aco: sink get_alu_src() in bfe lowering
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 #define isel_err(...) _isel_err(ctx, __FILE__, __LINE__, __VA_ARGS__)
42
43 static void _isel_err(isel_context *ctx, const char *file, unsigned line,
44 const nir_instr *instr, const char *msg)
45 {
46 char *out;
47 size_t outsize;
48 FILE *memf = open_memstream(&out, &outsize);
49
50 fprintf(memf, "%s: ", msg);
51 nir_print_instr(instr, memf);
52 fclose(memf);
53
54 _aco_err(ctx->program, file, line, out);
55 free(out);
56 }
57
58 class loop_info_RAII {
59 isel_context* ctx;
60 unsigned header_idx_old;
61 Block* exit_old;
62 bool divergent_cont_old;
63 bool divergent_branch_old;
64 bool divergent_if_old;
65
66 public:
67 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
68 : ctx(ctx),
69 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
70 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
71 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
72 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
73 {
74 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
75 ctx->cf_info.parent_loop.exit = loop_exit;
76 ctx->cf_info.parent_loop.has_divergent_continue = false;
77 ctx->cf_info.parent_loop.has_divergent_branch = false;
78 ctx->cf_info.parent_if.is_divergent = false;
79 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
80 }
81
82 ~loop_info_RAII()
83 {
84 ctx->cf_info.parent_loop.header_idx = header_idx_old;
85 ctx->cf_info.parent_loop.exit = exit_old;
86 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
87 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
88 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
89 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
90 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
91 ctx->cf_info.exec_potentially_empty_discard = false;
92 }
93 };
94
95 struct if_context {
96 Temp cond;
97
98 bool divergent_old;
99 bool exec_potentially_empty_discard_old;
100 bool exec_potentially_empty_break_old;
101 uint16_t exec_potentially_empty_break_depth_old;
102
103 unsigned BB_if_idx;
104 unsigned invert_idx;
105 bool uniform_has_then_branch;
106 bool then_branch_divergent;
107 Block BB_invert;
108 Block BB_endif;
109 };
110
111 static bool visit_cf_list(struct isel_context *ctx,
112 struct exec_list *list);
113
114 static void add_logical_edge(unsigned pred_idx, Block *succ)
115 {
116 succ->logical_preds.emplace_back(pred_idx);
117 }
118
119
120 static void add_linear_edge(unsigned pred_idx, Block *succ)
121 {
122 succ->linear_preds.emplace_back(pred_idx);
123 }
124
125 static void add_edge(unsigned pred_idx, Block *succ)
126 {
127 add_logical_edge(pred_idx, succ);
128 add_linear_edge(pred_idx, succ);
129 }
130
131 static void append_logical_start(Block *b)
132 {
133 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
134 }
135
136 static void append_logical_end(Block *b)
137 {
138 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
139 }
140
141 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
142 {
143 assert(ctx->allocated[def->index].id());
144 return ctx->allocated[def->index];
145 }
146
147 Temp emit_mbcnt(isel_context *ctx, Definition dst,
148 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
149 {
150 Builder bld(ctx->program, ctx->block);
151 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
152 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
153
154 if (ctx->program->wave_size == 32) {
155 return thread_id_lo;
156 } else if (ctx->program->chip_class <= GFX7) {
157 Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
158 return thread_id_hi;
159 } else {
160 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo);
161 return thread_id_hi;
162 }
163 }
164
165 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
166 {
167 Builder bld(ctx->program, ctx->block);
168
169 if (!dst.id())
170 dst = bld.tmp(src.regClass());
171
172 assert(src.size() == dst.size());
173
174 if (ctx->stage != fragment_fs) {
175 if (!dst.id())
176 return src;
177
178 bld.copy(Definition(dst), src);
179 return dst;
180 }
181
182 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
183 ctx->program->needs_wqm |= program_needs_wqm;
184 return dst;
185 }
186
187 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
188 {
189 if (index.regClass() == s1)
190 return bld.readlane(bld.def(s1), data, index);
191
192 if (ctx->options->chip_class <= GFX7) {
193 /* GFX6-7: there is no bpermute instruction */
194 Operand index_op(index);
195 Operand input_data(data);
196 index_op.setLateKill(true);
197 input_data.setLateKill(true);
198
199 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
200 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
201 /* GFX10 wave64 mode: emulate full-wave bpermute */
202 if (!ctx->has_gfx10_wave64_bpermute) {
203 ctx->has_gfx10_wave64_bpermute = true;
204 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
205 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
206 }
207
208 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
209 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
210 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
211 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
212 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
213 Operand input_data(data);
214
215 index_x4.setLateKill(true);
216 input_data.setLateKill(true);
217 same_half.setLateKill(true);
218
219 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
220 } else {
221 /* GFX8-9 or GFX10 wave32: bpermute works normally */
222 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
223 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
224 }
225 }
226
227 static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
228 {
229 if (ctx->options->chip_class >= GFX8) {
230 unsigned and_mask = mask & 0x1f;
231 unsigned or_mask = (mask >> 5) & 0x1f;
232 unsigned xor_mask = (mask >> 10) & 0x1f;
233
234 uint16_t dpp_ctrl = 0xffff;
235
236 // TODO: we could use DPP8 for some swizzles
237 if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
238 unsigned res[4] = {0, 1, 2, 3};
239 for (unsigned i = 0; i < 4; i++)
240 res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
241 dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
242 } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
243 dpp_ctrl = dpp_row_rr(8);
244 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
245 dpp_ctrl = dpp_row_mirror;
246 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
247 dpp_ctrl = dpp_row_half_mirror;
248 }
249
250 if (dpp_ctrl != 0xffff)
251 return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
252 }
253
254 return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
255 }
256
257 Temp as_vgpr(isel_context *ctx, Temp val)
258 {
259 if (val.type() == RegType::sgpr) {
260 Builder bld(ctx->program, ctx->block);
261 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
262 }
263 assert(val.type() == RegType::vgpr);
264 return val;
265 }
266
267 //assumes a != 0xffffffff
268 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
269 {
270 assert(b != 0);
271 Builder bld(ctx->program, ctx->block);
272
273 if (util_is_power_of_two_or_zero(b)) {
274 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
275 return;
276 }
277
278 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
279
280 assert(info.multiplier <= 0xffffffff);
281
282 bool pre_shift = info.pre_shift != 0;
283 bool increment = info.increment != 0;
284 bool multiply = true;
285 bool post_shift = info.post_shift != 0;
286
287 if (!pre_shift && !increment && !multiply && !post_shift) {
288 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
289 return;
290 }
291
292 Temp pre_shift_dst = a;
293 if (pre_shift) {
294 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
295 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
296 }
297
298 Temp increment_dst = pre_shift_dst;
299 if (increment) {
300 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
301 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
302 }
303
304 Temp multiply_dst = increment_dst;
305 if (multiply) {
306 multiply_dst = post_shift ? bld.tmp(v1) : dst;
307 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
308 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
309 }
310
311 if (post_shift) {
312 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
313 }
314 }
315
316 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
317 {
318 Builder bld(ctx->program, ctx->block);
319 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
320 }
321
322
323 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
324 {
325 /* no need to extract the whole vector */
326 if (src.regClass() == dst_rc) {
327 assert(idx == 0);
328 return src;
329 }
330
331 assert(src.bytes() > (idx * dst_rc.bytes()));
332 Builder bld(ctx->program, ctx->block);
333 auto it = ctx->allocated_vec.find(src.id());
334 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
335 if (it->second[idx].regClass() == dst_rc) {
336 return it->second[idx];
337 } else {
338 assert(!dst_rc.is_subdword());
339 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
340 return bld.copy(bld.def(dst_rc), it->second[idx]);
341 }
342 }
343
344 if (dst_rc.is_subdword())
345 src = as_vgpr(ctx, src);
346
347 if (src.bytes() == dst_rc.bytes()) {
348 assert(idx == 0);
349 return bld.copy(bld.def(dst_rc), src);
350 } else {
351 Temp dst = bld.tmp(dst_rc);
352 emit_extract_vector(ctx, src, idx, dst);
353 return dst;
354 }
355 }
356
357 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
358 {
359 if (num_components == 1)
360 return;
361 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
362 return;
363 RegClass rc;
364 if (num_components > vec_src.size()) {
365 if (vec_src.type() == RegType::sgpr) {
366 /* should still help get_alu_src() */
367 emit_split_vector(ctx, vec_src, vec_src.size());
368 return;
369 }
370 /* sub-dword split */
371 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
372 } else {
373 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
374 }
375 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
376 split->operands[0] = Operand(vec_src);
377 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
378 for (unsigned i = 0; i < num_components; i++) {
379 elems[i] = {ctx->program->allocateId(), rc};
380 split->definitions[i] = Definition(elems[i]);
381 }
382 ctx->block->instructions.emplace_back(std::move(split));
383 ctx->allocated_vec.emplace(vec_src.id(), elems);
384 }
385
386 /* This vector expansion uses a mask to determine which elements in the new vector
387 * come from the original vector. The other elements are undefined. */
388 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
389 {
390 emit_split_vector(ctx, vec_src, util_bitcount(mask));
391
392 if (vec_src == dst)
393 return;
394
395 Builder bld(ctx->program, ctx->block);
396 if (num_components == 1) {
397 if (dst.type() == RegType::sgpr)
398 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
399 else
400 bld.copy(Definition(dst), vec_src);
401 return;
402 }
403
404 unsigned component_size = dst.size() / num_components;
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406
407 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
408 vec->definitions[0] = Definition(dst);
409 unsigned k = 0;
410 for (unsigned i = 0; i < num_components; i++) {
411 if (mask & (1 << i)) {
412 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
413 if (dst.type() == RegType::sgpr)
414 src = bld.as_uniform(src);
415 vec->operands[i] = Operand(src);
416 } else {
417 vec->operands[i] = Operand(0u);
418 }
419 elems[i] = vec->operands[i].getTemp();
420 }
421 ctx->block->instructions.emplace_back(std::move(vec));
422 ctx->allocated_vec.emplace(dst.id(), elems);
423 }
424
425 /* adjust misaligned small bit size loads */
426 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
427 {
428 Builder bld(ctx->program, ctx->block);
429 Operand shift;
430 Temp select = Temp();
431 if (offset.isConstant()) {
432 assert(offset.constantValue() && offset.constantValue() < 4);
433 shift = Operand(offset.constantValue() * 8);
434 } else {
435 /* bit_offset = 8 * (offset & 0x3) */
436 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
437 select = bld.tmp(s1);
438 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
439 }
440
441 if (vec.size() == 1) {
442 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
443 } else if (vec.size() == 2) {
444 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
445 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
446 if (tmp == dst)
447 emit_split_vector(ctx, dst, 2);
448 else
449 emit_extract_vector(ctx, tmp, 0, dst);
450 } else if (vec.size() == 4) {
451 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
452 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
453 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
454 if (select != Temp())
455 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
456 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
457 Temp mid = bld.tmp(s1);
458 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
459 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
460 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
461 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
462 emit_split_vector(ctx, dst, 2);
463 }
464 }
465
466 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
467 {
468 Builder bld(ctx->program, ctx->block);
469 if (offset.isTemp()) {
470 Temp tmp[4] = {vec, vec, vec, vec};
471
472 if (vec.size() == 4) {
473 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
474 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
475 } else if (vec.size() == 3) {
476 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
477 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
478 } else if (vec.size() == 2) {
479 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
480 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
481 }
482 for (unsigned i = 0; i < dst.size(); i++)
483 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
484
485 vec = tmp[0];
486 if (dst.size() == 2)
487 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
488
489 offset = Operand(0u);
490 }
491
492 unsigned num_components = vec.bytes() / component_size;
493 if (vec.regClass() == dst.regClass()) {
494 assert(offset.constantValue() == 0);
495 bld.copy(Definition(dst), vec);
496 emit_split_vector(ctx, dst, num_components);
497 return;
498 }
499
500 emit_split_vector(ctx, vec, num_components);
501 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
502 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
503
504 assert(offset.constantValue() % component_size == 0);
505 unsigned skip = offset.constantValue() / component_size;
506 for (unsigned i = skip; i < num_components; i++)
507 elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
508
509 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
510 if (dst.type() == RegType::vgpr) {
511 num_components = dst.bytes() / component_size;
512 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
513 for (unsigned i = 0; i < num_components; i++)
514 create_vec->operands[i] = Operand(elems[i]);
515 create_vec->definitions[0] = Definition(dst);
516 bld.insert(std::move(create_vec));
517
518 /* if dst is sgpr - split the src, but move the original to sgpr. */
519 } else if (skip) {
520 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
521 byte_align_scalar(ctx, vec, offset, dst);
522 } else {
523 assert(dst.size() == vec.size());
524 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
525 }
526
527 ctx->allocated_vec.emplace(dst.id(), elems);
528 }
529
530 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
531 {
532 Builder bld(ctx->program, ctx->block);
533 if (!dst.id())
534 dst = bld.tmp(bld.lm);
535
536 assert(val.regClass() == s1);
537 assert(dst.regClass() == bld.lm);
538
539 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
540 }
541
542 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
543 {
544 Builder bld(ctx->program, ctx->block);
545 if (!dst.id())
546 dst = bld.tmp(s1);
547
548 assert(val.regClass() == bld.lm);
549 assert(dst.regClass() == s1);
550
551 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
552 Temp tmp = bld.tmp(s1);
553 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
554 return emit_wqm(ctx, tmp, dst);
555 }
556
557 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp())
558 {
559 if (!dst.id()) {
560 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
561 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
562 else
563 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
564 }
565
566 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
567 return bld.copy(Definition(dst), src);
568 else if (dst.bytes() < src.bytes())
569 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
570
571 Temp tmp = dst;
572 if (dst_bits == 64)
573 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
574
575 if (tmp == src) {
576 } else if (src.regClass() == s1) {
577 if (is_signed)
578 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
579 else
580 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
581 } else if (ctx->options->chip_class >= GFX8) {
582 assert(src_bits != 8 || src.regClass() == v1b);
583 assert(src_bits != 16 || src.regClass() == v2b);
584 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
585 sdwa->operands[0] = Operand(src);
586 sdwa->definitions[0] = Definition(tmp);
587 if (is_signed)
588 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
589 else
590 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
591 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
592 bld.insert(std::move(sdwa));
593 } else {
594 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
595 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
596 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
597 }
598
599 if (dst_bits == 64) {
600 if (is_signed && dst.regClass() == s2) {
601 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
602 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
603 } else if (is_signed && dst.regClass() == v2) {
604 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
605 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
606 } else {
607 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
608 }
609 }
610
611 return dst;
612 }
613
614 enum sgpr_extract_mode {
615 sgpr_extract_sext,
616 sgpr_extract_zext,
617 sgpr_extract_undef,
618 };
619
620 Temp extract_8_16_bit_sgpr_element(isel_context *ctx, Temp dst, nir_alu_src *src, sgpr_extract_mode mode)
621 {
622 Temp vec = get_ssa_temp(ctx, src->src.ssa);
623 unsigned src_size = src->src.ssa->bit_size;
624 unsigned swizzle = src->swizzle[0];
625
626 if (vec.size() > 1) {
627 assert(src_size == 16);
628 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
629 swizzle = swizzle & 1;
630 }
631
632 Builder bld(ctx->program, ctx->block);
633 unsigned offset = src_size * swizzle;
634 Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst;
635
636 if (mode == sgpr_extract_undef && swizzle == 0) {
637 bld.copy(Definition(tmp), vec);
638 } else if (mode == sgpr_extract_undef || (offset == 24 && mode == sgpr_extract_zext)) {
639 bld.sop2(aco_opcode::s_lshr_b32, Definition(tmp), bld.def(s1, scc), vec, Operand(offset));
640 } else if (src_size == 8 && swizzle == 0 && mode == sgpr_extract_sext) {
641 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(tmp), vec);
642 } else if (src_size == 16 && swizzle == 0 && mode == sgpr_extract_sext) {
643 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(tmp), vec);
644 } else {
645 aco_opcode op = mode == sgpr_extract_zext ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
646 bld.sop2(op, Definition(tmp), bld.def(s1, scc), vec, Operand((src_size << 16) | offset));
647 }
648
649 if (dst.regClass() == s2)
650 convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst);
651
652 return dst;
653 }
654
655 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
656 {
657 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
658 return get_ssa_temp(ctx, src.src.ssa);
659
660 if (src.src.ssa->num_components == size) {
661 bool identity_swizzle = true;
662 for (unsigned i = 0; identity_swizzle && i < size; i++) {
663 if (src.swizzle[i] != i)
664 identity_swizzle = false;
665 }
666 if (identity_swizzle)
667 return get_ssa_temp(ctx, src.src.ssa);
668 }
669
670 Temp vec = get_ssa_temp(ctx, src.src.ssa);
671 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
672 assert(elem_size > 0);
673 assert(vec.bytes() % elem_size == 0);
674
675 if (elem_size < 4 && vec.type() == RegType::sgpr) {
676 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
677 assert(size == 1);
678 return extract_8_16_bit_sgpr_element(
679 ctx, Temp(ctx->program->allocateId(), s1), &src, sgpr_extract_undef);
680 }
681
682 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
683 if (size == 1) {
684 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
685 } else {
686 assert(size <= 4);
687 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
688 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
689 for (unsigned i = 0; i < size; ++i) {
690 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
691 vec_instr->operands[i] = Operand{elems[i]};
692 }
693 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
694 vec_instr->definitions[0] = Definition(dst);
695 ctx->block->instructions.emplace_back(std::move(vec_instr));
696 ctx->allocated_vec.emplace(dst.id(), elems);
697 return dst;
698 }
699 }
700
701 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
702 {
703 if (ptr.size() == 2)
704 return ptr;
705 Builder bld(ctx->program, ctx->block);
706 if (ptr.type() == RegType::vgpr)
707 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
708 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
709 ptr, Operand((unsigned)ctx->options->address32_hi));
710 }
711
712 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
713 {
714 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
715 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
716 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
717 sop2->definitions[0] = Definition(dst);
718 if (instr->no_unsigned_wrap)
719 sop2->definitions[0].setNUW(true);
720 if (writes_scc)
721 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
722 ctx->block->instructions.emplace_back(std::move(sop2));
723 }
724
725 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
726 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
727 {
728 Builder bld(ctx->program, ctx->block);
729 bld.is_precise = instr->exact;
730
731 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
732 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
733 if (src1.type() == RegType::sgpr) {
734 if (commutative && src0.type() == RegType::vgpr) {
735 Temp t = src0;
736 src0 = src1;
737 src1 = t;
738 } else {
739 src1 = as_vgpr(ctx, src1);
740 }
741 }
742
743 if (flush_denorms && ctx->program->chip_class < GFX9) {
744 assert(dst.size() == 1);
745 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
746 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
747 } else {
748 bld.vop2(op, Definition(dst), src0, src1);
749 }
750 }
751
752 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
753 aco_opcode op, Temp dst)
754 {
755 Builder bld(ctx->program, ctx->block);
756 bld.is_precise = instr->exact;
757
758 Temp src0 = get_alu_src(ctx, instr->src[0]);
759 Temp src1 = get_alu_src(ctx, instr->src[1]);
760
761 if (src1.type() == RegType::sgpr) {
762 assert(src0.type() == RegType::vgpr);
763 std::swap(src0, src1);
764 }
765
766 Temp src00 = bld.tmp(src0.type(), 1);
767 Temp src01 = bld.tmp(src0.type(), 1);
768 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
769 Temp src10 = bld.tmp(v1);
770 Temp src11 = bld.tmp(v1);
771 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
772 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
773 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
774 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
775 }
776
777 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
778 bool flush_denorms = false)
779 {
780 Temp src0 = get_alu_src(ctx, instr->src[0]);
781 Temp src1 = get_alu_src(ctx, instr->src[1]);
782 Temp src2 = get_alu_src(ctx, instr->src[2]);
783
784 /* ensure that the instruction has at most 1 sgpr operand
785 * The optimizer will inline constants for us */
786 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
787 src0 = as_vgpr(ctx, src0);
788 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
789 src1 = as_vgpr(ctx, src1);
790 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
791 src2 = as_vgpr(ctx, src2);
792
793 Builder bld(ctx->program, ctx->block);
794 bld.is_precise = instr->exact;
795 if (flush_denorms && ctx->program->chip_class < GFX9) {
796 assert(dst.size() == 1);
797 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
798 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
799 } else {
800 bld.vop3(op, Definition(dst), src0, src1, src2);
801 }
802 }
803
804 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
805 {
806 Builder bld(ctx->program, ctx->block);
807 bld.is_precise = instr->exact;
808 if (dst.type() == RegType::sgpr)
809 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
810 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
811 else
812 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
813 }
814
815 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
816 {
817 Temp src0 = get_alu_src(ctx, instr->src[0]);
818 Temp src1 = get_alu_src(ctx, instr->src[1]);
819 assert(src0.size() == src1.size());
820
821 aco_ptr<Instruction> vopc;
822 if (src1.type() == RegType::sgpr) {
823 if (src0.type() == RegType::vgpr) {
824 /* to swap the operands, we might also have to change the opcode */
825 switch (op) {
826 case aco_opcode::v_cmp_lt_f16:
827 op = aco_opcode::v_cmp_gt_f16;
828 break;
829 case aco_opcode::v_cmp_ge_f16:
830 op = aco_opcode::v_cmp_le_f16;
831 break;
832 case aco_opcode::v_cmp_lt_i16:
833 op = aco_opcode::v_cmp_gt_i16;
834 break;
835 case aco_opcode::v_cmp_ge_i16:
836 op = aco_opcode::v_cmp_le_i16;
837 break;
838 case aco_opcode::v_cmp_lt_u16:
839 op = aco_opcode::v_cmp_gt_u16;
840 break;
841 case aco_opcode::v_cmp_ge_u16:
842 op = aco_opcode::v_cmp_le_u16;
843 break;
844 case aco_opcode::v_cmp_lt_f32:
845 op = aco_opcode::v_cmp_gt_f32;
846 break;
847 case aco_opcode::v_cmp_ge_f32:
848 op = aco_opcode::v_cmp_le_f32;
849 break;
850 case aco_opcode::v_cmp_lt_i32:
851 op = aco_opcode::v_cmp_gt_i32;
852 break;
853 case aco_opcode::v_cmp_ge_i32:
854 op = aco_opcode::v_cmp_le_i32;
855 break;
856 case aco_opcode::v_cmp_lt_u32:
857 op = aco_opcode::v_cmp_gt_u32;
858 break;
859 case aco_opcode::v_cmp_ge_u32:
860 op = aco_opcode::v_cmp_le_u32;
861 break;
862 case aco_opcode::v_cmp_lt_f64:
863 op = aco_opcode::v_cmp_gt_f64;
864 break;
865 case aco_opcode::v_cmp_ge_f64:
866 op = aco_opcode::v_cmp_le_f64;
867 break;
868 case aco_opcode::v_cmp_lt_i64:
869 op = aco_opcode::v_cmp_gt_i64;
870 break;
871 case aco_opcode::v_cmp_ge_i64:
872 op = aco_opcode::v_cmp_le_i64;
873 break;
874 case aco_opcode::v_cmp_lt_u64:
875 op = aco_opcode::v_cmp_gt_u64;
876 break;
877 case aco_opcode::v_cmp_ge_u64:
878 op = aco_opcode::v_cmp_le_u64;
879 break;
880 default: /* eq and ne are commutative */
881 break;
882 }
883 Temp t = src0;
884 src0 = src1;
885 src1 = t;
886 } else {
887 src1 = as_vgpr(ctx, src1);
888 }
889 }
890
891 Builder bld(ctx->program, ctx->block);
892 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
893 }
894
895 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
896 {
897 Temp src0 = get_alu_src(ctx, instr->src[0]);
898 Temp src1 = get_alu_src(ctx, instr->src[1]);
899 Builder bld(ctx->program, ctx->block);
900
901 assert(dst.regClass() == bld.lm);
902 assert(src0.type() == RegType::sgpr);
903 assert(src1.type() == RegType::sgpr);
904 assert(src0.regClass() == src1.regClass());
905
906 /* Emit the SALU comparison instruction */
907 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
908 /* Turn the result into a per-lane bool */
909 bool_to_vector_condition(ctx, cmp, dst);
910 }
911
912 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
913 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
914 {
915 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
916 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
917 bool use_valu = s_op == aco_opcode::num_opcodes ||
918 nir_dest_is_divergent(instr->dest.dest) ||
919 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
920 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
921 aco_opcode op = use_valu ? v_op : s_op;
922 assert(op != aco_opcode::num_opcodes);
923 assert(dst.regClass() == ctx->program->lane_mask);
924
925 if (use_valu)
926 emit_vopc_instruction(ctx, instr, op, dst);
927 else
928 emit_sopc_instruction(ctx, instr, op, dst);
929 }
930
931 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
932 {
933 Builder bld(ctx->program, ctx->block);
934 Temp src0 = get_alu_src(ctx, instr->src[0]);
935 Temp src1 = get_alu_src(ctx, instr->src[1]);
936
937 assert(dst.regClass() == bld.lm);
938 assert(src0.regClass() == bld.lm);
939 assert(src1.regClass() == bld.lm);
940
941 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
942 }
943
944 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
945 {
946 Builder bld(ctx->program, ctx->block);
947 Temp cond = get_alu_src(ctx, instr->src[0]);
948 Temp then = get_alu_src(ctx, instr->src[1]);
949 Temp els = get_alu_src(ctx, instr->src[2]);
950
951 assert(cond.regClass() == bld.lm);
952
953 if (dst.type() == RegType::vgpr) {
954 aco_ptr<Instruction> bcsel;
955 if (dst.size() == 1) {
956 then = as_vgpr(ctx, then);
957 els = as_vgpr(ctx, els);
958
959 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
960 } else if (dst.size() == 2) {
961 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
962 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
963 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
964 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
965
966 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
967 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
968
969 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
970 } else {
971 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
972 }
973 return;
974 }
975
976 if (instr->dest.dest.ssa.bit_size == 1) {
977 assert(dst.regClass() == bld.lm);
978 assert(then.regClass() == bld.lm);
979 assert(els.regClass() == bld.lm);
980 }
981
982 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
983 if (dst.regClass() == s1 || dst.regClass() == s2) {
984 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
985 assert(dst.size() == then.size());
986 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
987 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
988 } else {
989 isel_err(&instr->instr, "Unimplemented uniform bcsel bit size");
990 }
991 return;
992 }
993
994 /* divergent boolean bcsel
995 * this implements bcsel on bools: dst = s0 ? s1 : s2
996 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
997 assert(instr->dest.dest.ssa.bit_size == 1);
998
999 if (cond.id() != then.id())
1000 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
1001
1002 if (cond.id() == els.id())
1003 bld.sop1(Builder::s_mov, Definition(dst), then);
1004 else
1005 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
1006 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
1007 }
1008
1009 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
1010 aco_opcode op, uint32_t undo)
1011 {
1012 /* multiply by 16777216 to handle denormals */
1013 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
1014 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
1015 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
1016 scaled = bld.vop1(op, bld.def(v1), scaled);
1017 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
1018
1019 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
1020
1021 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
1022 }
1023
1024 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1025 {
1026 if (ctx->block->fp_mode.denorm32 == 0) {
1027 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
1028 return;
1029 }
1030
1031 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
1032 }
1033
1034 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1035 {
1036 if (ctx->block->fp_mode.denorm32 == 0) {
1037 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
1038 return;
1039 }
1040
1041 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
1042 }
1043
1044 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1045 {
1046 if (ctx->block->fp_mode.denorm32 == 0) {
1047 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
1048 return;
1049 }
1050
1051 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
1052 }
1053
1054 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1055 {
1056 if (ctx->block->fp_mode.denorm32 == 0) {
1057 bld.vop1(aco_opcode::v_log_f32, dst, val);
1058 return;
1059 }
1060
1061 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
1062 }
1063
1064 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1065 {
1066 if (ctx->options->chip_class >= GFX7)
1067 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
1068
1069 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
1070 /* TODO: create more efficient code! */
1071 if (val.type() == RegType::sgpr)
1072 val = as_vgpr(ctx, val);
1073
1074 /* Split the input value. */
1075 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
1076 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
1077
1078 /* Extract the exponent and compute the unbiased value. */
1079 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
1080 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
1081
1082 /* Extract the fractional part. */
1083 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
1084 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
1085
1086 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
1087 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
1088
1089 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
1090 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
1091 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
1092 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
1093 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
1094
1095 /* Get the sign bit. */
1096 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
1097
1098 /* Decide the operation to apply depending on the unbiased exponent. */
1099 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
1100 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
1101 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
1102 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
1103 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
1104 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
1105
1106 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
1107 }
1108
1109 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1110 {
1111 if (ctx->options->chip_class >= GFX7)
1112 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
1113
1114 /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
1115 * lowered at NIR level for precision reasons). */
1116 Temp src0 = as_vgpr(ctx, val);
1117
1118 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
1119 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
1120
1121 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
1122 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
1123 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
1124
1125 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
1126 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
1127 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
1128 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
1129
1130 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
1131 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
1132
1133 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1134
1135 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1136 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1137
1138 return add->definitions[0].getTemp();
1139 }
1140
1141 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1142 {
1143 if (!instr->dest.dest.is_ssa) {
1144 isel_err(&instr->instr, "nir alu dst not in ssa");
1145 abort();
1146 }
1147 Builder bld(ctx->program, ctx->block);
1148 bld.is_precise = instr->exact;
1149 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1150 switch(instr->op) {
1151 case nir_op_vec2:
1152 case nir_op_vec3:
1153 case nir_op_vec4: {
1154 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1155 unsigned num = instr->dest.dest.ssa.num_components;
1156 for (unsigned i = 0; i < num; ++i)
1157 elems[i] = get_alu_src(ctx, instr->src[i]);
1158
1159 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1160 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1161 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1162 for (unsigned i = 0; i < num; ++i) {
1163 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1164 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1165 else
1166 vec->operands[i] = Operand{elems[i]};
1167 }
1168 vec->definitions[0] = Definition(dst);
1169 ctx->block->instructions.emplace_back(std::move(vec));
1170 ctx->allocated_vec.emplace(dst.id(), elems);
1171 } else {
1172 // TODO: that is a bit suboptimal..
1173 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1174 for (unsigned i = 0; i < num - 1; ++i)
1175 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1176 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1177 for (unsigned i = 0; i < num; ++i) {
1178 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1179 if (bit % 32 == 0) {
1180 elems[bit / 32] = elems[i];
1181 } else {
1182 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1183 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1184 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1185 }
1186 }
1187 if (dst.size() == 1)
1188 bld.copy(Definition(dst), elems[0]);
1189 else
1190 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1191 }
1192 break;
1193 }
1194 case nir_op_mov: {
1195 Temp src = get_alu_src(ctx, instr->src[0]);
1196 aco_ptr<Instruction> mov;
1197 if (dst.type() == RegType::sgpr) {
1198 if (src.type() == RegType::vgpr)
1199 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1200 else if (src.regClass() == s1)
1201 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1202 else if (src.regClass() == s2)
1203 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1204 else
1205 unreachable("wrong src register class for nir_op_imov");
1206 } else {
1207 if (dst.regClass() == v1)
1208 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1209 else if (dst.regClass() == v1b ||
1210 dst.regClass() == v2b ||
1211 dst.regClass() == v2)
1212 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1213 else
1214 unreachable("wrong src register class for nir_op_imov");
1215 }
1216 break;
1217 }
1218 case nir_op_inot: {
1219 Temp src = get_alu_src(ctx, instr->src[0]);
1220 if (instr->dest.dest.ssa.bit_size == 1) {
1221 assert(src.regClass() == bld.lm);
1222 assert(dst.regClass() == bld.lm);
1223 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1224 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1225 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1226 } else if (dst.regClass() == v1) {
1227 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1228 } else if (dst.regClass() == v2) {
1229 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1230 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1231 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1232 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1233 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1234 } else if (dst.type() == RegType::sgpr) {
1235 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1236 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1237 } else {
1238 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1239 }
1240 break;
1241 }
1242 case nir_op_ineg: {
1243 Temp src = get_alu_src(ctx, instr->src[0]);
1244 if (dst.regClass() == v1) {
1245 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1246 } else if (dst.regClass() == s1) {
1247 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1248 } else if (dst.size() == 2) {
1249 Temp src0 = bld.tmp(dst.type(), 1);
1250 Temp src1 = bld.tmp(dst.type(), 1);
1251 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1252
1253 if (dst.regClass() == s2) {
1254 Temp carry = bld.tmp(s1);
1255 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1256 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1257 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1258 } else {
1259 Temp lower = bld.tmp(v1);
1260 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1261 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1262 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1263 }
1264 } else {
1265 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1266 }
1267 break;
1268 }
1269 case nir_op_iabs: {
1270 if (dst.regClass() == s1) {
1271 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1272 } else if (dst.regClass() == v1) {
1273 Temp src = get_alu_src(ctx, instr->src[0]);
1274 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1275 } else {
1276 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1277 }
1278 break;
1279 }
1280 case nir_op_isign: {
1281 Temp src = get_alu_src(ctx, instr->src[0]);
1282 if (dst.regClass() == s1) {
1283 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1284 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1285 } else if (dst.regClass() == s2) {
1286 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1287 Temp neqz;
1288 if (ctx->program->chip_class >= GFX8)
1289 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1290 else
1291 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1292 /* SCC gets zero-extended to 64 bit */
1293 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1294 } else if (dst.regClass() == v1) {
1295 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1296 } else if (dst.regClass() == v2) {
1297 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1298 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1299 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1300 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1301 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1302 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1303 } else {
1304 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1305 }
1306 break;
1307 }
1308 case nir_op_imax: {
1309 if (dst.regClass() == v1) {
1310 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1311 } else if (dst.regClass() == s1) {
1312 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1313 } else {
1314 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1315 }
1316 break;
1317 }
1318 case nir_op_umax: {
1319 if (dst.regClass() == v1) {
1320 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1321 } else if (dst.regClass() == s1) {
1322 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1323 } else {
1324 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1325 }
1326 break;
1327 }
1328 case nir_op_imin: {
1329 if (dst.regClass() == v1) {
1330 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1331 } else if (dst.regClass() == s1) {
1332 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1333 } else {
1334 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1335 }
1336 break;
1337 }
1338 case nir_op_umin: {
1339 if (dst.regClass() == v1) {
1340 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1341 } else if (dst.regClass() == s1) {
1342 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1343 } else {
1344 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1345 }
1346 break;
1347 }
1348 case nir_op_ior: {
1349 if (instr->dest.dest.ssa.bit_size == 1) {
1350 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1351 } else if (dst.regClass() == v1) {
1352 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1353 } else if (dst.regClass() == v2) {
1354 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1355 } else if (dst.regClass() == s1) {
1356 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1357 } else if (dst.regClass() == s2) {
1358 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1359 } else {
1360 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1361 }
1362 break;
1363 }
1364 case nir_op_iand: {
1365 if (instr->dest.dest.ssa.bit_size == 1) {
1366 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1367 } else if (dst.regClass() == v1) {
1368 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1369 } else if (dst.regClass() == v2) {
1370 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1371 } else if (dst.regClass() == s1) {
1372 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1373 } else if (dst.regClass() == s2) {
1374 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1375 } else {
1376 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1377 }
1378 break;
1379 }
1380 case nir_op_ixor: {
1381 if (instr->dest.dest.ssa.bit_size == 1) {
1382 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1383 } else if (dst.regClass() == v1) {
1384 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1385 } else if (dst.regClass() == v2) {
1386 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1387 } else if (dst.regClass() == s1) {
1388 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1389 } else if (dst.regClass() == s2) {
1390 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1391 } else {
1392 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1393 }
1394 break;
1395 }
1396 case nir_op_ushr: {
1397 if (dst.regClass() == v1) {
1398 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1399 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1400 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1401 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1402 } else if (dst.regClass() == v2) {
1403 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1404 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1405 } else if (dst.regClass() == s2) {
1406 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1407 } else if (dst.regClass() == s1) {
1408 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1409 } else {
1410 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1411 }
1412 break;
1413 }
1414 case nir_op_ishl: {
1415 if (dst.regClass() == v1) {
1416 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1417 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1418 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1419 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1420 } else if (dst.regClass() == v2) {
1421 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1422 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1423 } else if (dst.regClass() == s1) {
1424 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1425 } else if (dst.regClass() == s2) {
1426 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1427 } else {
1428 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1429 }
1430 break;
1431 }
1432 case nir_op_ishr: {
1433 if (dst.regClass() == v1) {
1434 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1435 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1436 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1437 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1438 } else if (dst.regClass() == v2) {
1439 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1440 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1441 } else if (dst.regClass() == s1) {
1442 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1443 } else if (dst.regClass() == s2) {
1444 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1445 } else {
1446 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1447 }
1448 break;
1449 }
1450 case nir_op_find_lsb: {
1451 Temp src = get_alu_src(ctx, instr->src[0]);
1452 if (src.regClass() == s1) {
1453 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1454 } else if (src.regClass() == v1) {
1455 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1456 } else if (src.regClass() == s2) {
1457 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1458 } else {
1459 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1460 }
1461 break;
1462 }
1463 case nir_op_ufind_msb:
1464 case nir_op_ifind_msb: {
1465 Temp src = get_alu_src(ctx, instr->src[0]);
1466 if (src.regClass() == s1 || src.regClass() == s2) {
1467 aco_opcode op = src.regClass() == s2 ?
1468 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1469 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1470 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1471
1472 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1473 Operand(src.size() * 32u - 1u), msb_rev);
1474 Temp msb = sub.def(0).getTemp();
1475 Temp carry = sub.def(1).getTemp();
1476
1477 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1478 } else if (src.regClass() == v1) {
1479 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1480 Temp msb_rev = bld.tmp(v1);
1481 emit_vop1_instruction(ctx, instr, op, msb_rev);
1482 Temp msb = bld.tmp(v1);
1483 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1484 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1485 } else {
1486 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1487 }
1488 break;
1489 }
1490 case nir_op_bitfield_reverse: {
1491 if (dst.regClass() == s1) {
1492 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1493 } else if (dst.regClass() == v1) {
1494 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1495 } else {
1496 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1497 }
1498 break;
1499 }
1500 case nir_op_iadd: {
1501 if (dst.regClass() == s1) {
1502 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1503 break;
1504 }
1505
1506 Temp src0 = get_alu_src(ctx, instr->src[0]);
1507 Temp src1 = get_alu_src(ctx, instr->src[1]);
1508 if (dst.regClass() == v1) {
1509 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1510 break;
1511 }
1512
1513 assert(src0.size() == 2 && src1.size() == 2);
1514 Temp src00 = bld.tmp(src0.type(), 1);
1515 Temp src01 = bld.tmp(dst.type(), 1);
1516 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1517 Temp src10 = bld.tmp(src1.type(), 1);
1518 Temp src11 = bld.tmp(dst.type(), 1);
1519 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1520
1521 if (dst.regClass() == s2) {
1522 Temp carry = bld.tmp(s1);
1523 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1524 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1525 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1526 } else if (dst.regClass() == v2) {
1527 Temp dst0 = bld.tmp(v1);
1528 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1529 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1530 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1531 } else {
1532 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1533 }
1534 break;
1535 }
1536 case nir_op_uadd_sat: {
1537 Temp src0 = get_alu_src(ctx, instr->src[0]);
1538 Temp src1 = get_alu_src(ctx, instr->src[1]);
1539 if (dst.regClass() == s1) {
1540 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1541 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1542 src0, src1);
1543 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1544 } else if (dst.regClass() == v1) {
1545 if (ctx->options->chip_class >= GFX9) {
1546 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1547 add->operands[0] = Operand(src0);
1548 add->operands[1] = Operand(src1);
1549 add->definitions[0] = Definition(dst);
1550 add->clamp = 1;
1551 ctx->block->instructions.emplace_back(std::move(add));
1552 } else {
1553 if (src1.regClass() != v1)
1554 std::swap(src0, src1);
1555 assert(src1.regClass() == v1);
1556 Temp tmp = bld.tmp(v1);
1557 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1558 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1559 }
1560 } else {
1561 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1562 }
1563 break;
1564 }
1565 case nir_op_uadd_carry: {
1566 Temp src0 = get_alu_src(ctx, instr->src[0]);
1567 Temp src1 = get_alu_src(ctx, instr->src[1]);
1568 if (dst.regClass() == s1) {
1569 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1570 break;
1571 }
1572 if (dst.regClass() == v1) {
1573 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1574 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1575 break;
1576 }
1577
1578 Temp src00 = bld.tmp(src0.type(), 1);
1579 Temp src01 = bld.tmp(dst.type(), 1);
1580 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1581 Temp src10 = bld.tmp(src1.type(), 1);
1582 Temp src11 = bld.tmp(dst.type(), 1);
1583 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1584 if (dst.regClass() == s2) {
1585 Temp carry = bld.tmp(s1);
1586 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1587 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1589 } else if (dst.regClass() == v2) {
1590 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1591 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1592 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1593 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1594 } else {
1595 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1596 }
1597 break;
1598 }
1599 case nir_op_isub: {
1600 if (dst.regClass() == s1) {
1601 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1602 break;
1603 }
1604
1605 Temp src0 = get_alu_src(ctx, instr->src[0]);
1606 Temp src1 = get_alu_src(ctx, instr->src[1]);
1607 if (dst.regClass() == v1) {
1608 bld.vsub32(Definition(dst), src0, src1);
1609 break;
1610 }
1611
1612 Temp src00 = bld.tmp(src0.type(), 1);
1613 Temp src01 = bld.tmp(dst.type(), 1);
1614 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1615 Temp src10 = bld.tmp(src1.type(), 1);
1616 Temp src11 = bld.tmp(dst.type(), 1);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1618 if (dst.regClass() == s2) {
1619 Temp carry = bld.tmp(s1);
1620 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1621 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1622 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1623 } else if (dst.regClass() == v2) {
1624 Temp lower = bld.tmp(v1);
1625 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1626 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1627 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1628 } else {
1629 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1630 }
1631 break;
1632 }
1633 case nir_op_usub_borrow: {
1634 Temp src0 = get_alu_src(ctx, instr->src[0]);
1635 Temp src1 = get_alu_src(ctx, instr->src[1]);
1636 if (dst.regClass() == s1) {
1637 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1638 break;
1639 } else if (dst.regClass() == v1) {
1640 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1641 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1642 break;
1643 }
1644
1645 Temp src00 = bld.tmp(src0.type(), 1);
1646 Temp src01 = bld.tmp(dst.type(), 1);
1647 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1648 Temp src10 = bld.tmp(src1.type(), 1);
1649 Temp src11 = bld.tmp(dst.type(), 1);
1650 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1651 if (dst.regClass() == s2) {
1652 Temp borrow = bld.tmp(s1);
1653 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1654 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1655 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1656 } else if (dst.regClass() == v2) {
1657 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1658 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1659 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1660 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1661 } else {
1662 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1663 }
1664 break;
1665 }
1666 case nir_op_imul: {
1667 if (dst.regClass() == v1) {
1668 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1669 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1670 } else if (dst.regClass() == s1) {
1671 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1672 } else {
1673 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1674 }
1675 break;
1676 }
1677 case nir_op_umul_high: {
1678 if (dst.regClass() == v1) {
1679 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1680 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1681 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1682 } else if (dst.regClass() == s1) {
1683 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1684 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1685 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1686 } else {
1687 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1688 }
1689 break;
1690 }
1691 case nir_op_imul_high: {
1692 if (dst.regClass() == v1) {
1693 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1694 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1695 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1696 } else if (dst.regClass() == s1) {
1697 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1698 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1699 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1700 } else {
1701 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1702 }
1703 break;
1704 }
1705 case nir_op_fmul: {
1706 Temp src0 = get_alu_src(ctx, instr->src[0]);
1707 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1708 if (dst.regClass() == v2b) {
1709 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1710 } else if (dst.regClass() == v1) {
1711 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1712 } else if (dst.regClass() == v2) {
1713 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1714 } else {
1715 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1716 }
1717 break;
1718 }
1719 case nir_op_fadd: {
1720 Temp src0 = get_alu_src(ctx, instr->src[0]);
1721 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1722 if (dst.regClass() == v2b) {
1723 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1724 } else if (dst.regClass() == v1) {
1725 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1726 } else if (dst.regClass() == v2) {
1727 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1728 } else {
1729 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1730 }
1731 break;
1732 }
1733 case nir_op_fsub: {
1734 Temp src0 = get_alu_src(ctx, instr->src[0]);
1735 Temp src1 = get_alu_src(ctx, instr->src[1]);
1736 if (dst.regClass() == v2b) {
1737 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1738 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1739 else
1740 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1741 } else if (dst.regClass() == v1) {
1742 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1743 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1744 else
1745 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1746 } else if (dst.regClass() == v2) {
1747 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1748 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1749 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1750 sub->neg[1] = true;
1751 } else {
1752 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1753 }
1754 break;
1755 }
1756 case nir_op_fmax: {
1757 Temp src0 = get_alu_src(ctx, instr->src[0]);
1758 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1759 if (dst.regClass() == v2b) {
1760 // TODO: check fp_mode.must_flush_denorms16_64
1761 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1762 } else if (dst.regClass() == v1) {
1763 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1764 } else if (dst.regClass() == v2) {
1765 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1766 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1767 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1768 } else {
1769 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1770 }
1771 } else {
1772 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1773 }
1774 break;
1775 }
1776 case nir_op_fmin: {
1777 Temp src0 = get_alu_src(ctx, instr->src[0]);
1778 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1779 if (dst.regClass() == v2b) {
1780 // TODO: check fp_mode.must_flush_denorms16_64
1781 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1782 } else if (dst.regClass() == v1) {
1783 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1784 } else if (dst.regClass() == v2) {
1785 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1786 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1787 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1788 } else {
1789 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1790 }
1791 } else {
1792 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1793 }
1794 break;
1795 }
1796 case nir_op_cube_face_coord: {
1797 Temp in = get_alu_src(ctx, instr->src[0], 3);
1798 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1799 emit_extract_vector(ctx, in, 1, v1),
1800 emit_extract_vector(ctx, in, 2, v1) };
1801 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1802 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1803 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1804 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1805 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1806 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, ma), Operand(0x3f000000u/*0.5*/));
1807 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1808 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, ma), Operand(0x3f000000u/*0.5*/));
1809 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1810 break;
1811 }
1812 case nir_op_cube_face_index: {
1813 Temp in = get_alu_src(ctx, instr->src[0], 3);
1814 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1815 emit_extract_vector(ctx, in, 1, v1),
1816 emit_extract_vector(ctx, in, 2, v1) };
1817 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1818 break;
1819 }
1820 case nir_op_bcsel: {
1821 emit_bcsel(ctx, instr, dst);
1822 break;
1823 }
1824 case nir_op_frsq: {
1825 Temp src = get_alu_src(ctx, instr->src[0]);
1826 if (dst.regClass() == v2b) {
1827 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1828 } else if (dst.regClass() == v1) {
1829 emit_rsq(ctx, bld, Definition(dst), src);
1830 } else if (dst.regClass() == v2) {
1831 /* Lowered at NIR level for precision reasons. */
1832 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1833 } else {
1834 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1835 }
1836 break;
1837 }
1838 case nir_op_fneg: {
1839 Temp src = get_alu_src(ctx, instr->src[0]);
1840 if (dst.regClass() == v2b) {
1841 if (ctx->block->fp_mode.must_flush_denorms16_64)
1842 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1843 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1844 } else if (dst.regClass() == v1) {
1845 if (ctx->block->fp_mode.must_flush_denorms32)
1846 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1847 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1848 } else if (dst.regClass() == v2) {
1849 if (ctx->block->fp_mode.must_flush_denorms16_64)
1850 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1851 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1852 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1853 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1854 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1855 } else {
1856 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1857 }
1858 break;
1859 }
1860 case nir_op_fabs: {
1861 Temp src = get_alu_src(ctx, instr->src[0]);
1862 if (dst.regClass() == v2b) {
1863 if (ctx->block->fp_mode.must_flush_denorms16_64)
1864 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1865 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1866 } else if (dst.regClass() == v1) {
1867 if (ctx->block->fp_mode.must_flush_denorms32)
1868 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1869 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1870 } else if (dst.regClass() == v2) {
1871 if (ctx->block->fp_mode.must_flush_denorms16_64)
1872 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1873 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1874 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1875 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1876 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1877 } else {
1878 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1879 }
1880 break;
1881 }
1882 case nir_op_fsat: {
1883 Temp src = get_alu_src(ctx, instr->src[0]);
1884 if (dst.regClass() == v2b) {
1885 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
1886 } else if (dst.regClass() == v1) {
1887 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1888 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1889 // TODO: confirm that this holds under any circumstances
1890 } else if (dst.regClass() == v2) {
1891 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1892 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1893 vop3->clamp = true;
1894 } else {
1895 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1896 }
1897 break;
1898 }
1899 case nir_op_flog2: {
1900 Temp src = get_alu_src(ctx, instr->src[0]);
1901 if (dst.regClass() == v2b) {
1902 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
1903 } else if (dst.regClass() == v1) {
1904 emit_log2(ctx, bld, Definition(dst), src);
1905 } else {
1906 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1907 }
1908 break;
1909 }
1910 case nir_op_frcp: {
1911 Temp src = get_alu_src(ctx, instr->src[0]);
1912 if (dst.regClass() == v2b) {
1913 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
1914 } else if (dst.regClass() == v1) {
1915 emit_rcp(ctx, bld, Definition(dst), src);
1916 } else if (dst.regClass() == v2) {
1917 /* Lowered at NIR level for precision reasons. */
1918 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1919 } else {
1920 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1921 }
1922 break;
1923 }
1924 case nir_op_fexp2: {
1925 if (dst.regClass() == v2b) {
1926 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
1927 } else if (dst.regClass() == v1) {
1928 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1929 } else {
1930 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1931 }
1932 break;
1933 }
1934 case nir_op_fsqrt: {
1935 Temp src = get_alu_src(ctx, instr->src[0]);
1936 if (dst.regClass() == v2b) {
1937 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
1938 } else if (dst.regClass() == v1) {
1939 emit_sqrt(ctx, bld, Definition(dst), src);
1940 } else if (dst.regClass() == v2) {
1941 /* Lowered at NIR level for precision reasons. */
1942 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1943 } else {
1944 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1945 }
1946 break;
1947 }
1948 case nir_op_ffract: {
1949 if (dst.regClass() == v2b) {
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
1951 } else if (dst.regClass() == v1) {
1952 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1953 } else if (dst.regClass() == v2) {
1954 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1955 } else {
1956 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1957 }
1958 break;
1959 }
1960 case nir_op_ffloor: {
1961 Temp src = get_alu_src(ctx, instr->src[0]);
1962 if (dst.regClass() == v2b) {
1963 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
1964 } else if (dst.regClass() == v1) {
1965 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1966 } else if (dst.regClass() == v2) {
1967 emit_floor_f64(ctx, bld, Definition(dst), src);
1968 } else {
1969 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1970 }
1971 break;
1972 }
1973 case nir_op_fceil: {
1974 Temp src0 = get_alu_src(ctx, instr->src[0]);
1975 if (dst.regClass() == v2b) {
1976 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
1977 } else if (dst.regClass() == v1) {
1978 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1979 } else if (dst.regClass() == v2) {
1980 if (ctx->options->chip_class >= GFX7) {
1981 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1982 } else {
1983 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1984 /* trunc = trunc(src0)
1985 * if (src0 > 0.0 && src0 != trunc)
1986 * trunc += 1.0
1987 */
1988 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1989 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1990 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1991 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1992 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1993 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1994 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1995 }
1996 } else {
1997 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1998 }
1999 break;
2000 }
2001 case nir_op_ftrunc: {
2002 Temp src = get_alu_src(ctx, instr->src[0]);
2003 if (dst.regClass() == v2b) {
2004 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2005 } else if (dst.regClass() == v1) {
2006 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2007 } else if (dst.regClass() == v2) {
2008 emit_trunc_f64(ctx, bld, Definition(dst), src);
2009 } else {
2010 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2011 }
2012 break;
2013 }
2014 case nir_op_fround_even: {
2015 Temp src0 = get_alu_src(ctx, instr->src[0]);
2016 if (dst.regClass() == v2b) {
2017 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2018 } else if (dst.regClass() == v1) {
2019 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2020 } else if (dst.regClass() == v2) {
2021 if (ctx->options->chip_class >= GFX7) {
2022 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2023 } else {
2024 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2025 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2026 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2027
2028 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2029 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2030 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2031 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2032 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2033 tmp = sub->definitions[0].getTemp();
2034
2035 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2036 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2037 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2038 Temp cond = vop3->definitions[0].getTemp();
2039
2040 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2041 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2042 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2043 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2044
2045 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2046 }
2047 } else {
2048 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2049 }
2050 break;
2051 }
2052 case nir_op_fsin:
2053 case nir_op_fcos: {
2054 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2055 aco_ptr<Instruction> norm;
2056 if (dst.regClass() == v2b) {
2057 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2058 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2059 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2060 bld.vop1(opcode, Definition(dst), tmp);
2061 } else if (dst.regClass() == v1) {
2062 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2063 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2064
2065 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2066 if (ctx->options->chip_class < GFX9)
2067 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2068
2069 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2070 bld.vop1(opcode, Definition(dst), tmp);
2071 } else {
2072 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2073 }
2074 break;
2075 }
2076 case nir_op_ldexp: {
2077 Temp src0 = get_alu_src(ctx, instr->src[0]);
2078 Temp src1 = get_alu_src(ctx, instr->src[1]);
2079 if (dst.regClass() == v2b) {
2080 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2081 } else if (dst.regClass() == v1) {
2082 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2083 } else if (dst.regClass() == v2) {
2084 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2085 } else {
2086 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2087 }
2088 break;
2089 }
2090 case nir_op_frexp_sig: {
2091 Temp src = get_alu_src(ctx, instr->src[0]);
2092 if (dst.regClass() == v2b) {
2093 bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
2094 } else if (dst.regClass() == v1) {
2095 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2096 } else if (dst.regClass() == v2) {
2097 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2098 } else {
2099 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2100 }
2101 break;
2102 }
2103 case nir_op_frexp_exp: {
2104 Temp src = get_alu_src(ctx, instr->src[0]);
2105 if (instr->src[0].src.ssa->bit_size == 16) {
2106 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2107 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2108 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2109 } else if (instr->src[0].src.ssa->bit_size == 32) {
2110 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2111 } else if (instr->src[0].src.ssa->bit_size == 64) {
2112 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2113 } else {
2114 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2115 }
2116 break;
2117 }
2118 case nir_op_fsign: {
2119 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2120 if (dst.regClass() == v2b) {
2121 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2122 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2123 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2124 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2125 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2126 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
2127 } else if (dst.regClass() == v1) {
2128 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2129 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2130 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2131 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2132 } else if (dst.regClass() == v2) {
2133 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2134 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2135 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2136
2137 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2138 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2139 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2140
2141 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2142 } else {
2143 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2144 }
2145 break;
2146 }
2147 case nir_op_f2f16:
2148 case nir_op_f2f16_rtne: {
2149 Temp src = get_alu_src(ctx, instr->src[0]);
2150 if (instr->src[0].src.ssa->bit_size == 64)
2151 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2152 if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
2153 /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
2154 * keep value numbering and the scheduler simpler.
2155 */
2156 bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
2157 else
2158 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2159 break;
2160 }
2161 case nir_op_f2f16_rtz: {
2162 Temp src = get_alu_src(ctx, instr->src[0]);
2163 if (instr->src[0].src.ssa->bit_size == 64)
2164 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2165 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
2166 break;
2167 }
2168 case nir_op_f2f32: {
2169 if (instr->src[0].src.ssa->bit_size == 16) {
2170 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2171 } else if (instr->src[0].src.ssa->bit_size == 64) {
2172 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2173 } else {
2174 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2175 }
2176 break;
2177 }
2178 case nir_op_f2f64: {
2179 Temp src = get_alu_src(ctx, instr->src[0]);
2180 if (instr->src[0].src.ssa->bit_size == 16)
2181 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2182 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2183 break;
2184 }
2185 case nir_op_i2f16: {
2186 assert(dst.regClass() == v2b);
2187 Temp src = get_alu_src(ctx, instr->src[0]);
2188 if (instr->src[0].src.ssa->bit_size == 8)
2189 src = convert_int(ctx, bld, src, 8, 16, true);
2190 else if (instr->src[0].src.ssa->bit_size == 64)
2191 src = convert_int(ctx, bld, src, 64, 32, false);
2192 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2193 break;
2194 }
2195 case nir_op_i2f32: {
2196 assert(dst.size() == 1);
2197 Temp src = get_alu_src(ctx, instr->src[0]);
2198 if (instr->src[0].src.ssa->bit_size <= 16)
2199 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2200 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2201 break;
2202 }
2203 case nir_op_i2f64: {
2204 if (instr->src[0].src.ssa->bit_size <= 32) {
2205 Temp src = get_alu_src(ctx, instr->src[0]);
2206 if (instr->src[0].src.ssa->bit_size <= 16)
2207 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2208 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2209 } else if (instr->src[0].src.ssa->bit_size == 64) {
2210 Temp src = get_alu_src(ctx, instr->src[0]);
2211 RegClass rc = RegClass(src.type(), 1);
2212 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2213 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2214 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2215 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2216 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2217 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2218
2219 } else {
2220 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2221 }
2222 break;
2223 }
2224 case nir_op_u2f16: {
2225 assert(dst.regClass() == v2b);
2226 Temp src = get_alu_src(ctx, instr->src[0]);
2227 if (instr->src[0].src.ssa->bit_size == 8)
2228 src = convert_int(ctx, bld, src, 8, 16, false);
2229 else if (instr->src[0].src.ssa->bit_size == 64)
2230 src = convert_int(ctx, bld, src, 64, 32, false);
2231 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2232 break;
2233 }
2234 case nir_op_u2f32: {
2235 assert(dst.size() == 1);
2236 Temp src = get_alu_src(ctx, instr->src[0]);
2237 if (instr->src[0].src.ssa->bit_size == 8) {
2238 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2239 } else {
2240 if (instr->src[0].src.ssa->bit_size == 16)
2241 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2242 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2243 }
2244 break;
2245 }
2246 case nir_op_u2f64: {
2247 if (instr->src[0].src.ssa->bit_size <= 32) {
2248 Temp src = get_alu_src(ctx, instr->src[0]);
2249 if (instr->src[0].src.ssa->bit_size <= 16)
2250 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2251 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2252 } else if (instr->src[0].src.ssa->bit_size == 64) {
2253 Temp src = get_alu_src(ctx, instr->src[0]);
2254 RegClass rc = RegClass(src.type(), 1);
2255 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2256 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2257 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2258 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2259 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2260 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2261 } else {
2262 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2263 }
2264 break;
2265 }
2266 case nir_op_f2i8:
2267 case nir_op_f2i16: {
2268 if (instr->src[0].src.ssa->bit_size == 16)
2269 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2270 else if (instr->src[0].src.ssa->bit_size == 32)
2271 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2272 else
2273 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2274 break;
2275 }
2276 case nir_op_f2u8:
2277 case nir_op_f2u16: {
2278 if (instr->src[0].src.ssa->bit_size == 16)
2279 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2280 else if (instr->src[0].src.ssa->bit_size == 32)
2281 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2282 else
2283 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2284 break;
2285 }
2286 case nir_op_f2i32: {
2287 Temp src = get_alu_src(ctx, instr->src[0]);
2288 if (instr->src[0].src.ssa->bit_size == 16) {
2289 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2290 if (dst.type() == RegType::vgpr) {
2291 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2292 } else {
2293 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2294 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2295 }
2296 } else if (instr->src[0].src.ssa->bit_size == 32) {
2297 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2298 } else if (instr->src[0].src.ssa->bit_size == 64) {
2299 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2300 } else {
2301 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2302 }
2303 break;
2304 }
2305 case nir_op_f2u32: {
2306 Temp src = get_alu_src(ctx, instr->src[0]);
2307 if (instr->src[0].src.ssa->bit_size == 16) {
2308 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2309 if (dst.type() == RegType::vgpr) {
2310 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2311 } else {
2312 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2313 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2314 }
2315 } else if (instr->src[0].src.ssa->bit_size == 32) {
2316 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2317 } else if (instr->src[0].src.ssa->bit_size == 64) {
2318 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2319 } else {
2320 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2321 }
2322 break;
2323 }
2324 case nir_op_f2i64: {
2325 Temp src = get_alu_src(ctx, instr->src[0]);
2326 if (instr->src[0].src.ssa->bit_size == 16)
2327 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2328
2329 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2330 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2331 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2332 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2333 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2334 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2335 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2336 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2337 Temp new_exponent = bld.tmp(v1);
2338 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2339 if (ctx->program->chip_class >= GFX8)
2340 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2341 else
2342 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2343 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2344 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2345 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2346 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2347 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2348 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2349 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2350 Temp new_lower = bld.tmp(v1);
2351 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2352 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2353 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2354
2355 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2356 if (src.type() == RegType::vgpr)
2357 src = bld.as_uniform(src);
2358 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2359 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2360 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2361 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2362 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2363 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2364 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2365 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2366 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2367 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2368 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2369 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2370 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2371 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2372 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2373 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2374 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2375 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2376 Temp borrow = bld.tmp(s1);
2377 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2378 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2379 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2380
2381 } else if (instr->src[0].src.ssa->bit_size == 64) {
2382 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2383 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2384 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2385 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2386 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2387 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2388 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2389 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2390 if (dst.type() == RegType::sgpr) {
2391 lower = bld.as_uniform(lower);
2392 upper = bld.as_uniform(upper);
2393 }
2394 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2395
2396 } else {
2397 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2398 }
2399 break;
2400 }
2401 case nir_op_f2u64: {
2402 Temp src = get_alu_src(ctx, instr->src[0]);
2403 if (instr->src[0].src.ssa->bit_size == 16)
2404 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2405
2406 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2407 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2408 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2409 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2410 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2411 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2412 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2413 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2414 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2415 Temp new_exponent = bld.tmp(v1);
2416 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2417 if (ctx->program->chip_class >= GFX8)
2418 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2419 else
2420 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2421 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2422 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2423 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2424 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2425 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2426 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2427 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2428
2429 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2430 if (src.type() == RegType::vgpr)
2431 src = bld.as_uniform(src);
2432 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2433 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2434 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2435 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2436 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2437 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2438 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2439 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2440 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2441 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2442 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2443 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2444 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2445 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2446 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2447 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2448 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2449 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2450
2451 } else if (instr->src[0].src.ssa->bit_size == 64) {
2452 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2453 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2454 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2455 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2456 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2457 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2458 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2459 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2460 if (dst.type() == RegType::sgpr) {
2461 lower = bld.as_uniform(lower);
2462 upper = bld.as_uniform(upper);
2463 }
2464 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2465
2466 } else {
2467 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2468 }
2469 break;
2470 }
2471 case nir_op_b2f16: {
2472 Temp src = get_alu_src(ctx, instr->src[0]);
2473 assert(src.regClass() == bld.lm);
2474
2475 if (dst.regClass() == s1) {
2476 src = bool_to_scalar_condition(ctx, src);
2477 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2478 } else if (dst.regClass() == v2b) {
2479 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2480 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2481 } else {
2482 unreachable("Wrong destination register class for nir_op_b2f16.");
2483 }
2484 break;
2485 }
2486 case nir_op_b2f32: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 assert(src.regClass() == bld.lm);
2489
2490 if (dst.regClass() == s1) {
2491 src = bool_to_scalar_condition(ctx, src);
2492 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2493 } else if (dst.regClass() == v1) {
2494 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2495 } else {
2496 unreachable("Wrong destination register class for nir_op_b2f32.");
2497 }
2498 break;
2499 }
2500 case nir_op_b2f64: {
2501 Temp src = get_alu_src(ctx, instr->src[0]);
2502 assert(src.regClass() == bld.lm);
2503
2504 if (dst.regClass() == s2) {
2505 src = bool_to_scalar_condition(ctx, src);
2506 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2507 } else if (dst.regClass() == v2) {
2508 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2509 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2510 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2511 } else {
2512 unreachable("Wrong destination register class for nir_op_b2f64.");
2513 }
2514 break;
2515 }
2516 case nir_op_i2i8:
2517 case nir_op_i2i16:
2518 case nir_op_i2i32:
2519 case nir_op_i2i64: {
2520 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2521 /* no need to do the extract in get_alu_src() */
2522 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2523 sgpr_extract_sext : sgpr_extract_undef;
2524 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2525 } else {
2526 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2527 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2528 }
2529 break;
2530 }
2531 case nir_op_u2u8:
2532 case nir_op_u2u16:
2533 case nir_op_u2u32:
2534 case nir_op_u2u64: {
2535 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2536 /* no need to do the extract in get_alu_src() */
2537 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2538 sgpr_extract_zext : sgpr_extract_undef;
2539 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2540 } else {
2541 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2542 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2543 }
2544 break;
2545 }
2546 case nir_op_b2b32:
2547 case nir_op_b2i8:
2548 case nir_op_b2i16:
2549 case nir_op_b2i32:
2550 case nir_op_b2i64: {
2551 Temp src = get_alu_src(ctx, instr->src[0]);
2552 assert(src.regClass() == bld.lm);
2553
2554 Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst;
2555 if (tmp.regClass() == s1) {
2556 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2557 bool_to_scalar_condition(ctx, src, tmp);
2558 } else if (tmp.type() == RegType::vgpr) {
2559 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src);
2560 } else {
2561 unreachable("Invalid register class for b2i32");
2562 }
2563
2564 if (tmp != dst)
2565 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
2566 break;
2567 }
2568 case nir_op_b2b1:
2569 case nir_op_i2b1: {
2570 Temp src = get_alu_src(ctx, instr->src[0]);
2571 assert(dst.regClass() == bld.lm);
2572
2573 if (src.type() == RegType::vgpr) {
2574 assert(src.regClass() == v1 || src.regClass() == v2);
2575 assert(dst.regClass() == bld.lm);
2576 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2577 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2578 } else {
2579 assert(src.regClass() == s1 || src.regClass() == s2);
2580 Temp tmp;
2581 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2582 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2583 } else {
2584 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2585 bld.scc(bld.def(s1)), Operand(0u), src);
2586 }
2587 bool_to_vector_condition(ctx, tmp, dst);
2588 }
2589 break;
2590 }
2591 case nir_op_pack_64_2x32_split: {
2592 Temp src0 = get_alu_src(ctx, instr->src[0]);
2593 Temp src1 = get_alu_src(ctx, instr->src[1]);
2594
2595 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2596 break;
2597 }
2598 case nir_op_unpack_64_2x32_split_x:
2599 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2600 break;
2601 case nir_op_unpack_64_2x32_split_y:
2602 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2603 break;
2604 case nir_op_unpack_32_2x16_split_x:
2605 if (dst.type() == RegType::vgpr) {
2606 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2607 } else {
2608 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2609 }
2610 break;
2611 case nir_op_unpack_32_2x16_split_y:
2612 if (dst.type() == RegType::vgpr) {
2613 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2614 } else {
2615 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2616 }
2617 break;
2618 case nir_op_pack_32_2x16_split: {
2619 Temp src0 = get_alu_src(ctx, instr->src[0]);
2620 Temp src1 = get_alu_src(ctx, instr->src[1]);
2621 if (dst.regClass() == v1) {
2622 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2623 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2624 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2625 } else {
2626 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2627 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2628 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2629 }
2630 break;
2631 }
2632 case nir_op_pack_half_2x16: {
2633 Temp src = get_alu_src(ctx, instr->src[0], 2);
2634
2635 if (dst.regClass() == v1) {
2636 Temp src0 = bld.tmp(v1);
2637 Temp src1 = bld.tmp(v1);
2638 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2639 if (0 && (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)) {
2640 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2641 } else {
2642 src0 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src0);
2643 src1 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src1);
2644 if (ctx->program->chip_class >= GFX10) {
2645 /* the high bits of v_cvt_f16_f32 isn't zero'd on GFX10 */
2646 bld.vop3(aco_opcode::v_pack_b32_f16, Definition(dst), src0, src1);
2647 } else {
2648 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst), src0, src1);
2649 }
2650 }
2651 } else {
2652 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2653 }
2654 break;
2655 }
2656 case nir_op_unpack_half_2x16_split_x: {
2657 if (dst.regClass() == v1) {
2658 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2659 } else {
2660 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2661 }
2662 break;
2663 }
2664 case nir_op_unpack_half_2x16_split_y: {
2665 if (dst.regClass() == v1) {
2666 /* TODO: use SDWA here */
2667 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2668 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2669 } else {
2670 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2671 }
2672 break;
2673 }
2674 case nir_op_fquantize2f16: {
2675 Temp src = get_alu_src(ctx, instr->src[0]);
2676 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2677 Temp f32, cmp_res;
2678
2679 if (ctx->program->chip_class >= GFX8) {
2680 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2681 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2682 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2683 } else {
2684 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2685 * so compare the result and flush to 0 if it's smaller.
2686 */
2687 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2688 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2689 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2690 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2691 cmp_res = vop3->definitions[0].getTemp();
2692 }
2693
2694 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2695 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2696 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2697 } else {
2698 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2699 }
2700 break;
2701 }
2702 case nir_op_bfm: {
2703 Temp bits = get_alu_src(ctx, instr->src[0]);
2704 Temp offset = get_alu_src(ctx, instr->src[1]);
2705
2706 if (dst.regClass() == s1) {
2707 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2708 } else if (dst.regClass() == v1) {
2709 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2710 } else {
2711 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2712 }
2713 break;
2714 }
2715 case nir_op_bitfield_select: {
2716 /* (mask & insert) | (~mask & base) */
2717 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2718 Temp insert = get_alu_src(ctx, instr->src[1]);
2719 Temp base = get_alu_src(ctx, instr->src[2]);
2720
2721 /* dst = (insert & bitmask) | (base & ~bitmask) */
2722 if (dst.regClass() == s1) {
2723 aco_ptr<Instruction> sop2;
2724 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2725 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2726 Operand lhs;
2727 if (const_insert && const_bitmask) {
2728 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2729 } else {
2730 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2731 lhs = Operand(insert);
2732 }
2733
2734 Operand rhs;
2735 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2736 if (const_base && const_bitmask) {
2737 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2738 } else {
2739 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2740 rhs = Operand(base);
2741 }
2742
2743 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2744
2745 } else if (dst.regClass() == v1) {
2746 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2747 base = as_vgpr(ctx, base);
2748 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2749 insert = as_vgpr(ctx, insert);
2750
2751 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2752
2753 } else {
2754 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2755 }
2756 break;
2757 }
2758 case nir_op_ubfe:
2759 case nir_op_ibfe: {
2760 if (dst.bytes() != 4)
2761 unreachable("Unsupported BFE bit size");
2762
2763 if (dst.type() == RegType::sgpr) {
2764 Temp base = get_alu_src(ctx, instr->src[0]);
2765
2766 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2767 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2768 if (const_offset && const_bits) {
2769 uint32_t extract = (const_bits->u32 << 16) | (const_offset->u32 & 0x1f);
2770 aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
2771 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, Operand(extract));
2772 break;
2773 }
2774
2775 Temp offset = get_alu_src(ctx, instr->src[1]);
2776 Temp bits = get_alu_src(ctx, instr->src[2]);
2777 if (instr->op == nir_op_ubfe) {
2778 Temp mask = bld.sop2(aco_opcode::s_bfm_b32, bld.def(s1), bits, offset);
2779 Temp masked = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), base, mask);
2780 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), masked, offset);
2781 } else {
2782 Operand bits_op = const_bits ? Operand(const_bits->u32 << 16) :
2783 bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2784 Operand offset_op = const_offset ? Operand(const_offset->u32 & 0x1fu) :
2785 bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(0x1fu));
2786
2787 Temp extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), bits_op, offset_op);
2788 bld.sop2(aco_opcode::s_bfe_i32, Definition(dst), bld.def(s1, scc), base, extract);
2789 }
2790
2791 } else {
2792 aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::v_bfe_u32 : aco_opcode::v_bfe_i32;
2793 emit_vop3a_instruction(ctx, instr, opcode, dst);
2794 }
2795 break;
2796 }
2797 case nir_op_bit_count: {
2798 Temp src = get_alu_src(ctx, instr->src[0]);
2799 if (src.regClass() == s1) {
2800 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2801 } else if (src.regClass() == v1) {
2802 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2803 } else if (src.regClass() == v2) {
2804 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2805 emit_extract_vector(ctx, src, 1, v1),
2806 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2807 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2808 } else if (src.regClass() == s2) {
2809 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2810 } else {
2811 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2812 }
2813 break;
2814 }
2815 case nir_op_flt: {
2816 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2817 break;
2818 }
2819 case nir_op_fge: {
2820 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2821 break;
2822 }
2823 case nir_op_feq: {
2824 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2825 break;
2826 }
2827 case nir_op_fneu: {
2828 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2829 break;
2830 }
2831 case nir_op_ilt: {
2832 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2833 break;
2834 }
2835 case nir_op_ige: {
2836 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2837 break;
2838 }
2839 case nir_op_ieq: {
2840 if (instr->src[0].src.ssa->bit_size == 1)
2841 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2842 else
2843 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2844 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2845 break;
2846 }
2847 case nir_op_ine: {
2848 if (instr->src[0].src.ssa->bit_size == 1)
2849 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2850 else
2851 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2852 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2853 break;
2854 }
2855 case nir_op_ult: {
2856 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2857 break;
2858 }
2859 case nir_op_uge: {
2860 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2861 break;
2862 }
2863 case nir_op_fddx:
2864 case nir_op_fddy:
2865 case nir_op_fddx_fine:
2866 case nir_op_fddy_fine:
2867 case nir_op_fddx_coarse:
2868 case nir_op_fddy_coarse: {
2869 Temp src = get_alu_src(ctx, instr->src[0]);
2870 uint16_t dpp_ctrl1, dpp_ctrl2;
2871 if (instr->op == nir_op_fddx_fine) {
2872 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2873 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2874 } else if (instr->op == nir_op_fddy_fine) {
2875 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2876 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2877 } else {
2878 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2879 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2880 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2881 else
2882 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2883 }
2884
2885 Temp tmp;
2886 if (ctx->program->chip_class >= GFX8) {
2887 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2888 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2889 } else {
2890 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2891 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2892 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2893 }
2894 emit_wqm(ctx, tmp, dst, true);
2895 break;
2896 }
2897 default:
2898 isel_err(&instr->instr, "Unknown NIR ALU instr");
2899 }
2900 }
2901
2902 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2903 {
2904 Temp dst = get_ssa_temp(ctx, &instr->def);
2905
2906 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2907 // which get truncated the lsb if double and msb if int
2908 // for now, we only use s_mov_b64 with 64bit inline constants
2909 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2910 assert(dst.type() == RegType::sgpr);
2911
2912 Builder bld(ctx->program, ctx->block);
2913
2914 if (instr->def.bit_size == 1) {
2915 assert(dst.regClass() == bld.lm);
2916 int val = instr->value[0].b ? -1 : 0;
2917 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2918 bld.sop1(Builder::s_mov, Definition(dst), op);
2919 } else if (instr->def.bit_size == 8) {
2920 /* ensure that the value is correctly represented in the low byte of the register */
2921 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
2922 } else if (instr->def.bit_size == 16) {
2923 /* ensure that the value is correctly represented in the low half of the register */
2924 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
2925 } else if (dst.size() == 1) {
2926 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2927 } else {
2928 assert(dst.size() != 1);
2929 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2930 if (instr->def.bit_size == 64)
2931 for (unsigned i = 0; i < dst.size(); i++)
2932 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2933 else {
2934 for (unsigned i = 0; i < dst.size(); i++)
2935 vec->operands[i] = Operand{instr->value[i].u32};
2936 }
2937 vec->definitions[0] = Definition(dst);
2938 ctx->block->instructions.emplace_back(std::move(vec));
2939 }
2940 }
2941
2942 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2943 {
2944 uint32_t new_mask = 0;
2945 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2946 if (mask & (1u << i))
2947 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2948 return new_mask;
2949 }
2950
2951 struct LoadEmitInfo {
2952 Operand offset;
2953 Temp dst;
2954 unsigned num_components;
2955 unsigned component_size;
2956 Temp resource = Temp(0, s1);
2957 unsigned component_stride = 0;
2958 unsigned const_offset = 0;
2959 unsigned align_mul = 0;
2960 unsigned align_offset = 0;
2961
2962 bool glc = false;
2963 unsigned swizzle_component_size = 0;
2964 memory_sync_info sync;
2965 Temp soffset = Temp(0, s1);
2966 };
2967
2968 using LoadCallback = Temp(*)(
2969 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
2970 unsigned align, unsigned const_offset, Temp dst_hint);
2971
2972 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
2973 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
2974 {
2975 unsigned load_size = info->num_components * info->component_size;
2976 unsigned component_size = info->component_size;
2977
2978 unsigned num_vals = 0;
2979 Temp vals[info->dst.bytes()];
2980
2981 unsigned const_offset = info->const_offset;
2982
2983 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
2984 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
2985
2986 unsigned bytes_read = 0;
2987 while (bytes_read < load_size) {
2988 unsigned bytes_needed = load_size - bytes_read;
2989
2990 /* add buffer for unaligned loads */
2991 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
2992
2993 if (byte_align) {
2994 if ((bytes_needed > 2 ||
2995 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
2996 !supports_8bit_16bit_loads) && byte_align_loads) {
2997 if (info->component_stride) {
2998 assert(supports_8bit_16bit_loads && "unimplemented");
2999 bytes_needed = 2;
3000 byte_align = 0;
3001 } else {
3002 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3003 bytes_needed = align(bytes_needed, 4);
3004 }
3005 } else {
3006 byte_align = 0;
3007 }
3008 }
3009
3010 if (info->swizzle_component_size)
3011 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3012 if (info->component_stride)
3013 bytes_needed = MIN2(bytes_needed, info->component_size);
3014
3015 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3016
3017 /* reduce constant offset */
3018 Operand offset = info->offset;
3019 unsigned reduced_const_offset = const_offset;
3020 bool remove_const_offset_completely = need_to_align_offset;
3021 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3022 unsigned to_add = const_offset;
3023 if (remove_const_offset_completely) {
3024 reduced_const_offset = 0;
3025 } else {
3026 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3027 reduced_const_offset %= max_const_offset_plus_one;
3028 }
3029 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3030 if (offset.isConstant()) {
3031 offset = Operand(offset.constantValue() + to_add);
3032 } else if (offset_tmp.regClass() == s1) {
3033 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3034 offset_tmp, Operand(to_add));
3035 } else if (offset_tmp.regClass() == v1) {
3036 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3037 } else {
3038 Temp lo = bld.tmp(offset_tmp.type(), 1);
3039 Temp hi = bld.tmp(offset_tmp.type(), 1);
3040 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3041
3042 if (offset_tmp.regClass() == s2) {
3043 Temp carry = bld.tmp(s1);
3044 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3045 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3046 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3047 } else {
3048 Temp new_lo = bld.tmp(v1);
3049 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3050 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3051 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3052 }
3053 }
3054 }
3055
3056 /* align offset down if needed */
3057 Operand aligned_offset = offset;
3058 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3059 if (need_to_align_offset) {
3060 align = 4;
3061 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3062 if (offset.isConstant()) {
3063 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3064 } else if (offset_tmp.regClass() == s1) {
3065 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3066 } else if (offset_tmp.regClass() == s2) {
3067 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3068 } else if (offset_tmp.regClass() == v1) {
3069 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3070 } else if (offset_tmp.regClass() == v2) {
3071 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3072 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3073 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3074 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3075 }
3076 }
3077 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3078 bld.copy(bld.def(s1), aligned_offset);
3079
3080 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3081 reduced_const_offset, byte_align ? Temp() : info->dst);
3082
3083 /* the callback wrote directly to dst */
3084 if (val == info->dst) {
3085 assert(num_vals == 0);
3086 emit_split_vector(ctx, info->dst, info->num_components);
3087 return;
3088 }
3089
3090 /* shift result right if needed */
3091 if (info->component_size < 4 && byte_align_loads) {
3092 Operand align((uint32_t)byte_align);
3093 if (byte_align == -1) {
3094 if (offset.isConstant())
3095 align = Operand(offset.constantValue() % 4u);
3096 else if (offset.size() == 2)
3097 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3098 else
3099 align = offset;
3100 }
3101
3102 assert(val.bytes() >= load_size && "unimplemented");
3103 if (val.type() == RegType::sgpr)
3104 byte_align_scalar(ctx, val, align, info->dst);
3105 else
3106 byte_align_vector(ctx, val, align, info->dst, component_size);
3107 return;
3108 }
3109
3110 /* add result to list and advance */
3111 if (info->component_stride) {
3112 assert(val.bytes() == info->component_size && "unimplemented");
3113 const_offset += info->component_stride;
3114 align_offset = (align_offset + info->component_stride) % align_mul;
3115 } else {
3116 const_offset += val.bytes();
3117 align_offset = (align_offset + val.bytes()) % align_mul;
3118 }
3119 bytes_read += val.bytes();
3120 vals[num_vals++] = val;
3121 }
3122
3123 /* create array of components */
3124 unsigned components_split = 0;
3125 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3126 bool has_vgprs = false;
3127 for (unsigned i = 0; i < num_vals;) {
3128 Temp tmp[num_vals];
3129 unsigned num_tmps = 0;
3130 unsigned tmp_size = 0;
3131 RegType reg_type = RegType::sgpr;
3132 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3133 if (vals[i].type() == RegType::vgpr)
3134 reg_type = RegType::vgpr;
3135 tmp_size += vals[i].bytes();
3136 tmp[num_tmps++] = vals[i++];
3137 }
3138 if (num_tmps > 1) {
3139 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3140 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3141 for (unsigned i = 0; i < num_tmps; i++)
3142 vec->operands[i] = Operand(tmp[i]);
3143 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3144 vec->definitions[0] = Definition(tmp[0]);
3145 bld.insert(std::move(vec));
3146 }
3147
3148 if (tmp[0].bytes() % component_size) {
3149 /* trim tmp[0] */
3150 assert(i == num_vals);
3151 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3152 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3153 }
3154
3155 RegClass elem_rc = RegClass::get(reg_type, component_size);
3156
3157 unsigned start = components_split;
3158
3159 if (tmp_size == elem_rc.bytes()) {
3160 allocated_vec[components_split++] = tmp[0];
3161 } else {
3162 assert(tmp_size % elem_rc.bytes() == 0);
3163 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3164 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3165 for (unsigned i = 0; i < split->definitions.size(); i++) {
3166 Temp component = bld.tmp(elem_rc);
3167 allocated_vec[components_split++] = component;
3168 split->definitions[i] = Definition(component);
3169 }
3170 split->operands[0] = Operand(tmp[0]);
3171 bld.insert(std::move(split));
3172 }
3173
3174 /* try to p_as_uniform early so we can create more optimizable code and
3175 * also update allocated_vec */
3176 for (unsigned j = start; j < components_split; j++) {
3177 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3178 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3179 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3180 }
3181 }
3182
3183 /* concatenate components and p_as_uniform() result if needed */
3184 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3185 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3186
3187 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3188
3189 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3190 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3191 for (unsigned i = 0; i < info->num_components; i++)
3192 vec->operands[i] = Operand(allocated_vec[i]);
3193 if (padding_bytes)
3194 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3195 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3196 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3197 vec->definitions[0] = Definition(tmp);
3198 bld.insert(std::move(vec));
3199 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3200 } else {
3201 vec->definitions[0] = Definition(info->dst);
3202 bld.insert(std::move(vec));
3203 }
3204 }
3205
3206 Operand load_lds_size_m0(Builder& bld)
3207 {
3208 /* TODO: m0 does not need to be initialized on GFX9+ */
3209 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3210 }
3211
3212 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3213 Temp offset, unsigned bytes_needed,
3214 unsigned align, unsigned const_offset,
3215 Temp dst_hint)
3216 {
3217 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3218
3219 Operand m = load_lds_size_m0(bld);
3220
3221 bool large_ds_read = bld.program->chip_class >= GFX7;
3222 bool usable_read2 = bld.program->chip_class >= GFX7;
3223
3224 bool read2 = false;
3225 unsigned size = 0;
3226 aco_opcode op;
3227 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3228 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3229 size = 16;
3230 op = aco_opcode::ds_read_b128;
3231 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3232 size = 16;
3233 read2 = true;
3234 op = aco_opcode::ds_read2_b64;
3235 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3236 size = 12;
3237 op = aco_opcode::ds_read_b96;
3238 } else if (bytes_needed >= 8 && align % 8 == 0) {
3239 size = 8;
3240 op = aco_opcode::ds_read_b64;
3241 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3242 size = 8;
3243 read2 = true;
3244 op = aco_opcode::ds_read2_b32;
3245 } else if (bytes_needed >= 4 && align % 4 == 0) {
3246 size = 4;
3247 op = aco_opcode::ds_read_b32;
3248 } else if (bytes_needed >= 2 && align % 2 == 0) {
3249 size = 2;
3250 op = aco_opcode::ds_read_u16;
3251 } else {
3252 size = 1;
3253 op = aco_opcode::ds_read_u8;
3254 }
3255
3256 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3257 if (const_offset >= max_offset_plus_one) {
3258 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3259 const_offset %= max_offset_plus_one;
3260 }
3261
3262 if (read2)
3263 const_offset /= (size / 2u);
3264
3265 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3266 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3267 Instruction *instr;
3268 if (read2)
3269 instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3270 else
3271 instr = bld.ds(op, Definition(val), offset, m, const_offset);
3272 static_cast<DS_instruction *>(instr)->sync = info->sync;
3273
3274 if (size < 4)
3275 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3276
3277 return val;
3278 }
3279
3280 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3281
3282 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3283 Temp offset, unsigned bytes_needed,
3284 unsigned align, unsigned const_offset,
3285 Temp dst_hint)
3286 {
3287 unsigned size = 0;
3288 aco_opcode op;
3289 if (bytes_needed <= 4) {
3290 size = 1;
3291 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3292 } else if (bytes_needed <= 8) {
3293 size = 2;
3294 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3295 } else if (bytes_needed <= 16) {
3296 size = 4;
3297 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3298 } else if (bytes_needed <= 32) {
3299 size = 8;
3300 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3301 } else {
3302 size = 16;
3303 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3304 }
3305 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3306 if (info->resource.id()) {
3307 load->operands[0] = Operand(info->resource);
3308 load->operands[1] = Operand(offset);
3309 } else {
3310 load->operands[0] = Operand(offset);
3311 load->operands[1] = Operand(0u);
3312 }
3313 RegClass rc(RegType::sgpr, size);
3314 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3315 load->definitions[0] = Definition(val);
3316 load->glc = info->glc;
3317 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3318 load->sync = info->sync;
3319 bld.insert(std::move(load));
3320 return val;
3321 }
3322
3323 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3324
3325 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3326 Temp offset, unsigned bytes_needed,
3327 unsigned align_, unsigned const_offset,
3328 Temp dst_hint)
3329 {
3330 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3331 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3332
3333 if (info->soffset.id()) {
3334 if (soffset.isTemp())
3335 vaddr = bld.copy(bld.def(v1), soffset);
3336 soffset = Operand(info->soffset);
3337 }
3338
3339 unsigned bytes_size = 0;
3340 aco_opcode op;
3341 if (bytes_needed == 1 || align_ % 2) {
3342 bytes_size = 1;
3343 op = aco_opcode::buffer_load_ubyte;
3344 } else if (bytes_needed == 2 || align_ % 4) {
3345 bytes_size = 2;
3346 op = aco_opcode::buffer_load_ushort;
3347 } else if (bytes_needed <= 4) {
3348 bytes_size = 4;
3349 op = aco_opcode::buffer_load_dword;
3350 } else if (bytes_needed <= 8) {
3351 bytes_size = 8;
3352 op = aco_opcode::buffer_load_dwordx2;
3353 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3354 bytes_size = 12;
3355 op = aco_opcode::buffer_load_dwordx3;
3356 } else {
3357 bytes_size = 16;
3358 op = aco_opcode::buffer_load_dwordx4;
3359 }
3360 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3361 mubuf->operands[0] = Operand(info->resource);
3362 mubuf->operands[1] = vaddr;
3363 mubuf->operands[2] = soffset;
3364 mubuf->offen = (offset.type() == RegType::vgpr);
3365 mubuf->glc = info->glc;
3366 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3367 mubuf->sync = info->sync;
3368 mubuf->offset = const_offset;
3369 mubuf->swizzled = info->swizzle_component_size != 0;
3370 RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
3371 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3372 mubuf->definitions[0] = Definition(val);
3373 bld.insert(std::move(mubuf));
3374
3375 return val;
3376 }
3377
3378 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3379 static auto emit_scratch_load = emit_load<mubuf_load_callback, false, true, 4096>;
3380
3381 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3382 {
3383 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3384 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3385
3386 if (addr.type() == RegType::vgpr)
3387 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3388 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3389 }
3390
3391 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3392 Temp offset, unsigned bytes_needed,
3393 unsigned align_, unsigned const_offset,
3394 Temp dst_hint)
3395 {
3396 unsigned bytes_size = 0;
3397 bool mubuf = bld.program->chip_class == GFX6;
3398 bool global = bld.program->chip_class >= GFX9;
3399 aco_opcode op;
3400 if (bytes_needed == 1) {
3401 bytes_size = 1;
3402 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3403 } else if (bytes_needed == 2) {
3404 bytes_size = 2;
3405 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3406 } else if (bytes_needed <= 4) {
3407 bytes_size = 4;
3408 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3409 } else if (bytes_needed <= 8) {
3410 bytes_size = 8;
3411 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3412 } else if (bytes_needed <= 12 && !mubuf) {
3413 bytes_size = 12;
3414 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3415 } else {
3416 bytes_size = 16;
3417 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3418 }
3419 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3420 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3421 if (mubuf) {
3422 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3423 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3424 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3425 mubuf->operands[2] = Operand(0u);
3426 mubuf->glc = info->glc;
3427 mubuf->dlc = false;
3428 mubuf->offset = 0;
3429 mubuf->addr64 = offset.type() == RegType::vgpr;
3430 mubuf->disable_wqm = false;
3431 mubuf->sync = info->sync;
3432 mubuf->definitions[0] = Definition(val);
3433 bld.insert(std::move(mubuf));
3434 } else {
3435 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3436
3437 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3438 flat->operands[0] = Operand(offset);
3439 flat->operands[1] = Operand(s1);
3440 flat->glc = info->glc;
3441 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3442 flat->sync = info->sync;
3443 flat->offset = 0u;
3444 flat->definitions[0] = Definition(val);
3445 bld.insert(std::move(flat));
3446 }
3447
3448 return val;
3449 }
3450
3451 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3452
3453 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3454 Temp address, unsigned base_offset, unsigned align)
3455 {
3456 assert(util_is_power_of_two_nonzero(align));
3457
3458 Builder bld(ctx->program, ctx->block);
3459
3460 unsigned num_components = dst.bytes() / elem_size_bytes;
3461 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3462 info.align_mul = align;
3463 info.align_offset = 0;
3464 info.sync = memory_sync_info(storage_shared);
3465 info.const_offset = base_offset;
3466 emit_lds_load(ctx, bld, &info);
3467
3468 return dst;
3469 }
3470
3471 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3472 {
3473 if (!count)
3474 return;
3475
3476 Builder bld(ctx->program, ctx->block);
3477
3478 ASSERTED bool is_subdword = false;
3479 for (unsigned i = 0; i < count; i++)
3480 is_subdword |= offsets[i] % 4;
3481 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3482 assert(!is_subdword || dst_type == RegType::vgpr);
3483
3484 /* count == 1 fast path */
3485 if (count == 1) {
3486 if (dst_type == RegType::sgpr)
3487 dst[0] = bld.as_uniform(src);
3488 else
3489 dst[0] = as_vgpr(ctx, src);
3490 return;
3491 }
3492
3493 for (unsigned i = 0; i < count - 1; i++)
3494 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3495 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3496
3497 if (is_subdword && src.type() == RegType::sgpr) {
3498 src = as_vgpr(ctx, src);
3499 } else {
3500 /* use allocated_vec if possible */
3501 auto it = ctx->allocated_vec.find(src.id());
3502 if (it != ctx->allocated_vec.end()) {
3503 if (!it->second[0].id())
3504 goto split;
3505 unsigned elem_size = it->second[0].bytes();
3506 assert(src.bytes() % elem_size == 0);
3507
3508 for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
3509 if (!it->second[i].id())
3510 goto split;
3511 }
3512
3513 for (unsigned i = 0; i < count; i++) {
3514 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3515 goto split;
3516 }
3517
3518 for (unsigned i = 0; i < count; i++) {
3519 unsigned start_idx = offsets[i] / elem_size;
3520 unsigned op_count = dst[i].bytes() / elem_size;
3521 if (op_count == 1) {
3522 if (dst_type == RegType::sgpr)
3523 dst[i] = bld.as_uniform(it->second[start_idx]);
3524 else
3525 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3526 continue;
3527 }
3528
3529 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3530 for (unsigned j = 0; j < op_count; j++) {
3531 Temp tmp = it->second[start_idx + j];
3532 if (dst_type == RegType::sgpr)
3533 tmp = bld.as_uniform(tmp);
3534 vec->operands[j] = Operand(tmp);
3535 }
3536 vec->definitions[0] = Definition(dst[i]);
3537 bld.insert(std::move(vec));
3538 }
3539 return;
3540 }
3541 }
3542
3543 split:
3544
3545 if (dst_type == RegType::sgpr)
3546 src = bld.as_uniform(src);
3547
3548 /* just split it */
3549 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3550 split->operands[0] = Operand(src);
3551 for (unsigned i = 0; i < count; i++)
3552 split->definitions[i] = Definition(dst[i]);
3553 bld.insert(std::move(split));
3554 }
3555
3556 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3557 int *start, int *count)
3558 {
3559 unsigned start_elem = ffs(todo_mask) - 1;
3560 bool skip = !(mask & (1 << start_elem));
3561 if (skip)
3562 mask = ~mask & todo_mask;
3563
3564 mask &= todo_mask;
3565
3566 u_bit_scan_consecutive_range(&mask, start, count);
3567
3568 return !skip;
3569 }
3570
3571 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3572 {
3573 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3574 }
3575
3576 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3577 Temp address, unsigned base_offset, unsigned align)
3578 {
3579 assert(util_is_power_of_two_nonzero(align));
3580 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3581
3582 Builder bld(ctx->program, ctx->block);
3583 bool large_ds_write = ctx->options->chip_class >= GFX7;
3584 bool usable_write2 = ctx->options->chip_class >= GFX7;
3585
3586 unsigned write_count = 0;
3587 Temp write_datas[32];
3588 unsigned offsets[32];
3589 aco_opcode opcodes[32];
3590
3591 wrmask = widen_mask(wrmask, elem_size_bytes);
3592
3593 uint32_t todo = u_bit_consecutive(0, data.bytes());
3594 while (todo) {
3595 int offset, bytes;
3596 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3597 offsets[write_count] = offset;
3598 opcodes[write_count] = aco_opcode::num_opcodes;
3599 write_count++;
3600 advance_write_mask(&todo, offset, bytes);
3601 continue;
3602 }
3603
3604 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3605 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3606 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3607 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3608
3609 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3610 aco_opcode op = aco_opcode::num_opcodes;
3611 if (bytes >= 16 && aligned16 && large_ds_write) {
3612 op = aco_opcode::ds_write_b128;
3613 bytes = 16;
3614 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3615 op = aco_opcode::ds_write_b96;
3616 bytes = 12;
3617 } else if (bytes >= 8 && aligned8) {
3618 op = aco_opcode::ds_write_b64;
3619 bytes = 8;
3620 } else if (bytes >= 4 && aligned4) {
3621 op = aco_opcode::ds_write_b32;
3622 bytes = 4;
3623 } else if (bytes >= 2 && aligned2) {
3624 op = aco_opcode::ds_write_b16;
3625 bytes = 2;
3626 } else if (bytes >= 1) {
3627 op = aco_opcode::ds_write_b8;
3628 bytes = 1;
3629 } else {
3630 assert(false);
3631 }
3632
3633 offsets[write_count] = offset;
3634 opcodes[write_count] = op;
3635 write_count++;
3636 advance_write_mask(&todo, offset, bytes);
3637 }
3638
3639 Operand m = load_lds_size_m0(bld);
3640
3641 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3642
3643 for (unsigned i = 0; i < write_count; i++) {
3644 aco_opcode op = opcodes[i];
3645 if (op == aco_opcode::num_opcodes)
3646 continue;
3647
3648 Temp data = write_datas[i];
3649
3650 unsigned second = write_count;
3651 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3652 for (second = i + 1; second < write_count; second++) {
3653 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3654 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3655 opcodes[second] = aco_opcode::num_opcodes;
3656 break;
3657 }
3658 }
3659 }
3660
3661 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3662 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3663
3664 unsigned inline_offset = base_offset + offsets[i];
3665 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3666 Temp address_offset = address;
3667 if (inline_offset > max_offset) {
3668 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3669 inline_offset = offsets[i];
3670 }
3671 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3672
3673 Instruction *instr;
3674 if (write2) {
3675 Temp second_data = write_datas[second];
3676 inline_offset /= data.bytes();
3677 instr = bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3678 } else {
3679 instr = bld.ds(op, address_offset, data, m, inline_offset);
3680 }
3681 static_cast<DS_instruction *>(instr)->sync =
3682 memory_sync_info(storage_shared);
3683 }
3684 }
3685
3686 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3687 {
3688 unsigned align = 16;
3689 if (const_offset)
3690 align = std::min(align, 1u << (ffs(const_offset) - 1));
3691
3692 return align;
3693 }
3694
3695
3696 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3697 {
3698 switch (bytes) {
3699 case 1:
3700 assert(!smem);
3701 return aco_opcode::buffer_store_byte;
3702 case 2:
3703 assert(!smem);
3704 return aco_opcode::buffer_store_short;
3705 case 4:
3706 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3707 case 8:
3708 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3709 case 12:
3710 assert(!smem);
3711 return aco_opcode::buffer_store_dwordx3;
3712 case 16:
3713 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3714 }
3715 unreachable("Unexpected store size");
3716 return aco_opcode::num_opcodes;
3717 }
3718
3719 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3720 Temp data, unsigned writemask, int swizzle_element_size,
3721 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3722 {
3723 unsigned write_count_with_skips = 0;
3724 bool skips[16];
3725
3726 /* determine how to split the data */
3727 unsigned todo = u_bit_consecutive(0, data.bytes());
3728 while (todo) {
3729 int offset, bytes;
3730 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3731 offsets[write_count_with_skips] = offset;
3732 if (skips[write_count_with_skips]) {
3733 advance_write_mask(&todo, offset, bytes);
3734 write_count_with_skips++;
3735 continue;
3736 }
3737
3738 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3739 * larger than swizzle_element_size */
3740 bytes = MIN2(bytes, swizzle_element_size);
3741 if (bytes % 4)
3742 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3743
3744 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3745 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3746 bytes = 8;
3747
3748 /* dword or larger stores have to be dword-aligned */
3749 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3750 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3751 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3752 if (!dword_aligned)
3753 bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3754
3755 advance_write_mask(&todo, offset, bytes);
3756 write_count_with_skips++;
3757 }
3758
3759 /* actually split data */
3760 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3761
3762 /* remove skips */
3763 for (unsigned i = 0; i < write_count_with_skips; i++) {
3764 if (skips[i])
3765 continue;
3766 write_datas[*write_count] = write_datas[i];
3767 offsets[*write_count] = offsets[i];
3768 (*write_count)++;
3769 }
3770 }
3771
3772 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3773 unsigned split_cnt = 0u, Temp dst = Temp())
3774 {
3775 Builder bld(ctx->program, ctx->block);
3776 unsigned dword_size = elem_size_bytes / 4;
3777
3778 if (!dst.id())
3779 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3780
3781 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3782 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3783 instr->definitions[0] = Definition(dst);
3784
3785 for (unsigned i = 0; i < cnt; ++i) {
3786 if (arr[i].id()) {
3787 assert(arr[i].size() == dword_size);
3788 allocated_vec[i] = arr[i];
3789 instr->operands[i] = Operand(arr[i]);
3790 } else {
3791 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3792 allocated_vec[i] = zero;
3793 instr->operands[i] = Operand(zero);
3794 }
3795 }
3796
3797 bld.insert(std::move(instr));
3798
3799 if (split_cnt)
3800 emit_split_vector(ctx, dst, split_cnt);
3801 else
3802 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3803
3804 return dst;
3805 }
3806
3807 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3808 {
3809 if (const_offset >= 4096) {
3810 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3811 const_offset %= 4096u;
3812
3813 if (!voffset.id())
3814 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3815 else if (unlikely(voffset.regClass() == s1))
3816 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3817 else if (likely(voffset.regClass() == v1))
3818 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3819 else
3820 unreachable("Unsupported register class of voffset");
3821 }
3822
3823 return const_offset;
3824 }
3825
3826 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3827 unsigned const_offset = 0u, memory_sync_info sync=memory_sync_info(),
3828 bool slc = false, bool swizzled = false)
3829 {
3830 assert(vdata.id());
3831 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3832 assert(vdata.size() >= 1 && vdata.size() <= 4);
3833
3834 Builder bld(ctx->program, ctx->block);
3835 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
3836 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3837
3838 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3839 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3840 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3841 /* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled,
3842 /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true,
3843 /* dlc*/ false, /* slc */ slc);
3844
3845 static_cast<MUBUF_instruction *>(r.instr)->sync = sync;
3846 }
3847
3848 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3849 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3850 bool allow_combining = true, memory_sync_info sync=memory_sync_info(), bool slc = false)
3851 {
3852 Builder bld(ctx->program, ctx->block);
3853 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3854 assert(write_mask);
3855 write_mask = widen_mask(write_mask, elem_size_bytes);
3856
3857 unsigned write_count = 0;
3858 Temp write_datas[32];
3859 unsigned offsets[32];
3860 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
3861 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
3862
3863 for (unsigned i = 0; i < write_count; i++) {
3864 unsigned const_offset = offsets[i] + base_const_offset;
3865 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, sync, slc, !allow_combining);
3866 }
3867 }
3868
3869 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3870 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3871 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3872 {
3873 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3874 assert((num_components * elem_size_bytes) == dst.bytes());
3875 assert(!!stride != allow_combining);
3876
3877 Builder bld(ctx->program, ctx->block);
3878
3879 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
3880 info.component_stride = allow_combining ? 0 : stride;
3881 info.glc = true;
3882 info.swizzle_component_size = allow_combining ? 0 : 4;
3883 info.align_mul = MIN2(elem_size_bytes, 4);
3884 info.align_offset = 0;
3885 info.soffset = soffset;
3886 info.const_offset = base_const_offset;
3887 emit_mubuf_load(ctx, bld, &info);
3888 }
3889
3890 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3891 {
3892 Builder bld(ctx->program, ctx->block);
3893 Temp offset = base_offset.first;
3894 unsigned const_offset = base_offset.second;
3895
3896 if (!nir_src_is_const(*off_src)) {
3897 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3898 Temp with_stride;
3899
3900 /* Calculate indirect offset with stride */
3901 if (likely(indirect_offset_arg.regClass() == v1))
3902 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
3903 else if (indirect_offset_arg.regClass() == s1)
3904 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3905 else
3906 unreachable("Unsupported register class of indirect offset");
3907
3908 /* Add to the supplied base offset */
3909 if (offset.id() == 0)
3910 offset = with_stride;
3911 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3912 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3913 else if (offset.size() == 1 && with_stride.size() == 1)
3914 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3915 else
3916 unreachable("Unsupported register class of indirect offset");
3917 } else {
3918 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3919 const_offset += const_offset_arg * stride;
3920 }
3921
3922 return std::make_pair(offset, const_offset);
3923 }
3924
3925 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3926 {
3927 Builder bld(ctx->program, ctx->block);
3928 Temp offset;
3929
3930 if (off1.first.id() && off2.first.id()) {
3931 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3932 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3933 else if (off1.first.size() == 1 && off2.first.size() == 1)
3934 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3935 else
3936 unreachable("Unsupported register class of indirect offset");
3937 } else {
3938 offset = off1.first.id() ? off1.first : off2.first;
3939 }
3940
3941 return std::make_pair(offset, off1.second + off2.second);
3942 }
3943
3944 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3945 {
3946 Builder bld(ctx->program, ctx->block);
3947 unsigned const_offset = offs.second * multiplier;
3948
3949 if (!offs.first.id())
3950 return std::make_pair(offs.first, const_offset);
3951
3952 Temp offset = unlikely(offs.first.regClass() == s1)
3953 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3954 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
3955
3956 return std::make_pair(offset, const_offset);
3957 }
3958
3959 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3960 {
3961 Builder bld(ctx->program, ctx->block);
3962
3963 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3964 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3965 /* component is in bytes */
3966 const_offset += nir_intrinsic_component(instr) * component_stride;
3967
3968 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3969 nir_src *off_src = nir_get_io_offset_src(instr);
3970 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3971 }
3972
3973 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3974 {
3975 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3976 }
3977
3978 Temp get_tess_rel_patch_id(isel_context *ctx)
3979 {
3980 Builder bld(ctx->program, ctx->block);
3981
3982 switch (ctx->shader->info.stage) {
3983 case MESA_SHADER_TESS_CTRL:
3984 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3985 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3986 case MESA_SHADER_TESS_EVAL:
3987 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3988 default:
3989 unreachable("Unsupported stage in get_tess_rel_patch_id");
3990 }
3991 }
3992
3993 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3994 {
3995 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3996 Builder bld(ctx->program, ctx->block);
3997
3998 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3999 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4000
4001 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4002
4003 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4004 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4005
4006 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4007 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4008 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4009
4010 return offset_mul(ctx, offs, 4u);
4011 }
4012
4013 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4014 {
4015 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4016 Builder bld(ctx->program, ctx->block);
4017
4018 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4019 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4020 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4021 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4022
4023 std::pair<Temp, unsigned> offs = instr
4024 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4025 : std::make_pair(Temp(), 0u);
4026
4027 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4028 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4029
4030 if (per_vertex) {
4031 assert(instr);
4032
4033 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4034 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4035
4036 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4037 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4038 } else {
4039 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4040 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4041 }
4042
4043 return offs;
4044 }
4045
4046 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4047 {
4048 Builder bld(ctx->program, ctx->block);
4049
4050 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4051 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4052
4053 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4054
4055 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4056 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4057 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4058
4059 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4060 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4061
4062 return offs;
4063 }
4064
4065 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4066 {
4067 Builder bld(ctx->program, ctx->block);
4068
4069 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4070 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4071 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4072 unsigned attr_stride = ctx->tcs_num_patches;
4073
4074 std::pair<Temp, unsigned> offs = instr
4075 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4076 : std::make_pair(Temp(), 0u);
4077
4078 if (const_base_offset)
4079 offs.second += const_base_offset * attr_stride;
4080
4081 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4082 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4083 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4084
4085 return offs;
4086 }
4087
4088 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4089 {
4090 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4091
4092 if (mask == 0)
4093 return false;
4094
4095 unsigned drv_loc = nir_intrinsic_base(instr);
4096 nir_src *off_src = nir_get_io_offset_src(instr);
4097
4098 if (!nir_src_is_const(*off_src)) {
4099 *indirect = true;
4100 return false;
4101 }
4102
4103 *indirect = false;
4104 uint64_t slot = per_vertex
4105 ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
4106 : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
4107 return (((uint64_t) 1) << slot) & mask;
4108 }
4109
4110 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4111 {
4112 unsigned write_mask = nir_intrinsic_write_mask(instr);
4113 unsigned component = nir_intrinsic_component(instr);
4114 unsigned idx = nir_intrinsic_base(instr) + component;
4115
4116 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4117 if (off_instr->type != nir_instr_type_load_const)
4118 return false;
4119
4120 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4121 idx += nir_src_as_uint(instr->src[1]) * 4u;
4122
4123 if (instr->src[0].ssa->bit_size == 64)
4124 write_mask = widen_mask(write_mask, 2);
4125
4126 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4127
4128 for (unsigned i = 0; i < 8; ++i) {
4129 if (write_mask & (1 << i)) {
4130 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4131 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4132 }
4133 idx++;
4134 }
4135
4136 return true;
4137 }
4138
4139 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4140 {
4141 /* Only TCS per-vertex inputs are supported by this function.
4142 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4143 */
4144 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4145 return false;
4146
4147 nir_src *off_src = nir_get_io_offset_src(instr);
4148 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4149 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4150 bool can_use_temps = nir_src_is_const(*off_src) &&
4151 vertex_index_instr->type == nir_instr_type_intrinsic &&
4152 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4153
4154 if (!can_use_temps)
4155 return false;
4156
4157 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4158 Temp *src = &ctx->inputs.temps[idx];
4159 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4160
4161 return true;
4162 }
4163
4164 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4165 {
4166 Builder bld(ctx->program, ctx->block);
4167
4168 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4169 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4170 bool indirect_write;
4171 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4172 if (temp_only_input && !indirect_write)
4173 return;
4174 }
4175
4176 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4177 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4178 unsigned write_mask = nir_intrinsic_write_mask(instr);
4179 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4180
4181 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4182 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4183 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4184 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4185 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, memory_sync_info(), true);
4186 } else {
4187 Temp lds_base;
4188
4189 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4190 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4191 unsigned itemsize = ctx->stage == vertex_geometry_gs
4192 ? ctx->program->info->vs.es_info.esgs_itemsize
4193 : ctx->program->info->tes.es_info.esgs_itemsize;
4194 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4195 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4196 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4197 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4198 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4199 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4200 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4201 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4202 */
4203 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4204 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4205 } else {
4206 unreachable("Invalid LS or ES stage");
4207 }
4208
4209 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4210 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4211 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4212 }
4213 }
4214
4215 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4216 {
4217 if (per_vertex)
4218 return false;
4219
4220 unsigned off = nir_intrinsic_base(instr) * 4u;
4221 return off == ctx->tcs_tess_lvl_out_loc ||
4222 off == ctx->tcs_tess_lvl_in_loc;
4223
4224 }
4225
4226 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4227 {
4228 uint64_t mask = per_vertex
4229 ? ctx->program->info->tcs.tes_inputs_read
4230 : ctx->program->info->tcs.tes_patch_inputs_read;
4231
4232 bool indirect_write = false;
4233 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4234 return indirect_write || output_read_by_tes;
4235 }
4236
4237 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4238 {
4239 uint64_t mask = per_vertex
4240 ? ctx->shader->info.outputs_read
4241 : ctx->shader->info.patch_outputs_read;
4242
4243 bool indirect_write = false;
4244 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4245 return indirect_write || output_read;
4246 }
4247
4248 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4249 {
4250 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4251 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4252
4253 Builder bld(ctx->program, ctx->block);
4254
4255 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4256 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4257 unsigned write_mask = nir_intrinsic_write_mask(instr);
4258
4259 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4260 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4261 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4262
4263 if (write_to_vmem) {
4264 std::pair<Temp, unsigned> vmem_offs = per_vertex
4265 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4266 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4267
4268 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4269 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4270 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, memory_sync_info(storage_vmem_output));
4271 }
4272
4273 if (write_to_lds) {
4274 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4275 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4276 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4277 }
4278 }
4279
4280 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4281 {
4282 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4283 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4284
4285 Builder bld(ctx->program, ctx->block);
4286
4287 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4288 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4289 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4290 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4291
4292 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4293 }
4294
4295 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4296 {
4297 if (ctx->stage == vertex_vs ||
4298 ctx->stage == tess_eval_vs ||
4299 ctx->stage == fragment_fs ||
4300 ctx->stage == ngg_vertex_gs ||
4301 ctx->stage == ngg_tess_eval_gs ||
4302 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4303 bool stored_to_temps = store_output_to_temps(ctx, instr);
4304 if (!stored_to_temps) {
4305 isel_err(instr->src[1].ssa->parent_instr, "Unimplemented output offset instruction");
4306 abort();
4307 }
4308 } else if (ctx->stage == vertex_es ||
4309 ctx->stage == vertex_ls ||
4310 ctx->stage == tess_eval_es ||
4311 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4312 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4313 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4314 visit_store_ls_or_es_output(ctx, instr);
4315 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4316 visit_store_tcs_output(ctx, instr, false);
4317 } else {
4318 unreachable("Shader stage not implemented");
4319 }
4320 }
4321
4322 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4323 {
4324 visit_load_tcs_output(ctx, instr, false);
4325 }
4326
4327 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4328 {
4329 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4330 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4331
4332 Builder bld(ctx->program, ctx->block);
4333
4334 if (dst.regClass() == v2b) {
4335 if (ctx->program->has_16bank_lds) {
4336 assert(ctx->options->chip_class <= GFX8);
4337 Builder::Result interp_p1 =
4338 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4339 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4340 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4341 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4342 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4343 bld.m0(prim_mask), interp_p1, idx, component);
4344 } else {
4345 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4346
4347 if (ctx->options->chip_class == GFX8)
4348 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4349
4350 Builder::Result interp_p1 =
4351 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4352 coord1, bld.m0(prim_mask), idx, component);
4353 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4354 interp_p1, idx, component);
4355 }
4356 } else {
4357 Builder::Result interp_p1 =
4358 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4359 bld.m0(prim_mask), idx, component);
4360
4361 if (ctx->program->has_16bank_lds)
4362 interp_p1.instr->operands[0].setLateKill(true);
4363
4364 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4365 bld.m0(prim_mask), interp_p1, idx, component);
4366 }
4367 }
4368
4369 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4370 {
4371 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4372 for (unsigned i = 0; i < num_components; i++)
4373 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4374 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4375 assert(num_components == 4);
4376 Builder bld(ctx->program, ctx->block);
4377 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4378 }
4379
4380 for (Operand& op : vec->operands)
4381 op = op.isUndefined() ? Operand(0u) : op;
4382
4383 vec->definitions[0] = Definition(dst);
4384 ctx->block->instructions.emplace_back(std::move(vec));
4385 emit_split_vector(ctx, dst, num_components);
4386 return;
4387 }
4388
4389 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4390 {
4391 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4392 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4393 unsigned idx = nir_intrinsic_base(instr);
4394 unsigned component = nir_intrinsic_component(instr);
4395 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4396
4397 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4398 if (offset) {
4399 assert(offset->u32 == 0);
4400 } else {
4401 /* the lower 15bit of the prim_mask contain the offset into LDS
4402 * while the upper bits contain the number of prims */
4403 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4404 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4405 Builder bld(ctx->program, ctx->block);
4406 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4407 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4408 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4409 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4410 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4411 }
4412
4413 if (instr->dest.ssa.num_components == 1) {
4414 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4415 } else {
4416 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4417 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4418 {
4419 Temp tmp = {ctx->program->allocateId(), v1};
4420 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4421 vec->operands[i] = Operand(tmp);
4422 }
4423 vec->definitions[0] = Definition(dst);
4424 ctx->block->instructions.emplace_back(std::move(vec));
4425 }
4426 }
4427
4428 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4429 unsigned offset, unsigned stride, unsigned channels)
4430 {
4431 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4432 if (vtx_info->chan_byte_size != 4 && channels == 3)
4433 return false;
4434 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4435 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4436 }
4437
4438 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4439 unsigned offset, unsigned stride, unsigned *channels)
4440 {
4441 if (!vtx_info->chan_byte_size) {
4442 *channels = vtx_info->num_channels;
4443 return vtx_info->chan_format;
4444 }
4445
4446 unsigned num_channels = *channels;
4447 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4448 unsigned new_channels = num_channels + 1;
4449 /* first, assume more loads is worse and try using a larger data format */
4450 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4451 new_channels++;
4452 /* don't make the attribute potentially out-of-bounds */
4453 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4454 new_channels = 5;
4455 }
4456
4457 if (new_channels == 5) {
4458 /* then try decreasing load size (at the cost of more loads) */
4459 new_channels = *channels;
4460 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4461 new_channels--;
4462 }
4463
4464 if (new_channels < *channels)
4465 *channels = new_channels;
4466 num_channels = new_channels;
4467 }
4468
4469 switch (vtx_info->chan_format) {
4470 case V_008F0C_BUF_DATA_FORMAT_8:
4471 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4472 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4473 case V_008F0C_BUF_DATA_FORMAT_16:
4474 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4475 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4476 case V_008F0C_BUF_DATA_FORMAT_32:
4477 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4478 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4479 }
4480 unreachable("shouldn't reach here");
4481 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4482 }
4483
4484 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4485 * so we may need to fix it up. */
4486 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4487 {
4488 Builder bld(ctx->program, ctx->block);
4489
4490 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4491 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4492
4493 /* For the integer-like cases, do a natural sign extension.
4494 *
4495 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4496 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4497 * exponent.
4498 */
4499 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4500 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4501
4502 /* Convert back to the right type. */
4503 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4504 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4505 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4506 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4507 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4508 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4509 }
4510
4511 return alpha;
4512 }
4513
4514 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4515 {
4516 Builder bld(ctx->program, ctx->block);
4517 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4518 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4519
4520 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4521 if (off_instr->type != nir_instr_type_load_const) {
4522 isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
4523 }
4524 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4525
4526 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4527
4528 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4529 unsigned component = nir_intrinsic_component(instr);
4530 unsigned bitsize = instr->dest.ssa.bit_size;
4531 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4532 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4533 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4534 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4535
4536 unsigned dfmt = attrib_format & 0xf;
4537 unsigned nfmt = (attrib_format >> 4) & 0x7;
4538 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4539
4540 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4541 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4542 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4543 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4544 if (post_shuffle)
4545 num_channels = MAX2(num_channels, 3);
4546
4547 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4548 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4549
4550 Temp index;
4551 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4552 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4553 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4554 if (divisor) {
4555 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4556 if (divisor != 1) {
4557 Temp divided = bld.tmp(v1);
4558 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4559 index = bld.vadd32(bld.def(v1), start_instance, divided);
4560 } else {
4561 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4562 }
4563 } else {
4564 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4565 }
4566 } else {
4567 index = bld.vadd32(bld.def(v1),
4568 get_arg(ctx, ctx->args->ac.base_vertex),
4569 get_arg(ctx, ctx->args->ac.vertex_id));
4570 }
4571
4572 Temp channels[num_channels];
4573 unsigned channel_start = 0;
4574 bool direct_fetch = false;
4575
4576 /* skip unused channels at the start */
4577 if (vtx_info->chan_byte_size && !post_shuffle) {
4578 channel_start = ffs(mask) - 1;
4579 for (unsigned i = 0; i < channel_start; i++)
4580 channels[i] = Temp(0, s1);
4581 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4582 num_channels = 3 - (ffs(mask) - 1);
4583 }
4584
4585 /* load channels */
4586 while (channel_start < num_channels) {
4587 unsigned fetch_component = num_channels - channel_start;
4588 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4589 bool expanded = false;
4590
4591 /* use MUBUF when possible to avoid possible alignment issues */
4592 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4593 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4594 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4595 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4596 vtx_info->chan_byte_size == 4;
4597 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4598 if (!use_mubuf) {
4599 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4600 } else {
4601 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4602 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4603 fetch_component = 4;
4604 expanded = true;
4605 }
4606 }
4607
4608 unsigned fetch_bytes = fetch_component * bitsize / 8;
4609
4610 Temp fetch_index = index;
4611 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4612 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4613 fetch_offset = fetch_offset % attrib_stride;
4614 }
4615
4616 Operand soffset(0u);
4617 if (fetch_offset >= 4096) {
4618 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4619 fetch_offset %= 4096;
4620 }
4621
4622 aco_opcode opcode;
4623 switch (fetch_bytes) {
4624 case 2:
4625 assert(!use_mubuf && bitsize == 16);
4626 opcode = aco_opcode::tbuffer_load_format_d16_x;
4627 break;
4628 case 4:
4629 if (bitsize == 16) {
4630 assert(!use_mubuf);
4631 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4632 } else {
4633 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4634 }
4635 break;
4636 case 6:
4637 assert(!use_mubuf && bitsize == 16);
4638 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4639 break;
4640 case 8:
4641 if (bitsize == 16) {
4642 assert(!use_mubuf);
4643 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4644 } else {
4645 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4646 }
4647 break;
4648 case 12:
4649 assert(ctx->options->chip_class >= GFX7 ||
4650 (!use_mubuf && ctx->options->chip_class == GFX6));
4651 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4652 break;
4653 case 16:
4654 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4655 break;
4656 default:
4657 unreachable("Unimplemented load_input vector size");
4658 }
4659
4660 Temp fetch_dst;
4661 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4662 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4663 num_channels <= 3)) {
4664 direct_fetch = true;
4665 fetch_dst = dst;
4666 } else {
4667 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4668 }
4669
4670 if (use_mubuf) {
4671 bld.mubuf(opcode,
4672 Definition(fetch_dst), list, fetch_index, soffset,
4673 fetch_offset, false, false, true).instr;
4674 } else {
4675 bld.mtbuf(opcode,
4676 Definition(fetch_dst), list, fetch_index, soffset,
4677 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4678 }
4679
4680 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4681
4682 if (fetch_component == 1) {
4683 channels[channel_start] = fetch_dst;
4684 } else {
4685 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4686 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4687 bitsize == 16 ? v2b : v1);
4688 }
4689
4690 channel_start += fetch_component;
4691 }
4692
4693 if (!direct_fetch) {
4694 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4695 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4696
4697 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4698 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4699 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4700
4701 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4702 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4703 unsigned num_temp = 0;
4704 for (unsigned i = 0; i < dst.size(); i++) {
4705 unsigned idx = i + component;
4706 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4707 Temp channel = channels[swizzle[idx]];
4708 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4709 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4710 vec->operands[i] = Operand(channel);
4711
4712 num_temp++;
4713 elems[i] = channel;
4714 } else if (is_float && idx == 3) {
4715 vec->operands[i] = Operand(0x3f800000u);
4716 } else if (!is_float && idx == 3) {
4717 vec->operands[i] = Operand(1u);
4718 } else {
4719 vec->operands[i] = Operand(0u);
4720 }
4721 }
4722 vec->definitions[0] = Definition(dst);
4723 ctx->block->instructions.emplace_back(std::move(vec));
4724 emit_split_vector(ctx, dst, dst.size());
4725
4726 if (num_temp == dst.size())
4727 ctx->allocated_vec.emplace(dst.id(), elems);
4728 }
4729 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4730 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4731 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4732 if (off_instr->type != nir_instr_type_load_const ||
4733 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4734 isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
4735 }
4736
4737 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4738 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4739 if (offset) {
4740 assert(offset->u32 == 0);
4741 } else {
4742 /* the lower 15bit of the prim_mask contain the offset into LDS
4743 * while the upper bits contain the number of prims */
4744 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4745 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4746 Builder bld(ctx->program, ctx->block);
4747 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4748 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4749 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4750 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4751 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4752 }
4753
4754 unsigned idx = nir_intrinsic_base(instr);
4755 unsigned component = nir_intrinsic_component(instr);
4756 unsigned vertex_id = 2; /* P0 */
4757
4758 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4759 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4760 switch (src0->u32) {
4761 case 0:
4762 vertex_id = 2; /* P0 */
4763 break;
4764 case 1:
4765 vertex_id = 0; /* P10 */
4766 break;
4767 case 2:
4768 vertex_id = 1; /* P20 */
4769 break;
4770 default:
4771 unreachable("invalid vertex index");
4772 }
4773 }
4774
4775 if (dst.size() == 1) {
4776 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4777 } else {
4778 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4779 for (unsigned i = 0; i < dst.size(); i++)
4780 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4781 vec->definitions[0] = Definition(dst);
4782 bld.insert(std::move(vec));
4783 }
4784
4785 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4786 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4787 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4788 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4789 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4790
4791 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4792 } else {
4793 unreachable("Shader stage not implemented");
4794 }
4795 }
4796
4797 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4798 {
4799 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4800
4801 Builder bld(ctx->program, ctx->block);
4802 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4803 Temp vertex_offset;
4804
4805 if (!nir_src_is_const(*vertex_src)) {
4806 /* better code could be created, but this case probably doesn't happen
4807 * much in practice */
4808 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4809 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4810 Temp elem;
4811
4812 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4813 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4814 if (i % 2u)
4815 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4816 } else {
4817 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4818 }
4819
4820 if (vertex_offset.id()) {
4821 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4822 Operand(i), indirect_vertex);
4823 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4824 } else {
4825 vertex_offset = elem;
4826 }
4827 }
4828
4829 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4830 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4831 } else {
4832 unsigned vertex = nir_src_as_uint(*vertex_src);
4833 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4834 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4835 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4836 Operand((vertex % 2u) * 16u), Operand(16u));
4837 else
4838 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4839 }
4840
4841 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4842 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4843 return offset_mul(ctx, offs, 4u);
4844 }
4845
4846 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4847 {
4848 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4849
4850 Builder bld(ctx->program, ctx->block);
4851 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4852 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4853
4854 if (ctx->stage == geometry_gs) {
4855 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4856 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4857 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4858 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4859 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4860 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4861 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4862 } else {
4863 unreachable("Unsupported GS stage.");
4864 }
4865 }
4866
4867 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4868 {
4869 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4870
4871 Builder bld(ctx->program, ctx->block);
4872 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4873
4874 if (load_input_from_temps(ctx, instr, dst))
4875 return;
4876
4877 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4878 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4879 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4880
4881 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4882 }
4883
4884 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4885 {
4886 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4887
4888 Builder bld(ctx->program, ctx->block);
4889
4890 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4891 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4892 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4893
4894 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4895 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4896
4897 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4898 }
4899
4900 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4901 {
4902 switch (ctx->shader->info.stage) {
4903 case MESA_SHADER_GEOMETRY:
4904 visit_load_gs_per_vertex_input(ctx, instr);
4905 break;
4906 case MESA_SHADER_TESS_CTRL:
4907 visit_load_tcs_per_vertex_input(ctx, instr);
4908 break;
4909 case MESA_SHADER_TESS_EVAL:
4910 visit_load_tes_per_vertex_input(ctx, instr);
4911 break;
4912 default:
4913 unreachable("Unimplemented shader stage");
4914 }
4915 }
4916
4917 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4918 {
4919 visit_load_tcs_output(ctx, instr, true);
4920 }
4921
4922 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4923 {
4924 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4925 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4926
4927 visit_store_tcs_output(ctx, instr, true);
4928 }
4929
4930 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4931 {
4932 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4933
4934 Builder bld(ctx->program, ctx->block);
4935 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4936
4937 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4938 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4939 Operand tes_w(0u);
4940
4941 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4942 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4943 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4944 tes_w = Operand(tmp);
4945 }
4946
4947 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4948 emit_split_vector(ctx, tess_coord, 3);
4949 }
4950
4951 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4952 {
4953 if (ctx->program->info->need_indirect_descriptor_sets) {
4954 Builder bld(ctx->program, ctx->block);
4955 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4956 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4957 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4958 }
4959
4960 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4961 }
4962
4963
4964 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4965 {
4966 Builder bld(ctx->program, ctx->block);
4967 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4968 if (!nir_dest_is_divergent(instr->dest))
4969 index = bld.as_uniform(index);
4970 unsigned desc_set = nir_intrinsic_desc_set(instr);
4971 unsigned binding = nir_intrinsic_binding(instr);
4972
4973 Temp desc_ptr;
4974 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4975 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4976 unsigned offset = layout->binding[binding].offset;
4977 unsigned stride;
4978 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4979 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4980 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4981 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4982 offset = pipeline_layout->push_constant_size + 16 * idx;
4983 stride = 16;
4984 } else {
4985 desc_ptr = load_desc_ptr(ctx, desc_set);
4986 stride = layout->binding[binding].size;
4987 }
4988
4989 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4990 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4991 if (stride != 1) {
4992 if (nir_const_index) {
4993 const_index = const_index * stride;
4994 } else if (index.type() == RegType::vgpr) {
4995 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4996 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4997 } else {
4998 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4999 }
5000 }
5001 if (offset) {
5002 if (nir_const_index) {
5003 const_index = const_index + offset;
5004 } else if (index.type() == RegType::vgpr) {
5005 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5006 } else {
5007 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5008 }
5009 }
5010
5011 if (nir_const_index && const_index == 0) {
5012 index = desc_ptr;
5013 } else if (index.type() == RegType::vgpr) {
5014 index = bld.vadd32(bld.def(v1),
5015 nir_const_index ? Operand(const_index) : Operand(index),
5016 Operand(desc_ptr));
5017 } else {
5018 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5019 nir_const_index ? Operand(const_index) : Operand(index),
5020 Operand(desc_ptr));
5021 }
5022
5023 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5024 }
5025
5026 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5027 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5028 bool glc=false, bool allow_smem=true, memory_sync_info sync=memory_sync_info())
5029 {
5030 Builder bld(ctx->program, ctx->block);
5031
5032 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5033 if (use_smem)
5034 offset = bld.as_uniform(offset);
5035
5036 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5037 info.glc = glc;
5038 info.sync = sync;
5039 info.align_mul = align_mul;
5040 info.align_offset = align_offset;
5041 if (use_smem)
5042 emit_smem_load(ctx, bld, &info);
5043 else
5044 emit_mubuf_load(ctx, bld, &info);
5045 }
5046
5047 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5048 {
5049 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5050 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5051
5052 Builder bld(ctx->program, ctx->block);
5053
5054 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5055 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5056 unsigned binding = nir_intrinsic_binding(idx_instr);
5057 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5058
5059 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5060 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5061 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5062 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5063 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5064 if (ctx->options->chip_class >= GFX10) {
5065 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5066 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5067 S_008F0C_RESOURCE_LEVEL(1);
5068 } else {
5069 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5070 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5071 }
5072 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5073 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5074 Operand(0xFFFFFFFFu),
5075 Operand(desc_type));
5076 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5077 rsrc, upper_dwords);
5078 } else {
5079 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5080 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5081 }
5082 unsigned size = instr->dest.ssa.bit_size / 8;
5083 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5084 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5085 }
5086
5087 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5088 {
5089 Builder bld(ctx->program, ctx->block);
5090 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5091 unsigned offset = nir_intrinsic_base(instr);
5092 unsigned count = instr->dest.ssa.num_components;
5093 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5094
5095 if (index_cv && instr->dest.ssa.bit_size == 32) {
5096 unsigned start = (offset + index_cv->u32) / 4u;
5097 start -= ctx->args->ac.base_inline_push_consts;
5098 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5099 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5100 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5101 for (unsigned i = 0; i < count; ++i) {
5102 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5103 vec->operands[i] = Operand{elems[i]};
5104 }
5105 vec->definitions[0] = Definition(dst);
5106 ctx->block->instructions.emplace_back(std::move(vec));
5107 ctx->allocated_vec.emplace(dst.id(), elems);
5108 return;
5109 }
5110 }
5111
5112 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5113 if (offset != 0) // TODO check if index != 0 as well
5114 index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5115 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5116 Temp vec = dst;
5117 bool trim = false;
5118 bool aligned = true;
5119
5120 if (instr->dest.ssa.bit_size == 8) {
5121 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5122 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5123 if (!aligned)
5124 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5125 } else if (instr->dest.ssa.bit_size == 16) {
5126 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5127 if (!aligned)
5128 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5129 }
5130
5131 aco_opcode op;
5132
5133 switch (vec.size()) {
5134 case 1:
5135 op = aco_opcode::s_load_dword;
5136 break;
5137 case 2:
5138 op = aco_opcode::s_load_dwordx2;
5139 break;
5140 case 3:
5141 vec = bld.tmp(s4);
5142 trim = true;
5143 case 4:
5144 op = aco_opcode::s_load_dwordx4;
5145 break;
5146 case 6:
5147 vec = bld.tmp(s8);
5148 trim = true;
5149 case 8:
5150 op = aco_opcode::s_load_dwordx8;
5151 break;
5152 default:
5153 unreachable("unimplemented or forbidden load_push_constant.");
5154 }
5155
5156 static_cast<SMEM_instruction*>(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true;
5157
5158 if (!aligned) {
5159 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5160 byte_align_scalar(ctx, vec, byte_offset, dst);
5161 return;
5162 }
5163
5164 if (trim) {
5165 emit_split_vector(ctx, vec, 4);
5166 RegClass rc = dst.size() == 3 ? s1 : s2;
5167 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5168 emit_extract_vector(ctx, vec, 0, rc),
5169 emit_extract_vector(ctx, vec, 1, rc),
5170 emit_extract_vector(ctx, vec, 2, rc));
5171
5172 }
5173 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5174 }
5175
5176 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5177 {
5178 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5179
5180 Builder bld(ctx->program, ctx->block);
5181
5182 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5183 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5184 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5185 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5186 if (ctx->options->chip_class >= GFX10) {
5187 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5188 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5189 S_008F0C_RESOURCE_LEVEL(1);
5190 } else {
5191 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5192 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5193 }
5194
5195 unsigned base = nir_intrinsic_base(instr);
5196 unsigned range = nir_intrinsic_range(instr);
5197
5198 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5199 if (base && offset.type() == RegType::sgpr)
5200 offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5201 else if (base && offset.type() == RegType::vgpr)
5202 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5203
5204 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5205 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5206 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5207 Operand(desc_type));
5208 unsigned size = instr->dest.ssa.bit_size / 8;
5209 // TODO: get alignment information for subdword constants
5210 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5211 }
5212
5213 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5214 {
5215 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5216 ctx->cf_info.exec_potentially_empty_discard = true;
5217
5218 ctx->program->needs_exact = true;
5219
5220 // TODO: optimize uniform conditions
5221 Builder bld(ctx->program, ctx->block);
5222 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5223 assert(src.regClass() == bld.lm);
5224 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5225 bld.pseudo(aco_opcode::p_discard_if, src);
5226 ctx->block->kind |= block_kind_uses_discard_if;
5227 return;
5228 }
5229
5230 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5231 {
5232 Builder bld(ctx->program, ctx->block);
5233
5234 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5235 ctx->cf_info.exec_potentially_empty_discard = true;
5236
5237 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5238 ctx->cf_info.parent_loop.has_divergent_continue;
5239
5240 if (ctx->block->loop_nest_depth &&
5241 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5242 /* we handle discards the same way as jump instructions */
5243 append_logical_end(ctx->block);
5244
5245 /* in loops, discard behaves like break */
5246 Block *linear_target = ctx->cf_info.parent_loop.exit;
5247 ctx->block->kind |= block_kind_discard;
5248
5249 if (!divergent) {
5250 /* uniform discard - loop ends here */
5251 assert(nir_instr_is_last(&instr->instr));
5252 ctx->block->kind |= block_kind_uniform;
5253 ctx->cf_info.has_branch = true;
5254 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5255 add_linear_edge(ctx->block->index, linear_target);
5256 return;
5257 }
5258
5259 /* we add a break right behind the discard() instructions */
5260 ctx->block->kind |= block_kind_break;
5261 unsigned idx = ctx->block->index;
5262
5263 ctx->cf_info.parent_loop.has_divergent_branch = true;
5264 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5265
5266 /* remove critical edges from linear CFG */
5267 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5268 Block* break_block = ctx->program->create_and_insert_block();
5269 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5270 break_block->kind |= block_kind_uniform;
5271 add_linear_edge(idx, break_block);
5272 add_linear_edge(break_block->index, linear_target);
5273 bld.reset(break_block);
5274 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5275
5276 Block* continue_block = ctx->program->create_and_insert_block();
5277 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5278 add_linear_edge(idx, continue_block);
5279 append_logical_start(continue_block);
5280 ctx->block = continue_block;
5281
5282 return;
5283 }
5284
5285 /* it can currently happen that NIR doesn't remove the unreachable code */
5286 if (!nir_instr_is_last(&instr->instr)) {
5287 ctx->program->needs_exact = true;
5288 /* save exec somewhere temporarily so that it doesn't get
5289 * overwritten before the discard from outer exec masks */
5290 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5291 bld.pseudo(aco_opcode::p_discard_if, cond);
5292 ctx->block->kind |= block_kind_uses_discard_if;
5293 return;
5294 }
5295
5296 /* This condition is incorrect for uniformly branched discards in a loop
5297 * predicated by a divergent condition, but the above code catches that case
5298 * and the discard would end up turning into a discard_if.
5299 * For example:
5300 * if (divergent) {
5301 * while (...) {
5302 * if (uniform) {
5303 * discard;
5304 * }
5305 * }
5306 * }
5307 */
5308 if (!ctx->cf_info.parent_if.is_divergent) {
5309 /* program just ends here */
5310 ctx->block->kind |= block_kind_uniform;
5311 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5312 0 /* enabled mask */, 9 /* dest */,
5313 false /* compressed */, true/* done */, true /* valid mask */);
5314 bld.sopp(aco_opcode::s_endpgm);
5315 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5316 } else {
5317 ctx->block->kind |= block_kind_discard;
5318 /* branch and linear edge is added by visit_if() */
5319 }
5320 }
5321
5322 enum aco_descriptor_type {
5323 ACO_DESC_IMAGE,
5324 ACO_DESC_FMASK,
5325 ACO_DESC_SAMPLER,
5326 ACO_DESC_BUFFER,
5327 ACO_DESC_PLANE_0,
5328 ACO_DESC_PLANE_1,
5329 ACO_DESC_PLANE_2,
5330 };
5331
5332 static bool
5333 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5334 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5335 return false;
5336 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5337 return dim == ac_image_cube ||
5338 dim == ac_image_1darray ||
5339 dim == ac_image_2darray ||
5340 dim == ac_image_2darraymsaa;
5341 }
5342
5343 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5344 enum aco_descriptor_type desc_type,
5345 const nir_tex_instr *tex_instr, bool image, bool write)
5346 {
5347 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5348 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5349 if (it != ctx->tex_desc.end())
5350 return it->second;
5351 */
5352 Temp index = Temp();
5353 bool index_set = false;
5354 unsigned constant_index = 0;
5355 unsigned descriptor_set;
5356 unsigned base_index;
5357 Builder bld(ctx->program, ctx->block);
5358
5359 if (!deref_instr) {
5360 assert(tex_instr && !image);
5361 descriptor_set = 0;
5362 base_index = tex_instr->sampler_index;
5363 } else {
5364 while(deref_instr->deref_type != nir_deref_type_var) {
5365 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5366 if (!array_size)
5367 array_size = 1;
5368
5369 assert(deref_instr->deref_type == nir_deref_type_array);
5370 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5371 if (const_value) {
5372 constant_index += array_size * const_value->u32;
5373 } else {
5374 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5375 if (indirect.type() == RegType::vgpr)
5376 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5377
5378 if (array_size != 1)
5379 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5380
5381 if (!index_set) {
5382 index = indirect;
5383 index_set = true;
5384 } else {
5385 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5386 }
5387 }
5388
5389 deref_instr = nir_src_as_deref(deref_instr->parent);
5390 }
5391 descriptor_set = deref_instr->var->data.descriptor_set;
5392 base_index = deref_instr->var->data.binding;
5393 }
5394
5395 Temp list = load_desc_ptr(ctx, descriptor_set);
5396 list = convert_pointer_to_64_bit(ctx, list);
5397
5398 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5399 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5400 unsigned offset = binding->offset;
5401 unsigned stride = binding->size;
5402 aco_opcode opcode;
5403 RegClass type;
5404
5405 assert(base_index < layout->binding_count);
5406
5407 switch (desc_type) {
5408 case ACO_DESC_IMAGE:
5409 type = s8;
5410 opcode = aco_opcode::s_load_dwordx8;
5411 break;
5412 case ACO_DESC_FMASK:
5413 type = s8;
5414 opcode = aco_opcode::s_load_dwordx8;
5415 offset += 32;
5416 break;
5417 case ACO_DESC_SAMPLER:
5418 type = s4;
5419 opcode = aco_opcode::s_load_dwordx4;
5420 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5421 offset += radv_combined_image_descriptor_sampler_offset(binding);
5422 break;
5423 case ACO_DESC_BUFFER:
5424 type = s4;
5425 opcode = aco_opcode::s_load_dwordx4;
5426 break;
5427 case ACO_DESC_PLANE_0:
5428 case ACO_DESC_PLANE_1:
5429 type = s8;
5430 opcode = aco_opcode::s_load_dwordx8;
5431 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5432 break;
5433 case ACO_DESC_PLANE_2:
5434 type = s4;
5435 opcode = aco_opcode::s_load_dwordx4;
5436 offset += 64;
5437 break;
5438 default:
5439 unreachable("invalid desc_type\n");
5440 }
5441
5442 offset += constant_index * stride;
5443
5444 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5445 (!index_set || binding->immutable_samplers_equal)) {
5446 if (binding->immutable_samplers_equal)
5447 constant_index = 0;
5448
5449 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5450 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5451 Operand(samplers[constant_index * 4 + 0]),
5452 Operand(samplers[constant_index * 4 + 1]),
5453 Operand(samplers[constant_index * 4 + 2]),
5454 Operand(samplers[constant_index * 4 + 3]));
5455 }
5456
5457 Operand off;
5458 if (!index_set) {
5459 off = bld.copy(bld.def(s1), Operand(offset));
5460 } else {
5461 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5462 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5463 }
5464
5465 Temp res = bld.smem(opcode, bld.def(type), list, off);
5466
5467 if (desc_type == ACO_DESC_PLANE_2) {
5468 Temp components[8];
5469 for (unsigned i = 0; i < 8; i++)
5470 components[i] = bld.tmp(s1);
5471 bld.pseudo(aco_opcode::p_split_vector,
5472 Definition(components[0]),
5473 Definition(components[1]),
5474 Definition(components[2]),
5475 Definition(components[3]),
5476 res);
5477
5478 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5479 bld.pseudo(aco_opcode::p_split_vector,
5480 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5481 Definition(components[4]),
5482 Definition(components[5]),
5483 Definition(components[6]),
5484 Definition(components[7]),
5485 desc2);
5486
5487 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5488 components[0], components[1], components[2], components[3],
5489 components[4], components[5], components[6], components[7]);
5490 }
5491
5492 return res;
5493 }
5494
5495 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5496 {
5497 switch (dim) {
5498 case GLSL_SAMPLER_DIM_BUF:
5499 return 1;
5500 case GLSL_SAMPLER_DIM_1D:
5501 return array ? 2 : 1;
5502 case GLSL_SAMPLER_DIM_2D:
5503 return array ? 3 : 2;
5504 case GLSL_SAMPLER_DIM_MS:
5505 return array ? 4 : 3;
5506 case GLSL_SAMPLER_DIM_3D:
5507 case GLSL_SAMPLER_DIM_CUBE:
5508 return 3;
5509 case GLSL_SAMPLER_DIM_RECT:
5510 case GLSL_SAMPLER_DIM_SUBPASS:
5511 return 2;
5512 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5513 return 3;
5514 default:
5515 break;
5516 }
5517 return 0;
5518 }
5519
5520
5521 /* Adjust the sample index according to FMASK.
5522 *
5523 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5524 * which is the identity mapping. Each nibble says which physical sample
5525 * should be fetched to get that sample.
5526 *
5527 * For example, 0x11111100 means there are only 2 samples stored and
5528 * the second sample covers 3/4 of the pixel. When reading samples 0
5529 * and 1, return physical sample 0 (determined by the first two 0s
5530 * in FMASK), otherwise return physical sample 1.
5531 *
5532 * The sample index should be adjusted as follows:
5533 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5534 */
5535 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5536 {
5537 Builder bld(ctx->program, ctx->block);
5538 Temp fmask = bld.tmp(v1);
5539 unsigned dim = ctx->options->chip_class >= GFX10
5540 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5541 : 0;
5542
5543 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5544 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5545 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5546 load->operands[0] = Operand(fmask_desc_ptr);
5547 load->operands[1] = Operand(s4); /* no sampler */
5548 load->operands[2] = Operand(coord);
5549 load->definitions[0] = Definition(fmask);
5550 load->glc = false;
5551 load->dlc = false;
5552 load->dmask = 0x1;
5553 load->unrm = true;
5554 load->da = da;
5555 load->dim = dim;
5556 ctx->block->instructions.emplace_back(std::move(load));
5557
5558 Operand sample_index4;
5559 if (sample_index.isConstant()) {
5560 if (sample_index.constantValue() < 16) {
5561 sample_index4 = Operand(sample_index.constantValue() << 2);
5562 } else {
5563 sample_index4 = Operand(0u);
5564 }
5565 } else if (sample_index.regClass() == s1) {
5566 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5567 } else {
5568 assert(sample_index.regClass() == v1);
5569 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5570 }
5571
5572 Temp final_sample;
5573 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5574 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5575 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5576 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5577 else
5578 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5579
5580 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5581 * resource descriptor is 0 (invalid),
5582 */
5583 Temp compare = bld.tmp(bld.lm);
5584 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5585 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5586
5587 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5588
5589 /* Replace the MSAA sample index. */
5590 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5591 }
5592
5593 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5594 {
5595
5596 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5597 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5598 bool is_array = glsl_sampler_type_is_array(type);
5599 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5600 assert(!add_frag_pos && "Input attachments should be lowered.");
5601 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5602 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5603 int count = image_type_to_components_count(dim, is_array);
5604 std::vector<Temp> coords(count);
5605 Builder bld(ctx->program, ctx->block);
5606
5607 if (is_ms) {
5608 count--;
5609 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5610 /* get sample index */
5611 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5612 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5613 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5614 std::vector<Temp> fmask_load_address;
5615 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5616 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5617
5618 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5619 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5620 } else {
5621 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5622 }
5623 }
5624
5625 if (gfx9_1d) {
5626 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5627 coords.resize(coords.size() + 1);
5628 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5629 if (is_array)
5630 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5631 } else {
5632 for (int i = 0; i < count; i++)
5633 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5634 }
5635
5636 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5637 instr->intrinsic == nir_intrinsic_image_deref_store) {
5638 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5639 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5640
5641 if (!level_zero)
5642 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5643 }
5644
5645 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5646 for (unsigned i = 0; i < coords.size(); i++)
5647 vec->operands[i] = Operand(coords[i]);
5648 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5649 vec->definitions[0] = Definition(res);
5650 ctx->block->instructions.emplace_back(std::move(vec));
5651 return res;
5652 }
5653
5654
5655 memory_sync_info get_memory_sync_info(nir_intrinsic_instr *instr, storage_class storage, unsigned semantics)
5656 {
5657 /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */
5658 if (semantics & semantic_atomicrmw)
5659 return memory_sync_info(storage, semantics);
5660
5661 unsigned access = nir_intrinsic_access(instr);
5662
5663 if (access & ACCESS_VOLATILE)
5664 semantics |= semantic_volatile;
5665 if (access & ACCESS_CAN_REORDER)
5666 semantics |= semantic_can_reorder | semantic_private;
5667
5668 return memory_sync_info(storage, semantics);
5669 }
5670
5671 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5672 {
5673 Builder bld(ctx->program, ctx->block);
5674 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5675 const struct glsl_type *type = glsl_without_array(var->type);
5676 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5677 bool is_array = glsl_sampler_type_is_array(type);
5678 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5679
5680 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5681 unsigned access = var->data.access | nir_intrinsic_access(instr);
5682
5683 if (dim == GLSL_SAMPLER_DIM_BUF) {
5684 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5685 unsigned num_channels = util_last_bit(mask);
5686 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5687 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5688
5689 aco_opcode opcode;
5690 switch (num_channels) {
5691 case 1:
5692 opcode = aco_opcode::buffer_load_format_x;
5693 break;
5694 case 2:
5695 opcode = aco_opcode::buffer_load_format_xy;
5696 break;
5697 case 3:
5698 opcode = aco_opcode::buffer_load_format_xyz;
5699 break;
5700 case 4:
5701 opcode = aco_opcode::buffer_load_format_xyzw;
5702 break;
5703 default:
5704 unreachable(">4 channel buffer image load");
5705 }
5706 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5707 load->operands[0] = Operand(rsrc);
5708 load->operands[1] = Operand(vindex);
5709 load->operands[2] = Operand((uint32_t) 0);
5710 Temp tmp;
5711 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5712 tmp = dst;
5713 else
5714 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5715 load->definitions[0] = Definition(tmp);
5716 load->idxen = true;
5717 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5718 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5719 load->sync = sync;
5720 ctx->block->instructions.emplace_back(std::move(load));
5721
5722 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5723 return;
5724 }
5725
5726 Temp coords = get_image_coords(ctx, instr, type);
5727 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5728
5729 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5730 unsigned num_components = util_bitcount(dmask);
5731 Temp tmp;
5732 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5733 tmp = dst;
5734 else
5735 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5736
5737 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5738 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5739
5740 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5741 load->operands[0] = Operand(resource);
5742 load->operands[1] = Operand(s4); /* no sampler */
5743 load->operands[2] = Operand(coords);
5744 load->definitions[0] = Definition(tmp);
5745 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5746 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5747 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5748 load->dmask = dmask;
5749 load->unrm = true;
5750 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5751 load->sync = sync;
5752 ctx->block->instructions.emplace_back(std::move(load));
5753
5754 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5755 return;
5756 }
5757
5758 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5759 {
5760 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5761 const struct glsl_type *type = glsl_without_array(var->type);
5762 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5763 bool is_array = glsl_sampler_type_is_array(type);
5764 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5765
5766 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5767 unsigned access = var->data.access | nir_intrinsic_access(instr);
5768 bool glc = ctx->options->chip_class == GFX6 || access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5769
5770 if (dim == GLSL_SAMPLER_DIM_BUF) {
5771 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5772 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5773 aco_opcode opcode;
5774 switch (data.size()) {
5775 case 1:
5776 opcode = aco_opcode::buffer_store_format_x;
5777 break;
5778 case 2:
5779 opcode = aco_opcode::buffer_store_format_xy;
5780 break;
5781 case 3:
5782 opcode = aco_opcode::buffer_store_format_xyz;
5783 break;
5784 case 4:
5785 opcode = aco_opcode::buffer_store_format_xyzw;
5786 break;
5787 default:
5788 unreachable(">4 channel buffer image store");
5789 }
5790 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5791 store->operands[0] = Operand(rsrc);
5792 store->operands[1] = Operand(vindex);
5793 store->operands[2] = Operand((uint32_t) 0);
5794 store->operands[3] = Operand(data);
5795 store->idxen = true;
5796 store->glc = glc;
5797 store->dlc = false;
5798 store->disable_wqm = true;
5799 store->sync = sync;
5800 ctx->program->needs_exact = true;
5801 ctx->block->instructions.emplace_back(std::move(store));
5802 return;
5803 }
5804
5805 assert(data.type() == RegType::vgpr);
5806 Temp coords = get_image_coords(ctx, instr, type);
5807 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5808
5809 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5810 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5811
5812 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5813 store->operands[0] = Operand(resource);
5814 store->operands[1] = Operand(data);
5815 store->operands[2] = Operand(coords);
5816 store->glc = glc;
5817 store->dlc = false;
5818 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5819 store->dmask = (1 << data.size()) - 1;
5820 store->unrm = true;
5821 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5822 store->disable_wqm = true;
5823 store->sync = sync;
5824 ctx->program->needs_exact = true;
5825 ctx->block->instructions.emplace_back(std::move(store));
5826 return;
5827 }
5828
5829 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5830 {
5831 /* return the previous value if dest is ever used */
5832 bool return_previous = false;
5833 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5834 return_previous = true;
5835 break;
5836 }
5837 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5838 return_previous = true;
5839 break;
5840 }
5841
5842 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5843 const struct glsl_type *type = glsl_without_array(var->type);
5844 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5845 bool is_array = glsl_sampler_type_is_array(type);
5846 Builder bld(ctx->program, ctx->block);
5847
5848 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5849 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5850
5851 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5852 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5853
5854 aco_opcode buf_op, image_op;
5855 switch (instr->intrinsic) {
5856 case nir_intrinsic_image_deref_atomic_add:
5857 buf_op = aco_opcode::buffer_atomic_add;
5858 image_op = aco_opcode::image_atomic_add;
5859 break;
5860 case nir_intrinsic_image_deref_atomic_umin:
5861 buf_op = aco_opcode::buffer_atomic_umin;
5862 image_op = aco_opcode::image_atomic_umin;
5863 break;
5864 case nir_intrinsic_image_deref_atomic_imin:
5865 buf_op = aco_opcode::buffer_atomic_smin;
5866 image_op = aco_opcode::image_atomic_smin;
5867 break;
5868 case nir_intrinsic_image_deref_atomic_umax:
5869 buf_op = aco_opcode::buffer_atomic_umax;
5870 image_op = aco_opcode::image_atomic_umax;
5871 break;
5872 case nir_intrinsic_image_deref_atomic_imax:
5873 buf_op = aco_opcode::buffer_atomic_smax;
5874 image_op = aco_opcode::image_atomic_smax;
5875 break;
5876 case nir_intrinsic_image_deref_atomic_and:
5877 buf_op = aco_opcode::buffer_atomic_and;
5878 image_op = aco_opcode::image_atomic_and;
5879 break;
5880 case nir_intrinsic_image_deref_atomic_or:
5881 buf_op = aco_opcode::buffer_atomic_or;
5882 image_op = aco_opcode::image_atomic_or;
5883 break;
5884 case nir_intrinsic_image_deref_atomic_xor:
5885 buf_op = aco_opcode::buffer_atomic_xor;
5886 image_op = aco_opcode::image_atomic_xor;
5887 break;
5888 case nir_intrinsic_image_deref_atomic_exchange:
5889 buf_op = aco_opcode::buffer_atomic_swap;
5890 image_op = aco_opcode::image_atomic_swap;
5891 break;
5892 case nir_intrinsic_image_deref_atomic_comp_swap:
5893 buf_op = aco_opcode::buffer_atomic_cmpswap;
5894 image_op = aco_opcode::image_atomic_cmpswap;
5895 break;
5896 default:
5897 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5898 }
5899
5900 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5901 memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw);
5902
5903 if (dim == GLSL_SAMPLER_DIM_BUF) {
5904 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5905 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5906 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5907 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5908 mubuf->operands[0] = Operand(resource);
5909 mubuf->operands[1] = Operand(vindex);
5910 mubuf->operands[2] = Operand((uint32_t)0);
5911 mubuf->operands[3] = Operand(data);
5912 if (return_previous)
5913 mubuf->definitions[0] = Definition(dst);
5914 mubuf->offset = 0;
5915 mubuf->idxen = true;
5916 mubuf->glc = return_previous;
5917 mubuf->dlc = false; /* Not needed for atomics */
5918 mubuf->disable_wqm = true;
5919 mubuf->sync = sync;
5920 ctx->program->needs_exact = true;
5921 ctx->block->instructions.emplace_back(std::move(mubuf));
5922 return;
5923 }
5924
5925 Temp coords = get_image_coords(ctx, instr, type);
5926 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5927 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5928 mimg->operands[0] = Operand(resource);
5929 mimg->operands[1] = Operand(data);
5930 mimg->operands[2] = Operand(coords);
5931 if (return_previous)
5932 mimg->definitions[0] = Definition(dst);
5933 mimg->glc = return_previous;
5934 mimg->dlc = false; /* Not needed for atomics */
5935 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5936 mimg->dmask = (1 << data.size()) - 1;
5937 mimg->unrm = true;
5938 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5939 mimg->disable_wqm = true;
5940 mimg->sync = sync;
5941 ctx->program->needs_exact = true;
5942 ctx->block->instructions.emplace_back(std::move(mimg));
5943 return;
5944 }
5945
5946 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5947 {
5948 if (in_elements && ctx->options->chip_class == GFX8) {
5949 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5950 Builder bld(ctx->program, ctx->block);
5951
5952 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5953
5954 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5955 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5956
5957 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5958 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5959
5960 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5961 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5962
5963 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5964 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5965 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5966 if (dst.type() == RegType::vgpr)
5967 bld.copy(Definition(dst), shr_dst);
5968
5969 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5970 } else {
5971 emit_extract_vector(ctx, desc, 2, dst);
5972 }
5973 }
5974
5975 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5976 {
5977 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5978 const struct glsl_type *type = glsl_without_array(var->type);
5979 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5980 bool is_array = glsl_sampler_type_is_array(type);
5981 Builder bld(ctx->program, ctx->block);
5982
5983 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5984 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5985 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5986 }
5987
5988 /* LOD */
5989 assert(nir_src_as_uint(instr->src[1]) == 0);
5990 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5991
5992 /* Resource */
5993 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5994
5995 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5996
5997 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5998 mimg->operands[0] = Operand(resource);
5999 mimg->operands[1] = Operand(s4); /* no sampler */
6000 mimg->operands[2] = Operand(lod);
6001 uint8_t& dmask = mimg->dmask;
6002 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6003 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6004 mimg->da = glsl_sampler_type_is_array(type);
6005 Definition& def = mimg->definitions[0];
6006 ctx->block->instructions.emplace_back(std::move(mimg));
6007
6008 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6009 glsl_sampler_type_is_array(type)) {
6010
6011 assert(instr->dest.ssa.num_components == 3);
6012 Temp tmp = {ctx->program->allocateId(), v3};
6013 def = Definition(tmp);
6014 emit_split_vector(ctx, tmp, 3);
6015
6016 /* divide 3rd value by 6 by multiplying with magic number */
6017 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6018 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6019
6020 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6021 emit_extract_vector(ctx, tmp, 0, v1),
6022 emit_extract_vector(ctx, tmp, 1, v1),
6023 by_6);
6024
6025 } else if (ctx->options->chip_class == GFX9 &&
6026 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6027 glsl_sampler_type_is_array(type)) {
6028 assert(instr->dest.ssa.num_components == 2);
6029 def = Definition(dst);
6030 dmask = 0x5;
6031 } else {
6032 def = Definition(dst);
6033 }
6034
6035 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6036 }
6037
6038 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6039 {
6040 Builder bld(ctx->program, ctx->block);
6041 unsigned num_components = instr->num_components;
6042
6043 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6044 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6045 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6046
6047 unsigned access = nir_intrinsic_access(instr);
6048 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6049 unsigned size = instr->dest.ssa.bit_size / 8;
6050
6051 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6052 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6053 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6054 */
6055 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6056 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6057
6058 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6059 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem,
6060 get_memory_sync_info(instr, storage_buffer, 0));
6061 }
6062
6063 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6064 {
6065 Builder bld(ctx->program, ctx->block);
6066 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6067 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6068 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6069 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6070
6071 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6072 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6073
6074 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6075 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6076 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6077 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6078 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6079 */
6080 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6081
6082 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6083 ctx->options->chip_class >= GFX8 &&
6084 ctx->options->chip_class < GFX10_3 &&
6085 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6086 allow_smem;
6087 if (smem)
6088 offset = bld.as_uniform(offset);
6089 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6090
6091 unsigned write_count = 0;
6092 Temp write_datas[32];
6093 unsigned offsets[32];
6094 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6095 data, writemask, 16, &write_count, write_datas, offsets);
6096
6097 for (unsigned i = 0; i < write_count; i++) {
6098 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6099 if (smem && ctx->stage == fragment_fs)
6100 op = aco_opcode::p_fs_buffer_store_smem;
6101
6102 if (smem) {
6103 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6104 store->operands[0] = Operand(rsrc);
6105 if (offsets[i]) {
6106 Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6107 offset, Operand(offsets[i]));
6108 store->operands[1] = Operand(off);
6109 } else {
6110 store->operands[1] = Operand(offset);
6111 }
6112 if (op != aco_opcode::p_fs_buffer_store_smem)
6113 store->operands[1].setFixed(m0);
6114 store->operands[2] = Operand(write_datas[i]);
6115 store->glc = glc;
6116 store->dlc = false;
6117 store->disable_wqm = true;
6118 store->sync = sync;
6119 ctx->block->instructions.emplace_back(std::move(store));
6120 ctx->program->wb_smem_l1_on_end = true;
6121 if (op == aco_opcode::p_fs_buffer_store_smem) {
6122 ctx->block->kind |= block_kind_needs_lowering;
6123 ctx->program->needs_exact = true;
6124 }
6125 } else {
6126 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6127 store->operands[0] = Operand(rsrc);
6128 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6129 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6130 store->operands[3] = Operand(write_datas[i]);
6131 store->offset = offsets[i];
6132 store->offen = (offset.type() == RegType::vgpr);
6133 store->glc = glc;
6134 store->dlc = false;
6135 store->disable_wqm = true;
6136 store->sync = sync;
6137 ctx->program->needs_exact = true;
6138 ctx->block->instructions.emplace_back(std::move(store));
6139 }
6140 }
6141 }
6142
6143 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6144 {
6145 /* return the previous value if dest is ever used */
6146 bool return_previous = false;
6147 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6148 return_previous = true;
6149 break;
6150 }
6151 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6152 return_previous = true;
6153 break;
6154 }
6155
6156 Builder bld(ctx->program, ctx->block);
6157 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6158
6159 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6160 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6161 get_ssa_temp(ctx, instr->src[3].ssa), data);
6162
6163 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6164 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6165 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6166
6167 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6168
6169 aco_opcode op32, op64;
6170 switch (instr->intrinsic) {
6171 case nir_intrinsic_ssbo_atomic_add:
6172 op32 = aco_opcode::buffer_atomic_add;
6173 op64 = aco_opcode::buffer_atomic_add_x2;
6174 break;
6175 case nir_intrinsic_ssbo_atomic_imin:
6176 op32 = aco_opcode::buffer_atomic_smin;
6177 op64 = aco_opcode::buffer_atomic_smin_x2;
6178 break;
6179 case nir_intrinsic_ssbo_atomic_umin:
6180 op32 = aco_opcode::buffer_atomic_umin;
6181 op64 = aco_opcode::buffer_atomic_umin_x2;
6182 break;
6183 case nir_intrinsic_ssbo_atomic_imax:
6184 op32 = aco_opcode::buffer_atomic_smax;
6185 op64 = aco_opcode::buffer_atomic_smax_x2;
6186 break;
6187 case nir_intrinsic_ssbo_atomic_umax:
6188 op32 = aco_opcode::buffer_atomic_umax;
6189 op64 = aco_opcode::buffer_atomic_umax_x2;
6190 break;
6191 case nir_intrinsic_ssbo_atomic_and:
6192 op32 = aco_opcode::buffer_atomic_and;
6193 op64 = aco_opcode::buffer_atomic_and_x2;
6194 break;
6195 case nir_intrinsic_ssbo_atomic_or:
6196 op32 = aco_opcode::buffer_atomic_or;
6197 op64 = aco_opcode::buffer_atomic_or_x2;
6198 break;
6199 case nir_intrinsic_ssbo_atomic_xor:
6200 op32 = aco_opcode::buffer_atomic_xor;
6201 op64 = aco_opcode::buffer_atomic_xor_x2;
6202 break;
6203 case nir_intrinsic_ssbo_atomic_exchange:
6204 op32 = aco_opcode::buffer_atomic_swap;
6205 op64 = aco_opcode::buffer_atomic_swap_x2;
6206 break;
6207 case nir_intrinsic_ssbo_atomic_comp_swap:
6208 op32 = aco_opcode::buffer_atomic_cmpswap;
6209 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6210 break;
6211 default:
6212 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6213 }
6214 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6215 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6216 mubuf->operands[0] = Operand(rsrc);
6217 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6218 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6219 mubuf->operands[3] = Operand(data);
6220 if (return_previous)
6221 mubuf->definitions[0] = Definition(dst);
6222 mubuf->offset = 0;
6223 mubuf->offen = (offset.type() == RegType::vgpr);
6224 mubuf->glc = return_previous;
6225 mubuf->dlc = false; /* Not needed for atomics */
6226 mubuf->disable_wqm = true;
6227 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6228 ctx->program->needs_exact = true;
6229 ctx->block->instructions.emplace_back(std::move(mubuf));
6230 }
6231
6232 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6233
6234 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6235 Builder bld(ctx->program, ctx->block);
6236 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6237 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6238 }
6239
6240 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6241 {
6242 Builder bld(ctx->program, ctx->block);
6243 unsigned num_components = instr->num_components;
6244 unsigned component_size = instr->dest.ssa.bit_size / 8;
6245
6246 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6247 get_ssa_temp(ctx, &instr->dest.ssa),
6248 num_components, component_size};
6249 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6250 info.align_mul = nir_intrinsic_align_mul(instr);
6251 info.align_offset = nir_intrinsic_align_offset(instr);
6252 info.sync = get_memory_sync_info(instr, storage_buffer, 0);
6253 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6254 * it's safe to use SMEM */
6255 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6256 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6257 emit_global_load(ctx, bld, &info);
6258 } else {
6259 info.offset = Operand(bld.as_uniform(info.offset));
6260 emit_smem_load(ctx, bld, &info);
6261 }
6262 }
6263
6264 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6265 {
6266 Builder bld(ctx->program, ctx->block);
6267 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6268 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6269
6270 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6271 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6272 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6273 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6274
6275 if (ctx->options->chip_class >= GFX7)
6276 addr = as_vgpr(ctx, addr);
6277
6278 unsigned write_count = 0;
6279 Temp write_datas[32];
6280 unsigned offsets[32];
6281 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6282 16, &write_count, write_datas, offsets);
6283
6284 for (unsigned i = 0; i < write_count; i++) {
6285 if (ctx->options->chip_class >= GFX7) {
6286 unsigned offset = offsets[i];
6287 Temp store_addr = addr;
6288 if (offset > 0 && ctx->options->chip_class < GFX9) {
6289 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6290 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6291 Temp carry = bld.tmp(bld.lm);
6292 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6293
6294 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6295 Operand(offset), addr0);
6296 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6297 Operand(0u), addr1,
6298 carry).def(1).setHint(vcc);
6299
6300 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6301
6302 offset = 0;
6303 }
6304
6305 bool global = ctx->options->chip_class >= GFX9;
6306 aco_opcode op;
6307 switch (write_datas[i].bytes()) {
6308 case 1:
6309 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6310 break;
6311 case 2:
6312 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6313 break;
6314 case 4:
6315 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6316 break;
6317 case 8:
6318 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6319 break;
6320 case 12:
6321 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6322 break;
6323 case 16:
6324 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6325 break;
6326 default:
6327 unreachable("store_global not implemented for this size.");
6328 }
6329
6330 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6331 flat->operands[0] = Operand(store_addr);
6332 flat->operands[1] = Operand(s1);
6333 flat->operands[2] = Operand(write_datas[i]);
6334 flat->glc = glc;
6335 flat->dlc = false;
6336 flat->offset = offset;
6337 flat->disable_wqm = true;
6338 flat->sync = sync;
6339 ctx->program->needs_exact = true;
6340 ctx->block->instructions.emplace_back(std::move(flat));
6341 } else {
6342 assert(ctx->options->chip_class == GFX6);
6343
6344 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6345
6346 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6347
6348 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6349 mubuf->operands[0] = Operand(rsrc);
6350 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6351 mubuf->operands[2] = Operand(0u);
6352 mubuf->operands[3] = Operand(write_datas[i]);
6353 mubuf->glc = glc;
6354 mubuf->dlc = false;
6355 mubuf->offset = offsets[i];
6356 mubuf->addr64 = addr.type() == RegType::vgpr;
6357 mubuf->disable_wqm = true;
6358 mubuf->sync = sync;
6359 ctx->program->needs_exact = true;
6360 ctx->block->instructions.emplace_back(std::move(mubuf));
6361 }
6362 }
6363 }
6364
6365 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6366 {
6367 /* return the previous value if dest is ever used */
6368 bool return_previous = false;
6369 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6370 return_previous = true;
6371 break;
6372 }
6373 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6374 return_previous = true;
6375 break;
6376 }
6377
6378 Builder bld(ctx->program, ctx->block);
6379 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6380 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6381
6382 if (ctx->options->chip_class >= GFX7)
6383 addr = as_vgpr(ctx, addr);
6384
6385 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6386 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6387 get_ssa_temp(ctx, instr->src[2].ssa), data);
6388
6389 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6390
6391 aco_opcode op32, op64;
6392
6393 if (ctx->options->chip_class >= GFX7) {
6394 bool global = ctx->options->chip_class >= GFX9;
6395 switch (instr->intrinsic) {
6396 case nir_intrinsic_global_atomic_add:
6397 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6398 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6399 break;
6400 case nir_intrinsic_global_atomic_imin:
6401 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6402 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6403 break;
6404 case nir_intrinsic_global_atomic_umin:
6405 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6406 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6407 break;
6408 case nir_intrinsic_global_atomic_imax:
6409 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6410 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6411 break;
6412 case nir_intrinsic_global_atomic_umax:
6413 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6414 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6415 break;
6416 case nir_intrinsic_global_atomic_and:
6417 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6418 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6419 break;
6420 case nir_intrinsic_global_atomic_or:
6421 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6422 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6423 break;
6424 case nir_intrinsic_global_atomic_xor:
6425 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6426 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6427 break;
6428 case nir_intrinsic_global_atomic_exchange:
6429 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6430 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6431 break;
6432 case nir_intrinsic_global_atomic_comp_swap:
6433 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6434 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6435 break;
6436 default:
6437 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6438 }
6439
6440 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6441 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6442 flat->operands[0] = Operand(addr);
6443 flat->operands[1] = Operand(s1);
6444 flat->operands[2] = Operand(data);
6445 if (return_previous)
6446 flat->definitions[0] = Definition(dst);
6447 flat->glc = return_previous;
6448 flat->dlc = false; /* Not needed for atomics */
6449 flat->offset = 0;
6450 flat->disable_wqm = true;
6451 flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6452 ctx->program->needs_exact = true;
6453 ctx->block->instructions.emplace_back(std::move(flat));
6454 } else {
6455 assert(ctx->options->chip_class == GFX6);
6456
6457 switch (instr->intrinsic) {
6458 case nir_intrinsic_global_atomic_add:
6459 op32 = aco_opcode::buffer_atomic_add;
6460 op64 = aco_opcode::buffer_atomic_add_x2;
6461 break;
6462 case nir_intrinsic_global_atomic_imin:
6463 op32 = aco_opcode::buffer_atomic_smin;
6464 op64 = aco_opcode::buffer_atomic_smin_x2;
6465 break;
6466 case nir_intrinsic_global_atomic_umin:
6467 op32 = aco_opcode::buffer_atomic_umin;
6468 op64 = aco_opcode::buffer_atomic_umin_x2;
6469 break;
6470 case nir_intrinsic_global_atomic_imax:
6471 op32 = aco_opcode::buffer_atomic_smax;
6472 op64 = aco_opcode::buffer_atomic_smax_x2;
6473 break;
6474 case nir_intrinsic_global_atomic_umax:
6475 op32 = aco_opcode::buffer_atomic_umax;
6476 op64 = aco_opcode::buffer_atomic_umax_x2;
6477 break;
6478 case nir_intrinsic_global_atomic_and:
6479 op32 = aco_opcode::buffer_atomic_and;
6480 op64 = aco_opcode::buffer_atomic_and_x2;
6481 break;
6482 case nir_intrinsic_global_atomic_or:
6483 op32 = aco_opcode::buffer_atomic_or;
6484 op64 = aco_opcode::buffer_atomic_or_x2;
6485 break;
6486 case nir_intrinsic_global_atomic_xor:
6487 op32 = aco_opcode::buffer_atomic_xor;
6488 op64 = aco_opcode::buffer_atomic_xor_x2;
6489 break;
6490 case nir_intrinsic_global_atomic_exchange:
6491 op32 = aco_opcode::buffer_atomic_swap;
6492 op64 = aco_opcode::buffer_atomic_swap_x2;
6493 break;
6494 case nir_intrinsic_global_atomic_comp_swap:
6495 op32 = aco_opcode::buffer_atomic_cmpswap;
6496 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6497 break;
6498 default:
6499 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6500 }
6501
6502 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6503
6504 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6505
6506 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6507 mubuf->operands[0] = Operand(rsrc);
6508 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6509 mubuf->operands[2] = Operand(0u);
6510 mubuf->operands[3] = Operand(data);
6511 if (return_previous)
6512 mubuf->definitions[0] = Definition(dst);
6513 mubuf->glc = return_previous;
6514 mubuf->dlc = false;
6515 mubuf->offset = 0;
6516 mubuf->addr64 = addr.type() == RegType::vgpr;
6517 mubuf->disable_wqm = true;
6518 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6519 ctx->program->needs_exact = true;
6520 ctx->block->instructions.emplace_back(std::move(mubuf));
6521 }
6522 }
6523
6524 sync_scope translate_nir_scope(nir_scope scope)
6525 {
6526 switch (scope) {
6527 case NIR_SCOPE_NONE:
6528 case NIR_SCOPE_INVOCATION:
6529 return scope_invocation;
6530 case NIR_SCOPE_SUBGROUP:
6531 return scope_subgroup;
6532 case NIR_SCOPE_WORKGROUP:
6533 return scope_workgroup;
6534 case NIR_SCOPE_QUEUE_FAMILY:
6535 return scope_queuefamily;
6536 case NIR_SCOPE_DEVICE:
6537 return scope_device;
6538 }
6539 unreachable("invalid scope");
6540 }
6541
6542 void emit_scoped_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6543 Builder bld(ctx->program, ctx->block);
6544
6545 unsigned semantics = 0;
6546 unsigned storage = 0;
6547 sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr));
6548 sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr));
6549
6550 unsigned nir_storage = nir_intrinsic_memory_modes(instr);
6551 if (nir_storage & (nir_var_mem_ssbo | nir_var_mem_global))
6552 storage |= storage_buffer | storage_image; //TODO: split this when NIR gets nir_var_mem_image
6553 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && (nir_storage & nir_var_mem_shared))
6554 storage |= storage_shared;
6555 if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL && (nir_storage & nir_var_shader_out))
6556 storage |= storage_shared;
6557
6558 unsigned nir_semantics = nir_intrinsic_memory_semantics(instr);
6559 if (nir_semantics & NIR_MEMORY_ACQUIRE)
6560 semantics |= semantic_acquire | semantic_release;
6561 if (nir_semantics & NIR_MEMORY_RELEASE)
6562 semantics |= semantic_acquire | semantic_release;
6563
6564 assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
6565
6566 bld.barrier(aco_opcode::p_barrier,
6567 memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope),
6568 exec_scope);
6569 }
6570
6571 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6572 {
6573 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6574 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6575 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6576 Builder bld(ctx->program, ctx->block);
6577
6578 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6579 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6580 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6581 }
6582
6583 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6584 {
6585 unsigned writemask = nir_intrinsic_write_mask(instr);
6586 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6587 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6588 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6589
6590 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6591 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6592 }
6593
6594 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6595 {
6596 unsigned offset = nir_intrinsic_base(instr);
6597 Builder bld(ctx->program, ctx->block);
6598 Operand m = load_lds_size_m0(bld);
6599 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6600 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6601
6602 unsigned num_operands = 3;
6603 aco_opcode op32, op64, op32_rtn, op64_rtn;
6604 switch(instr->intrinsic) {
6605 case nir_intrinsic_shared_atomic_add:
6606 op32 = aco_opcode::ds_add_u32;
6607 op64 = aco_opcode::ds_add_u64;
6608 op32_rtn = aco_opcode::ds_add_rtn_u32;
6609 op64_rtn = aco_opcode::ds_add_rtn_u64;
6610 break;
6611 case nir_intrinsic_shared_atomic_imin:
6612 op32 = aco_opcode::ds_min_i32;
6613 op64 = aco_opcode::ds_min_i64;
6614 op32_rtn = aco_opcode::ds_min_rtn_i32;
6615 op64_rtn = aco_opcode::ds_min_rtn_i64;
6616 break;
6617 case nir_intrinsic_shared_atomic_umin:
6618 op32 = aco_opcode::ds_min_u32;
6619 op64 = aco_opcode::ds_min_u64;
6620 op32_rtn = aco_opcode::ds_min_rtn_u32;
6621 op64_rtn = aco_opcode::ds_min_rtn_u64;
6622 break;
6623 case nir_intrinsic_shared_atomic_imax:
6624 op32 = aco_opcode::ds_max_i32;
6625 op64 = aco_opcode::ds_max_i64;
6626 op32_rtn = aco_opcode::ds_max_rtn_i32;
6627 op64_rtn = aco_opcode::ds_max_rtn_i64;
6628 break;
6629 case nir_intrinsic_shared_atomic_umax:
6630 op32 = aco_opcode::ds_max_u32;
6631 op64 = aco_opcode::ds_max_u64;
6632 op32_rtn = aco_opcode::ds_max_rtn_u32;
6633 op64_rtn = aco_opcode::ds_max_rtn_u64;
6634 break;
6635 case nir_intrinsic_shared_atomic_and:
6636 op32 = aco_opcode::ds_and_b32;
6637 op64 = aco_opcode::ds_and_b64;
6638 op32_rtn = aco_opcode::ds_and_rtn_b32;
6639 op64_rtn = aco_opcode::ds_and_rtn_b64;
6640 break;
6641 case nir_intrinsic_shared_atomic_or:
6642 op32 = aco_opcode::ds_or_b32;
6643 op64 = aco_opcode::ds_or_b64;
6644 op32_rtn = aco_opcode::ds_or_rtn_b32;
6645 op64_rtn = aco_opcode::ds_or_rtn_b64;
6646 break;
6647 case nir_intrinsic_shared_atomic_xor:
6648 op32 = aco_opcode::ds_xor_b32;
6649 op64 = aco_opcode::ds_xor_b64;
6650 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6651 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6652 break;
6653 case nir_intrinsic_shared_atomic_exchange:
6654 op32 = aco_opcode::ds_write_b32;
6655 op64 = aco_opcode::ds_write_b64;
6656 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6657 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6658 break;
6659 case nir_intrinsic_shared_atomic_comp_swap:
6660 op32 = aco_opcode::ds_cmpst_b32;
6661 op64 = aco_opcode::ds_cmpst_b64;
6662 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6663 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6664 num_operands = 4;
6665 break;
6666 case nir_intrinsic_shared_atomic_fadd:
6667 op32 = aco_opcode::ds_add_f32;
6668 op32_rtn = aco_opcode::ds_add_rtn_f32;
6669 op64 = aco_opcode::num_opcodes;
6670 op64_rtn = aco_opcode::num_opcodes;
6671 break;
6672 default:
6673 unreachable("Unhandled shared atomic intrinsic");
6674 }
6675
6676 /* return the previous value if dest is ever used */
6677 bool return_previous = false;
6678 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6679 return_previous = true;
6680 break;
6681 }
6682 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6683 return_previous = true;
6684 break;
6685 }
6686
6687 aco_opcode op;
6688 if (data.size() == 1) {
6689 assert(instr->dest.ssa.bit_size == 32);
6690 op = return_previous ? op32_rtn : op32;
6691 } else {
6692 assert(instr->dest.ssa.bit_size == 64);
6693 op = return_previous ? op64_rtn : op64;
6694 }
6695
6696 if (offset > 65535) {
6697 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6698 offset = 0;
6699 }
6700
6701 aco_ptr<DS_instruction> ds;
6702 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6703 ds->operands[0] = Operand(address);
6704 ds->operands[1] = Operand(data);
6705 if (num_operands == 4)
6706 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6707 ds->operands[num_operands - 1] = m;
6708 ds->offset0 = offset;
6709 if (return_previous)
6710 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6711 ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw);
6712 ctx->block->instructions.emplace_back(std::move(ds));
6713 }
6714
6715 Temp get_scratch_resource(isel_context *ctx)
6716 {
6717 Builder bld(ctx->program, ctx->block);
6718 Temp scratch_addr = ctx->program->private_segment_buffer;
6719 if (ctx->stage != compute_cs)
6720 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6721
6722 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6723 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
6724
6725 if (ctx->program->chip_class >= GFX10) {
6726 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6727 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6728 S_008F0C_RESOURCE_LEVEL(1);
6729 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6730 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6731 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6732 }
6733
6734 /* older generations need element size = 4 bytes. element size removed in GFX9 */
6735 if (ctx->program->chip_class <= GFX8)
6736 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
6737
6738 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6739 }
6740
6741 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6742 Builder bld(ctx->program, ctx->block);
6743 Temp rsrc = get_scratch_resource(ctx);
6744 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6745 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6746
6747 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6748 instr->dest.ssa.bit_size / 8u, rsrc};
6749 info.align_mul = nir_intrinsic_align_mul(instr);
6750 info.align_offset = nir_intrinsic_align_offset(instr);
6751 info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0;
6752 info.sync = memory_sync_info(storage_scratch, semantic_private);
6753 info.soffset = ctx->program->scratch_offset;
6754 emit_scratch_load(ctx, bld, &info);
6755 }
6756
6757 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6758 Builder bld(ctx->program, ctx->block);
6759 Temp rsrc = get_scratch_resource(ctx);
6760 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6761 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6762
6763 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6764 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6765
6766 unsigned write_count = 0;
6767 Temp write_datas[32];
6768 unsigned offsets[32];
6769 unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16;
6770 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6771 swizzle_component_size, &write_count, write_datas, offsets);
6772
6773 for (unsigned i = 0; i < write_count; i++) {
6774 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6775 Instruction *instr = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true);
6776 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_scratch, semantic_private);
6777 }
6778 }
6779
6780 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6781 uint8_t log2_ps_iter_samples;
6782 if (ctx->program->info->ps.force_persample) {
6783 log2_ps_iter_samples =
6784 util_logbase2(ctx->options->key.fs.num_samples);
6785 } else {
6786 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6787 }
6788
6789 /* The bit pattern matches that used by fixed function fragment
6790 * processing. */
6791 static const unsigned ps_iter_masks[] = {
6792 0xffff, /* not used */
6793 0x5555,
6794 0x1111,
6795 0x0101,
6796 0x0001,
6797 };
6798 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6799
6800 Builder bld(ctx->program, ctx->block);
6801
6802 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6803 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6804 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6805 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6806 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6807 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6808 }
6809
6810 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6811 Builder bld(ctx->program, ctx->block);
6812
6813 unsigned stream = nir_intrinsic_stream_id(instr);
6814 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6815 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6816 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6817
6818 /* get GSVS ring */
6819 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6820
6821 unsigned num_components =
6822 ctx->program->info->gs.num_stream_output_components[stream];
6823 assert(num_components);
6824
6825 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6826 unsigned stream_offset = 0;
6827 for (unsigned i = 0; i < stream; i++) {
6828 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6829 stream_offset += prev_stride * ctx->program->wave_size;
6830 }
6831
6832 /* Limit on the stride field for <= GFX7. */
6833 assert(stride < (1 << 14));
6834
6835 Temp gsvs_dwords[4];
6836 for (unsigned i = 0; i < 4; i++)
6837 gsvs_dwords[i] = bld.tmp(s1);
6838 bld.pseudo(aco_opcode::p_split_vector,
6839 Definition(gsvs_dwords[0]),
6840 Definition(gsvs_dwords[1]),
6841 Definition(gsvs_dwords[2]),
6842 Definition(gsvs_dwords[3]),
6843 gsvs_ring);
6844
6845 if (stream_offset) {
6846 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6847
6848 Temp carry = bld.tmp(s1);
6849 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6850 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6851 }
6852
6853 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6854 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6855
6856 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6857 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6858
6859 unsigned offset = 0;
6860 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6861 if (ctx->program->info->gs.output_streams[i] != stream)
6862 continue;
6863
6864 for (unsigned j = 0; j < 4; j++) {
6865 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6866 continue;
6867
6868 if (ctx->outputs.mask[i] & (1 << j)) {
6869 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6870 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6871 if (const_offset >= 4096u) {
6872 if (vaddr_offset.isUndefined())
6873 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6874 else
6875 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6876 const_offset %= 4096u;
6877 }
6878
6879 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6880 mtbuf->operands[0] = Operand(gsvs_ring);
6881 mtbuf->operands[1] = vaddr_offset;
6882 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6883 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6884 mtbuf->offen = !vaddr_offset.isUndefined();
6885 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6886 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6887 mtbuf->offset = const_offset;
6888 mtbuf->glc = true;
6889 mtbuf->slc = true;
6890 mtbuf->sync = memory_sync_info(storage_vmem_output, semantic_can_reorder);
6891 bld.insert(std::move(mtbuf));
6892 }
6893
6894 offset += ctx->shader->info.gs.vertices_out;
6895 }
6896
6897 /* outputs for the next vertex are undefined and keeping them around can
6898 * create invalid IR with control flow */
6899 ctx->outputs.mask[i] = 0;
6900 }
6901
6902 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6903 }
6904
6905 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6906 {
6907 Builder bld(ctx->program, ctx->block);
6908
6909 if (cluster_size == 1) {
6910 return src;
6911 } if (op == nir_op_iand && cluster_size == 4) {
6912 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6913 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6914 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6915 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6916 } else if (op == nir_op_ior && cluster_size == 4) {
6917 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6918 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6919 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6920 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6921 //subgroupAnd(val) -> (exec & ~val) == 0
6922 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6923 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6924 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6925 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6926 //subgroupOr(val) -> (val & exec) != 0
6927 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6928 return bool_to_vector_condition(ctx, tmp);
6929 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6930 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6931 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6932 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6933 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6934 return bool_to_vector_condition(ctx, tmp);
6935 } else {
6936 //subgroupClustered{And,Or,Xor}(val, n) ->
6937 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6938 //cluster_offset = ~(n - 1) & lane_id
6939 //cluster_mask = ((1 << n) - 1)
6940 //subgroupClusteredAnd():
6941 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6942 //subgroupClusteredOr():
6943 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6944 //subgroupClusteredXor():
6945 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6946 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6947 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6948
6949 Temp tmp;
6950 if (op == nir_op_iand)
6951 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6952 else
6953 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6954
6955 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6956
6957 if (ctx->program->chip_class <= GFX7)
6958 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6959 else if (ctx->program->wave_size == 64)
6960 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6961 else
6962 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6963 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6964 if (cluster_mask != 0xffffffff)
6965 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6966
6967 Definition cmp_def = Definition();
6968 if (op == nir_op_iand) {
6969 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6970 } else if (op == nir_op_ior) {
6971 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6972 } else if (op == nir_op_ixor) {
6973 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6974 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6975 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6976 }
6977 cmp_def.setHint(vcc);
6978 return cmp_def.getTemp();
6979 }
6980 }
6981
6982 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6983 {
6984 Builder bld(ctx->program, ctx->block);
6985
6986 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6987 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6988 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6989 Temp tmp;
6990 if (op == nir_op_iand)
6991 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6992 else
6993 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6994
6995 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6996 Temp lo = lohi.def(0).getTemp();
6997 Temp hi = lohi.def(1).getTemp();
6998 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6999
7000 Definition cmp_def = Definition();
7001 if (op == nir_op_iand)
7002 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7003 else if (op == nir_op_ior)
7004 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7005 else if (op == nir_op_ixor)
7006 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7007 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7008 cmp_def.setHint(vcc);
7009 return cmp_def.getTemp();
7010 }
7011
7012 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7013 {
7014 Builder bld(ctx->program, ctx->block);
7015
7016 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7017 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7018 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7019 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7020 if (op == nir_op_iand)
7021 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7022 else if (op == nir_op_ior)
7023 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7024 else if (op == nir_op_ixor)
7025 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7026
7027 assert(false);
7028 return Temp();
7029 }
7030
7031 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7032 {
7033 Builder bld(ctx->program, ctx->block);
7034 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7035 if (src.regClass().type() == RegType::vgpr) {
7036 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7037 } else if (src.regClass() == s1) {
7038 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7039 } else if (src.regClass() == s2) {
7040 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7041 } else {
7042 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7043 }
7044 }
7045
7046 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7047 {
7048 Builder bld(ctx->program, ctx->block);
7049 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7050 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7051 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7052
7053 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7054 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7055 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7056 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7057
7058 /* Build DD X/Y */
7059 if (ctx->program->chip_class >= GFX8) {
7060 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7061 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7062 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7063 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7064 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7065 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7066 } else {
7067 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7068 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7069 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7070 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7071 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7072 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7073 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7074 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7075 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7076 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7077 }
7078
7079 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7080 aco_opcode mad = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
7081 Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1);
7082 Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2);
7083 tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1);
7084 tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2);
7085 Temp wqm1 = bld.tmp(v1);
7086 emit_wqm(ctx, tmp1, wqm1, true);
7087 Temp wqm2 = bld.tmp(v1);
7088 emit_wqm(ctx, tmp2, wqm2, true);
7089 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7090 return;
7091 }
7092
7093 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7094 {
7095 Builder bld(ctx->program, ctx->block);
7096 switch(instr->intrinsic) {
7097 case nir_intrinsic_load_barycentric_sample:
7098 case nir_intrinsic_load_barycentric_pixel:
7099 case nir_intrinsic_load_barycentric_centroid: {
7100 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7101 Temp bary = Temp(0, s2);
7102 switch (mode) {
7103 case INTERP_MODE_SMOOTH:
7104 case INTERP_MODE_NONE:
7105 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7106 bary = get_arg(ctx, ctx->args->ac.persp_center);
7107 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7108 bary = ctx->persp_centroid;
7109 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7110 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7111 break;
7112 case INTERP_MODE_NOPERSPECTIVE:
7113 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7114 bary = get_arg(ctx, ctx->args->ac.linear_center);
7115 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7116 bary = ctx->linear_centroid;
7117 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7118 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7119 break;
7120 default:
7121 break;
7122 }
7123 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7124 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7125 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7126 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7127 Operand(p1), Operand(p2));
7128 emit_split_vector(ctx, dst, 2);
7129 break;
7130 }
7131 case nir_intrinsic_load_barycentric_model: {
7132 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7133
7134 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7135 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7136 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7137 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7138 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7139 Operand(p1), Operand(p2), Operand(p3));
7140 emit_split_vector(ctx, dst, 3);
7141 break;
7142 }
7143 case nir_intrinsic_load_barycentric_at_sample: {
7144 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7145 switch (ctx->options->key.fs.num_samples) {
7146 case 2: sample_pos_offset += 1 << 3; break;
7147 case 4: sample_pos_offset += 3 << 3; break;
7148 case 8: sample_pos_offset += 7 << 3; break;
7149 default: break;
7150 }
7151 Temp sample_pos;
7152 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7153 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7154 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7155 //TODO: bounds checking?
7156 if (addr.type() == RegType::sgpr) {
7157 Operand offset;
7158 if (const_addr) {
7159 sample_pos_offset += const_addr->u32 << 3;
7160 offset = Operand(sample_pos_offset);
7161 } else if (ctx->options->chip_class >= GFX9) {
7162 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7163 } else {
7164 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7165 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7166 }
7167
7168 Operand off = bld.copy(bld.def(s1), Operand(offset));
7169 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7170
7171 } else if (ctx->options->chip_class >= GFX9) {
7172 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7173 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7174 } else if (ctx->options->chip_class >= GFX7) {
7175 /* addr += private_segment_buffer + sample_pos_offset */
7176 Temp tmp0 = bld.tmp(s1);
7177 Temp tmp1 = bld.tmp(s1);
7178 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7179 Definition scc_tmp = bld.def(s1, scc);
7180 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7181 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7182 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7183 Temp pck0 = bld.tmp(v1);
7184 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7185 tmp1 = as_vgpr(ctx, tmp1);
7186 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7187 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7188
7189 /* sample_pos = flat_load_dwordx2 addr */
7190 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7191 } else {
7192 assert(ctx->options->chip_class == GFX6);
7193
7194 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7195 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7196 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7197
7198 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7199 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7200
7201 sample_pos = bld.tmp(v2);
7202
7203 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7204 load->definitions[0] = Definition(sample_pos);
7205 load->operands[0] = Operand(rsrc);
7206 load->operands[1] = Operand(addr);
7207 load->operands[2] = Operand(0u);
7208 load->offset = sample_pos_offset;
7209 load->offen = 0;
7210 load->addr64 = true;
7211 load->glc = false;
7212 load->dlc = false;
7213 load->disable_wqm = false;
7214 ctx->block->instructions.emplace_back(std::move(load));
7215 }
7216
7217 /* sample_pos -= 0.5 */
7218 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7219 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7220 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7221 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7222 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7223
7224 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7225 break;
7226 }
7227 case nir_intrinsic_load_barycentric_at_offset: {
7228 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7229 RegClass rc = RegClass(offset.type(), 1);
7230 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7231 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7232 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7233 break;
7234 }
7235 case nir_intrinsic_load_front_face: {
7236 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7237 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7238 break;
7239 }
7240 case nir_intrinsic_load_view_index: {
7241 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7242 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7243 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7244 break;
7245 }
7246
7247 /* fallthrough */
7248 }
7249 case nir_intrinsic_load_layer_id: {
7250 unsigned idx = nir_intrinsic_base(instr);
7251 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7252 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7253 break;
7254 }
7255 case nir_intrinsic_load_frag_coord: {
7256 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7257 break;
7258 }
7259 case nir_intrinsic_load_sample_pos: {
7260 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7261 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7262 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7263 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7264 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7265 break;
7266 }
7267 case nir_intrinsic_load_tess_coord:
7268 visit_load_tess_coord(ctx, instr);
7269 break;
7270 case nir_intrinsic_load_interpolated_input:
7271 visit_load_interpolated_input(ctx, instr);
7272 break;
7273 case nir_intrinsic_store_output:
7274 visit_store_output(ctx, instr);
7275 break;
7276 case nir_intrinsic_load_input:
7277 case nir_intrinsic_load_input_vertex:
7278 visit_load_input(ctx, instr);
7279 break;
7280 case nir_intrinsic_load_output:
7281 visit_load_output(ctx, instr);
7282 break;
7283 case nir_intrinsic_load_per_vertex_input:
7284 visit_load_per_vertex_input(ctx, instr);
7285 break;
7286 case nir_intrinsic_load_per_vertex_output:
7287 visit_load_per_vertex_output(ctx, instr);
7288 break;
7289 case nir_intrinsic_store_per_vertex_output:
7290 visit_store_per_vertex_output(ctx, instr);
7291 break;
7292 case nir_intrinsic_load_ubo:
7293 visit_load_ubo(ctx, instr);
7294 break;
7295 case nir_intrinsic_load_push_constant:
7296 visit_load_push_constant(ctx, instr);
7297 break;
7298 case nir_intrinsic_load_constant:
7299 visit_load_constant(ctx, instr);
7300 break;
7301 case nir_intrinsic_vulkan_resource_index:
7302 visit_load_resource(ctx, instr);
7303 break;
7304 case nir_intrinsic_discard:
7305 visit_discard(ctx, instr);
7306 break;
7307 case nir_intrinsic_discard_if:
7308 visit_discard_if(ctx, instr);
7309 break;
7310 case nir_intrinsic_load_shared:
7311 visit_load_shared(ctx, instr);
7312 break;
7313 case nir_intrinsic_store_shared:
7314 visit_store_shared(ctx, instr);
7315 break;
7316 case nir_intrinsic_shared_atomic_add:
7317 case nir_intrinsic_shared_atomic_imin:
7318 case nir_intrinsic_shared_atomic_umin:
7319 case nir_intrinsic_shared_atomic_imax:
7320 case nir_intrinsic_shared_atomic_umax:
7321 case nir_intrinsic_shared_atomic_and:
7322 case nir_intrinsic_shared_atomic_or:
7323 case nir_intrinsic_shared_atomic_xor:
7324 case nir_intrinsic_shared_atomic_exchange:
7325 case nir_intrinsic_shared_atomic_comp_swap:
7326 case nir_intrinsic_shared_atomic_fadd:
7327 visit_shared_atomic(ctx, instr);
7328 break;
7329 case nir_intrinsic_image_deref_load:
7330 visit_image_load(ctx, instr);
7331 break;
7332 case nir_intrinsic_image_deref_store:
7333 visit_image_store(ctx, instr);
7334 break;
7335 case nir_intrinsic_image_deref_atomic_add:
7336 case nir_intrinsic_image_deref_atomic_umin:
7337 case nir_intrinsic_image_deref_atomic_imin:
7338 case nir_intrinsic_image_deref_atomic_umax:
7339 case nir_intrinsic_image_deref_atomic_imax:
7340 case nir_intrinsic_image_deref_atomic_and:
7341 case nir_intrinsic_image_deref_atomic_or:
7342 case nir_intrinsic_image_deref_atomic_xor:
7343 case nir_intrinsic_image_deref_atomic_exchange:
7344 case nir_intrinsic_image_deref_atomic_comp_swap:
7345 visit_image_atomic(ctx, instr);
7346 break;
7347 case nir_intrinsic_image_deref_size:
7348 visit_image_size(ctx, instr);
7349 break;
7350 case nir_intrinsic_load_ssbo:
7351 visit_load_ssbo(ctx, instr);
7352 break;
7353 case nir_intrinsic_store_ssbo:
7354 visit_store_ssbo(ctx, instr);
7355 break;
7356 case nir_intrinsic_load_global:
7357 visit_load_global(ctx, instr);
7358 break;
7359 case nir_intrinsic_store_global:
7360 visit_store_global(ctx, instr);
7361 break;
7362 case nir_intrinsic_global_atomic_add:
7363 case nir_intrinsic_global_atomic_imin:
7364 case nir_intrinsic_global_atomic_umin:
7365 case nir_intrinsic_global_atomic_imax:
7366 case nir_intrinsic_global_atomic_umax:
7367 case nir_intrinsic_global_atomic_and:
7368 case nir_intrinsic_global_atomic_or:
7369 case nir_intrinsic_global_atomic_xor:
7370 case nir_intrinsic_global_atomic_exchange:
7371 case nir_intrinsic_global_atomic_comp_swap:
7372 visit_global_atomic(ctx, instr);
7373 break;
7374 case nir_intrinsic_ssbo_atomic_add:
7375 case nir_intrinsic_ssbo_atomic_imin:
7376 case nir_intrinsic_ssbo_atomic_umin:
7377 case nir_intrinsic_ssbo_atomic_imax:
7378 case nir_intrinsic_ssbo_atomic_umax:
7379 case nir_intrinsic_ssbo_atomic_and:
7380 case nir_intrinsic_ssbo_atomic_or:
7381 case nir_intrinsic_ssbo_atomic_xor:
7382 case nir_intrinsic_ssbo_atomic_exchange:
7383 case nir_intrinsic_ssbo_atomic_comp_swap:
7384 visit_atomic_ssbo(ctx, instr);
7385 break;
7386 case nir_intrinsic_load_scratch:
7387 visit_load_scratch(ctx, instr);
7388 break;
7389 case nir_intrinsic_store_scratch:
7390 visit_store_scratch(ctx, instr);
7391 break;
7392 case nir_intrinsic_get_buffer_size:
7393 visit_get_buffer_size(ctx, instr);
7394 break;
7395 case nir_intrinsic_scoped_barrier:
7396 emit_scoped_barrier(ctx, instr);
7397 break;
7398 case nir_intrinsic_load_num_work_groups: {
7399 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7400 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7401 emit_split_vector(ctx, dst, 3);
7402 break;
7403 }
7404 case nir_intrinsic_load_local_invocation_id: {
7405 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7406 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7407 emit_split_vector(ctx, dst, 3);
7408 break;
7409 }
7410 case nir_intrinsic_load_work_group_id: {
7411 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7412 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7413 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7414 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7415 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7416 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7417 emit_split_vector(ctx, dst, 3);
7418 break;
7419 }
7420 case nir_intrinsic_load_local_invocation_index: {
7421 Temp id = emit_mbcnt(ctx, bld.def(v1));
7422
7423 /* The tg_size bits [6:11] contain the subgroup id,
7424 * we need this multiplied by the wave size, and then OR the thread id to it.
7425 */
7426 if (ctx->program->wave_size == 64) {
7427 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7428 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7429 get_arg(ctx, ctx->args->ac.tg_size));
7430 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7431 } else {
7432 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7433 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7434 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7435 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7436 }
7437 break;
7438 }
7439 case nir_intrinsic_load_subgroup_id: {
7440 if (ctx->stage == compute_cs) {
7441 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7442 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7443 } else {
7444 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7445 }
7446 break;
7447 }
7448 case nir_intrinsic_load_subgroup_invocation: {
7449 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7450 break;
7451 }
7452 case nir_intrinsic_load_num_subgroups: {
7453 if (ctx->stage == compute_cs)
7454 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7455 get_arg(ctx, ctx->args->ac.tg_size));
7456 else
7457 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7458 break;
7459 }
7460 case nir_intrinsic_ballot: {
7461 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7462 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7463 Definition tmp = bld.def(dst.regClass());
7464 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7465 if (instr->src[0].ssa->bit_size == 1) {
7466 assert(src.regClass() == bld.lm);
7467 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7468 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7469 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7470 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7471 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7472 } else {
7473 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7474 }
7475 if (dst.size() != bld.lm.size()) {
7476 /* Wave32 with ballot size set to 64 */
7477 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7478 }
7479 emit_wqm(ctx, tmp.getTemp(), dst);
7480 break;
7481 }
7482 case nir_intrinsic_shuffle:
7483 case nir_intrinsic_read_invocation: {
7484 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7485 if (!nir_src_is_divergent(instr->src[0])) {
7486 emit_uniform_subgroup(ctx, instr, src);
7487 } else {
7488 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7489 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7490 tid = bld.as_uniform(tid);
7491 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7492 if (src.regClass() == v1b || src.regClass() == v2b) {
7493 Temp tmp = bld.tmp(v1);
7494 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7495 if (dst.type() == RegType::vgpr)
7496 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7497 else
7498 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7499 } else if (src.regClass() == v1) {
7500 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7501 } else if (src.regClass() == v2) {
7502 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7503 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7504 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7505 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7506 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7507 emit_split_vector(ctx, dst, 2);
7508 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7509 assert(src.regClass() == bld.lm);
7510 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7511 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7512 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7513 assert(src.regClass() == bld.lm);
7514 Temp tmp;
7515 if (ctx->program->chip_class <= GFX7)
7516 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7517 else if (ctx->program->wave_size == 64)
7518 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7519 else
7520 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7521 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7522 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7523 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7524 } else {
7525 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7526 }
7527 }
7528 break;
7529 }
7530 case nir_intrinsic_load_sample_id: {
7531 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7532 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7533 break;
7534 }
7535 case nir_intrinsic_load_sample_mask_in: {
7536 visit_load_sample_mask_in(ctx, instr);
7537 break;
7538 }
7539 case nir_intrinsic_read_first_invocation: {
7540 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7541 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7542 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7543 emit_wqm(ctx,
7544 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7545 dst);
7546 } else if (src.regClass() == v2) {
7547 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7548 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7549 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7550 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7551 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7552 emit_split_vector(ctx, dst, 2);
7553 } else if (instr->dest.ssa.bit_size == 1) {
7554 assert(src.regClass() == bld.lm);
7555 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7556 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7557 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7558 } else if (src.regClass() == s1) {
7559 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7560 } else if (src.regClass() == s2) {
7561 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7562 } else {
7563 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7564 }
7565 break;
7566 }
7567 case nir_intrinsic_vote_all: {
7568 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7569 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7570 assert(src.regClass() == bld.lm);
7571 assert(dst.regClass() == bld.lm);
7572
7573 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7574 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7575 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7576 break;
7577 }
7578 case nir_intrinsic_vote_any: {
7579 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7580 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7581 assert(src.regClass() == bld.lm);
7582 assert(dst.regClass() == bld.lm);
7583
7584 Temp tmp = bool_to_scalar_condition(ctx, src);
7585 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7586 break;
7587 }
7588 case nir_intrinsic_reduce:
7589 case nir_intrinsic_inclusive_scan:
7590 case nir_intrinsic_exclusive_scan: {
7591 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7592 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7593 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7594 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7595 nir_intrinsic_cluster_size(instr) : 0;
7596 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7597
7598 if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
7599 emit_uniform_subgroup(ctx, instr, src);
7600 } else if (instr->dest.ssa.bit_size == 1) {
7601 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7602 op = nir_op_iand;
7603 else if (op == nir_op_iadd)
7604 op = nir_op_ixor;
7605 else if (op == nir_op_umax || op == nir_op_imax)
7606 op = nir_op_ior;
7607 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7608
7609 switch (instr->intrinsic) {
7610 case nir_intrinsic_reduce:
7611 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7612 break;
7613 case nir_intrinsic_exclusive_scan:
7614 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7615 break;
7616 case nir_intrinsic_inclusive_scan:
7617 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7618 break;
7619 default:
7620 assert(false);
7621 }
7622 } else if (cluster_size == 1) {
7623 bld.copy(Definition(dst), src);
7624 } else {
7625 unsigned bit_size = instr->src[0].ssa->bit_size;
7626
7627 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
7628
7629 ReduceOp reduce_op;
7630 switch (op) {
7631 #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
7632 #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
7633 CASEI(iadd)
7634 CASEI(imul)
7635 CASEI(imin)
7636 CASEI(umin)
7637 CASEI(imax)
7638 CASEI(umax)
7639 CASEI(iand)
7640 CASEI(ior)
7641 CASEI(ixor)
7642 CASEF(fadd)
7643 CASEF(fmul)
7644 CASEF(fmin)
7645 CASEF(fmax)
7646 default:
7647 unreachable("unknown reduction op");
7648 #undef CASEI
7649 #undef CASEF
7650 }
7651
7652 aco_opcode aco_op;
7653 switch (instr->intrinsic) {
7654 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7655 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7656 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7657 default:
7658 unreachable("unknown reduce intrinsic");
7659 }
7660
7661 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7662 reduce->operands[0] = Operand(src);
7663 // filled in by aco_reduce_assign.cpp, used internally as part of the
7664 // reduce sequence
7665 assert(dst.size() == 1 || dst.size() == 2);
7666 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7667 reduce->operands[2] = Operand(v1.as_linear());
7668
7669 Temp tmp_dst = bld.tmp(dst.regClass());
7670 reduce->definitions[0] = Definition(tmp_dst);
7671 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7672 reduce->definitions[2] = Definition();
7673 reduce->definitions[3] = Definition(scc, s1);
7674 reduce->definitions[4] = Definition();
7675 reduce->reduce_op = reduce_op;
7676 reduce->cluster_size = cluster_size;
7677 ctx->block->instructions.emplace_back(std::move(reduce));
7678
7679 emit_wqm(ctx, tmp_dst, dst);
7680 }
7681 break;
7682 }
7683 case nir_intrinsic_quad_broadcast: {
7684 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7685 if (!nir_dest_is_divergent(instr->dest)) {
7686 emit_uniform_subgroup(ctx, instr, src);
7687 } else {
7688 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7689 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7690 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7691
7692 if (instr->dest.ssa.bit_size == 1) {
7693 assert(src.regClass() == bld.lm);
7694 assert(dst.regClass() == bld.lm);
7695 uint32_t half_mask = 0x11111111u << lane;
7696 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7697 Temp tmp = bld.tmp(bld.lm);
7698 bld.sop1(Builder::s_wqm, Definition(tmp),
7699 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7700 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7701 emit_wqm(ctx, tmp, dst);
7702 } else if (instr->dest.ssa.bit_size == 8) {
7703 Temp tmp = bld.tmp(v1);
7704 if (ctx->program->chip_class >= GFX8)
7705 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7706 else
7707 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7708 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7709 } else if (instr->dest.ssa.bit_size == 16) {
7710 Temp tmp = bld.tmp(v1);
7711 if (ctx->program->chip_class >= GFX8)
7712 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7713 else
7714 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7715 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7716 } else if (instr->dest.ssa.bit_size == 32) {
7717 if (ctx->program->chip_class >= GFX8)
7718 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7719 else
7720 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7721 } else if (instr->dest.ssa.bit_size == 64) {
7722 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7723 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7724 if (ctx->program->chip_class >= GFX8) {
7725 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7726 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7727 } else {
7728 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7729 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7730 }
7731 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7732 emit_split_vector(ctx, dst, 2);
7733 } else {
7734 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7735 }
7736 }
7737 break;
7738 }
7739 case nir_intrinsic_quad_swap_horizontal:
7740 case nir_intrinsic_quad_swap_vertical:
7741 case nir_intrinsic_quad_swap_diagonal:
7742 case nir_intrinsic_quad_swizzle_amd: {
7743 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7744 if (!nir_dest_is_divergent(instr->dest)) {
7745 emit_uniform_subgroup(ctx, instr, src);
7746 break;
7747 }
7748 uint16_t dpp_ctrl = 0;
7749 switch (instr->intrinsic) {
7750 case nir_intrinsic_quad_swap_horizontal:
7751 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7752 break;
7753 case nir_intrinsic_quad_swap_vertical:
7754 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7755 break;
7756 case nir_intrinsic_quad_swap_diagonal:
7757 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7758 break;
7759 case nir_intrinsic_quad_swizzle_amd:
7760 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7761 break;
7762 default:
7763 break;
7764 }
7765 if (ctx->program->chip_class < GFX8)
7766 dpp_ctrl |= (1 << 15);
7767
7768 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7769 if (instr->dest.ssa.bit_size == 1) {
7770 assert(src.regClass() == bld.lm);
7771 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7772 if (ctx->program->chip_class >= GFX8)
7773 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7774 else
7775 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7776 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7777 emit_wqm(ctx, tmp, dst);
7778 } else if (instr->dest.ssa.bit_size == 8) {
7779 Temp tmp = bld.tmp(v1);
7780 if (ctx->program->chip_class >= GFX8)
7781 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7782 else
7783 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7784 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7785 } else if (instr->dest.ssa.bit_size == 16) {
7786 Temp tmp = bld.tmp(v1);
7787 if (ctx->program->chip_class >= GFX8)
7788 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7789 else
7790 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7791 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7792 } else if (instr->dest.ssa.bit_size == 32) {
7793 Temp tmp;
7794 if (ctx->program->chip_class >= GFX8)
7795 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7796 else
7797 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7798 emit_wqm(ctx, tmp, dst);
7799 } else if (instr->dest.ssa.bit_size == 64) {
7800 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7801 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7802 if (ctx->program->chip_class >= GFX8) {
7803 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7804 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7805 } else {
7806 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7807 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7808 }
7809 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7810 emit_split_vector(ctx, dst, 2);
7811 } else {
7812 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7813 }
7814 break;
7815 }
7816 case nir_intrinsic_masked_swizzle_amd: {
7817 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7818 if (!nir_dest_is_divergent(instr->dest)) {
7819 emit_uniform_subgroup(ctx, instr, src);
7820 break;
7821 }
7822 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7823 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7824 if (instr->dest.ssa.bit_size == 1) {
7825 assert(src.regClass() == bld.lm);
7826 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7827 src = emit_masked_swizzle(ctx, bld, src, mask);
7828 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7829 emit_wqm(ctx, tmp, dst);
7830 } else if (dst.regClass() == v1b) {
7831 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7832 emit_extract_vector(ctx, tmp, 0, dst);
7833 } else if (dst.regClass() == v2b) {
7834 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7835 emit_extract_vector(ctx, tmp, 0, dst);
7836 } else if (dst.regClass() == v1) {
7837 emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
7838 } else if (dst.regClass() == v2) {
7839 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7840 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7841 lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
7842 hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
7843 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7844 emit_split_vector(ctx, dst, 2);
7845 } else {
7846 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7847 }
7848 break;
7849 }
7850 case nir_intrinsic_write_invocation_amd: {
7851 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7852 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7853 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7854 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7855 if (dst.regClass() == v1) {
7856 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7857 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7858 } else if (dst.regClass() == v2) {
7859 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7860 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7861 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7862 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7863 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7864 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7865 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7866 emit_split_vector(ctx, dst, 2);
7867 } else {
7868 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7869 }
7870 break;
7871 }
7872 case nir_intrinsic_mbcnt_amd: {
7873 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7874 RegClass rc = RegClass(src.type(), 1);
7875 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7876 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7877 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7878 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7879 emit_wqm(ctx, wqm_tmp, dst);
7880 break;
7881 }
7882 case nir_intrinsic_load_helper_invocation: {
7883 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7884 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7885 ctx->block->kind |= block_kind_needs_lowering;
7886 ctx->program->needs_exact = true;
7887 break;
7888 }
7889 case nir_intrinsic_is_helper_invocation: {
7890 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7891 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7892 ctx->block->kind |= block_kind_needs_lowering;
7893 ctx->program->needs_exact = true;
7894 break;
7895 }
7896 case nir_intrinsic_demote:
7897 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7898
7899 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7900 ctx->cf_info.exec_potentially_empty_discard = true;
7901 ctx->block->kind |= block_kind_uses_demote;
7902 ctx->program->needs_exact = true;
7903 break;
7904 case nir_intrinsic_demote_if: {
7905 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7906 assert(src.regClass() == bld.lm);
7907 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7908 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7909
7910 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7911 ctx->cf_info.exec_potentially_empty_discard = true;
7912 ctx->block->kind |= block_kind_uses_demote;
7913 ctx->program->needs_exact = true;
7914 break;
7915 }
7916 case nir_intrinsic_first_invocation: {
7917 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7918 get_ssa_temp(ctx, &instr->dest.ssa));
7919 break;
7920 }
7921 case nir_intrinsic_shader_clock: {
7922 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7923 if (nir_intrinsic_memory_scope(instr) == NIR_SCOPE_SUBGROUP && ctx->options->chip_class >= GFX10_3) {
7924 /* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */
7925 Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29);
7926 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand(0u));
7927 } else {
7928 aco_opcode opcode =
7929 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
7930 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
7931 bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile));
7932 }
7933 emit_split_vector(ctx, dst, 2);
7934 break;
7935 }
7936 case nir_intrinsic_load_vertex_id_zero_base: {
7937 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7938 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7939 break;
7940 }
7941 case nir_intrinsic_load_first_vertex: {
7942 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7943 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7944 break;
7945 }
7946 case nir_intrinsic_load_base_instance: {
7947 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7948 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7949 break;
7950 }
7951 case nir_intrinsic_load_instance_id: {
7952 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7953 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7954 break;
7955 }
7956 case nir_intrinsic_load_draw_id: {
7957 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7958 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7959 break;
7960 }
7961 case nir_intrinsic_load_invocation_id: {
7962 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7963
7964 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7965 if (ctx->options->chip_class >= GFX10)
7966 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7967 else
7968 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7969 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7970 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7971 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7972 } else {
7973 unreachable("Unsupported stage for load_invocation_id");
7974 }
7975
7976 break;
7977 }
7978 case nir_intrinsic_load_primitive_id: {
7979 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7980
7981 switch (ctx->shader->info.stage) {
7982 case MESA_SHADER_GEOMETRY:
7983 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7984 break;
7985 case MESA_SHADER_TESS_CTRL:
7986 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7987 break;
7988 case MESA_SHADER_TESS_EVAL:
7989 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7990 break;
7991 default:
7992 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7993 }
7994
7995 break;
7996 }
7997 case nir_intrinsic_load_patch_vertices_in: {
7998 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7999 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8000
8001 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8002 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8003 break;
8004 }
8005 case nir_intrinsic_emit_vertex_with_counter: {
8006 visit_emit_vertex_with_counter(ctx, instr);
8007 break;
8008 }
8009 case nir_intrinsic_end_primitive_with_counter: {
8010 unsigned stream = nir_intrinsic_stream_id(instr);
8011 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8012 break;
8013 }
8014 case nir_intrinsic_set_vertex_count: {
8015 /* unused, the HW keeps track of this for us */
8016 break;
8017 }
8018 default:
8019 isel_err(&instr->instr, "Unimplemented intrinsic instr");
8020 abort();
8021
8022 break;
8023 }
8024 }
8025
8026
8027 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8028 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8029 enum glsl_base_type *stype)
8030 {
8031 nir_deref_instr *texture_deref_instr = NULL;
8032 nir_deref_instr *sampler_deref_instr = NULL;
8033 int plane = -1;
8034
8035 for (unsigned i = 0; i < instr->num_srcs; i++) {
8036 switch (instr->src[i].src_type) {
8037 case nir_tex_src_texture_deref:
8038 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8039 break;
8040 case nir_tex_src_sampler_deref:
8041 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8042 break;
8043 case nir_tex_src_plane:
8044 plane = nir_src_as_int(instr->src[i].src);
8045 break;
8046 default:
8047 break;
8048 }
8049 }
8050
8051 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8052
8053 if (!sampler_deref_instr)
8054 sampler_deref_instr = texture_deref_instr;
8055
8056 if (plane >= 0) {
8057 assert(instr->op != nir_texop_txf_ms &&
8058 instr->op != nir_texop_samples_identical);
8059 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8060 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8061 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8062 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8063 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8064 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8065 } else {
8066 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8067 }
8068 if (samp_ptr) {
8069 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8070
8071 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8072 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8073 Builder bld(ctx->program, ctx->block);
8074
8075 /* to avoid unnecessary moves, we split and recombine sampler and image */
8076 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8077 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8078 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8079 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8080 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8081 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8082 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8083 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8084
8085 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8086 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8087 img[0], img[1], img[2], img[3],
8088 img[4], img[5], img[6], img[7]);
8089 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8090 samp[0], samp[1], samp[2], samp[3]);
8091 }
8092 }
8093 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8094 instr->op == nir_texop_samples_identical))
8095 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8096 }
8097
8098 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8099 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8100 {
8101 Builder bld(ctx->program, ctx->block);
8102
8103 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8104 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8105 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8106
8107 Operand neg_one(0xbf800000u);
8108 Operand one(0x3f800000u);
8109 Operand two(0x40000000u);
8110 Operand four(0x40800000u);
8111
8112 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8113 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8114 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8115
8116 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8117 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8118 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8119 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8120
8121 // select sc
8122 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8123 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8124 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8125 one, is_ma_y);
8126 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8127
8128 // select tc
8129 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8130 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8131 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8132
8133 // select ma
8134 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8135 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8136 deriv_z, is_ma_z);
8137 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8138 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8139 }
8140
8141 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8142 {
8143 Builder bld(ctx->program, ctx->block);
8144 Temp ma, tc, sc, id;
8145 aco_opcode madak = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_madak_f32;
8146 aco_opcode madmk = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmamk_f32 : aco_opcode::v_madmk_f32;
8147
8148 if (is_array) {
8149 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8150
8151 // see comment in ac_prepare_cube_coords()
8152 if (ctx->options->chip_class <= GFX8)
8153 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8154 }
8155
8156 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8157
8158 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8159 vop3a->operands[0] = Operand(ma);
8160 vop3a->abs[0] = true;
8161 Temp invma = bld.tmp(v1);
8162 vop3a->definitions[0] = Definition(invma);
8163 ctx->block->instructions.emplace_back(std::move(vop3a));
8164
8165 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8166 if (!is_deriv)
8167 sc = bld.vop2(madak, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8168
8169 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8170 if (!is_deriv)
8171 tc = bld.vop2(madak, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8172
8173 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8174
8175 if (is_deriv) {
8176 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8177 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8178
8179 for (unsigned i = 0; i < 2; i++) {
8180 // see comment in ac_prepare_cube_coords()
8181 Temp deriv_ma;
8182 Temp deriv_sc, deriv_tc;
8183 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8184 &deriv_ma, &deriv_sc, &deriv_tc);
8185
8186 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8187
8188 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8189 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8190 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8191 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8192 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8193 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8194 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8195 }
8196
8197 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8198 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8199 }
8200
8201 if (is_array)
8202 id = bld.vop2(madmk, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8203 coords.resize(3);
8204 coords[0] = sc;
8205 coords[1] = tc;
8206 coords[2] = id;
8207 }
8208
8209 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8210 {
8211 if (vec->parent_instr->type != nir_instr_type_alu)
8212 return;
8213 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8214 if (vec_instr->op != nir_op_vec(vec->num_components))
8215 return;
8216
8217 for (unsigned i = 0; i < vec->num_components; i++) {
8218 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8219 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8220 }
8221 }
8222
8223 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8224 {
8225 Builder bld(ctx->program, ctx->block);
8226 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8227 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8228 has_clamped_lod = false;
8229 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8230 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8231 clamped_lod = Temp();
8232 std::vector<Temp> coords;
8233 std::vector<Temp> derivs;
8234 nir_const_value *sample_index_cv = NULL;
8235 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8236 enum glsl_base_type stype;
8237 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8238
8239 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8240 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8241 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8242 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8243
8244 for (unsigned i = 0; i < instr->num_srcs; i++) {
8245 switch (instr->src[i].src_type) {
8246 case nir_tex_src_coord: {
8247 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8248 for (unsigned i = 0; i < coord.size(); i++)
8249 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8250 break;
8251 }
8252 case nir_tex_src_bias:
8253 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8254 has_bias = true;
8255 break;
8256 case nir_tex_src_lod: {
8257 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8258
8259 if (val && val->f32 <= 0.0) {
8260 level_zero = true;
8261 } else {
8262 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8263 has_lod = true;
8264 }
8265 break;
8266 }
8267 case nir_tex_src_min_lod:
8268 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8269 has_clamped_lod = true;
8270 break;
8271 case nir_tex_src_comparator:
8272 if (instr->is_shadow) {
8273 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8274 has_compare = true;
8275 }
8276 break;
8277 case nir_tex_src_offset:
8278 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8279 get_const_vec(instr->src[i].src.ssa, const_offset);
8280 has_offset = true;
8281 break;
8282 case nir_tex_src_ddx:
8283 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8284 has_ddx = true;
8285 break;
8286 case nir_tex_src_ddy:
8287 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8288 has_ddy = true;
8289 break;
8290 case nir_tex_src_ms_index:
8291 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8292 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8293 has_sample_index = true;
8294 break;
8295 case nir_tex_src_texture_offset:
8296 case nir_tex_src_sampler_offset:
8297 default:
8298 break;
8299 }
8300 }
8301
8302 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8303 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8304
8305 if (instr->op == nir_texop_texture_samples) {
8306 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8307
8308 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8309 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8310 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8311
8312 Operand default_sample = Operand(1u);
8313 if (ctx->options->robust_buffer_access) {
8314 /* Extract the second dword of the descriptor, if it's
8315 * all zero, then it's a null descriptor.
8316 */
8317 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8318 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8319 default_sample = Operand(is_non_null_descriptor);
8320 }
8321
8322 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8323 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8324 samples, default_sample, bld.scc(is_msaa));
8325 return;
8326 }
8327
8328 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8329 aco_ptr<Instruction> tmp_instr;
8330 Temp acc, pack = Temp();
8331
8332 uint32_t pack_const = 0;
8333 for (unsigned i = 0; i < offset.size(); i++) {
8334 if (!const_offset[i])
8335 continue;
8336 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8337 }
8338
8339 if (offset.type() == RegType::sgpr) {
8340 for (unsigned i = 0; i < offset.size(); i++) {
8341 if (const_offset[i])
8342 continue;
8343
8344 acc = emit_extract_vector(ctx, offset, i, s1);
8345 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8346
8347 if (i) {
8348 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8349 }
8350
8351 if (pack == Temp()) {
8352 pack = acc;
8353 } else {
8354 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8355 }
8356 }
8357
8358 if (pack_const && pack != Temp())
8359 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8360 } else {
8361 for (unsigned i = 0; i < offset.size(); i++) {
8362 if (const_offset[i])
8363 continue;
8364
8365 acc = emit_extract_vector(ctx, offset, i, v1);
8366 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8367
8368 if (i) {
8369 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8370 }
8371
8372 if (pack == Temp()) {
8373 pack = acc;
8374 } else {
8375 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8376 }
8377 }
8378
8379 if (pack_const && pack != Temp())
8380 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8381 }
8382 if (pack_const && pack == Temp())
8383 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8384 else if (pack == Temp())
8385 has_offset = false;
8386 else
8387 offset = pack;
8388 }
8389
8390 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8391 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8392
8393 /* pack derivatives */
8394 if (has_ddx || has_ddy) {
8395 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8396 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8397 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8398 derivs = {ddx, zero, ddy, zero};
8399 } else {
8400 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8401 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8402 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8403 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8404 }
8405 has_derivs = true;
8406 }
8407
8408 if (instr->coord_components > 1 &&
8409 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8410 instr->is_array &&
8411 instr->op != nir_texop_txf)
8412 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8413
8414 if (instr->coord_components > 2 &&
8415 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8416 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8417 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8418 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8419 instr->is_array &&
8420 instr->op != nir_texop_txf &&
8421 instr->op != nir_texop_txf_ms &&
8422 instr->op != nir_texop_fragment_fetch &&
8423 instr->op != nir_texop_fragment_mask_fetch)
8424 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8425
8426 if (ctx->options->chip_class == GFX9 &&
8427 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8428 instr->op != nir_texop_lod && instr->coord_components) {
8429 assert(coords.size() > 0 && coords.size() < 3);
8430
8431 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8432 Operand((uint32_t) 0) :
8433 Operand((uint32_t) 0x3f000000)));
8434 }
8435
8436 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8437
8438 if (instr->op == nir_texop_samples_identical)
8439 resource = fmask_ptr;
8440
8441 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8442 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8443 instr->op != nir_texop_txs &&
8444 instr->op != nir_texop_fragment_fetch &&
8445 instr->op != nir_texop_fragment_mask_fetch) {
8446 assert(has_sample_index);
8447 Operand op(sample_index);
8448 if (sample_index_cv)
8449 op = Operand(sample_index_cv->u32);
8450 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8451 }
8452
8453 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8454 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8455 Temp off = emit_extract_vector(ctx, offset, i, v1);
8456 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8457 }
8458 has_offset = false;
8459 }
8460
8461 /* Build tex instruction */
8462 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8463 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8464 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8465 : 0;
8466 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8467 Temp tmp_dst = dst;
8468
8469 /* gather4 selects the component by dmask and always returns vec4 */
8470 if (instr->op == nir_texop_tg4) {
8471 assert(instr->dest.ssa.num_components == 4);
8472 if (instr->is_shadow)
8473 dmask = 1;
8474 else
8475 dmask = 1 << instr->component;
8476 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8477 tmp_dst = bld.tmp(v4);
8478 } else if (instr->op == nir_texop_samples_identical) {
8479 tmp_dst = bld.tmp(v1);
8480 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8481 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8482 }
8483
8484 aco_ptr<MIMG_instruction> tex;
8485 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8486 if (!has_lod)
8487 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8488
8489 bool div_by_6 = instr->op == nir_texop_txs &&
8490 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8491 instr->is_array &&
8492 (dmask & (1 << 2));
8493 if (tmp_dst.id() == dst.id() && div_by_6)
8494 tmp_dst = bld.tmp(tmp_dst.regClass());
8495
8496 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8497 tex->operands[0] = Operand(resource);
8498 tex->operands[1] = Operand(s4); /* no sampler */
8499 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8500 if (ctx->options->chip_class == GFX9 &&
8501 instr->op == nir_texop_txs &&
8502 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8503 instr->is_array) {
8504 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8505 } else if (instr->op == nir_texop_query_levels) {
8506 tex->dmask = 1 << 3;
8507 } else {
8508 tex->dmask = dmask;
8509 }
8510 tex->da = da;
8511 tex->definitions[0] = Definition(tmp_dst);
8512 tex->dim = dim;
8513 ctx->block->instructions.emplace_back(std::move(tex));
8514
8515 if (div_by_6) {
8516 /* divide 3rd value by 6 by multiplying with magic number */
8517 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8518 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8519 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8520 assert(instr->dest.ssa.num_components == 3);
8521 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8522 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8523 emit_extract_vector(ctx, tmp_dst, 0, v1),
8524 emit_extract_vector(ctx, tmp_dst, 1, v1),
8525 by_6);
8526
8527 }
8528
8529 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8530 return;
8531 }
8532
8533 Temp tg4_compare_cube_wa64 = Temp();
8534
8535 if (tg4_integer_workarounds) {
8536 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8537 tex->operands[0] = Operand(resource);
8538 tex->operands[1] = Operand(s4); /* no sampler */
8539 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8540 tex->dim = dim;
8541 tex->dmask = 0x3;
8542 tex->da = da;
8543 Temp size = bld.tmp(v2);
8544 tex->definitions[0] = Definition(size);
8545 ctx->block->instructions.emplace_back(std::move(tex));
8546 emit_split_vector(ctx, size, size.size());
8547
8548 Temp half_texel[2];
8549 for (unsigned i = 0; i < 2; i++) {
8550 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8551 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8552 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8553 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8554 }
8555
8556 Temp new_coords[2] = {
8557 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8558 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8559 };
8560
8561 if (tg4_integer_cube_workaround) {
8562 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8563 Temp desc[resource.size()];
8564 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8565 Format::PSEUDO, 1, resource.size())};
8566 split->operands[0] = Operand(resource);
8567 for (unsigned i = 0; i < resource.size(); i++) {
8568 desc[i] = bld.tmp(s1);
8569 split->definitions[i] = Definition(desc[i]);
8570 }
8571 ctx->block->instructions.emplace_back(std::move(split));
8572
8573 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8574 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8575 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8576
8577 Temp nfmt;
8578 if (stype == GLSL_TYPE_UINT) {
8579 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8580 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8581 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8582 bld.scc(compare_cube_wa));
8583 } else {
8584 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8585 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8586 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8587 bld.scc(compare_cube_wa));
8588 }
8589 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8590 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8591
8592 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8593
8594 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8595 Operand((uint32_t)C_008F14_NUM_FORMAT));
8596 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8597
8598 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8599 Format::PSEUDO, resource.size(), 1)};
8600 for (unsigned i = 0; i < resource.size(); i++)
8601 vec->operands[i] = Operand(desc[i]);
8602 resource = bld.tmp(resource.regClass());
8603 vec->definitions[0] = Definition(resource);
8604 ctx->block->instructions.emplace_back(std::move(vec));
8605
8606 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8607 new_coords[0], coords[0], tg4_compare_cube_wa64);
8608 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8609 new_coords[1], coords[1], tg4_compare_cube_wa64);
8610 }
8611 coords[0] = new_coords[0];
8612 coords[1] = new_coords[1];
8613 }
8614
8615 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8616 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8617
8618 assert(coords.size() == 1);
8619 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8620 aco_opcode op;
8621 switch (last_bit) {
8622 case 1:
8623 op = aco_opcode::buffer_load_format_x; break;
8624 case 2:
8625 op = aco_opcode::buffer_load_format_xy; break;
8626 case 3:
8627 op = aco_opcode::buffer_load_format_xyz; break;
8628 case 4:
8629 op = aco_opcode::buffer_load_format_xyzw; break;
8630 default:
8631 unreachable("Tex instruction loads more than 4 components.");
8632 }
8633
8634 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8635 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8636 tmp_dst = dst;
8637 else
8638 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8639
8640 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8641 mubuf->operands[0] = Operand(resource);
8642 mubuf->operands[1] = Operand(coords[0]);
8643 mubuf->operands[2] = Operand((uint32_t) 0);
8644 mubuf->definitions[0] = Definition(tmp_dst);
8645 mubuf->idxen = true;
8646 ctx->block->instructions.emplace_back(std::move(mubuf));
8647
8648 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8649 return;
8650 }
8651
8652 /* gather MIMG address components */
8653 std::vector<Temp> args;
8654 if (has_offset)
8655 args.emplace_back(offset);
8656 if (has_bias)
8657 args.emplace_back(bias);
8658 if (has_compare)
8659 args.emplace_back(compare);
8660 if (has_derivs)
8661 args.insert(args.end(), derivs.begin(), derivs.end());
8662
8663 args.insert(args.end(), coords.begin(), coords.end());
8664 if (has_sample_index)
8665 args.emplace_back(sample_index);
8666 if (has_lod)
8667 args.emplace_back(lod);
8668 if (has_clamped_lod)
8669 args.emplace_back(clamped_lod);
8670
8671 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8672 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8673 vec->definitions[0] = Definition(arg);
8674 for (unsigned i = 0; i < args.size(); i++)
8675 vec->operands[i] = Operand(args[i]);
8676 ctx->block->instructions.emplace_back(std::move(vec));
8677
8678
8679 if (instr->op == nir_texop_txf ||
8680 instr->op == nir_texop_txf_ms ||
8681 instr->op == nir_texop_samples_identical ||
8682 instr->op == nir_texop_fragment_fetch ||
8683 instr->op == nir_texop_fragment_mask_fetch) {
8684 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8685 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8686 tex->operands[0] = Operand(resource);
8687 tex->operands[1] = Operand(s4); /* no sampler */
8688 tex->operands[2] = Operand(arg);
8689 tex->dim = dim;
8690 tex->dmask = dmask;
8691 tex->unrm = true;
8692 tex->da = da;
8693 tex->definitions[0] = Definition(tmp_dst);
8694 ctx->block->instructions.emplace_back(std::move(tex));
8695
8696 if (instr->op == nir_texop_samples_identical) {
8697 assert(dmask == 1 && dst.regClass() == v1);
8698 assert(dst.id() != tmp_dst.id());
8699
8700 Temp tmp = bld.tmp(bld.lm);
8701 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8702 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8703
8704 } else {
8705 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8706 }
8707 return;
8708 }
8709
8710 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8711 aco_opcode opcode = aco_opcode::image_sample;
8712 if (has_offset) { /* image_sample_*_o */
8713 if (has_clamped_lod) {
8714 if (has_compare) {
8715 opcode = aco_opcode::image_sample_c_cl_o;
8716 if (has_derivs)
8717 opcode = aco_opcode::image_sample_c_d_cl_o;
8718 if (has_bias)
8719 opcode = aco_opcode::image_sample_c_b_cl_o;
8720 } else {
8721 opcode = aco_opcode::image_sample_cl_o;
8722 if (has_derivs)
8723 opcode = aco_opcode::image_sample_d_cl_o;
8724 if (has_bias)
8725 opcode = aco_opcode::image_sample_b_cl_o;
8726 }
8727 } else if (has_compare) {
8728 opcode = aco_opcode::image_sample_c_o;
8729 if (has_derivs)
8730 opcode = aco_opcode::image_sample_c_d_o;
8731 if (has_bias)
8732 opcode = aco_opcode::image_sample_c_b_o;
8733 if (level_zero)
8734 opcode = aco_opcode::image_sample_c_lz_o;
8735 if (has_lod)
8736 opcode = aco_opcode::image_sample_c_l_o;
8737 } else {
8738 opcode = aco_opcode::image_sample_o;
8739 if (has_derivs)
8740 opcode = aco_opcode::image_sample_d_o;
8741 if (has_bias)
8742 opcode = aco_opcode::image_sample_b_o;
8743 if (level_zero)
8744 opcode = aco_opcode::image_sample_lz_o;
8745 if (has_lod)
8746 opcode = aco_opcode::image_sample_l_o;
8747 }
8748 } else if (has_clamped_lod) { /* image_sample_*_cl */
8749 if (has_compare) {
8750 opcode = aco_opcode::image_sample_c_cl;
8751 if (has_derivs)
8752 opcode = aco_opcode::image_sample_c_d_cl;
8753 if (has_bias)
8754 opcode = aco_opcode::image_sample_c_b_cl;
8755 } else {
8756 opcode = aco_opcode::image_sample_cl;
8757 if (has_derivs)
8758 opcode = aco_opcode::image_sample_d_cl;
8759 if (has_bias)
8760 opcode = aco_opcode::image_sample_b_cl;
8761 }
8762 } else { /* no offset */
8763 if (has_compare) {
8764 opcode = aco_opcode::image_sample_c;
8765 if (has_derivs)
8766 opcode = aco_opcode::image_sample_c_d;
8767 if (has_bias)
8768 opcode = aco_opcode::image_sample_c_b;
8769 if (level_zero)
8770 opcode = aco_opcode::image_sample_c_lz;
8771 if (has_lod)
8772 opcode = aco_opcode::image_sample_c_l;
8773 } else {
8774 opcode = aco_opcode::image_sample;
8775 if (has_derivs)
8776 opcode = aco_opcode::image_sample_d;
8777 if (has_bias)
8778 opcode = aco_opcode::image_sample_b;
8779 if (level_zero)
8780 opcode = aco_opcode::image_sample_lz;
8781 if (has_lod)
8782 opcode = aco_opcode::image_sample_l;
8783 }
8784 }
8785
8786 if (instr->op == nir_texop_tg4) {
8787 if (has_offset) { /* image_gather4_*_o */
8788 if (has_compare) {
8789 opcode = aco_opcode::image_gather4_c_lz_o;
8790 if (has_lod)
8791 opcode = aco_opcode::image_gather4_c_l_o;
8792 if (has_bias)
8793 opcode = aco_opcode::image_gather4_c_b_o;
8794 } else {
8795 opcode = aco_opcode::image_gather4_lz_o;
8796 if (has_lod)
8797 opcode = aco_opcode::image_gather4_l_o;
8798 if (has_bias)
8799 opcode = aco_opcode::image_gather4_b_o;
8800 }
8801 } else {
8802 if (has_compare) {
8803 opcode = aco_opcode::image_gather4_c_lz;
8804 if (has_lod)
8805 opcode = aco_opcode::image_gather4_c_l;
8806 if (has_bias)
8807 opcode = aco_opcode::image_gather4_c_b;
8808 } else {
8809 opcode = aco_opcode::image_gather4_lz;
8810 if (has_lod)
8811 opcode = aco_opcode::image_gather4_l;
8812 if (has_bias)
8813 opcode = aco_opcode::image_gather4_b;
8814 }
8815 }
8816 } else if (instr->op == nir_texop_lod) {
8817 opcode = aco_opcode::image_get_lod;
8818 }
8819
8820 /* we don't need the bias, sample index, compare value or offset to be
8821 * computed in WQM but if the p_create_vector copies the coordinates, then it
8822 * needs to be in WQM */
8823 if (ctx->stage == fragment_fs &&
8824 !has_derivs && !has_lod && !level_zero &&
8825 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8826 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8827 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8828
8829 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8830 tex->operands[0] = Operand(resource);
8831 tex->operands[1] = Operand(sampler);
8832 tex->operands[2] = Operand(arg);
8833 tex->dim = dim;
8834 tex->dmask = dmask;
8835 tex->da = da;
8836 tex->definitions[0] = Definition(tmp_dst);
8837 ctx->block->instructions.emplace_back(std::move(tex));
8838
8839 if (tg4_integer_cube_workaround) {
8840 assert(tmp_dst.id() != dst.id());
8841 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8842
8843 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8844 Temp val[4];
8845 for (unsigned i = 0; i < dst.size(); i++) {
8846 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8847 Temp cvt_val;
8848 if (stype == GLSL_TYPE_UINT)
8849 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8850 else
8851 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8852 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8853 }
8854 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8855 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8856 val[0], val[1], val[2], val[3]);
8857 }
8858 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8859 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8860
8861 }
8862
8863
8864 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
8865 {
8866 Temp tmp = get_ssa_temp(ctx, ssa);
8867 if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
8868 return Operand(rc);
8869 } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
8870 if (ctx->program->wave_size == 64)
8871 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
8872 else
8873 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
8874 } else {
8875 return Operand(tmp);
8876 }
8877 }
8878
8879 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8880 {
8881 aco_ptr<Pseudo_instruction> phi;
8882 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8883 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8884
8885 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
8886 logical |= ctx->block->kind & block_kind_merge;
8887 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8888
8889 /* we want a sorted list of sources, since the predecessor list is also sorted */
8890 std::map<unsigned, nir_ssa_def*> phi_src;
8891 nir_foreach_phi_src(src, instr)
8892 phi_src[src->pred->index] = src->src.ssa;
8893
8894 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8895 unsigned num_operands = 0;
8896 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8897 unsigned num_defined = 0;
8898 unsigned cur_pred_idx = 0;
8899 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8900 if (cur_pred_idx < preds.size()) {
8901 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8902 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8903 unsigned skipped = 0;
8904 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8905 skipped++;
8906 if (cur_pred_idx + skipped < preds.size()) {
8907 for (unsigned i = 0; i < skipped; i++)
8908 operands[num_operands++] = Operand(dst.regClass());
8909 cur_pred_idx += skipped;
8910 } else {
8911 continue;
8912 }
8913 }
8914 /* Handle missing predecessors at the end. This shouldn't happen with loop
8915 * headers and we can't ignore these sources for loop header phis. */
8916 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8917 continue;
8918 cur_pred_idx++;
8919 Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
8920 operands[num_operands++] = op;
8921 num_defined += !op.isUndefined();
8922 }
8923 /* handle block_kind_continue_or_break at loop exit blocks */
8924 while (cur_pred_idx++ < preds.size())
8925 operands[num_operands++] = Operand(dst.regClass());
8926
8927 /* If the loop ends with a break, still add a linear continue edge in case
8928 * that break is divergent or continue_or_break is used. We'll either remove
8929 * this operand later in visit_loop() if it's not necessary or replace the
8930 * undef with something correct. */
8931 if (!logical && ctx->block->kind & block_kind_loop_header) {
8932 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8933 nir_block *last = nir_loop_last_block(loop);
8934 if (last->successors[0] != instr->instr.block)
8935 operands[num_operands++] = Operand(RegClass());
8936 }
8937
8938 if (num_defined == 0) {
8939 Builder bld(ctx->program, ctx->block);
8940 if (dst.regClass() == s1) {
8941 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8942 } else if (dst.regClass() == v1) {
8943 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8944 } else {
8945 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8946 for (unsigned i = 0; i < dst.size(); i++)
8947 vec->operands[i] = Operand(0u);
8948 vec->definitions[0] = Definition(dst);
8949 ctx->block->instructions.emplace_back(std::move(vec));
8950 }
8951 return;
8952 }
8953
8954 /* we can use a linear phi in some cases if one src is undef */
8955 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8956 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8957
8958 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8959 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8960 assert(invert->kind & block_kind_invert);
8961
8962 unsigned then_block = invert->linear_preds[0];
8963
8964 Block* insert_block = NULL;
8965 for (unsigned i = 0; i < num_operands; i++) {
8966 Operand op = operands[i];
8967 if (op.isUndefined())
8968 continue;
8969 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8970 phi->operands[0] = op;
8971 break;
8972 }
8973 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8974 phi->operands[1] = Operand(dst.regClass());
8975 phi->definitions[0] = Definition(dst);
8976 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8977 return;
8978 }
8979
8980 /* try to scalarize vector phis */
8981 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8982 // TODO: scalarize linear phis on divergent ifs
8983 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8984 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8985 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8986 Operand src = operands[i];
8987 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8988 can_scalarize = false;
8989 }
8990 if (can_scalarize) {
8991 unsigned num_components = instr->dest.ssa.num_components;
8992 assert(dst.size() % num_components == 0);
8993 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8994
8995 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8996 for (unsigned k = 0; k < num_components; k++) {
8997 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8998 for (unsigned i = 0; i < num_operands; i++) {
8999 Operand src = operands[i];
9000 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9001 }
9002 Temp phi_dst = {ctx->program->allocateId(), rc};
9003 phi->definitions[0] = Definition(phi_dst);
9004 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9005 new_vec[k] = phi_dst;
9006 vec->operands[k] = Operand(phi_dst);
9007 }
9008 vec->definitions[0] = Definition(dst);
9009 ctx->block->instructions.emplace_back(std::move(vec));
9010 ctx->allocated_vec.emplace(dst.id(), new_vec);
9011 return;
9012 }
9013 }
9014
9015 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9016 for (unsigned i = 0; i < num_operands; i++)
9017 phi->operands[i] = operands[i];
9018 phi->definitions[0] = Definition(dst);
9019 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9020 }
9021
9022
9023 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9024 {
9025 Temp dst = get_ssa_temp(ctx, &instr->def);
9026
9027 assert(dst.type() == RegType::sgpr);
9028
9029 if (dst.size() == 1) {
9030 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9031 } else {
9032 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9033 for (unsigned i = 0; i < dst.size(); i++)
9034 vec->operands[i] = Operand(0u);
9035 vec->definitions[0] = Definition(dst);
9036 ctx->block->instructions.emplace_back(std::move(vec));
9037 }
9038 }
9039
9040 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9041 {
9042 Builder bld(ctx->program, ctx->block);
9043 Block *logical_target;
9044 append_logical_end(ctx->block);
9045 unsigned idx = ctx->block->index;
9046
9047 switch (instr->type) {
9048 case nir_jump_break:
9049 logical_target = ctx->cf_info.parent_loop.exit;
9050 add_logical_edge(idx, logical_target);
9051 ctx->block->kind |= block_kind_break;
9052
9053 if (!ctx->cf_info.parent_if.is_divergent &&
9054 !ctx->cf_info.parent_loop.has_divergent_continue) {
9055 /* uniform break - directly jump out of the loop */
9056 ctx->block->kind |= block_kind_uniform;
9057 ctx->cf_info.has_branch = true;
9058 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9059 add_linear_edge(idx, logical_target);
9060 return;
9061 }
9062 ctx->cf_info.parent_loop.has_divergent_branch = true;
9063 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9064 break;
9065 case nir_jump_continue:
9066 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9067 add_logical_edge(idx, logical_target);
9068 ctx->block->kind |= block_kind_continue;
9069
9070 if (ctx->cf_info.parent_if.is_divergent) {
9071 /* for potential uniform breaks after this continue,
9072 we must ensure that they are handled correctly */
9073 ctx->cf_info.parent_loop.has_divergent_continue = true;
9074 ctx->cf_info.parent_loop.has_divergent_branch = true;
9075 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9076 } else {
9077 /* uniform continue - directly jump to the loop header */
9078 ctx->block->kind |= block_kind_uniform;
9079 ctx->cf_info.has_branch = true;
9080 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9081 add_linear_edge(idx, logical_target);
9082 return;
9083 }
9084 break;
9085 default:
9086 isel_err(&instr->instr, "Unknown NIR jump instr");
9087 abort();
9088 }
9089
9090 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9091 ctx->cf_info.exec_potentially_empty_break = true;
9092 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9093 }
9094
9095 /* remove critical edges from linear CFG */
9096 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9097 Block* break_block = ctx->program->create_and_insert_block();
9098 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9099 break_block->kind |= block_kind_uniform;
9100 add_linear_edge(idx, break_block);
9101 /* the loop_header pointer might be invalidated by this point */
9102 if (instr->type == nir_jump_continue)
9103 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9104 add_linear_edge(break_block->index, logical_target);
9105 bld.reset(break_block);
9106 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9107
9108 Block* continue_block = ctx->program->create_and_insert_block();
9109 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9110 add_linear_edge(idx, continue_block);
9111 append_logical_start(continue_block);
9112 ctx->block = continue_block;
9113 return;
9114 }
9115
9116 void visit_block(isel_context *ctx, nir_block *block)
9117 {
9118 nir_foreach_instr(instr, block) {
9119 switch (instr->type) {
9120 case nir_instr_type_alu:
9121 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9122 break;
9123 case nir_instr_type_load_const:
9124 visit_load_const(ctx, nir_instr_as_load_const(instr));
9125 break;
9126 case nir_instr_type_intrinsic:
9127 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9128 break;
9129 case nir_instr_type_tex:
9130 visit_tex(ctx, nir_instr_as_tex(instr));
9131 break;
9132 case nir_instr_type_phi:
9133 visit_phi(ctx, nir_instr_as_phi(instr));
9134 break;
9135 case nir_instr_type_ssa_undef:
9136 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9137 break;
9138 case nir_instr_type_deref:
9139 break;
9140 case nir_instr_type_jump:
9141 visit_jump(ctx, nir_instr_as_jump(instr));
9142 break;
9143 default:
9144 isel_err(instr, "Unknown NIR instr type");
9145 //abort();
9146 }
9147 }
9148
9149 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9150 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9151 }
9152
9153
9154
9155 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9156 aco_ptr<Instruction>& header_phi, Operand *vals)
9157 {
9158 vals[0] = Operand(header_phi->definitions[0].getTemp());
9159 RegClass rc = vals[0].regClass();
9160
9161 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9162
9163 unsigned next_pred = 1;
9164
9165 for (unsigned idx = first + 1; idx <= last; idx++) {
9166 Block& block = ctx->program->blocks[idx];
9167 if (block.loop_nest_depth != loop_nest_depth) {
9168 vals[idx - first] = vals[idx - 1 - first];
9169 continue;
9170 }
9171
9172 if (block.kind & block_kind_continue) {
9173 vals[idx - first] = header_phi->operands[next_pred];
9174 next_pred++;
9175 continue;
9176 }
9177
9178 bool all_same = true;
9179 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9180 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9181
9182 Operand val;
9183 if (all_same) {
9184 val = vals[block.linear_preds[0] - first];
9185 } else {
9186 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9187 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9188 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9189 phi->operands[i] = vals[block.linear_preds[i] - first];
9190 val = Operand(Temp(ctx->program->allocateId(), rc));
9191 phi->definitions[0] = Definition(val.getTemp());
9192 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9193 }
9194 vals[idx - first] = val;
9195 }
9196
9197 return vals[last - first];
9198 }
9199
9200 static void visit_loop(isel_context *ctx, nir_loop *loop)
9201 {
9202 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9203 append_logical_end(ctx->block);
9204 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9205 Builder bld(ctx->program, ctx->block);
9206 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9207 unsigned loop_preheader_idx = ctx->block->index;
9208
9209 Block loop_exit = Block();
9210 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9211 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9212
9213 Block* loop_header = ctx->program->create_and_insert_block();
9214 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9215 loop_header->kind |= block_kind_loop_header;
9216 add_edge(loop_preheader_idx, loop_header);
9217 ctx->block = loop_header;
9218
9219 /* emit loop body */
9220 unsigned loop_header_idx = loop_header->index;
9221 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9222 append_logical_start(ctx->block);
9223 bool unreachable = visit_cf_list(ctx, &loop->body);
9224
9225 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9226 if (!ctx->cf_info.has_branch) {
9227 append_logical_end(ctx->block);
9228 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9229 /* Discards can result in code running with an empty exec mask.
9230 * This would result in divergent breaks not ever being taken. As a
9231 * workaround, break the loop when the loop mask is empty instead of
9232 * always continuing. */
9233 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9234 unsigned block_idx = ctx->block->index;
9235
9236 /* create helper blocks to avoid critical edges */
9237 Block *break_block = ctx->program->create_and_insert_block();
9238 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9239 break_block->kind = block_kind_uniform;
9240 bld.reset(break_block);
9241 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9242 add_linear_edge(block_idx, break_block);
9243 add_linear_edge(break_block->index, &loop_exit);
9244
9245 Block *continue_block = ctx->program->create_and_insert_block();
9246 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9247 continue_block->kind = block_kind_uniform;
9248 bld.reset(continue_block);
9249 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9250 add_linear_edge(block_idx, continue_block);
9251 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9252
9253 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9254 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9255 ctx->block = &ctx->program->blocks[block_idx];
9256 } else {
9257 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9258 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9259 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9260 else
9261 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9262 }
9263
9264 bld.reset(ctx->block);
9265 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9266 }
9267
9268 /* Fixup phis in loop header from unreachable blocks.
9269 * has_branch/has_divergent_branch also indicates if the loop ends with a
9270 * break/continue instruction, but we don't emit those if unreachable=true */
9271 if (unreachable) {
9272 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9273 bool linear = ctx->cf_info.has_branch;
9274 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9275 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9276 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9277 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9278 /* the last operand should be the one that needs to be removed */
9279 instr->operands.pop_back();
9280 } else if (!is_phi(instr)) {
9281 break;
9282 }
9283 }
9284 }
9285
9286 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9287 * and the previous one shouldn't both happen at once because a break in the
9288 * merge block would get CSE'd */
9289 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9290 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9291 Operand vals[num_vals];
9292 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9293 if (instr->opcode == aco_opcode::p_linear_phi) {
9294 if (ctx->cf_info.has_branch)
9295 instr->operands.pop_back();
9296 else
9297 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9298 } else if (!is_phi(instr)) {
9299 break;
9300 }
9301 }
9302 }
9303
9304 ctx->cf_info.has_branch = false;
9305
9306 // TODO: if the loop has not a single exit, we must add one °°
9307 /* emit loop successor block */
9308 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9309 append_logical_start(ctx->block);
9310
9311 #if 0
9312 // TODO: check if it is beneficial to not branch on continues
9313 /* trim linear phis in loop header */
9314 for (auto&& instr : loop_entry->instructions) {
9315 if (instr->opcode == aco_opcode::p_linear_phi) {
9316 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9317 new_phi->definitions[0] = instr->definitions[0];
9318 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9319 new_phi->operands[i] = instr->operands[i];
9320 /* check that the remaining operands are all the same */
9321 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9322 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9323 instr.swap(new_phi);
9324 } else if (instr->opcode == aco_opcode::p_phi) {
9325 continue;
9326 } else {
9327 break;
9328 }
9329 }
9330 #endif
9331 }
9332
9333 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9334 {
9335 ic->cond = cond;
9336
9337 append_logical_end(ctx->block);
9338 ctx->block->kind |= block_kind_branch;
9339
9340 /* branch to linear then block */
9341 assert(cond.regClass() == ctx->program->lane_mask);
9342 aco_ptr<Pseudo_branch_instruction> branch;
9343 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 1));
9344 branch->definitions[0] = {ctx->program->allocateId(), s2};
9345 branch->definitions[0].setHint(vcc);
9346 branch->operands[0] = Operand(cond);
9347 ctx->block->instructions.push_back(std::move(branch));
9348
9349 ic->BB_if_idx = ctx->block->index;
9350 ic->BB_invert = Block();
9351 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9352 /* Invert blocks are intentionally not marked as top level because they
9353 * are not part of the logical cfg. */
9354 ic->BB_invert.kind |= block_kind_invert;
9355 ic->BB_endif = Block();
9356 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9357 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9358
9359 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9360 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9361 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9362 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9363 ctx->cf_info.parent_if.is_divergent = true;
9364
9365 /* divergent branches use cbranch_execz */
9366 ctx->cf_info.exec_potentially_empty_discard = false;
9367 ctx->cf_info.exec_potentially_empty_break = false;
9368 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9369
9370 /** emit logical then block */
9371 Block* BB_then_logical = ctx->program->create_and_insert_block();
9372 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9373 add_edge(ic->BB_if_idx, BB_then_logical);
9374 ctx->block = BB_then_logical;
9375 append_logical_start(BB_then_logical);
9376 }
9377
9378 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9379 {
9380 Block *BB_then_logical = ctx->block;
9381 append_logical_end(BB_then_logical);
9382 /* branch from logical then block to invert block */
9383 aco_ptr<Pseudo_branch_instruction> branch;
9384 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9385 branch->definitions[0] = {ctx->program->allocateId(), s2};
9386 branch->definitions[0].setHint(vcc);
9387 BB_then_logical->instructions.emplace_back(std::move(branch));
9388 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9389 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9390 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9391 BB_then_logical->kind |= block_kind_uniform;
9392 assert(!ctx->cf_info.has_branch);
9393 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9394 ctx->cf_info.parent_loop.has_divergent_branch = false;
9395
9396 /** emit linear then block */
9397 Block* BB_then_linear = ctx->program->create_and_insert_block();
9398 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9399 BB_then_linear->kind |= block_kind_uniform;
9400 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9401 /* branch from linear then block to invert block */
9402 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9403 branch->definitions[0] = {ctx->program->allocateId(), s2};
9404 branch->definitions[0].setHint(vcc);
9405 BB_then_linear->instructions.emplace_back(std::move(branch));
9406 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9407
9408 /** emit invert merge block */
9409 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9410 ic->invert_idx = ctx->block->index;
9411
9412 /* branch to linear else block (skip else) */
9413 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 1));
9414 branch->definitions[0] = {ctx->program->allocateId(), s2};
9415 branch->definitions[0].setHint(vcc);
9416 branch->operands[0] = Operand(ic->cond);
9417 ctx->block->instructions.push_back(std::move(branch));
9418
9419 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9420 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9421 ic->exec_potentially_empty_break_depth_old =
9422 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9423 /* divergent branches use cbranch_execz */
9424 ctx->cf_info.exec_potentially_empty_discard = false;
9425 ctx->cf_info.exec_potentially_empty_break = false;
9426 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9427
9428 /** emit logical else block */
9429 Block* BB_else_logical = ctx->program->create_and_insert_block();
9430 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9431 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9432 add_linear_edge(ic->invert_idx, BB_else_logical);
9433 ctx->block = BB_else_logical;
9434 append_logical_start(BB_else_logical);
9435 }
9436
9437 static void end_divergent_if(isel_context *ctx, if_context *ic)
9438 {
9439 Block *BB_else_logical = ctx->block;
9440 append_logical_end(BB_else_logical);
9441
9442 /* branch from logical else block to endif block */
9443 aco_ptr<Pseudo_branch_instruction> branch;
9444 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9445 branch->definitions[0] = {ctx->program->allocateId(), s2};
9446 branch->definitions[0].setHint(vcc);
9447 BB_else_logical->instructions.emplace_back(std::move(branch));
9448 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9449 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9450 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9451 BB_else_logical->kind |= block_kind_uniform;
9452
9453 assert(!ctx->cf_info.has_branch);
9454 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9455
9456
9457 /** emit linear else block */
9458 Block* BB_else_linear = ctx->program->create_and_insert_block();
9459 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9460 BB_else_linear->kind |= block_kind_uniform;
9461 add_linear_edge(ic->invert_idx, BB_else_linear);
9462
9463 /* branch from linear else block to endif block */
9464 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9465 branch->definitions[0] = {ctx->program->allocateId(), s2};
9466 branch->definitions[0].setHint(vcc);
9467 BB_else_linear->instructions.emplace_back(std::move(branch));
9468 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9469
9470
9471 /** emit endif merge block */
9472 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9473 append_logical_start(ctx->block);
9474
9475
9476 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9477 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9478 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9479 ctx->cf_info.exec_potentially_empty_break_depth =
9480 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9481 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9482 !ctx->cf_info.parent_if.is_divergent) {
9483 ctx->cf_info.exec_potentially_empty_break = false;
9484 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9485 }
9486 /* uniform control flow never has an empty exec-mask */
9487 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9488 ctx->cf_info.exec_potentially_empty_discard = false;
9489 ctx->cf_info.exec_potentially_empty_break = false;
9490 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9491 }
9492 }
9493
9494 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9495 {
9496 assert(cond.regClass() == s1);
9497
9498 append_logical_end(ctx->block);
9499 ctx->block->kind |= block_kind_uniform;
9500
9501 aco_ptr<Pseudo_branch_instruction> branch;
9502 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9503 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 1));
9504 branch->definitions[0] = {ctx->program->allocateId(), s2};
9505 branch->definitions[0].setHint(vcc);
9506 branch->operands[0] = Operand(cond);
9507 branch->operands[0].setFixed(scc);
9508 ctx->block->instructions.emplace_back(std::move(branch));
9509
9510 ic->BB_if_idx = ctx->block->index;
9511 ic->BB_endif = Block();
9512 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9513 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9514
9515 ctx->cf_info.has_branch = false;
9516 ctx->cf_info.parent_loop.has_divergent_branch = false;
9517
9518 /** emit then block */
9519 Block* BB_then = ctx->program->create_and_insert_block();
9520 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9521 add_edge(ic->BB_if_idx, BB_then);
9522 append_logical_start(BB_then);
9523 ctx->block = BB_then;
9524 }
9525
9526 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9527 {
9528 Block *BB_then = ctx->block;
9529
9530 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9531 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9532
9533 if (!ic->uniform_has_then_branch) {
9534 append_logical_end(BB_then);
9535 /* branch from then block to endif block */
9536 aco_ptr<Pseudo_branch_instruction> branch;
9537 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9538 branch->definitions[0] = {ctx->program->allocateId(), s2};
9539 branch->definitions[0].setHint(vcc);
9540 BB_then->instructions.emplace_back(std::move(branch));
9541 add_linear_edge(BB_then->index, &ic->BB_endif);
9542 if (!ic->then_branch_divergent)
9543 add_logical_edge(BB_then->index, &ic->BB_endif);
9544 BB_then->kind |= block_kind_uniform;
9545 }
9546
9547 ctx->cf_info.has_branch = false;
9548 ctx->cf_info.parent_loop.has_divergent_branch = false;
9549
9550 /** emit else block */
9551 Block* BB_else = ctx->program->create_and_insert_block();
9552 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9553 add_edge(ic->BB_if_idx, BB_else);
9554 append_logical_start(BB_else);
9555 ctx->block = BB_else;
9556 }
9557
9558 static void end_uniform_if(isel_context *ctx, if_context *ic)
9559 {
9560 Block *BB_else = ctx->block;
9561
9562 if (!ctx->cf_info.has_branch) {
9563 append_logical_end(BB_else);
9564 /* branch from then block to endif block */
9565 aco_ptr<Pseudo_branch_instruction> branch;
9566 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9567 branch->definitions[0] = {ctx->program->allocateId(), s2};
9568 branch->definitions[0].setHint(vcc);
9569 BB_else->instructions.emplace_back(std::move(branch));
9570 add_linear_edge(BB_else->index, &ic->BB_endif);
9571 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9572 add_logical_edge(BB_else->index, &ic->BB_endif);
9573 BB_else->kind |= block_kind_uniform;
9574 }
9575
9576 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9577 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9578
9579 /** emit endif merge block */
9580 if (!ctx->cf_info.has_branch) {
9581 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9582 append_logical_start(ctx->block);
9583 }
9584 }
9585
9586 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9587 {
9588 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9589 Builder bld(ctx->program, ctx->block);
9590 aco_ptr<Pseudo_branch_instruction> branch;
9591 if_context ic;
9592
9593 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
9594 /**
9595 * Uniform conditionals are represented in the following way*) :
9596 *
9597 * The linear and logical CFG:
9598 * BB_IF
9599 * / \
9600 * BB_THEN (logical) BB_ELSE (logical)
9601 * \ /
9602 * BB_ENDIF
9603 *
9604 * *) Exceptions may be due to break and continue statements within loops
9605 * If a break/continue happens within uniform control flow, it branches
9606 * to the loop exit/entry block. Otherwise, it branches to the next
9607 * merge block.
9608 **/
9609
9610 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9611 assert(cond.regClass() == ctx->program->lane_mask);
9612 cond = bool_to_scalar_condition(ctx, cond);
9613
9614 begin_uniform_if_then(ctx, &ic, cond);
9615 visit_cf_list(ctx, &if_stmt->then_list);
9616
9617 begin_uniform_if_else(ctx, &ic);
9618 visit_cf_list(ctx, &if_stmt->else_list);
9619
9620 end_uniform_if(ctx, &ic);
9621 } else { /* non-uniform condition */
9622 /**
9623 * To maintain a logical and linear CFG without critical edges,
9624 * non-uniform conditionals are represented in the following way*) :
9625 *
9626 * The linear CFG:
9627 * BB_IF
9628 * / \
9629 * BB_THEN (logical) BB_THEN (linear)
9630 * \ /
9631 * BB_INVERT (linear)
9632 * / \
9633 * BB_ELSE (logical) BB_ELSE (linear)
9634 * \ /
9635 * BB_ENDIF
9636 *
9637 * The logical CFG:
9638 * BB_IF
9639 * / \
9640 * BB_THEN (logical) BB_ELSE (logical)
9641 * \ /
9642 * BB_ENDIF
9643 *
9644 * *) Exceptions may be due to break and continue statements within loops
9645 **/
9646
9647 begin_divergent_if_then(ctx, &ic, cond);
9648 visit_cf_list(ctx, &if_stmt->then_list);
9649
9650 begin_divergent_if_else(ctx, &ic);
9651 visit_cf_list(ctx, &if_stmt->else_list);
9652
9653 end_divergent_if(ctx, &ic);
9654 }
9655
9656 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9657 }
9658
9659 static bool visit_cf_list(isel_context *ctx,
9660 struct exec_list *list)
9661 {
9662 foreach_list_typed(nir_cf_node, node, node, list) {
9663 switch (node->type) {
9664 case nir_cf_node_block:
9665 visit_block(ctx, nir_cf_node_as_block(node));
9666 break;
9667 case nir_cf_node_if:
9668 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9669 return true;
9670 break;
9671 case nir_cf_node_loop:
9672 visit_loop(ctx, nir_cf_node_as_loop(node));
9673 break;
9674 default:
9675 unreachable("unimplemented cf list type");
9676 }
9677 }
9678 return false;
9679 }
9680
9681 static void create_null_export(isel_context *ctx)
9682 {
9683 /* Some shader stages always need to have exports.
9684 * So when there is none, we need to add a null export.
9685 */
9686
9687 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9688 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9689 Builder bld(ctx->program, ctx->block);
9690 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9691 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9692 }
9693
9694 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9695 {
9696 assert(ctx->stage == vertex_vs ||
9697 ctx->stage == tess_eval_vs ||
9698 ctx->stage == gs_copy_vs ||
9699 ctx->stage == ngg_vertex_gs ||
9700 ctx->stage == ngg_tess_eval_gs);
9701
9702 int offset = (ctx->stage & sw_tes)
9703 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9704 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9705 uint64_t mask = ctx->outputs.mask[slot];
9706 if (!is_pos && !mask)
9707 return false;
9708 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9709 return false;
9710 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9711 exp->enabled_mask = mask;
9712 for (unsigned i = 0; i < 4; ++i) {
9713 if (mask & (1 << i))
9714 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9715 else
9716 exp->operands[i] = Operand(v1);
9717 }
9718 /* GFX10 (Navi1x) skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9719 * Setting valid_mask=1 prevents it and has no other effect.
9720 */
9721 exp->valid_mask = ctx->options->chip_class == GFX10 && is_pos && *next_pos == 0;
9722 exp->done = false;
9723 exp->compressed = false;
9724 if (is_pos)
9725 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9726 else
9727 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9728 ctx->block->instructions.emplace_back(std::move(exp));
9729
9730 return true;
9731 }
9732
9733 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9734 {
9735 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9736 exp->enabled_mask = 0;
9737 for (unsigned i = 0; i < 4; ++i)
9738 exp->operands[i] = Operand(v1);
9739 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9740 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9741 exp->enabled_mask |= 0x1;
9742 }
9743 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9744 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9745 exp->enabled_mask |= 0x4;
9746 }
9747 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9748 if (ctx->options->chip_class < GFX9) {
9749 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9750 exp->enabled_mask |= 0x8;
9751 } else {
9752 Builder bld(ctx->program, ctx->block);
9753
9754 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9755 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9756 if (exp->operands[2].isTemp())
9757 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9758
9759 exp->operands[2] = Operand(out);
9760 exp->enabled_mask |= 0x4;
9761 }
9762 }
9763 exp->valid_mask = ctx->options->chip_class == GFX10 && *next_pos == 0;
9764 exp->done = false;
9765 exp->compressed = false;
9766 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9767 ctx->block->instructions.emplace_back(std::move(exp));
9768 }
9769
9770 static void create_export_phis(isel_context *ctx)
9771 {
9772 /* Used when exports are needed, but the output temps are defined in a preceding block.
9773 * This function will set up phis in order to access the outputs in the next block.
9774 */
9775
9776 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9777 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9778 ctx->block->instructions.pop_back();
9779
9780 Builder bld(ctx->program, ctx->block);
9781
9782 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9783 uint64_t mask = ctx->outputs.mask[slot];
9784 for (unsigned i = 0; i < 4; ++i) {
9785 if (!(mask & (1 << i)))
9786 continue;
9787
9788 Temp old = ctx->outputs.temps[slot * 4 + i];
9789 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9790 ctx->outputs.temps[slot * 4 + i] = phi;
9791 }
9792 }
9793
9794 bld.insert(std::move(logical_start));
9795 }
9796
9797 static void create_vs_exports(isel_context *ctx)
9798 {
9799 assert(ctx->stage == vertex_vs ||
9800 ctx->stage == tess_eval_vs ||
9801 ctx->stage == gs_copy_vs ||
9802 ctx->stage == ngg_vertex_gs ||
9803 ctx->stage == ngg_tess_eval_gs);
9804
9805 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9806 ? &ctx->program->info->tes.outinfo
9807 : &ctx->program->info->vs.outinfo;
9808
9809 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9810 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9811 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9812 }
9813
9814 if (ctx->options->key.has_multiview_view_index) {
9815 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9816 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9817 }
9818
9819 /* the order these position exports are created is important */
9820 int next_pos = 0;
9821 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9822 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9823 export_vs_psiz_layer_viewport(ctx, &next_pos);
9824 exported_pos = true;
9825 }
9826 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9827 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9828 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9829 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9830
9831 if (ctx->export_clip_dists) {
9832 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9833 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9834 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9835 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9836 }
9837
9838 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9839 if (i < VARYING_SLOT_VAR0 &&
9840 i != VARYING_SLOT_LAYER &&
9841 i != VARYING_SLOT_PRIMITIVE_ID &&
9842 i != VARYING_SLOT_VIEWPORT)
9843 continue;
9844
9845 export_vs_varying(ctx, i, false, NULL);
9846 }
9847
9848 if (!exported_pos)
9849 create_null_export(ctx);
9850 }
9851
9852 static bool export_fs_mrt_z(isel_context *ctx)
9853 {
9854 Builder bld(ctx->program, ctx->block);
9855 unsigned enabled_channels = 0;
9856 bool compr = false;
9857 Operand values[4];
9858
9859 for (unsigned i = 0; i < 4; ++i) {
9860 values[i] = Operand(v1);
9861 }
9862
9863 /* Both stencil and sample mask only need 16-bits. */
9864 if (!ctx->program->info->ps.writes_z &&
9865 (ctx->program->info->ps.writes_stencil ||
9866 ctx->program->info->ps.writes_sample_mask)) {
9867 compr = true; /* COMPR flag */
9868
9869 if (ctx->program->info->ps.writes_stencil) {
9870 /* Stencil should be in X[23:16]. */
9871 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9872 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9873 enabled_channels |= 0x3;
9874 }
9875
9876 if (ctx->program->info->ps.writes_sample_mask) {
9877 /* SampleMask should be in Y[15:0]. */
9878 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9879 enabled_channels |= 0xc;
9880 }
9881 } else {
9882 if (ctx->program->info->ps.writes_z) {
9883 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9884 enabled_channels |= 0x1;
9885 }
9886
9887 if (ctx->program->info->ps.writes_stencil) {
9888 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9889 enabled_channels |= 0x2;
9890 }
9891
9892 if (ctx->program->info->ps.writes_sample_mask) {
9893 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9894 enabled_channels |= 0x4;
9895 }
9896 }
9897
9898 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9899 * writemask component.
9900 */
9901 if (ctx->options->chip_class == GFX6 &&
9902 ctx->options->family != CHIP_OLAND &&
9903 ctx->options->family != CHIP_HAINAN) {
9904 enabled_channels |= 0x1;
9905 }
9906
9907 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9908 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9909
9910 return true;
9911 }
9912
9913 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9914 {
9915 Builder bld(ctx->program, ctx->block);
9916 unsigned write_mask = ctx->outputs.mask[slot];
9917 Operand values[4];
9918
9919 for (unsigned i = 0; i < 4; ++i) {
9920 if (write_mask & (1 << i)) {
9921 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9922 } else {
9923 values[i] = Operand(v1);
9924 }
9925 }
9926
9927 unsigned target, col_format;
9928 unsigned enabled_channels = 0;
9929 aco_opcode compr_op = (aco_opcode)0;
9930
9931 slot -= FRAG_RESULT_DATA0;
9932 target = V_008DFC_SQ_EXP_MRT + slot;
9933 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9934
9935 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9936 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9937 bool is_16bit = values[0].regClass() == v2b;
9938
9939 switch (col_format)
9940 {
9941 case V_028714_SPI_SHADER_ZERO:
9942 enabled_channels = 0; /* writemask */
9943 target = V_008DFC_SQ_EXP_NULL;
9944 break;
9945
9946 case V_028714_SPI_SHADER_32_R:
9947 enabled_channels = 1;
9948 break;
9949
9950 case V_028714_SPI_SHADER_32_GR:
9951 enabled_channels = 0x3;
9952 break;
9953
9954 case V_028714_SPI_SHADER_32_AR:
9955 if (ctx->options->chip_class >= GFX10) {
9956 /* Special case: on GFX10, the outputs are different for 32_AR */
9957 enabled_channels = 0x3;
9958 values[1] = values[3];
9959 values[3] = Operand(v1);
9960 } else {
9961 enabled_channels = 0x9;
9962 }
9963 break;
9964
9965 case V_028714_SPI_SHADER_FP16_ABGR:
9966 enabled_channels = 0x5;
9967 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9968 if (is_16bit) {
9969 if (ctx->options->chip_class >= GFX9) {
9970 /* Pack the FP16 values together instead of converting them to
9971 * FP32 and back to FP16.
9972 * TODO: use p_create_vector and let the compiler optimizes.
9973 */
9974 compr_op = aco_opcode::v_pack_b32_f16;
9975 } else {
9976 for (unsigned i = 0; i < 4; i++) {
9977 if ((write_mask >> i) & 1)
9978 values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
9979 }
9980 }
9981 }
9982 break;
9983
9984 case V_028714_SPI_SHADER_UNORM16_ABGR:
9985 enabled_channels = 0x5;
9986 if (is_16bit && ctx->options->chip_class >= GFX9) {
9987 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
9988 } else {
9989 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9990 }
9991 break;
9992
9993 case V_028714_SPI_SHADER_SNORM16_ABGR:
9994 enabled_channels = 0x5;
9995 if (is_16bit && ctx->options->chip_class >= GFX9) {
9996 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
9997 } else {
9998 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9999 }
10000 break;
10001
10002 case V_028714_SPI_SHADER_UINT16_ABGR: {
10003 enabled_channels = 0x5;
10004 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10005 if (is_int8 || is_int10) {
10006 /* clamp */
10007 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10008 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10009
10010 for (unsigned i = 0; i < 4; i++) {
10011 if ((write_mask >> i) & 1) {
10012 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10013 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10014 values[i]);
10015 }
10016 }
10017 } else if (is_16bit) {
10018 for (unsigned i = 0; i < 4; i++) {
10019 if ((write_mask >> i) & 1) {
10020 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10021 values[i] = Operand(tmp);
10022 }
10023 }
10024 }
10025 break;
10026 }
10027
10028 case V_028714_SPI_SHADER_SINT16_ABGR:
10029 enabled_channels = 0x5;
10030 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10031 if (is_int8 || is_int10) {
10032 /* clamp */
10033 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10034 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10035 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10036 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10037
10038 for (unsigned i = 0; i < 4; i++) {
10039 if ((write_mask >> i) & 1) {
10040 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10041 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10042 values[i]);
10043 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10044 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10045 values[i]);
10046 }
10047 }
10048 } else if (is_16bit) {
10049 for (unsigned i = 0; i < 4; i++) {
10050 if ((write_mask >> i) & 1) {
10051 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10052 values[i] = Operand(tmp);
10053 }
10054 }
10055 }
10056 break;
10057
10058 case V_028714_SPI_SHADER_32_ABGR:
10059 enabled_channels = 0xF;
10060 break;
10061
10062 default:
10063 break;
10064 }
10065
10066 if (target == V_008DFC_SQ_EXP_NULL)
10067 return false;
10068
10069 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10070 if (ctx->options->enable_mrt_output_nan_fixup &&
10071 !is_16bit &&
10072 (col_format == V_028714_SPI_SHADER_32_R ||
10073 col_format == V_028714_SPI_SHADER_32_GR ||
10074 col_format == V_028714_SPI_SHADER_32_AR ||
10075 col_format == V_028714_SPI_SHADER_32_ABGR ||
10076 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10077 for (int i = 0; i < 4; i++) {
10078 if (!(write_mask & (1 << i)))
10079 continue;
10080
10081 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10082 bld.hint_vcc(bld.def(bld.lm)), values[i],
10083 bld.copy(bld.def(v1), Operand(3u)));
10084 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10085 bld.copy(bld.def(v1), Operand(0u)), isnan);
10086 }
10087 }
10088
10089 if ((bool) compr_op) {
10090 for (int i = 0; i < 2; i++) {
10091 /* check if at least one of the values to be compressed is enabled */
10092 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10093 if (enabled) {
10094 enabled_channels |= enabled << (i*2);
10095 values[i] = bld.vop3(compr_op, bld.def(v1),
10096 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10097 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10098 } else {
10099 values[i] = Operand(v1);
10100 }
10101 }
10102 values[2] = Operand(v1);
10103 values[3] = Operand(v1);
10104 } else {
10105 for (int i = 0; i < 4; i++)
10106 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10107 }
10108
10109 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10110 enabled_channels, target, (bool) compr_op);
10111 return true;
10112 }
10113
10114 static void create_fs_exports(isel_context *ctx)
10115 {
10116 bool exported = false;
10117
10118 /* Export depth, stencil and sample mask. */
10119 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10120 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10121 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10122 exported |= export_fs_mrt_z(ctx);
10123
10124 /* Export all color render targets. */
10125 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10126 if (ctx->outputs.mask[i])
10127 exported |= export_fs_mrt_color(ctx, i);
10128
10129 if (!exported)
10130 create_null_export(ctx);
10131 }
10132
10133 static void create_workgroup_barrier(Builder& bld)
10134 {
10135 bld.barrier(aco_opcode::p_barrier,
10136 memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup),
10137 scope_workgroup);
10138 }
10139
10140 static void write_tcs_tess_factors(isel_context *ctx)
10141 {
10142 unsigned outer_comps;
10143 unsigned inner_comps;
10144
10145 switch (ctx->args->options->key.tcs.primitive_mode) {
10146 case GL_ISOLINES:
10147 outer_comps = 2;
10148 inner_comps = 0;
10149 break;
10150 case GL_TRIANGLES:
10151 outer_comps = 3;
10152 inner_comps = 1;
10153 break;
10154 case GL_QUADS:
10155 outer_comps = 4;
10156 inner_comps = 2;
10157 break;
10158 default:
10159 return;
10160 }
10161
10162 Builder bld(ctx->program, ctx->block);
10163
10164 create_workgroup_barrier(bld);
10165
10166 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10167 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10168
10169 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10170 if_context ic_invocation_id_is_zero;
10171 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10172 bld.reset(ctx->block);
10173
10174 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10175
10176 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10177 unsigned stride = inner_comps + outer_comps;
10178 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10179 Temp tf_inner_vec;
10180 Temp tf_outer_vec;
10181 Temp out[6];
10182 assert(stride <= (sizeof(out) / sizeof(Temp)));
10183
10184 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10185 // LINES reversal
10186 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10187 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10188 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10189 } else {
10190 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10191 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10192
10193 for (unsigned i = 0; i < outer_comps; ++i)
10194 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10195 for (unsigned i = 0; i < inner_comps; ++i)
10196 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10197 }
10198
10199 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10200 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10201 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10202 unsigned tf_const_offset = 0;
10203
10204 if (ctx->program->chip_class <= GFX8) {
10205 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10206 if_context ic_rel_patch_id_is_zero;
10207 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10208 bld.reset(ctx->block);
10209
10210 /* Store the dynamic HS control word. */
10211 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10212 bld.mubuf(aco_opcode::buffer_store_dword,
10213 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10214 /* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false,
10215 /* addr64 */ false, /* disable_wqm */ false, /* glc */ true);
10216 tf_const_offset += 4;
10217
10218 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10219 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10220 bld.reset(ctx->block);
10221 }
10222
10223 assert(stride == 2 || stride == 4 || stride == 6);
10224 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10225 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, memory_sync_info());
10226
10227 /* Store to offchip for TES to read - only if TES reads them */
10228 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10229 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10230 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10231
10232 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10233 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, memory_sync_info(storage_vmem_output));
10234
10235 if (likely(inner_comps)) {
10236 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10237 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, memory_sync_info(storage_vmem_output));
10238 }
10239 }
10240
10241 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10242 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10243 }
10244
10245 static void emit_stream_output(isel_context *ctx,
10246 Temp const *so_buffers,
10247 Temp const *so_write_offset,
10248 const struct radv_stream_output *output)
10249 {
10250 unsigned num_comps = util_bitcount(output->component_mask);
10251 unsigned writemask = (1 << num_comps) - 1;
10252 unsigned loc = output->location;
10253 unsigned buf = output->buffer;
10254
10255 assert(num_comps && num_comps <= 4);
10256 if (!num_comps || num_comps > 4)
10257 return;
10258
10259 unsigned start = ffs(output->component_mask) - 1;
10260
10261 Temp out[4];
10262 bool all_undef = true;
10263 assert(ctx->stage & hw_vs);
10264 for (unsigned i = 0; i < num_comps; i++) {
10265 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10266 all_undef = all_undef && !out[i].id();
10267 }
10268 if (all_undef)
10269 return;
10270
10271 while (writemask) {
10272 int start, count;
10273 u_bit_scan_consecutive_range(&writemask, &start, &count);
10274 if (count == 3 && ctx->options->chip_class == GFX6) {
10275 /* GFX6 doesn't support storing vec3, split it. */
10276 writemask |= 1u << (start + 2);
10277 count = 2;
10278 }
10279
10280 unsigned offset = output->offset + start * 4;
10281
10282 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10283 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10284 for (int i = 0; i < count; ++i)
10285 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10286 vec->definitions[0] = Definition(write_data);
10287 ctx->block->instructions.emplace_back(std::move(vec));
10288
10289 aco_opcode opcode;
10290 switch (count) {
10291 case 1:
10292 opcode = aco_opcode::buffer_store_dword;
10293 break;
10294 case 2:
10295 opcode = aco_opcode::buffer_store_dwordx2;
10296 break;
10297 case 3:
10298 opcode = aco_opcode::buffer_store_dwordx3;
10299 break;
10300 case 4:
10301 opcode = aco_opcode::buffer_store_dwordx4;
10302 break;
10303 default:
10304 unreachable("Unsupported dword count.");
10305 }
10306
10307 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10308 store->operands[0] = Operand(so_buffers[buf]);
10309 store->operands[1] = Operand(so_write_offset[buf]);
10310 store->operands[2] = Operand((uint32_t) 0);
10311 store->operands[3] = Operand(write_data);
10312 if (offset > 4095) {
10313 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10314 Builder bld(ctx->program, ctx->block);
10315 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10316 } else {
10317 store->offset = offset;
10318 }
10319 store->offen = true;
10320 store->glc = true;
10321 store->dlc = false;
10322 store->slc = true;
10323 ctx->block->instructions.emplace_back(std::move(store));
10324 }
10325 }
10326
10327 static void emit_streamout(isel_context *ctx, unsigned stream)
10328 {
10329 Builder bld(ctx->program, ctx->block);
10330
10331 Temp so_buffers[4];
10332 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10333 for (unsigned i = 0; i < 4; i++) {
10334 unsigned stride = ctx->program->info->so.strides[i];
10335 if (!stride)
10336 continue;
10337
10338 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10339 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10340 }
10341
10342 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10343 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10344
10345 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10346
10347 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10348
10349 if_context ic;
10350 begin_divergent_if_then(ctx, &ic, can_emit);
10351
10352 bld.reset(ctx->block);
10353
10354 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10355
10356 Temp so_write_offset[4];
10357
10358 for (unsigned i = 0; i < 4; i++) {
10359 unsigned stride = ctx->program->info->so.strides[i];
10360 if (!stride)
10361 continue;
10362
10363 if (stride == 1) {
10364 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10365 get_arg(ctx, ctx->args->streamout_write_idx),
10366 get_arg(ctx, ctx->args->streamout_offset[i]));
10367 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10368
10369 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10370 } else {
10371 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10372 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10373 get_arg(ctx, ctx->args->streamout_offset[i]));
10374 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10375 }
10376 }
10377
10378 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10379 struct radv_stream_output *output =
10380 &ctx->program->info->so.outputs[i];
10381 if (stream != output->stream)
10382 continue;
10383
10384 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10385 }
10386
10387 begin_divergent_if_else(ctx, &ic);
10388 end_divergent_if(ctx, &ic);
10389 }
10390
10391 } /* end namespace */
10392
10393 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10394 {
10395 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10396 Builder bld(ctx->program, ctx->block);
10397 constexpr unsigned hs_idx = 1u;
10398 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10399 get_arg(ctx, ctx->args->merged_wave_info),
10400 Operand((8u << 16) | (hs_idx * 8u)));
10401 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10402
10403 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10404
10405 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10406 get_arg(ctx, ctx->args->rel_auto_id),
10407 get_arg(ctx, ctx->args->ac.instance_id),
10408 ls_has_nonzero_hs_threads);
10409 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10410 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10411 get_arg(ctx, ctx->args->rel_auto_id),
10412 ls_has_nonzero_hs_threads);
10413 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10414 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10415 get_arg(ctx, ctx->args->ac.vertex_id),
10416 ls_has_nonzero_hs_threads);
10417
10418 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10419 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10420 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10421 }
10422
10423 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10424 {
10425 /* Split all arguments except for the first (ring_offsets) and the last
10426 * (exec) so that the dead channels don't stay live throughout the program.
10427 */
10428 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10429 if (startpgm->definitions[i].regClass().size() > 1) {
10430 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10431 startpgm->definitions[i].regClass().size());
10432 }
10433 }
10434 }
10435
10436 void handle_bc_optimize(isel_context *ctx)
10437 {
10438 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10439 Builder bld(ctx->program, ctx->block);
10440 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10441 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10442 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10443 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10444 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10445 if (uses_center && uses_centroid) {
10446 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10447 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10448
10449 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10450 Temp new_coord[2];
10451 for (unsigned i = 0; i < 2; i++) {
10452 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10453 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10454 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10455 persp_centroid, persp_center, sel);
10456 }
10457 ctx->persp_centroid = bld.tmp(v2);
10458 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10459 Operand(new_coord[0]), Operand(new_coord[1]));
10460 emit_split_vector(ctx, ctx->persp_centroid, 2);
10461 }
10462
10463 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10464 Temp new_coord[2];
10465 for (unsigned i = 0; i < 2; i++) {
10466 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10467 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10468 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10469 linear_centroid, linear_center, sel);
10470 }
10471 ctx->linear_centroid = bld.tmp(v2);
10472 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10473 Operand(new_coord[0]), Operand(new_coord[1]));
10474 emit_split_vector(ctx, ctx->linear_centroid, 2);
10475 }
10476 }
10477 }
10478
10479 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10480 {
10481 Program *program = ctx->program;
10482
10483 unsigned float_controls = shader->info.float_controls_execution_mode;
10484
10485 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10486 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10487 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10488 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10489 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10490
10491 program->next_fp_mode.must_flush_denorms32 =
10492 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10493 program->next_fp_mode.must_flush_denorms16_64 =
10494 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10495 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10496
10497 program->next_fp_mode.care_about_round32 =
10498 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10499
10500 program->next_fp_mode.care_about_round16_64 =
10501 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10502 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10503
10504 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
10505 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
10506 if (program->next_fp_mode.must_flush_denorms16_64)
10507 program->next_fp_mode.denorm16_64 = 0;
10508 else
10509 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10510
10511 /* preserving fp32 denorms is expensive, so only do it if asked */
10512 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10513 program->next_fp_mode.denorm32 = fp_denorm_keep;
10514 else
10515 program->next_fp_mode.denorm32 = 0;
10516
10517 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10518 program->next_fp_mode.round32 = fp_round_tz;
10519 else
10520 program->next_fp_mode.round32 = fp_round_ne;
10521
10522 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10523 program->next_fp_mode.round16_64 = fp_round_tz;
10524 else
10525 program->next_fp_mode.round16_64 = fp_round_ne;
10526
10527 ctx->block->fp_mode = program->next_fp_mode;
10528 }
10529
10530 void cleanup_cfg(Program *program)
10531 {
10532 /* create linear_succs/logical_succs */
10533 for (Block& BB : program->blocks) {
10534 for (unsigned idx : BB.linear_preds)
10535 program->blocks[idx].linear_succs.emplace_back(BB.index);
10536 for (unsigned idx : BB.logical_preds)
10537 program->blocks[idx].logical_succs.emplace_back(BB.index);
10538 }
10539 }
10540
10541 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10542 {
10543 Builder bld(ctx->program, ctx->block);
10544
10545 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10546 Temp count = i == 0
10547 ? get_arg(ctx, ctx->args->merged_wave_info)
10548 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10549 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10550
10551 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10552 Temp cond;
10553
10554 if (ctx->program->wave_size == 64) {
10555 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10556 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10557 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10558 } else {
10559 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10560 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10561 }
10562
10563 return cond;
10564 }
10565
10566 bool ngg_early_prim_export(isel_context *ctx)
10567 {
10568 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10569 return true;
10570 }
10571
10572 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10573 {
10574 Builder bld(ctx->program, ctx->block);
10575
10576 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10577 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10578
10579 /* Get the id of the current wave within the threadgroup (workgroup) */
10580 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10581 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10582
10583 /* Execute the following code only on the first wave (wave id 0),
10584 * use the SCC def to tell if the wave id is zero or not.
10585 */
10586 Temp cond = wave_id_in_tg.def(1).getTemp();
10587 if_context ic;
10588 begin_uniform_if_then(ctx, &ic, cond);
10589 begin_uniform_if_else(ctx, &ic);
10590 bld.reset(ctx->block);
10591
10592 /* Number of vertices output by VS/TES */
10593 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10594 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10595 /* Number of primitives output by VS/TES */
10596 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10597 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10598
10599 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10600 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10601 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10602
10603 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10604 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10605
10606 end_uniform_if(ctx, &ic);
10607
10608 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10609 bld.reset(ctx->block);
10610 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10611 }
10612
10613 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10614 {
10615 Builder bld(ctx->program, ctx->block);
10616
10617 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10618 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10619 }
10620
10621 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10622 Temp tmp;
10623
10624 for (unsigned i = 0; i < num_vertices; ++i) {
10625 assert(vtxindex[i].id());
10626
10627 if (i)
10628 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10629 else
10630 tmp = vtxindex[i];
10631
10632 /* The initial edge flag is always false in tess eval shaders. */
10633 if (ctx->stage == ngg_vertex_gs) {
10634 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10635 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10636 }
10637 }
10638
10639 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10640
10641 return tmp;
10642 }
10643
10644 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10645 {
10646 Builder bld(ctx->program, ctx->block);
10647 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10648
10649 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10650 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10651 false /* compressed */, true/* done */, false /* valid mask */);
10652 }
10653
10654 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10655 {
10656 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10657 * These must always come before VS exports.
10658 *
10659 * It is recommended to do these as early as possible. They can be at the beginning when
10660 * there is no SW GS and the shader doesn't write edge flags.
10661 */
10662
10663 if_context ic;
10664 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10665 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10666
10667 Builder bld(ctx->program, ctx->block);
10668 constexpr unsigned max_vertices_per_primitive = 3;
10669 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10670
10671 if (ctx->stage == ngg_vertex_gs) {
10672 /* TODO: optimize for points & lines */
10673 } else if (ctx->stage == ngg_tess_eval_gs) {
10674 if (ctx->shader->info.tess.point_mode)
10675 num_vertices_per_primitive = 1;
10676 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10677 num_vertices_per_primitive = 2;
10678 } else {
10679 unreachable("Unsupported NGG shader stage");
10680 }
10681
10682 Temp vtxindex[max_vertices_per_primitive];
10683 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10684 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10685 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10686 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10687 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10688 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10689 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10690 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10691
10692 /* Export primitive data to the index buffer. */
10693 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10694
10695 /* Export primitive ID. */
10696 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10697 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10698 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10699 Temp provoking_vtx_index = vtxindex[0];
10700 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10701
10702 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10703 }
10704
10705 begin_divergent_if_else(ctx, &ic);
10706 end_divergent_if(ctx, &ic);
10707 }
10708
10709 void ngg_emit_nogs_output(isel_context *ctx)
10710 {
10711 /* Emits NGG GS output, for stages that don't have SW GS. */
10712
10713 if_context ic;
10714 Builder bld(ctx->program, ctx->block);
10715 bool late_prim_export = !ngg_early_prim_export(ctx);
10716
10717 /* NGG streamout is currently disabled by default. */
10718 assert(!ctx->args->shader_info->so.num_outputs);
10719
10720 if (late_prim_export) {
10721 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10722 create_export_phis(ctx);
10723 /* Do what we need to do in the GS threads. */
10724 ngg_emit_nogs_gsthreads(ctx);
10725
10726 /* What comes next should be executed on ES threads. */
10727 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10728 begin_divergent_if_then(ctx, &ic, is_es_thread);
10729 bld.reset(ctx->block);
10730 }
10731
10732 /* Export VS outputs */
10733 ctx->block->kind |= block_kind_export_end;
10734 create_vs_exports(ctx);
10735
10736 /* Export primitive ID */
10737 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10738 Temp prim_id;
10739
10740 if (ctx->stage == ngg_vertex_gs) {
10741 /* Wait for GS threads to store primitive ID in LDS. */
10742 create_workgroup_barrier(bld);
10743
10744 /* Calculate LDS address where the GS threads stored the primitive ID. */
10745 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10746 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10747 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10748 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10749 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10750 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10751
10752 /* Load primitive ID from LDS. */
10753 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10754 } else if (ctx->stage == ngg_tess_eval_gs) {
10755 /* TES: Just use the patch ID as the primitive ID. */
10756 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10757 } else {
10758 unreachable("unsupported NGG shader stage.");
10759 }
10760
10761 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10762 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10763
10764 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10765 }
10766
10767 if (late_prim_export) {
10768 begin_divergent_if_else(ctx, &ic);
10769 end_divergent_if(ctx, &ic);
10770 bld.reset(ctx->block);
10771 }
10772 }
10773
10774 void select_program(Program *program,
10775 unsigned shader_count,
10776 struct nir_shader *const *shaders,
10777 ac_shader_config* config,
10778 struct radv_shader_args *args)
10779 {
10780 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10781 if_context ic_merged_wave_info;
10782 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10783
10784 for (unsigned i = 0; i < shader_count; i++) {
10785 nir_shader *nir = shaders[i];
10786 init_context(&ctx, nir);
10787
10788 setup_fp_mode(&ctx, nir);
10789
10790 if (!i) {
10791 /* needs to be after init_context() for FS */
10792 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10793 append_logical_start(ctx.block);
10794
10795 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10796 fix_ls_vgpr_init_bug(&ctx, startpgm);
10797
10798 split_arguments(&ctx, startpgm);
10799 }
10800
10801 if (ngg_no_gs) {
10802 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10803
10804 if (ngg_early_prim_export(&ctx))
10805 ngg_emit_nogs_gsthreads(&ctx);
10806 }
10807
10808 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10809 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10810 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10811 ((nir->info.stage == MESA_SHADER_VERTEX &&
10812 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10813 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10814 ctx.stage == tess_eval_geometry_gs));
10815
10816 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10817 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10818 if (check_merged_wave_info) {
10819 Temp cond = merged_wave_info_to_mask(&ctx, i);
10820 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10821 }
10822
10823 if (i) {
10824 Builder bld(ctx.program, ctx.block);
10825
10826 create_workgroup_barrier(bld);
10827
10828 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10829 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10830 }
10831 } else if (ctx.stage == geometry_gs)
10832 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10833
10834 if (ctx.stage == fragment_fs)
10835 handle_bc_optimize(&ctx);
10836
10837 visit_cf_list(&ctx, &func->body);
10838
10839 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10840 emit_streamout(&ctx, 0);
10841
10842 if (ctx.stage & hw_vs) {
10843 create_vs_exports(&ctx);
10844 ctx.block->kind |= block_kind_export_end;
10845 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10846 ngg_emit_nogs_output(&ctx);
10847 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10848 Builder bld(ctx.program, ctx.block);
10849 bld.barrier(aco_opcode::p_barrier,
10850 memory_sync_info(storage_vmem_output, semantic_release, scope_device));
10851 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10852 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10853 write_tcs_tess_factors(&ctx);
10854 }
10855
10856 if (ctx.stage == fragment_fs) {
10857 create_fs_exports(&ctx);
10858 ctx.block->kind |= block_kind_export_end;
10859 }
10860
10861 if (endif_merged_wave_info) {
10862 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10863 end_divergent_if(&ctx, &ic_merged_wave_info);
10864 }
10865
10866 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10867 ngg_emit_nogs_output(&ctx);
10868
10869 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10870 /* Outputs of the previous stage are inputs to the next stage */
10871 ctx.inputs = ctx.outputs;
10872 ctx.outputs = shader_io_state();
10873 }
10874 }
10875
10876 program->config->float_mode = program->blocks[0].fp_mode.val;
10877
10878 append_logical_end(ctx.block);
10879 ctx.block->kind |= block_kind_uniform;
10880 Builder bld(ctx.program, ctx.block);
10881 if (ctx.program->wb_smem_l1_on_end)
10882 bld.smem(aco_opcode::s_dcache_wb, memory_sync_info(storage_buffer, semantic_volatile));
10883 bld.sopp(aco_opcode::s_endpgm);
10884
10885 cleanup_cfg(program);
10886 }
10887
10888 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10889 ac_shader_config* config,
10890 struct radv_shader_args *args)
10891 {
10892 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10893
10894 ctx.block->fp_mode = program->next_fp_mode;
10895
10896 add_startpgm(&ctx);
10897 append_logical_start(ctx.block);
10898
10899 Builder bld(ctx.program, ctx.block);
10900
10901 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10902
10903 Operand stream_id(0u);
10904 if (args->shader_info->so.num_outputs)
10905 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10906 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10907
10908 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10909
10910 std::stack<Block> endif_blocks;
10911
10912 for (unsigned stream = 0; stream < 4; stream++) {
10913 if (stream_id.isConstant() && stream != stream_id.constantValue())
10914 continue;
10915
10916 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10917 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10918 continue;
10919
10920 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10921
10922 unsigned BB_if_idx = ctx.block->index;
10923 Block BB_endif = Block();
10924 if (!stream_id.isConstant()) {
10925 /* begin IF */
10926 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10927 append_logical_end(ctx.block);
10928 ctx.block->kind |= block_kind_uniform;
10929 bld.branch(aco_opcode::p_cbranch_z, bld.hint_vcc(bld.def(s2)), cond);
10930
10931 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10932
10933 ctx.block = ctx.program->create_and_insert_block();
10934 add_edge(BB_if_idx, ctx.block);
10935 bld.reset(ctx.block);
10936 append_logical_start(ctx.block);
10937 }
10938
10939 unsigned offset = 0;
10940 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10941 if (args->shader_info->gs.output_streams[i] != stream)
10942 continue;
10943
10944 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10945 unsigned length = util_last_bit(output_usage_mask);
10946 for (unsigned j = 0; j < length; ++j) {
10947 if (!(output_usage_mask & (1 << j)))
10948 continue;
10949
10950 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10951 Temp voffset = vtx_offset;
10952 if (const_offset >= 4096u) {
10953 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10954 const_offset %= 4096u;
10955 }
10956
10957 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10958 mubuf->definitions[0] = bld.def(v1);
10959 mubuf->operands[0] = Operand(gsvs_ring);
10960 mubuf->operands[1] = Operand(voffset);
10961 mubuf->operands[2] = Operand(0u);
10962 mubuf->offen = true;
10963 mubuf->offset = const_offset;
10964 mubuf->glc = true;
10965 mubuf->slc = true;
10966 mubuf->dlc = args->options->chip_class >= GFX10;
10967
10968 ctx.outputs.mask[i] |= 1 << j;
10969 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10970
10971 bld.insert(std::move(mubuf));
10972
10973 offset++;
10974 }
10975 }
10976
10977 if (args->shader_info->so.num_outputs) {
10978 emit_streamout(&ctx, stream);
10979 bld.reset(ctx.block);
10980 }
10981
10982 if (stream == 0) {
10983 create_vs_exports(&ctx);
10984 ctx.block->kind |= block_kind_export_end;
10985 }
10986
10987 if (!stream_id.isConstant()) {
10988 append_logical_end(ctx.block);
10989
10990 /* branch from then block to endif block */
10991 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
10992 add_edge(ctx.block->index, &BB_endif);
10993 ctx.block->kind |= block_kind_uniform;
10994
10995 /* emit else block */
10996 ctx.block = ctx.program->create_and_insert_block();
10997 add_edge(BB_if_idx, ctx.block);
10998 bld.reset(ctx.block);
10999 append_logical_start(ctx.block);
11000
11001 endif_blocks.push(std::move(BB_endif));
11002 }
11003 }
11004
11005 while (!endif_blocks.empty()) {
11006 Block BB_endif = std::move(endif_blocks.top());
11007 endif_blocks.pop();
11008
11009 Block *BB_else = ctx.block;
11010
11011 append_logical_end(BB_else);
11012 /* branch from else block to endif block */
11013 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
11014 add_edge(BB_else->index, &BB_endif);
11015 BB_else->kind |= block_kind_uniform;
11016
11017 /** emit endif merge block */
11018 ctx.block = program->insert_block(std::move(BB_endif));
11019 bld.reset(ctx.block);
11020 append_logical_start(ctx.block);
11021 }
11022
11023 program->config->float_mode = program->blocks[0].fp_mode.val;
11024
11025 append_logical_end(ctx.block);
11026 ctx.block->kind |= block_kind_uniform;
11027 bld.sopp(aco_opcode::s_endpgm);
11028
11029 cleanup_cfg(program);
11030 }
11031
11032 void select_trap_handler_shader(Program *program, struct nir_shader *shader,
11033 ac_shader_config* config,
11034 struct radv_shader_args *args)
11035 {
11036 assert(args->options->chip_class == GFX8);
11037
11038 init_program(program, compute_cs, args->shader_info,
11039 args->options->chip_class, args->options->family, config);
11040
11041 isel_context ctx = {};
11042 ctx.program = program;
11043 ctx.args = args;
11044 ctx.options = args->options;
11045 ctx.stage = program->stage;
11046
11047 ctx.block = ctx.program->create_and_insert_block();
11048 ctx.block->loop_nest_depth = 0;
11049 ctx.block->kind = block_kind_top_level;
11050
11051 program->workgroup_size = 1; /* XXX */
11052
11053 add_startpgm(&ctx);
11054 append_logical_start(ctx.block);
11055
11056 Builder bld(ctx.program, ctx.block);
11057
11058 /* Load the buffer descriptor from TMA. */
11059 bld.smem(aco_opcode::s_load_dwordx4, Definition(PhysReg{ttmp4}, s4),
11060 Operand(PhysReg{tma}, s2), Operand(0u));
11061
11062 /* Store TTMP0-TTMP1. */
11063 bld.smem(aco_opcode::s_buffer_store_dwordx2, Operand(PhysReg{ttmp4}, s4),
11064 Operand(0u), Operand(PhysReg{ttmp0}, s2), memory_sync_info(), true);
11065
11066 uint32_t hw_regs_idx[] = {
11067 2, /* HW_REG_STATUS */
11068 3, /* HW_REG_TRAP_STS */
11069 4, /* HW_REG_HW_ID */
11070 7, /* HW_REG_IB_STS */
11071 };
11072
11073 /* Store some hardware registers. */
11074 for (unsigned i = 0; i < ARRAY_SIZE(hw_regs_idx); i++) {
11075 /* "((size - 1) << 11) | register" */
11076 bld.sopk(aco_opcode::s_getreg_b32, Definition(PhysReg{ttmp8}, s1),
11077 ((20 - 1) << 11) | hw_regs_idx[i]);
11078
11079 bld.smem(aco_opcode::s_buffer_store_dword, Operand(PhysReg{ttmp4}, s4),
11080 Operand(8u + i * 4), Operand(PhysReg{ttmp8}, s1), memory_sync_info(), true);
11081 }
11082
11083 program->config->float_mode = program->blocks[0].fp_mode.val;
11084
11085 append_logical_end(ctx.block);
11086 ctx.block->kind |= block_kind_uniform;
11087 bld.sopp(aco_opcode::s_endpgm);
11088
11089 cleanup_cfg(program);
11090 }
11091 }