aco: fix wrong source position for constant with nir_op_cube_face_coord
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 #define isel_err(...) _isel_err(ctx, __FILE__, __LINE__, __VA_ARGS__)
42
43 static void _isel_err(isel_context *ctx, const char *file, unsigned line,
44 const nir_instr *instr, const char *msg)
45 {
46 char *out;
47 size_t outsize;
48 FILE *memf = open_memstream(&out, &outsize);
49
50 fprintf(memf, "%s: ", msg);
51 nir_print_instr(instr, memf);
52 fclose(memf);
53
54 _aco_err(ctx->program, file, line, out);
55 free(out);
56 }
57
58 class loop_info_RAII {
59 isel_context* ctx;
60 unsigned header_idx_old;
61 Block* exit_old;
62 bool divergent_cont_old;
63 bool divergent_branch_old;
64 bool divergent_if_old;
65
66 public:
67 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
68 : ctx(ctx),
69 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
70 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
71 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
72 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
73 {
74 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
75 ctx->cf_info.parent_loop.exit = loop_exit;
76 ctx->cf_info.parent_loop.has_divergent_continue = false;
77 ctx->cf_info.parent_loop.has_divergent_branch = false;
78 ctx->cf_info.parent_if.is_divergent = false;
79 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
80 }
81
82 ~loop_info_RAII()
83 {
84 ctx->cf_info.parent_loop.header_idx = header_idx_old;
85 ctx->cf_info.parent_loop.exit = exit_old;
86 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
87 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
88 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
89 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
90 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
91 ctx->cf_info.exec_potentially_empty_discard = false;
92 }
93 };
94
95 struct if_context {
96 Temp cond;
97
98 bool divergent_old;
99 bool exec_potentially_empty_discard_old;
100 bool exec_potentially_empty_break_old;
101 uint16_t exec_potentially_empty_break_depth_old;
102
103 unsigned BB_if_idx;
104 unsigned invert_idx;
105 bool uniform_has_then_branch;
106 bool then_branch_divergent;
107 Block BB_invert;
108 Block BB_endif;
109 };
110
111 static bool visit_cf_list(struct isel_context *ctx,
112 struct exec_list *list);
113
114 static void add_logical_edge(unsigned pred_idx, Block *succ)
115 {
116 succ->logical_preds.emplace_back(pred_idx);
117 }
118
119
120 static void add_linear_edge(unsigned pred_idx, Block *succ)
121 {
122 succ->linear_preds.emplace_back(pred_idx);
123 }
124
125 static void add_edge(unsigned pred_idx, Block *succ)
126 {
127 add_logical_edge(pred_idx, succ);
128 add_linear_edge(pred_idx, succ);
129 }
130
131 static void append_logical_start(Block *b)
132 {
133 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
134 }
135
136 static void append_logical_end(Block *b)
137 {
138 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
139 }
140
141 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
142 {
143 assert(ctx->allocated[def->index].id());
144 return ctx->allocated[def->index];
145 }
146
147 Temp emit_mbcnt(isel_context *ctx, Definition dst,
148 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
149 {
150 Builder bld(ctx->program, ctx->block);
151 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
152 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
153
154 if (ctx->program->wave_size == 32) {
155 return thread_id_lo;
156 } else if (ctx->program->chip_class <= GFX7) {
157 Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
158 return thread_id_hi;
159 } else {
160 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo);
161 return thread_id_hi;
162 }
163 }
164
165 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
166 {
167 Builder bld(ctx->program, ctx->block);
168
169 if (!dst.id())
170 dst = bld.tmp(src.regClass());
171
172 assert(src.size() == dst.size());
173
174 if (ctx->stage != fragment_fs) {
175 if (!dst.id())
176 return src;
177
178 bld.copy(Definition(dst), src);
179 return dst;
180 }
181
182 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
183 ctx->program->needs_wqm |= program_needs_wqm;
184 return dst;
185 }
186
187 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
188 {
189 if (index.regClass() == s1)
190 return bld.readlane(bld.def(s1), data, index);
191
192 if (ctx->options->chip_class <= GFX7) {
193 /* GFX6-7: there is no bpermute instruction */
194 Operand index_op(index);
195 Operand input_data(data);
196 index_op.setLateKill(true);
197 input_data.setLateKill(true);
198
199 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
200 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
201 /* GFX10 wave64 mode: emulate full-wave bpermute */
202 if (!ctx->has_gfx10_wave64_bpermute) {
203 ctx->has_gfx10_wave64_bpermute = true;
204 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
205 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
206 }
207
208 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
209 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
210 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
211 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
212 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
213 Operand input_data(data);
214
215 index_x4.setLateKill(true);
216 input_data.setLateKill(true);
217 same_half.setLateKill(true);
218
219 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
220 } else {
221 /* GFX8-9 or GFX10 wave32: bpermute works normally */
222 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
223 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
224 }
225 }
226
227 static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
228 {
229 if (ctx->options->chip_class >= GFX8) {
230 unsigned and_mask = mask & 0x1f;
231 unsigned or_mask = (mask >> 5) & 0x1f;
232 unsigned xor_mask = (mask >> 10) & 0x1f;
233
234 uint16_t dpp_ctrl = 0xffff;
235
236 // TODO: we could use DPP8 for some swizzles
237 if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
238 unsigned res[4] = {0, 1, 2, 3};
239 for (unsigned i = 0; i < 4; i++)
240 res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
241 dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
242 } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
243 dpp_ctrl = dpp_row_rr(8);
244 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
245 dpp_ctrl = dpp_row_mirror;
246 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
247 dpp_ctrl = dpp_row_half_mirror;
248 }
249
250 if (dpp_ctrl != 0xffff)
251 return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
252 }
253
254 return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
255 }
256
257 Temp as_vgpr(isel_context *ctx, Temp val)
258 {
259 if (val.type() == RegType::sgpr) {
260 Builder bld(ctx->program, ctx->block);
261 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
262 }
263 assert(val.type() == RegType::vgpr);
264 return val;
265 }
266
267 //assumes a != 0xffffffff
268 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
269 {
270 assert(b != 0);
271 Builder bld(ctx->program, ctx->block);
272
273 if (util_is_power_of_two_or_zero(b)) {
274 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
275 return;
276 }
277
278 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
279
280 assert(info.multiplier <= 0xffffffff);
281
282 bool pre_shift = info.pre_shift != 0;
283 bool increment = info.increment != 0;
284 bool multiply = true;
285 bool post_shift = info.post_shift != 0;
286
287 if (!pre_shift && !increment && !multiply && !post_shift) {
288 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
289 return;
290 }
291
292 Temp pre_shift_dst = a;
293 if (pre_shift) {
294 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
295 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
296 }
297
298 Temp increment_dst = pre_shift_dst;
299 if (increment) {
300 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
301 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
302 }
303
304 Temp multiply_dst = increment_dst;
305 if (multiply) {
306 multiply_dst = post_shift ? bld.tmp(v1) : dst;
307 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
308 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
309 }
310
311 if (post_shift) {
312 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
313 }
314 }
315
316 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
317 {
318 Builder bld(ctx->program, ctx->block);
319 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
320 }
321
322
323 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
324 {
325 /* no need to extract the whole vector */
326 if (src.regClass() == dst_rc) {
327 assert(idx == 0);
328 return src;
329 }
330
331 assert(src.bytes() > (idx * dst_rc.bytes()));
332 Builder bld(ctx->program, ctx->block);
333 auto it = ctx->allocated_vec.find(src.id());
334 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
335 if (it->second[idx].regClass() == dst_rc) {
336 return it->second[idx];
337 } else {
338 assert(!dst_rc.is_subdword());
339 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
340 return bld.copy(bld.def(dst_rc), it->second[idx]);
341 }
342 }
343
344 if (dst_rc.is_subdword())
345 src = as_vgpr(ctx, src);
346
347 if (src.bytes() == dst_rc.bytes()) {
348 assert(idx == 0);
349 return bld.copy(bld.def(dst_rc), src);
350 } else {
351 Temp dst = bld.tmp(dst_rc);
352 emit_extract_vector(ctx, src, idx, dst);
353 return dst;
354 }
355 }
356
357 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
358 {
359 if (num_components == 1)
360 return;
361 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
362 return;
363 RegClass rc;
364 if (num_components > vec_src.size()) {
365 if (vec_src.type() == RegType::sgpr) {
366 /* should still help get_alu_src() */
367 emit_split_vector(ctx, vec_src, vec_src.size());
368 return;
369 }
370 /* sub-dword split */
371 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
372 } else {
373 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
374 }
375 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
376 split->operands[0] = Operand(vec_src);
377 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
378 for (unsigned i = 0; i < num_components; i++) {
379 elems[i] = {ctx->program->allocateId(), rc};
380 split->definitions[i] = Definition(elems[i]);
381 }
382 ctx->block->instructions.emplace_back(std::move(split));
383 ctx->allocated_vec.emplace(vec_src.id(), elems);
384 }
385
386 /* This vector expansion uses a mask to determine which elements in the new vector
387 * come from the original vector. The other elements are undefined. */
388 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
389 {
390 emit_split_vector(ctx, vec_src, util_bitcount(mask));
391
392 if (vec_src == dst)
393 return;
394
395 Builder bld(ctx->program, ctx->block);
396 if (num_components == 1) {
397 if (dst.type() == RegType::sgpr)
398 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
399 else
400 bld.copy(Definition(dst), vec_src);
401 return;
402 }
403
404 unsigned component_size = dst.size() / num_components;
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406
407 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
408 vec->definitions[0] = Definition(dst);
409 unsigned k = 0;
410 for (unsigned i = 0; i < num_components; i++) {
411 if (mask & (1 << i)) {
412 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
413 if (dst.type() == RegType::sgpr)
414 src = bld.as_uniform(src);
415 vec->operands[i] = Operand(src);
416 } else {
417 vec->operands[i] = Operand(0u);
418 }
419 elems[i] = vec->operands[i].getTemp();
420 }
421 ctx->block->instructions.emplace_back(std::move(vec));
422 ctx->allocated_vec.emplace(dst.id(), elems);
423 }
424
425 /* adjust misaligned small bit size loads */
426 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
427 {
428 Builder bld(ctx->program, ctx->block);
429 Operand shift;
430 Temp select = Temp();
431 if (offset.isConstant()) {
432 assert(offset.constantValue() && offset.constantValue() < 4);
433 shift = Operand(offset.constantValue() * 8);
434 } else {
435 /* bit_offset = 8 * (offset & 0x3) */
436 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
437 select = bld.tmp(s1);
438 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
439 }
440
441 if (vec.size() == 1) {
442 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
443 } else if (vec.size() == 2) {
444 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
445 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
446 if (tmp == dst)
447 emit_split_vector(ctx, dst, 2);
448 else
449 emit_extract_vector(ctx, tmp, 0, dst);
450 } else if (vec.size() == 4) {
451 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
452 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
453 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
454 if (select != Temp())
455 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
456 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
457 Temp mid = bld.tmp(s1);
458 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
459 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
460 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
461 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
462 emit_split_vector(ctx, dst, 2);
463 }
464 }
465
466 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
467 {
468 Builder bld(ctx->program, ctx->block);
469 if (offset.isTemp()) {
470 Temp tmp[4] = {vec, vec, vec, vec};
471
472 if (vec.size() == 4) {
473 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
474 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
475 } else if (vec.size() == 3) {
476 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
477 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
478 } else if (vec.size() == 2) {
479 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
480 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
481 }
482 for (unsigned i = 0; i < dst.size(); i++)
483 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
484
485 vec = tmp[0];
486 if (dst.size() == 2)
487 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
488
489 offset = Operand(0u);
490 }
491
492 unsigned num_components = vec.bytes() / component_size;
493 if (vec.regClass() == dst.regClass()) {
494 assert(offset.constantValue() == 0);
495 bld.copy(Definition(dst), vec);
496 emit_split_vector(ctx, dst, num_components);
497 return;
498 }
499
500 emit_split_vector(ctx, vec, num_components);
501 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
502 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
503
504 assert(offset.constantValue() % component_size == 0);
505 unsigned skip = offset.constantValue() / component_size;
506 for (unsigned i = skip; i < num_components; i++)
507 elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
508
509 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
510 if (dst.type() == RegType::vgpr) {
511 num_components = dst.bytes() / component_size;
512 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
513 for (unsigned i = 0; i < num_components; i++)
514 create_vec->operands[i] = Operand(elems[i]);
515 create_vec->definitions[0] = Definition(dst);
516 bld.insert(std::move(create_vec));
517
518 /* if dst is sgpr - split the src, but move the original to sgpr. */
519 } else if (skip) {
520 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
521 byte_align_scalar(ctx, vec, offset, dst);
522 } else {
523 assert(dst.size() == vec.size());
524 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
525 }
526
527 ctx->allocated_vec.emplace(dst.id(), elems);
528 }
529
530 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
531 {
532 Builder bld(ctx->program, ctx->block);
533 if (!dst.id())
534 dst = bld.tmp(bld.lm);
535
536 assert(val.regClass() == s1);
537 assert(dst.regClass() == bld.lm);
538
539 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
540 }
541
542 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
543 {
544 Builder bld(ctx->program, ctx->block);
545 if (!dst.id())
546 dst = bld.tmp(s1);
547
548 assert(val.regClass() == bld.lm);
549 assert(dst.regClass() == s1);
550
551 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
552 Temp tmp = bld.tmp(s1);
553 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
554 return emit_wqm(ctx, tmp, dst);
555 }
556
557 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp())
558 {
559 if (!dst.id()) {
560 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
561 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
562 else
563 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
564 }
565
566 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
567 return bld.copy(Definition(dst), src);
568 else if (dst.bytes() < src.bytes())
569 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
570
571 Temp tmp = dst;
572 if (dst_bits == 64)
573 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
574
575 if (tmp == src) {
576 } else if (src.regClass() == s1) {
577 if (is_signed)
578 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
579 else
580 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
581 } else if (ctx->options->chip_class >= GFX8) {
582 assert(src_bits != 8 || src.regClass() == v1b);
583 assert(src_bits != 16 || src.regClass() == v2b);
584 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
585 sdwa->operands[0] = Operand(src);
586 sdwa->definitions[0] = Definition(tmp);
587 if (is_signed)
588 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
589 else
590 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
591 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
592 bld.insert(std::move(sdwa));
593 } else {
594 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
595 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
596 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
597 }
598
599 if (dst_bits == 64) {
600 if (is_signed && dst.regClass() == s2) {
601 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
602 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
603 } else if (is_signed && dst.regClass() == v2) {
604 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
605 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
606 } else {
607 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
608 }
609 }
610
611 return dst;
612 }
613
614 enum sgpr_extract_mode {
615 sgpr_extract_sext,
616 sgpr_extract_zext,
617 sgpr_extract_undef,
618 };
619
620 Temp extract_8_16_bit_sgpr_element(isel_context *ctx, Temp dst, nir_alu_src *src, sgpr_extract_mode mode)
621 {
622 Temp vec = get_ssa_temp(ctx, src->src.ssa);
623 unsigned src_size = src->src.ssa->bit_size;
624 unsigned swizzle = src->swizzle[0];
625
626 if (vec.size() > 1) {
627 assert(src_size == 16);
628 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
629 swizzle = swizzle & 1;
630 }
631
632 Builder bld(ctx->program, ctx->block);
633 unsigned offset = src_size * swizzle;
634 Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst;
635
636 if (mode == sgpr_extract_undef && swizzle == 0) {
637 bld.copy(Definition(tmp), vec);
638 } else if (mode == sgpr_extract_undef || (offset == 24 && mode == sgpr_extract_zext)) {
639 bld.sop2(aco_opcode::s_lshr_b32, Definition(tmp), bld.def(s1, scc), vec, Operand(offset));
640 } else if (src_size == 8 && swizzle == 0 && mode == sgpr_extract_sext) {
641 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(tmp), vec);
642 } else if (src_size == 16 && swizzle == 0 && mode == sgpr_extract_sext) {
643 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(tmp), vec);
644 } else {
645 aco_opcode op = mode == sgpr_extract_zext ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
646 bld.sop2(op, Definition(tmp), bld.def(s1, scc), vec, Operand((src_size << 16) | offset));
647 }
648
649 if (dst.regClass() == s2)
650 convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst);
651
652 return dst;
653 }
654
655 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
656 {
657 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
658 return get_ssa_temp(ctx, src.src.ssa);
659
660 if (src.src.ssa->num_components == size) {
661 bool identity_swizzle = true;
662 for (unsigned i = 0; identity_swizzle && i < size; i++) {
663 if (src.swizzle[i] != i)
664 identity_swizzle = false;
665 }
666 if (identity_swizzle)
667 return get_ssa_temp(ctx, src.src.ssa);
668 }
669
670 Temp vec = get_ssa_temp(ctx, src.src.ssa);
671 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
672 assert(elem_size > 0);
673 assert(vec.bytes() % elem_size == 0);
674
675 if (elem_size < 4 && vec.type() == RegType::sgpr) {
676 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
677 assert(size == 1);
678 return extract_8_16_bit_sgpr_element(
679 ctx, Temp(ctx->program->allocateId(), s1), &src, sgpr_extract_undef);
680 }
681
682 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
683 if (size == 1) {
684 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
685 } else {
686 assert(size <= 4);
687 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
688 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
689 for (unsigned i = 0; i < size; ++i) {
690 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
691 vec_instr->operands[i] = Operand{elems[i]};
692 }
693 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
694 vec_instr->definitions[0] = Definition(dst);
695 ctx->block->instructions.emplace_back(std::move(vec_instr));
696 ctx->allocated_vec.emplace(dst.id(), elems);
697 return dst;
698 }
699 }
700
701 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
702 {
703 if (ptr.size() == 2)
704 return ptr;
705 Builder bld(ctx->program, ctx->block);
706 if (ptr.type() == RegType::vgpr)
707 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
708 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
709 ptr, Operand((unsigned)ctx->options->address32_hi));
710 }
711
712 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
713 {
714 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
715 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
716 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
717 sop2->definitions[0] = Definition(dst);
718 if (instr->no_unsigned_wrap)
719 sop2->definitions[0].setNUW(true);
720 if (writes_scc)
721 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
722 ctx->block->instructions.emplace_back(std::move(sop2));
723 }
724
725 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
726 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
727 {
728 Builder bld(ctx->program, ctx->block);
729 bld.is_precise = instr->exact;
730
731 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
732 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
733 if (src1.type() == RegType::sgpr) {
734 if (commutative && src0.type() == RegType::vgpr) {
735 Temp t = src0;
736 src0 = src1;
737 src1 = t;
738 } else {
739 src1 = as_vgpr(ctx, src1);
740 }
741 }
742
743 if (flush_denorms && ctx->program->chip_class < GFX9) {
744 assert(dst.size() == 1);
745 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
746 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
747 } else {
748 bld.vop2(op, Definition(dst), src0, src1);
749 }
750 }
751
752 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
753 aco_opcode op, Temp dst)
754 {
755 Builder bld(ctx->program, ctx->block);
756 bld.is_precise = instr->exact;
757
758 Temp src0 = get_alu_src(ctx, instr->src[0]);
759 Temp src1 = get_alu_src(ctx, instr->src[1]);
760
761 if (src1.type() == RegType::sgpr) {
762 assert(src0.type() == RegType::vgpr);
763 std::swap(src0, src1);
764 }
765
766 Temp src00 = bld.tmp(src0.type(), 1);
767 Temp src01 = bld.tmp(src0.type(), 1);
768 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
769 Temp src10 = bld.tmp(v1);
770 Temp src11 = bld.tmp(v1);
771 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
772 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
773 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
774 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
775 }
776
777 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
778 bool flush_denorms = false)
779 {
780 Temp src0 = get_alu_src(ctx, instr->src[0]);
781 Temp src1 = get_alu_src(ctx, instr->src[1]);
782 Temp src2 = get_alu_src(ctx, instr->src[2]);
783
784 /* ensure that the instruction has at most 1 sgpr operand
785 * The optimizer will inline constants for us */
786 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
787 src0 = as_vgpr(ctx, src0);
788 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
789 src1 = as_vgpr(ctx, src1);
790 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
791 src2 = as_vgpr(ctx, src2);
792
793 Builder bld(ctx->program, ctx->block);
794 bld.is_precise = instr->exact;
795 if (flush_denorms && ctx->program->chip_class < GFX9) {
796 assert(dst.size() == 1);
797 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
798 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
799 } else {
800 bld.vop3(op, Definition(dst), src0, src1, src2);
801 }
802 }
803
804 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
805 {
806 Builder bld(ctx->program, ctx->block);
807 bld.is_precise = instr->exact;
808 if (dst.type() == RegType::sgpr)
809 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
810 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
811 else
812 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
813 }
814
815 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
816 {
817 Temp src0 = get_alu_src(ctx, instr->src[0]);
818 Temp src1 = get_alu_src(ctx, instr->src[1]);
819 assert(src0.size() == src1.size());
820
821 aco_ptr<Instruction> vopc;
822 if (src1.type() == RegType::sgpr) {
823 if (src0.type() == RegType::vgpr) {
824 /* to swap the operands, we might also have to change the opcode */
825 switch (op) {
826 case aco_opcode::v_cmp_lt_f16:
827 op = aco_opcode::v_cmp_gt_f16;
828 break;
829 case aco_opcode::v_cmp_ge_f16:
830 op = aco_opcode::v_cmp_le_f16;
831 break;
832 case aco_opcode::v_cmp_lt_i16:
833 op = aco_opcode::v_cmp_gt_i16;
834 break;
835 case aco_opcode::v_cmp_ge_i16:
836 op = aco_opcode::v_cmp_le_i16;
837 break;
838 case aco_opcode::v_cmp_lt_u16:
839 op = aco_opcode::v_cmp_gt_u16;
840 break;
841 case aco_opcode::v_cmp_ge_u16:
842 op = aco_opcode::v_cmp_le_u16;
843 break;
844 case aco_opcode::v_cmp_lt_f32:
845 op = aco_opcode::v_cmp_gt_f32;
846 break;
847 case aco_opcode::v_cmp_ge_f32:
848 op = aco_opcode::v_cmp_le_f32;
849 break;
850 case aco_opcode::v_cmp_lt_i32:
851 op = aco_opcode::v_cmp_gt_i32;
852 break;
853 case aco_opcode::v_cmp_ge_i32:
854 op = aco_opcode::v_cmp_le_i32;
855 break;
856 case aco_opcode::v_cmp_lt_u32:
857 op = aco_opcode::v_cmp_gt_u32;
858 break;
859 case aco_opcode::v_cmp_ge_u32:
860 op = aco_opcode::v_cmp_le_u32;
861 break;
862 case aco_opcode::v_cmp_lt_f64:
863 op = aco_opcode::v_cmp_gt_f64;
864 break;
865 case aco_opcode::v_cmp_ge_f64:
866 op = aco_opcode::v_cmp_le_f64;
867 break;
868 case aco_opcode::v_cmp_lt_i64:
869 op = aco_opcode::v_cmp_gt_i64;
870 break;
871 case aco_opcode::v_cmp_ge_i64:
872 op = aco_opcode::v_cmp_le_i64;
873 break;
874 case aco_opcode::v_cmp_lt_u64:
875 op = aco_opcode::v_cmp_gt_u64;
876 break;
877 case aco_opcode::v_cmp_ge_u64:
878 op = aco_opcode::v_cmp_le_u64;
879 break;
880 default: /* eq and ne are commutative */
881 break;
882 }
883 Temp t = src0;
884 src0 = src1;
885 src1 = t;
886 } else {
887 src1 = as_vgpr(ctx, src1);
888 }
889 }
890
891 Builder bld(ctx->program, ctx->block);
892 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
893 }
894
895 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
896 {
897 Temp src0 = get_alu_src(ctx, instr->src[0]);
898 Temp src1 = get_alu_src(ctx, instr->src[1]);
899 Builder bld(ctx->program, ctx->block);
900
901 assert(dst.regClass() == bld.lm);
902 assert(src0.type() == RegType::sgpr);
903 assert(src1.type() == RegType::sgpr);
904 assert(src0.regClass() == src1.regClass());
905
906 /* Emit the SALU comparison instruction */
907 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
908 /* Turn the result into a per-lane bool */
909 bool_to_vector_condition(ctx, cmp, dst);
910 }
911
912 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
913 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
914 {
915 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
916 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
917 bool use_valu = s_op == aco_opcode::num_opcodes ||
918 nir_dest_is_divergent(instr->dest.dest) ||
919 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
920 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
921 aco_opcode op = use_valu ? v_op : s_op;
922 assert(op != aco_opcode::num_opcodes);
923 assert(dst.regClass() == ctx->program->lane_mask);
924
925 if (use_valu)
926 emit_vopc_instruction(ctx, instr, op, dst);
927 else
928 emit_sopc_instruction(ctx, instr, op, dst);
929 }
930
931 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
932 {
933 Builder bld(ctx->program, ctx->block);
934 Temp src0 = get_alu_src(ctx, instr->src[0]);
935 Temp src1 = get_alu_src(ctx, instr->src[1]);
936
937 assert(dst.regClass() == bld.lm);
938 assert(src0.regClass() == bld.lm);
939 assert(src1.regClass() == bld.lm);
940
941 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
942 }
943
944 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
945 {
946 Builder bld(ctx->program, ctx->block);
947 Temp cond = get_alu_src(ctx, instr->src[0]);
948 Temp then = get_alu_src(ctx, instr->src[1]);
949 Temp els = get_alu_src(ctx, instr->src[2]);
950
951 assert(cond.regClass() == bld.lm);
952
953 if (dst.type() == RegType::vgpr) {
954 aco_ptr<Instruction> bcsel;
955 if (dst.size() == 1) {
956 then = as_vgpr(ctx, then);
957 els = as_vgpr(ctx, els);
958
959 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
960 } else if (dst.size() == 2) {
961 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
962 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
963 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
964 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
965
966 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
967 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
968
969 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
970 } else {
971 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
972 }
973 return;
974 }
975
976 if (instr->dest.dest.ssa.bit_size == 1) {
977 assert(dst.regClass() == bld.lm);
978 assert(then.regClass() == bld.lm);
979 assert(els.regClass() == bld.lm);
980 }
981
982 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
983 if (dst.regClass() == s1 || dst.regClass() == s2) {
984 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
985 assert(dst.size() == then.size());
986 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
987 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
988 } else {
989 isel_err(&instr->instr, "Unimplemented uniform bcsel bit size");
990 }
991 return;
992 }
993
994 /* divergent boolean bcsel
995 * this implements bcsel on bools: dst = s0 ? s1 : s2
996 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
997 assert(instr->dest.dest.ssa.bit_size == 1);
998
999 if (cond.id() != then.id())
1000 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
1001
1002 if (cond.id() == els.id())
1003 bld.sop1(Builder::s_mov, Definition(dst), then);
1004 else
1005 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
1006 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
1007 }
1008
1009 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
1010 aco_opcode op, uint32_t undo)
1011 {
1012 /* multiply by 16777216 to handle denormals */
1013 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
1014 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
1015 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
1016 scaled = bld.vop1(op, bld.def(v1), scaled);
1017 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
1018
1019 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
1020
1021 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
1022 }
1023
1024 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1025 {
1026 if (ctx->block->fp_mode.denorm32 == 0) {
1027 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
1028 return;
1029 }
1030
1031 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
1032 }
1033
1034 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1035 {
1036 if (ctx->block->fp_mode.denorm32 == 0) {
1037 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
1038 return;
1039 }
1040
1041 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
1042 }
1043
1044 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1045 {
1046 if (ctx->block->fp_mode.denorm32 == 0) {
1047 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
1048 return;
1049 }
1050
1051 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
1052 }
1053
1054 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1055 {
1056 if (ctx->block->fp_mode.denorm32 == 0) {
1057 bld.vop1(aco_opcode::v_log_f32, dst, val);
1058 return;
1059 }
1060
1061 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
1062 }
1063
1064 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1065 {
1066 if (ctx->options->chip_class >= GFX7)
1067 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
1068
1069 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
1070 /* TODO: create more efficient code! */
1071 if (val.type() == RegType::sgpr)
1072 val = as_vgpr(ctx, val);
1073
1074 /* Split the input value. */
1075 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
1076 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
1077
1078 /* Extract the exponent and compute the unbiased value. */
1079 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
1080 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
1081
1082 /* Extract the fractional part. */
1083 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
1084 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
1085
1086 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
1087 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
1088
1089 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
1090 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
1091 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
1092 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
1093 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
1094
1095 /* Get the sign bit. */
1096 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
1097
1098 /* Decide the operation to apply depending on the unbiased exponent. */
1099 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
1100 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
1101 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
1102 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
1103 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
1104 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
1105
1106 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
1107 }
1108
1109 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1110 {
1111 if (ctx->options->chip_class >= GFX7)
1112 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
1113
1114 /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
1115 * lowered at NIR level for precision reasons). */
1116 Temp src0 = as_vgpr(ctx, val);
1117
1118 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
1119 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
1120
1121 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
1122 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
1123 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
1124
1125 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
1126 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
1127 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
1128 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
1129
1130 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
1131 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
1132
1133 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1134
1135 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1136 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1137
1138 return add->definitions[0].getTemp();
1139 }
1140
1141 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1142 {
1143 if (!instr->dest.dest.is_ssa) {
1144 isel_err(&instr->instr, "nir alu dst not in ssa");
1145 abort();
1146 }
1147 Builder bld(ctx->program, ctx->block);
1148 bld.is_precise = instr->exact;
1149 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1150 switch(instr->op) {
1151 case nir_op_vec2:
1152 case nir_op_vec3:
1153 case nir_op_vec4: {
1154 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1155 unsigned num = instr->dest.dest.ssa.num_components;
1156 for (unsigned i = 0; i < num; ++i)
1157 elems[i] = get_alu_src(ctx, instr->src[i]);
1158
1159 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1160 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1161 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1162 for (unsigned i = 0; i < num; ++i) {
1163 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1164 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1165 else
1166 vec->operands[i] = Operand{elems[i]};
1167 }
1168 vec->definitions[0] = Definition(dst);
1169 ctx->block->instructions.emplace_back(std::move(vec));
1170 ctx->allocated_vec.emplace(dst.id(), elems);
1171 } else {
1172 // TODO: that is a bit suboptimal..
1173 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1174 for (unsigned i = 0; i < num - 1; ++i)
1175 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1176 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1177 for (unsigned i = 0; i < num; ++i) {
1178 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1179 if (bit % 32 == 0) {
1180 elems[bit / 32] = elems[i];
1181 } else {
1182 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1183 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1184 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1185 }
1186 }
1187 if (dst.size() == 1)
1188 bld.copy(Definition(dst), elems[0]);
1189 else
1190 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1191 }
1192 break;
1193 }
1194 case nir_op_mov: {
1195 Temp src = get_alu_src(ctx, instr->src[0]);
1196 aco_ptr<Instruction> mov;
1197 if (dst.type() == RegType::sgpr) {
1198 if (src.type() == RegType::vgpr)
1199 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1200 else if (src.regClass() == s1)
1201 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1202 else if (src.regClass() == s2)
1203 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1204 else
1205 unreachable("wrong src register class for nir_op_imov");
1206 } else {
1207 if (dst.regClass() == v1)
1208 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1209 else if (dst.regClass() == v1b ||
1210 dst.regClass() == v2b ||
1211 dst.regClass() == v2)
1212 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1213 else
1214 unreachable("wrong src register class for nir_op_imov");
1215 }
1216 break;
1217 }
1218 case nir_op_inot: {
1219 Temp src = get_alu_src(ctx, instr->src[0]);
1220 if (instr->dest.dest.ssa.bit_size == 1) {
1221 assert(src.regClass() == bld.lm);
1222 assert(dst.regClass() == bld.lm);
1223 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1224 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1225 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1226 } else if (dst.regClass() == v1) {
1227 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1228 } else if (dst.regClass() == v2) {
1229 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1230 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1231 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1232 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1233 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1234 } else if (dst.type() == RegType::sgpr) {
1235 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1236 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1237 } else {
1238 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1239 }
1240 break;
1241 }
1242 case nir_op_ineg: {
1243 Temp src = get_alu_src(ctx, instr->src[0]);
1244 if (dst.regClass() == v1) {
1245 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1246 } else if (dst.regClass() == s1) {
1247 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1248 } else if (dst.size() == 2) {
1249 Temp src0 = bld.tmp(dst.type(), 1);
1250 Temp src1 = bld.tmp(dst.type(), 1);
1251 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1252
1253 if (dst.regClass() == s2) {
1254 Temp carry = bld.tmp(s1);
1255 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1256 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1257 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1258 } else {
1259 Temp lower = bld.tmp(v1);
1260 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1261 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1262 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1263 }
1264 } else {
1265 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1266 }
1267 break;
1268 }
1269 case nir_op_iabs: {
1270 if (dst.regClass() == s1) {
1271 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1272 } else if (dst.regClass() == v1) {
1273 Temp src = get_alu_src(ctx, instr->src[0]);
1274 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1275 } else {
1276 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1277 }
1278 break;
1279 }
1280 case nir_op_isign: {
1281 Temp src = get_alu_src(ctx, instr->src[0]);
1282 if (dst.regClass() == s1) {
1283 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1284 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1285 } else if (dst.regClass() == s2) {
1286 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1287 Temp neqz;
1288 if (ctx->program->chip_class >= GFX8)
1289 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1290 else
1291 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1292 /* SCC gets zero-extended to 64 bit */
1293 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1294 } else if (dst.regClass() == v1) {
1295 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1296 } else if (dst.regClass() == v2) {
1297 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1298 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1299 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1300 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1301 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1302 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1303 } else {
1304 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1305 }
1306 break;
1307 }
1308 case nir_op_imax: {
1309 if (dst.regClass() == v1) {
1310 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1311 } else if (dst.regClass() == s1) {
1312 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1313 } else {
1314 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1315 }
1316 break;
1317 }
1318 case nir_op_umax: {
1319 if (dst.regClass() == v1) {
1320 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1321 } else if (dst.regClass() == s1) {
1322 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1323 } else {
1324 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1325 }
1326 break;
1327 }
1328 case nir_op_imin: {
1329 if (dst.regClass() == v1) {
1330 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1331 } else if (dst.regClass() == s1) {
1332 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1333 } else {
1334 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1335 }
1336 break;
1337 }
1338 case nir_op_umin: {
1339 if (dst.regClass() == v1) {
1340 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1341 } else if (dst.regClass() == s1) {
1342 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1343 } else {
1344 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1345 }
1346 break;
1347 }
1348 case nir_op_ior: {
1349 if (instr->dest.dest.ssa.bit_size == 1) {
1350 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1351 } else if (dst.regClass() == v1) {
1352 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1353 } else if (dst.regClass() == v2) {
1354 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1355 } else if (dst.regClass() == s1) {
1356 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1357 } else if (dst.regClass() == s2) {
1358 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1359 } else {
1360 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1361 }
1362 break;
1363 }
1364 case nir_op_iand: {
1365 if (instr->dest.dest.ssa.bit_size == 1) {
1366 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1367 } else if (dst.regClass() == v1) {
1368 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1369 } else if (dst.regClass() == v2) {
1370 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1371 } else if (dst.regClass() == s1) {
1372 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1373 } else if (dst.regClass() == s2) {
1374 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1375 } else {
1376 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1377 }
1378 break;
1379 }
1380 case nir_op_ixor: {
1381 if (instr->dest.dest.ssa.bit_size == 1) {
1382 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1383 } else if (dst.regClass() == v1) {
1384 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1385 } else if (dst.regClass() == v2) {
1386 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1387 } else if (dst.regClass() == s1) {
1388 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1389 } else if (dst.regClass() == s2) {
1390 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1391 } else {
1392 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1393 }
1394 break;
1395 }
1396 case nir_op_ushr: {
1397 if (dst.regClass() == v1) {
1398 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1399 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1400 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1401 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1402 } else if (dst.regClass() == v2) {
1403 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1404 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1405 } else if (dst.regClass() == s2) {
1406 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1407 } else if (dst.regClass() == s1) {
1408 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1409 } else {
1410 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1411 }
1412 break;
1413 }
1414 case nir_op_ishl: {
1415 if (dst.regClass() == v1) {
1416 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1417 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1418 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1419 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1420 } else if (dst.regClass() == v2) {
1421 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1422 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1423 } else if (dst.regClass() == s1) {
1424 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1425 } else if (dst.regClass() == s2) {
1426 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1427 } else {
1428 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1429 }
1430 break;
1431 }
1432 case nir_op_ishr: {
1433 if (dst.regClass() == v1) {
1434 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1435 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1436 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1437 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1438 } else if (dst.regClass() == v2) {
1439 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1440 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1441 } else if (dst.regClass() == s1) {
1442 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1443 } else if (dst.regClass() == s2) {
1444 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1445 } else {
1446 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1447 }
1448 break;
1449 }
1450 case nir_op_find_lsb: {
1451 Temp src = get_alu_src(ctx, instr->src[0]);
1452 if (src.regClass() == s1) {
1453 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1454 } else if (src.regClass() == v1) {
1455 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1456 } else if (src.regClass() == s2) {
1457 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1458 } else {
1459 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1460 }
1461 break;
1462 }
1463 case nir_op_ufind_msb:
1464 case nir_op_ifind_msb: {
1465 Temp src = get_alu_src(ctx, instr->src[0]);
1466 if (src.regClass() == s1 || src.regClass() == s2) {
1467 aco_opcode op = src.regClass() == s2 ?
1468 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1469 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1470 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1471
1472 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1473 Operand(src.size() * 32u - 1u), msb_rev);
1474 Temp msb = sub.def(0).getTemp();
1475 Temp carry = sub.def(1).getTemp();
1476
1477 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1478 } else if (src.regClass() == v1) {
1479 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1480 Temp msb_rev = bld.tmp(v1);
1481 emit_vop1_instruction(ctx, instr, op, msb_rev);
1482 Temp msb = bld.tmp(v1);
1483 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1484 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1485 } else {
1486 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1487 }
1488 break;
1489 }
1490 case nir_op_bitfield_reverse: {
1491 if (dst.regClass() == s1) {
1492 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1493 } else if (dst.regClass() == v1) {
1494 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1495 } else {
1496 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1497 }
1498 break;
1499 }
1500 case nir_op_iadd: {
1501 if (dst.regClass() == s1) {
1502 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1503 break;
1504 }
1505
1506 Temp src0 = get_alu_src(ctx, instr->src[0]);
1507 Temp src1 = get_alu_src(ctx, instr->src[1]);
1508 if (dst.regClass() == v1) {
1509 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1510 break;
1511 }
1512
1513 assert(src0.size() == 2 && src1.size() == 2);
1514 Temp src00 = bld.tmp(src0.type(), 1);
1515 Temp src01 = bld.tmp(dst.type(), 1);
1516 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1517 Temp src10 = bld.tmp(src1.type(), 1);
1518 Temp src11 = bld.tmp(dst.type(), 1);
1519 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1520
1521 if (dst.regClass() == s2) {
1522 Temp carry = bld.tmp(s1);
1523 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1524 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1525 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1526 } else if (dst.regClass() == v2) {
1527 Temp dst0 = bld.tmp(v1);
1528 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1529 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1530 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1531 } else {
1532 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1533 }
1534 break;
1535 }
1536 case nir_op_uadd_sat: {
1537 Temp src0 = get_alu_src(ctx, instr->src[0]);
1538 Temp src1 = get_alu_src(ctx, instr->src[1]);
1539 if (dst.regClass() == s1) {
1540 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1541 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1542 src0, src1);
1543 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1544 } else if (dst.regClass() == v1) {
1545 if (ctx->options->chip_class >= GFX9) {
1546 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1547 add->operands[0] = Operand(src0);
1548 add->operands[1] = Operand(src1);
1549 add->definitions[0] = Definition(dst);
1550 add->clamp = 1;
1551 ctx->block->instructions.emplace_back(std::move(add));
1552 } else {
1553 if (src1.regClass() != v1)
1554 std::swap(src0, src1);
1555 assert(src1.regClass() == v1);
1556 Temp tmp = bld.tmp(v1);
1557 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1558 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1559 }
1560 } else {
1561 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1562 }
1563 break;
1564 }
1565 case nir_op_uadd_carry: {
1566 Temp src0 = get_alu_src(ctx, instr->src[0]);
1567 Temp src1 = get_alu_src(ctx, instr->src[1]);
1568 if (dst.regClass() == s1) {
1569 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1570 break;
1571 }
1572 if (dst.regClass() == v1) {
1573 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1574 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1575 break;
1576 }
1577
1578 Temp src00 = bld.tmp(src0.type(), 1);
1579 Temp src01 = bld.tmp(dst.type(), 1);
1580 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1581 Temp src10 = bld.tmp(src1.type(), 1);
1582 Temp src11 = bld.tmp(dst.type(), 1);
1583 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1584 if (dst.regClass() == s2) {
1585 Temp carry = bld.tmp(s1);
1586 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1587 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1589 } else if (dst.regClass() == v2) {
1590 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1591 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1592 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1593 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1594 } else {
1595 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1596 }
1597 break;
1598 }
1599 case nir_op_isub: {
1600 if (dst.regClass() == s1) {
1601 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1602 break;
1603 }
1604
1605 Temp src0 = get_alu_src(ctx, instr->src[0]);
1606 Temp src1 = get_alu_src(ctx, instr->src[1]);
1607 if (dst.regClass() == v1) {
1608 bld.vsub32(Definition(dst), src0, src1);
1609 break;
1610 }
1611
1612 Temp src00 = bld.tmp(src0.type(), 1);
1613 Temp src01 = bld.tmp(dst.type(), 1);
1614 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1615 Temp src10 = bld.tmp(src1.type(), 1);
1616 Temp src11 = bld.tmp(dst.type(), 1);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1618 if (dst.regClass() == s2) {
1619 Temp carry = bld.tmp(s1);
1620 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1621 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1622 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1623 } else if (dst.regClass() == v2) {
1624 Temp lower = bld.tmp(v1);
1625 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1626 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1627 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1628 } else {
1629 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1630 }
1631 break;
1632 }
1633 case nir_op_usub_borrow: {
1634 Temp src0 = get_alu_src(ctx, instr->src[0]);
1635 Temp src1 = get_alu_src(ctx, instr->src[1]);
1636 if (dst.regClass() == s1) {
1637 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1638 break;
1639 } else if (dst.regClass() == v1) {
1640 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1641 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1642 break;
1643 }
1644
1645 Temp src00 = bld.tmp(src0.type(), 1);
1646 Temp src01 = bld.tmp(dst.type(), 1);
1647 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1648 Temp src10 = bld.tmp(src1.type(), 1);
1649 Temp src11 = bld.tmp(dst.type(), 1);
1650 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1651 if (dst.regClass() == s2) {
1652 Temp borrow = bld.tmp(s1);
1653 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1654 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1655 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1656 } else if (dst.regClass() == v2) {
1657 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1658 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1659 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1660 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1661 } else {
1662 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1663 }
1664 break;
1665 }
1666 case nir_op_imul: {
1667 if (dst.regClass() == v1) {
1668 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1669 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1670 } else if (dst.regClass() == s1) {
1671 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1672 } else {
1673 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1674 }
1675 break;
1676 }
1677 case nir_op_umul_high: {
1678 if (dst.regClass() == v1) {
1679 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1680 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1681 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1682 } else if (dst.regClass() == s1) {
1683 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1684 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1685 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1686 } else {
1687 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1688 }
1689 break;
1690 }
1691 case nir_op_imul_high: {
1692 if (dst.regClass() == v1) {
1693 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1694 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1695 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1696 } else if (dst.regClass() == s1) {
1697 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1698 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1699 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1700 } else {
1701 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1702 }
1703 break;
1704 }
1705 case nir_op_fmul: {
1706 Temp src0 = get_alu_src(ctx, instr->src[0]);
1707 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1708 if (dst.regClass() == v2b) {
1709 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1710 } else if (dst.regClass() == v1) {
1711 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1712 } else if (dst.regClass() == v2) {
1713 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1714 } else {
1715 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1716 }
1717 break;
1718 }
1719 case nir_op_fadd: {
1720 Temp src0 = get_alu_src(ctx, instr->src[0]);
1721 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1722 if (dst.regClass() == v2b) {
1723 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1724 } else if (dst.regClass() == v1) {
1725 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1726 } else if (dst.regClass() == v2) {
1727 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1728 } else {
1729 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1730 }
1731 break;
1732 }
1733 case nir_op_fsub: {
1734 Temp src0 = get_alu_src(ctx, instr->src[0]);
1735 Temp src1 = get_alu_src(ctx, instr->src[1]);
1736 if (dst.regClass() == v2b) {
1737 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1738 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1739 else
1740 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1741 } else if (dst.regClass() == v1) {
1742 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1743 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1744 else
1745 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1746 } else if (dst.regClass() == v2) {
1747 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1748 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1749 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1750 sub->neg[1] = true;
1751 } else {
1752 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1753 }
1754 break;
1755 }
1756 case nir_op_fmax: {
1757 Temp src0 = get_alu_src(ctx, instr->src[0]);
1758 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1759 if (dst.regClass() == v2b) {
1760 // TODO: check fp_mode.must_flush_denorms16_64
1761 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1762 } else if (dst.regClass() == v1) {
1763 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1764 } else if (dst.regClass() == v2) {
1765 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1766 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1767 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1768 } else {
1769 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1770 }
1771 } else {
1772 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1773 }
1774 break;
1775 }
1776 case nir_op_fmin: {
1777 Temp src0 = get_alu_src(ctx, instr->src[0]);
1778 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1779 if (dst.regClass() == v2b) {
1780 // TODO: check fp_mode.must_flush_denorms16_64
1781 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1782 } else if (dst.regClass() == v1) {
1783 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1784 } else if (dst.regClass() == v2) {
1785 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1786 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1787 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1788 } else {
1789 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1790 }
1791 } else {
1792 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1793 }
1794 break;
1795 }
1796 case nir_op_cube_face_coord: {
1797 Temp in = get_alu_src(ctx, instr->src[0], 3);
1798 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1799 emit_extract_vector(ctx, in, 1, v1),
1800 emit_extract_vector(ctx, in, 2, v1) };
1801 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1802 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1803 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1804 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1805 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1806 Operand(0x3f000000u/*0.5*/),
1807 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, ma));
1808 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1809 Operand(0x3f000000u/*0.5*/),
1810 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, ma));
1811 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1812 break;
1813 }
1814 case nir_op_cube_face_index: {
1815 Temp in = get_alu_src(ctx, instr->src[0], 3);
1816 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1817 emit_extract_vector(ctx, in, 1, v1),
1818 emit_extract_vector(ctx, in, 2, v1) };
1819 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1820 break;
1821 }
1822 case nir_op_bcsel: {
1823 emit_bcsel(ctx, instr, dst);
1824 break;
1825 }
1826 case nir_op_frsq: {
1827 Temp src = get_alu_src(ctx, instr->src[0]);
1828 if (dst.regClass() == v2b) {
1829 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1830 } else if (dst.regClass() == v1) {
1831 emit_rsq(ctx, bld, Definition(dst), src);
1832 } else if (dst.regClass() == v2) {
1833 /* Lowered at NIR level for precision reasons. */
1834 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1835 } else {
1836 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1837 }
1838 break;
1839 }
1840 case nir_op_fneg: {
1841 Temp src = get_alu_src(ctx, instr->src[0]);
1842 if (dst.regClass() == v2b) {
1843 if (ctx->block->fp_mode.must_flush_denorms16_64)
1844 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1845 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1846 } else if (dst.regClass() == v1) {
1847 if (ctx->block->fp_mode.must_flush_denorms32)
1848 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1849 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1850 } else if (dst.regClass() == v2) {
1851 if (ctx->block->fp_mode.must_flush_denorms16_64)
1852 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1853 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1854 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1855 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1856 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1857 } else {
1858 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1859 }
1860 break;
1861 }
1862 case nir_op_fabs: {
1863 Temp src = get_alu_src(ctx, instr->src[0]);
1864 if (dst.regClass() == v2b) {
1865 if (ctx->block->fp_mode.must_flush_denorms16_64)
1866 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1867 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1868 } else if (dst.regClass() == v1) {
1869 if (ctx->block->fp_mode.must_flush_denorms32)
1870 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1871 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1872 } else if (dst.regClass() == v2) {
1873 if (ctx->block->fp_mode.must_flush_denorms16_64)
1874 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1875 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1876 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1877 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1878 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1879 } else {
1880 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1881 }
1882 break;
1883 }
1884 case nir_op_fsat: {
1885 Temp src = get_alu_src(ctx, instr->src[0]);
1886 if (dst.regClass() == v2b) {
1887 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
1888 } else if (dst.regClass() == v1) {
1889 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1890 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1891 // TODO: confirm that this holds under any circumstances
1892 } else if (dst.regClass() == v2) {
1893 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1894 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1895 vop3->clamp = true;
1896 } else {
1897 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1898 }
1899 break;
1900 }
1901 case nir_op_flog2: {
1902 Temp src = get_alu_src(ctx, instr->src[0]);
1903 if (dst.regClass() == v2b) {
1904 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
1905 } else if (dst.regClass() == v1) {
1906 emit_log2(ctx, bld, Definition(dst), src);
1907 } else {
1908 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1909 }
1910 break;
1911 }
1912 case nir_op_frcp: {
1913 Temp src = get_alu_src(ctx, instr->src[0]);
1914 if (dst.regClass() == v2b) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
1916 } else if (dst.regClass() == v1) {
1917 emit_rcp(ctx, bld, Definition(dst), src);
1918 } else if (dst.regClass() == v2) {
1919 /* Lowered at NIR level for precision reasons. */
1920 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1921 } else {
1922 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1923 }
1924 break;
1925 }
1926 case nir_op_fexp2: {
1927 if (dst.regClass() == v2b) {
1928 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
1929 } else if (dst.regClass() == v1) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1931 } else {
1932 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1933 }
1934 break;
1935 }
1936 case nir_op_fsqrt: {
1937 Temp src = get_alu_src(ctx, instr->src[0]);
1938 if (dst.regClass() == v2b) {
1939 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
1940 } else if (dst.regClass() == v1) {
1941 emit_sqrt(ctx, bld, Definition(dst), src);
1942 } else if (dst.regClass() == v2) {
1943 /* Lowered at NIR level for precision reasons. */
1944 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1945 } else {
1946 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1947 }
1948 break;
1949 }
1950 case nir_op_ffract: {
1951 if (dst.regClass() == v2b) {
1952 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
1953 } else if (dst.regClass() == v1) {
1954 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1955 } else if (dst.regClass() == v2) {
1956 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1957 } else {
1958 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1959 }
1960 break;
1961 }
1962 case nir_op_ffloor: {
1963 Temp src = get_alu_src(ctx, instr->src[0]);
1964 if (dst.regClass() == v2b) {
1965 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
1966 } else if (dst.regClass() == v1) {
1967 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1968 } else if (dst.regClass() == v2) {
1969 emit_floor_f64(ctx, bld, Definition(dst), src);
1970 } else {
1971 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1972 }
1973 break;
1974 }
1975 case nir_op_fceil: {
1976 Temp src0 = get_alu_src(ctx, instr->src[0]);
1977 if (dst.regClass() == v2b) {
1978 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
1979 } else if (dst.regClass() == v1) {
1980 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1981 } else if (dst.regClass() == v2) {
1982 if (ctx->options->chip_class >= GFX7) {
1983 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1984 } else {
1985 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1986 /* trunc = trunc(src0)
1987 * if (src0 > 0.0 && src0 != trunc)
1988 * trunc += 1.0
1989 */
1990 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1991 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1992 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1993 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1994 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1995 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1996 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1997 }
1998 } else {
1999 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2000 }
2001 break;
2002 }
2003 case nir_op_ftrunc: {
2004 Temp src = get_alu_src(ctx, instr->src[0]);
2005 if (dst.regClass() == v2b) {
2006 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2007 } else if (dst.regClass() == v1) {
2008 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2009 } else if (dst.regClass() == v2) {
2010 emit_trunc_f64(ctx, bld, Definition(dst), src);
2011 } else {
2012 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2013 }
2014 break;
2015 }
2016 case nir_op_fround_even: {
2017 Temp src0 = get_alu_src(ctx, instr->src[0]);
2018 if (dst.regClass() == v2b) {
2019 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2020 } else if (dst.regClass() == v1) {
2021 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2022 } else if (dst.regClass() == v2) {
2023 if (ctx->options->chip_class >= GFX7) {
2024 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2025 } else {
2026 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2027 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2028 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2029
2030 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2031 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2032 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2033 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2034 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2035 tmp = sub->definitions[0].getTemp();
2036
2037 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2038 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2039 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2040 Temp cond = vop3->definitions[0].getTemp();
2041
2042 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2043 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2044 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2045 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2046
2047 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2048 }
2049 } else {
2050 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2051 }
2052 break;
2053 }
2054 case nir_op_fsin:
2055 case nir_op_fcos: {
2056 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2057 aco_ptr<Instruction> norm;
2058 if (dst.regClass() == v2b) {
2059 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2060 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2061 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2062 bld.vop1(opcode, Definition(dst), tmp);
2063 } else if (dst.regClass() == v1) {
2064 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2065 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2066
2067 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2068 if (ctx->options->chip_class < GFX9)
2069 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2070
2071 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2072 bld.vop1(opcode, Definition(dst), tmp);
2073 } else {
2074 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2075 }
2076 break;
2077 }
2078 case nir_op_ldexp: {
2079 Temp src0 = get_alu_src(ctx, instr->src[0]);
2080 Temp src1 = get_alu_src(ctx, instr->src[1]);
2081 if (dst.regClass() == v2b) {
2082 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2083 } else if (dst.regClass() == v1) {
2084 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2085 } else if (dst.regClass() == v2) {
2086 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2087 } else {
2088 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2089 }
2090 break;
2091 }
2092 case nir_op_frexp_sig: {
2093 Temp src = get_alu_src(ctx, instr->src[0]);
2094 if (dst.regClass() == v2b) {
2095 bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
2096 } else if (dst.regClass() == v1) {
2097 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2098 } else if (dst.regClass() == v2) {
2099 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2100 } else {
2101 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2102 }
2103 break;
2104 }
2105 case nir_op_frexp_exp: {
2106 Temp src = get_alu_src(ctx, instr->src[0]);
2107 if (instr->src[0].src.ssa->bit_size == 16) {
2108 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2109 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2110 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2111 } else if (instr->src[0].src.ssa->bit_size == 32) {
2112 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2113 } else if (instr->src[0].src.ssa->bit_size == 64) {
2114 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2115 } else {
2116 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2117 }
2118 break;
2119 }
2120 case nir_op_fsign: {
2121 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2122 if (dst.regClass() == v2b) {
2123 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2124 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2125 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2126 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2127 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2128 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
2129 } else if (dst.regClass() == v1) {
2130 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2131 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2132 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2133 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2134 } else if (dst.regClass() == v2) {
2135 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2136 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2137 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2138
2139 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2140 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2141 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2142
2143 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2144 } else {
2145 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2146 }
2147 break;
2148 }
2149 case nir_op_f2f16:
2150 case nir_op_f2f16_rtne: {
2151 Temp src = get_alu_src(ctx, instr->src[0]);
2152 if (instr->src[0].src.ssa->bit_size == 64)
2153 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2154 if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
2155 /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
2156 * keep value numbering and the scheduler simpler.
2157 */
2158 bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
2159 else
2160 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2161 break;
2162 }
2163 case nir_op_f2f16_rtz: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 if (instr->src[0].src.ssa->bit_size == 64)
2166 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2167 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
2168 break;
2169 }
2170 case nir_op_f2f32: {
2171 if (instr->src[0].src.ssa->bit_size == 16) {
2172 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2173 } else if (instr->src[0].src.ssa->bit_size == 64) {
2174 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2175 } else {
2176 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2177 }
2178 break;
2179 }
2180 case nir_op_f2f64: {
2181 Temp src = get_alu_src(ctx, instr->src[0]);
2182 if (instr->src[0].src.ssa->bit_size == 16)
2183 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2184 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2185 break;
2186 }
2187 case nir_op_i2f16: {
2188 assert(dst.regClass() == v2b);
2189 Temp src = get_alu_src(ctx, instr->src[0]);
2190 if (instr->src[0].src.ssa->bit_size == 8)
2191 src = convert_int(ctx, bld, src, 8, 16, true);
2192 else if (instr->src[0].src.ssa->bit_size == 64)
2193 src = convert_int(ctx, bld, src, 64, 32, false);
2194 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2195 break;
2196 }
2197 case nir_op_i2f32: {
2198 assert(dst.size() == 1);
2199 Temp src = get_alu_src(ctx, instr->src[0]);
2200 if (instr->src[0].src.ssa->bit_size <= 16)
2201 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2202 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2203 break;
2204 }
2205 case nir_op_i2f64: {
2206 if (instr->src[0].src.ssa->bit_size <= 32) {
2207 Temp src = get_alu_src(ctx, instr->src[0]);
2208 if (instr->src[0].src.ssa->bit_size <= 16)
2209 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2210 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2211 } else if (instr->src[0].src.ssa->bit_size == 64) {
2212 Temp src = get_alu_src(ctx, instr->src[0]);
2213 RegClass rc = RegClass(src.type(), 1);
2214 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2215 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2216 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2217 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2218 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2219 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2220
2221 } else {
2222 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2223 }
2224 break;
2225 }
2226 case nir_op_u2f16: {
2227 assert(dst.regClass() == v2b);
2228 Temp src = get_alu_src(ctx, instr->src[0]);
2229 if (instr->src[0].src.ssa->bit_size == 8)
2230 src = convert_int(ctx, bld, src, 8, 16, false);
2231 else if (instr->src[0].src.ssa->bit_size == 64)
2232 src = convert_int(ctx, bld, src, 64, 32, false);
2233 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2234 break;
2235 }
2236 case nir_op_u2f32: {
2237 assert(dst.size() == 1);
2238 Temp src = get_alu_src(ctx, instr->src[0]);
2239 if (instr->src[0].src.ssa->bit_size == 8) {
2240 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2241 } else {
2242 if (instr->src[0].src.ssa->bit_size == 16)
2243 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2244 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2245 }
2246 break;
2247 }
2248 case nir_op_u2f64: {
2249 if (instr->src[0].src.ssa->bit_size <= 32) {
2250 Temp src = get_alu_src(ctx, instr->src[0]);
2251 if (instr->src[0].src.ssa->bit_size <= 16)
2252 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2253 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2254 } else if (instr->src[0].src.ssa->bit_size == 64) {
2255 Temp src = get_alu_src(ctx, instr->src[0]);
2256 RegClass rc = RegClass(src.type(), 1);
2257 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2258 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2259 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2260 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2261 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2262 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2263 } else {
2264 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2265 }
2266 break;
2267 }
2268 case nir_op_f2i8:
2269 case nir_op_f2i16: {
2270 if (instr->src[0].src.ssa->bit_size == 16)
2271 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2272 else if (instr->src[0].src.ssa->bit_size == 32)
2273 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2274 else
2275 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2276 break;
2277 }
2278 case nir_op_f2u8:
2279 case nir_op_f2u16: {
2280 if (instr->src[0].src.ssa->bit_size == 16)
2281 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2282 else if (instr->src[0].src.ssa->bit_size == 32)
2283 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2284 else
2285 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2286 break;
2287 }
2288 case nir_op_f2i32: {
2289 Temp src = get_alu_src(ctx, instr->src[0]);
2290 if (instr->src[0].src.ssa->bit_size == 16) {
2291 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2292 if (dst.type() == RegType::vgpr) {
2293 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2294 } else {
2295 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2296 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2297 }
2298 } else if (instr->src[0].src.ssa->bit_size == 32) {
2299 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2300 } else if (instr->src[0].src.ssa->bit_size == 64) {
2301 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2302 } else {
2303 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2304 }
2305 break;
2306 }
2307 case nir_op_f2u32: {
2308 Temp src = get_alu_src(ctx, instr->src[0]);
2309 if (instr->src[0].src.ssa->bit_size == 16) {
2310 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2311 if (dst.type() == RegType::vgpr) {
2312 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2313 } else {
2314 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2315 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2316 }
2317 } else if (instr->src[0].src.ssa->bit_size == 32) {
2318 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2319 } else if (instr->src[0].src.ssa->bit_size == 64) {
2320 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2321 } else {
2322 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2323 }
2324 break;
2325 }
2326 case nir_op_f2i64: {
2327 Temp src = get_alu_src(ctx, instr->src[0]);
2328 if (instr->src[0].src.ssa->bit_size == 16)
2329 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2330
2331 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2332 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2333 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2334 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2335 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2336 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2337 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2338 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2339 Temp new_exponent = bld.tmp(v1);
2340 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2341 if (ctx->program->chip_class >= GFX8)
2342 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2343 else
2344 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2345 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2346 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2347 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2348 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2349 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2350 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2351 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2352 Temp new_lower = bld.tmp(v1);
2353 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2354 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2355 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2356
2357 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2358 if (src.type() == RegType::vgpr)
2359 src = bld.as_uniform(src);
2360 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2361 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2362 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2363 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2364 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2365 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2366 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2367 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2368 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2369 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2370 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2371 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2372 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2373 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2374 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2375 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2376 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2377 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2378 Temp borrow = bld.tmp(s1);
2379 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2380 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2381 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2382
2383 } else if (instr->src[0].src.ssa->bit_size == 64) {
2384 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2385 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2386 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2387 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2388 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2389 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2390 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2391 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2392 if (dst.type() == RegType::sgpr) {
2393 lower = bld.as_uniform(lower);
2394 upper = bld.as_uniform(upper);
2395 }
2396 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2397
2398 } else {
2399 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2400 }
2401 break;
2402 }
2403 case nir_op_f2u64: {
2404 Temp src = get_alu_src(ctx, instr->src[0]);
2405 if (instr->src[0].src.ssa->bit_size == 16)
2406 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2407
2408 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2409 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2410 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2411 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2412 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2413 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2414 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2415 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2416 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2417 Temp new_exponent = bld.tmp(v1);
2418 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2419 if (ctx->program->chip_class >= GFX8)
2420 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2421 else
2422 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2423 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2424 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2425 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2426 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2427 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2428 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2429 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2430
2431 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2432 if (src.type() == RegType::vgpr)
2433 src = bld.as_uniform(src);
2434 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2435 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2436 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2437 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2438 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2439 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2440 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2441 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2442 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2443 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2444 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2445 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2446 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2447 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2448 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2449 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2450 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2451 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2452
2453 } else if (instr->src[0].src.ssa->bit_size == 64) {
2454 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2455 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2456 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2457 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2458 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2459 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2460 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2461 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2462 if (dst.type() == RegType::sgpr) {
2463 lower = bld.as_uniform(lower);
2464 upper = bld.as_uniform(upper);
2465 }
2466 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2467
2468 } else {
2469 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2470 }
2471 break;
2472 }
2473 case nir_op_b2f16: {
2474 Temp src = get_alu_src(ctx, instr->src[0]);
2475 assert(src.regClass() == bld.lm);
2476
2477 if (dst.regClass() == s1) {
2478 src = bool_to_scalar_condition(ctx, src);
2479 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2480 } else if (dst.regClass() == v2b) {
2481 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2482 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2483 } else {
2484 unreachable("Wrong destination register class for nir_op_b2f16.");
2485 }
2486 break;
2487 }
2488 case nir_op_b2f32: {
2489 Temp src = get_alu_src(ctx, instr->src[0]);
2490 assert(src.regClass() == bld.lm);
2491
2492 if (dst.regClass() == s1) {
2493 src = bool_to_scalar_condition(ctx, src);
2494 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2495 } else if (dst.regClass() == v1) {
2496 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2497 } else {
2498 unreachable("Wrong destination register class for nir_op_b2f32.");
2499 }
2500 break;
2501 }
2502 case nir_op_b2f64: {
2503 Temp src = get_alu_src(ctx, instr->src[0]);
2504 assert(src.regClass() == bld.lm);
2505
2506 if (dst.regClass() == s2) {
2507 src = bool_to_scalar_condition(ctx, src);
2508 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2509 } else if (dst.regClass() == v2) {
2510 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2511 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2512 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2513 } else {
2514 unreachable("Wrong destination register class for nir_op_b2f64.");
2515 }
2516 break;
2517 }
2518 case nir_op_i2i8:
2519 case nir_op_i2i16:
2520 case nir_op_i2i32:
2521 case nir_op_i2i64: {
2522 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2523 /* no need to do the extract in get_alu_src() */
2524 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2525 sgpr_extract_sext : sgpr_extract_undef;
2526 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2527 } else {
2528 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2529 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2530 }
2531 break;
2532 }
2533 case nir_op_u2u8:
2534 case nir_op_u2u16:
2535 case nir_op_u2u32:
2536 case nir_op_u2u64: {
2537 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2538 /* no need to do the extract in get_alu_src() */
2539 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2540 sgpr_extract_zext : sgpr_extract_undef;
2541 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2542 } else {
2543 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2544 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2545 }
2546 break;
2547 }
2548 case nir_op_b2b32:
2549 case nir_op_b2i8:
2550 case nir_op_b2i16:
2551 case nir_op_b2i32:
2552 case nir_op_b2i64: {
2553 Temp src = get_alu_src(ctx, instr->src[0]);
2554 assert(src.regClass() == bld.lm);
2555
2556 Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst;
2557 if (tmp.regClass() == s1) {
2558 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2559 bool_to_scalar_condition(ctx, src, tmp);
2560 } else if (tmp.type() == RegType::vgpr) {
2561 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src);
2562 } else {
2563 unreachable("Invalid register class for b2i32");
2564 }
2565
2566 if (tmp != dst)
2567 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
2568 break;
2569 }
2570 case nir_op_b2b1:
2571 case nir_op_i2b1: {
2572 Temp src = get_alu_src(ctx, instr->src[0]);
2573 assert(dst.regClass() == bld.lm);
2574
2575 if (src.type() == RegType::vgpr) {
2576 assert(src.regClass() == v1 || src.regClass() == v2);
2577 assert(dst.regClass() == bld.lm);
2578 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2579 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2580 } else {
2581 assert(src.regClass() == s1 || src.regClass() == s2);
2582 Temp tmp;
2583 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2584 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2585 } else {
2586 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2587 bld.scc(bld.def(s1)), Operand(0u), src);
2588 }
2589 bool_to_vector_condition(ctx, tmp, dst);
2590 }
2591 break;
2592 }
2593 case nir_op_pack_64_2x32_split: {
2594 Temp src0 = get_alu_src(ctx, instr->src[0]);
2595 Temp src1 = get_alu_src(ctx, instr->src[1]);
2596
2597 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2598 break;
2599 }
2600 case nir_op_unpack_64_2x32_split_x:
2601 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2602 break;
2603 case nir_op_unpack_64_2x32_split_y:
2604 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2605 break;
2606 case nir_op_unpack_32_2x16_split_x:
2607 if (dst.type() == RegType::vgpr) {
2608 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2609 } else {
2610 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2611 }
2612 break;
2613 case nir_op_unpack_32_2x16_split_y:
2614 if (dst.type() == RegType::vgpr) {
2615 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2616 } else {
2617 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2618 }
2619 break;
2620 case nir_op_pack_32_2x16_split: {
2621 Temp src0 = get_alu_src(ctx, instr->src[0]);
2622 Temp src1 = get_alu_src(ctx, instr->src[1]);
2623 if (dst.regClass() == v1) {
2624 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2625 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2626 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2627 } else {
2628 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2629 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2630 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2631 }
2632 break;
2633 }
2634 case nir_op_pack_half_2x16: {
2635 Temp src = get_alu_src(ctx, instr->src[0], 2);
2636
2637 if (dst.regClass() == v1) {
2638 Temp src0 = bld.tmp(v1);
2639 Temp src1 = bld.tmp(v1);
2640 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2641 if (0 && (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)) {
2642 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2643 } else {
2644 src0 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src0);
2645 src1 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src1);
2646 if (ctx->program->chip_class >= GFX10) {
2647 /* the high bits of v_cvt_f16_f32 isn't zero'd on GFX10 */
2648 bld.vop3(aco_opcode::v_pack_b32_f16, Definition(dst), src0, src1);
2649 } else {
2650 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst), src0, src1);
2651 }
2652 }
2653 } else {
2654 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2655 }
2656 break;
2657 }
2658 case nir_op_unpack_half_2x16_split_x: {
2659 if (dst.regClass() == v1) {
2660 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2661 } else {
2662 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2663 }
2664 break;
2665 }
2666 case nir_op_unpack_half_2x16_split_y: {
2667 if (dst.regClass() == v1) {
2668 /* TODO: use SDWA here */
2669 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2670 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2671 } else {
2672 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2673 }
2674 break;
2675 }
2676 case nir_op_fquantize2f16: {
2677 Temp src = get_alu_src(ctx, instr->src[0]);
2678 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2679 Temp f32, cmp_res;
2680
2681 if (ctx->program->chip_class >= GFX8) {
2682 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2683 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2684 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2685 } else {
2686 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2687 * so compare the result and flush to 0 if it's smaller.
2688 */
2689 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2690 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2691 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2692 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2693 cmp_res = vop3->definitions[0].getTemp();
2694 }
2695
2696 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2697 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2698 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2699 } else {
2700 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2701 }
2702 break;
2703 }
2704 case nir_op_bfm: {
2705 Temp bits = get_alu_src(ctx, instr->src[0]);
2706 Temp offset = get_alu_src(ctx, instr->src[1]);
2707
2708 if (dst.regClass() == s1) {
2709 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2710 } else if (dst.regClass() == v1) {
2711 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2712 } else {
2713 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2714 }
2715 break;
2716 }
2717 case nir_op_bitfield_select: {
2718 /* (mask & insert) | (~mask & base) */
2719 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2720 Temp insert = get_alu_src(ctx, instr->src[1]);
2721 Temp base = get_alu_src(ctx, instr->src[2]);
2722
2723 /* dst = (insert & bitmask) | (base & ~bitmask) */
2724 if (dst.regClass() == s1) {
2725 aco_ptr<Instruction> sop2;
2726 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2727 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2728 Operand lhs;
2729 if (const_insert && const_bitmask) {
2730 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2731 } else {
2732 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2733 lhs = Operand(insert);
2734 }
2735
2736 Operand rhs;
2737 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2738 if (const_base && const_bitmask) {
2739 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2740 } else {
2741 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2742 rhs = Operand(base);
2743 }
2744
2745 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2746
2747 } else if (dst.regClass() == v1) {
2748 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2749 base = as_vgpr(ctx, base);
2750 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2751 insert = as_vgpr(ctx, insert);
2752
2753 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2754
2755 } else {
2756 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2757 }
2758 break;
2759 }
2760 case nir_op_ubfe:
2761 case nir_op_ibfe: {
2762 if (dst.bytes() != 4)
2763 unreachable("Unsupported BFE bit size");
2764
2765 if (dst.type() == RegType::sgpr) {
2766 Temp base = get_alu_src(ctx, instr->src[0]);
2767
2768 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2769 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2770 if (const_offset && const_bits) {
2771 uint32_t extract = (const_bits->u32 << 16) | (const_offset->u32 & 0x1f);
2772 aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
2773 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, Operand(extract));
2774 break;
2775 }
2776
2777 Temp offset = get_alu_src(ctx, instr->src[1]);
2778 Temp bits = get_alu_src(ctx, instr->src[2]);
2779 if (instr->op == nir_op_ubfe) {
2780 Temp mask = bld.sop2(aco_opcode::s_bfm_b32, bld.def(s1), bits, offset);
2781 Temp masked = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), base, mask);
2782 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), masked, offset);
2783 } else {
2784 Operand bits_op = const_bits ? Operand(const_bits->u32 << 16) :
2785 bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2786 Operand offset_op = const_offset ? Operand(const_offset->u32 & 0x1fu) :
2787 bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(0x1fu));
2788
2789 Temp extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), bits_op, offset_op);
2790 bld.sop2(aco_opcode::s_bfe_i32, Definition(dst), bld.def(s1, scc), base, extract);
2791 }
2792
2793 } else {
2794 aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::v_bfe_u32 : aco_opcode::v_bfe_i32;
2795 emit_vop3a_instruction(ctx, instr, opcode, dst);
2796 }
2797 break;
2798 }
2799 case nir_op_bit_count: {
2800 Temp src = get_alu_src(ctx, instr->src[0]);
2801 if (src.regClass() == s1) {
2802 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2803 } else if (src.regClass() == v1) {
2804 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2805 } else if (src.regClass() == v2) {
2806 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2807 emit_extract_vector(ctx, src, 1, v1),
2808 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2809 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2810 } else if (src.regClass() == s2) {
2811 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2812 } else {
2813 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2814 }
2815 break;
2816 }
2817 case nir_op_flt: {
2818 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2819 break;
2820 }
2821 case nir_op_fge: {
2822 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2823 break;
2824 }
2825 case nir_op_feq: {
2826 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2827 break;
2828 }
2829 case nir_op_fneu: {
2830 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2831 break;
2832 }
2833 case nir_op_ilt: {
2834 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2835 break;
2836 }
2837 case nir_op_ige: {
2838 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2839 break;
2840 }
2841 case nir_op_ieq: {
2842 if (instr->src[0].src.ssa->bit_size == 1)
2843 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2844 else
2845 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2846 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2847 break;
2848 }
2849 case nir_op_ine: {
2850 if (instr->src[0].src.ssa->bit_size == 1)
2851 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2852 else
2853 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2854 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2855 break;
2856 }
2857 case nir_op_ult: {
2858 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2859 break;
2860 }
2861 case nir_op_uge: {
2862 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2863 break;
2864 }
2865 case nir_op_fddx:
2866 case nir_op_fddy:
2867 case nir_op_fddx_fine:
2868 case nir_op_fddy_fine:
2869 case nir_op_fddx_coarse:
2870 case nir_op_fddy_coarse: {
2871 Temp src = get_alu_src(ctx, instr->src[0]);
2872 uint16_t dpp_ctrl1, dpp_ctrl2;
2873 if (instr->op == nir_op_fddx_fine) {
2874 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2875 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2876 } else if (instr->op == nir_op_fddy_fine) {
2877 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2878 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2879 } else {
2880 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2881 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2882 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2883 else
2884 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2885 }
2886
2887 Temp tmp;
2888 if (ctx->program->chip_class >= GFX8) {
2889 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2890 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2891 } else {
2892 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2893 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2894 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2895 }
2896 emit_wqm(ctx, tmp, dst, true);
2897 break;
2898 }
2899 default:
2900 isel_err(&instr->instr, "Unknown NIR ALU instr");
2901 }
2902 }
2903
2904 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2905 {
2906 Temp dst = get_ssa_temp(ctx, &instr->def);
2907
2908 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2909 // which get truncated the lsb if double and msb if int
2910 // for now, we only use s_mov_b64 with 64bit inline constants
2911 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2912 assert(dst.type() == RegType::sgpr);
2913
2914 Builder bld(ctx->program, ctx->block);
2915
2916 if (instr->def.bit_size == 1) {
2917 assert(dst.regClass() == bld.lm);
2918 int val = instr->value[0].b ? -1 : 0;
2919 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2920 bld.sop1(Builder::s_mov, Definition(dst), op);
2921 } else if (instr->def.bit_size == 8) {
2922 /* ensure that the value is correctly represented in the low byte of the register */
2923 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
2924 } else if (instr->def.bit_size == 16) {
2925 /* ensure that the value is correctly represented in the low half of the register */
2926 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
2927 } else if (dst.size() == 1) {
2928 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2929 } else {
2930 assert(dst.size() != 1);
2931 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2932 if (instr->def.bit_size == 64)
2933 for (unsigned i = 0; i < dst.size(); i++)
2934 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2935 else {
2936 for (unsigned i = 0; i < dst.size(); i++)
2937 vec->operands[i] = Operand{instr->value[i].u32};
2938 }
2939 vec->definitions[0] = Definition(dst);
2940 ctx->block->instructions.emplace_back(std::move(vec));
2941 }
2942 }
2943
2944 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2945 {
2946 uint32_t new_mask = 0;
2947 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2948 if (mask & (1u << i))
2949 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2950 return new_mask;
2951 }
2952
2953 struct LoadEmitInfo {
2954 Operand offset;
2955 Temp dst;
2956 unsigned num_components;
2957 unsigned component_size;
2958 Temp resource = Temp(0, s1);
2959 unsigned component_stride = 0;
2960 unsigned const_offset = 0;
2961 unsigned align_mul = 0;
2962 unsigned align_offset = 0;
2963
2964 bool glc = false;
2965 unsigned swizzle_component_size = 0;
2966 memory_sync_info sync;
2967 Temp soffset = Temp(0, s1);
2968 };
2969
2970 using LoadCallback = Temp(*)(
2971 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
2972 unsigned align, unsigned const_offset, Temp dst_hint);
2973
2974 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
2975 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
2976 {
2977 unsigned load_size = info->num_components * info->component_size;
2978 unsigned component_size = info->component_size;
2979
2980 unsigned num_vals = 0;
2981 Temp vals[info->dst.bytes()];
2982
2983 unsigned const_offset = info->const_offset;
2984
2985 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
2986 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
2987
2988 unsigned bytes_read = 0;
2989 while (bytes_read < load_size) {
2990 unsigned bytes_needed = load_size - bytes_read;
2991
2992 /* add buffer for unaligned loads */
2993 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
2994
2995 if (byte_align) {
2996 if ((bytes_needed > 2 ||
2997 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
2998 !supports_8bit_16bit_loads) && byte_align_loads) {
2999 if (info->component_stride) {
3000 assert(supports_8bit_16bit_loads && "unimplemented");
3001 bytes_needed = 2;
3002 byte_align = 0;
3003 } else {
3004 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3005 bytes_needed = align(bytes_needed, 4);
3006 }
3007 } else {
3008 byte_align = 0;
3009 }
3010 }
3011
3012 if (info->swizzle_component_size)
3013 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3014 if (info->component_stride)
3015 bytes_needed = MIN2(bytes_needed, info->component_size);
3016
3017 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3018
3019 /* reduce constant offset */
3020 Operand offset = info->offset;
3021 unsigned reduced_const_offset = const_offset;
3022 bool remove_const_offset_completely = need_to_align_offset;
3023 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3024 unsigned to_add = const_offset;
3025 if (remove_const_offset_completely) {
3026 reduced_const_offset = 0;
3027 } else {
3028 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3029 reduced_const_offset %= max_const_offset_plus_one;
3030 }
3031 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3032 if (offset.isConstant()) {
3033 offset = Operand(offset.constantValue() + to_add);
3034 } else if (offset_tmp.regClass() == s1) {
3035 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3036 offset_tmp, Operand(to_add));
3037 } else if (offset_tmp.regClass() == v1) {
3038 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3039 } else {
3040 Temp lo = bld.tmp(offset_tmp.type(), 1);
3041 Temp hi = bld.tmp(offset_tmp.type(), 1);
3042 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3043
3044 if (offset_tmp.regClass() == s2) {
3045 Temp carry = bld.tmp(s1);
3046 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3047 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3048 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3049 } else {
3050 Temp new_lo = bld.tmp(v1);
3051 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3052 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3053 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3054 }
3055 }
3056 }
3057
3058 /* align offset down if needed */
3059 Operand aligned_offset = offset;
3060 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3061 if (need_to_align_offset) {
3062 align = 4;
3063 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3064 if (offset.isConstant()) {
3065 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3066 } else if (offset_tmp.regClass() == s1) {
3067 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3068 } else if (offset_tmp.regClass() == s2) {
3069 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3070 } else if (offset_tmp.regClass() == v1) {
3071 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3072 } else if (offset_tmp.regClass() == v2) {
3073 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3074 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3075 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3076 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3077 }
3078 }
3079 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3080 bld.copy(bld.def(s1), aligned_offset);
3081
3082 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3083 reduced_const_offset, byte_align ? Temp() : info->dst);
3084
3085 /* the callback wrote directly to dst */
3086 if (val == info->dst) {
3087 assert(num_vals == 0);
3088 emit_split_vector(ctx, info->dst, info->num_components);
3089 return;
3090 }
3091
3092 /* shift result right if needed */
3093 if (info->component_size < 4 && byte_align_loads) {
3094 Operand align((uint32_t)byte_align);
3095 if (byte_align == -1) {
3096 if (offset.isConstant())
3097 align = Operand(offset.constantValue() % 4u);
3098 else if (offset.size() == 2)
3099 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3100 else
3101 align = offset;
3102 }
3103
3104 assert(val.bytes() >= load_size && "unimplemented");
3105 if (val.type() == RegType::sgpr)
3106 byte_align_scalar(ctx, val, align, info->dst);
3107 else
3108 byte_align_vector(ctx, val, align, info->dst, component_size);
3109 return;
3110 }
3111
3112 /* add result to list and advance */
3113 if (info->component_stride) {
3114 assert(val.bytes() == info->component_size && "unimplemented");
3115 const_offset += info->component_stride;
3116 align_offset = (align_offset + info->component_stride) % align_mul;
3117 } else {
3118 const_offset += val.bytes();
3119 align_offset = (align_offset + val.bytes()) % align_mul;
3120 }
3121 bytes_read += val.bytes();
3122 vals[num_vals++] = val;
3123 }
3124
3125 /* create array of components */
3126 unsigned components_split = 0;
3127 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3128 bool has_vgprs = false;
3129 for (unsigned i = 0; i < num_vals;) {
3130 Temp tmp[num_vals];
3131 unsigned num_tmps = 0;
3132 unsigned tmp_size = 0;
3133 RegType reg_type = RegType::sgpr;
3134 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3135 if (vals[i].type() == RegType::vgpr)
3136 reg_type = RegType::vgpr;
3137 tmp_size += vals[i].bytes();
3138 tmp[num_tmps++] = vals[i++];
3139 }
3140 if (num_tmps > 1) {
3141 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3142 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3143 for (unsigned i = 0; i < num_tmps; i++)
3144 vec->operands[i] = Operand(tmp[i]);
3145 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3146 vec->definitions[0] = Definition(tmp[0]);
3147 bld.insert(std::move(vec));
3148 }
3149
3150 if (tmp[0].bytes() % component_size) {
3151 /* trim tmp[0] */
3152 assert(i == num_vals);
3153 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3154 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3155 }
3156
3157 RegClass elem_rc = RegClass::get(reg_type, component_size);
3158
3159 unsigned start = components_split;
3160
3161 if (tmp_size == elem_rc.bytes()) {
3162 allocated_vec[components_split++] = tmp[0];
3163 } else {
3164 assert(tmp_size % elem_rc.bytes() == 0);
3165 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3166 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3167 for (unsigned i = 0; i < split->definitions.size(); i++) {
3168 Temp component = bld.tmp(elem_rc);
3169 allocated_vec[components_split++] = component;
3170 split->definitions[i] = Definition(component);
3171 }
3172 split->operands[0] = Operand(tmp[0]);
3173 bld.insert(std::move(split));
3174 }
3175
3176 /* try to p_as_uniform early so we can create more optimizable code and
3177 * also update allocated_vec */
3178 for (unsigned j = start; j < components_split; j++) {
3179 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3180 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3181 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3182 }
3183 }
3184
3185 /* concatenate components and p_as_uniform() result if needed */
3186 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3187 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3188
3189 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3190
3191 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3192 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3193 for (unsigned i = 0; i < info->num_components; i++)
3194 vec->operands[i] = Operand(allocated_vec[i]);
3195 if (padding_bytes)
3196 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3197 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3198 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3199 vec->definitions[0] = Definition(tmp);
3200 bld.insert(std::move(vec));
3201 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3202 } else {
3203 vec->definitions[0] = Definition(info->dst);
3204 bld.insert(std::move(vec));
3205 }
3206 }
3207
3208 Operand load_lds_size_m0(Builder& bld)
3209 {
3210 /* TODO: m0 does not need to be initialized on GFX9+ */
3211 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3212 }
3213
3214 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3215 Temp offset, unsigned bytes_needed,
3216 unsigned align, unsigned const_offset,
3217 Temp dst_hint)
3218 {
3219 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3220
3221 Operand m = load_lds_size_m0(bld);
3222
3223 bool large_ds_read = bld.program->chip_class >= GFX7;
3224 bool usable_read2 = bld.program->chip_class >= GFX7;
3225
3226 bool read2 = false;
3227 unsigned size = 0;
3228 aco_opcode op;
3229 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3230 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3231 size = 16;
3232 op = aco_opcode::ds_read_b128;
3233 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3234 size = 16;
3235 read2 = true;
3236 op = aco_opcode::ds_read2_b64;
3237 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3238 size = 12;
3239 op = aco_opcode::ds_read_b96;
3240 } else if (bytes_needed >= 8 && align % 8 == 0) {
3241 size = 8;
3242 op = aco_opcode::ds_read_b64;
3243 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3244 size = 8;
3245 read2 = true;
3246 op = aco_opcode::ds_read2_b32;
3247 } else if (bytes_needed >= 4 && align % 4 == 0) {
3248 size = 4;
3249 op = aco_opcode::ds_read_b32;
3250 } else if (bytes_needed >= 2 && align % 2 == 0) {
3251 size = 2;
3252 op = aco_opcode::ds_read_u16;
3253 } else {
3254 size = 1;
3255 op = aco_opcode::ds_read_u8;
3256 }
3257
3258 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3259 if (const_offset >= max_offset_plus_one) {
3260 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3261 const_offset %= max_offset_plus_one;
3262 }
3263
3264 if (read2)
3265 const_offset /= (size / 2u);
3266
3267 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3268 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3269 Instruction *instr;
3270 if (read2)
3271 instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3272 else
3273 instr = bld.ds(op, Definition(val), offset, m, const_offset);
3274 static_cast<DS_instruction *>(instr)->sync = info->sync;
3275
3276 if (size < 4)
3277 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3278
3279 return val;
3280 }
3281
3282 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3283
3284 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3285 Temp offset, unsigned bytes_needed,
3286 unsigned align, unsigned const_offset,
3287 Temp dst_hint)
3288 {
3289 unsigned size = 0;
3290 aco_opcode op;
3291 if (bytes_needed <= 4) {
3292 size = 1;
3293 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3294 } else if (bytes_needed <= 8) {
3295 size = 2;
3296 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3297 } else if (bytes_needed <= 16) {
3298 size = 4;
3299 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3300 } else if (bytes_needed <= 32) {
3301 size = 8;
3302 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3303 } else {
3304 size = 16;
3305 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3306 }
3307 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3308 if (info->resource.id()) {
3309 load->operands[0] = Operand(info->resource);
3310 load->operands[1] = Operand(offset);
3311 } else {
3312 load->operands[0] = Operand(offset);
3313 load->operands[1] = Operand(0u);
3314 }
3315 RegClass rc(RegType::sgpr, size);
3316 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3317 load->definitions[0] = Definition(val);
3318 load->glc = info->glc;
3319 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3320 load->sync = info->sync;
3321 bld.insert(std::move(load));
3322 return val;
3323 }
3324
3325 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3326
3327 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3328 Temp offset, unsigned bytes_needed,
3329 unsigned align_, unsigned const_offset,
3330 Temp dst_hint)
3331 {
3332 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3333 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3334
3335 if (info->soffset.id()) {
3336 if (soffset.isTemp())
3337 vaddr = bld.copy(bld.def(v1), soffset);
3338 soffset = Operand(info->soffset);
3339 }
3340
3341 unsigned bytes_size = 0;
3342 aco_opcode op;
3343 if (bytes_needed == 1 || align_ % 2) {
3344 bytes_size = 1;
3345 op = aco_opcode::buffer_load_ubyte;
3346 } else if (bytes_needed == 2 || align_ % 4) {
3347 bytes_size = 2;
3348 op = aco_opcode::buffer_load_ushort;
3349 } else if (bytes_needed <= 4) {
3350 bytes_size = 4;
3351 op = aco_opcode::buffer_load_dword;
3352 } else if (bytes_needed <= 8) {
3353 bytes_size = 8;
3354 op = aco_opcode::buffer_load_dwordx2;
3355 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3356 bytes_size = 12;
3357 op = aco_opcode::buffer_load_dwordx3;
3358 } else {
3359 bytes_size = 16;
3360 op = aco_opcode::buffer_load_dwordx4;
3361 }
3362 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3363 mubuf->operands[0] = Operand(info->resource);
3364 mubuf->operands[1] = vaddr;
3365 mubuf->operands[2] = soffset;
3366 mubuf->offen = (offset.type() == RegType::vgpr);
3367 mubuf->glc = info->glc;
3368 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3369 mubuf->sync = info->sync;
3370 mubuf->offset = const_offset;
3371 mubuf->swizzled = info->swizzle_component_size != 0;
3372 RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
3373 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3374 mubuf->definitions[0] = Definition(val);
3375 bld.insert(std::move(mubuf));
3376
3377 return val;
3378 }
3379
3380 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3381 static auto emit_scratch_load = emit_load<mubuf_load_callback, false, true, 4096>;
3382
3383 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3384 {
3385 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3386 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3387
3388 if (addr.type() == RegType::vgpr)
3389 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3390 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3391 }
3392
3393 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3394 Temp offset, unsigned bytes_needed,
3395 unsigned align_, unsigned const_offset,
3396 Temp dst_hint)
3397 {
3398 unsigned bytes_size = 0;
3399 bool mubuf = bld.program->chip_class == GFX6;
3400 bool global = bld.program->chip_class >= GFX9;
3401 aco_opcode op;
3402 if (bytes_needed == 1) {
3403 bytes_size = 1;
3404 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3405 } else if (bytes_needed == 2) {
3406 bytes_size = 2;
3407 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3408 } else if (bytes_needed <= 4) {
3409 bytes_size = 4;
3410 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3411 } else if (bytes_needed <= 8) {
3412 bytes_size = 8;
3413 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3414 } else if (bytes_needed <= 12 && !mubuf) {
3415 bytes_size = 12;
3416 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3417 } else {
3418 bytes_size = 16;
3419 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3420 }
3421 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3422 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3423 if (mubuf) {
3424 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3425 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3426 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3427 mubuf->operands[2] = Operand(0u);
3428 mubuf->glc = info->glc;
3429 mubuf->dlc = false;
3430 mubuf->offset = 0;
3431 mubuf->addr64 = offset.type() == RegType::vgpr;
3432 mubuf->disable_wqm = false;
3433 mubuf->sync = info->sync;
3434 mubuf->definitions[0] = Definition(val);
3435 bld.insert(std::move(mubuf));
3436 } else {
3437 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3438
3439 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3440 flat->operands[0] = Operand(offset);
3441 flat->operands[1] = Operand(s1);
3442 flat->glc = info->glc;
3443 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3444 flat->sync = info->sync;
3445 flat->offset = 0u;
3446 flat->definitions[0] = Definition(val);
3447 bld.insert(std::move(flat));
3448 }
3449
3450 return val;
3451 }
3452
3453 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3454
3455 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3456 Temp address, unsigned base_offset, unsigned align)
3457 {
3458 assert(util_is_power_of_two_nonzero(align));
3459
3460 Builder bld(ctx->program, ctx->block);
3461
3462 unsigned num_components = dst.bytes() / elem_size_bytes;
3463 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3464 info.align_mul = align;
3465 info.align_offset = 0;
3466 info.sync = memory_sync_info(storage_shared);
3467 info.const_offset = base_offset;
3468 emit_lds_load(ctx, bld, &info);
3469
3470 return dst;
3471 }
3472
3473 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3474 {
3475 if (!count)
3476 return;
3477
3478 Builder bld(ctx->program, ctx->block);
3479
3480 ASSERTED bool is_subdword = false;
3481 for (unsigned i = 0; i < count; i++)
3482 is_subdword |= offsets[i] % 4;
3483 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3484 assert(!is_subdword || dst_type == RegType::vgpr);
3485
3486 /* count == 1 fast path */
3487 if (count == 1) {
3488 if (dst_type == RegType::sgpr)
3489 dst[0] = bld.as_uniform(src);
3490 else
3491 dst[0] = as_vgpr(ctx, src);
3492 return;
3493 }
3494
3495 for (unsigned i = 0; i < count - 1; i++)
3496 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3497 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3498
3499 if (is_subdword && src.type() == RegType::sgpr) {
3500 src = as_vgpr(ctx, src);
3501 } else {
3502 /* use allocated_vec if possible */
3503 auto it = ctx->allocated_vec.find(src.id());
3504 if (it != ctx->allocated_vec.end()) {
3505 if (!it->second[0].id())
3506 goto split;
3507 unsigned elem_size = it->second[0].bytes();
3508 assert(src.bytes() % elem_size == 0);
3509
3510 for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
3511 if (!it->second[i].id())
3512 goto split;
3513 }
3514
3515 for (unsigned i = 0; i < count; i++) {
3516 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3517 goto split;
3518 }
3519
3520 for (unsigned i = 0; i < count; i++) {
3521 unsigned start_idx = offsets[i] / elem_size;
3522 unsigned op_count = dst[i].bytes() / elem_size;
3523 if (op_count == 1) {
3524 if (dst_type == RegType::sgpr)
3525 dst[i] = bld.as_uniform(it->second[start_idx]);
3526 else
3527 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3528 continue;
3529 }
3530
3531 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3532 for (unsigned j = 0; j < op_count; j++) {
3533 Temp tmp = it->second[start_idx + j];
3534 if (dst_type == RegType::sgpr)
3535 tmp = bld.as_uniform(tmp);
3536 vec->operands[j] = Operand(tmp);
3537 }
3538 vec->definitions[0] = Definition(dst[i]);
3539 bld.insert(std::move(vec));
3540 }
3541 return;
3542 }
3543 }
3544
3545 split:
3546
3547 if (dst_type == RegType::sgpr)
3548 src = bld.as_uniform(src);
3549
3550 /* just split it */
3551 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3552 split->operands[0] = Operand(src);
3553 for (unsigned i = 0; i < count; i++)
3554 split->definitions[i] = Definition(dst[i]);
3555 bld.insert(std::move(split));
3556 }
3557
3558 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3559 int *start, int *count)
3560 {
3561 unsigned start_elem = ffs(todo_mask) - 1;
3562 bool skip = !(mask & (1 << start_elem));
3563 if (skip)
3564 mask = ~mask & todo_mask;
3565
3566 mask &= todo_mask;
3567
3568 u_bit_scan_consecutive_range(&mask, start, count);
3569
3570 return !skip;
3571 }
3572
3573 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3574 {
3575 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3576 }
3577
3578 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3579 Temp address, unsigned base_offset, unsigned align)
3580 {
3581 assert(util_is_power_of_two_nonzero(align));
3582 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3583
3584 Builder bld(ctx->program, ctx->block);
3585 bool large_ds_write = ctx->options->chip_class >= GFX7;
3586 bool usable_write2 = ctx->options->chip_class >= GFX7;
3587
3588 unsigned write_count = 0;
3589 Temp write_datas[32];
3590 unsigned offsets[32];
3591 aco_opcode opcodes[32];
3592
3593 wrmask = widen_mask(wrmask, elem_size_bytes);
3594
3595 uint32_t todo = u_bit_consecutive(0, data.bytes());
3596 while (todo) {
3597 int offset, bytes;
3598 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3599 offsets[write_count] = offset;
3600 opcodes[write_count] = aco_opcode::num_opcodes;
3601 write_count++;
3602 advance_write_mask(&todo, offset, bytes);
3603 continue;
3604 }
3605
3606 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3607 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3608 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3609 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3610
3611 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3612 aco_opcode op = aco_opcode::num_opcodes;
3613 if (bytes >= 16 && aligned16 && large_ds_write) {
3614 op = aco_opcode::ds_write_b128;
3615 bytes = 16;
3616 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3617 op = aco_opcode::ds_write_b96;
3618 bytes = 12;
3619 } else if (bytes >= 8 && aligned8) {
3620 op = aco_opcode::ds_write_b64;
3621 bytes = 8;
3622 } else if (bytes >= 4 && aligned4) {
3623 op = aco_opcode::ds_write_b32;
3624 bytes = 4;
3625 } else if (bytes >= 2 && aligned2) {
3626 op = aco_opcode::ds_write_b16;
3627 bytes = 2;
3628 } else if (bytes >= 1) {
3629 op = aco_opcode::ds_write_b8;
3630 bytes = 1;
3631 } else {
3632 assert(false);
3633 }
3634
3635 offsets[write_count] = offset;
3636 opcodes[write_count] = op;
3637 write_count++;
3638 advance_write_mask(&todo, offset, bytes);
3639 }
3640
3641 Operand m = load_lds_size_m0(bld);
3642
3643 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3644
3645 for (unsigned i = 0; i < write_count; i++) {
3646 aco_opcode op = opcodes[i];
3647 if (op == aco_opcode::num_opcodes)
3648 continue;
3649
3650 Temp data = write_datas[i];
3651
3652 unsigned second = write_count;
3653 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3654 for (second = i + 1; second < write_count; second++) {
3655 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3656 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3657 opcodes[second] = aco_opcode::num_opcodes;
3658 break;
3659 }
3660 }
3661 }
3662
3663 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3664 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3665
3666 unsigned inline_offset = base_offset + offsets[i];
3667 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3668 Temp address_offset = address;
3669 if (inline_offset > max_offset) {
3670 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3671 inline_offset = offsets[i];
3672 }
3673 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3674
3675 Instruction *instr;
3676 if (write2) {
3677 Temp second_data = write_datas[second];
3678 inline_offset /= data.bytes();
3679 instr = bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3680 } else {
3681 instr = bld.ds(op, address_offset, data, m, inline_offset);
3682 }
3683 static_cast<DS_instruction *>(instr)->sync =
3684 memory_sync_info(storage_shared);
3685 }
3686 }
3687
3688 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3689 {
3690 unsigned align = 16;
3691 if (const_offset)
3692 align = std::min(align, 1u << (ffs(const_offset) - 1));
3693
3694 return align;
3695 }
3696
3697
3698 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3699 {
3700 switch (bytes) {
3701 case 1:
3702 assert(!smem);
3703 return aco_opcode::buffer_store_byte;
3704 case 2:
3705 assert(!smem);
3706 return aco_opcode::buffer_store_short;
3707 case 4:
3708 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3709 case 8:
3710 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3711 case 12:
3712 assert(!smem);
3713 return aco_opcode::buffer_store_dwordx3;
3714 case 16:
3715 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3716 }
3717 unreachable("Unexpected store size");
3718 return aco_opcode::num_opcodes;
3719 }
3720
3721 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3722 Temp data, unsigned writemask, int swizzle_element_size,
3723 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3724 {
3725 unsigned write_count_with_skips = 0;
3726 bool skips[16];
3727
3728 /* determine how to split the data */
3729 unsigned todo = u_bit_consecutive(0, data.bytes());
3730 while (todo) {
3731 int offset, bytes;
3732 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3733 offsets[write_count_with_skips] = offset;
3734 if (skips[write_count_with_skips]) {
3735 advance_write_mask(&todo, offset, bytes);
3736 write_count_with_skips++;
3737 continue;
3738 }
3739
3740 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3741 * larger than swizzle_element_size */
3742 bytes = MIN2(bytes, swizzle_element_size);
3743 if (bytes % 4)
3744 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3745
3746 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3747 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3748 bytes = 8;
3749
3750 /* dword or larger stores have to be dword-aligned */
3751 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3752 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3753 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3754 if (!dword_aligned)
3755 bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3756
3757 advance_write_mask(&todo, offset, bytes);
3758 write_count_with_skips++;
3759 }
3760
3761 /* actually split data */
3762 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3763
3764 /* remove skips */
3765 for (unsigned i = 0; i < write_count_with_skips; i++) {
3766 if (skips[i])
3767 continue;
3768 write_datas[*write_count] = write_datas[i];
3769 offsets[*write_count] = offsets[i];
3770 (*write_count)++;
3771 }
3772 }
3773
3774 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3775 unsigned split_cnt = 0u, Temp dst = Temp())
3776 {
3777 Builder bld(ctx->program, ctx->block);
3778 unsigned dword_size = elem_size_bytes / 4;
3779
3780 if (!dst.id())
3781 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3782
3783 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3784 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3785 instr->definitions[0] = Definition(dst);
3786
3787 for (unsigned i = 0; i < cnt; ++i) {
3788 if (arr[i].id()) {
3789 assert(arr[i].size() == dword_size);
3790 allocated_vec[i] = arr[i];
3791 instr->operands[i] = Operand(arr[i]);
3792 } else {
3793 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3794 allocated_vec[i] = zero;
3795 instr->operands[i] = Operand(zero);
3796 }
3797 }
3798
3799 bld.insert(std::move(instr));
3800
3801 if (split_cnt)
3802 emit_split_vector(ctx, dst, split_cnt);
3803 else
3804 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3805
3806 return dst;
3807 }
3808
3809 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3810 {
3811 if (const_offset >= 4096) {
3812 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3813 const_offset %= 4096u;
3814
3815 if (!voffset.id())
3816 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3817 else if (unlikely(voffset.regClass() == s1))
3818 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3819 else if (likely(voffset.regClass() == v1))
3820 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3821 else
3822 unreachable("Unsupported register class of voffset");
3823 }
3824
3825 return const_offset;
3826 }
3827
3828 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3829 unsigned const_offset = 0u, memory_sync_info sync=memory_sync_info(),
3830 bool slc = false, bool swizzled = false)
3831 {
3832 assert(vdata.id());
3833 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3834 assert(vdata.size() >= 1 && vdata.size() <= 4);
3835
3836 Builder bld(ctx->program, ctx->block);
3837 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
3838 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3839
3840 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3841 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3842 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3843 /* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled,
3844 /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true,
3845 /* dlc*/ false, /* slc */ slc);
3846
3847 static_cast<MUBUF_instruction *>(r.instr)->sync = sync;
3848 }
3849
3850 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3851 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3852 bool allow_combining = true, memory_sync_info sync=memory_sync_info(), bool slc = false)
3853 {
3854 Builder bld(ctx->program, ctx->block);
3855 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3856 assert(write_mask);
3857 write_mask = widen_mask(write_mask, elem_size_bytes);
3858
3859 unsigned write_count = 0;
3860 Temp write_datas[32];
3861 unsigned offsets[32];
3862 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
3863 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
3864
3865 for (unsigned i = 0; i < write_count; i++) {
3866 unsigned const_offset = offsets[i] + base_const_offset;
3867 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, sync, slc, !allow_combining);
3868 }
3869 }
3870
3871 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3872 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3873 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3874 {
3875 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3876 assert((num_components * elem_size_bytes) == dst.bytes());
3877 assert(!!stride != allow_combining);
3878
3879 Builder bld(ctx->program, ctx->block);
3880
3881 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
3882 info.component_stride = allow_combining ? 0 : stride;
3883 info.glc = true;
3884 info.swizzle_component_size = allow_combining ? 0 : 4;
3885 info.align_mul = MIN2(elem_size_bytes, 4);
3886 info.align_offset = 0;
3887 info.soffset = soffset;
3888 info.const_offset = base_const_offset;
3889 emit_mubuf_load(ctx, bld, &info);
3890 }
3891
3892 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3893 {
3894 Builder bld(ctx->program, ctx->block);
3895 Temp offset = base_offset.first;
3896 unsigned const_offset = base_offset.second;
3897
3898 if (!nir_src_is_const(*off_src)) {
3899 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3900 Temp with_stride;
3901
3902 /* Calculate indirect offset with stride */
3903 if (likely(indirect_offset_arg.regClass() == v1))
3904 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
3905 else if (indirect_offset_arg.regClass() == s1)
3906 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3907 else
3908 unreachable("Unsupported register class of indirect offset");
3909
3910 /* Add to the supplied base offset */
3911 if (offset.id() == 0)
3912 offset = with_stride;
3913 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3914 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3915 else if (offset.size() == 1 && with_stride.size() == 1)
3916 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3917 else
3918 unreachable("Unsupported register class of indirect offset");
3919 } else {
3920 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3921 const_offset += const_offset_arg * stride;
3922 }
3923
3924 return std::make_pair(offset, const_offset);
3925 }
3926
3927 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3928 {
3929 Builder bld(ctx->program, ctx->block);
3930 Temp offset;
3931
3932 if (off1.first.id() && off2.first.id()) {
3933 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3934 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3935 else if (off1.first.size() == 1 && off2.first.size() == 1)
3936 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3937 else
3938 unreachable("Unsupported register class of indirect offset");
3939 } else {
3940 offset = off1.first.id() ? off1.first : off2.first;
3941 }
3942
3943 return std::make_pair(offset, off1.second + off2.second);
3944 }
3945
3946 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3947 {
3948 Builder bld(ctx->program, ctx->block);
3949 unsigned const_offset = offs.second * multiplier;
3950
3951 if (!offs.first.id())
3952 return std::make_pair(offs.first, const_offset);
3953
3954 Temp offset = unlikely(offs.first.regClass() == s1)
3955 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3956 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
3957
3958 return std::make_pair(offset, const_offset);
3959 }
3960
3961 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3962 {
3963 Builder bld(ctx->program, ctx->block);
3964
3965 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3966 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3967 /* component is in bytes */
3968 const_offset += nir_intrinsic_component(instr) * component_stride;
3969
3970 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3971 nir_src *off_src = nir_get_io_offset_src(instr);
3972 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3973 }
3974
3975 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3976 {
3977 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3978 }
3979
3980 Temp get_tess_rel_patch_id(isel_context *ctx)
3981 {
3982 Builder bld(ctx->program, ctx->block);
3983
3984 switch (ctx->shader->info.stage) {
3985 case MESA_SHADER_TESS_CTRL:
3986 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3987 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3988 case MESA_SHADER_TESS_EVAL:
3989 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3990 default:
3991 unreachable("Unsupported stage in get_tess_rel_patch_id");
3992 }
3993 }
3994
3995 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3996 {
3997 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3998 Builder bld(ctx->program, ctx->block);
3999
4000 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4001 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4002
4003 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4004
4005 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4006 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4007
4008 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4009 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4010 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4011
4012 return offset_mul(ctx, offs, 4u);
4013 }
4014
4015 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4016 {
4017 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4018 Builder bld(ctx->program, ctx->block);
4019
4020 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4021 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4022 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4023 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4024
4025 std::pair<Temp, unsigned> offs = instr
4026 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4027 : std::make_pair(Temp(), 0u);
4028
4029 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4030 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4031
4032 if (per_vertex) {
4033 assert(instr);
4034
4035 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4036 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4037
4038 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4039 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4040 } else {
4041 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4042 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4043 }
4044
4045 return offs;
4046 }
4047
4048 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4049 {
4050 Builder bld(ctx->program, ctx->block);
4051
4052 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4053 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4054
4055 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4056
4057 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4058 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4059 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4060
4061 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4062 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4063
4064 return offs;
4065 }
4066
4067 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4068 {
4069 Builder bld(ctx->program, ctx->block);
4070
4071 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4072 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4073 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4074 unsigned attr_stride = ctx->tcs_num_patches;
4075
4076 std::pair<Temp, unsigned> offs = instr
4077 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4078 : std::make_pair(Temp(), 0u);
4079
4080 if (const_base_offset)
4081 offs.second += const_base_offset * attr_stride;
4082
4083 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4084 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4085 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4086
4087 return offs;
4088 }
4089
4090 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4091 {
4092 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4093
4094 if (mask == 0)
4095 return false;
4096
4097 unsigned drv_loc = nir_intrinsic_base(instr);
4098 nir_src *off_src = nir_get_io_offset_src(instr);
4099
4100 if (!nir_src_is_const(*off_src)) {
4101 *indirect = true;
4102 return false;
4103 }
4104
4105 *indirect = false;
4106 uint64_t slot = per_vertex
4107 ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
4108 : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
4109 return (((uint64_t) 1) << slot) & mask;
4110 }
4111
4112 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4113 {
4114 unsigned write_mask = nir_intrinsic_write_mask(instr);
4115 unsigned component = nir_intrinsic_component(instr);
4116 unsigned idx = nir_intrinsic_base(instr) + component;
4117
4118 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4119 if (off_instr->type != nir_instr_type_load_const)
4120 return false;
4121
4122 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4123 idx += nir_src_as_uint(instr->src[1]) * 4u;
4124
4125 if (instr->src[0].ssa->bit_size == 64)
4126 write_mask = widen_mask(write_mask, 2);
4127
4128 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4129
4130 for (unsigned i = 0; i < 8; ++i) {
4131 if (write_mask & (1 << i)) {
4132 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4133 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4134 }
4135 idx++;
4136 }
4137
4138 return true;
4139 }
4140
4141 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4142 {
4143 /* Only TCS per-vertex inputs are supported by this function.
4144 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4145 */
4146 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4147 return false;
4148
4149 nir_src *off_src = nir_get_io_offset_src(instr);
4150 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4151 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4152 bool can_use_temps = nir_src_is_const(*off_src) &&
4153 vertex_index_instr->type == nir_instr_type_intrinsic &&
4154 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4155
4156 if (!can_use_temps)
4157 return false;
4158
4159 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4160 Temp *src = &ctx->inputs.temps[idx];
4161 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4162
4163 return true;
4164 }
4165
4166 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4167 {
4168 Builder bld(ctx->program, ctx->block);
4169
4170 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4171 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4172 bool indirect_write;
4173 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4174 if (temp_only_input && !indirect_write)
4175 return;
4176 }
4177
4178 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4179 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4180 unsigned write_mask = nir_intrinsic_write_mask(instr);
4181 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4182
4183 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4184 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4185 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4186 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4187 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, memory_sync_info(), true);
4188 } else {
4189 Temp lds_base;
4190
4191 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4192 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4193 unsigned itemsize = ctx->stage == vertex_geometry_gs
4194 ? ctx->program->info->vs.es_info.esgs_itemsize
4195 : ctx->program->info->tes.es_info.esgs_itemsize;
4196 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4197 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4198 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4199 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4200 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4201 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4202 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4203 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4204 */
4205 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4206 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4207 } else {
4208 unreachable("Invalid LS or ES stage");
4209 }
4210
4211 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4212 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4213 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4214 }
4215 }
4216
4217 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4218 {
4219 if (per_vertex)
4220 return false;
4221
4222 unsigned off = nir_intrinsic_base(instr) * 4u;
4223 return off == ctx->tcs_tess_lvl_out_loc ||
4224 off == ctx->tcs_tess_lvl_in_loc;
4225
4226 }
4227
4228 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4229 {
4230 uint64_t mask = per_vertex
4231 ? ctx->program->info->tcs.tes_inputs_read
4232 : ctx->program->info->tcs.tes_patch_inputs_read;
4233
4234 bool indirect_write = false;
4235 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4236 return indirect_write || output_read_by_tes;
4237 }
4238
4239 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4240 {
4241 uint64_t mask = per_vertex
4242 ? ctx->shader->info.outputs_read
4243 : ctx->shader->info.patch_outputs_read;
4244
4245 bool indirect_write = false;
4246 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4247 return indirect_write || output_read;
4248 }
4249
4250 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4251 {
4252 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4253 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4254
4255 Builder bld(ctx->program, ctx->block);
4256
4257 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4258 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4259 unsigned write_mask = nir_intrinsic_write_mask(instr);
4260
4261 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4262 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4263 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4264
4265 if (write_to_vmem) {
4266 std::pair<Temp, unsigned> vmem_offs = per_vertex
4267 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4268 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4269
4270 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4271 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4272 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, memory_sync_info(storage_vmem_output));
4273 }
4274
4275 if (write_to_lds) {
4276 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4277 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4278 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4279 }
4280 }
4281
4282 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4283 {
4284 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4285 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4286
4287 Builder bld(ctx->program, ctx->block);
4288
4289 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4290 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4291 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4292 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4293
4294 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4295 }
4296
4297 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4298 {
4299 if (ctx->stage == vertex_vs ||
4300 ctx->stage == tess_eval_vs ||
4301 ctx->stage == fragment_fs ||
4302 ctx->stage == ngg_vertex_gs ||
4303 ctx->stage == ngg_tess_eval_gs ||
4304 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4305 bool stored_to_temps = store_output_to_temps(ctx, instr);
4306 if (!stored_to_temps) {
4307 isel_err(instr->src[1].ssa->parent_instr, "Unimplemented output offset instruction");
4308 abort();
4309 }
4310 } else if (ctx->stage == vertex_es ||
4311 ctx->stage == vertex_ls ||
4312 ctx->stage == tess_eval_es ||
4313 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4314 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4315 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4316 visit_store_ls_or_es_output(ctx, instr);
4317 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4318 visit_store_tcs_output(ctx, instr, false);
4319 } else {
4320 unreachable("Shader stage not implemented");
4321 }
4322 }
4323
4324 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4325 {
4326 visit_load_tcs_output(ctx, instr, false);
4327 }
4328
4329 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4330 {
4331 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4332 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4333
4334 Builder bld(ctx->program, ctx->block);
4335
4336 if (dst.regClass() == v2b) {
4337 if (ctx->program->has_16bank_lds) {
4338 assert(ctx->options->chip_class <= GFX8);
4339 Builder::Result interp_p1 =
4340 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4341 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4342 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4343 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4344 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4345 bld.m0(prim_mask), interp_p1, idx, component);
4346 } else {
4347 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4348
4349 if (ctx->options->chip_class == GFX8)
4350 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4351
4352 Builder::Result interp_p1 =
4353 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4354 coord1, bld.m0(prim_mask), idx, component);
4355 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4356 interp_p1, idx, component);
4357 }
4358 } else {
4359 Builder::Result interp_p1 =
4360 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4361 bld.m0(prim_mask), idx, component);
4362
4363 if (ctx->program->has_16bank_lds)
4364 interp_p1.instr->operands[0].setLateKill(true);
4365
4366 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4367 bld.m0(prim_mask), interp_p1, idx, component);
4368 }
4369 }
4370
4371 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4372 {
4373 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4374 for (unsigned i = 0; i < num_components; i++)
4375 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4376 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4377 assert(num_components == 4);
4378 Builder bld(ctx->program, ctx->block);
4379 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4380 }
4381
4382 for (Operand& op : vec->operands)
4383 op = op.isUndefined() ? Operand(0u) : op;
4384
4385 vec->definitions[0] = Definition(dst);
4386 ctx->block->instructions.emplace_back(std::move(vec));
4387 emit_split_vector(ctx, dst, num_components);
4388 return;
4389 }
4390
4391 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4392 {
4393 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4394 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4395 unsigned idx = nir_intrinsic_base(instr);
4396 unsigned component = nir_intrinsic_component(instr);
4397 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4398
4399 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4400 if (offset) {
4401 assert(offset->u32 == 0);
4402 } else {
4403 /* the lower 15bit of the prim_mask contain the offset into LDS
4404 * while the upper bits contain the number of prims */
4405 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4406 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4407 Builder bld(ctx->program, ctx->block);
4408 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4409 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4410 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4411 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4412 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4413 }
4414
4415 if (instr->dest.ssa.num_components == 1) {
4416 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4417 } else {
4418 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4419 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4420 {
4421 Temp tmp = {ctx->program->allocateId(), v1};
4422 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4423 vec->operands[i] = Operand(tmp);
4424 }
4425 vec->definitions[0] = Definition(dst);
4426 ctx->block->instructions.emplace_back(std::move(vec));
4427 }
4428 }
4429
4430 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4431 unsigned offset, unsigned stride, unsigned channels)
4432 {
4433 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4434 if (vtx_info->chan_byte_size != 4 && channels == 3)
4435 return false;
4436 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4437 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4438 }
4439
4440 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4441 unsigned offset, unsigned stride, unsigned *channels)
4442 {
4443 if (!vtx_info->chan_byte_size) {
4444 *channels = vtx_info->num_channels;
4445 return vtx_info->chan_format;
4446 }
4447
4448 unsigned num_channels = *channels;
4449 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4450 unsigned new_channels = num_channels + 1;
4451 /* first, assume more loads is worse and try using a larger data format */
4452 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4453 new_channels++;
4454 /* don't make the attribute potentially out-of-bounds */
4455 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4456 new_channels = 5;
4457 }
4458
4459 if (new_channels == 5) {
4460 /* then try decreasing load size (at the cost of more loads) */
4461 new_channels = *channels;
4462 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4463 new_channels--;
4464 }
4465
4466 if (new_channels < *channels)
4467 *channels = new_channels;
4468 num_channels = new_channels;
4469 }
4470
4471 switch (vtx_info->chan_format) {
4472 case V_008F0C_BUF_DATA_FORMAT_8:
4473 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4474 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4475 case V_008F0C_BUF_DATA_FORMAT_16:
4476 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4477 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4478 case V_008F0C_BUF_DATA_FORMAT_32:
4479 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4480 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4481 }
4482 unreachable("shouldn't reach here");
4483 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4484 }
4485
4486 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4487 * so we may need to fix it up. */
4488 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4489 {
4490 Builder bld(ctx->program, ctx->block);
4491
4492 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4493 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4494
4495 /* For the integer-like cases, do a natural sign extension.
4496 *
4497 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4498 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4499 * exponent.
4500 */
4501 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4502 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4503
4504 /* Convert back to the right type. */
4505 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4506 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4507 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4508 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4509 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4510 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4511 }
4512
4513 return alpha;
4514 }
4515
4516 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4517 {
4518 Builder bld(ctx->program, ctx->block);
4519 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4520 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4521
4522 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4523 if (off_instr->type != nir_instr_type_load_const) {
4524 isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
4525 }
4526 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4527
4528 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4529
4530 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4531 unsigned component = nir_intrinsic_component(instr);
4532 unsigned bitsize = instr->dest.ssa.bit_size;
4533 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4534 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4535 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4536 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4537
4538 unsigned dfmt = attrib_format & 0xf;
4539 unsigned nfmt = (attrib_format >> 4) & 0x7;
4540 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4541
4542 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4543 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4544 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4545 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4546 if (post_shuffle)
4547 num_channels = MAX2(num_channels, 3);
4548
4549 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4550 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4551
4552 Temp index;
4553 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4554 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4555 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4556 if (divisor) {
4557 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4558 if (divisor != 1) {
4559 Temp divided = bld.tmp(v1);
4560 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4561 index = bld.vadd32(bld.def(v1), start_instance, divided);
4562 } else {
4563 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4564 }
4565 } else {
4566 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4567 }
4568 } else {
4569 index = bld.vadd32(bld.def(v1),
4570 get_arg(ctx, ctx->args->ac.base_vertex),
4571 get_arg(ctx, ctx->args->ac.vertex_id));
4572 }
4573
4574 Temp channels[num_channels];
4575 unsigned channel_start = 0;
4576 bool direct_fetch = false;
4577
4578 /* skip unused channels at the start */
4579 if (vtx_info->chan_byte_size && !post_shuffle) {
4580 channel_start = ffs(mask) - 1;
4581 for (unsigned i = 0; i < channel_start; i++)
4582 channels[i] = Temp(0, s1);
4583 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4584 num_channels = 3 - (ffs(mask) - 1);
4585 }
4586
4587 /* load channels */
4588 while (channel_start < num_channels) {
4589 unsigned fetch_component = num_channels - channel_start;
4590 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4591 bool expanded = false;
4592
4593 /* use MUBUF when possible to avoid possible alignment issues */
4594 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4595 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4596 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4597 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4598 vtx_info->chan_byte_size == 4;
4599 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4600 if (!use_mubuf) {
4601 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4602 } else {
4603 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4604 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4605 fetch_component = 4;
4606 expanded = true;
4607 }
4608 }
4609
4610 unsigned fetch_bytes = fetch_component * bitsize / 8;
4611
4612 Temp fetch_index = index;
4613 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4614 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4615 fetch_offset = fetch_offset % attrib_stride;
4616 }
4617
4618 Operand soffset(0u);
4619 if (fetch_offset >= 4096) {
4620 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4621 fetch_offset %= 4096;
4622 }
4623
4624 aco_opcode opcode;
4625 switch (fetch_bytes) {
4626 case 2:
4627 assert(!use_mubuf && bitsize == 16);
4628 opcode = aco_opcode::tbuffer_load_format_d16_x;
4629 break;
4630 case 4:
4631 if (bitsize == 16) {
4632 assert(!use_mubuf);
4633 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4634 } else {
4635 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4636 }
4637 break;
4638 case 6:
4639 assert(!use_mubuf && bitsize == 16);
4640 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4641 break;
4642 case 8:
4643 if (bitsize == 16) {
4644 assert(!use_mubuf);
4645 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4646 } else {
4647 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4648 }
4649 break;
4650 case 12:
4651 assert(ctx->options->chip_class >= GFX7 ||
4652 (!use_mubuf && ctx->options->chip_class == GFX6));
4653 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4654 break;
4655 case 16:
4656 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4657 break;
4658 default:
4659 unreachable("Unimplemented load_input vector size");
4660 }
4661
4662 Temp fetch_dst;
4663 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4664 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4665 num_channels <= 3)) {
4666 direct_fetch = true;
4667 fetch_dst = dst;
4668 } else {
4669 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4670 }
4671
4672 if (use_mubuf) {
4673 bld.mubuf(opcode,
4674 Definition(fetch_dst), list, fetch_index, soffset,
4675 fetch_offset, false, false, true).instr;
4676 } else {
4677 bld.mtbuf(opcode,
4678 Definition(fetch_dst), list, fetch_index, soffset,
4679 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4680 }
4681
4682 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4683
4684 if (fetch_component == 1) {
4685 channels[channel_start] = fetch_dst;
4686 } else {
4687 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4688 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4689 bitsize == 16 ? v2b : v1);
4690 }
4691
4692 channel_start += fetch_component;
4693 }
4694
4695 if (!direct_fetch) {
4696 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4697 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4698
4699 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4700 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4701 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4702
4703 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4704 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4705 unsigned num_temp = 0;
4706 for (unsigned i = 0; i < dst.size(); i++) {
4707 unsigned idx = i + component;
4708 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4709 Temp channel = channels[swizzle[idx]];
4710 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4711 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4712 vec->operands[i] = Operand(channel);
4713
4714 num_temp++;
4715 elems[i] = channel;
4716 } else if (is_float && idx == 3) {
4717 vec->operands[i] = Operand(0x3f800000u);
4718 } else if (!is_float && idx == 3) {
4719 vec->operands[i] = Operand(1u);
4720 } else {
4721 vec->operands[i] = Operand(0u);
4722 }
4723 }
4724 vec->definitions[0] = Definition(dst);
4725 ctx->block->instructions.emplace_back(std::move(vec));
4726 emit_split_vector(ctx, dst, dst.size());
4727
4728 if (num_temp == dst.size())
4729 ctx->allocated_vec.emplace(dst.id(), elems);
4730 }
4731 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4732 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4733 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4734 if (off_instr->type != nir_instr_type_load_const ||
4735 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4736 isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
4737 }
4738
4739 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4740 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4741 if (offset) {
4742 assert(offset->u32 == 0);
4743 } else {
4744 /* the lower 15bit of the prim_mask contain the offset into LDS
4745 * while the upper bits contain the number of prims */
4746 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4747 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4748 Builder bld(ctx->program, ctx->block);
4749 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4750 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4751 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4752 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4753 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4754 }
4755
4756 unsigned idx = nir_intrinsic_base(instr);
4757 unsigned component = nir_intrinsic_component(instr);
4758 unsigned vertex_id = 2; /* P0 */
4759
4760 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4761 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4762 switch (src0->u32) {
4763 case 0:
4764 vertex_id = 2; /* P0 */
4765 break;
4766 case 1:
4767 vertex_id = 0; /* P10 */
4768 break;
4769 case 2:
4770 vertex_id = 1; /* P20 */
4771 break;
4772 default:
4773 unreachable("invalid vertex index");
4774 }
4775 }
4776
4777 if (dst.size() == 1) {
4778 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4779 } else {
4780 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4781 for (unsigned i = 0; i < dst.size(); i++)
4782 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4783 vec->definitions[0] = Definition(dst);
4784 bld.insert(std::move(vec));
4785 }
4786
4787 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4788 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4789 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4790 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4791 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4792
4793 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4794 } else {
4795 unreachable("Shader stage not implemented");
4796 }
4797 }
4798
4799 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4800 {
4801 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4802
4803 Builder bld(ctx->program, ctx->block);
4804 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4805 Temp vertex_offset;
4806
4807 if (!nir_src_is_const(*vertex_src)) {
4808 /* better code could be created, but this case probably doesn't happen
4809 * much in practice */
4810 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4811 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4812 Temp elem;
4813
4814 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4815 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4816 if (i % 2u)
4817 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4818 } else {
4819 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4820 }
4821
4822 if (vertex_offset.id()) {
4823 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4824 Operand(i), indirect_vertex);
4825 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4826 } else {
4827 vertex_offset = elem;
4828 }
4829 }
4830
4831 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4832 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4833 } else {
4834 unsigned vertex = nir_src_as_uint(*vertex_src);
4835 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4836 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4837 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4838 Operand((vertex % 2u) * 16u), Operand(16u));
4839 else
4840 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4841 }
4842
4843 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4844 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4845 return offset_mul(ctx, offs, 4u);
4846 }
4847
4848 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4849 {
4850 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4851
4852 Builder bld(ctx->program, ctx->block);
4853 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4854 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4855
4856 if (ctx->stage == geometry_gs) {
4857 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4858 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4859 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4860 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4861 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4862 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4863 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4864 } else {
4865 unreachable("Unsupported GS stage.");
4866 }
4867 }
4868
4869 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4870 {
4871 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4872
4873 Builder bld(ctx->program, ctx->block);
4874 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4875
4876 if (load_input_from_temps(ctx, instr, dst))
4877 return;
4878
4879 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4880 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4881 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4882
4883 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4884 }
4885
4886 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4887 {
4888 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4889
4890 Builder bld(ctx->program, ctx->block);
4891
4892 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4893 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4894 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4895
4896 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4897 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4898
4899 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4900 }
4901
4902 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4903 {
4904 switch (ctx->shader->info.stage) {
4905 case MESA_SHADER_GEOMETRY:
4906 visit_load_gs_per_vertex_input(ctx, instr);
4907 break;
4908 case MESA_SHADER_TESS_CTRL:
4909 visit_load_tcs_per_vertex_input(ctx, instr);
4910 break;
4911 case MESA_SHADER_TESS_EVAL:
4912 visit_load_tes_per_vertex_input(ctx, instr);
4913 break;
4914 default:
4915 unreachable("Unimplemented shader stage");
4916 }
4917 }
4918
4919 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4920 {
4921 visit_load_tcs_output(ctx, instr, true);
4922 }
4923
4924 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4925 {
4926 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4927 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4928
4929 visit_store_tcs_output(ctx, instr, true);
4930 }
4931
4932 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4933 {
4934 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4935
4936 Builder bld(ctx->program, ctx->block);
4937 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4938
4939 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4940 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4941 Operand tes_w(0u);
4942
4943 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4944 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4945 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4946 tes_w = Operand(tmp);
4947 }
4948
4949 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4950 emit_split_vector(ctx, tess_coord, 3);
4951 }
4952
4953 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4954 {
4955 if (ctx->program->info->need_indirect_descriptor_sets) {
4956 Builder bld(ctx->program, ctx->block);
4957 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4958 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4959 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4960 }
4961
4962 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4963 }
4964
4965
4966 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4967 {
4968 Builder bld(ctx->program, ctx->block);
4969 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4970 if (!nir_dest_is_divergent(instr->dest))
4971 index = bld.as_uniform(index);
4972 unsigned desc_set = nir_intrinsic_desc_set(instr);
4973 unsigned binding = nir_intrinsic_binding(instr);
4974
4975 Temp desc_ptr;
4976 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4977 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4978 unsigned offset = layout->binding[binding].offset;
4979 unsigned stride;
4980 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4981 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4982 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4983 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4984 offset = pipeline_layout->push_constant_size + 16 * idx;
4985 stride = 16;
4986 } else {
4987 desc_ptr = load_desc_ptr(ctx, desc_set);
4988 stride = layout->binding[binding].size;
4989 }
4990
4991 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4992 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4993 if (stride != 1) {
4994 if (nir_const_index) {
4995 const_index = const_index * stride;
4996 } else if (index.type() == RegType::vgpr) {
4997 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4998 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4999 } else {
5000 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5001 }
5002 }
5003 if (offset) {
5004 if (nir_const_index) {
5005 const_index = const_index + offset;
5006 } else if (index.type() == RegType::vgpr) {
5007 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5008 } else {
5009 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5010 }
5011 }
5012
5013 if (nir_const_index && const_index == 0) {
5014 index = desc_ptr;
5015 } else if (index.type() == RegType::vgpr) {
5016 index = bld.vadd32(bld.def(v1),
5017 nir_const_index ? Operand(const_index) : Operand(index),
5018 Operand(desc_ptr));
5019 } else {
5020 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5021 nir_const_index ? Operand(const_index) : Operand(index),
5022 Operand(desc_ptr));
5023 }
5024
5025 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5026 }
5027
5028 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5029 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5030 bool glc=false, bool allow_smem=true, memory_sync_info sync=memory_sync_info())
5031 {
5032 Builder bld(ctx->program, ctx->block);
5033
5034 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5035 if (use_smem)
5036 offset = bld.as_uniform(offset);
5037
5038 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5039 info.glc = glc;
5040 info.sync = sync;
5041 info.align_mul = align_mul;
5042 info.align_offset = align_offset;
5043 if (use_smem)
5044 emit_smem_load(ctx, bld, &info);
5045 else
5046 emit_mubuf_load(ctx, bld, &info);
5047 }
5048
5049 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5050 {
5051 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5052 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5053
5054 Builder bld(ctx->program, ctx->block);
5055
5056 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5057 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5058 unsigned binding = nir_intrinsic_binding(idx_instr);
5059 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5060
5061 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5062 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5063 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5064 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5065 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5066 if (ctx->options->chip_class >= GFX10) {
5067 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5068 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5069 S_008F0C_RESOURCE_LEVEL(1);
5070 } else {
5071 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5072 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5073 }
5074 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5075 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5076 Operand(0xFFFFFFFFu),
5077 Operand(desc_type));
5078 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5079 rsrc, upper_dwords);
5080 } else {
5081 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5082 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5083 }
5084 unsigned size = instr->dest.ssa.bit_size / 8;
5085 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5086 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5087 }
5088
5089 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5090 {
5091 Builder bld(ctx->program, ctx->block);
5092 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5093 unsigned offset = nir_intrinsic_base(instr);
5094 unsigned count = instr->dest.ssa.num_components;
5095 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5096
5097 if (index_cv && instr->dest.ssa.bit_size == 32) {
5098 unsigned start = (offset + index_cv->u32) / 4u;
5099 start -= ctx->args->ac.base_inline_push_consts;
5100 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5101 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5102 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5103 for (unsigned i = 0; i < count; ++i) {
5104 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5105 vec->operands[i] = Operand{elems[i]};
5106 }
5107 vec->definitions[0] = Definition(dst);
5108 ctx->block->instructions.emplace_back(std::move(vec));
5109 ctx->allocated_vec.emplace(dst.id(), elems);
5110 return;
5111 }
5112 }
5113
5114 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5115 if (offset != 0) // TODO check if index != 0 as well
5116 index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5117 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5118 Temp vec = dst;
5119 bool trim = false;
5120 bool aligned = true;
5121
5122 if (instr->dest.ssa.bit_size == 8) {
5123 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5124 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5125 if (!aligned)
5126 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5127 } else if (instr->dest.ssa.bit_size == 16) {
5128 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5129 if (!aligned)
5130 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5131 }
5132
5133 aco_opcode op;
5134
5135 switch (vec.size()) {
5136 case 1:
5137 op = aco_opcode::s_load_dword;
5138 break;
5139 case 2:
5140 op = aco_opcode::s_load_dwordx2;
5141 break;
5142 case 3:
5143 vec = bld.tmp(s4);
5144 trim = true;
5145 case 4:
5146 op = aco_opcode::s_load_dwordx4;
5147 break;
5148 case 6:
5149 vec = bld.tmp(s8);
5150 trim = true;
5151 case 8:
5152 op = aco_opcode::s_load_dwordx8;
5153 break;
5154 default:
5155 unreachable("unimplemented or forbidden load_push_constant.");
5156 }
5157
5158 static_cast<SMEM_instruction*>(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true;
5159
5160 if (!aligned) {
5161 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5162 byte_align_scalar(ctx, vec, byte_offset, dst);
5163 return;
5164 }
5165
5166 if (trim) {
5167 emit_split_vector(ctx, vec, 4);
5168 RegClass rc = dst.size() == 3 ? s1 : s2;
5169 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5170 emit_extract_vector(ctx, vec, 0, rc),
5171 emit_extract_vector(ctx, vec, 1, rc),
5172 emit_extract_vector(ctx, vec, 2, rc));
5173
5174 }
5175 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5176 }
5177
5178 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5179 {
5180 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5181
5182 Builder bld(ctx->program, ctx->block);
5183
5184 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5185 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5186 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5187 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5188 if (ctx->options->chip_class >= GFX10) {
5189 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5190 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5191 S_008F0C_RESOURCE_LEVEL(1);
5192 } else {
5193 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5194 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5195 }
5196
5197 unsigned base = nir_intrinsic_base(instr);
5198 unsigned range = nir_intrinsic_range(instr);
5199
5200 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5201 if (base && offset.type() == RegType::sgpr)
5202 offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5203 else if (base && offset.type() == RegType::vgpr)
5204 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5205
5206 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5207 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5208 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5209 Operand(desc_type));
5210 unsigned size = instr->dest.ssa.bit_size / 8;
5211 // TODO: get alignment information for subdword constants
5212 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5213 }
5214
5215 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5216 {
5217 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5218 ctx->cf_info.exec_potentially_empty_discard = true;
5219
5220 ctx->program->needs_exact = true;
5221
5222 // TODO: optimize uniform conditions
5223 Builder bld(ctx->program, ctx->block);
5224 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5225 assert(src.regClass() == bld.lm);
5226 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5227 bld.pseudo(aco_opcode::p_discard_if, src);
5228 ctx->block->kind |= block_kind_uses_discard_if;
5229 return;
5230 }
5231
5232 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5233 {
5234 Builder bld(ctx->program, ctx->block);
5235
5236 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5237 ctx->cf_info.exec_potentially_empty_discard = true;
5238
5239 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5240 ctx->cf_info.parent_loop.has_divergent_continue;
5241
5242 if (ctx->block->loop_nest_depth &&
5243 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5244 /* we handle discards the same way as jump instructions */
5245 append_logical_end(ctx->block);
5246
5247 /* in loops, discard behaves like break */
5248 Block *linear_target = ctx->cf_info.parent_loop.exit;
5249 ctx->block->kind |= block_kind_discard;
5250
5251 if (!divergent) {
5252 /* uniform discard - loop ends here */
5253 assert(nir_instr_is_last(&instr->instr));
5254 ctx->block->kind |= block_kind_uniform;
5255 ctx->cf_info.has_branch = true;
5256 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5257 add_linear_edge(ctx->block->index, linear_target);
5258 return;
5259 }
5260
5261 /* we add a break right behind the discard() instructions */
5262 ctx->block->kind |= block_kind_break;
5263 unsigned idx = ctx->block->index;
5264
5265 ctx->cf_info.parent_loop.has_divergent_branch = true;
5266 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5267
5268 /* remove critical edges from linear CFG */
5269 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5270 Block* break_block = ctx->program->create_and_insert_block();
5271 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5272 break_block->kind |= block_kind_uniform;
5273 add_linear_edge(idx, break_block);
5274 add_linear_edge(break_block->index, linear_target);
5275 bld.reset(break_block);
5276 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5277
5278 Block* continue_block = ctx->program->create_and_insert_block();
5279 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5280 add_linear_edge(idx, continue_block);
5281 append_logical_start(continue_block);
5282 ctx->block = continue_block;
5283
5284 return;
5285 }
5286
5287 /* it can currently happen that NIR doesn't remove the unreachable code */
5288 if (!nir_instr_is_last(&instr->instr)) {
5289 ctx->program->needs_exact = true;
5290 /* save exec somewhere temporarily so that it doesn't get
5291 * overwritten before the discard from outer exec masks */
5292 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5293 bld.pseudo(aco_opcode::p_discard_if, cond);
5294 ctx->block->kind |= block_kind_uses_discard_if;
5295 return;
5296 }
5297
5298 /* This condition is incorrect for uniformly branched discards in a loop
5299 * predicated by a divergent condition, but the above code catches that case
5300 * and the discard would end up turning into a discard_if.
5301 * For example:
5302 * if (divergent) {
5303 * while (...) {
5304 * if (uniform) {
5305 * discard;
5306 * }
5307 * }
5308 * }
5309 */
5310 if (!ctx->cf_info.parent_if.is_divergent) {
5311 /* program just ends here */
5312 ctx->block->kind |= block_kind_uniform;
5313 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5314 0 /* enabled mask */, 9 /* dest */,
5315 false /* compressed */, true/* done */, true /* valid mask */);
5316 bld.sopp(aco_opcode::s_endpgm);
5317 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5318 } else {
5319 ctx->block->kind |= block_kind_discard;
5320 /* branch and linear edge is added by visit_if() */
5321 }
5322 }
5323
5324 enum aco_descriptor_type {
5325 ACO_DESC_IMAGE,
5326 ACO_DESC_FMASK,
5327 ACO_DESC_SAMPLER,
5328 ACO_DESC_BUFFER,
5329 ACO_DESC_PLANE_0,
5330 ACO_DESC_PLANE_1,
5331 ACO_DESC_PLANE_2,
5332 };
5333
5334 static bool
5335 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5336 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5337 return false;
5338 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5339 return dim == ac_image_cube ||
5340 dim == ac_image_1darray ||
5341 dim == ac_image_2darray ||
5342 dim == ac_image_2darraymsaa;
5343 }
5344
5345 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5346 enum aco_descriptor_type desc_type,
5347 const nir_tex_instr *tex_instr, bool image, bool write)
5348 {
5349 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5350 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5351 if (it != ctx->tex_desc.end())
5352 return it->second;
5353 */
5354 Temp index = Temp();
5355 bool index_set = false;
5356 unsigned constant_index = 0;
5357 unsigned descriptor_set;
5358 unsigned base_index;
5359 Builder bld(ctx->program, ctx->block);
5360
5361 if (!deref_instr) {
5362 assert(tex_instr && !image);
5363 descriptor_set = 0;
5364 base_index = tex_instr->sampler_index;
5365 } else {
5366 while(deref_instr->deref_type != nir_deref_type_var) {
5367 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5368 if (!array_size)
5369 array_size = 1;
5370
5371 assert(deref_instr->deref_type == nir_deref_type_array);
5372 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5373 if (const_value) {
5374 constant_index += array_size * const_value->u32;
5375 } else {
5376 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5377 if (indirect.type() == RegType::vgpr)
5378 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5379
5380 if (array_size != 1)
5381 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5382
5383 if (!index_set) {
5384 index = indirect;
5385 index_set = true;
5386 } else {
5387 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5388 }
5389 }
5390
5391 deref_instr = nir_src_as_deref(deref_instr->parent);
5392 }
5393 descriptor_set = deref_instr->var->data.descriptor_set;
5394 base_index = deref_instr->var->data.binding;
5395 }
5396
5397 Temp list = load_desc_ptr(ctx, descriptor_set);
5398 list = convert_pointer_to_64_bit(ctx, list);
5399
5400 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5401 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5402 unsigned offset = binding->offset;
5403 unsigned stride = binding->size;
5404 aco_opcode opcode;
5405 RegClass type;
5406
5407 assert(base_index < layout->binding_count);
5408
5409 switch (desc_type) {
5410 case ACO_DESC_IMAGE:
5411 type = s8;
5412 opcode = aco_opcode::s_load_dwordx8;
5413 break;
5414 case ACO_DESC_FMASK:
5415 type = s8;
5416 opcode = aco_opcode::s_load_dwordx8;
5417 offset += 32;
5418 break;
5419 case ACO_DESC_SAMPLER:
5420 type = s4;
5421 opcode = aco_opcode::s_load_dwordx4;
5422 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5423 offset += radv_combined_image_descriptor_sampler_offset(binding);
5424 break;
5425 case ACO_DESC_BUFFER:
5426 type = s4;
5427 opcode = aco_opcode::s_load_dwordx4;
5428 break;
5429 case ACO_DESC_PLANE_0:
5430 case ACO_DESC_PLANE_1:
5431 type = s8;
5432 opcode = aco_opcode::s_load_dwordx8;
5433 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5434 break;
5435 case ACO_DESC_PLANE_2:
5436 type = s4;
5437 opcode = aco_opcode::s_load_dwordx4;
5438 offset += 64;
5439 break;
5440 default:
5441 unreachable("invalid desc_type\n");
5442 }
5443
5444 offset += constant_index * stride;
5445
5446 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5447 (!index_set || binding->immutable_samplers_equal)) {
5448 if (binding->immutable_samplers_equal)
5449 constant_index = 0;
5450
5451 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5452 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5453 Operand(samplers[constant_index * 4 + 0]),
5454 Operand(samplers[constant_index * 4 + 1]),
5455 Operand(samplers[constant_index * 4 + 2]),
5456 Operand(samplers[constant_index * 4 + 3]));
5457 }
5458
5459 Operand off;
5460 if (!index_set) {
5461 off = bld.copy(bld.def(s1), Operand(offset));
5462 } else {
5463 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5464 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5465 }
5466
5467 Temp res = bld.smem(opcode, bld.def(type), list, off);
5468
5469 if (desc_type == ACO_DESC_PLANE_2) {
5470 Temp components[8];
5471 for (unsigned i = 0; i < 8; i++)
5472 components[i] = bld.tmp(s1);
5473 bld.pseudo(aco_opcode::p_split_vector,
5474 Definition(components[0]),
5475 Definition(components[1]),
5476 Definition(components[2]),
5477 Definition(components[3]),
5478 res);
5479
5480 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5481 bld.pseudo(aco_opcode::p_split_vector,
5482 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5483 Definition(components[4]),
5484 Definition(components[5]),
5485 Definition(components[6]),
5486 Definition(components[7]),
5487 desc2);
5488
5489 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5490 components[0], components[1], components[2], components[3],
5491 components[4], components[5], components[6], components[7]);
5492 }
5493
5494 return res;
5495 }
5496
5497 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5498 {
5499 switch (dim) {
5500 case GLSL_SAMPLER_DIM_BUF:
5501 return 1;
5502 case GLSL_SAMPLER_DIM_1D:
5503 return array ? 2 : 1;
5504 case GLSL_SAMPLER_DIM_2D:
5505 return array ? 3 : 2;
5506 case GLSL_SAMPLER_DIM_MS:
5507 return array ? 4 : 3;
5508 case GLSL_SAMPLER_DIM_3D:
5509 case GLSL_SAMPLER_DIM_CUBE:
5510 return 3;
5511 case GLSL_SAMPLER_DIM_RECT:
5512 case GLSL_SAMPLER_DIM_SUBPASS:
5513 return 2;
5514 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5515 return 3;
5516 default:
5517 break;
5518 }
5519 return 0;
5520 }
5521
5522
5523 /* Adjust the sample index according to FMASK.
5524 *
5525 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5526 * which is the identity mapping. Each nibble says which physical sample
5527 * should be fetched to get that sample.
5528 *
5529 * For example, 0x11111100 means there are only 2 samples stored and
5530 * the second sample covers 3/4 of the pixel. When reading samples 0
5531 * and 1, return physical sample 0 (determined by the first two 0s
5532 * in FMASK), otherwise return physical sample 1.
5533 *
5534 * The sample index should be adjusted as follows:
5535 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5536 */
5537 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5538 {
5539 Builder bld(ctx->program, ctx->block);
5540 Temp fmask = bld.tmp(v1);
5541 unsigned dim = ctx->options->chip_class >= GFX10
5542 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5543 : 0;
5544
5545 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5546 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5547 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5548 load->operands[0] = Operand(fmask_desc_ptr);
5549 load->operands[1] = Operand(s4); /* no sampler */
5550 load->operands[2] = Operand(coord);
5551 load->definitions[0] = Definition(fmask);
5552 load->glc = false;
5553 load->dlc = false;
5554 load->dmask = 0x1;
5555 load->unrm = true;
5556 load->da = da;
5557 load->dim = dim;
5558 ctx->block->instructions.emplace_back(std::move(load));
5559
5560 Operand sample_index4;
5561 if (sample_index.isConstant()) {
5562 if (sample_index.constantValue() < 16) {
5563 sample_index4 = Operand(sample_index.constantValue() << 2);
5564 } else {
5565 sample_index4 = Operand(0u);
5566 }
5567 } else if (sample_index.regClass() == s1) {
5568 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5569 } else {
5570 assert(sample_index.regClass() == v1);
5571 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5572 }
5573
5574 Temp final_sample;
5575 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5576 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5577 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5578 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5579 else
5580 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5581
5582 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5583 * resource descriptor is 0 (invalid),
5584 */
5585 Temp compare = bld.tmp(bld.lm);
5586 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5587 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5588
5589 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5590
5591 /* Replace the MSAA sample index. */
5592 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5593 }
5594
5595 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5596 {
5597
5598 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5599 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5600 bool is_array = glsl_sampler_type_is_array(type);
5601 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5602 assert(!add_frag_pos && "Input attachments should be lowered.");
5603 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5604 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5605 int count = image_type_to_components_count(dim, is_array);
5606 std::vector<Temp> coords(count);
5607 Builder bld(ctx->program, ctx->block);
5608
5609 if (is_ms) {
5610 count--;
5611 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5612 /* get sample index */
5613 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5614 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5615 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5616 std::vector<Temp> fmask_load_address;
5617 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5618 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5619
5620 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5621 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5622 } else {
5623 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5624 }
5625 }
5626
5627 if (gfx9_1d) {
5628 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5629 coords.resize(coords.size() + 1);
5630 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5631 if (is_array)
5632 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5633 } else {
5634 for (int i = 0; i < count; i++)
5635 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5636 }
5637
5638 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5639 instr->intrinsic == nir_intrinsic_image_deref_store) {
5640 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5641 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5642
5643 if (!level_zero)
5644 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5645 }
5646
5647 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5648 for (unsigned i = 0; i < coords.size(); i++)
5649 vec->operands[i] = Operand(coords[i]);
5650 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5651 vec->definitions[0] = Definition(res);
5652 ctx->block->instructions.emplace_back(std::move(vec));
5653 return res;
5654 }
5655
5656
5657 memory_sync_info get_memory_sync_info(nir_intrinsic_instr *instr, storage_class storage, unsigned semantics)
5658 {
5659 /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */
5660 if (semantics & semantic_atomicrmw)
5661 return memory_sync_info(storage, semantics);
5662
5663 unsigned access = nir_intrinsic_access(instr);
5664
5665 if (access & ACCESS_VOLATILE)
5666 semantics |= semantic_volatile;
5667 if (access & ACCESS_CAN_REORDER)
5668 semantics |= semantic_can_reorder | semantic_private;
5669
5670 return memory_sync_info(storage, semantics);
5671 }
5672
5673 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5674 {
5675 Builder bld(ctx->program, ctx->block);
5676 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5677 const struct glsl_type *type = glsl_without_array(var->type);
5678 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5679 bool is_array = glsl_sampler_type_is_array(type);
5680 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5681
5682 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5683 unsigned access = var->data.access | nir_intrinsic_access(instr);
5684
5685 if (dim == GLSL_SAMPLER_DIM_BUF) {
5686 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5687 unsigned num_channels = util_last_bit(mask);
5688 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5689 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5690
5691 aco_opcode opcode;
5692 switch (num_channels) {
5693 case 1:
5694 opcode = aco_opcode::buffer_load_format_x;
5695 break;
5696 case 2:
5697 opcode = aco_opcode::buffer_load_format_xy;
5698 break;
5699 case 3:
5700 opcode = aco_opcode::buffer_load_format_xyz;
5701 break;
5702 case 4:
5703 opcode = aco_opcode::buffer_load_format_xyzw;
5704 break;
5705 default:
5706 unreachable(">4 channel buffer image load");
5707 }
5708 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5709 load->operands[0] = Operand(rsrc);
5710 load->operands[1] = Operand(vindex);
5711 load->operands[2] = Operand((uint32_t) 0);
5712 Temp tmp;
5713 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5714 tmp = dst;
5715 else
5716 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5717 load->definitions[0] = Definition(tmp);
5718 load->idxen = true;
5719 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5720 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5721 load->sync = sync;
5722 ctx->block->instructions.emplace_back(std::move(load));
5723
5724 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5725 return;
5726 }
5727
5728 Temp coords = get_image_coords(ctx, instr, type);
5729 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5730
5731 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5732 unsigned num_components = util_bitcount(dmask);
5733 Temp tmp;
5734 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5735 tmp = dst;
5736 else
5737 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5738
5739 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5740 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5741
5742 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5743 load->operands[0] = Operand(resource);
5744 load->operands[1] = Operand(s4); /* no sampler */
5745 load->operands[2] = Operand(coords);
5746 load->definitions[0] = Definition(tmp);
5747 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5748 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5749 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5750 load->dmask = dmask;
5751 load->unrm = true;
5752 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5753 load->sync = sync;
5754 ctx->block->instructions.emplace_back(std::move(load));
5755
5756 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5757 return;
5758 }
5759
5760 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5761 {
5762 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5763 const struct glsl_type *type = glsl_without_array(var->type);
5764 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5765 bool is_array = glsl_sampler_type_is_array(type);
5766 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5767
5768 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5769 unsigned access = var->data.access | nir_intrinsic_access(instr);
5770 bool glc = ctx->options->chip_class == GFX6 || access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5771
5772 if (dim == GLSL_SAMPLER_DIM_BUF) {
5773 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5774 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5775 aco_opcode opcode;
5776 switch (data.size()) {
5777 case 1:
5778 opcode = aco_opcode::buffer_store_format_x;
5779 break;
5780 case 2:
5781 opcode = aco_opcode::buffer_store_format_xy;
5782 break;
5783 case 3:
5784 opcode = aco_opcode::buffer_store_format_xyz;
5785 break;
5786 case 4:
5787 opcode = aco_opcode::buffer_store_format_xyzw;
5788 break;
5789 default:
5790 unreachable(">4 channel buffer image store");
5791 }
5792 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5793 store->operands[0] = Operand(rsrc);
5794 store->operands[1] = Operand(vindex);
5795 store->operands[2] = Operand((uint32_t) 0);
5796 store->operands[3] = Operand(data);
5797 store->idxen = true;
5798 store->glc = glc;
5799 store->dlc = false;
5800 store->disable_wqm = true;
5801 store->sync = sync;
5802 ctx->program->needs_exact = true;
5803 ctx->block->instructions.emplace_back(std::move(store));
5804 return;
5805 }
5806
5807 assert(data.type() == RegType::vgpr);
5808 Temp coords = get_image_coords(ctx, instr, type);
5809 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5810
5811 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5812 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5813
5814 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5815 store->operands[0] = Operand(resource);
5816 store->operands[1] = Operand(data);
5817 store->operands[2] = Operand(coords);
5818 store->glc = glc;
5819 store->dlc = false;
5820 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5821 store->dmask = (1 << data.size()) - 1;
5822 store->unrm = true;
5823 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5824 store->disable_wqm = true;
5825 store->sync = sync;
5826 ctx->program->needs_exact = true;
5827 ctx->block->instructions.emplace_back(std::move(store));
5828 return;
5829 }
5830
5831 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5832 {
5833 /* return the previous value if dest is ever used */
5834 bool return_previous = false;
5835 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5836 return_previous = true;
5837 break;
5838 }
5839 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5840 return_previous = true;
5841 break;
5842 }
5843
5844 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5845 const struct glsl_type *type = glsl_without_array(var->type);
5846 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5847 bool is_array = glsl_sampler_type_is_array(type);
5848 Builder bld(ctx->program, ctx->block);
5849
5850 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5851 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5852
5853 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5854 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5855
5856 aco_opcode buf_op, image_op;
5857 switch (instr->intrinsic) {
5858 case nir_intrinsic_image_deref_atomic_add:
5859 buf_op = aco_opcode::buffer_atomic_add;
5860 image_op = aco_opcode::image_atomic_add;
5861 break;
5862 case nir_intrinsic_image_deref_atomic_umin:
5863 buf_op = aco_opcode::buffer_atomic_umin;
5864 image_op = aco_opcode::image_atomic_umin;
5865 break;
5866 case nir_intrinsic_image_deref_atomic_imin:
5867 buf_op = aco_opcode::buffer_atomic_smin;
5868 image_op = aco_opcode::image_atomic_smin;
5869 break;
5870 case nir_intrinsic_image_deref_atomic_umax:
5871 buf_op = aco_opcode::buffer_atomic_umax;
5872 image_op = aco_opcode::image_atomic_umax;
5873 break;
5874 case nir_intrinsic_image_deref_atomic_imax:
5875 buf_op = aco_opcode::buffer_atomic_smax;
5876 image_op = aco_opcode::image_atomic_smax;
5877 break;
5878 case nir_intrinsic_image_deref_atomic_and:
5879 buf_op = aco_opcode::buffer_atomic_and;
5880 image_op = aco_opcode::image_atomic_and;
5881 break;
5882 case nir_intrinsic_image_deref_atomic_or:
5883 buf_op = aco_opcode::buffer_atomic_or;
5884 image_op = aco_opcode::image_atomic_or;
5885 break;
5886 case nir_intrinsic_image_deref_atomic_xor:
5887 buf_op = aco_opcode::buffer_atomic_xor;
5888 image_op = aco_opcode::image_atomic_xor;
5889 break;
5890 case nir_intrinsic_image_deref_atomic_exchange:
5891 buf_op = aco_opcode::buffer_atomic_swap;
5892 image_op = aco_opcode::image_atomic_swap;
5893 break;
5894 case nir_intrinsic_image_deref_atomic_comp_swap:
5895 buf_op = aco_opcode::buffer_atomic_cmpswap;
5896 image_op = aco_opcode::image_atomic_cmpswap;
5897 break;
5898 default:
5899 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5900 }
5901
5902 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5903 memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw);
5904
5905 if (dim == GLSL_SAMPLER_DIM_BUF) {
5906 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5907 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5908 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5909 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5910 mubuf->operands[0] = Operand(resource);
5911 mubuf->operands[1] = Operand(vindex);
5912 mubuf->operands[2] = Operand((uint32_t)0);
5913 mubuf->operands[3] = Operand(data);
5914 if (return_previous)
5915 mubuf->definitions[0] = Definition(dst);
5916 mubuf->offset = 0;
5917 mubuf->idxen = true;
5918 mubuf->glc = return_previous;
5919 mubuf->dlc = false; /* Not needed for atomics */
5920 mubuf->disable_wqm = true;
5921 mubuf->sync = sync;
5922 ctx->program->needs_exact = true;
5923 ctx->block->instructions.emplace_back(std::move(mubuf));
5924 return;
5925 }
5926
5927 Temp coords = get_image_coords(ctx, instr, type);
5928 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5929 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5930 mimg->operands[0] = Operand(resource);
5931 mimg->operands[1] = Operand(data);
5932 mimg->operands[2] = Operand(coords);
5933 if (return_previous)
5934 mimg->definitions[0] = Definition(dst);
5935 mimg->glc = return_previous;
5936 mimg->dlc = false; /* Not needed for atomics */
5937 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5938 mimg->dmask = (1 << data.size()) - 1;
5939 mimg->unrm = true;
5940 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5941 mimg->disable_wqm = true;
5942 mimg->sync = sync;
5943 ctx->program->needs_exact = true;
5944 ctx->block->instructions.emplace_back(std::move(mimg));
5945 return;
5946 }
5947
5948 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5949 {
5950 if (in_elements && ctx->options->chip_class == GFX8) {
5951 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5952 Builder bld(ctx->program, ctx->block);
5953
5954 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5955
5956 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5957 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5958
5959 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5960 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5961
5962 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5963 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5964
5965 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5966 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5967 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5968 if (dst.type() == RegType::vgpr)
5969 bld.copy(Definition(dst), shr_dst);
5970
5971 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5972 } else {
5973 emit_extract_vector(ctx, desc, 2, dst);
5974 }
5975 }
5976
5977 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5978 {
5979 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5980 const struct glsl_type *type = glsl_without_array(var->type);
5981 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5982 bool is_array = glsl_sampler_type_is_array(type);
5983 Builder bld(ctx->program, ctx->block);
5984
5985 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5986 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5987 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5988 }
5989
5990 /* LOD */
5991 assert(nir_src_as_uint(instr->src[1]) == 0);
5992 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5993
5994 /* Resource */
5995 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5996
5997 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5998
5999 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6000 mimg->operands[0] = Operand(resource);
6001 mimg->operands[1] = Operand(s4); /* no sampler */
6002 mimg->operands[2] = Operand(lod);
6003 uint8_t& dmask = mimg->dmask;
6004 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6005 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6006 mimg->da = glsl_sampler_type_is_array(type);
6007 Definition& def = mimg->definitions[0];
6008 ctx->block->instructions.emplace_back(std::move(mimg));
6009
6010 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6011 glsl_sampler_type_is_array(type)) {
6012
6013 assert(instr->dest.ssa.num_components == 3);
6014 Temp tmp = {ctx->program->allocateId(), v3};
6015 def = Definition(tmp);
6016 emit_split_vector(ctx, tmp, 3);
6017
6018 /* divide 3rd value by 6 by multiplying with magic number */
6019 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6020 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6021
6022 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6023 emit_extract_vector(ctx, tmp, 0, v1),
6024 emit_extract_vector(ctx, tmp, 1, v1),
6025 by_6);
6026
6027 } else if (ctx->options->chip_class == GFX9 &&
6028 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6029 glsl_sampler_type_is_array(type)) {
6030 assert(instr->dest.ssa.num_components == 2);
6031 def = Definition(dst);
6032 dmask = 0x5;
6033 } else {
6034 def = Definition(dst);
6035 }
6036
6037 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6038 }
6039
6040 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6041 {
6042 Builder bld(ctx->program, ctx->block);
6043 unsigned num_components = instr->num_components;
6044
6045 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6046 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6047 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6048
6049 unsigned access = nir_intrinsic_access(instr);
6050 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6051 unsigned size = instr->dest.ssa.bit_size / 8;
6052
6053 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6054 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6055 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6056 */
6057 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6058 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6059
6060 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6061 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem,
6062 get_memory_sync_info(instr, storage_buffer, 0));
6063 }
6064
6065 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6066 {
6067 Builder bld(ctx->program, ctx->block);
6068 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6069 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6070 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6071 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6072
6073 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6074 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6075
6076 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6077 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6078 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6079 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6080 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6081 */
6082 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6083
6084 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6085 ctx->options->chip_class >= GFX8 &&
6086 ctx->options->chip_class < GFX10_3 &&
6087 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6088 allow_smem;
6089 if (smem)
6090 offset = bld.as_uniform(offset);
6091 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6092
6093 unsigned write_count = 0;
6094 Temp write_datas[32];
6095 unsigned offsets[32];
6096 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6097 data, writemask, 16, &write_count, write_datas, offsets);
6098
6099 for (unsigned i = 0; i < write_count; i++) {
6100 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6101 if (smem && ctx->stage == fragment_fs)
6102 op = aco_opcode::p_fs_buffer_store_smem;
6103
6104 if (smem) {
6105 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6106 store->operands[0] = Operand(rsrc);
6107 if (offsets[i]) {
6108 Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6109 offset, Operand(offsets[i]));
6110 store->operands[1] = Operand(off);
6111 } else {
6112 store->operands[1] = Operand(offset);
6113 }
6114 if (op != aco_opcode::p_fs_buffer_store_smem)
6115 store->operands[1].setFixed(m0);
6116 store->operands[2] = Operand(write_datas[i]);
6117 store->glc = glc;
6118 store->dlc = false;
6119 store->disable_wqm = true;
6120 store->sync = sync;
6121 ctx->block->instructions.emplace_back(std::move(store));
6122 ctx->program->wb_smem_l1_on_end = true;
6123 if (op == aco_opcode::p_fs_buffer_store_smem) {
6124 ctx->block->kind |= block_kind_needs_lowering;
6125 ctx->program->needs_exact = true;
6126 }
6127 } else {
6128 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6129 store->operands[0] = Operand(rsrc);
6130 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6131 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6132 store->operands[3] = Operand(write_datas[i]);
6133 store->offset = offsets[i];
6134 store->offen = (offset.type() == RegType::vgpr);
6135 store->glc = glc;
6136 store->dlc = false;
6137 store->disable_wqm = true;
6138 store->sync = sync;
6139 ctx->program->needs_exact = true;
6140 ctx->block->instructions.emplace_back(std::move(store));
6141 }
6142 }
6143 }
6144
6145 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6146 {
6147 /* return the previous value if dest is ever used */
6148 bool return_previous = false;
6149 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6150 return_previous = true;
6151 break;
6152 }
6153 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6154 return_previous = true;
6155 break;
6156 }
6157
6158 Builder bld(ctx->program, ctx->block);
6159 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6160
6161 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6162 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6163 get_ssa_temp(ctx, instr->src[3].ssa), data);
6164
6165 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6166 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6167 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6168
6169 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6170
6171 aco_opcode op32, op64;
6172 switch (instr->intrinsic) {
6173 case nir_intrinsic_ssbo_atomic_add:
6174 op32 = aco_opcode::buffer_atomic_add;
6175 op64 = aco_opcode::buffer_atomic_add_x2;
6176 break;
6177 case nir_intrinsic_ssbo_atomic_imin:
6178 op32 = aco_opcode::buffer_atomic_smin;
6179 op64 = aco_opcode::buffer_atomic_smin_x2;
6180 break;
6181 case nir_intrinsic_ssbo_atomic_umin:
6182 op32 = aco_opcode::buffer_atomic_umin;
6183 op64 = aco_opcode::buffer_atomic_umin_x2;
6184 break;
6185 case nir_intrinsic_ssbo_atomic_imax:
6186 op32 = aco_opcode::buffer_atomic_smax;
6187 op64 = aco_opcode::buffer_atomic_smax_x2;
6188 break;
6189 case nir_intrinsic_ssbo_atomic_umax:
6190 op32 = aco_opcode::buffer_atomic_umax;
6191 op64 = aco_opcode::buffer_atomic_umax_x2;
6192 break;
6193 case nir_intrinsic_ssbo_atomic_and:
6194 op32 = aco_opcode::buffer_atomic_and;
6195 op64 = aco_opcode::buffer_atomic_and_x2;
6196 break;
6197 case nir_intrinsic_ssbo_atomic_or:
6198 op32 = aco_opcode::buffer_atomic_or;
6199 op64 = aco_opcode::buffer_atomic_or_x2;
6200 break;
6201 case nir_intrinsic_ssbo_atomic_xor:
6202 op32 = aco_opcode::buffer_atomic_xor;
6203 op64 = aco_opcode::buffer_atomic_xor_x2;
6204 break;
6205 case nir_intrinsic_ssbo_atomic_exchange:
6206 op32 = aco_opcode::buffer_atomic_swap;
6207 op64 = aco_opcode::buffer_atomic_swap_x2;
6208 break;
6209 case nir_intrinsic_ssbo_atomic_comp_swap:
6210 op32 = aco_opcode::buffer_atomic_cmpswap;
6211 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6212 break;
6213 default:
6214 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6215 }
6216 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6217 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6218 mubuf->operands[0] = Operand(rsrc);
6219 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6220 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6221 mubuf->operands[3] = Operand(data);
6222 if (return_previous)
6223 mubuf->definitions[0] = Definition(dst);
6224 mubuf->offset = 0;
6225 mubuf->offen = (offset.type() == RegType::vgpr);
6226 mubuf->glc = return_previous;
6227 mubuf->dlc = false; /* Not needed for atomics */
6228 mubuf->disable_wqm = true;
6229 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6230 ctx->program->needs_exact = true;
6231 ctx->block->instructions.emplace_back(std::move(mubuf));
6232 }
6233
6234 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6235
6236 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6237 Builder bld(ctx->program, ctx->block);
6238 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6239 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6240 }
6241
6242 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6243 {
6244 Builder bld(ctx->program, ctx->block);
6245 unsigned num_components = instr->num_components;
6246 unsigned component_size = instr->dest.ssa.bit_size / 8;
6247
6248 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6249 get_ssa_temp(ctx, &instr->dest.ssa),
6250 num_components, component_size};
6251 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6252 info.align_mul = nir_intrinsic_align_mul(instr);
6253 info.align_offset = nir_intrinsic_align_offset(instr);
6254 info.sync = get_memory_sync_info(instr, storage_buffer, 0);
6255 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6256 * it's safe to use SMEM */
6257 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6258 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6259 emit_global_load(ctx, bld, &info);
6260 } else {
6261 info.offset = Operand(bld.as_uniform(info.offset));
6262 emit_smem_load(ctx, bld, &info);
6263 }
6264 }
6265
6266 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6267 {
6268 Builder bld(ctx->program, ctx->block);
6269 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6270 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6271
6272 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6273 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6274 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6275 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6276
6277 if (ctx->options->chip_class >= GFX7)
6278 addr = as_vgpr(ctx, addr);
6279
6280 unsigned write_count = 0;
6281 Temp write_datas[32];
6282 unsigned offsets[32];
6283 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6284 16, &write_count, write_datas, offsets);
6285
6286 for (unsigned i = 0; i < write_count; i++) {
6287 if (ctx->options->chip_class >= GFX7) {
6288 unsigned offset = offsets[i];
6289 Temp store_addr = addr;
6290 if (offset > 0 && ctx->options->chip_class < GFX9) {
6291 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6292 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6293 Temp carry = bld.tmp(bld.lm);
6294 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6295
6296 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6297 Operand(offset), addr0);
6298 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6299 Operand(0u), addr1,
6300 carry).def(1).setHint(vcc);
6301
6302 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6303
6304 offset = 0;
6305 }
6306
6307 bool global = ctx->options->chip_class >= GFX9;
6308 aco_opcode op;
6309 switch (write_datas[i].bytes()) {
6310 case 1:
6311 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6312 break;
6313 case 2:
6314 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6315 break;
6316 case 4:
6317 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6318 break;
6319 case 8:
6320 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6321 break;
6322 case 12:
6323 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6324 break;
6325 case 16:
6326 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6327 break;
6328 default:
6329 unreachable("store_global not implemented for this size.");
6330 }
6331
6332 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6333 flat->operands[0] = Operand(store_addr);
6334 flat->operands[1] = Operand(s1);
6335 flat->operands[2] = Operand(write_datas[i]);
6336 flat->glc = glc;
6337 flat->dlc = false;
6338 flat->offset = offset;
6339 flat->disable_wqm = true;
6340 flat->sync = sync;
6341 ctx->program->needs_exact = true;
6342 ctx->block->instructions.emplace_back(std::move(flat));
6343 } else {
6344 assert(ctx->options->chip_class == GFX6);
6345
6346 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6347
6348 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6349
6350 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6351 mubuf->operands[0] = Operand(rsrc);
6352 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6353 mubuf->operands[2] = Operand(0u);
6354 mubuf->operands[3] = Operand(write_datas[i]);
6355 mubuf->glc = glc;
6356 mubuf->dlc = false;
6357 mubuf->offset = offsets[i];
6358 mubuf->addr64 = addr.type() == RegType::vgpr;
6359 mubuf->disable_wqm = true;
6360 mubuf->sync = sync;
6361 ctx->program->needs_exact = true;
6362 ctx->block->instructions.emplace_back(std::move(mubuf));
6363 }
6364 }
6365 }
6366
6367 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6368 {
6369 /* return the previous value if dest is ever used */
6370 bool return_previous = false;
6371 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6372 return_previous = true;
6373 break;
6374 }
6375 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6376 return_previous = true;
6377 break;
6378 }
6379
6380 Builder bld(ctx->program, ctx->block);
6381 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6382 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6383
6384 if (ctx->options->chip_class >= GFX7)
6385 addr = as_vgpr(ctx, addr);
6386
6387 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6388 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6389 get_ssa_temp(ctx, instr->src[2].ssa), data);
6390
6391 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6392
6393 aco_opcode op32, op64;
6394
6395 if (ctx->options->chip_class >= GFX7) {
6396 bool global = ctx->options->chip_class >= GFX9;
6397 switch (instr->intrinsic) {
6398 case nir_intrinsic_global_atomic_add:
6399 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6400 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6401 break;
6402 case nir_intrinsic_global_atomic_imin:
6403 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6404 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6405 break;
6406 case nir_intrinsic_global_atomic_umin:
6407 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6408 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6409 break;
6410 case nir_intrinsic_global_atomic_imax:
6411 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6412 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6413 break;
6414 case nir_intrinsic_global_atomic_umax:
6415 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6416 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6417 break;
6418 case nir_intrinsic_global_atomic_and:
6419 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6420 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6421 break;
6422 case nir_intrinsic_global_atomic_or:
6423 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6424 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6425 break;
6426 case nir_intrinsic_global_atomic_xor:
6427 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6428 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6429 break;
6430 case nir_intrinsic_global_atomic_exchange:
6431 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6432 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6433 break;
6434 case nir_intrinsic_global_atomic_comp_swap:
6435 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6436 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6437 break;
6438 default:
6439 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6440 }
6441
6442 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6443 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6444 flat->operands[0] = Operand(addr);
6445 flat->operands[1] = Operand(s1);
6446 flat->operands[2] = Operand(data);
6447 if (return_previous)
6448 flat->definitions[0] = Definition(dst);
6449 flat->glc = return_previous;
6450 flat->dlc = false; /* Not needed for atomics */
6451 flat->offset = 0;
6452 flat->disable_wqm = true;
6453 flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6454 ctx->program->needs_exact = true;
6455 ctx->block->instructions.emplace_back(std::move(flat));
6456 } else {
6457 assert(ctx->options->chip_class == GFX6);
6458
6459 switch (instr->intrinsic) {
6460 case nir_intrinsic_global_atomic_add:
6461 op32 = aco_opcode::buffer_atomic_add;
6462 op64 = aco_opcode::buffer_atomic_add_x2;
6463 break;
6464 case nir_intrinsic_global_atomic_imin:
6465 op32 = aco_opcode::buffer_atomic_smin;
6466 op64 = aco_opcode::buffer_atomic_smin_x2;
6467 break;
6468 case nir_intrinsic_global_atomic_umin:
6469 op32 = aco_opcode::buffer_atomic_umin;
6470 op64 = aco_opcode::buffer_atomic_umin_x2;
6471 break;
6472 case nir_intrinsic_global_atomic_imax:
6473 op32 = aco_opcode::buffer_atomic_smax;
6474 op64 = aco_opcode::buffer_atomic_smax_x2;
6475 break;
6476 case nir_intrinsic_global_atomic_umax:
6477 op32 = aco_opcode::buffer_atomic_umax;
6478 op64 = aco_opcode::buffer_atomic_umax_x2;
6479 break;
6480 case nir_intrinsic_global_atomic_and:
6481 op32 = aco_opcode::buffer_atomic_and;
6482 op64 = aco_opcode::buffer_atomic_and_x2;
6483 break;
6484 case nir_intrinsic_global_atomic_or:
6485 op32 = aco_opcode::buffer_atomic_or;
6486 op64 = aco_opcode::buffer_atomic_or_x2;
6487 break;
6488 case nir_intrinsic_global_atomic_xor:
6489 op32 = aco_opcode::buffer_atomic_xor;
6490 op64 = aco_opcode::buffer_atomic_xor_x2;
6491 break;
6492 case nir_intrinsic_global_atomic_exchange:
6493 op32 = aco_opcode::buffer_atomic_swap;
6494 op64 = aco_opcode::buffer_atomic_swap_x2;
6495 break;
6496 case nir_intrinsic_global_atomic_comp_swap:
6497 op32 = aco_opcode::buffer_atomic_cmpswap;
6498 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6499 break;
6500 default:
6501 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6502 }
6503
6504 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6505
6506 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6507
6508 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6509 mubuf->operands[0] = Operand(rsrc);
6510 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6511 mubuf->operands[2] = Operand(0u);
6512 mubuf->operands[3] = Operand(data);
6513 if (return_previous)
6514 mubuf->definitions[0] = Definition(dst);
6515 mubuf->glc = return_previous;
6516 mubuf->dlc = false;
6517 mubuf->offset = 0;
6518 mubuf->addr64 = addr.type() == RegType::vgpr;
6519 mubuf->disable_wqm = true;
6520 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6521 ctx->program->needs_exact = true;
6522 ctx->block->instructions.emplace_back(std::move(mubuf));
6523 }
6524 }
6525
6526 sync_scope translate_nir_scope(nir_scope scope)
6527 {
6528 switch (scope) {
6529 case NIR_SCOPE_NONE:
6530 case NIR_SCOPE_INVOCATION:
6531 return scope_invocation;
6532 case NIR_SCOPE_SUBGROUP:
6533 return scope_subgroup;
6534 case NIR_SCOPE_WORKGROUP:
6535 return scope_workgroup;
6536 case NIR_SCOPE_QUEUE_FAMILY:
6537 return scope_queuefamily;
6538 case NIR_SCOPE_DEVICE:
6539 return scope_device;
6540 }
6541 unreachable("invalid scope");
6542 }
6543
6544 void emit_scoped_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6545 Builder bld(ctx->program, ctx->block);
6546
6547 unsigned semantics = 0;
6548 unsigned storage = 0;
6549 sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr));
6550 sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr));
6551
6552 unsigned nir_storage = nir_intrinsic_memory_modes(instr);
6553 if (nir_storage & (nir_var_mem_ssbo | nir_var_mem_global))
6554 storage |= storage_buffer | storage_image; //TODO: split this when NIR gets nir_var_mem_image
6555 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && (nir_storage & nir_var_mem_shared))
6556 storage |= storage_shared;
6557 if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL && (nir_storage & nir_var_shader_out))
6558 storage |= storage_shared;
6559
6560 unsigned nir_semantics = nir_intrinsic_memory_semantics(instr);
6561 if (nir_semantics & NIR_MEMORY_ACQUIRE)
6562 semantics |= semantic_acquire | semantic_release;
6563 if (nir_semantics & NIR_MEMORY_RELEASE)
6564 semantics |= semantic_acquire | semantic_release;
6565
6566 assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
6567
6568 bld.barrier(aco_opcode::p_barrier,
6569 memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope),
6570 exec_scope);
6571 }
6572
6573 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6574 {
6575 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6576 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6577 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6578 Builder bld(ctx->program, ctx->block);
6579
6580 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6581 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6582 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6583 }
6584
6585 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6586 {
6587 unsigned writemask = nir_intrinsic_write_mask(instr);
6588 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6589 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6590 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6591
6592 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6593 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6594 }
6595
6596 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6597 {
6598 unsigned offset = nir_intrinsic_base(instr);
6599 Builder bld(ctx->program, ctx->block);
6600 Operand m = load_lds_size_m0(bld);
6601 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6602 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6603
6604 unsigned num_operands = 3;
6605 aco_opcode op32, op64, op32_rtn, op64_rtn;
6606 switch(instr->intrinsic) {
6607 case nir_intrinsic_shared_atomic_add:
6608 op32 = aco_opcode::ds_add_u32;
6609 op64 = aco_opcode::ds_add_u64;
6610 op32_rtn = aco_opcode::ds_add_rtn_u32;
6611 op64_rtn = aco_opcode::ds_add_rtn_u64;
6612 break;
6613 case nir_intrinsic_shared_atomic_imin:
6614 op32 = aco_opcode::ds_min_i32;
6615 op64 = aco_opcode::ds_min_i64;
6616 op32_rtn = aco_opcode::ds_min_rtn_i32;
6617 op64_rtn = aco_opcode::ds_min_rtn_i64;
6618 break;
6619 case nir_intrinsic_shared_atomic_umin:
6620 op32 = aco_opcode::ds_min_u32;
6621 op64 = aco_opcode::ds_min_u64;
6622 op32_rtn = aco_opcode::ds_min_rtn_u32;
6623 op64_rtn = aco_opcode::ds_min_rtn_u64;
6624 break;
6625 case nir_intrinsic_shared_atomic_imax:
6626 op32 = aco_opcode::ds_max_i32;
6627 op64 = aco_opcode::ds_max_i64;
6628 op32_rtn = aco_opcode::ds_max_rtn_i32;
6629 op64_rtn = aco_opcode::ds_max_rtn_i64;
6630 break;
6631 case nir_intrinsic_shared_atomic_umax:
6632 op32 = aco_opcode::ds_max_u32;
6633 op64 = aco_opcode::ds_max_u64;
6634 op32_rtn = aco_opcode::ds_max_rtn_u32;
6635 op64_rtn = aco_opcode::ds_max_rtn_u64;
6636 break;
6637 case nir_intrinsic_shared_atomic_and:
6638 op32 = aco_opcode::ds_and_b32;
6639 op64 = aco_opcode::ds_and_b64;
6640 op32_rtn = aco_opcode::ds_and_rtn_b32;
6641 op64_rtn = aco_opcode::ds_and_rtn_b64;
6642 break;
6643 case nir_intrinsic_shared_atomic_or:
6644 op32 = aco_opcode::ds_or_b32;
6645 op64 = aco_opcode::ds_or_b64;
6646 op32_rtn = aco_opcode::ds_or_rtn_b32;
6647 op64_rtn = aco_opcode::ds_or_rtn_b64;
6648 break;
6649 case nir_intrinsic_shared_atomic_xor:
6650 op32 = aco_opcode::ds_xor_b32;
6651 op64 = aco_opcode::ds_xor_b64;
6652 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6653 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6654 break;
6655 case nir_intrinsic_shared_atomic_exchange:
6656 op32 = aco_opcode::ds_write_b32;
6657 op64 = aco_opcode::ds_write_b64;
6658 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6659 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6660 break;
6661 case nir_intrinsic_shared_atomic_comp_swap:
6662 op32 = aco_opcode::ds_cmpst_b32;
6663 op64 = aco_opcode::ds_cmpst_b64;
6664 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6665 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6666 num_operands = 4;
6667 break;
6668 case nir_intrinsic_shared_atomic_fadd:
6669 op32 = aco_opcode::ds_add_f32;
6670 op32_rtn = aco_opcode::ds_add_rtn_f32;
6671 op64 = aco_opcode::num_opcodes;
6672 op64_rtn = aco_opcode::num_opcodes;
6673 break;
6674 default:
6675 unreachable("Unhandled shared atomic intrinsic");
6676 }
6677
6678 /* return the previous value if dest is ever used */
6679 bool return_previous = false;
6680 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6681 return_previous = true;
6682 break;
6683 }
6684 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6685 return_previous = true;
6686 break;
6687 }
6688
6689 aco_opcode op;
6690 if (data.size() == 1) {
6691 assert(instr->dest.ssa.bit_size == 32);
6692 op = return_previous ? op32_rtn : op32;
6693 } else {
6694 assert(instr->dest.ssa.bit_size == 64);
6695 op = return_previous ? op64_rtn : op64;
6696 }
6697
6698 if (offset > 65535) {
6699 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6700 offset = 0;
6701 }
6702
6703 aco_ptr<DS_instruction> ds;
6704 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6705 ds->operands[0] = Operand(address);
6706 ds->operands[1] = Operand(data);
6707 if (num_operands == 4)
6708 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6709 ds->operands[num_operands - 1] = m;
6710 ds->offset0 = offset;
6711 if (return_previous)
6712 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6713 ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw);
6714 ctx->block->instructions.emplace_back(std::move(ds));
6715 }
6716
6717 Temp get_scratch_resource(isel_context *ctx)
6718 {
6719 Builder bld(ctx->program, ctx->block);
6720 Temp scratch_addr = ctx->program->private_segment_buffer;
6721 if (ctx->stage != compute_cs)
6722 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6723
6724 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6725 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
6726
6727 if (ctx->program->chip_class >= GFX10) {
6728 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6729 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6730 S_008F0C_RESOURCE_LEVEL(1);
6731 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6732 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6733 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6734 }
6735
6736 /* older generations need element size = 4 bytes. element size removed in GFX9 */
6737 if (ctx->program->chip_class <= GFX8)
6738 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
6739
6740 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6741 }
6742
6743 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6744 Builder bld(ctx->program, ctx->block);
6745 Temp rsrc = get_scratch_resource(ctx);
6746 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6747 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6748
6749 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6750 instr->dest.ssa.bit_size / 8u, rsrc};
6751 info.align_mul = nir_intrinsic_align_mul(instr);
6752 info.align_offset = nir_intrinsic_align_offset(instr);
6753 info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0;
6754 info.sync = memory_sync_info(storage_scratch, semantic_private);
6755 info.soffset = ctx->program->scratch_offset;
6756 emit_scratch_load(ctx, bld, &info);
6757 }
6758
6759 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6760 Builder bld(ctx->program, ctx->block);
6761 Temp rsrc = get_scratch_resource(ctx);
6762 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6763 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6764
6765 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6766 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6767
6768 unsigned write_count = 0;
6769 Temp write_datas[32];
6770 unsigned offsets[32];
6771 unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16;
6772 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6773 swizzle_component_size, &write_count, write_datas, offsets);
6774
6775 for (unsigned i = 0; i < write_count; i++) {
6776 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6777 Instruction *instr = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true);
6778 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_scratch, semantic_private);
6779 }
6780 }
6781
6782 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6783 uint8_t log2_ps_iter_samples;
6784 if (ctx->program->info->ps.force_persample) {
6785 log2_ps_iter_samples =
6786 util_logbase2(ctx->options->key.fs.num_samples);
6787 } else {
6788 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6789 }
6790
6791 /* The bit pattern matches that used by fixed function fragment
6792 * processing. */
6793 static const unsigned ps_iter_masks[] = {
6794 0xffff, /* not used */
6795 0x5555,
6796 0x1111,
6797 0x0101,
6798 0x0001,
6799 };
6800 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6801
6802 Builder bld(ctx->program, ctx->block);
6803
6804 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6805 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6806 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6807 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6808 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6809 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6810 }
6811
6812 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6813 Builder bld(ctx->program, ctx->block);
6814
6815 unsigned stream = nir_intrinsic_stream_id(instr);
6816 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6817 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6818 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6819
6820 /* get GSVS ring */
6821 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6822
6823 unsigned num_components =
6824 ctx->program->info->gs.num_stream_output_components[stream];
6825 assert(num_components);
6826
6827 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6828 unsigned stream_offset = 0;
6829 for (unsigned i = 0; i < stream; i++) {
6830 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6831 stream_offset += prev_stride * ctx->program->wave_size;
6832 }
6833
6834 /* Limit on the stride field for <= GFX7. */
6835 assert(stride < (1 << 14));
6836
6837 Temp gsvs_dwords[4];
6838 for (unsigned i = 0; i < 4; i++)
6839 gsvs_dwords[i] = bld.tmp(s1);
6840 bld.pseudo(aco_opcode::p_split_vector,
6841 Definition(gsvs_dwords[0]),
6842 Definition(gsvs_dwords[1]),
6843 Definition(gsvs_dwords[2]),
6844 Definition(gsvs_dwords[3]),
6845 gsvs_ring);
6846
6847 if (stream_offset) {
6848 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6849
6850 Temp carry = bld.tmp(s1);
6851 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6852 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6853 }
6854
6855 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6856 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6857
6858 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6859 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6860
6861 unsigned offset = 0;
6862 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6863 if (ctx->program->info->gs.output_streams[i] != stream)
6864 continue;
6865
6866 for (unsigned j = 0; j < 4; j++) {
6867 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6868 continue;
6869
6870 if (ctx->outputs.mask[i] & (1 << j)) {
6871 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6872 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6873 if (const_offset >= 4096u) {
6874 if (vaddr_offset.isUndefined())
6875 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6876 else
6877 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6878 const_offset %= 4096u;
6879 }
6880
6881 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6882 mtbuf->operands[0] = Operand(gsvs_ring);
6883 mtbuf->operands[1] = vaddr_offset;
6884 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6885 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6886 mtbuf->offen = !vaddr_offset.isUndefined();
6887 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6888 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6889 mtbuf->offset = const_offset;
6890 mtbuf->glc = true;
6891 mtbuf->slc = true;
6892 mtbuf->sync = memory_sync_info(storage_vmem_output, semantic_can_reorder);
6893 bld.insert(std::move(mtbuf));
6894 }
6895
6896 offset += ctx->shader->info.gs.vertices_out;
6897 }
6898
6899 /* outputs for the next vertex are undefined and keeping them around can
6900 * create invalid IR with control flow */
6901 ctx->outputs.mask[i] = 0;
6902 }
6903
6904 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6905 }
6906
6907 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6908 {
6909 Builder bld(ctx->program, ctx->block);
6910
6911 if (cluster_size == 1) {
6912 return src;
6913 } if (op == nir_op_iand && cluster_size == 4) {
6914 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6915 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6916 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6917 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6918 } else if (op == nir_op_ior && cluster_size == 4) {
6919 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6920 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6921 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6922 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6923 //subgroupAnd(val) -> (exec & ~val) == 0
6924 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6925 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6926 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6927 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6928 //subgroupOr(val) -> (val & exec) != 0
6929 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6930 return bool_to_vector_condition(ctx, tmp);
6931 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6932 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6933 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6934 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6935 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6936 return bool_to_vector_condition(ctx, tmp);
6937 } else {
6938 //subgroupClustered{And,Or,Xor}(val, n) ->
6939 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6940 //cluster_offset = ~(n - 1) & lane_id
6941 //cluster_mask = ((1 << n) - 1)
6942 //subgroupClusteredAnd():
6943 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6944 //subgroupClusteredOr():
6945 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6946 //subgroupClusteredXor():
6947 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6948 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6949 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6950
6951 Temp tmp;
6952 if (op == nir_op_iand)
6953 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6954 else
6955 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6956
6957 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6958
6959 if (ctx->program->chip_class <= GFX7)
6960 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6961 else if (ctx->program->wave_size == 64)
6962 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6963 else
6964 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6965 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6966 if (cluster_mask != 0xffffffff)
6967 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6968
6969 Definition cmp_def = Definition();
6970 if (op == nir_op_iand) {
6971 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6972 } else if (op == nir_op_ior) {
6973 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6974 } else if (op == nir_op_ixor) {
6975 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6976 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6977 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6978 }
6979 cmp_def.setHint(vcc);
6980 return cmp_def.getTemp();
6981 }
6982 }
6983
6984 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6985 {
6986 Builder bld(ctx->program, ctx->block);
6987
6988 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6989 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6990 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6991 Temp tmp;
6992 if (op == nir_op_iand)
6993 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6994 else
6995 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6996
6997 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6998 Temp lo = lohi.def(0).getTemp();
6999 Temp hi = lohi.def(1).getTemp();
7000 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7001
7002 Definition cmp_def = Definition();
7003 if (op == nir_op_iand)
7004 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7005 else if (op == nir_op_ior)
7006 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7007 else if (op == nir_op_ixor)
7008 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7009 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7010 cmp_def.setHint(vcc);
7011 return cmp_def.getTemp();
7012 }
7013
7014 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7015 {
7016 Builder bld(ctx->program, ctx->block);
7017
7018 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7019 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7020 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7021 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7022 if (op == nir_op_iand)
7023 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7024 else if (op == nir_op_ior)
7025 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7026 else if (op == nir_op_ixor)
7027 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7028
7029 assert(false);
7030 return Temp();
7031 }
7032
7033 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7034 {
7035 Builder bld(ctx->program, ctx->block);
7036 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7037 if (src.regClass().type() == RegType::vgpr) {
7038 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7039 } else if (src.regClass() == s1) {
7040 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7041 } else if (src.regClass() == s2) {
7042 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7043 } else {
7044 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7045 }
7046 }
7047
7048 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7049 {
7050 Builder bld(ctx->program, ctx->block);
7051 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7052 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7053 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7054
7055 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7056 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7057 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7058 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7059
7060 /* Build DD X/Y */
7061 if (ctx->program->chip_class >= GFX8) {
7062 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7063 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7064 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7065 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7066 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7067 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7068 } else {
7069 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7070 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7071 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7072 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7073 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7074 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7075 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7076 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7077 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7078 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7079 }
7080
7081 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7082 aco_opcode mad = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
7083 Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1);
7084 Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2);
7085 tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1);
7086 tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2);
7087 Temp wqm1 = bld.tmp(v1);
7088 emit_wqm(ctx, tmp1, wqm1, true);
7089 Temp wqm2 = bld.tmp(v1);
7090 emit_wqm(ctx, tmp2, wqm2, true);
7091 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7092 return;
7093 }
7094
7095 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7096 {
7097 Builder bld(ctx->program, ctx->block);
7098 switch(instr->intrinsic) {
7099 case nir_intrinsic_load_barycentric_sample:
7100 case nir_intrinsic_load_barycentric_pixel:
7101 case nir_intrinsic_load_barycentric_centroid: {
7102 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7103 Temp bary = Temp(0, s2);
7104 switch (mode) {
7105 case INTERP_MODE_SMOOTH:
7106 case INTERP_MODE_NONE:
7107 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7108 bary = get_arg(ctx, ctx->args->ac.persp_center);
7109 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7110 bary = ctx->persp_centroid;
7111 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7112 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7113 break;
7114 case INTERP_MODE_NOPERSPECTIVE:
7115 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7116 bary = get_arg(ctx, ctx->args->ac.linear_center);
7117 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7118 bary = ctx->linear_centroid;
7119 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7120 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7121 break;
7122 default:
7123 break;
7124 }
7125 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7126 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7127 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7128 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7129 Operand(p1), Operand(p2));
7130 emit_split_vector(ctx, dst, 2);
7131 break;
7132 }
7133 case nir_intrinsic_load_barycentric_model: {
7134 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7135
7136 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7137 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7138 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7139 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7140 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7141 Operand(p1), Operand(p2), Operand(p3));
7142 emit_split_vector(ctx, dst, 3);
7143 break;
7144 }
7145 case nir_intrinsic_load_barycentric_at_sample: {
7146 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7147 switch (ctx->options->key.fs.num_samples) {
7148 case 2: sample_pos_offset += 1 << 3; break;
7149 case 4: sample_pos_offset += 3 << 3; break;
7150 case 8: sample_pos_offset += 7 << 3; break;
7151 default: break;
7152 }
7153 Temp sample_pos;
7154 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7155 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7156 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7157 //TODO: bounds checking?
7158 if (addr.type() == RegType::sgpr) {
7159 Operand offset;
7160 if (const_addr) {
7161 sample_pos_offset += const_addr->u32 << 3;
7162 offset = Operand(sample_pos_offset);
7163 } else if (ctx->options->chip_class >= GFX9) {
7164 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7165 } else {
7166 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7167 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7168 }
7169
7170 Operand off = bld.copy(bld.def(s1), Operand(offset));
7171 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7172
7173 } else if (ctx->options->chip_class >= GFX9) {
7174 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7175 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7176 } else if (ctx->options->chip_class >= GFX7) {
7177 /* addr += private_segment_buffer + sample_pos_offset */
7178 Temp tmp0 = bld.tmp(s1);
7179 Temp tmp1 = bld.tmp(s1);
7180 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7181 Definition scc_tmp = bld.def(s1, scc);
7182 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7183 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7184 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7185 Temp pck0 = bld.tmp(v1);
7186 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7187 tmp1 = as_vgpr(ctx, tmp1);
7188 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7189 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7190
7191 /* sample_pos = flat_load_dwordx2 addr */
7192 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7193 } else {
7194 assert(ctx->options->chip_class == GFX6);
7195
7196 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7197 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7198 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7199
7200 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7201 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7202
7203 sample_pos = bld.tmp(v2);
7204
7205 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7206 load->definitions[0] = Definition(sample_pos);
7207 load->operands[0] = Operand(rsrc);
7208 load->operands[1] = Operand(addr);
7209 load->operands[2] = Operand(0u);
7210 load->offset = sample_pos_offset;
7211 load->offen = 0;
7212 load->addr64 = true;
7213 load->glc = false;
7214 load->dlc = false;
7215 load->disable_wqm = false;
7216 ctx->block->instructions.emplace_back(std::move(load));
7217 }
7218
7219 /* sample_pos -= 0.5 */
7220 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7221 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7222 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7223 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7224 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7225
7226 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7227 break;
7228 }
7229 case nir_intrinsic_load_barycentric_at_offset: {
7230 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7231 RegClass rc = RegClass(offset.type(), 1);
7232 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7233 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7234 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7235 break;
7236 }
7237 case nir_intrinsic_load_front_face: {
7238 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7239 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7240 break;
7241 }
7242 case nir_intrinsic_load_view_index: {
7243 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7244 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7245 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7246 break;
7247 }
7248
7249 /* fallthrough */
7250 }
7251 case nir_intrinsic_load_layer_id: {
7252 unsigned idx = nir_intrinsic_base(instr);
7253 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7254 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7255 break;
7256 }
7257 case nir_intrinsic_load_frag_coord: {
7258 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7259 break;
7260 }
7261 case nir_intrinsic_load_sample_pos: {
7262 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7263 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7264 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7265 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7266 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7267 break;
7268 }
7269 case nir_intrinsic_load_tess_coord:
7270 visit_load_tess_coord(ctx, instr);
7271 break;
7272 case nir_intrinsic_load_interpolated_input:
7273 visit_load_interpolated_input(ctx, instr);
7274 break;
7275 case nir_intrinsic_store_output:
7276 visit_store_output(ctx, instr);
7277 break;
7278 case nir_intrinsic_load_input:
7279 case nir_intrinsic_load_input_vertex:
7280 visit_load_input(ctx, instr);
7281 break;
7282 case nir_intrinsic_load_output:
7283 visit_load_output(ctx, instr);
7284 break;
7285 case nir_intrinsic_load_per_vertex_input:
7286 visit_load_per_vertex_input(ctx, instr);
7287 break;
7288 case nir_intrinsic_load_per_vertex_output:
7289 visit_load_per_vertex_output(ctx, instr);
7290 break;
7291 case nir_intrinsic_store_per_vertex_output:
7292 visit_store_per_vertex_output(ctx, instr);
7293 break;
7294 case nir_intrinsic_load_ubo:
7295 visit_load_ubo(ctx, instr);
7296 break;
7297 case nir_intrinsic_load_push_constant:
7298 visit_load_push_constant(ctx, instr);
7299 break;
7300 case nir_intrinsic_load_constant:
7301 visit_load_constant(ctx, instr);
7302 break;
7303 case nir_intrinsic_vulkan_resource_index:
7304 visit_load_resource(ctx, instr);
7305 break;
7306 case nir_intrinsic_discard:
7307 visit_discard(ctx, instr);
7308 break;
7309 case nir_intrinsic_discard_if:
7310 visit_discard_if(ctx, instr);
7311 break;
7312 case nir_intrinsic_load_shared:
7313 visit_load_shared(ctx, instr);
7314 break;
7315 case nir_intrinsic_store_shared:
7316 visit_store_shared(ctx, instr);
7317 break;
7318 case nir_intrinsic_shared_atomic_add:
7319 case nir_intrinsic_shared_atomic_imin:
7320 case nir_intrinsic_shared_atomic_umin:
7321 case nir_intrinsic_shared_atomic_imax:
7322 case nir_intrinsic_shared_atomic_umax:
7323 case nir_intrinsic_shared_atomic_and:
7324 case nir_intrinsic_shared_atomic_or:
7325 case nir_intrinsic_shared_atomic_xor:
7326 case nir_intrinsic_shared_atomic_exchange:
7327 case nir_intrinsic_shared_atomic_comp_swap:
7328 case nir_intrinsic_shared_atomic_fadd:
7329 visit_shared_atomic(ctx, instr);
7330 break;
7331 case nir_intrinsic_image_deref_load:
7332 visit_image_load(ctx, instr);
7333 break;
7334 case nir_intrinsic_image_deref_store:
7335 visit_image_store(ctx, instr);
7336 break;
7337 case nir_intrinsic_image_deref_atomic_add:
7338 case nir_intrinsic_image_deref_atomic_umin:
7339 case nir_intrinsic_image_deref_atomic_imin:
7340 case nir_intrinsic_image_deref_atomic_umax:
7341 case nir_intrinsic_image_deref_atomic_imax:
7342 case nir_intrinsic_image_deref_atomic_and:
7343 case nir_intrinsic_image_deref_atomic_or:
7344 case nir_intrinsic_image_deref_atomic_xor:
7345 case nir_intrinsic_image_deref_atomic_exchange:
7346 case nir_intrinsic_image_deref_atomic_comp_swap:
7347 visit_image_atomic(ctx, instr);
7348 break;
7349 case nir_intrinsic_image_deref_size:
7350 visit_image_size(ctx, instr);
7351 break;
7352 case nir_intrinsic_load_ssbo:
7353 visit_load_ssbo(ctx, instr);
7354 break;
7355 case nir_intrinsic_store_ssbo:
7356 visit_store_ssbo(ctx, instr);
7357 break;
7358 case nir_intrinsic_load_global:
7359 visit_load_global(ctx, instr);
7360 break;
7361 case nir_intrinsic_store_global:
7362 visit_store_global(ctx, instr);
7363 break;
7364 case nir_intrinsic_global_atomic_add:
7365 case nir_intrinsic_global_atomic_imin:
7366 case nir_intrinsic_global_atomic_umin:
7367 case nir_intrinsic_global_atomic_imax:
7368 case nir_intrinsic_global_atomic_umax:
7369 case nir_intrinsic_global_atomic_and:
7370 case nir_intrinsic_global_atomic_or:
7371 case nir_intrinsic_global_atomic_xor:
7372 case nir_intrinsic_global_atomic_exchange:
7373 case nir_intrinsic_global_atomic_comp_swap:
7374 visit_global_atomic(ctx, instr);
7375 break;
7376 case nir_intrinsic_ssbo_atomic_add:
7377 case nir_intrinsic_ssbo_atomic_imin:
7378 case nir_intrinsic_ssbo_atomic_umin:
7379 case nir_intrinsic_ssbo_atomic_imax:
7380 case nir_intrinsic_ssbo_atomic_umax:
7381 case nir_intrinsic_ssbo_atomic_and:
7382 case nir_intrinsic_ssbo_atomic_or:
7383 case nir_intrinsic_ssbo_atomic_xor:
7384 case nir_intrinsic_ssbo_atomic_exchange:
7385 case nir_intrinsic_ssbo_atomic_comp_swap:
7386 visit_atomic_ssbo(ctx, instr);
7387 break;
7388 case nir_intrinsic_load_scratch:
7389 visit_load_scratch(ctx, instr);
7390 break;
7391 case nir_intrinsic_store_scratch:
7392 visit_store_scratch(ctx, instr);
7393 break;
7394 case nir_intrinsic_get_buffer_size:
7395 visit_get_buffer_size(ctx, instr);
7396 break;
7397 case nir_intrinsic_scoped_barrier:
7398 emit_scoped_barrier(ctx, instr);
7399 break;
7400 case nir_intrinsic_load_num_work_groups: {
7401 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7402 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7403 emit_split_vector(ctx, dst, 3);
7404 break;
7405 }
7406 case nir_intrinsic_load_local_invocation_id: {
7407 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7408 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7409 emit_split_vector(ctx, dst, 3);
7410 break;
7411 }
7412 case nir_intrinsic_load_work_group_id: {
7413 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7414 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7415 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7416 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7417 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7418 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7419 emit_split_vector(ctx, dst, 3);
7420 break;
7421 }
7422 case nir_intrinsic_load_local_invocation_index: {
7423 Temp id = emit_mbcnt(ctx, bld.def(v1));
7424
7425 /* The tg_size bits [6:11] contain the subgroup id,
7426 * we need this multiplied by the wave size, and then OR the thread id to it.
7427 */
7428 if (ctx->program->wave_size == 64) {
7429 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7430 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7431 get_arg(ctx, ctx->args->ac.tg_size));
7432 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7433 } else {
7434 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7435 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7436 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7437 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7438 }
7439 break;
7440 }
7441 case nir_intrinsic_load_subgroup_id: {
7442 if (ctx->stage == compute_cs) {
7443 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7444 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7445 } else {
7446 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7447 }
7448 break;
7449 }
7450 case nir_intrinsic_load_subgroup_invocation: {
7451 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7452 break;
7453 }
7454 case nir_intrinsic_load_num_subgroups: {
7455 if (ctx->stage == compute_cs)
7456 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7457 get_arg(ctx, ctx->args->ac.tg_size));
7458 else
7459 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7460 break;
7461 }
7462 case nir_intrinsic_ballot: {
7463 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7464 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7465 Definition tmp = bld.def(dst.regClass());
7466 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7467 if (instr->src[0].ssa->bit_size == 1) {
7468 assert(src.regClass() == bld.lm);
7469 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7470 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7471 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7472 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7473 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7474 } else {
7475 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7476 }
7477 if (dst.size() != bld.lm.size()) {
7478 /* Wave32 with ballot size set to 64 */
7479 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7480 }
7481 emit_wqm(ctx, tmp.getTemp(), dst);
7482 break;
7483 }
7484 case nir_intrinsic_shuffle:
7485 case nir_intrinsic_read_invocation: {
7486 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7487 if (!nir_src_is_divergent(instr->src[0])) {
7488 emit_uniform_subgroup(ctx, instr, src);
7489 } else {
7490 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7491 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7492 tid = bld.as_uniform(tid);
7493 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7494 if (src.regClass() == v1b || src.regClass() == v2b) {
7495 Temp tmp = bld.tmp(v1);
7496 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7497 if (dst.type() == RegType::vgpr)
7498 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7499 else
7500 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7501 } else if (src.regClass() == v1) {
7502 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7503 } else if (src.regClass() == v2) {
7504 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7505 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7506 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7507 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7508 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7509 emit_split_vector(ctx, dst, 2);
7510 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7511 assert(src.regClass() == bld.lm);
7512 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7513 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7514 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7515 assert(src.regClass() == bld.lm);
7516 Temp tmp;
7517 if (ctx->program->chip_class <= GFX7)
7518 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7519 else if (ctx->program->wave_size == 64)
7520 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7521 else
7522 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7523 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7524 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7525 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7526 } else {
7527 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7528 }
7529 }
7530 break;
7531 }
7532 case nir_intrinsic_load_sample_id: {
7533 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7534 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7535 break;
7536 }
7537 case nir_intrinsic_load_sample_mask_in: {
7538 visit_load_sample_mask_in(ctx, instr);
7539 break;
7540 }
7541 case nir_intrinsic_read_first_invocation: {
7542 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7543 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7544 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7545 emit_wqm(ctx,
7546 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7547 dst);
7548 } else if (src.regClass() == v2) {
7549 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7550 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7551 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7552 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7553 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7554 emit_split_vector(ctx, dst, 2);
7555 } else if (instr->dest.ssa.bit_size == 1) {
7556 assert(src.regClass() == bld.lm);
7557 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7558 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7559 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7560 } else if (src.regClass() == s1) {
7561 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7562 } else if (src.regClass() == s2) {
7563 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7564 } else {
7565 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7566 }
7567 break;
7568 }
7569 case nir_intrinsic_vote_all: {
7570 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7571 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7572 assert(src.regClass() == bld.lm);
7573 assert(dst.regClass() == bld.lm);
7574
7575 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7576 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7577 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7578 break;
7579 }
7580 case nir_intrinsic_vote_any: {
7581 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7582 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7583 assert(src.regClass() == bld.lm);
7584 assert(dst.regClass() == bld.lm);
7585
7586 Temp tmp = bool_to_scalar_condition(ctx, src);
7587 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7588 break;
7589 }
7590 case nir_intrinsic_reduce:
7591 case nir_intrinsic_inclusive_scan:
7592 case nir_intrinsic_exclusive_scan: {
7593 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7594 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7595 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7596 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7597 nir_intrinsic_cluster_size(instr) : 0;
7598 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7599
7600 if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
7601 emit_uniform_subgroup(ctx, instr, src);
7602 } else if (instr->dest.ssa.bit_size == 1) {
7603 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7604 op = nir_op_iand;
7605 else if (op == nir_op_iadd)
7606 op = nir_op_ixor;
7607 else if (op == nir_op_umax || op == nir_op_imax)
7608 op = nir_op_ior;
7609 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7610
7611 switch (instr->intrinsic) {
7612 case nir_intrinsic_reduce:
7613 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7614 break;
7615 case nir_intrinsic_exclusive_scan:
7616 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7617 break;
7618 case nir_intrinsic_inclusive_scan:
7619 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7620 break;
7621 default:
7622 assert(false);
7623 }
7624 } else if (cluster_size == 1) {
7625 bld.copy(Definition(dst), src);
7626 } else {
7627 unsigned bit_size = instr->src[0].ssa->bit_size;
7628
7629 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
7630
7631 ReduceOp reduce_op;
7632 switch (op) {
7633 #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
7634 #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
7635 CASEI(iadd)
7636 CASEI(imul)
7637 CASEI(imin)
7638 CASEI(umin)
7639 CASEI(imax)
7640 CASEI(umax)
7641 CASEI(iand)
7642 CASEI(ior)
7643 CASEI(ixor)
7644 CASEF(fadd)
7645 CASEF(fmul)
7646 CASEF(fmin)
7647 CASEF(fmax)
7648 default:
7649 unreachable("unknown reduction op");
7650 #undef CASEI
7651 #undef CASEF
7652 }
7653
7654 aco_opcode aco_op;
7655 switch (instr->intrinsic) {
7656 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7657 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7658 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7659 default:
7660 unreachable("unknown reduce intrinsic");
7661 }
7662
7663 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7664 reduce->operands[0] = Operand(src);
7665 // filled in by aco_reduce_assign.cpp, used internally as part of the
7666 // reduce sequence
7667 assert(dst.size() == 1 || dst.size() == 2);
7668 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7669 reduce->operands[2] = Operand(v1.as_linear());
7670
7671 Temp tmp_dst = bld.tmp(dst.regClass());
7672 reduce->definitions[0] = Definition(tmp_dst);
7673 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7674 reduce->definitions[2] = Definition();
7675 reduce->definitions[3] = Definition(scc, s1);
7676 reduce->definitions[4] = Definition();
7677 reduce->reduce_op = reduce_op;
7678 reduce->cluster_size = cluster_size;
7679 ctx->block->instructions.emplace_back(std::move(reduce));
7680
7681 emit_wqm(ctx, tmp_dst, dst);
7682 }
7683 break;
7684 }
7685 case nir_intrinsic_quad_broadcast: {
7686 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7687 if (!nir_dest_is_divergent(instr->dest)) {
7688 emit_uniform_subgroup(ctx, instr, src);
7689 } else {
7690 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7691 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7692 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7693
7694 if (instr->dest.ssa.bit_size == 1) {
7695 assert(src.regClass() == bld.lm);
7696 assert(dst.regClass() == bld.lm);
7697 uint32_t half_mask = 0x11111111u << lane;
7698 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7699 Temp tmp = bld.tmp(bld.lm);
7700 bld.sop1(Builder::s_wqm, Definition(tmp),
7701 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7702 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7703 emit_wqm(ctx, tmp, dst);
7704 } else if (instr->dest.ssa.bit_size == 8) {
7705 Temp tmp = bld.tmp(v1);
7706 if (ctx->program->chip_class >= GFX8)
7707 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7708 else
7709 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7710 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7711 } else if (instr->dest.ssa.bit_size == 16) {
7712 Temp tmp = bld.tmp(v1);
7713 if (ctx->program->chip_class >= GFX8)
7714 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7715 else
7716 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7717 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7718 } else if (instr->dest.ssa.bit_size == 32) {
7719 if (ctx->program->chip_class >= GFX8)
7720 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7721 else
7722 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7723 } else if (instr->dest.ssa.bit_size == 64) {
7724 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7725 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7726 if (ctx->program->chip_class >= GFX8) {
7727 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7728 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7729 } else {
7730 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7731 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7732 }
7733 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7734 emit_split_vector(ctx, dst, 2);
7735 } else {
7736 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7737 }
7738 }
7739 break;
7740 }
7741 case nir_intrinsic_quad_swap_horizontal:
7742 case nir_intrinsic_quad_swap_vertical:
7743 case nir_intrinsic_quad_swap_diagonal:
7744 case nir_intrinsic_quad_swizzle_amd: {
7745 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7746 if (!nir_dest_is_divergent(instr->dest)) {
7747 emit_uniform_subgroup(ctx, instr, src);
7748 break;
7749 }
7750 uint16_t dpp_ctrl = 0;
7751 switch (instr->intrinsic) {
7752 case nir_intrinsic_quad_swap_horizontal:
7753 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7754 break;
7755 case nir_intrinsic_quad_swap_vertical:
7756 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7757 break;
7758 case nir_intrinsic_quad_swap_diagonal:
7759 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7760 break;
7761 case nir_intrinsic_quad_swizzle_amd:
7762 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7763 break;
7764 default:
7765 break;
7766 }
7767 if (ctx->program->chip_class < GFX8)
7768 dpp_ctrl |= (1 << 15);
7769
7770 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7771 if (instr->dest.ssa.bit_size == 1) {
7772 assert(src.regClass() == bld.lm);
7773 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7774 if (ctx->program->chip_class >= GFX8)
7775 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7776 else
7777 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7778 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7779 emit_wqm(ctx, tmp, dst);
7780 } else if (instr->dest.ssa.bit_size == 8) {
7781 Temp tmp = bld.tmp(v1);
7782 if (ctx->program->chip_class >= GFX8)
7783 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7784 else
7785 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7786 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7787 } else if (instr->dest.ssa.bit_size == 16) {
7788 Temp tmp = bld.tmp(v1);
7789 if (ctx->program->chip_class >= GFX8)
7790 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7791 else
7792 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7793 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7794 } else if (instr->dest.ssa.bit_size == 32) {
7795 Temp tmp;
7796 if (ctx->program->chip_class >= GFX8)
7797 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7798 else
7799 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7800 emit_wqm(ctx, tmp, dst);
7801 } else if (instr->dest.ssa.bit_size == 64) {
7802 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7803 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7804 if (ctx->program->chip_class >= GFX8) {
7805 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7806 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7807 } else {
7808 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7809 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7810 }
7811 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7812 emit_split_vector(ctx, dst, 2);
7813 } else {
7814 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7815 }
7816 break;
7817 }
7818 case nir_intrinsic_masked_swizzle_amd: {
7819 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7820 if (!nir_dest_is_divergent(instr->dest)) {
7821 emit_uniform_subgroup(ctx, instr, src);
7822 break;
7823 }
7824 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7825 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7826 if (instr->dest.ssa.bit_size == 1) {
7827 assert(src.regClass() == bld.lm);
7828 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7829 src = emit_masked_swizzle(ctx, bld, src, mask);
7830 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7831 emit_wqm(ctx, tmp, dst);
7832 } else if (dst.regClass() == v1b) {
7833 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7834 emit_extract_vector(ctx, tmp, 0, dst);
7835 } else if (dst.regClass() == v2b) {
7836 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7837 emit_extract_vector(ctx, tmp, 0, dst);
7838 } else if (dst.regClass() == v1) {
7839 emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
7840 } else if (dst.regClass() == v2) {
7841 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7842 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7843 lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
7844 hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
7845 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7846 emit_split_vector(ctx, dst, 2);
7847 } else {
7848 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7849 }
7850 break;
7851 }
7852 case nir_intrinsic_write_invocation_amd: {
7853 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7854 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7855 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7856 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7857 if (dst.regClass() == v1) {
7858 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7859 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7860 } else if (dst.regClass() == v2) {
7861 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7862 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7863 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7864 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7865 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7866 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7867 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7868 emit_split_vector(ctx, dst, 2);
7869 } else {
7870 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7871 }
7872 break;
7873 }
7874 case nir_intrinsic_mbcnt_amd: {
7875 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7876 RegClass rc = RegClass(src.type(), 1);
7877 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7878 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7879 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7880 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7881 emit_wqm(ctx, wqm_tmp, dst);
7882 break;
7883 }
7884 case nir_intrinsic_load_helper_invocation: {
7885 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7886 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7887 ctx->block->kind |= block_kind_needs_lowering;
7888 ctx->program->needs_exact = true;
7889 break;
7890 }
7891 case nir_intrinsic_is_helper_invocation: {
7892 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7893 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7894 ctx->block->kind |= block_kind_needs_lowering;
7895 ctx->program->needs_exact = true;
7896 break;
7897 }
7898 case nir_intrinsic_demote:
7899 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7900
7901 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7902 ctx->cf_info.exec_potentially_empty_discard = true;
7903 ctx->block->kind |= block_kind_uses_demote;
7904 ctx->program->needs_exact = true;
7905 break;
7906 case nir_intrinsic_demote_if: {
7907 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7908 assert(src.regClass() == bld.lm);
7909 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7910 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7911
7912 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7913 ctx->cf_info.exec_potentially_empty_discard = true;
7914 ctx->block->kind |= block_kind_uses_demote;
7915 ctx->program->needs_exact = true;
7916 break;
7917 }
7918 case nir_intrinsic_first_invocation: {
7919 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7920 get_ssa_temp(ctx, &instr->dest.ssa));
7921 break;
7922 }
7923 case nir_intrinsic_shader_clock: {
7924 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7925 if (nir_intrinsic_memory_scope(instr) == NIR_SCOPE_SUBGROUP && ctx->options->chip_class >= GFX10_3) {
7926 /* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */
7927 Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29);
7928 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand(0u));
7929 } else {
7930 aco_opcode opcode =
7931 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
7932 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
7933 bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile));
7934 }
7935 emit_split_vector(ctx, dst, 2);
7936 break;
7937 }
7938 case nir_intrinsic_load_vertex_id_zero_base: {
7939 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7940 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7941 break;
7942 }
7943 case nir_intrinsic_load_first_vertex: {
7944 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7945 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7946 break;
7947 }
7948 case nir_intrinsic_load_base_instance: {
7949 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7950 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7951 break;
7952 }
7953 case nir_intrinsic_load_instance_id: {
7954 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7955 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7956 break;
7957 }
7958 case nir_intrinsic_load_draw_id: {
7959 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7960 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7961 break;
7962 }
7963 case nir_intrinsic_load_invocation_id: {
7964 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7965
7966 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7967 if (ctx->options->chip_class >= GFX10)
7968 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7969 else
7970 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7971 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7972 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7973 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7974 } else {
7975 unreachable("Unsupported stage for load_invocation_id");
7976 }
7977
7978 break;
7979 }
7980 case nir_intrinsic_load_primitive_id: {
7981 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7982
7983 switch (ctx->shader->info.stage) {
7984 case MESA_SHADER_GEOMETRY:
7985 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7986 break;
7987 case MESA_SHADER_TESS_CTRL:
7988 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7989 break;
7990 case MESA_SHADER_TESS_EVAL:
7991 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7992 break;
7993 default:
7994 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7995 }
7996
7997 break;
7998 }
7999 case nir_intrinsic_load_patch_vertices_in: {
8000 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8001 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8002
8003 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8004 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8005 break;
8006 }
8007 case nir_intrinsic_emit_vertex_with_counter: {
8008 visit_emit_vertex_with_counter(ctx, instr);
8009 break;
8010 }
8011 case nir_intrinsic_end_primitive_with_counter: {
8012 unsigned stream = nir_intrinsic_stream_id(instr);
8013 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8014 break;
8015 }
8016 case nir_intrinsic_set_vertex_count: {
8017 /* unused, the HW keeps track of this for us */
8018 break;
8019 }
8020 default:
8021 isel_err(&instr->instr, "Unimplemented intrinsic instr");
8022 abort();
8023
8024 break;
8025 }
8026 }
8027
8028
8029 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8030 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8031 enum glsl_base_type *stype)
8032 {
8033 nir_deref_instr *texture_deref_instr = NULL;
8034 nir_deref_instr *sampler_deref_instr = NULL;
8035 int plane = -1;
8036
8037 for (unsigned i = 0; i < instr->num_srcs; i++) {
8038 switch (instr->src[i].src_type) {
8039 case nir_tex_src_texture_deref:
8040 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8041 break;
8042 case nir_tex_src_sampler_deref:
8043 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8044 break;
8045 case nir_tex_src_plane:
8046 plane = nir_src_as_int(instr->src[i].src);
8047 break;
8048 default:
8049 break;
8050 }
8051 }
8052
8053 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8054
8055 if (!sampler_deref_instr)
8056 sampler_deref_instr = texture_deref_instr;
8057
8058 if (plane >= 0) {
8059 assert(instr->op != nir_texop_txf_ms &&
8060 instr->op != nir_texop_samples_identical);
8061 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8062 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8063 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8064 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8065 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8066 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8067 } else {
8068 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8069 }
8070 if (samp_ptr) {
8071 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8072
8073 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8074 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8075 Builder bld(ctx->program, ctx->block);
8076
8077 /* to avoid unnecessary moves, we split and recombine sampler and image */
8078 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8079 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8080 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8081 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8082 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8083 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8084 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8085 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8086
8087 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8088 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8089 img[0], img[1], img[2], img[3],
8090 img[4], img[5], img[6], img[7]);
8091 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8092 samp[0], samp[1], samp[2], samp[3]);
8093 }
8094 }
8095 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8096 instr->op == nir_texop_samples_identical))
8097 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8098 }
8099
8100 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8101 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8102 {
8103 Builder bld(ctx->program, ctx->block);
8104
8105 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8106 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8107 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8108
8109 Operand neg_one(0xbf800000u);
8110 Operand one(0x3f800000u);
8111 Operand two(0x40000000u);
8112 Operand four(0x40800000u);
8113
8114 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8115 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8116 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8117
8118 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8119 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8120 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8121 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8122
8123 // select sc
8124 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8125 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8126 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8127 one, is_ma_y);
8128 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8129
8130 // select tc
8131 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8132 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8133 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8134
8135 // select ma
8136 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8137 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8138 deriv_z, is_ma_z);
8139 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8140 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8141 }
8142
8143 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8144 {
8145 Builder bld(ctx->program, ctx->block);
8146 Temp ma, tc, sc, id;
8147 aco_opcode madak = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_madak_f32;
8148 aco_opcode madmk = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmamk_f32 : aco_opcode::v_madmk_f32;
8149
8150 if (is_array) {
8151 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8152
8153 // see comment in ac_prepare_cube_coords()
8154 if (ctx->options->chip_class <= GFX8)
8155 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8156 }
8157
8158 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8159
8160 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8161 vop3a->operands[0] = Operand(ma);
8162 vop3a->abs[0] = true;
8163 Temp invma = bld.tmp(v1);
8164 vop3a->definitions[0] = Definition(invma);
8165 ctx->block->instructions.emplace_back(std::move(vop3a));
8166
8167 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8168 if (!is_deriv)
8169 sc = bld.vop2(madak, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8170
8171 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8172 if (!is_deriv)
8173 tc = bld.vop2(madak, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8174
8175 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8176
8177 if (is_deriv) {
8178 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8179 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8180
8181 for (unsigned i = 0; i < 2; i++) {
8182 // see comment in ac_prepare_cube_coords()
8183 Temp deriv_ma;
8184 Temp deriv_sc, deriv_tc;
8185 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8186 &deriv_ma, &deriv_sc, &deriv_tc);
8187
8188 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8189
8190 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8191 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8192 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8193 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8194 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8195 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8196 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8197 }
8198
8199 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8200 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8201 }
8202
8203 if (is_array)
8204 id = bld.vop2(madmk, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8205 coords.resize(3);
8206 coords[0] = sc;
8207 coords[1] = tc;
8208 coords[2] = id;
8209 }
8210
8211 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8212 {
8213 if (vec->parent_instr->type != nir_instr_type_alu)
8214 return;
8215 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8216 if (vec_instr->op != nir_op_vec(vec->num_components))
8217 return;
8218
8219 for (unsigned i = 0; i < vec->num_components; i++) {
8220 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8221 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8222 }
8223 }
8224
8225 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8226 {
8227 Builder bld(ctx->program, ctx->block);
8228 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8229 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8230 has_clamped_lod = false;
8231 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8232 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8233 clamped_lod = Temp();
8234 std::vector<Temp> coords;
8235 std::vector<Temp> derivs;
8236 nir_const_value *sample_index_cv = NULL;
8237 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8238 enum glsl_base_type stype;
8239 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8240
8241 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8242 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8243 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8244 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8245
8246 for (unsigned i = 0; i < instr->num_srcs; i++) {
8247 switch (instr->src[i].src_type) {
8248 case nir_tex_src_coord: {
8249 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8250 for (unsigned i = 0; i < coord.size(); i++)
8251 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8252 break;
8253 }
8254 case nir_tex_src_bias:
8255 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8256 has_bias = true;
8257 break;
8258 case nir_tex_src_lod: {
8259 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8260
8261 if (val && val->f32 <= 0.0) {
8262 level_zero = true;
8263 } else {
8264 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8265 has_lod = true;
8266 }
8267 break;
8268 }
8269 case nir_tex_src_min_lod:
8270 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8271 has_clamped_lod = true;
8272 break;
8273 case nir_tex_src_comparator:
8274 if (instr->is_shadow) {
8275 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8276 has_compare = true;
8277 }
8278 break;
8279 case nir_tex_src_offset:
8280 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8281 get_const_vec(instr->src[i].src.ssa, const_offset);
8282 has_offset = true;
8283 break;
8284 case nir_tex_src_ddx:
8285 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8286 has_ddx = true;
8287 break;
8288 case nir_tex_src_ddy:
8289 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8290 has_ddy = true;
8291 break;
8292 case nir_tex_src_ms_index:
8293 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8294 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8295 has_sample_index = true;
8296 break;
8297 case nir_tex_src_texture_offset:
8298 case nir_tex_src_sampler_offset:
8299 default:
8300 break;
8301 }
8302 }
8303
8304 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8305 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8306
8307 if (instr->op == nir_texop_texture_samples) {
8308 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8309
8310 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8311 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8312 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8313
8314 Operand default_sample = Operand(1u);
8315 if (ctx->options->robust_buffer_access) {
8316 /* Extract the second dword of the descriptor, if it's
8317 * all zero, then it's a null descriptor.
8318 */
8319 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8320 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8321 default_sample = Operand(is_non_null_descriptor);
8322 }
8323
8324 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8325 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8326 samples, default_sample, bld.scc(is_msaa));
8327 return;
8328 }
8329
8330 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8331 aco_ptr<Instruction> tmp_instr;
8332 Temp acc, pack = Temp();
8333
8334 uint32_t pack_const = 0;
8335 for (unsigned i = 0; i < offset.size(); i++) {
8336 if (!const_offset[i])
8337 continue;
8338 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8339 }
8340
8341 if (offset.type() == RegType::sgpr) {
8342 for (unsigned i = 0; i < offset.size(); i++) {
8343 if (const_offset[i])
8344 continue;
8345
8346 acc = emit_extract_vector(ctx, offset, i, s1);
8347 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8348
8349 if (i) {
8350 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8351 }
8352
8353 if (pack == Temp()) {
8354 pack = acc;
8355 } else {
8356 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8357 }
8358 }
8359
8360 if (pack_const && pack != Temp())
8361 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8362 } else {
8363 for (unsigned i = 0; i < offset.size(); i++) {
8364 if (const_offset[i])
8365 continue;
8366
8367 acc = emit_extract_vector(ctx, offset, i, v1);
8368 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8369
8370 if (i) {
8371 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8372 }
8373
8374 if (pack == Temp()) {
8375 pack = acc;
8376 } else {
8377 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8378 }
8379 }
8380
8381 if (pack_const && pack != Temp())
8382 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8383 }
8384 if (pack_const && pack == Temp())
8385 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8386 else if (pack == Temp())
8387 has_offset = false;
8388 else
8389 offset = pack;
8390 }
8391
8392 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8393 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8394
8395 /* pack derivatives */
8396 if (has_ddx || has_ddy) {
8397 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8398 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8399 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8400 derivs = {ddx, zero, ddy, zero};
8401 } else {
8402 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8403 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8404 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8405 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8406 }
8407 has_derivs = true;
8408 }
8409
8410 if (instr->coord_components > 1 &&
8411 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8412 instr->is_array &&
8413 instr->op != nir_texop_txf)
8414 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8415
8416 if (instr->coord_components > 2 &&
8417 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8418 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8419 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8420 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8421 instr->is_array &&
8422 instr->op != nir_texop_txf &&
8423 instr->op != nir_texop_txf_ms &&
8424 instr->op != nir_texop_fragment_fetch &&
8425 instr->op != nir_texop_fragment_mask_fetch)
8426 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8427
8428 if (ctx->options->chip_class == GFX9 &&
8429 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8430 instr->op != nir_texop_lod && instr->coord_components) {
8431 assert(coords.size() > 0 && coords.size() < 3);
8432
8433 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8434 Operand((uint32_t) 0) :
8435 Operand((uint32_t) 0x3f000000)));
8436 }
8437
8438 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8439
8440 if (instr->op == nir_texop_samples_identical)
8441 resource = fmask_ptr;
8442
8443 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8444 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8445 instr->op != nir_texop_txs &&
8446 instr->op != nir_texop_fragment_fetch &&
8447 instr->op != nir_texop_fragment_mask_fetch) {
8448 assert(has_sample_index);
8449 Operand op(sample_index);
8450 if (sample_index_cv)
8451 op = Operand(sample_index_cv->u32);
8452 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8453 }
8454
8455 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8456 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8457 Temp off = emit_extract_vector(ctx, offset, i, v1);
8458 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8459 }
8460 has_offset = false;
8461 }
8462
8463 /* Build tex instruction */
8464 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8465 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8466 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8467 : 0;
8468 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8469 Temp tmp_dst = dst;
8470
8471 /* gather4 selects the component by dmask and always returns vec4 */
8472 if (instr->op == nir_texop_tg4) {
8473 assert(instr->dest.ssa.num_components == 4);
8474 if (instr->is_shadow)
8475 dmask = 1;
8476 else
8477 dmask = 1 << instr->component;
8478 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8479 tmp_dst = bld.tmp(v4);
8480 } else if (instr->op == nir_texop_samples_identical) {
8481 tmp_dst = bld.tmp(v1);
8482 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8483 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8484 }
8485
8486 aco_ptr<MIMG_instruction> tex;
8487 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8488 if (!has_lod)
8489 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8490
8491 bool div_by_6 = instr->op == nir_texop_txs &&
8492 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8493 instr->is_array &&
8494 (dmask & (1 << 2));
8495 if (tmp_dst.id() == dst.id() && div_by_6)
8496 tmp_dst = bld.tmp(tmp_dst.regClass());
8497
8498 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8499 tex->operands[0] = Operand(resource);
8500 tex->operands[1] = Operand(s4); /* no sampler */
8501 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8502 if (ctx->options->chip_class == GFX9 &&
8503 instr->op == nir_texop_txs &&
8504 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8505 instr->is_array) {
8506 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8507 } else if (instr->op == nir_texop_query_levels) {
8508 tex->dmask = 1 << 3;
8509 } else {
8510 tex->dmask = dmask;
8511 }
8512 tex->da = da;
8513 tex->definitions[0] = Definition(tmp_dst);
8514 tex->dim = dim;
8515 ctx->block->instructions.emplace_back(std::move(tex));
8516
8517 if (div_by_6) {
8518 /* divide 3rd value by 6 by multiplying with magic number */
8519 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8520 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8521 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8522 assert(instr->dest.ssa.num_components == 3);
8523 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8524 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8525 emit_extract_vector(ctx, tmp_dst, 0, v1),
8526 emit_extract_vector(ctx, tmp_dst, 1, v1),
8527 by_6);
8528
8529 }
8530
8531 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8532 return;
8533 }
8534
8535 Temp tg4_compare_cube_wa64 = Temp();
8536
8537 if (tg4_integer_workarounds) {
8538 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8539 tex->operands[0] = Operand(resource);
8540 tex->operands[1] = Operand(s4); /* no sampler */
8541 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8542 tex->dim = dim;
8543 tex->dmask = 0x3;
8544 tex->da = da;
8545 Temp size = bld.tmp(v2);
8546 tex->definitions[0] = Definition(size);
8547 ctx->block->instructions.emplace_back(std::move(tex));
8548 emit_split_vector(ctx, size, size.size());
8549
8550 Temp half_texel[2];
8551 for (unsigned i = 0; i < 2; i++) {
8552 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8553 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8554 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8555 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8556 }
8557
8558 Temp new_coords[2] = {
8559 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8560 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8561 };
8562
8563 if (tg4_integer_cube_workaround) {
8564 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8565 Temp desc[resource.size()];
8566 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8567 Format::PSEUDO, 1, resource.size())};
8568 split->operands[0] = Operand(resource);
8569 for (unsigned i = 0; i < resource.size(); i++) {
8570 desc[i] = bld.tmp(s1);
8571 split->definitions[i] = Definition(desc[i]);
8572 }
8573 ctx->block->instructions.emplace_back(std::move(split));
8574
8575 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8576 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8577 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8578
8579 Temp nfmt;
8580 if (stype == GLSL_TYPE_UINT) {
8581 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8582 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8583 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8584 bld.scc(compare_cube_wa));
8585 } else {
8586 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8587 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8588 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8589 bld.scc(compare_cube_wa));
8590 }
8591 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8592 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8593
8594 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8595
8596 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8597 Operand((uint32_t)C_008F14_NUM_FORMAT));
8598 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8599
8600 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8601 Format::PSEUDO, resource.size(), 1)};
8602 for (unsigned i = 0; i < resource.size(); i++)
8603 vec->operands[i] = Operand(desc[i]);
8604 resource = bld.tmp(resource.regClass());
8605 vec->definitions[0] = Definition(resource);
8606 ctx->block->instructions.emplace_back(std::move(vec));
8607
8608 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8609 new_coords[0], coords[0], tg4_compare_cube_wa64);
8610 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8611 new_coords[1], coords[1], tg4_compare_cube_wa64);
8612 }
8613 coords[0] = new_coords[0];
8614 coords[1] = new_coords[1];
8615 }
8616
8617 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8618 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8619
8620 assert(coords.size() == 1);
8621 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8622 aco_opcode op;
8623 switch (last_bit) {
8624 case 1:
8625 op = aco_opcode::buffer_load_format_x; break;
8626 case 2:
8627 op = aco_opcode::buffer_load_format_xy; break;
8628 case 3:
8629 op = aco_opcode::buffer_load_format_xyz; break;
8630 case 4:
8631 op = aco_opcode::buffer_load_format_xyzw; break;
8632 default:
8633 unreachable("Tex instruction loads more than 4 components.");
8634 }
8635
8636 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8637 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8638 tmp_dst = dst;
8639 else
8640 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8641
8642 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8643 mubuf->operands[0] = Operand(resource);
8644 mubuf->operands[1] = Operand(coords[0]);
8645 mubuf->operands[2] = Operand((uint32_t) 0);
8646 mubuf->definitions[0] = Definition(tmp_dst);
8647 mubuf->idxen = true;
8648 ctx->block->instructions.emplace_back(std::move(mubuf));
8649
8650 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8651 return;
8652 }
8653
8654 /* gather MIMG address components */
8655 std::vector<Temp> args;
8656 if (has_offset)
8657 args.emplace_back(offset);
8658 if (has_bias)
8659 args.emplace_back(bias);
8660 if (has_compare)
8661 args.emplace_back(compare);
8662 if (has_derivs)
8663 args.insert(args.end(), derivs.begin(), derivs.end());
8664
8665 args.insert(args.end(), coords.begin(), coords.end());
8666 if (has_sample_index)
8667 args.emplace_back(sample_index);
8668 if (has_lod)
8669 args.emplace_back(lod);
8670 if (has_clamped_lod)
8671 args.emplace_back(clamped_lod);
8672
8673 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8674 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8675 vec->definitions[0] = Definition(arg);
8676 for (unsigned i = 0; i < args.size(); i++)
8677 vec->operands[i] = Operand(args[i]);
8678 ctx->block->instructions.emplace_back(std::move(vec));
8679
8680
8681 if (instr->op == nir_texop_txf ||
8682 instr->op == nir_texop_txf_ms ||
8683 instr->op == nir_texop_samples_identical ||
8684 instr->op == nir_texop_fragment_fetch ||
8685 instr->op == nir_texop_fragment_mask_fetch) {
8686 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8687 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8688 tex->operands[0] = Operand(resource);
8689 tex->operands[1] = Operand(s4); /* no sampler */
8690 tex->operands[2] = Operand(arg);
8691 tex->dim = dim;
8692 tex->dmask = dmask;
8693 tex->unrm = true;
8694 tex->da = da;
8695 tex->definitions[0] = Definition(tmp_dst);
8696 ctx->block->instructions.emplace_back(std::move(tex));
8697
8698 if (instr->op == nir_texop_samples_identical) {
8699 assert(dmask == 1 && dst.regClass() == v1);
8700 assert(dst.id() != tmp_dst.id());
8701
8702 Temp tmp = bld.tmp(bld.lm);
8703 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8704 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8705
8706 } else {
8707 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8708 }
8709 return;
8710 }
8711
8712 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8713 aco_opcode opcode = aco_opcode::image_sample;
8714 if (has_offset) { /* image_sample_*_o */
8715 if (has_clamped_lod) {
8716 if (has_compare) {
8717 opcode = aco_opcode::image_sample_c_cl_o;
8718 if (has_derivs)
8719 opcode = aco_opcode::image_sample_c_d_cl_o;
8720 if (has_bias)
8721 opcode = aco_opcode::image_sample_c_b_cl_o;
8722 } else {
8723 opcode = aco_opcode::image_sample_cl_o;
8724 if (has_derivs)
8725 opcode = aco_opcode::image_sample_d_cl_o;
8726 if (has_bias)
8727 opcode = aco_opcode::image_sample_b_cl_o;
8728 }
8729 } else if (has_compare) {
8730 opcode = aco_opcode::image_sample_c_o;
8731 if (has_derivs)
8732 opcode = aco_opcode::image_sample_c_d_o;
8733 if (has_bias)
8734 opcode = aco_opcode::image_sample_c_b_o;
8735 if (level_zero)
8736 opcode = aco_opcode::image_sample_c_lz_o;
8737 if (has_lod)
8738 opcode = aco_opcode::image_sample_c_l_o;
8739 } else {
8740 opcode = aco_opcode::image_sample_o;
8741 if (has_derivs)
8742 opcode = aco_opcode::image_sample_d_o;
8743 if (has_bias)
8744 opcode = aco_opcode::image_sample_b_o;
8745 if (level_zero)
8746 opcode = aco_opcode::image_sample_lz_o;
8747 if (has_lod)
8748 opcode = aco_opcode::image_sample_l_o;
8749 }
8750 } else if (has_clamped_lod) { /* image_sample_*_cl */
8751 if (has_compare) {
8752 opcode = aco_opcode::image_sample_c_cl;
8753 if (has_derivs)
8754 opcode = aco_opcode::image_sample_c_d_cl;
8755 if (has_bias)
8756 opcode = aco_opcode::image_sample_c_b_cl;
8757 } else {
8758 opcode = aco_opcode::image_sample_cl;
8759 if (has_derivs)
8760 opcode = aco_opcode::image_sample_d_cl;
8761 if (has_bias)
8762 opcode = aco_opcode::image_sample_b_cl;
8763 }
8764 } else { /* no offset */
8765 if (has_compare) {
8766 opcode = aco_opcode::image_sample_c;
8767 if (has_derivs)
8768 opcode = aco_opcode::image_sample_c_d;
8769 if (has_bias)
8770 opcode = aco_opcode::image_sample_c_b;
8771 if (level_zero)
8772 opcode = aco_opcode::image_sample_c_lz;
8773 if (has_lod)
8774 opcode = aco_opcode::image_sample_c_l;
8775 } else {
8776 opcode = aco_opcode::image_sample;
8777 if (has_derivs)
8778 opcode = aco_opcode::image_sample_d;
8779 if (has_bias)
8780 opcode = aco_opcode::image_sample_b;
8781 if (level_zero)
8782 opcode = aco_opcode::image_sample_lz;
8783 if (has_lod)
8784 opcode = aco_opcode::image_sample_l;
8785 }
8786 }
8787
8788 if (instr->op == nir_texop_tg4) {
8789 if (has_offset) { /* image_gather4_*_o */
8790 if (has_compare) {
8791 opcode = aco_opcode::image_gather4_c_lz_o;
8792 if (has_lod)
8793 opcode = aco_opcode::image_gather4_c_l_o;
8794 if (has_bias)
8795 opcode = aco_opcode::image_gather4_c_b_o;
8796 } else {
8797 opcode = aco_opcode::image_gather4_lz_o;
8798 if (has_lod)
8799 opcode = aco_opcode::image_gather4_l_o;
8800 if (has_bias)
8801 opcode = aco_opcode::image_gather4_b_o;
8802 }
8803 } else {
8804 if (has_compare) {
8805 opcode = aco_opcode::image_gather4_c_lz;
8806 if (has_lod)
8807 opcode = aco_opcode::image_gather4_c_l;
8808 if (has_bias)
8809 opcode = aco_opcode::image_gather4_c_b;
8810 } else {
8811 opcode = aco_opcode::image_gather4_lz;
8812 if (has_lod)
8813 opcode = aco_opcode::image_gather4_l;
8814 if (has_bias)
8815 opcode = aco_opcode::image_gather4_b;
8816 }
8817 }
8818 } else if (instr->op == nir_texop_lod) {
8819 opcode = aco_opcode::image_get_lod;
8820 }
8821
8822 /* we don't need the bias, sample index, compare value or offset to be
8823 * computed in WQM but if the p_create_vector copies the coordinates, then it
8824 * needs to be in WQM */
8825 if (ctx->stage == fragment_fs &&
8826 !has_derivs && !has_lod && !level_zero &&
8827 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8828 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8829 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8830
8831 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8832 tex->operands[0] = Operand(resource);
8833 tex->operands[1] = Operand(sampler);
8834 tex->operands[2] = Operand(arg);
8835 tex->dim = dim;
8836 tex->dmask = dmask;
8837 tex->da = da;
8838 tex->definitions[0] = Definition(tmp_dst);
8839 ctx->block->instructions.emplace_back(std::move(tex));
8840
8841 if (tg4_integer_cube_workaround) {
8842 assert(tmp_dst.id() != dst.id());
8843 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8844
8845 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8846 Temp val[4];
8847 for (unsigned i = 0; i < dst.size(); i++) {
8848 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8849 Temp cvt_val;
8850 if (stype == GLSL_TYPE_UINT)
8851 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8852 else
8853 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8854 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8855 }
8856 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8857 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8858 val[0], val[1], val[2], val[3]);
8859 }
8860 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8861 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8862
8863 }
8864
8865
8866 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
8867 {
8868 Temp tmp = get_ssa_temp(ctx, ssa);
8869 if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
8870 return Operand(rc);
8871 } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
8872 if (ctx->program->wave_size == 64)
8873 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
8874 else
8875 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
8876 } else {
8877 return Operand(tmp);
8878 }
8879 }
8880
8881 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8882 {
8883 aco_ptr<Pseudo_instruction> phi;
8884 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8885 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8886
8887 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
8888 logical |= ctx->block->kind & block_kind_merge;
8889 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8890
8891 /* we want a sorted list of sources, since the predecessor list is also sorted */
8892 std::map<unsigned, nir_ssa_def*> phi_src;
8893 nir_foreach_phi_src(src, instr)
8894 phi_src[src->pred->index] = src->src.ssa;
8895
8896 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8897 unsigned num_operands = 0;
8898 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8899 unsigned num_defined = 0;
8900 unsigned cur_pred_idx = 0;
8901 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8902 if (cur_pred_idx < preds.size()) {
8903 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8904 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8905 unsigned skipped = 0;
8906 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8907 skipped++;
8908 if (cur_pred_idx + skipped < preds.size()) {
8909 for (unsigned i = 0; i < skipped; i++)
8910 operands[num_operands++] = Operand(dst.regClass());
8911 cur_pred_idx += skipped;
8912 } else {
8913 continue;
8914 }
8915 }
8916 /* Handle missing predecessors at the end. This shouldn't happen with loop
8917 * headers and we can't ignore these sources for loop header phis. */
8918 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8919 continue;
8920 cur_pred_idx++;
8921 Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
8922 operands[num_operands++] = op;
8923 num_defined += !op.isUndefined();
8924 }
8925 /* handle block_kind_continue_or_break at loop exit blocks */
8926 while (cur_pred_idx++ < preds.size())
8927 operands[num_operands++] = Operand(dst.regClass());
8928
8929 /* If the loop ends with a break, still add a linear continue edge in case
8930 * that break is divergent or continue_or_break is used. We'll either remove
8931 * this operand later in visit_loop() if it's not necessary or replace the
8932 * undef with something correct. */
8933 if (!logical && ctx->block->kind & block_kind_loop_header) {
8934 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8935 nir_block *last = nir_loop_last_block(loop);
8936 if (last->successors[0] != instr->instr.block)
8937 operands[num_operands++] = Operand(RegClass());
8938 }
8939
8940 if (num_defined == 0) {
8941 Builder bld(ctx->program, ctx->block);
8942 if (dst.regClass() == s1) {
8943 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8944 } else if (dst.regClass() == v1) {
8945 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8946 } else {
8947 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8948 for (unsigned i = 0; i < dst.size(); i++)
8949 vec->operands[i] = Operand(0u);
8950 vec->definitions[0] = Definition(dst);
8951 ctx->block->instructions.emplace_back(std::move(vec));
8952 }
8953 return;
8954 }
8955
8956 /* we can use a linear phi in some cases if one src is undef */
8957 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8958 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8959
8960 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8961 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8962 assert(invert->kind & block_kind_invert);
8963
8964 unsigned then_block = invert->linear_preds[0];
8965
8966 Block* insert_block = NULL;
8967 for (unsigned i = 0; i < num_operands; i++) {
8968 Operand op = operands[i];
8969 if (op.isUndefined())
8970 continue;
8971 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8972 phi->operands[0] = op;
8973 break;
8974 }
8975 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8976 phi->operands[1] = Operand(dst.regClass());
8977 phi->definitions[0] = Definition(dst);
8978 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8979 return;
8980 }
8981
8982 /* try to scalarize vector phis */
8983 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8984 // TODO: scalarize linear phis on divergent ifs
8985 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8986 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8987 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8988 Operand src = operands[i];
8989 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8990 can_scalarize = false;
8991 }
8992 if (can_scalarize) {
8993 unsigned num_components = instr->dest.ssa.num_components;
8994 assert(dst.size() % num_components == 0);
8995 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8996
8997 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8998 for (unsigned k = 0; k < num_components; k++) {
8999 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9000 for (unsigned i = 0; i < num_operands; i++) {
9001 Operand src = operands[i];
9002 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9003 }
9004 Temp phi_dst = {ctx->program->allocateId(), rc};
9005 phi->definitions[0] = Definition(phi_dst);
9006 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9007 new_vec[k] = phi_dst;
9008 vec->operands[k] = Operand(phi_dst);
9009 }
9010 vec->definitions[0] = Definition(dst);
9011 ctx->block->instructions.emplace_back(std::move(vec));
9012 ctx->allocated_vec.emplace(dst.id(), new_vec);
9013 return;
9014 }
9015 }
9016
9017 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9018 for (unsigned i = 0; i < num_operands; i++)
9019 phi->operands[i] = operands[i];
9020 phi->definitions[0] = Definition(dst);
9021 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9022 }
9023
9024
9025 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9026 {
9027 Temp dst = get_ssa_temp(ctx, &instr->def);
9028
9029 assert(dst.type() == RegType::sgpr);
9030
9031 if (dst.size() == 1) {
9032 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9033 } else {
9034 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9035 for (unsigned i = 0; i < dst.size(); i++)
9036 vec->operands[i] = Operand(0u);
9037 vec->definitions[0] = Definition(dst);
9038 ctx->block->instructions.emplace_back(std::move(vec));
9039 }
9040 }
9041
9042 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9043 {
9044 Builder bld(ctx->program, ctx->block);
9045 Block *logical_target;
9046 append_logical_end(ctx->block);
9047 unsigned idx = ctx->block->index;
9048
9049 switch (instr->type) {
9050 case nir_jump_break:
9051 logical_target = ctx->cf_info.parent_loop.exit;
9052 add_logical_edge(idx, logical_target);
9053 ctx->block->kind |= block_kind_break;
9054
9055 if (!ctx->cf_info.parent_if.is_divergent &&
9056 !ctx->cf_info.parent_loop.has_divergent_continue) {
9057 /* uniform break - directly jump out of the loop */
9058 ctx->block->kind |= block_kind_uniform;
9059 ctx->cf_info.has_branch = true;
9060 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9061 add_linear_edge(idx, logical_target);
9062 return;
9063 }
9064 ctx->cf_info.parent_loop.has_divergent_branch = true;
9065 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9066 break;
9067 case nir_jump_continue:
9068 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9069 add_logical_edge(idx, logical_target);
9070 ctx->block->kind |= block_kind_continue;
9071
9072 if (ctx->cf_info.parent_if.is_divergent) {
9073 /* for potential uniform breaks after this continue,
9074 we must ensure that they are handled correctly */
9075 ctx->cf_info.parent_loop.has_divergent_continue = true;
9076 ctx->cf_info.parent_loop.has_divergent_branch = true;
9077 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9078 } else {
9079 /* uniform continue - directly jump to the loop header */
9080 ctx->block->kind |= block_kind_uniform;
9081 ctx->cf_info.has_branch = true;
9082 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9083 add_linear_edge(idx, logical_target);
9084 return;
9085 }
9086 break;
9087 default:
9088 isel_err(&instr->instr, "Unknown NIR jump instr");
9089 abort();
9090 }
9091
9092 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9093 ctx->cf_info.exec_potentially_empty_break = true;
9094 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9095 }
9096
9097 /* remove critical edges from linear CFG */
9098 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9099 Block* break_block = ctx->program->create_and_insert_block();
9100 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9101 break_block->kind |= block_kind_uniform;
9102 add_linear_edge(idx, break_block);
9103 /* the loop_header pointer might be invalidated by this point */
9104 if (instr->type == nir_jump_continue)
9105 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9106 add_linear_edge(break_block->index, logical_target);
9107 bld.reset(break_block);
9108 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9109
9110 Block* continue_block = ctx->program->create_and_insert_block();
9111 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9112 add_linear_edge(idx, continue_block);
9113 append_logical_start(continue_block);
9114 ctx->block = continue_block;
9115 return;
9116 }
9117
9118 void visit_block(isel_context *ctx, nir_block *block)
9119 {
9120 nir_foreach_instr(instr, block) {
9121 switch (instr->type) {
9122 case nir_instr_type_alu:
9123 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9124 break;
9125 case nir_instr_type_load_const:
9126 visit_load_const(ctx, nir_instr_as_load_const(instr));
9127 break;
9128 case nir_instr_type_intrinsic:
9129 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9130 break;
9131 case nir_instr_type_tex:
9132 visit_tex(ctx, nir_instr_as_tex(instr));
9133 break;
9134 case nir_instr_type_phi:
9135 visit_phi(ctx, nir_instr_as_phi(instr));
9136 break;
9137 case nir_instr_type_ssa_undef:
9138 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9139 break;
9140 case nir_instr_type_deref:
9141 break;
9142 case nir_instr_type_jump:
9143 visit_jump(ctx, nir_instr_as_jump(instr));
9144 break;
9145 default:
9146 isel_err(instr, "Unknown NIR instr type");
9147 //abort();
9148 }
9149 }
9150
9151 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9152 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9153 }
9154
9155
9156
9157 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9158 aco_ptr<Instruction>& header_phi, Operand *vals)
9159 {
9160 vals[0] = Operand(header_phi->definitions[0].getTemp());
9161 RegClass rc = vals[0].regClass();
9162
9163 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9164
9165 unsigned next_pred = 1;
9166
9167 for (unsigned idx = first + 1; idx <= last; idx++) {
9168 Block& block = ctx->program->blocks[idx];
9169 if (block.loop_nest_depth != loop_nest_depth) {
9170 vals[idx - first] = vals[idx - 1 - first];
9171 continue;
9172 }
9173
9174 if (block.kind & block_kind_continue) {
9175 vals[idx - first] = header_phi->operands[next_pred];
9176 next_pred++;
9177 continue;
9178 }
9179
9180 bool all_same = true;
9181 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9182 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9183
9184 Operand val;
9185 if (all_same) {
9186 val = vals[block.linear_preds[0] - first];
9187 } else {
9188 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9189 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9190 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9191 phi->operands[i] = vals[block.linear_preds[i] - first];
9192 val = Operand(Temp(ctx->program->allocateId(), rc));
9193 phi->definitions[0] = Definition(val.getTemp());
9194 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9195 }
9196 vals[idx - first] = val;
9197 }
9198
9199 return vals[last - first];
9200 }
9201
9202 static void visit_loop(isel_context *ctx, nir_loop *loop)
9203 {
9204 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9205 append_logical_end(ctx->block);
9206 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9207 Builder bld(ctx->program, ctx->block);
9208 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9209 unsigned loop_preheader_idx = ctx->block->index;
9210
9211 Block loop_exit = Block();
9212 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9213 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9214
9215 Block* loop_header = ctx->program->create_and_insert_block();
9216 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9217 loop_header->kind |= block_kind_loop_header;
9218 add_edge(loop_preheader_idx, loop_header);
9219 ctx->block = loop_header;
9220
9221 /* emit loop body */
9222 unsigned loop_header_idx = loop_header->index;
9223 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9224 append_logical_start(ctx->block);
9225 bool unreachable = visit_cf_list(ctx, &loop->body);
9226
9227 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9228 if (!ctx->cf_info.has_branch) {
9229 append_logical_end(ctx->block);
9230 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9231 /* Discards can result in code running with an empty exec mask.
9232 * This would result in divergent breaks not ever being taken. As a
9233 * workaround, break the loop when the loop mask is empty instead of
9234 * always continuing. */
9235 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9236 unsigned block_idx = ctx->block->index;
9237
9238 /* create helper blocks to avoid critical edges */
9239 Block *break_block = ctx->program->create_and_insert_block();
9240 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9241 break_block->kind = block_kind_uniform;
9242 bld.reset(break_block);
9243 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9244 add_linear_edge(block_idx, break_block);
9245 add_linear_edge(break_block->index, &loop_exit);
9246
9247 Block *continue_block = ctx->program->create_and_insert_block();
9248 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9249 continue_block->kind = block_kind_uniform;
9250 bld.reset(continue_block);
9251 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9252 add_linear_edge(block_idx, continue_block);
9253 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9254
9255 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9256 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9257 ctx->block = &ctx->program->blocks[block_idx];
9258 } else {
9259 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9260 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9261 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9262 else
9263 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9264 }
9265
9266 bld.reset(ctx->block);
9267 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9268 }
9269
9270 /* Fixup phis in loop header from unreachable blocks.
9271 * has_branch/has_divergent_branch also indicates if the loop ends with a
9272 * break/continue instruction, but we don't emit those if unreachable=true */
9273 if (unreachable) {
9274 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9275 bool linear = ctx->cf_info.has_branch;
9276 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9277 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9278 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9279 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9280 /* the last operand should be the one that needs to be removed */
9281 instr->operands.pop_back();
9282 } else if (!is_phi(instr)) {
9283 break;
9284 }
9285 }
9286 }
9287
9288 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9289 * and the previous one shouldn't both happen at once because a break in the
9290 * merge block would get CSE'd */
9291 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9292 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9293 Operand vals[num_vals];
9294 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9295 if (instr->opcode == aco_opcode::p_linear_phi) {
9296 if (ctx->cf_info.has_branch)
9297 instr->operands.pop_back();
9298 else
9299 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9300 } else if (!is_phi(instr)) {
9301 break;
9302 }
9303 }
9304 }
9305
9306 ctx->cf_info.has_branch = false;
9307
9308 // TODO: if the loop has not a single exit, we must add one °°
9309 /* emit loop successor block */
9310 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9311 append_logical_start(ctx->block);
9312
9313 #if 0
9314 // TODO: check if it is beneficial to not branch on continues
9315 /* trim linear phis in loop header */
9316 for (auto&& instr : loop_entry->instructions) {
9317 if (instr->opcode == aco_opcode::p_linear_phi) {
9318 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9319 new_phi->definitions[0] = instr->definitions[0];
9320 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9321 new_phi->operands[i] = instr->operands[i];
9322 /* check that the remaining operands are all the same */
9323 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9324 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9325 instr.swap(new_phi);
9326 } else if (instr->opcode == aco_opcode::p_phi) {
9327 continue;
9328 } else {
9329 break;
9330 }
9331 }
9332 #endif
9333 }
9334
9335 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9336 {
9337 ic->cond = cond;
9338
9339 append_logical_end(ctx->block);
9340 ctx->block->kind |= block_kind_branch;
9341
9342 /* branch to linear then block */
9343 assert(cond.regClass() == ctx->program->lane_mask);
9344 aco_ptr<Pseudo_branch_instruction> branch;
9345 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 1));
9346 branch->definitions[0] = {ctx->program->allocateId(), s2};
9347 branch->definitions[0].setHint(vcc);
9348 branch->operands[0] = Operand(cond);
9349 ctx->block->instructions.push_back(std::move(branch));
9350
9351 ic->BB_if_idx = ctx->block->index;
9352 ic->BB_invert = Block();
9353 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9354 /* Invert blocks are intentionally not marked as top level because they
9355 * are not part of the logical cfg. */
9356 ic->BB_invert.kind |= block_kind_invert;
9357 ic->BB_endif = Block();
9358 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9359 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9360
9361 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9362 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9363 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9364 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9365 ctx->cf_info.parent_if.is_divergent = true;
9366
9367 /* divergent branches use cbranch_execz */
9368 ctx->cf_info.exec_potentially_empty_discard = false;
9369 ctx->cf_info.exec_potentially_empty_break = false;
9370 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9371
9372 /** emit logical then block */
9373 Block* BB_then_logical = ctx->program->create_and_insert_block();
9374 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9375 add_edge(ic->BB_if_idx, BB_then_logical);
9376 ctx->block = BB_then_logical;
9377 append_logical_start(BB_then_logical);
9378 }
9379
9380 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9381 {
9382 Block *BB_then_logical = ctx->block;
9383 append_logical_end(BB_then_logical);
9384 /* branch from logical then block to invert block */
9385 aco_ptr<Pseudo_branch_instruction> branch;
9386 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9387 branch->definitions[0] = {ctx->program->allocateId(), s2};
9388 branch->definitions[0].setHint(vcc);
9389 BB_then_logical->instructions.emplace_back(std::move(branch));
9390 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9391 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9392 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9393 BB_then_logical->kind |= block_kind_uniform;
9394 assert(!ctx->cf_info.has_branch);
9395 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9396 ctx->cf_info.parent_loop.has_divergent_branch = false;
9397
9398 /** emit linear then block */
9399 Block* BB_then_linear = ctx->program->create_and_insert_block();
9400 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9401 BB_then_linear->kind |= block_kind_uniform;
9402 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9403 /* branch from linear then block to invert block */
9404 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9405 branch->definitions[0] = {ctx->program->allocateId(), s2};
9406 branch->definitions[0].setHint(vcc);
9407 BB_then_linear->instructions.emplace_back(std::move(branch));
9408 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9409
9410 /** emit invert merge block */
9411 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9412 ic->invert_idx = ctx->block->index;
9413
9414 /* branch to linear else block (skip else) */
9415 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 1));
9416 branch->definitions[0] = {ctx->program->allocateId(), s2};
9417 branch->definitions[0].setHint(vcc);
9418 branch->operands[0] = Operand(ic->cond);
9419 ctx->block->instructions.push_back(std::move(branch));
9420
9421 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9422 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9423 ic->exec_potentially_empty_break_depth_old =
9424 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9425 /* divergent branches use cbranch_execz */
9426 ctx->cf_info.exec_potentially_empty_discard = false;
9427 ctx->cf_info.exec_potentially_empty_break = false;
9428 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9429
9430 /** emit logical else block */
9431 Block* BB_else_logical = ctx->program->create_and_insert_block();
9432 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9433 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9434 add_linear_edge(ic->invert_idx, BB_else_logical);
9435 ctx->block = BB_else_logical;
9436 append_logical_start(BB_else_logical);
9437 }
9438
9439 static void end_divergent_if(isel_context *ctx, if_context *ic)
9440 {
9441 Block *BB_else_logical = ctx->block;
9442 append_logical_end(BB_else_logical);
9443
9444 /* branch from logical else block to endif block */
9445 aco_ptr<Pseudo_branch_instruction> branch;
9446 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9447 branch->definitions[0] = {ctx->program->allocateId(), s2};
9448 branch->definitions[0].setHint(vcc);
9449 BB_else_logical->instructions.emplace_back(std::move(branch));
9450 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9451 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9452 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9453 BB_else_logical->kind |= block_kind_uniform;
9454
9455 assert(!ctx->cf_info.has_branch);
9456 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9457
9458
9459 /** emit linear else block */
9460 Block* BB_else_linear = ctx->program->create_and_insert_block();
9461 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9462 BB_else_linear->kind |= block_kind_uniform;
9463 add_linear_edge(ic->invert_idx, BB_else_linear);
9464
9465 /* branch from linear else block to endif block */
9466 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9467 branch->definitions[0] = {ctx->program->allocateId(), s2};
9468 branch->definitions[0].setHint(vcc);
9469 BB_else_linear->instructions.emplace_back(std::move(branch));
9470 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9471
9472
9473 /** emit endif merge block */
9474 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9475 append_logical_start(ctx->block);
9476
9477
9478 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9479 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9480 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9481 ctx->cf_info.exec_potentially_empty_break_depth =
9482 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9483 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9484 !ctx->cf_info.parent_if.is_divergent) {
9485 ctx->cf_info.exec_potentially_empty_break = false;
9486 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9487 }
9488 /* uniform control flow never has an empty exec-mask */
9489 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9490 ctx->cf_info.exec_potentially_empty_discard = false;
9491 ctx->cf_info.exec_potentially_empty_break = false;
9492 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9493 }
9494 }
9495
9496 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9497 {
9498 assert(cond.regClass() == s1);
9499
9500 append_logical_end(ctx->block);
9501 ctx->block->kind |= block_kind_uniform;
9502
9503 aco_ptr<Pseudo_branch_instruction> branch;
9504 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9505 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 1));
9506 branch->definitions[0] = {ctx->program->allocateId(), s2};
9507 branch->definitions[0].setHint(vcc);
9508 branch->operands[0] = Operand(cond);
9509 branch->operands[0].setFixed(scc);
9510 ctx->block->instructions.emplace_back(std::move(branch));
9511
9512 ic->BB_if_idx = ctx->block->index;
9513 ic->BB_endif = Block();
9514 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9515 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9516
9517 ctx->cf_info.has_branch = false;
9518 ctx->cf_info.parent_loop.has_divergent_branch = false;
9519
9520 /** emit then block */
9521 Block* BB_then = ctx->program->create_and_insert_block();
9522 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9523 add_edge(ic->BB_if_idx, BB_then);
9524 append_logical_start(BB_then);
9525 ctx->block = BB_then;
9526 }
9527
9528 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9529 {
9530 Block *BB_then = ctx->block;
9531
9532 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9533 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9534
9535 if (!ic->uniform_has_then_branch) {
9536 append_logical_end(BB_then);
9537 /* branch from then block to endif block */
9538 aco_ptr<Pseudo_branch_instruction> branch;
9539 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9540 branch->definitions[0] = {ctx->program->allocateId(), s2};
9541 branch->definitions[0].setHint(vcc);
9542 BB_then->instructions.emplace_back(std::move(branch));
9543 add_linear_edge(BB_then->index, &ic->BB_endif);
9544 if (!ic->then_branch_divergent)
9545 add_logical_edge(BB_then->index, &ic->BB_endif);
9546 BB_then->kind |= block_kind_uniform;
9547 }
9548
9549 ctx->cf_info.has_branch = false;
9550 ctx->cf_info.parent_loop.has_divergent_branch = false;
9551
9552 /** emit else block */
9553 Block* BB_else = ctx->program->create_and_insert_block();
9554 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9555 add_edge(ic->BB_if_idx, BB_else);
9556 append_logical_start(BB_else);
9557 ctx->block = BB_else;
9558 }
9559
9560 static void end_uniform_if(isel_context *ctx, if_context *ic)
9561 {
9562 Block *BB_else = ctx->block;
9563
9564 if (!ctx->cf_info.has_branch) {
9565 append_logical_end(BB_else);
9566 /* branch from then block to endif block */
9567 aco_ptr<Pseudo_branch_instruction> branch;
9568 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9569 branch->definitions[0] = {ctx->program->allocateId(), s2};
9570 branch->definitions[0].setHint(vcc);
9571 BB_else->instructions.emplace_back(std::move(branch));
9572 add_linear_edge(BB_else->index, &ic->BB_endif);
9573 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9574 add_logical_edge(BB_else->index, &ic->BB_endif);
9575 BB_else->kind |= block_kind_uniform;
9576 }
9577
9578 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9579 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9580
9581 /** emit endif merge block */
9582 if (!ctx->cf_info.has_branch) {
9583 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9584 append_logical_start(ctx->block);
9585 }
9586 }
9587
9588 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9589 {
9590 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9591 Builder bld(ctx->program, ctx->block);
9592 aco_ptr<Pseudo_branch_instruction> branch;
9593 if_context ic;
9594
9595 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
9596 /**
9597 * Uniform conditionals are represented in the following way*) :
9598 *
9599 * The linear and logical CFG:
9600 * BB_IF
9601 * / \
9602 * BB_THEN (logical) BB_ELSE (logical)
9603 * \ /
9604 * BB_ENDIF
9605 *
9606 * *) Exceptions may be due to break and continue statements within loops
9607 * If a break/continue happens within uniform control flow, it branches
9608 * to the loop exit/entry block. Otherwise, it branches to the next
9609 * merge block.
9610 **/
9611
9612 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9613 assert(cond.regClass() == ctx->program->lane_mask);
9614 cond = bool_to_scalar_condition(ctx, cond);
9615
9616 begin_uniform_if_then(ctx, &ic, cond);
9617 visit_cf_list(ctx, &if_stmt->then_list);
9618
9619 begin_uniform_if_else(ctx, &ic);
9620 visit_cf_list(ctx, &if_stmt->else_list);
9621
9622 end_uniform_if(ctx, &ic);
9623 } else { /* non-uniform condition */
9624 /**
9625 * To maintain a logical and linear CFG without critical edges,
9626 * non-uniform conditionals are represented in the following way*) :
9627 *
9628 * The linear CFG:
9629 * BB_IF
9630 * / \
9631 * BB_THEN (logical) BB_THEN (linear)
9632 * \ /
9633 * BB_INVERT (linear)
9634 * / \
9635 * BB_ELSE (logical) BB_ELSE (linear)
9636 * \ /
9637 * BB_ENDIF
9638 *
9639 * The logical CFG:
9640 * BB_IF
9641 * / \
9642 * BB_THEN (logical) BB_ELSE (logical)
9643 * \ /
9644 * BB_ENDIF
9645 *
9646 * *) Exceptions may be due to break and continue statements within loops
9647 **/
9648
9649 begin_divergent_if_then(ctx, &ic, cond);
9650 visit_cf_list(ctx, &if_stmt->then_list);
9651
9652 begin_divergent_if_else(ctx, &ic);
9653 visit_cf_list(ctx, &if_stmt->else_list);
9654
9655 end_divergent_if(ctx, &ic);
9656 }
9657
9658 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9659 }
9660
9661 static bool visit_cf_list(isel_context *ctx,
9662 struct exec_list *list)
9663 {
9664 foreach_list_typed(nir_cf_node, node, node, list) {
9665 switch (node->type) {
9666 case nir_cf_node_block:
9667 visit_block(ctx, nir_cf_node_as_block(node));
9668 break;
9669 case nir_cf_node_if:
9670 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9671 return true;
9672 break;
9673 case nir_cf_node_loop:
9674 visit_loop(ctx, nir_cf_node_as_loop(node));
9675 break;
9676 default:
9677 unreachable("unimplemented cf list type");
9678 }
9679 }
9680 return false;
9681 }
9682
9683 static void create_null_export(isel_context *ctx)
9684 {
9685 /* Some shader stages always need to have exports.
9686 * So when there is none, we need to add a null export.
9687 */
9688
9689 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9690 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9691 Builder bld(ctx->program, ctx->block);
9692 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9693 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9694 }
9695
9696 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9697 {
9698 assert(ctx->stage == vertex_vs ||
9699 ctx->stage == tess_eval_vs ||
9700 ctx->stage == gs_copy_vs ||
9701 ctx->stage == ngg_vertex_gs ||
9702 ctx->stage == ngg_tess_eval_gs);
9703
9704 int offset = (ctx->stage & sw_tes)
9705 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9706 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9707 uint64_t mask = ctx->outputs.mask[slot];
9708 if (!is_pos && !mask)
9709 return false;
9710 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9711 return false;
9712 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9713 exp->enabled_mask = mask;
9714 for (unsigned i = 0; i < 4; ++i) {
9715 if (mask & (1 << i))
9716 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9717 else
9718 exp->operands[i] = Operand(v1);
9719 }
9720 /* GFX10 (Navi1x) skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9721 * Setting valid_mask=1 prevents it and has no other effect.
9722 */
9723 exp->valid_mask = ctx->options->chip_class == GFX10 && is_pos && *next_pos == 0;
9724 exp->done = false;
9725 exp->compressed = false;
9726 if (is_pos)
9727 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9728 else
9729 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9730 ctx->block->instructions.emplace_back(std::move(exp));
9731
9732 return true;
9733 }
9734
9735 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9736 {
9737 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9738 exp->enabled_mask = 0;
9739 for (unsigned i = 0; i < 4; ++i)
9740 exp->operands[i] = Operand(v1);
9741 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9742 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9743 exp->enabled_mask |= 0x1;
9744 }
9745 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9746 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9747 exp->enabled_mask |= 0x4;
9748 }
9749 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9750 if (ctx->options->chip_class < GFX9) {
9751 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9752 exp->enabled_mask |= 0x8;
9753 } else {
9754 Builder bld(ctx->program, ctx->block);
9755
9756 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9757 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9758 if (exp->operands[2].isTemp())
9759 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9760
9761 exp->operands[2] = Operand(out);
9762 exp->enabled_mask |= 0x4;
9763 }
9764 }
9765 exp->valid_mask = ctx->options->chip_class == GFX10 && *next_pos == 0;
9766 exp->done = false;
9767 exp->compressed = false;
9768 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9769 ctx->block->instructions.emplace_back(std::move(exp));
9770 }
9771
9772 static void create_export_phis(isel_context *ctx)
9773 {
9774 /* Used when exports are needed, but the output temps are defined in a preceding block.
9775 * This function will set up phis in order to access the outputs in the next block.
9776 */
9777
9778 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9779 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9780 ctx->block->instructions.pop_back();
9781
9782 Builder bld(ctx->program, ctx->block);
9783
9784 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9785 uint64_t mask = ctx->outputs.mask[slot];
9786 for (unsigned i = 0; i < 4; ++i) {
9787 if (!(mask & (1 << i)))
9788 continue;
9789
9790 Temp old = ctx->outputs.temps[slot * 4 + i];
9791 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9792 ctx->outputs.temps[slot * 4 + i] = phi;
9793 }
9794 }
9795
9796 bld.insert(std::move(logical_start));
9797 }
9798
9799 static void create_vs_exports(isel_context *ctx)
9800 {
9801 assert(ctx->stage == vertex_vs ||
9802 ctx->stage == tess_eval_vs ||
9803 ctx->stage == gs_copy_vs ||
9804 ctx->stage == ngg_vertex_gs ||
9805 ctx->stage == ngg_tess_eval_gs);
9806
9807 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9808 ? &ctx->program->info->tes.outinfo
9809 : &ctx->program->info->vs.outinfo;
9810
9811 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9812 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9813 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9814 }
9815
9816 if (ctx->options->key.has_multiview_view_index) {
9817 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9818 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9819 }
9820
9821 /* the order these position exports are created is important */
9822 int next_pos = 0;
9823 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9824 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9825 export_vs_psiz_layer_viewport(ctx, &next_pos);
9826 exported_pos = true;
9827 }
9828 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9829 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9830 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9831 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9832
9833 if (ctx->export_clip_dists) {
9834 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9835 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9836 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9837 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9838 }
9839
9840 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9841 if (i < VARYING_SLOT_VAR0 &&
9842 i != VARYING_SLOT_LAYER &&
9843 i != VARYING_SLOT_PRIMITIVE_ID &&
9844 i != VARYING_SLOT_VIEWPORT)
9845 continue;
9846
9847 export_vs_varying(ctx, i, false, NULL);
9848 }
9849
9850 if (!exported_pos)
9851 create_null_export(ctx);
9852 }
9853
9854 static bool export_fs_mrt_z(isel_context *ctx)
9855 {
9856 Builder bld(ctx->program, ctx->block);
9857 unsigned enabled_channels = 0;
9858 bool compr = false;
9859 Operand values[4];
9860
9861 for (unsigned i = 0; i < 4; ++i) {
9862 values[i] = Operand(v1);
9863 }
9864
9865 /* Both stencil and sample mask only need 16-bits. */
9866 if (!ctx->program->info->ps.writes_z &&
9867 (ctx->program->info->ps.writes_stencil ||
9868 ctx->program->info->ps.writes_sample_mask)) {
9869 compr = true; /* COMPR flag */
9870
9871 if (ctx->program->info->ps.writes_stencil) {
9872 /* Stencil should be in X[23:16]. */
9873 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9874 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9875 enabled_channels |= 0x3;
9876 }
9877
9878 if (ctx->program->info->ps.writes_sample_mask) {
9879 /* SampleMask should be in Y[15:0]. */
9880 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9881 enabled_channels |= 0xc;
9882 }
9883 } else {
9884 if (ctx->program->info->ps.writes_z) {
9885 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9886 enabled_channels |= 0x1;
9887 }
9888
9889 if (ctx->program->info->ps.writes_stencil) {
9890 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9891 enabled_channels |= 0x2;
9892 }
9893
9894 if (ctx->program->info->ps.writes_sample_mask) {
9895 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9896 enabled_channels |= 0x4;
9897 }
9898 }
9899
9900 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9901 * writemask component.
9902 */
9903 if (ctx->options->chip_class == GFX6 &&
9904 ctx->options->family != CHIP_OLAND &&
9905 ctx->options->family != CHIP_HAINAN) {
9906 enabled_channels |= 0x1;
9907 }
9908
9909 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9910 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9911
9912 return true;
9913 }
9914
9915 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9916 {
9917 Builder bld(ctx->program, ctx->block);
9918 unsigned write_mask = ctx->outputs.mask[slot];
9919 Operand values[4];
9920
9921 for (unsigned i = 0; i < 4; ++i) {
9922 if (write_mask & (1 << i)) {
9923 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9924 } else {
9925 values[i] = Operand(v1);
9926 }
9927 }
9928
9929 unsigned target, col_format;
9930 unsigned enabled_channels = 0;
9931 aco_opcode compr_op = (aco_opcode)0;
9932
9933 slot -= FRAG_RESULT_DATA0;
9934 target = V_008DFC_SQ_EXP_MRT + slot;
9935 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9936
9937 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9938 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9939 bool is_16bit = values[0].regClass() == v2b;
9940
9941 switch (col_format)
9942 {
9943 case V_028714_SPI_SHADER_ZERO:
9944 enabled_channels = 0; /* writemask */
9945 target = V_008DFC_SQ_EXP_NULL;
9946 break;
9947
9948 case V_028714_SPI_SHADER_32_R:
9949 enabled_channels = 1;
9950 break;
9951
9952 case V_028714_SPI_SHADER_32_GR:
9953 enabled_channels = 0x3;
9954 break;
9955
9956 case V_028714_SPI_SHADER_32_AR:
9957 if (ctx->options->chip_class >= GFX10) {
9958 /* Special case: on GFX10, the outputs are different for 32_AR */
9959 enabled_channels = 0x3;
9960 values[1] = values[3];
9961 values[3] = Operand(v1);
9962 } else {
9963 enabled_channels = 0x9;
9964 }
9965 break;
9966
9967 case V_028714_SPI_SHADER_FP16_ABGR:
9968 enabled_channels = 0x5;
9969 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9970 if (is_16bit) {
9971 if (ctx->options->chip_class >= GFX9) {
9972 /* Pack the FP16 values together instead of converting them to
9973 * FP32 and back to FP16.
9974 * TODO: use p_create_vector and let the compiler optimizes.
9975 */
9976 compr_op = aco_opcode::v_pack_b32_f16;
9977 } else {
9978 for (unsigned i = 0; i < 4; i++) {
9979 if ((write_mask >> i) & 1)
9980 values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
9981 }
9982 }
9983 }
9984 break;
9985
9986 case V_028714_SPI_SHADER_UNORM16_ABGR:
9987 enabled_channels = 0x5;
9988 if (is_16bit && ctx->options->chip_class >= GFX9) {
9989 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
9990 } else {
9991 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9992 }
9993 break;
9994
9995 case V_028714_SPI_SHADER_SNORM16_ABGR:
9996 enabled_channels = 0x5;
9997 if (is_16bit && ctx->options->chip_class >= GFX9) {
9998 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
9999 } else {
10000 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10001 }
10002 break;
10003
10004 case V_028714_SPI_SHADER_UINT16_ABGR: {
10005 enabled_channels = 0x5;
10006 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10007 if (is_int8 || is_int10) {
10008 /* clamp */
10009 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10010 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10011
10012 for (unsigned i = 0; i < 4; i++) {
10013 if ((write_mask >> i) & 1) {
10014 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10015 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10016 values[i]);
10017 }
10018 }
10019 } else if (is_16bit) {
10020 for (unsigned i = 0; i < 4; i++) {
10021 if ((write_mask >> i) & 1) {
10022 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10023 values[i] = Operand(tmp);
10024 }
10025 }
10026 }
10027 break;
10028 }
10029
10030 case V_028714_SPI_SHADER_SINT16_ABGR:
10031 enabled_channels = 0x5;
10032 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10033 if (is_int8 || is_int10) {
10034 /* clamp */
10035 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10036 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10037 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10038 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10039
10040 for (unsigned i = 0; i < 4; i++) {
10041 if ((write_mask >> i) & 1) {
10042 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10043 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10044 values[i]);
10045 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10046 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10047 values[i]);
10048 }
10049 }
10050 } else if (is_16bit) {
10051 for (unsigned i = 0; i < 4; i++) {
10052 if ((write_mask >> i) & 1) {
10053 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10054 values[i] = Operand(tmp);
10055 }
10056 }
10057 }
10058 break;
10059
10060 case V_028714_SPI_SHADER_32_ABGR:
10061 enabled_channels = 0xF;
10062 break;
10063
10064 default:
10065 break;
10066 }
10067
10068 if (target == V_008DFC_SQ_EXP_NULL)
10069 return false;
10070
10071 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10072 if (ctx->options->enable_mrt_output_nan_fixup &&
10073 !is_16bit &&
10074 (col_format == V_028714_SPI_SHADER_32_R ||
10075 col_format == V_028714_SPI_SHADER_32_GR ||
10076 col_format == V_028714_SPI_SHADER_32_AR ||
10077 col_format == V_028714_SPI_SHADER_32_ABGR ||
10078 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10079 for (int i = 0; i < 4; i++) {
10080 if (!(write_mask & (1 << i)))
10081 continue;
10082
10083 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10084 bld.hint_vcc(bld.def(bld.lm)), values[i],
10085 bld.copy(bld.def(v1), Operand(3u)));
10086 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10087 bld.copy(bld.def(v1), Operand(0u)), isnan);
10088 }
10089 }
10090
10091 if ((bool) compr_op) {
10092 for (int i = 0; i < 2; i++) {
10093 /* check if at least one of the values to be compressed is enabled */
10094 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10095 if (enabled) {
10096 enabled_channels |= enabled << (i*2);
10097 values[i] = bld.vop3(compr_op, bld.def(v1),
10098 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10099 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10100 } else {
10101 values[i] = Operand(v1);
10102 }
10103 }
10104 values[2] = Operand(v1);
10105 values[3] = Operand(v1);
10106 } else {
10107 for (int i = 0; i < 4; i++)
10108 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10109 }
10110
10111 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10112 enabled_channels, target, (bool) compr_op);
10113 return true;
10114 }
10115
10116 static void create_fs_exports(isel_context *ctx)
10117 {
10118 bool exported = false;
10119
10120 /* Export depth, stencil and sample mask. */
10121 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10122 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10123 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10124 exported |= export_fs_mrt_z(ctx);
10125
10126 /* Export all color render targets. */
10127 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10128 if (ctx->outputs.mask[i])
10129 exported |= export_fs_mrt_color(ctx, i);
10130
10131 if (!exported)
10132 create_null_export(ctx);
10133 }
10134
10135 static void create_workgroup_barrier(Builder& bld)
10136 {
10137 bld.barrier(aco_opcode::p_barrier,
10138 memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup),
10139 scope_workgroup);
10140 }
10141
10142 static void write_tcs_tess_factors(isel_context *ctx)
10143 {
10144 unsigned outer_comps;
10145 unsigned inner_comps;
10146
10147 switch (ctx->args->options->key.tcs.primitive_mode) {
10148 case GL_ISOLINES:
10149 outer_comps = 2;
10150 inner_comps = 0;
10151 break;
10152 case GL_TRIANGLES:
10153 outer_comps = 3;
10154 inner_comps = 1;
10155 break;
10156 case GL_QUADS:
10157 outer_comps = 4;
10158 inner_comps = 2;
10159 break;
10160 default:
10161 return;
10162 }
10163
10164 Builder bld(ctx->program, ctx->block);
10165
10166 create_workgroup_barrier(bld);
10167
10168 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10169 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10170
10171 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10172 if_context ic_invocation_id_is_zero;
10173 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10174 bld.reset(ctx->block);
10175
10176 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10177
10178 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10179 unsigned stride = inner_comps + outer_comps;
10180 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10181 Temp tf_inner_vec;
10182 Temp tf_outer_vec;
10183 Temp out[6];
10184 assert(stride <= (sizeof(out) / sizeof(Temp)));
10185
10186 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10187 // LINES reversal
10188 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10189 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10190 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10191 } else {
10192 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10193 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10194
10195 for (unsigned i = 0; i < outer_comps; ++i)
10196 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10197 for (unsigned i = 0; i < inner_comps; ++i)
10198 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10199 }
10200
10201 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10202 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10203 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10204 unsigned tf_const_offset = 0;
10205
10206 if (ctx->program->chip_class <= GFX8) {
10207 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10208 if_context ic_rel_patch_id_is_zero;
10209 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10210 bld.reset(ctx->block);
10211
10212 /* Store the dynamic HS control word. */
10213 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10214 bld.mubuf(aco_opcode::buffer_store_dword,
10215 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10216 /* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false,
10217 /* addr64 */ false, /* disable_wqm */ false, /* glc */ true);
10218 tf_const_offset += 4;
10219
10220 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10221 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10222 bld.reset(ctx->block);
10223 }
10224
10225 assert(stride == 2 || stride == 4 || stride == 6);
10226 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10227 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, memory_sync_info());
10228
10229 /* Store to offchip for TES to read - only if TES reads them */
10230 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10231 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10232 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10233
10234 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10235 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, memory_sync_info(storage_vmem_output));
10236
10237 if (likely(inner_comps)) {
10238 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10239 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, memory_sync_info(storage_vmem_output));
10240 }
10241 }
10242
10243 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10244 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10245 }
10246
10247 static void emit_stream_output(isel_context *ctx,
10248 Temp const *so_buffers,
10249 Temp const *so_write_offset,
10250 const struct radv_stream_output *output)
10251 {
10252 unsigned num_comps = util_bitcount(output->component_mask);
10253 unsigned writemask = (1 << num_comps) - 1;
10254 unsigned loc = output->location;
10255 unsigned buf = output->buffer;
10256
10257 assert(num_comps && num_comps <= 4);
10258 if (!num_comps || num_comps > 4)
10259 return;
10260
10261 unsigned start = ffs(output->component_mask) - 1;
10262
10263 Temp out[4];
10264 bool all_undef = true;
10265 assert(ctx->stage & hw_vs);
10266 for (unsigned i = 0; i < num_comps; i++) {
10267 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10268 all_undef = all_undef && !out[i].id();
10269 }
10270 if (all_undef)
10271 return;
10272
10273 while (writemask) {
10274 int start, count;
10275 u_bit_scan_consecutive_range(&writemask, &start, &count);
10276 if (count == 3 && ctx->options->chip_class == GFX6) {
10277 /* GFX6 doesn't support storing vec3, split it. */
10278 writemask |= 1u << (start + 2);
10279 count = 2;
10280 }
10281
10282 unsigned offset = output->offset + start * 4;
10283
10284 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10285 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10286 for (int i = 0; i < count; ++i)
10287 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10288 vec->definitions[0] = Definition(write_data);
10289 ctx->block->instructions.emplace_back(std::move(vec));
10290
10291 aco_opcode opcode;
10292 switch (count) {
10293 case 1:
10294 opcode = aco_opcode::buffer_store_dword;
10295 break;
10296 case 2:
10297 opcode = aco_opcode::buffer_store_dwordx2;
10298 break;
10299 case 3:
10300 opcode = aco_opcode::buffer_store_dwordx3;
10301 break;
10302 case 4:
10303 opcode = aco_opcode::buffer_store_dwordx4;
10304 break;
10305 default:
10306 unreachable("Unsupported dword count.");
10307 }
10308
10309 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10310 store->operands[0] = Operand(so_buffers[buf]);
10311 store->operands[1] = Operand(so_write_offset[buf]);
10312 store->operands[2] = Operand((uint32_t) 0);
10313 store->operands[3] = Operand(write_data);
10314 if (offset > 4095) {
10315 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10316 Builder bld(ctx->program, ctx->block);
10317 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10318 } else {
10319 store->offset = offset;
10320 }
10321 store->offen = true;
10322 store->glc = true;
10323 store->dlc = false;
10324 store->slc = true;
10325 ctx->block->instructions.emplace_back(std::move(store));
10326 }
10327 }
10328
10329 static void emit_streamout(isel_context *ctx, unsigned stream)
10330 {
10331 Builder bld(ctx->program, ctx->block);
10332
10333 Temp so_buffers[4];
10334 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10335 for (unsigned i = 0; i < 4; i++) {
10336 unsigned stride = ctx->program->info->so.strides[i];
10337 if (!stride)
10338 continue;
10339
10340 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10341 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10342 }
10343
10344 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10345 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10346
10347 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10348
10349 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10350
10351 if_context ic;
10352 begin_divergent_if_then(ctx, &ic, can_emit);
10353
10354 bld.reset(ctx->block);
10355
10356 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10357
10358 Temp so_write_offset[4];
10359
10360 for (unsigned i = 0; i < 4; i++) {
10361 unsigned stride = ctx->program->info->so.strides[i];
10362 if (!stride)
10363 continue;
10364
10365 if (stride == 1) {
10366 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10367 get_arg(ctx, ctx->args->streamout_write_idx),
10368 get_arg(ctx, ctx->args->streamout_offset[i]));
10369 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10370
10371 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10372 } else {
10373 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10374 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10375 get_arg(ctx, ctx->args->streamout_offset[i]));
10376 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10377 }
10378 }
10379
10380 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10381 struct radv_stream_output *output =
10382 &ctx->program->info->so.outputs[i];
10383 if (stream != output->stream)
10384 continue;
10385
10386 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10387 }
10388
10389 begin_divergent_if_else(ctx, &ic);
10390 end_divergent_if(ctx, &ic);
10391 }
10392
10393 } /* end namespace */
10394
10395 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10396 {
10397 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10398 Builder bld(ctx->program, ctx->block);
10399 constexpr unsigned hs_idx = 1u;
10400 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10401 get_arg(ctx, ctx->args->merged_wave_info),
10402 Operand((8u << 16) | (hs_idx * 8u)));
10403 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10404
10405 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10406
10407 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10408 get_arg(ctx, ctx->args->rel_auto_id),
10409 get_arg(ctx, ctx->args->ac.instance_id),
10410 ls_has_nonzero_hs_threads);
10411 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10412 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10413 get_arg(ctx, ctx->args->rel_auto_id),
10414 ls_has_nonzero_hs_threads);
10415 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10416 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10417 get_arg(ctx, ctx->args->ac.vertex_id),
10418 ls_has_nonzero_hs_threads);
10419
10420 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10421 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10422 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10423 }
10424
10425 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10426 {
10427 /* Split all arguments except for the first (ring_offsets) and the last
10428 * (exec) so that the dead channels don't stay live throughout the program.
10429 */
10430 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10431 if (startpgm->definitions[i].regClass().size() > 1) {
10432 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10433 startpgm->definitions[i].regClass().size());
10434 }
10435 }
10436 }
10437
10438 void handle_bc_optimize(isel_context *ctx)
10439 {
10440 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10441 Builder bld(ctx->program, ctx->block);
10442 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10443 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10444 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10445 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10446 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10447 if (uses_center && uses_centroid) {
10448 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10449 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10450
10451 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10452 Temp new_coord[2];
10453 for (unsigned i = 0; i < 2; i++) {
10454 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10455 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10456 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10457 persp_centroid, persp_center, sel);
10458 }
10459 ctx->persp_centroid = bld.tmp(v2);
10460 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10461 Operand(new_coord[0]), Operand(new_coord[1]));
10462 emit_split_vector(ctx, ctx->persp_centroid, 2);
10463 }
10464
10465 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10466 Temp new_coord[2];
10467 for (unsigned i = 0; i < 2; i++) {
10468 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10469 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10470 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10471 linear_centroid, linear_center, sel);
10472 }
10473 ctx->linear_centroid = bld.tmp(v2);
10474 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10475 Operand(new_coord[0]), Operand(new_coord[1]));
10476 emit_split_vector(ctx, ctx->linear_centroid, 2);
10477 }
10478 }
10479 }
10480
10481 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10482 {
10483 Program *program = ctx->program;
10484
10485 unsigned float_controls = shader->info.float_controls_execution_mode;
10486
10487 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10488 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10489 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10490 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10491 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10492
10493 program->next_fp_mode.must_flush_denorms32 =
10494 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10495 program->next_fp_mode.must_flush_denorms16_64 =
10496 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10497 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10498
10499 program->next_fp_mode.care_about_round32 =
10500 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10501
10502 program->next_fp_mode.care_about_round16_64 =
10503 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10504 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10505
10506 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
10507 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
10508 if (program->next_fp_mode.must_flush_denorms16_64)
10509 program->next_fp_mode.denorm16_64 = 0;
10510 else
10511 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10512
10513 /* preserving fp32 denorms is expensive, so only do it if asked */
10514 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10515 program->next_fp_mode.denorm32 = fp_denorm_keep;
10516 else
10517 program->next_fp_mode.denorm32 = 0;
10518
10519 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10520 program->next_fp_mode.round32 = fp_round_tz;
10521 else
10522 program->next_fp_mode.round32 = fp_round_ne;
10523
10524 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10525 program->next_fp_mode.round16_64 = fp_round_tz;
10526 else
10527 program->next_fp_mode.round16_64 = fp_round_ne;
10528
10529 ctx->block->fp_mode = program->next_fp_mode;
10530 }
10531
10532 void cleanup_cfg(Program *program)
10533 {
10534 /* create linear_succs/logical_succs */
10535 for (Block& BB : program->blocks) {
10536 for (unsigned idx : BB.linear_preds)
10537 program->blocks[idx].linear_succs.emplace_back(BB.index);
10538 for (unsigned idx : BB.logical_preds)
10539 program->blocks[idx].logical_succs.emplace_back(BB.index);
10540 }
10541 }
10542
10543 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10544 {
10545 Builder bld(ctx->program, ctx->block);
10546
10547 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10548 Temp count = i == 0
10549 ? get_arg(ctx, ctx->args->merged_wave_info)
10550 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10551 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10552
10553 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10554 Temp cond;
10555
10556 if (ctx->program->wave_size == 64) {
10557 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10558 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10559 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10560 } else {
10561 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10562 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10563 }
10564
10565 return cond;
10566 }
10567
10568 bool ngg_early_prim_export(isel_context *ctx)
10569 {
10570 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10571 return true;
10572 }
10573
10574 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10575 {
10576 Builder bld(ctx->program, ctx->block);
10577
10578 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10579 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10580
10581 /* Get the id of the current wave within the threadgroup (workgroup) */
10582 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10583 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10584
10585 /* Execute the following code only on the first wave (wave id 0),
10586 * use the SCC def to tell if the wave id is zero or not.
10587 */
10588 Temp cond = wave_id_in_tg.def(1).getTemp();
10589 if_context ic;
10590 begin_uniform_if_then(ctx, &ic, cond);
10591 begin_uniform_if_else(ctx, &ic);
10592 bld.reset(ctx->block);
10593
10594 /* Number of vertices output by VS/TES */
10595 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10596 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10597 /* Number of primitives output by VS/TES */
10598 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10599 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10600
10601 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10602 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10603 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10604
10605 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10606 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10607
10608 end_uniform_if(ctx, &ic);
10609
10610 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10611 bld.reset(ctx->block);
10612 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10613 }
10614
10615 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10616 {
10617 Builder bld(ctx->program, ctx->block);
10618
10619 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10620 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10621 }
10622
10623 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10624 Temp tmp;
10625
10626 for (unsigned i = 0; i < num_vertices; ++i) {
10627 assert(vtxindex[i].id());
10628
10629 if (i)
10630 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10631 else
10632 tmp = vtxindex[i];
10633
10634 /* The initial edge flag is always false in tess eval shaders. */
10635 if (ctx->stage == ngg_vertex_gs) {
10636 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10637 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10638 }
10639 }
10640
10641 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10642
10643 return tmp;
10644 }
10645
10646 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10647 {
10648 Builder bld(ctx->program, ctx->block);
10649 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10650
10651 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10652 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10653 false /* compressed */, true/* done */, false /* valid mask */);
10654 }
10655
10656 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10657 {
10658 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10659 * These must always come before VS exports.
10660 *
10661 * It is recommended to do these as early as possible. They can be at the beginning when
10662 * there is no SW GS and the shader doesn't write edge flags.
10663 */
10664
10665 if_context ic;
10666 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10667 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10668
10669 Builder bld(ctx->program, ctx->block);
10670 constexpr unsigned max_vertices_per_primitive = 3;
10671 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10672
10673 if (ctx->stage == ngg_vertex_gs) {
10674 /* TODO: optimize for points & lines */
10675 } else if (ctx->stage == ngg_tess_eval_gs) {
10676 if (ctx->shader->info.tess.point_mode)
10677 num_vertices_per_primitive = 1;
10678 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10679 num_vertices_per_primitive = 2;
10680 } else {
10681 unreachable("Unsupported NGG shader stage");
10682 }
10683
10684 Temp vtxindex[max_vertices_per_primitive];
10685 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10686 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10687 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10688 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10689 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10690 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10691 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10692 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10693
10694 /* Export primitive data to the index buffer. */
10695 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10696
10697 /* Export primitive ID. */
10698 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10699 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10700 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10701 Temp provoking_vtx_index = vtxindex[0];
10702 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10703
10704 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10705 }
10706
10707 begin_divergent_if_else(ctx, &ic);
10708 end_divergent_if(ctx, &ic);
10709 }
10710
10711 void ngg_emit_nogs_output(isel_context *ctx)
10712 {
10713 /* Emits NGG GS output, for stages that don't have SW GS. */
10714
10715 if_context ic;
10716 Builder bld(ctx->program, ctx->block);
10717 bool late_prim_export = !ngg_early_prim_export(ctx);
10718
10719 /* NGG streamout is currently disabled by default. */
10720 assert(!ctx->args->shader_info->so.num_outputs);
10721
10722 if (late_prim_export) {
10723 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10724 create_export_phis(ctx);
10725 /* Do what we need to do in the GS threads. */
10726 ngg_emit_nogs_gsthreads(ctx);
10727
10728 /* What comes next should be executed on ES threads. */
10729 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10730 begin_divergent_if_then(ctx, &ic, is_es_thread);
10731 bld.reset(ctx->block);
10732 }
10733
10734 /* Export VS outputs */
10735 ctx->block->kind |= block_kind_export_end;
10736 create_vs_exports(ctx);
10737
10738 /* Export primitive ID */
10739 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10740 Temp prim_id;
10741
10742 if (ctx->stage == ngg_vertex_gs) {
10743 /* Wait for GS threads to store primitive ID in LDS. */
10744 create_workgroup_barrier(bld);
10745
10746 /* Calculate LDS address where the GS threads stored the primitive ID. */
10747 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10748 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10749 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10750 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10751 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10752 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10753
10754 /* Load primitive ID from LDS. */
10755 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10756 } else if (ctx->stage == ngg_tess_eval_gs) {
10757 /* TES: Just use the patch ID as the primitive ID. */
10758 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10759 } else {
10760 unreachable("unsupported NGG shader stage.");
10761 }
10762
10763 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10764 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10765
10766 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10767 }
10768
10769 if (late_prim_export) {
10770 begin_divergent_if_else(ctx, &ic);
10771 end_divergent_if(ctx, &ic);
10772 bld.reset(ctx->block);
10773 }
10774 }
10775
10776 void select_program(Program *program,
10777 unsigned shader_count,
10778 struct nir_shader *const *shaders,
10779 ac_shader_config* config,
10780 struct radv_shader_args *args)
10781 {
10782 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10783 if_context ic_merged_wave_info;
10784 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10785
10786 for (unsigned i = 0; i < shader_count; i++) {
10787 nir_shader *nir = shaders[i];
10788 init_context(&ctx, nir);
10789
10790 setup_fp_mode(&ctx, nir);
10791
10792 if (!i) {
10793 /* needs to be after init_context() for FS */
10794 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10795 append_logical_start(ctx.block);
10796
10797 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10798 fix_ls_vgpr_init_bug(&ctx, startpgm);
10799
10800 split_arguments(&ctx, startpgm);
10801 }
10802
10803 if (ngg_no_gs) {
10804 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10805
10806 if (ngg_early_prim_export(&ctx))
10807 ngg_emit_nogs_gsthreads(&ctx);
10808 }
10809
10810 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10811 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10812 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10813 ((nir->info.stage == MESA_SHADER_VERTEX &&
10814 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10815 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10816 ctx.stage == tess_eval_geometry_gs));
10817
10818 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10819 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10820 if (check_merged_wave_info) {
10821 Temp cond = merged_wave_info_to_mask(&ctx, i);
10822 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10823 }
10824
10825 if (i) {
10826 Builder bld(ctx.program, ctx.block);
10827
10828 create_workgroup_barrier(bld);
10829
10830 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10831 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10832 }
10833 } else if (ctx.stage == geometry_gs)
10834 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10835
10836 if (ctx.stage == fragment_fs)
10837 handle_bc_optimize(&ctx);
10838
10839 visit_cf_list(&ctx, &func->body);
10840
10841 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10842 emit_streamout(&ctx, 0);
10843
10844 if (ctx.stage & hw_vs) {
10845 create_vs_exports(&ctx);
10846 ctx.block->kind |= block_kind_export_end;
10847 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10848 ngg_emit_nogs_output(&ctx);
10849 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10850 Builder bld(ctx.program, ctx.block);
10851 bld.barrier(aco_opcode::p_barrier,
10852 memory_sync_info(storage_vmem_output, semantic_release, scope_device));
10853 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10854 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10855 write_tcs_tess_factors(&ctx);
10856 }
10857
10858 if (ctx.stage == fragment_fs) {
10859 create_fs_exports(&ctx);
10860 ctx.block->kind |= block_kind_export_end;
10861 }
10862
10863 if (endif_merged_wave_info) {
10864 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10865 end_divergent_if(&ctx, &ic_merged_wave_info);
10866 }
10867
10868 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10869 ngg_emit_nogs_output(&ctx);
10870
10871 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10872 /* Outputs of the previous stage are inputs to the next stage */
10873 ctx.inputs = ctx.outputs;
10874 ctx.outputs = shader_io_state();
10875 }
10876 }
10877
10878 program->config->float_mode = program->blocks[0].fp_mode.val;
10879
10880 append_logical_end(ctx.block);
10881 ctx.block->kind |= block_kind_uniform;
10882 Builder bld(ctx.program, ctx.block);
10883 if (ctx.program->wb_smem_l1_on_end)
10884 bld.smem(aco_opcode::s_dcache_wb, memory_sync_info(storage_buffer, semantic_volatile));
10885 bld.sopp(aco_opcode::s_endpgm);
10886
10887 cleanup_cfg(program);
10888 }
10889
10890 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10891 ac_shader_config* config,
10892 struct radv_shader_args *args)
10893 {
10894 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10895
10896 ctx.block->fp_mode = program->next_fp_mode;
10897
10898 add_startpgm(&ctx);
10899 append_logical_start(ctx.block);
10900
10901 Builder bld(ctx.program, ctx.block);
10902
10903 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10904
10905 Operand stream_id(0u);
10906 if (args->shader_info->so.num_outputs)
10907 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10908 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10909
10910 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10911
10912 std::stack<Block> endif_blocks;
10913
10914 for (unsigned stream = 0; stream < 4; stream++) {
10915 if (stream_id.isConstant() && stream != stream_id.constantValue())
10916 continue;
10917
10918 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10919 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10920 continue;
10921
10922 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10923
10924 unsigned BB_if_idx = ctx.block->index;
10925 Block BB_endif = Block();
10926 if (!stream_id.isConstant()) {
10927 /* begin IF */
10928 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10929 append_logical_end(ctx.block);
10930 ctx.block->kind |= block_kind_uniform;
10931 bld.branch(aco_opcode::p_cbranch_z, bld.hint_vcc(bld.def(s2)), cond);
10932
10933 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10934
10935 ctx.block = ctx.program->create_and_insert_block();
10936 add_edge(BB_if_idx, ctx.block);
10937 bld.reset(ctx.block);
10938 append_logical_start(ctx.block);
10939 }
10940
10941 unsigned offset = 0;
10942 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10943 if (args->shader_info->gs.output_streams[i] != stream)
10944 continue;
10945
10946 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10947 unsigned length = util_last_bit(output_usage_mask);
10948 for (unsigned j = 0; j < length; ++j) {
10949 if (!(output_usage_mask & (1 << j)))
10950 continue;
10951
10952 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10953 Temp voffset = vtx_offset;
10954 if (const_offset >= 4096u) {
10955 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10956 const_offset %= 4096u;
10957 }
10958
10959 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10960 mubuf->definitions[0] = bld.def(v1);
10961 mubuf->operands[0] = Operand(gsvs_ring);
10962 mubuf->operands[1] = Operand(voffset);
10963 mubuf->operands[2] = Operand(0u);
10964 mubuf->offen = true;
10965 mubuf->offset = const_offset;
10966 mubuf->glc = true;
10967 mubuf->slc = true;
10968 mubuf->dlc = args->options->chip_class >= GFX10;
10969
10970 ctx.outputs.mask[i] |= 1 << j;
10971 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10972
10973 bld.insert(std::move(mubuf));
10974
10975 offset++;
10976 }
10977 }
10978
10979 if (args->shader_info->so.num_outputs) {
10980 emit_streamout(&ctx, stream);
10981 bld.reset(ctx.block);
10982 }
10983
10984 if (stream == 0) {
10985 create_vs_exports(&ctx);
10986 ctx.block->kind |= block_kind_export_end;
10987 }
10988
10989 if (!stream_id.isConstant()) {
10990 append_logical_end(ctx.block);
10991
10992 /* branch from then block to endif block */
10993 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
10994 add_edge(ctx.block->index, &BB_endif);
10995 ctx.block->kind |= block_kind_uniform;
10996
10997 /* emit else block */
10998 ctx.block = ctx.program->create_and_insert_block();
10999 add_edge(BB_if_idx, ctx.block);
11000 bld.reset(ctx.block);
11001 append_logical_start(ctx.block);
11002
11003 endif_blocks.push(std::move(BB_endif));
11004 }
11005 }
11006
11007 while (!endif_blocks.empty()) {
11008 Block BB_endif = std::move(endif_blocks.top());
11009 endif_blocks.pop();
11010
11011 Block *BB_else = ctx.block;
11012
11013 append_logical_end(BB_else);
11014 /* branch from else block to endif block */
11015 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
11016 add_edge(BB_else->index, &BB_endif);
11017 BB_else->kind |= block_kind_uniform;
11018
11019 /** emit endif merge block */
11020 ctx.block = program->insert_block(std::move(BB_endif));
11021 bld.reset(ctx.block);
11022 append_logical_start(ctx.block);
11023 }
11024
11025 program->config->float_mode = program->blocks[0].fp_mode.val;
11026
11027 append_logical_end(ctx.block);
11028 ctx.block->kind |= block_kind_uniform;
11029 bld.sopp(aco_opcode::s_endpgm);
11030
11031 cleanup_cfg(program);
11032 }
11033
11034 void select_trap_handler_shader(Program *program, struct nir_shader *shader,
11035 ac_shader_config* config,
11036 struct radv_shader_args *args)
11037 {
11038 assert(args->options->chip_class == GFX8);
11039
11040 init_program(program, compute_cs, args->shader_info,
11041 args->options->chip_class, args->options->family, config);
11042
11043 isel_context ctx = {};
11044 ctx.program = program;
11045 ctx.args = args;
11046 ctx.options = args->options;
11047 ctx.stage = program->stage;
11048
11049 ctx.block = ctx.program->create_and_insert_block();
11050 ctx.block->loop_nest_depth = 0;
11051 ctx.block->kind = block_kind_top_level;
11052
11053 program->workgroup_size = 1; /* XXX */
11054
11055 add_startpgm(&ctx);
11056 append_logical_start(ctx.block);
11057
11058 Builder bld(ctx.program, ctx.block);
11059
11060 /* Load the buffer descriptor from TMA. */
11061 bld.smem(aco_opcode::s_load_dwordx4, Definition(PhysReg{ttmp4}, s4),
11062 Operand(PhysReg{tma}, s2), Operand(0u));
11063
11064 /* Store TTMP0-TTMP1. */
11065 bld.smem(aco_opcode::s_buffer_store_dwordx2, Operand(PhysReg{ttmp4}, s4),
11066 Operand(0u), Operand(PhysReg{ttmp0}, s2), memory_sync_info(), true);
11067
11068 uint32_t hw_regs_idx[] = {
11069 2, /* HW_REG_STATUS */
11070 3, /* HW_REG_TRAP_STS */
11071 4, /* HW_REG_HW_ID */
11072 7, /* HW_REG_IB_STS */
11073 };
11074
11075 /* Store some hardware registers. */
11076 for (unsigned i = 0; i < ARRAY_SIZE(hw_regs_idx); i++) {
11077 /* "((size - 1) << 11) | register" */
11078 bld.sopk(aco_opcode::s_getreg_b32, Definition(PhysReg{ttmp8}, s1),
11079 ((20 - 1) << 11) | hw_regs_idx[i]);
11080
11081 bld.smem(aco_opcode::s_buffer_store_dword, Operand(PhysReg{ttmp4}, s4),
11082 Operand(8u + i * 4), Operand(PhysReg{ttmp8}, s1), memory_sync_info(), true);
11083 }
11084
11085 program->config->float_mode = program->blocks[0].fp_mode.val;
11086
11087 append_logical_end(ctx.block);
11088 ctx.block->kind |= block_kind_uniform;
11089 bld.sopp(aco_opcode::s_endpgm);
11090
11091 cleanup_cfg(program);
11092 }
11093 }