, deriv_tc;
8270 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8271 &deriv_ma, &deriv_sc, &deriv_tc);
8272
8273 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8274
8275 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8276 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8277 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8278 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8279 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8280 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8281 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8282 }
8283
8284 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8285 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8286 }
8287
8288 if (is_array)
8289 id = bld.vop2(madmk, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8290 coords.resize(3);
8291 coords[0] = sc;
8292 coords[1] = tc;
8293 coords[2] = id;
8294 }
8295
8296 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8297 {
8298 if (vec->parent_instr->type != nir_instr_type_alu)
8299 return;
8300 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8301 if (vec_instr->op != nir_op_vec(vec->num_components))
8302 return;
8303
8304 for (unsigned i = 0; i < vec->num_components; i++) {
8305 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8306 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8307 }
8308 }
8309
8310 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8311 {
8312 Builder bld(ctx->program, ctx->block);
8313 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8314 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8315 has_clamped_lod = false;
8316 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8317 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8318 clamped_lod = Temp();
8319 std::vector<Temp> coords;
8320 std::vector<Temp> derivs;
8321 nir_const_value *sample_index_cv = NULL;
8322 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8323 enum glsl_base_type stype;
8324 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8325
8326 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8327 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8328 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8329 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8330
8331 for (unsigned i = 0; i < instr->num_srcs; i++) {
8332 switch (instr->src[i].src_type) {
8333 case nir_tex_src_coord: {
8334 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8335 for (unsigned i = 0; i < coord.size(); i++)
8336 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8337 break;
8338 }
8339 case nir_tex_src_bias:
8340 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8341 has_bias = true;
8342 break;
8343 case nir_tex_src_lod: {
8344 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8345
8346 if (val && val->f32 <= 0.0) {
8347 level_zero = true;
8348 } else {
8349 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8350 has_lod = true;
8351 }
8352 break;
8353 }
8354 case nir_tex_src_min_lod:
8355 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8356 has_clamped_lod = true;
8357 break;
8358 case nir_tex_src_comparator:
8359 if (instr->is_shadow) {
8360 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8361 has_compare = true;
8362 }
8363 break;
8364 case nir_tex_src_offset:
8365 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8366 get_const_vec(instr->src[i].src.ssa, const_offset);
8367 has_offset = true;
8368 break;
8369 case nir_tex_src_ddx:
8370 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8371 has_ddx = true;
8372 break;
8373 case nir_tex_src_ddy:
8374 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8375 has_ddy = true;
8376 break;
8377 case nir_tex_src_ms_index:
8378 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8379 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8380 has_sample_index = true;
8381 break;
8382 case nir_tex_src_texture_offset:
8383 case nir_tex_src_sampler_offset:
8384 default:
8385 break;
8386 }
8387 }
8388
8389 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8390 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8391
8392 if (instr->op == nir_texop_texture_samples) {
8393 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8394
8395 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8396 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8397 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8398
8399 Operand default_sample = Operand(1u);
8400 if (ctx->options->robust_buffer_access) {
8401 /* Extract the second dword of the descriptor, if it's
8402 * all zero, then it's a null descriptor.
8403 */
8404 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8405 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8406 default_sample = Operand(is_non_null_descriptor);
8407 }
8408
8409 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8410 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8411 samples, default_sample, bld.scc(is_msaa));
8412 return;
8413 }
8414
8415 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8416 aco_ptr<Instruction> tmp_instr;
8417 Temp acc, pack = Temp();
8418
8419 uint32_t pack_const = 0;
8420 for (unsigned i = 0; i < offset.size(); i++) {
8421 if (!const_offset[i])
8422 continue;
8423 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8424 }
8425
8426 if (offset.type() == RegType::sgpr) {
8427 for (unsigned i = 0; i < offset.size(); i++) {
8428 if (const_offset[i])
8429 continue;
8430
8431 acc = emit_extract_vector(ctx, offset, i, s1);
8432 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8433
8434 if (i) {
8435 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8436 }
8437
8438 if (pack == Temp()) {
8439 pack = acc;
8440 } else {
8441 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8442 }
8443 }
8444
8445 if (pack_const && pack != Temp())
8446 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8447 } else {
8448 for (unsigned i = 0; i < offset.size(); i++) {
8449 if (const_offset[i])
8450 continue;
8451
8452 acc = emit_extract_vector(ctx, offset, i, v1);
8453 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8454
8455 if (i) {
8456 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8457 }
8458
8459 if (pack == Temp()) {
8460 pack = acc;
8461 } else {
8462 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8463 }
8464 }
8465
8466 if (pack_const && pack != Temp())
8467 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8468 }
8469 if (pack_const && pack == Temp())
8470 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8471 else if (pack == Temp())
8472 has_offset = false;
8473 else
8474 offset = pack;
8475 }
8476
8477 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8478 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8479
8480 /* pack derivatives */
8481 if (has_ddx || has_ddy) {
8482 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8483 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8484 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8485 derivs = {ddx, zero, ddy, zero};
8486 } else {
8487 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8488 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8489 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8490 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8491 }
8492 has_derivs = true;
8493 }
8494
8495 if (instr->coord_components > 1 &&
8496 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8497 instr->is_array &&
8498 instr->op != nir_texop_txf)
8499 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8500
8501 if (instr->coord_components > 2 &&
8502 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8503 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8504 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8505 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8506 instr->is_array &&
8507 instr->op != nir_texop_txf &&
8508 instr->op != nir_texop_txf_ms &&
8509 instr->op != nir_texop_fragment_fetch &&
8510 instr->op != nir_texop_fragment_mask_fetch)
8511 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8512
8513 if (ctx->options->chip_class == GFX9 &&
8514 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8515 instr->op != nir_texop_lod && instr->coord_components) {
8516 assert(coords.size() > 0 && coords.size() < 3);
8517
8518 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8519 Operand((uint32_t) 0) :
8520 Operand((uint32_t) 0x3f000000)));
8521 }
8522
8523 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8524
8525 if (instr->op == nir_texop_samples_identical)
8526 resource = fmask_ptr;
8527
8528 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8529 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8530 instr->op != nir_texop_txs &&
8531 instr->op != nir_texop_fragment_fetch &&
8532 instr->op != nir_texop_fragment_mask_fetch) {
8533 assert(has_sample_index);
8534 Operand op(sample_index);
8535 if (sample_index_cv)
8536 op = Operand(sample_index_cv->u32);
8537 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8538 }
8539
8540 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8541 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8542 Temp off = emit_extract_vector(ctx, offset, i, v1);
8543 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8544 }
8545 has_offset = false;
8546 }
8547
8548 /* Build tex instruction */
8549 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8550 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8551 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8552 : 0;
8553 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8554 Temp tmp_dst = dst;
8555
8556 /* gather4 selects the component by dmask and always returns vec4 */
8557 if (instr->op == nir_texop_tg4) {
8558 assert(instr->dest.ssa.num_components == 4);
8559 if (instr->is_shadow)
8560 dmask = 1;
8561 else
8562 dmask = 1 << instr->component;
8563 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8564 tmp_dst = bld.tmp(v4);
8565 } else if (instr->op == nir_texop_samples_identical) {
8566 tmp_dst = bld.tmp(v1);
8567 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8568 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8569 }
8570
8571 aco_ptr<MIMG_instruction> tex;
8572 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8573 if (!has_lod)
8574 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8575
8576 bool div_by_6 = instr->op == nir_texop_txs &&
8577 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8578 instr->is_array &&
8579 (dmask & (1 << 2));
8580 if (tmp_dst.id() == dst.id() && div_by_6)
8581 tmp_dst = bld.tmp(tmp_dst.regClass());
8582
8583 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8584 tex->operands[0] = Operand(resource);
8585 tex->operands[1] = Operand(s4); /* no sampler */
8586 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8587 if (ctx->options->chip_class == GFX9 &&
8588 instr->op == nir_texop_txs &&
8589 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8590 instr->is_array) {
8591 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8592 } else if (instr->op == nir_texop_query_levels) {
8593 tex->dmask = 1 << 3;
8594 } else {
8595 tex->dmask = dmask;
8596 }
8597 tex->da = da;
8598 tex->definitions[0] = Definition(tmp_dst);
8599 tex->dim = dim;
8600 ctx->block->instructions.emplace_back(std::move(tex));
8601
8602 if (div_by_6) {
8603 /* divide 3rd value by 6 by multiplying with magic number */
8604 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8605 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8606 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8607 assert(instr->dest.ssa.num_components == 3);
8608 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8609 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8610 emit_extract_vector(ctx, tmp_dst, 0, v1),
8611 emit_extract_vector(ctx, tmp_dst, 1, v1),
8612 by_6);
8613
8614 }
8615
8616 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8617 return;
8618 }
8619
8620 Temp tg4_compare_cube_wa64 = Temp();
8621
8622 if (tg4_integer_workarounds) {
8623 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8624 tex->operands[0] = Operand(resource);
8625 tex->operands[1] = Operand(s4); /* no sampler */
8626 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8627 tex->dim = dim;
8628 tex->dmask = 0x3;
8629 tex->da = da;
8630 Temp size = bld.tmp(v2);
8631 tex->definitions[0] = Definition(size);
8632 ctx->block->instructions.emplace_back(std::move(tex));
8633 emit_split_vector(ctx, size, size.size());
8634
8635 Temp half_texel[2];
8636 for (unsigned i = 0; i < 2; i++) {
8637 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8638 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8639 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8640 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8641 }
8642
8643 Temp new_coords[2] = {
8644 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8645 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8646 };
8647
8648 if (tg4_integer_cube_workaround) {
8649 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8650 Temp desc[resource.size()];
8651 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8652 Format::PSEUDO, 1, resource.size())};
8653 split->operands[0] = Operand(resource);
8654 for (unsigned i = 0; i < resource.size(); i++) {
8655 desc[i] = bld.tmp(s1);
8656 split->definitions[i] = Definition(desc[i]);
8657 }
8658 ctx->block->instructions.emplace_back(std::move(split));
8659
8660 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8661 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8662 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8663
8664 Temp nfmt;
8665 if (stype == GLSL_TYPE_UINT) {
8666 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8667 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8668 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8669 bld.scc(compare_cube_wa));
8670 } else {
8671 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8672 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8673 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8674 bld.scc(compare_cube_wa));
8675 }
8676 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8677 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8678
8679 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8680
8681 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8682 Operand((uint32_t)C_008F14_NUM_FORMAT));
8683 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8684
8685 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8686 Format::PSEUDO, resource.size(), 1)};
8687 for (unsigned i = 0; i < resource.size(); i++)
8688 vec->operands[i] = Operand(desc[i]);
8689 resource = bld.tmp(resource.regClass());
8690 vec->definitions[0] = Definition(resource);
8691 ctx->block->instructions.emplace_back(std::move(vec));
8692
8693 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8694 new_coords[0], coords[0], tg4_compare_cube_wa64);
8695 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8696 new_coords[1], coords[1], tg4_compare_cube_wa64);
8697 }
8698 coords[0] = new_coords[0];
8699 coords[1] = new_coords[1];
8700 }
8701
8702 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8703 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8704
8705 assert(coords.size() == 1);
8706 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8707 aco_opcode op;
8708 switch (last_bit) {
8709 case 1:
8710 op = aco_opcode::buffer_load_format_x; break;
8711 case 2:
8712 op = aco_opcode::buffer_load_format_xy; break;
8713 case 3:
8714 op = aco_opcode::buffer_load_format_xyz; break;
8715 case 4:
8716 op = aco_opcode::buffer_load_format_xyzw; break;
8717 default:
8718 unreachable("Tex instruction loads more than 4 components.");
8719 }
8720
8721 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8722 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8723 tmp_dst = dst;
8724 else
8725 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8726
8727 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8728 mubuf->operands[0] = Operand(resource);
8729 mubuf->operands[1] = Operand(coords[0]);
8730 mubuf->operands[2] = Operand((uint32_t) 0);
8731 mubuf->definitions[0] = Definition(tmp_dst);
8732 mubuf->idxen = true;
8733 ctx->block->instructions.emplace_back(std::move(mubuf));
8734
8735 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8736 return;
8737 }
8738
8739 /* gather MIMG address components */
8740 std::vector<Temp> args;
8741 if (has_offset)
8742 args.emplace_back(offset);
8743 if (has_bias)
8744 args.emplace_back(bias);
8745 if (has_compare)
8746 args.emplace_back(compare);
8747 if (has_derivs)
8748 args.insert(args.end(), derivs.begin(), derivs.end());
8749
8750 args.insert(args.end(), coords.begin(), coords.end());
8751 if (has_sample_index)
8752 args.emplace_back(sample_index);
8753 if (has_lod)
8754 args.emplace_back(lod);
8755 if (has_clamped_lod)
8756 args.emplace_back(clamped_lod);
8757
8758 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8759 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8760 vec->definitions[0] = Definition(arg);
8761 for (unsigned i = 0; i < args.size(); i++)
8762 vec->operands[i] = Operand(args[i]);
8763 ctx->block->instructions.emplace_back(std::move(vec));
8764
8765
8766 if (instr->op == nir_texop_txf ||
8767 instr->op == nir_texop_txf_ms ||
8768 instr->op == nir_texop_samples_identical ||
8769 instr->op == nir_texop_fragment_fetch ||
8770 instr->op == nir_texop_fragment_mask_fetch) {
8771 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8772 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8773 tex->operands[0] = Operand(resource);
8774 tex->operands[1] = Operand(s4); /* no sampler */
8775 tex->operands[2] = Operand(arg);
8776 tex->dim = dim;
8777 tex->dmask = dmask;
8778 tex->unrm = true;
8779 tex->da = da;
8780 tex->definitions[0] = Definition(tmp_dst);
8781 ctx->block->instructions.emplace_back(std::move(tex));
8782
8783 if (instr->op == nir_texop_samples_identical) {
8784 assert(dmask == 1 && dst.regClass() == v1);
8785 assert(dst.id() != tmp_dst.id());
8786
8787 Temp tmp = bld.tmp(bld.lm);
8788 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8789 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8790
8791 } else {
8792 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8793 }
8794 return;
8795 }
8796
8797 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8798 aco_opcode opcode = aco_opcode::image_sample;
8799 if (has_offset) { /* image_sample_*_o */
8800 if (has_clamped_lod) {
8801 if (has_compare) {
8802 opcode = aco_opcode::image_sample_c_cl_o;
8803 if (has_derivs)
8804 opcode = aco_opcode::image_sample_c_d_cl_o;
8805 if (has_bias)
8806 opcode = aco_opcode::image_sample_c_b_cl_o;
8807 } else {
8808 opcode = aco_opcode::image_sample_cl_o;
8809 if (has_derivs)
8810 opcode = aco_opcode::image_sample_d_cl_o;
8811 if (has_bias)
8812 opcode = aco_opcode::image_sample_b_cl_o;
8813 }
8814 } else if (has_compare) {
8815 opcode = aco_opcode::image_sample_c_o;
8816 if (has_derivs)
8817 opcode = aco_opcode::image_sample_c_d_o;
8818 if (has_bias)
8819 opcode = aco_opcode::image_sample_c_b_o;
8820 if (level_zero)
8821 opcode = aco_opcode::image_sample_c_lz_o;
8822 if (has_lod)
8823 opcode = aco_opcode::image_sample_c_l_o;
8824 } else {
8825 opcode = aco_opcode::image_sample_o;
8826 if (has_derivs)
8827 opcode = aco_opcode::image_sample_d_o;
8828 if (has_bias)
8829 opcode = aco_opcode::image_sample_b_o;
8830 if (level_zero)
8831 opcode = aco_opcode::image_sample_lz_o;
8832 if (has_lod)
8833 opcode = aco_opcode::image_sample_l_o;
8834 }
8835 } else if (has_clamped_lod) { /* image_sample_*_cl */
8836 if (has_compare) {
8837 opcode = aco_opcode::image_sample_c_cl;
8838 if (has_derivs)
8839 opcode = aco_opcode::image_sample_c_d_cl;
8840 if (has_bias)
8841 opcode = aco_opcode::image_sample_c_b_cl;
8842 } else {
8843 opcode = aco_opcode::image_sample_cl;
8844 if (has_derivs)
8845 opcode = aco_opcode::image_sample_d_cl;
8846 if (has_bias)
8847 opcode = aco_opcode::image_sample_b_cl;
8848 }
8849 } else { /* no offset */
8850 if (has_compare) {
8851 opcode = aco_opcode::image_sample_c;
8852 if (has_derivs)
8853 opcode = aco_opcode::image_sample_c_d;
8854 if (has_bias)
8855 opcode = aco_opcode::image_sample_c_b;
8856 if (level_zero)
8857 opcode = aco_opcode::image_sample_c_lz;
8858 if (has_lod)
8859 opcode = aco_opcode::image_sample_c_l;
8860 } else {
8861 opcode = aco_opcode::image_sample;
8862 if (has_derivs)
8863 opcode = aco_opcode::image_sample_d;
8864 if (has_bias)
8865 opcode = aco_opcode::image_sample_b;
8866 if (level_zero)
8867 opcode = aco_opcode::image_sample_lz;
8868 if (has_lod)
8869 opcode = aco_opcode::image_sample_l;
8870 }
8871 }
8872
8873 if (instr->op == nir_texop_tg4) {
8874 if (has_offset) { /* image_gather4_*_o */
8875 if (has_compare) {
8876 opcode = aco_opcode::image_gather4_c_lz_o;
8877 if (has_lod)
8878 opcode = aco_opcode::image_gather4_c_l_o;
8879 if (has_bias)
8880 opcode = aco_opcode::image_gather4_c_b_o;
8881 } else {
8882 opcode = aco_opcode::image_gather4_lz_o;
8883 if (has_lod)
8884 opcode = aco_opcode::image_gather4_l_o;
8885 if (has_bias)
8886 opcode = aco_opcode::image_gather4_b_o;
8887 }
8888 } else {
8889 if (has_compare) {
8890 opcode = aco_opcode::image_gather4_c_lz;
8891 if (has_lod)
8892 opcode = aco_opcode::image_gather4_c_l;
8893 if (has_bias)
8894 opcode = aco_opcode::image_gather4_c_b;
8895 } else {
8896 opcode = aco_opcode::image_gather4_lz;
8897 if (has_lod)
8898 opcode = aco_opcode::image_gather4_l;
8899 if (has_bias)
8900 opcode = aco_opcode::image_gather4_b;
8901 }
8902 }
8903 } else if (instr->op == nir_texop_lod) {
8904 opcode = aco_opcode::image_get_lod;
8905 }
8906
8907 /* we don't need the bias, sample index, compare value or offset to be
8908 * computed in WQM but if the p_create_vector copies the coordinates, then it
8909 * needs to be in WQM */
8910 if (ctx->stage == fragment_fs &&
8911 !has_derivs && !has_lod && !level_zero &&
8912 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8913 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8914 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8915
8916 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8917 tex->operands[0] = Operand(resource);
8918 tex->operands[1] = Operand(sampler);
8919 tex->operands[2] = Operand(arg);
8920 tex->dim = dim;
8921 tex->dmask = dmask;
8922 tex->da = da;
8923 tex->definitions[0] = Definition(tmp_dst);
8924 ctx->block->instructions.emplace_back(std::move(tex));
8925
8926 if (tg4_integer_cube_workaround) {
8927 assert(tmp_dst.id() != dst.id());
8928 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8929
8930 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8931 Temp val[4];
8932 for (unsigned i = 0; i < dst.size(); i++) {
8933 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8934 Temp cvt_val;
8935 if (stype == GLSL_TYPE_UINT)
8936 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8937 else
8938 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8939 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8940 }
8941 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8942 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8943 val[0], val[1], val[2], val[3]);
8944 }
8945 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8946 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8947
8948 }
8949
8950
8951 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
8952 {
8953 Temp tmp = get_ssa_temp(ctx, ssa);
8954 if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
8955 return Operand(rc);
8956 } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
8957 if (ctx->program->wave_size == 64)
8958 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
8959 else
8960 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
8961 } else {
8962 return Operand(tmp);
8963 }
8964 }
8965
8966 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8967 {
8968 aco_ptr<Pseudo_instruction> phi;
8969 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8970 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8971
8972 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
8973 logical |= ctx->block->kind & block_kind_merge;
8974 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8975
8976 /* we want a sorted list of sources, since the predecessor list is also sorted */
8977 std::map<unsigned, nir_ssa_def*> phi_src;
8978 nir_foreach_phi_src(src, instr)
8979 phi_src[src->pred->index] = src->src.ssa;
8980
8981 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8982 unsigned num_operands = 0;
8983 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8984 unsigned num_defined = 0;
8985 unsigned cur_pred_idx = 0;
8986 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8987 if (cur_pred_idx < preds.size()) {
8988 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8989 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8990 unsigned skipped = 0;
8991 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8992 skipped++;
8993 if (cur_pred_idx + skipped < preds.size()) {
8994 for (unsigned i = 0; i < skipped; i++)
8995 operands[num_operands++] = Operand(dst.regClass());
8996 cur_pred_idx += skipped;
8997 } else {
8998 continue;
8999 }
9000 }
9001 /* Handle missing predecessors at the end. This shouldn't happen with loop
9002 * headers and we can't ignore these sources for loop header phis. */
9003 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
9004 continue;
9005 cur_pred_idx++;
9006 Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
9007 operands[num_operands++] = op;
9008 num_defined += !op.isUndefined();
9009 }
9010 /* handle block_kind_continue_or_break at loop exit blocks */
9011 while (cur_pred_idx++ < preds.size())
9012 operands[num_operands++] = Operand(dst.regClass());
9013
9014 /* If the loop ends with a break, still add a linear continue edge in case
9015 * that break is divergent or continue_or_break is used. We'll either remove
9016 * this operand later in visit_loop() if it's not necessary or replace the
9017 * undef with something correct. */
9018 if (!logical && ctx->block->kind & block_kind_loop_header) {
9019 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
9020 nir_block *last = nir_loop_last_block(loop);
9021 if (last->successors[0] != instr->instr.block)
9022 operands[num_operands++] = Operand(RegClass());
9023 }
9024
9025 if (num_defined == 0) {
9026 Builder bld(ctx->program, ctx->block);
9027 if (dst.regClass() == s1) {
9028 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
9029 } else if (dst.regClass() == v1) {
9030 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
9031 } else {
9032 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9033 for (unsigned i = 0; i < dst.size(); i++)
9034 vec->operands[i] = Operand(0u);
9035 vec->definitions[0] = Definition(dst);
9036 ctx->block->instructions.emplace_back(std::move(vec));
9037 }
9038 return;
9039 }
9040
9041 /* we can use a linear phi in some cases if one src is undef */
9042 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
9043 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
9044
9045 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
9046 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
9047 assert(invert->kind & block_kind_invert);
9048
9049 unsigned then_block = invert->linear_preds[0];
9050
9051 Block* insert_block = NULL;
9052 for (unsigned i = 0; i < num_operands; i++) {
9053 Operand op = operands[i];
9054 if (op.isUndefined())
9055 continue;
9056 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
9057 phi->operands[0] = op;
9058 break;
9059 }
9060 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
9061 phi->operands[1] = Operand(dst.regClass());
9062 phi->definitions[0] = Definition(dst);
9063 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
9064 return;
9065 }
9066
9067 /* try to scalarize vector phis */
9068 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
9069 // TODO: scalarize linear phis on divergent ifs
9070 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
9071 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
9072 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
9073 Operand src = operands[i];
9074 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
9075 can_scalarize = false;
9076 }
9077 if (can_scalarize) {
9078 unsigned num_components = instr->dest.ssa.num_components;
9079 assert(dst.size() % num_components == 0);
9080 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
9081
9082 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9083 for (unsigned k = 0; k < num_components; k++) {
9084 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9085 for (unsigned i = 0; i < num_operands; i++) {
9086 Operand src = operands[i];
9087 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9088 }
9089 Temp phi_dst = {ctx->program->allocateId(), rc};
9090 phi->definitions[0] = Definition(phi_dst);
9091 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9092 new_vec[k] = phi_dst;
9093 vec->operands[k] = Operand(phi_dst);
9094 }
9095 vec->definitions[0] = Definition(dst);
9096 ctx->block->instructions.emplace_back(std::move(vec));
9097 ctx->allocated_vec.emplace(dst.id(), new_vec);
9098 return;
9099 }
9100 }
9101
9102 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9103 for (unsigned i = 0; i < num_operands; i++)
9104 phi->operands[i] = operands[i];
9105 phi->definitions[0] = Definition(dst);
9106 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9107 }
9108
9109
9110 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9111 {
9112 Temp dst = get_ssa_temp(ctx, &instr->def);
9113
9114 assert(dst.type() == RegType::sgpr);
9115
9116 if (dst.size() == 1) {
9117 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9118 } else {
9119 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9120 for (unsigned i = 0; i < dst.size(); i++)
9121 vec->operands[i] = Operand(0u);
9122 vec->definitions[0] = Definition(dst);
9123 ctx->block->instructions.emplace_back(std::move(vec));
9124 }
9125 }
9126
9127 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9128 {
9129 Builder bld(ctx->program, ctx->block);
9130 Block *logical_target;
9131 append_logical_end(ctx->block);
9132 unsigned idx = ctx->block->index;
9133
9134 switch (instr->type) {
9135 case nir_jump_break:
9136 logical_target = ctx->cf_info.parent_loop.exit;
9137 add_logical_edge(idx, logical_target);
9138 ctx->block->kind |= block_kind_break;
9139
9140 if (!ctx->cf_info.parent_if.is_divergent &&
9141 !ctx->cf_info.parent_loop.has_divergent_continue) {
9142 /* uniform break - directly jump out of the loop */
9143 ctx->block->kind |= block_kind_uniform;
9144 ctx->cf_info.has_branch = true;
9145 bld.branch(aco_opcode::p_branch);
9146 add_linear_edge(idx, logical_target);
9147 return;
9148 }
9149 ctx->cf_info.parent_loop.has_divergent_branch = true;
9150 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9151 break;
9152 case nir_jump_continue:
9153 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9154 add_logical_edge(idx, logical_target);
9155 ctx->block->kind |= block_kind_continue;
9156
9157 if (ctx->cf_info.parent_if.is_divergent) {
9158 /* for potential uniform breaks after this continue,
9159 we must ensure that they are handled correctly */
9160 ctx->cf_info.parent_loop.has_divergent_continue = true;
9161 ctx->cf_info.parent_loop.has_divergent_branch = true;
9162 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9163 } else {
9164 /* uniform continue - directly jump to the loop header */
9165 ctx->block->kind |= block_kind_uniform;
9166 ctx->cf_info.has_branch = true;
9167 bld.branch(aco_opcode::p_branch);
9168 add_linear_edge(idx, logical_target);
9169 return;
9170 }
9171 break;
9172 default:
9173 isel_err(&instr->instr, "Unknown NIR jump instr");
9174 abort();
9175 }
9176
9177 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9178 ctx->cf_info.exec_potentially_empty_break = true;
9179 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9180 }
9181
9182 /* remove critical edges from linear CFG */
9183 bld.branch(aco_opcode::p_branch);
9184 Block* break_block = ctx->program->create_and_insert_block();
9185 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9186 break_block->kind |= block_kind_uniform;
9187 add_linear_edge(idx, break_block);
9188 /* the loop_header pointer might be invalidated by this point */
9189 if (instr->type == nir_jump_continue)
9190 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9191 add_linear_edge(break_block->index, logical_target);
9192 bld.reset(break_block);
9193 bld.branch(aco_opcode::p_branch);
9194
9195 Block* continue_block = ctx->program->create_and_insert_block();
9196 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9197 add_linear_edge(idx, continue_block);
9198 append_logical_start(continue_block);
9199 ctx->block = continue_block;
9200 return;
9201 }
9202
9203 void visit_block(isel_context *ctx, nir_block *block)
9204 {
9205 nir_foreach_instr(instr, block) {
9206 switch (instr->type) {
9207 case nir_instr_type_alu:
9208 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9209 break;
9210 case nir_instr_type_load_const:
9211 visit_load_const(ctx, nir_instr_as_load_const(instr));
9212 break;
9213 case nir_instr_type_intrinsic:
9214 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9215 break;
9216 case nir_instr_type_tex:
9217 visit_tex(ctx, nir_instr_as_tex(instr));
9218 break;
9219 case nir_instr_type_phi:
9220 visit_phi(ctx, nir_instr_as_phi(instr));
9221 break;
9222 case nir_instr_type_ssa_undef:
9223 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9224 break;
9225 case nir_instr_type_deref:
9226 break;
9227 case nir_instr_type_jump:
9228 visit_jump(ctx, nir_instr_as_jump(instr));
9229 break;
9230 default:
9231 isel_err(instr, "Unknown NIR instr type");
9232 //abort();
9233 }
9234 }
9235
9236 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9237 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9238 }
9239
9240
9241
9242 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9243 aco_ptr<Instruction>& header_phi, Operand *vals)
9244 {
9245 vals[0] = Operand(header_phi->definitions[0].getTemp());
9246 RegClass rc = vals[0].regClass();
9247
9248 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9249
9250 unsigned next_pred = 1;
9251
9252 for (unsigned idx = first + 1; idx <= last; idx++) {
9253 Block& block = ctx->program->blocks[idx];
9254 if (block.loop_nest_depth != loop_nest_depth) {
9255 vals[idx - first] = vals[idx - 1 - first];
9256 continue;
9257 }
9258
9259 if (block.kind & block_kind_continue) {
9260 vals[idx - first] = header_phi->operands[next_pred];
9261 next_pred++;
9262 continue;
9263 }
9264
9265 bool all_same = true;
9266 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9267 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9268
9269 Operand val;
9270 if (all_same) {
9271 val = vals[block.linear_preds[0] - first];
9272 } else {
9273 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9274 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9275 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9276 phi->operands[i] = vals[block.linear_preds[i] - first];
9277 val = Operand(Temp(ctx->program->allocateId(), rc));
9278 phi->definitions[0] = Definition(val.getTemp());
9279 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9280 }
9281 vals[idx - first] = val;
9282 }
9283
9284 return vals[last - first];
9285 }
9286
9287 static void visit_loop(isel_context *ctx, nir_loop *loop)
9288 {
9289 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9290 append_logical_end(ctx->block);
9291 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9292 Builder bld(ctx->program, ctx->block);
9293 bld.branch(aco_opcode::p_branch);
9294 unsigned loop_preheader_idx = ctx->block->index;
9295
9296 Block loop_exit = Block();
9297 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9298 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9299
9300 Block* loop_header = ctx->program->create_and_insert_block();
9301 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9302 loop_header->kind |= block_kind_loop_header;
9303 add_edge(loop_preheader_idx, loop_header);
9304 ctx->block = loop_header;
9305
9306 /* emit loop body */
9307 unsigned loop_header_idx = loop_header->index;
9308 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9309 append_logical_start(ctx->block);
9310 bool unreachable = visit_cf_list(ctx, &loop->body);
9311
9312 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9313 if (!ctx->cf_info.has_branch) {
9314 append_logical_end(ctx->block);
9315 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9316 /* Discards can result in code running with an empty exec mask.
9317 * This would result in divergent breaks not ever being taken. As a
9318 * workaround, break the loop when the loop mask is empty instead of
9319 * always continuing. */
9320 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9321 unsigned block_idx = ctx->block->index;
9322
9323 /* create helper blocks to avoid critical edges */
9324 Block *break_block = ctx->program->create_and_insert_block();
9325 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9326 break_block->kind = block_kind_uniform;
9327 bld.reset(break_block);
9328 bld.branch(aco_opcode::p_branch);
9329 add_linear_edge(block_idx, break_block);
9330 add_linear_edge(break_block->index, &loop_exit);
9331
9332 Block *continue_block = ctx->program->create_and_insert_block();
9333 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9334 continue_block->kind = block_kind_uniform;
9335 bld.reset(continue_block);
9336 bld.branch(aco_opcode::p_branch);
9337 add_linear_edge(block_idx, continue_block);
9338 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9339
9340 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9341 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9342 ctx->block = &ctx->program->blocks[block_idx];
9343 } else {
9344 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9345 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9346 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9347 else
9348 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9349 }
9350
9351 bld.reset(ctx->block);
9352 bld.branch(aco_opcode::p_branch);
9353 }
9354
9355 /* Fixup phis in loop header from unreachable blocks.
9356 * has_branch/has_divergent_branch also indicates if the loop ends with a
9357 * break/continue instruction, but we don't emit those if unreachable=true */
9358 if (unreachable) {
9359 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9360 bool linear = ctx->cf_info.has_branch;
9361 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9362 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9363 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9364 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9365 /* the last operand should be the one that needs to be removed */
9366 instr->operands.pop_back();
9367 } else if (!is_phi(instr)) {
9368 break;
9369 }
9370 }
9371 }
9372
9373 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9374 * and the previous one shouldn't both happen at once because a break in the
9375 * merge block would get CSE'd */
9376 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9377 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9378 Operand vals[num_vals];
9379 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9380 if (instr->opcode == aco_opcode::p_linear_phi) {
9381 if (ctx->cf_info.has_branch)
9382 instr->operands.pop_back();
9383 else
9384 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9385 } else if (!is_phi(instr)) {
9386 break;
9387 }
9388 }
9389 }
9390
9391 ctx->cf_info.has_branch = false;
9392
9393 // TODO: if the loop has not a single exit, we must add one °°
9394 /* emit loop successor block */
9395 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9396 append_logical_start(ctx->block);
9397
9398 #if 0
9399 // TODO: check if it is beneficial to not branch on continues
9400 /* trim linear phis in loop header */
9401 for (auto&& instr : loop_entry->instructions) {
9402 if (instr->opcode == aco_opcode::p_linear_phi) {
9403 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9404 new_phi->definitions[0] = instr->definitions[0];
9405 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9406 new_phi->operands[i] = instr->operands[i];
9407 /* check that the remaining operands are all the same */
9408 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9409 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9410 instr.swap(new_phi);
9411 } else if (instr->opcode == aco_opcode::p_phi) {
9412 continue;
9413 } else {
9414 break;
9415 }
9416 }
9417 #endif
9418 }
9419
9420 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9421 {
9422 ic->cond = cond;
9423
9424 append_logical_end(ctx->block);
9425 ctx->block->kind |= block_kind_branch;
9426
9427 /* branch to linear then block */
9428 assert(cond.regClass() == ctx->program->lane_mask);
9429 aco_ptr<Pseudo_branch_instruction> branch;
9430 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9431 branch->operands[0] = Operand(cond);
9432 ctx->block->instructions.push_back(std::move(branch));
9433
9434 ic->BB_if_idx = ctx->block->index;
9435 ic->BB_invert = Block();
9436 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9437 /* Invert blocks are intentionally not marked as top level because they
9438 * are not part of the logical cfg. */
9439 ic->BB_invert.kind |= block_kind_invert;
9440 ic->BB_endif = Block();
9441 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9442 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9443
9444 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9445 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9446 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9447 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9448 ctx->cf_info.parent_if.is_divergent = true;
9449
9450 /* divergent branches use cbranch_execz */
9451 ctx->cf_info.exec_potentially_empty_discard = false;
9452 ctx->cf_info.exec_potentially_empty_break = false;
9453 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9454
9455 /** emit logical then block */
9456 Block* BB_then_logical = ctx->program->create_and_insert_block();
9457 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9458 add_edge(ic->BB_if_idx, BB_then_logical);
9459 ctx->block = BB_then_logical;
9460 append_logical_start(BB_then_logical);
9461 }
9462
9463 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9464 {
9465 Block *BB_then_logical = ctx->block;
9466 append_logical_end(BB_then_logical);
9467 /* branch from logical then block to invert block */
9468 aco_ptr<Pseudo_branch_instruction> branch;
9469 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9470 BB_then_logical->instructions.emplace_back(std::move(branch));
9471 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9472 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9473 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9474 BB_then_logical->kind |= block_kind_uniform;
9475 assert(!ctx->cf_info.has_branch);
9476 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9477 ctx->cf_info.parent_loop.has_divergent_branch = false;
9478
9479 /** emit linear then block */
9480 Block* BB_then_linear = ctx->program->create_and_insert_block();
9481 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9482 BB_then_linear->kind |= block_kind_uniform;
9483 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9484 /* branch from linear then block to invert block */
9485 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9486 BB_then_linear->instructions.emplace_back(std::move(branch));
9487 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9488
9489 /** emit invert merge block */
9490 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9491 ic->invert_idx = ctx->block->index;
9492
9493 /* branch to linear else block (skip else) */
9494 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9495 branch->operands[0] = Operand(ic->cond);
9496 ctx->block->instructions.push_back(std::move(branch));
9497
9498 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9499 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9500 ic->exec_potentially_empty_break_depth_old =
9501 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9502 /* divergent branches use cbranch_execz */
9503 ctx->cf_info.exec_potentially_empty_discard = false;
9504 ctx->cf_info.exec_potentially_empty_break = false;
9505 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9506
9507 /** emit logical else block */
9508 Block* BB_else_logical = ctx->program->create_and_insert_block();
9509 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9510 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9511 add_linear_edge(ic->invert_idx, BB_else_logical);
9512 ctx->block = BB_else_logical;
9513 append_logical_start(BB_else_logical);
9514 }
9515
9516 static void end_divergent_if(isel_context *ctx, if_context *ic)
9517 {
9518 Block *BB_else_logical = ctx->block;
9519 append_logical_end(BB_else_logical);
9520
9521 /* branch from logical else block to endif block */
9522 aco_ptr<Pseudo_branch_instruction> branch;
9523 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9524 BB_else_logical->instructions.emplace_back(std::move(branch));
9525 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9526 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9527 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9528 BB_else_logical->kind |= block_kind_uniform;
9529
9530 assert(!ctx->cf_info.has_branch);
9531 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9532
9533
9534 /** emit linear else block */
9535 Block* BB_else_linear = ctx->program->create_and_insert_block();
9536 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9537 BB_else_linear->kind |= block_kind_uniform;
9538 add_linear_edge(ic->invert_idx, BB_else_linear);
9539
9540 /* branch from linear else block to endif block */
9541 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9542 BB_else_linear->instructions.emplace_back(std::move(branch));
9543 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9544
9545
9546 /** emit endif merge block */
9547 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9548 append_logical_start(ctx->block);
9549
9550
9551 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9552 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9553 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9554 ctx->cf_info.exec_potentially_empty_break_depth =
9555 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9556 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9557 !ctx->cf_info.parent_if.is_divergent) {
9558 ctx->cf_info.exec_potentially_empty_break = false;
9559 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9560 }
9561 /* uniform control flow never has an empty exec-mask */
9562 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9563 ctx->cf_info.exec_potentially_empty_discard = false;
9564 ctx->cf_info.exec_potentially_empty_break = false;
9565 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9566 }
9567 }
9568
9569 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9570 {
9571 assert(cond.regClass() == s1);
9572
9573 append_logical_end(ctx->block);
9574 ctx->block->kind |= block_kind_uniform;
9575
9576 aco_ptr<Pseudo_branch_instruction> branch;
9577 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9578 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9579 branch->operands[0] = Operand(cond);
9580 branch->operands[0].setFixed(scc);
9581 ctx->block->instructions.emplace_back(std::move(branch));
9582
9583 ic->BB_if_idx = ctx->block->index;
9584 ic->BB_endif = Block();
9585 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9586 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9587
9588 ctx->cf_info.has_branch = false;
9589 ctx->cf_info.parent_loop.has_divergent_branch = false;
9590
9591 /** emit then block */
9592 Block* BB_then = ctx->program->create_and_insert_block();
9593 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9594 add_edge(ic->BB_if_idx, BB_then);
9595 append_logical_start(BB_then);
9596 ctx->block = BB_then;
9597 }
9598
9599 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9600 {
9601 Block *BB_then = ctx->block;
9602
9603 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9604 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9605
9606 if (!ic->uniform_has_then_branch) {
9607 append_logical_end(BB_then);
9608 /* branch from then block to endif block */
9609 aco_ptr<Pseudo_branch_instruction> branch;
9610 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9611 BB_then->instructions.emplace_back(std::move(branch));
9612 add_linear_edge(BB_then->index, &ic->BB_endif);
9613 if (!ic->then_branch_divergent)
9614 add_logical_edge(BB_then->index, &ic->BB_endif);
9615 BB_then->kind |= block_kind_uniform;
9616 }
9617
9618 ctx->cf_info.has_branch = false;
9619 ctx->cf_info.parent_loop.has_divergent_branch = false;
9620
9621 /** emit else block */
9622 Block* BB_else = ctx->program->create_and_insert_block();
9623 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9624 add_edge(ic->BB_if_idx, BB_else);
9625 append_logical_start(BB_else);
9626 ctx->block = BB_else;
9627 }
9628
9629 static void end_uniform_if(isel_context *ctx, if_context *ic)
9630 {
9631 Block *BB_else = ctx->block;
9632
9633 if (!ctx->cf_info.has_branch) {
9634 append_logical_end(BB_else);
9635 /* branch from then block to endif block */
9636 aco_ptr<Pseudo_branch_instruction> branch;
9637 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9638 BB_else->instructions.emplace_back(std::move(branch));
9639 add_linear_edge(BB_else->index, &ic->BB_endif);
9640 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9641 add_logical_edge(BB_else->index, &ic->BB_endif);
9642 BB_else->kind |= block_kind_uniform;
9643 }
9644
9645 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9646 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9647
9648 /** emit endif merge block */
9649 if (!ctx->cf_info.has_branch) {
9650 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9651 append_logical_start(ctx->block);
9652 }
9653 }
9654
9655 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9656 {
9657 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9658 Builder bld(ctx->program, ctx->block);
9659 aco_ptr<Pseudo_branch_instruction> branch;
9660 if_context ic;
9661
9662 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
9663 /**
9664 * Uniform conditionals are represented in the following way*) :
9665 *
9666 * The linear and logical CFG:
9667 * BB_IF
9668 * / \
9669 * BB_THEN (logical) BB_ELSE (logical)
9670 * \ /
9671 * BB_ENDIF
9672 *
9673 * *) Exceptions may be due to break and continue statements within loops
9674 * If a break/continue happens within uniform control flow, it branches
9675 * to the loop exit/entry block. Otherwise, it branches to the next
9676 * merge block.
9677 **/
9678
9679 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9680 assert(cond.regClass() == ctx->program->lane_mask);
9681 cond = bool_to_scalar_condition(ctx, cond);
9682
9683 begin_uniform_if_then(ctx, &ic, cond);
9684 visit_cf_list(ctx, &if_stmt->then_list);
9685
9686 begin_uniform_if_else(ctx, &ic);
9687 visit_cf_list(ctx, &if_stmt->else_list);
9688
9689 end_uniform_if(ctx, &ic);
9690 } else { /* non-uniform condition */
9691 /**
9692 * To maintain a logical and linear CFG without critical edges,
9693 * non-uniform conditionals are represented in the following way*) :
9694 *
9695 * The linear CFG:
9696 * BB_IF
9697 * / \
9698 * BB_THEN (logical) BB_THEN (linear)
9699 * \ /
9700 * BB_INVERT (linear)
9701 * / \
9702 * BB_ELSE (logical) BB_ELSE (linear)
9703 * \ /
9704 * BB_ENDIF
9705 *
9706 * The logical CFG:
9707 * BB_IF
9708 * / \
9709 * BB_THEN (logical) BB_ELSE (logical)
9710 * \ /
9711 * BB_ENDIF
9712 *
9713 * *) Exceptions may be due to break and continue statements within loops
9714 **/
9715
9716 begin_divergent_if_then(ctx, &ic, cond);
9717 visit_cf_list(ctx, &if_stmt->then_list);
9718
9719 begin_divergent_if_else(ctx, &ic);
9720 visit_cf_list(ctx, &if_stmt->else_list);
9721
9722 end_divergent_if(ctx, &ic);
9723 }
9724
9725 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9726 }
9727
9728 static bool visit_cf_list(isel_context *ctx,
9729 struct exec_list *list)
9730 {
9731 foreach_list_typed(nir_cf_node, node, node, list) {
9732 switch (node->type) {
9733 case nir_cf_node_block:
9734 visit_block(ctx, nir_cf_node_as_block(node));
9735 break;
9736 case nir_cf_node_if:
9737 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9738 return true;
9739 break;
9740 case nir_cf_node_loop:
9741 visit_loop(ctx, nir_cf_node_as_loop(node));
9742 break;
9743 default:
9744 unreachable("unimplemented cf list type");
9745 }
9746 }
9747 return false;
9748 }
9749
9750 static void create_null_export(isel_context *ctx)
9751 {
9752 /* Some shader stages always need to have exports.
9753 * So when there is none, we need to add a null export.
9754 */
9755
9756 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9757 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9758 Builder bld(ctx->program, ctx->block);
9759 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9760 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9761 }
9762
9763 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9764 {
9765 assert(ctx->stage == vertex_vs ||
9766 ctx->stage == tess_eval_vs ||
9767 ctx->stage == gs_copy_vs ||
9768 ctx->stage == ngg_vertex_gs ||
9769 ctx->stage == ngg_tess_eval_gs);
9770
9771 int offset = (ctx->stage & sw_tes)
9772 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9773 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9774 uint64_t mask = ctx->outputs.mask[slot];
9775 if (!is_pos && !mask)
9776 return false;
9777 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9778 return false;
9779 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9780 exp->enabled_mask = mask;
9781 for (unsigned i = 0; i < 4; ++i) {
9782 if (mask & (1 << i))
9783 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9784 else
9785 exp->operands[i] = Operand(v1);
9786 }
9787 /* GFX10 (Navi1x) skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9788 * Setting valid_mask=1 prevents it and has no other effect.
9789 */
9790 exp->valid_mask = ctx->options->chip_class == GFX10 && is_pos && *next_pos == 0;
9791 exp->done = false;
9792 exp->compressed = false;
9793 if (is_pos)
9794 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9795 else
9796 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9797 ctx->block->instructions.emplace_back(std::move(exp));
9798
9799 return true;
9800 }
9801
9802 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9803 {
9804 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9805 exp->enabled_mask = 0;
9806 for (unsigned i = 0; i < 4; ++i)
9807 exp->operands[i] = Operand(v1);
9808 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9809 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9810 exp->enabled_mask |= 0x1;
9811 }
9812 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9813 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9814 exp->enabled_mask |= 0x4;
9815 }
9816 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9817 if (ctx->options->chip_class < GFX9) {
9818 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9819 exp->enabled_mask |= 0x8;
9820 } else {
9821 Builder bld(ctx->program, ctx->block);
9822
9823 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9824 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9825 if (exp->operands[2].isTemp())
9826 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9827
9828 exp->operands[2] = Operand(out);
9829 exp->enabled_mask |= 0x4;
9830 }
9831 }
9832 exp->valid_mask = ctx->options->chip_class == GFX10 && *next_pos == 0;
9833 exp->done = false;
9834 exp->compressed = false;
9835 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9836 ctx->block->instructions.emplace_back(std::move(exp));
9837 }
9838
9839 static void create_export_phis(isel_context *ctx)
9840 {
9841 /* Used when exports are needed, but the output temps are defined in a preceding block.
9842 * This function will set up phis in order to access the outputs in the next block.
9843 */
9844
9845 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9846 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9847 ctx->block->instructions.pop_back();
9848
9849 Builder bld(ctx->program, ctx->block);
9850
9851 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9852 uint64_t mask = ctx->outputs.mask[slot];
9853 for (unsigned i = 0; i < 4; ++i) {
9854 if (!(mask & (1 << i)))
9855 continue;
9856
9857 Temp old = ctx->outputs.temps[slot * 4 + i];
9858 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9859 ctx->outputs.temps[slot * 4 + i] = phi;
9860 }
9861 }
9862
9863 bld.insert(std::move(logical_start));
9864 }
9865
9866 static void create_vs_exports(isel_context *ctx)
9867 {
9868 assert(ctx->stage == vertex_vs ||
9869 ctx->stage == tess_eval_vs ||
9870 ctx->stage == gs_copy_vs ||
9871 ctx->stage == ngg_vertex_gs ||
9872 ctx->stage == ngg_tess_eval_gs);
9873
9874 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9875 ? &ctx->program->info->tes.outinfo
9876 : &ctx->program->info->vs.outinfo;
9877
9878 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9879 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9880 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9881 }
9882
9883 if (ctx->options->key.has_multiview_view_index) {
9884 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9885 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9886 }
9887
9888 /* the order these position exports are created is important */
9889 int next_pos = 0;
9890 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9891 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9892 export_vs_psiz_layer_viewport(ctx, &next_pos);
9893 exported_pos = true;
9894 }
9895 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9896 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9897 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9898 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9899
9900 if (ctx->export_clip_dists) {
9901 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9902 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9903 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9904 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9905 }
9906
9907 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9908 if (i < VARYING_SLOT_VAR0 &&
9909 i != VARYING_SLOT_LAYER &&
9910 i != VARYING_SLOT_PRIMITIVE_ID &&
9911 i != VARYING_SLOT_VIEWPORT)
9912 continue;
9913
9914 export_vs_varying(ctx, i, false, NULL);
9915 }
9916
9917 if (!exported_pos)
9918 create_null_export(ctx);
9919 }
9920
9921 static bool export_fs_mrt_z(isel_context *ctx)
9922 {
9923 Builder bld(ctx->program, ctx->block);
9924 unsigned enabled_channels = 0;
9925 bool compr = false;
9926 Operand values[4];
9927
9928 for (unsigned i = 0; i < 4; ++i) {
9929 values[i] = Operand(v1);
9930 }
9931
9932 /* Both stencil and sample mask only need 16-bits. */
9933 if (!ctx->program->info->ps.writes_z &&
9934 (ctx->program->info->ps.writes_stencil ||
9935 ctx->program->info->ps.writes_sample_mask)) {
9936 compr = true; /* COMPR flag */
9937
9938 if (ctx->program->info->ps.writes_stencil) {
9939 /* Stencil should be in X[23:16]. */
9940 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9941 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9942 enabled_channels |= 0x3;
9943 }
9944
9945 if (ctx->program->info->ps.writes_sample_mask) {
9946 /* SampleMask should be in Y[15:0]. */
9947 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9948 enabled_channels |= 0xc;
9949 }
9950 } else {
9951 if (ctx->program->info->ps.writes_z) {
9952 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9953 enabled_channels |= 0x1;
9954 }
9955
9956 if (ctx->program->info->ps.writes_stencil) {
9957 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9958 enabled_channels |= 0x2;
9959 }
9960
9961 if (ctx->program->info->ps.writes_sample_mask) {
9962 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9963 enabled_channels |= 0x4;
9964 }
9965 }
9966
9967 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9968 * writemask component.
9969 */
9970 if (ctx->options->chip_class == GFX6 &&
9971 ctx->options->family != CHIP_OLAND &&
9972 ctx->options->family != CHIP_HAINAN) {
9973 enabled_channels |= 0x1;
9974 }
9975
9976 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9977 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9978
9979 return true;
9980 }
9981
9982 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9983 {
9984 Builder bld(ctx->program, ctx->block);
9985 unsigned write_mask = ctx->outputs.mask[slot];
9986 Operand values[4];
9987
9988 for (unsigned i = 0; i < 4; ++i) {
9989 if (write_mask & (1 << i)) {
9990 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9991 } else {
9992 values[i] = Operand(v1);
9993 }
9994 }
9995
9996 unsigned target, col_format;
9997 unsigned enabled_channels = 0;
9998 aco_opcode compr_op = (aco_opcode)0;
9999
10000 slot -= FRAG_RESULT_DATA0;
10001 target = V_008DFC_SQ_EXP_MRT + slot;
10002 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
10003
10004 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
10005 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
10006 bool is_16bit = values[0].regClass() == v2b;
10007
10008 switch (col_format)
10009 {
10010 case V_028714_SPI_SHADER_ZERO:
10011 enabled_channels = 0; /* writemask */
10012 target = V_008DFC_SQ_EXP_NULL;
10013 break;
10014
10015 case V_028714_SPI_SHADER_32_R:
10016 enabled_channels = 1;
10017 break;
10018
10019 case V_028714_SPI_SHADER_32_GR:
10020 enabled_channels = 0x3;
10021 break;
10022
10023 case V_028714_SPI_SHADER_32_AR:
10024 if (ctx->options->chip_class >= GFX10) {
10025 /* Special case: on GFX10, the outputs are different for 32_AR */
10026 enabled_channels = 0x3;
10027 values[1] = values[3];
10028 values[3] = Operand(v1);
10029 } else {
10030 enabled_channels = 0x9;
10031 }
10032 break;
10033
10034 case V_028714_SPI_SHADER_FP16_ABGR:
10035 enabled_channels = 0x5;
10036 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
10037 if (is_16bit) {
10038 if (ctx->options->chip_class >= GFX9) {
10039 /* Pack the FP16 values together instead of converting them to
10040 * FP32 and back to FP16.
10041 * TODO: use p_create_vector and let the compiler optimizes.
10042 */
10043 compr_op = aco_opcode::v_pack_b32_f16;
10044 } else {
10045 for (unsigned i = 0; i < 4; i++) {
10046 if ((write_mask >> i) & 1)
10047 values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
10048 }
10049 }
10050 }
10051 break;
10052
10053 case V_028714_SPI_SHADER_UNORM16_ABGR:
10054 enabled_channels = 0x5;
10055 if (is_16bit && ctx->options->chip_class >= GFX9) {
10056 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
10057 } else {
10058 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
10059 }
10060 break;
10061
10062 case V_028714_SPI_SHADER_SNORM16_ABGR:
10063 enabled_channels = 0x5;
10064 if (is_16bit && ctx->options->chip_class >= GFX9) {
10065 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
10066 } else {
10067 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10068 }
10069 break;
10070
10071 case V_028714_SPI_SHADER_UINT16_ABGR: {
10072 enabled_channels = 0x5;
10073 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10074 if (is_int8 || is_int10) {
10075 /* clamp */
10076 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10077 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10078
10079 for (unsigned i = 0; i < 4; i++) {
10080 if ((write_mask >> i) & 1) {
10081 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10082 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10083 values[i]);
10084 }
10085 }
10086 } else if (is_16bit) {
10087 for (unsigned i = 0; i < 4; i++) {
10088 if ((write_mask >> i) & 1) {
10089 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10090 values[i] = Operand(tmp);
10091 }
10092 }
10093 }
10094 break;
10095 }
10096
10097 case V_028714_SPI_SHADER_SINT16_ABGR:
10098 enabled_channels = 0x5;
10099 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10100 if (is_int8 || is_int10) {
10101 /* clamp */
10102 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10103 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10104 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10105 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10106
10107 for (unsigned i = 0; i < 4; i++) {
10108 if ((write_mask >> i) & 1) {
10109 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10110 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10111 values[i]);
10112 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10113 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10114 values[i]);
10115 }
10116 }
10117 } else if (is_16bit) {
10118 for (unsigned i = 0; i < 4; i++) {
10119 if ((write_mask >> i) & 1) {
10120 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10121 values[i] = Operand(tmp);
10122 }
10123 }
10124 }
10125 break;
10126
10127 case V_028714_SPI_SHADER_32_ABGR:
10128 enabled_channels = 0xF;
10129 break;
10130
10131 default:
10132 break;
10133 }
10134
10135 if (target == V_008DFC_SQ_EXP_NULL)
10136 return false;
10137
10138 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10139 if (ctx->options->enable_mrt_output_nan_fixup &&
10140 !is_16bit &&
10141 (col_format == V_028714_SPI_SHADER_32_R ||
10142 col_format == V_028714_SPI_SHADER_32_GR ||
10143 col_format == V_028714_SPI_SHADER_32_AR ||
10144 col_format == V_028714_SPI_SHADER_32_ABGR ||
10145 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10146 for (int i = 0; i < 4; i++) {
10147 if (!(write_mask & (1 << i)))
10148 continue;
10149
10150 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10151 bld.hint_vcc(bld.def(bld.lm)), values[i],
10152 bld.copy(bld.def(v1), Operand(3u)));
10153 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10154 bld.copy(bld.def(v1), Operand(0u)), isnan);
10155 }
10156 }
10157
10158 if ((bool) compr_op) {
10159 for (int i = 0; i < 2; i++) {
10160 /* check if at least one of the values to be compressed is enabled */
10161 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10162 if (enabled) {
10163 enabled_channels |= enabled << (i*2);
10164 values[i] = bld.vop3(compr_op, bld.def(v1),
10165 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10166 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10167 } else {
10168 values[i] = Operand(v1);
10169 }
10170 }
10171 values[2] = Operand(v1);
10172 values[3] = Operand(v1);
10173 } else {
10174 for (int i = 0; i < 4; i++)
10175 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10176 }
10177
10178 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10179 enabled_channels, target, (bool) compr_op);
10180 return true;
10181 }
10182
10183 static void create_fs_exports(isel_context *ctx)
10184 {
10185 bool exported = false;
10186
10187 /* Export depth, stencil and sample mask. */
10188 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10189 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10190 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10191 exported |= export_fs_mrt_z(ctx);
10192
10193 /* Export all color render targets. */
10194 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10195 if (ctx->outputs.mask[i])
10196 exported |= export_fs_mrt_color(ctx, i);
10197
10198 if (!exported)
10199 create_null_export(ctx);
10200 }
10201
10202 static void create_workgroup_barrier(Builder& bld)
10203 {
10204 bld.barrier(aco_opcode::p_barrier,
10205 memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup),
10206 scope_workgroup);
10207 }
10208
10209 static void write_tcs_tess_factors(isel_context *ctx)
10210 {
10211 unsigned outer_comps;
10212 unsigned inner_comps;
10213
10214 switch (ctx->args->options->key.tcs.primitive_mode) {
10215 case GL_ISOLINES:
10216 outer_comps = 2;
10217 inner_comps = 0;
10218 break;
10219 case GL_TRIANGLES:
10220 outer_comps = 3;
10221 inner_comps = 1;
10222 break;
10223 case GL_QUADS:
10224 outer_comps = 4;
10225 inner_comps = 2;
10226 break;
10227 default:
10228 return;
10229 }
10230
10231 Builder bld(ctx->program, ctx->block);
10232
10233 create_workgroup_barrier(bld);
10234
10235 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10236 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10237
10238 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10239 if_context ic_invocation_id_is_zero;
10240 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10241 bld.reset(ctx->block);
10242
10243 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10244
10245 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10246 unsigned stride = inner_comps + outer_comps;
10247 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10248 Temp tf_inner_vec;
10249 Temp tf_outer_vec;
10250 Temp out[6];
10251 assert(stride <= (sizeof(out) / sizeof(Temp)));
10252
10253 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10254 // LINES reversal
10255 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10256 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10257 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10258 } else {
10259 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10260 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10261
10262 for (unsigned i = 0; i < outer_comps; ++i)
10263 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10264 for (unsigned i = 0; i < inner_comps; ++i)
10265 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10266 }
10267
10268 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10269 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10270 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10271 unsigned tf_const_offset = 0;
10272
10273 if (ctx->program->chip_class <= GFX8) {
10274 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10275 if_context ic_rel_patch_id_is_zero;
10276 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10277 bld.reset(ctx->block);
10278
10279 /* Store the dynamic HS control word. */
10280 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10281 bld.mubuf(aco_opcode::buffer_store_dword,
10282 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10283 /* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false,
10284 /* addr64 */ false, /* disable_wqm */ false, /* glc */ true);
10285 tf_const_offset += 4;
10286
10287 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10288 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10289 bld.reset(ctx->block);
10290 }
10291
10292 assert(stride == 2 || stride == 4 || stride == 6);
10293 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10294 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, memory_sync_info());
10295
10296 /* Store to offchip for TES to read - only if TES reads them */
10297 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10298 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10299 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10300
10301 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10302 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, memory_sync_info(storage_vmem_output));
10303
10304 if (likely(inner_comps)) {
10305 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10306 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, memory_sync_info(storage_vmem_output));
10307 }
10308 }
10309
10310 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10311 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10312 }
10313
10314 static void emit_stream_output(isel_context *ctx,
10315 Temp const *so_buffers,
10316 Temp const *so_write_offset,
10317 const struct radv_stream_output *output)
10318 {
10319 unsigned num_comps = util_bitcount(output->component_mask);
10320 unsigned writemask = (1 << num_comps) - 1;
10321 unsigned loc = output->location;
10322 unsigned buf = output->buffer;
10323
10324 assert(num_comps && num_comps <= 4);
10325 if (!num_comps || num_comps > 4)
10326 return;
10327
10328 unsigned start = ffs(output->component_mask) - 1;
10329
10330 Temp out[4];
10331 bool all_undef = true;
10332 assert(ctx->stage & hw_vs);
10333 for (unsigned i = 0; i < num_comps; i++) {
10334 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10335 all_undef = all_undef && !out[i].id();
10336 }
10337 if (all_undef)
10338 return;
10339
10340 while (writemask) {
10341 int start, count;
10342 u_bit_scan_consecutive_range(&writemask, &start, &count);
10343 if (count == 3 && ctx->options->chip_class == GFX6) {
10344 /* GFX6 doesn't support storing vec3, split it. */
10345 writemask |= 1u << (start + 2);
10346 count = 2;
10347 }
10348
10349 unsigned offset = output->offset + start * 4;
10350
10351 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10352 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10353 for (int i = 0; i < count; ++i)
10354 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10355 vec->definitions[0] = Definition(write_data);
10356 ctx->block->instructions.emplace_back(std::move(vec));
10357
10358 aco_opcode opcode;
10359 switch (count) {
10360 case 1:
10361 opcode = aco_opcode::buffer_store_dword;
10362 break;
10363 case 2:
10364 opcode = aco_opcode::buffer_store_dwordx2;
10365 break;
10366 case 3:
10367 opcode = aco_opcode::buffer_store_dwordx3;
10368 break;
10369 case 4:
10370 opcode = aco_opcode::buffer_store_dwordx4;
10371 break;
10372 default:
10373 unreachable("Unsupported dword count.");
10374 }
10375
10376 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10377 store->operands[0] = Operand(so_buffers[buf]);
10378 store->operands[1] = Operand(so_write_offset[buf]);
10379 store->operands[2] = Operand((uint32_t) 0);
10380 store->operands[3] = Operand(write_data);
10381 if (offset > 4095) {
10382 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10383 Builder bld(ctx->program, ctx->block);
10384 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10385 } else {
10386 store->offset = offset;
10387 }
10388 store->offen = true;
10389 store->glc = true;
10390 store->dlc = false;
10391 store->slc = true;
10392 ctx->block->instructions.emplace_back(std::move(store));
10393 }
10394 }
10395
10396 static void emit_streamout(isel_context *ctx, unsigned stream)
10397 {
10398 Builder bld(ctx->program, ctx->block);
10399
10400 Temp so_buffers[4];
10401 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10402 for (unsigned i = 0; i < 4; i++) {
10403 unsigned stride = ctx->program->info->so.strides[i];
10404 if (!stride)
10405 continue;
10406
10407 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10408 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10409 }
10410
10411 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10412 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10413
10414 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10415
10416 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10417
10418 if_context ic;
10419 begin_divergent_if_then(ctx, &ic, can_emit);
10420
10421 bld.reset(ctx->block);
10422
10423 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10424
10425 Temp so_write_offset[4];
10426
10427 for (unsigned i = 0; i < 4; i++) {
10428 unsigned stride = ctx->program->info->so.strides[i];
10429 if (!stride)
10430 continue;
10431
10432 if (stride == 1) {
10433 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10434 get_arg(ctx, ctx->args->streamout_write_idx),
10435 get_arg(ctx, ctx->args->streamout_offset[i]));
10436 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10437
10438 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10439 } else {
10440 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10441 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10442 get_arg(ctx, ctx->args->streamout_offset[i]));
10443 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10444 }
10445 }
10446
10447 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10448 struct radv_stream_output *output =
10449 &ctx->program->info->so.outputs[i];
10450 if (stream != output->stream)
10451 continue;
10452
10453 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10454 }
10455
10456 begin_divergent_if_else(ctx, &ic);
10457 end_divergent_if(ctx, &ic);
10458 }
10459
10460 } /* end namespace */
10461
10462 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10463 {
10464 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10465 Builder bld(ctx->program, ctx->block);
10466 constexpr unsigned hs_idx = 1u;
10467 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10468 get_arg(ctx, ctx->args->merged_wave_info),
10469 Operand((8u << 16) | (hs_idx * 8u)));
10470 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10471
10472 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10473
10474 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10475 get_arg(ctx, ctx->args->rel_auto_id),
10476 get_arg(ctx, ctx->args->ac.instance_id),
10477 ls_has_nonzero_hs_threads);
10478 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10479 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10480 get_arg(ctx, ctx->args->rel_auto_id),
10481 ls_has_nonzero_hs_threads);
10482 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10483 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10484 get_arg(ctx, ctx->args->ac.vertex_id),
10485 ls_has_nonzero_hs_threads);
10486
10487 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10488 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10489 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10490 }
10491
10492 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10493 {
10494 /* Split all arguments except for the first (ring_offsets) and the last
10495 * (exec) so that the dead channels don't stay live throughout the program.
10496 */
10497 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10498 if (startpgm->definitions[i].regClass().size() > 1) {
10499 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10500 startpgm->definitions[i].regClass().size());
10501 }
10502 }
10503 }
10504
10505 void handle_bc_optimize(isel_context *ctx)
10506 {
10507 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10508 Builder bld(ctx->program, ctx->block);
10509 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10510 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10511 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10512 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10513 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10514 if (uses_center && uses_centroid) {
10515 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10516 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10517
10518 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10519 Temp new_coord[2];
10520 for (unsigned i = 0; i < 2; i++) {
10521 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10522 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10523 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10524 persp_centroid, persp_center, sel);
10525 }
10526 ctx->persp_centroid = bld.tmp(v2);
10527 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10528 Operand(new_coord[0]), Operand(new_coord[1]));
10529 emit_split_vector(ctx, ctx->persp_centroid, 2);
10530 }
10531
10532 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10533 Temp new_coord[2];
10534 for (unsigned i = 0; i < 2; i++) {
10535 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10536 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10537 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10538 linear_centroid, linear_center, sel);
10539 }
10540 ctx->linear_centroid = bld.tmp(v2);
10541 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10542 Operand(new_coord[0]), Operand(new_coord[1]));
10543 emit_split_vector(ctx, ctx->linear_centroid, 2);
10544 }
10545 }
10546 }
10547
10548 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10549 {
10550 Program *program = ctx->program;
10551
10552 unsigned float_controls = shader->info.float_controls_execution_mode;
10553
10554 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10555 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10556 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10557 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10558 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10559
10560 program->next_fp_mode.must_flush_denorms32 =
10561 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10562 program->next_fp_mode.must_flush_denorms16_64 =
10563 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10564 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10565
10566 program->next_fp_mode.care_about_round32 =
10567 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10568
10569 program->next_fp_mode.care_about_round16_64 =
10570 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10571 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10572
10573 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
10574 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
10575 if (program->next_fp_mode.must_flush_denorms16_64)
10576 program->next_fp_mode.denorm16_64 = 0;
10577 else
10578 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10579
10580 /* preserving fp32 denorms is expensive, so only do it if asked */
10581 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10582 program->next_fp_mode.denorm32 = fp_denorm_keep;
10583 else
10584 program->next_fp_mode.denorm32 = 0;
10585
10586 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10587 program->next_fp_mode.round32 = fp_round_tz;
10588 else
10589 program->next_fp_mode.round32 = fp_round_ne;
10590
10591 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10592 program->next_fp_mode.round16_64 = fp_round_tz;
10593 else
10594 program->next_fp_mode.round16_64 = fp_round_ne;
10595
10596 ctx->block->fp_mode = program->next_fp_mode;
10597 }
10598
10599 void cleanup_cfg(Program *program)
10600 {
10601 /* create linear_succs/logical_succs */
10602 for (Block& BB : program->blocks) {
10603 for (unsigned idx : BB.linear_preds)
10604 program->blocks[idx].linear_succs.emplace_back(BB.index);
10605 for (unsigned idx : BB.logical_preds)
10606 program->blocks[idx].logical_succs.emplace_back(BB.index);
10607 }
10608 }
10609
10610 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10611 {
10612 Builder bld(ctx->program, ctx->block);
10613
10614 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10615 Temp count = i == 0
10616 ? get_arg(ctx, ctx->args->merged_wave_info)
10617 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10618 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10619
10620 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10621 Temp cond;
10622
10623 if (ctx->program->wave_size == 64) {
10624 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10625 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10626 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10627 } else {
10628 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10629 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10630 }
10631
10632 return cond;
10633 }
10634
10635 bool ngg_early_prim_export(isel_context *ctx)
10636 {
10637 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10638 return true;
10639 }
10640
10641 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10642 {
10643 Builder bld(ctx->program, ctx->block);
10644
10645 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10646 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10647
10648 /* Get the id of the current wave within the threadgroup (workgroup) */
10649 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10650 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10651
10652 /* Execute the following code only on the first wave (wave id 0),
10653 * use the SCC def to tell if the wave id is zero or not.
10654 */
10655 Temp cond = wave_id_in_tg.def(1).getTemp();
10656 if_context ic;
10657 begin_uniform_if_then(ctx, &ic, cond);
10658 begin_uniform_if_else(ctx, &ic);
10659 bld.reset(ctx->block);
10660
10661 /* Number of vertices output by VS/TES */
10662 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10663 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10664 /* Number of primitives output by VS/TES */
10665 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10666 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10667
10668 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10669 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10670 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10671
10672 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10673 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10674
10675 end_uniform_if(ctx, &ic);
10676
10677 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10678 bld.reset(ctx->block);
10679 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10680 }
10681
10682 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10683 {
10684 Builder bld(ctx->program, ctx->block);
10685
10686 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10687 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10688 }
10689
10690 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10691 Temp tmp;
10692
10693 for (unsigned i = 0; i < num_vertices; ++i) {
10694 assert(vtxindex[i].id());
10695
10696 if (i)
10697 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10698 else
10699 tmp = vtxindex[i];
10700
10701 /* The initial edge flag is always false in tess eval shaders. */
10702 if (ctx->stage == ngg_vertex_gs) {
10703 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10704 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10705 }
10706 }
10707
10708 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10709
10710 return tmp;
10711 }
10712
10713 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10714 {
10715 Builder bld(ctx->program, ctx->block);
10716 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10717
10718 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10719 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10720 false /* compressed */, true/* done */, false /* valid mask */);
10721 }
10722
10723 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10724 {
10725 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10726 * These must always come before VS exports.
10727 *
10728 * It is recommended to do these as early as possible. They can be at the beginning when
10729 * there is no SW GS and the shader doesn't write edge flags.
10730 */
10731
10732 if_context ic;
10733 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10734 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10735
10736 Builder bld(ctx->program, ctx->block);
10737 constexpr unsigned max_vertices_per_primitive = 3;
10738 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10739
10740 if (ctx->stage == ngg_vertex_gs) {
10741 /* TODO: optimize for points & lines */
10742 } else if (ctx->stage == ngg_tess_eval_gs) {
10743 if (ctx->shader->info.tess.point_mode)
10744 num_vertices_per_primitive = 1;
10745 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10746 num_vertices_per_primitive = 2;
10747 } else {
10748 unreachable("Unsupported NGG shader stage");
10749 }
10750
10751 Temp vtxindex[max_vertices_per_primitive];
10752 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10753 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10754 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10755 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10756 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10757 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10758 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10759 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10760
10761 /* Export primitive data to the index buffer. */
10762 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10763
10764 /* Export primitive ID. */
10765 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10766 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10767 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10768 Temp provoking_vtx_index = vtxindex[0];
10769 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10770
10771 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10772 }
10773
10774 begin_divergent_if_else(ctx, &ic);
10775 end_divergent_if(ctx, &ic);
10776 }
10777
10778 void ngg_emit_nogs_output(isel_context *ctx)
10779 {
10780 /* Emits NGG GS output, for stages that don't have SW GS. */
10781
10782 if_context ic;
10783 Builder bld(ctx->program, ctx->block);
10784 bool late_prim_export = !ngg_early_prim_export(ctx);
10785
10786 /* NGG streamout is currently disabled by default. */
10787 assert(!ctx->args->shader_info->so.num_outputs);
10788
10789 if (late_prim_export) {
10790 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10791 create_export_phis(ctx);
10792 /* Do what we need to do in the GS threads. */
10793 ngg_emit_nogs_gsthreads(ctx);
10794
10795 /* What comes next should be executed on ES threads. */
10796 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10797 begin_divergent_if_then(ctx, &ic, is_es_thread);
10798 bld.reset(ctx->block);
10799 }
10800
10801 /* Export VS outputs */
10802 ctx->block->kind |= block_kind_export_end;
10803 create_vs_exports(ctx);
10804
10805 /* Export primitive ID */
10806 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10807 Temp prim_id;
10808
10809 if (ctx->stage == ngg_vertex_gs) {
10810 /* Wait for GS threads to store primitive ID in LDS. */
10811 create_workgroup_barrier(bld);
10812
10813 /* Calculate LDS address where the GS threads stored the primitive ID. */
10814 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10815 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10816 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10817 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10818 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10819 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10820
10821 /* Load primitive ID from LDS. */
10822 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10823 } else if (ctx->stage == ngg_tess_eval_gs) {
10824 /* TES: Just use the patch ID as the primitive ID. */
10825 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10826 } else {
10827 unreachable("unsupported NGG shader stage.");
10828 }
10829
10830 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10831 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10832
10833 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10834 }
10835
10836 if (late_prim_export) {
10837 begin_divergent_if_else(ctx, &ic);
10838 end_divergent_if(ctx, &ic);
10839 bld.reset(ctx->block);
10840 }
10841 }
10842
10843 void select_program(Program *program,
10844 unsigned shader_count,
10845 struct nir_shader *const *shaders,
10846 ac_shader_config* config,
10847 struct radv_shader_args *args)
10848 {
10849 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10850 if_context ic_merged_wave_info;
10851 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10852
10853 for (unsigned i = 0; i < shader_count; i++) {
10854 nir_shader *nir = shaders[i];
10855 init_context(&ctx, nir);
10856
10857 setup_fp_mode(&ctx, nir);
10858
10859 if (!i) {
10860 /* needs to be after init_context() for FS */
10861 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10862 append_logical_start(ctx.block);
10863
10864 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10865 fix_ls_vgpr_init_bug(&ctx, startpgm);
10866
10867 split_arguments(&ctx, startpgm);
10868 }
10869
10870 if (ngg_no_gs) {
10871 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10872
10873 if (ngg_early_prim_export(&ctx))
10874 ngg_emit_nogs_gsthreads(&ctx);
10875 }
10876
10877 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10878 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10879 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10880 ((nir->info.stage == MESA_SHADER_VERTEX &&
10881 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10882 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10883 ctx.stage == tess_eval_geometry_gs));
10884
10885 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10886 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10887 if (check_merged_wave_info) {
10888 Temp cond = merged_wave_info_to_mask(&ctx, i);
10889 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10890 }
10891
10892 if (i) {
10893 Builder bld(ctx.program, ctx.block);
10894
10895 create_workgroup_barrier(bld);
10896
10897 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10898 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10899 }
10900 } else if (ctx.stage == geometry_gs)
10901 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10902
10903 if (ctx.stage == fragment_fs)
10904 handle_bc_optimize(&ctx);
10905
10906 visit_cf_list(&ctx, &func->body);
10907
10908 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10909 emit_streamout(&ctx, 0);
10910
10911 if (ctx.stage & hw_vs) {
10912 create_vs_exports(&ctx);
10913 ctx.block->kind |= block_kind_export_end;
10914 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10915 ngg_emit_nogs_output(&ctx);
10916 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10917 Builder bld(ctx.program, ctx.block);
10918 bld.barrier(aco_opcode::p_barrier,
10919 memory_sync_info(storage_vmem_output, semantic_release, scope_device));
10920 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10921 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10922 write_tcs_tess_factors(&ctx);
10923 }
10924
10925 if (ctx.stage == fragment_fs) {
10926 create_fs_exports(&ctx);
10927 ctx.block->kind |= block_kind_export_end;
10928 }
10929
10930 if (endif_merged_wave_info) {
10931 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10932 end_divergent_if(&ctx, &ic_merged_wave_info);
10933 }
10934
10935 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10936 ngg_emit_nogs_output(&ctx);
10937
10938 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10939 /* Outputs of the previous stage are inputs to the next stage */
10940 ctx.inputs = ctx.outputs;
10941 ctx.outputs = shader_io_state();
10942 }
10943 }
10944
10945 program->config->float_mode = program->blocks[0].fp_mode.val;
10946
10947 append_logical_end(ctx.block);
10948 ctx.block->kind |= block_kind_uniform;
10949 Builder bld(ctx.program, ctx.block);
10950 if (ctx.program->wb_smem_l1_on_end)
10951 bld.smem(aco_opcode::s_dcache_wb, memory_sync_info(storage_buffer, semantic_volatile));
10952 bld.sopp(aco_opcode::s_endpgm);
10953
10954 cleanup_cfg(program);
10955 }
10956
10957 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10958 ac_shader_config* config,
10959 struct radv_shader_args *args)
10960 {
10961 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10962
10963 ctx.block->fp_mode = program->next_fp_mode;
10964
10965 add_startpgm(&ctx);
10966 append_logical_start(ctx.block);
10967
10968 Builder bld(ctx.program, ctx.block);
10969
10970 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10971
10972 Operand stream_id(0u);
10973 if (args->shader_info->so.num_outputs)
10974 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10975 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10976
10977 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10978
10979 std::stack<Block> endif_blocks;
10980
10981 for (unsigned stream = 0; stream < 4; stream++) {
10982 if (stream_id.isConstant() && stream != stream_id.constantValue())
10983 continue;
10984
10985 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10986 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10987 continue;
10988
10989 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10990
10991 unsigned BB_if_idx = ctx.block->index;
10992 Block BB_endif = Block();
10993 if (!stream_id.isConstant()) {
10994 /* begin IF */
10995 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10996 append_logical_end(ctx.block);
10997 ctx.block->kind |= block_kind_uniform;
10998 bld.branch(aco_opcode::p_cbranch_z, cond);
10999
11000 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
11001
11002 ctx.block = ctx.program->create_and_insert_block();
11003 add_edge(BB_if_idx, ctx.block);
11004 bld.reset(ctx.block);
11005 append_logical_start(ctx.block);
11006 }
11007
11008 unsigned offset = 0;
11009 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
11010 if (args->shader_info->gs.output_streams[i] != stream)
11011 continue;
11012
11013 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
11014 unsigned length = util_last_bit(output_usage_mask);
11015 for (unsigned j = 0; j < length; ++j) {
11016 if (!(output_usage_mask & (1 << j)))
11017 continue;
11018
11019 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
11020 Temp voffset = vtx_offset;
11021 if (const_offset >= 4096u) {
11022 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
11023 const_offset %= 4096u;
11024 }
11025
11026 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
11027 mubuf->definitions[0] = bld.def(v1);
11028 mubuf->operands[0] = Operand(gsvs_ring);
11029 mubuf->operands[1] = Operand(voffset);
11030 mubuf->operands[2] = Operand(0u);
11031 mubuf->offen = true;
11032 mubuf->offset = const_offset;
11033 mubuf->glc = true;
11034 mubuf->slc = true;
11035 mubuf->dlc = args->options->chip_class >= GFX10;
11036
11037 ctx.outputs.mask[i] |= 1 << j;
11038 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
11039
11040 bld.insert(std::move(mubuf));
11041
11042 offset++;
11043 }
11044 }
11045
11046 if (args->shader_info->so.num_outputs) {
11047 emit_streamout(&ctx, stream);
11048 bld.reset(ctx.block);
11049 }
11050
11051 if (stream == 0) {
11052 create_vs_exports(&ctx);
11053 ctx.block->kind |= block_kind_export_end;
11054 }
11055
11056 if (!stream_id.isConstant()) {
11057 append_logical_end(ctx.block);
11058
11059 /* branch from then block to endif block */
11060 bld.branch(aco_opcode::p_branch);
11061 add_edge(ctx.block->index, &BB_endif);
11062 ctx.block->kind |= block_kind_uniform;
11063
11064 /* emit else block */
11065 ctx.block = ctx.program->create_and_insert_block();
11066 add_edge(BB_if_idx, ctx.block);
11067 bld.reset(ctx.block);
11068 append_logical_start(ctx.block);
11069
11070 endif_blocks.push(std::move(BB_endif));
11071 }
11072 }
11073
11074 while (!endif_blocks.empty()) {
11075 Block BB_endif = std::move(endif_blocks.top());
11076 endif_blocks.pop();
11077
11078 Block *BB_else = ctx.block;
11079
11080 append_logical_end(BB_else);
11081 /* branch from else block to endif block */
11082 bld.branch(aco_opcode::p_branch);
11083 add_edge(BB_else->index, &BB_endif);
11084 BB_else->kind |= block_kind_uniform;
11085
11086 /** emit endif merge block */
11087 ctx.block = program->insert_block(std::move(BB_endif));
11088 bld.reset(ctx.block);
11089 append_logical_start(ctx.block);
11090 }
11091
11092 program->config->float_mode = program->blocks[0].fp_mode.val;
11093
11094 append_logical_end(ctx.block);
11095 ctx.block->kind |= block_kind_uniform;
11096 bld.sopp(aco_opcode::s_endpgm);
11097
11098 cleanup_cfg(program);
11099 }
11100 }