c94a1b00e5ebb5134bc3c45a8d9fe95ca119e9de
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else if (ctx->program->chip_class <= GFX7) {
140 Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 } else {
143 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo);
144 return thread_id_hi;
145 }
146 }
147
148 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
149 {
150 Builder bld(ctx->program, ctx->block);
151
152 if (!dst.id())
153 dst = bld.tmp(src.regClass());
154
155 assert(src.size() == dst.size());
156
157 if (ctx->stage != fragment_fs) {
158 if (!dst.id())
159 return src;
160
161 bld.copy(Definition(dst), src);
162 return dst;
163 }
164
165 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
166 ctx->program->needs_wqm |= program_needs_wqm;
167 return dst;
168 }
169
170 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
171 {
172 if (index.regClass() == s1)
173 return bld.readlane(bld.def(s1), data, index);
174
175 if (ctx->options->chip_class <= GFX7) {
176 /* GFX6-7: there is no bpermute instruction */
177 Operand index_op(index);
178 Operand input_data(data);
179 index_op.setLateKill(true);
180 input_data.setLateKill(true);
181
182 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
183 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
184 /* GFX10 wave64 mode: emulate full-wave bpermute */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
192 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
193 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
194 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
195 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
196 Operand input_data(data);
197
198 index_x4.setLateKill(true);
199 input_data.setLateKill(true);
200 same_half.setLateKill(true);
201
202 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
203 } else {
204 /* GFX8-9 or GFX10 wave32: bpermute works normally */
205 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
206 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
207 }
208 }
209
210 static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
211 {
212 if (ctx->options->chip_class >= GFX8) {
213 unsigned and_mask = mask & 0x1f;
214 unsigned or_mask = (mask >> 5) & 0x1f;
215 unsigned xor_mask = (mask >> 10) & 0x1f;
216
217 uint16_t dpp_ctrl = 0xffff;
218
219 // TODO: we could use DPP8 for some swizzles
220 if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
221 unsigned res[4] = {0, 1, 2, 3};
222 for (unsigned i = 0; i < 4; i++)
223 res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
224 dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
225 } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
226 dpp_ctrl = dpp_row_rr(8);
227 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
228 dpp_ctrl = dpp_row_mirror;
229 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
230 dpp_ctrl = dpp_row_half_mirror;
231 }
232
233 if (dpp_ctrl != 0xffff)
234 return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
235 }
236
237 return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
238 }
239
240 Temp as_vgpr(isel_context *ctx, Temp val)
241 {
242 if (val.type() == RegType::sgpr) {
243 Builder bld(ctx->program, ctx->block);
244 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
245 }
246 assert(val.type() == RegType::vgpr);
247 return val;
248 }
249
250 //assumes a != 0xffffffff
251 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
252 {
253 assert(b != 0);
254 Builder bld(ctx->program, ctx->block);
255
256 if (util_is_power_of_two_or_zero(b)) {
257 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
258 return;
259 }
260
261 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
262
263 assert(info.multiplier <= 0xffffffff);
264
265 bool pre_shift = info.pre_shift != 0;
266 bool increment = info.increment != 0;
267 bool multiply = true;
268 bool post_shift = info.post_shift != 0;
269
270 if (!pre_shift && !increment && !multiply && !post_shift) {
271 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
272 return;
273 }
274
275 Temp pre_shift_dst = a;
276 if (pre_shift) {
277 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
278 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
279 }
280
281 Temp increment_dst = pre_shift_dst;
282 if (increment) {
283 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
284 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
285 }
286
287 Temp multiply_dst = increment_dst;
288 if (multiply) {
289 multiply_dst = post_shift ? bld.tmp(v1) : dst;
290 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
291 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
292 }
293
294 if (post_shift) {
295 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
296 }
297 }
298
299 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
300 {
301 Builder bld(ctx->program, ctx->block);
302 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
303 }
304
305
306 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
307 {
308 /* no need to extract the whole vector */
309 if (src.regClass() == dst_rc) {
310 assert(idx == 0);
311 return src;
312 }
313
314 assert(src.bytes() > (idx * dst_rc.bytes()));
315 Builder bld(ctx->program, ctx->block);
316 auto it = ctx->allocated_vec.find(src.id());
317 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
318 if (it->second[idx].regClass() == dst_rc) {
319 return it->second[idx];
320 } else {
321 assert(!dst_rc.is_subdword());
322 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
323 return bld.copy(bld.def(dst_rc), it->second[idx]);
324 }
325 }
326
327 if (dst_rc.is_subdword())
328 src = as_vgpr(ctx, src);
329
330 if (src.bytes() == dst_rc.bytes()) {
331 assert(idx == 0);
332 return bld.copy(bld.def(dst_rc), src);
333 } else {
334 Temp dst = bld.tmp(dst_rc);
335 emit_extract_vector(ctx, src, idx, dst);
336 return dst;
337 }
338 }
339
340 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
341 {
342 if (num_components == 1)
343 return;
344 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
345 return;
346 RegClass rc;
347 if (num_components > vec_src.size()) {
348 if (vec_src.type() == RegType::sgpr) {
349 /* should still help get_alu_src() */
350 emit_split_vector(ctx, vec_src, vec_src.size());
351 return;
352 }
353 /* sub-dword split */
354 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
355 } else {
356 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
357 }
358 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
359 split->operands[0] = Operand(vec_src);
360 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
361 for (unsigned i = 0; i < num_components; i++) {
362 elems[i] = {ctx->program->allocateId(), rc};
363 split->definitions[i] = Definition(elems[i]);
364 }
365 ctx->block->instructions.emplace_back(std::move(split));
366 ctx->allocated_vec.emplace(vec_src.id(), elems);
367 }
368
369 /* This vector expansion uses a mask to determine which elements in the new vector
370 * come from the original vector. The other elements are undefined. */
371 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
372 {
373 emit_split_vector(ctx, vec_src, util_bitcount(mask));
374
375 if (vec_src == dst)
376 return;
377
378 Builder bld(ctx->program, ctx->block);
379 if (num_components == 1) {
380 if (dst.type() == RegType::sgpr)
381 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
382 else
383 bld.copy(Definition(dst), vec_src);
384 return;
385 }
386
387 unsigned component_size = dst.size() / num_components;
388 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
389
390 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
391 vec->definitions[0] = Definition(dst);
392 unsigned k = 0;
393 for (unsigned i = 0; i < num_components; i++) {
394 if (mask & (1 << i)) {
395 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
396 if (dst.type() == RegType::sgpr)
397 src = bld.as_uniform(src);
398 vec->operands[i] = Operand(src);
399 } else {
400 vec->operands[i] = Operand(0u);
401 }
402 elems[i] = vec->operands[i].getTemp();
403 }
404 ctx->block->instructions.emplace_back(std::move(vec));
405 ctx->allocated_vec.emplace(dst.id(), elems);
406 }
407
408 /* adjust misaligned small bit size loads */
409 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
410 {
411 Builder bld(ctx->program, ctx->block);
412 Operand shift;
413 Temp select = Temp();
414 if (offset.isConstant()) {
415 assert(offset.constantValue() && offset.constantValue() < 4);
416 shift = Operand(offset.constantValue() * 8);
417 } else {
418 /* bit_offset = 8 * (offset & 0x3) */
419 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
420 select = bld.tmp(s1);
421 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
422 }
423
424 if (vec.size() == 1) {
425 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
426 } else if (vec.size() == 2) {
427 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
428 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
429 if (tmp == dst)
430 emit_split_vector(ctx, dst, 2);
431 else
432 emit_extract_vector(ctx, tmp, 0, dst);
433 } else if (vec.size() == 4) {
434 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
435 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
436 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
437 if (select != Temp())
438 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
439 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
440 Temp mid = bld.tmp(s1);
441 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
442 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
443 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
444 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
445 emit_split_vector(ctx, dst, 2);
446 }
447 }
448
449 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
450 {
451 Builder bld(ctx->program, ctx->block);
452 if (offset.isTemp()) {
453 Temp tmp[4] = {vec, vec, vec, vec};
454
455 if (vec.size() == 4) {
456 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
457 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
458 } else if (vec.size() == 3) {
459 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
460 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
461 } else if (vec.size() == 2) {
462 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
463 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
464 }
465 for (unsigned i = 0; i < dst.size(); i++)
466 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
467
468 vec = tmp[0];
469 if (dst.size() == 2)
470 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
471
472 offset = Operand(0u);
473 }
474
475 unsigned num_components = dst.bytes() / component_size;
476 if (vec.regClass() == dst.regClass()) {
477 assert(offset.constantValue() == 0);
478 bld.copy(Definition(dst), vec);
479 emit_split_vector(ctx, dst, num_components);
480 return;
481 }
482
483 emit_split_vector(ctx, vec, vec.bytes() / component_size);
484 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
485 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
486
487 assert(offset.constantValue() % component_size == 0);
488 unsigned skip = offset.constantValue() / component_size;
489 for (unsigned i = 0; i < num_components; i++)
490 elems[i] = emit_extract_vector(ctx, vec, i + skip, rc);
491
492 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
493 if (dst.type() == RegType::vgpr) {
494 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
495 for (unsigned i = 0; i < num_components; i++)
496 create_vec->operands[i] = Operand(elems[i]);
497 create_vec->definitions[0] = Definition(dst);
498 bld.insert(std::move(create_vec));
499
500 /* if dst is sgpr - split the src, but move the original to sgpr. */
501 } else if (skip) {
502 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
503 byte_align_scalar(ctx, vec, offset, dst);
504 } else {
505 assert(dst.size() == vec.size());
506 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
507 }
508
509 ctx->allocated_vec.emplace(dst.id(), elems);
510 }
511
512 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
513 {
514 Builder bld(ctx->program, ctx->block);
515 if (!dst.id())
516 dst = bld.tmp(bld.lm);
517
518 assert(val.regClass() == s1);
519 assert(dst.regClass() == bld.lm);
520
521 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
522 }
523
524 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
525 {
526 Builder bld(ctx->program, ctx->block);
527 if (!dst.id())
528 dst = bld.tmp(s1);
529
530 assert(val.regClass() == bld.lm);
531 assert(dst.regClass() == s1);
532
533 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
534 Temp tmp = bld.tmp(s1);
535 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
536 return emit_wqm(ctx, tmp, dst);
537 }
538
539 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
540 {
541 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
542 return get_ssa_temp(ctx, src.src.ssa);
543
544 if (src.src.ssa->num_components == size) {
545 bool identity_swizzle = true;
546 for (unsigned i = 0; identity_swizzle && i < size; i++) {
547 if (src.swizzle[i] != i)
548 identity_swizzle = false;
549 }
550 if (identity_swizzle)
551 return get_ssa_temp(ctx, src.src.ssa);
552 }
553
554 Temp vec = get_ssa_temp(ctx, src.src.ssa);
555 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
556 assert(elem_size > 0);
557 assert(vec.bytes() % elem_size == 0);
558
559 if (elem_size < 4 && vec.type() == RegType::sgpr) {
560 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
561 assert(size == 1);
562 unsigned swizzle = src.swizzle[0];
563 if (vec.size() > 1) {
564 assert(src.src.ssa->bit_size == 16);
565 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
566 swizzle = swizzle & 1;
567 }
568 if (swizzle == 0)
569 return vec;
570
571 Temp dst{ctx->program->allocateId(), s1};
572 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 2)};
573 bfe->operands[0] = Operand(vec);
574 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
575 bfe->definitions[0] = Definition(dst);
576 bfe->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
577 ctx->block->instructions.emplace_back(std::move(bfe));
578 return dst;
579 }
580
581 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
582 if (size == 1) {
583 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
584 } else {
585 assert(size <= 4);
586 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
587 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
588 for (unsigned i = 0; i < size; ++i) {
589 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
590 vec_instr->operands[i] = Operand{elems[i]};
591 }
592 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
593 vec_instr->definitions[0] = Definition(dst);
594 ctx->block->instructions.emplace_back(std::move(vec_instr));
595 ctx->allocated_vec.emplace(dst.id(), elems);
596 return dst;
597 }
598 }
599
600 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
601 {
602 if (ptr.size() == 2)
603 return ptr;
604 Builder bld(ctx->program, ctx->block);
605 if (ptr.type() == RegType::vgpr)
606 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
607 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
608 ptr, Operand((unsigned)ctx->options->address32_hi));
609 }
610
611 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
612 {
613 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
614 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
615 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
616 sop2->definitions[0] = Definition(dst);
617 if (writes_scc)
618 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
619 ctx->block->instructions.emplace_back(std::move(sop2));
620 }
621
622 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
623 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
624 {
625 Builder bld(ctx->program, ctx->block);
626 bld.is_precise = instr->exact;
627
628 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
629 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
630 if (src1.type() == RegType::sgpr) {
631 if (commutative && src0.type() == RegType::vgpr) {
632 Temp t = src0;
633 src0 = src1;
634 src1 = t;
635 } else {
636 src1 = as_vgpr(ctx, src1);
637 }
638 }
639
640 if (flush_denorms && ctx->program->chip_class < GFX9) {
641 assert(dst.size() == 1);
642 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
643 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
644 } else {
645 bld.vop2(op, Definition(dst), src0, src1);
646 }
647 }
648
649 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
650 aco_opcode op, Temp dst)
651 {
652 Builder bld(ctx->program, ctx->block);
653 bld.is_precise = instr->exact;
654
655 Temp src0 = get_alu_src(ctx, instr->src[0]);
656 Temp src1 = get_alu_src(ctx, instr->src[1]);
657
658 if (src1.type() == RegType::sgpr) {
659 assert(src0.type() == RegType::vgpr);
660 std::swap(src0, src1);
661 }
662
663 Temp src00 = bld.tmp(src0.type(), 1);
664 Temp src01 = bld.tmp(src0.type(), 1);
665 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
666 Temp src10 = bld.tmp(v1);
667 Temp src11 = bld.tmp(v1);
668 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
669 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
670 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
671 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
672 }
673
674 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
675 bool flush_denorms = false)
676 {
677 Temp src0 = get_alu_src(ctx, instr->src[0]);
678 Temp src1 = get_alu_src(ctx, instr->src[1]);
679 Temp src2 = get_alu_src(ctx, instr->src[2]);
680
681 /* ensure that the instruction has at most 1 sgpr operand
682 * The optimizer will inline constants for us */
683 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
684 src0 = as_vgpr(ctx, src0);
685 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
686 src1 = as_vgpr(ctx, src1);
687 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
688 src2 = as_vgpr(ctx, src2);
689
690 Builder bld(ctx->program, ctx->block);
691 bld.is_precise = instr->exact;
692 if (flush_denorms && ctx->program->chip_class < GFX9) {
693 assert(dst.size() == 1);
694 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
695 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
696 } else {
697 bld.vop3(op, Definition(dst), src0, src1, src2);
698 }
699 }
700
701 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
702 {
703 Builder bld(ctx->program, ctx->block);
704 bld.is_precise = instr->exact;
705 if (dst.type() == RegType::sgpr)
706 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
707 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
708 else
709 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
710 }
711
712 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
713 {
714 Temp src0 = get_alu_src(ctx, instr->src[0]);
715 Temp src1 = get_alu_src(ctx, instr->src[1]);
716 assert(src0.size() == src1.size());
717
718 aco_ptr<Instruction> vopc;
719 if (src1.type() == RegType::sgpr) {
720 if (src0.type() == RegType::vgpr) {
721 /* to swap the operands, we might also have to change the opcode */
722 switch (op) {
723 case aco_opcode::v_cmp_lt_f16:
724 op = aco_opcode::v_cmp_gt_f16;
725 break;
726 case aco_opcode::v_cmp_ge_f16:
727 op = aco_opcode::v_cmp_le_f16;
728 break;
729 case aco_opcode::v_cmp_lt_i16:
730 op = aco_opcode::v_cmp_gt_i16;
731 break;
732 case aco_opcode::v_cmp_ge_i16:
733 op = aco_opcode::v_cmp_le_i16;
734 break;
735 case aco_opcode::v_cmp_lt_u16:
736 op = aco_opcode::v_cmp_gt_u16;
737 break;
738 case aco_opcode::v_cmp_ge_u16:
739 op = aco_opcode::v_cmp_le_u16;
740 break;
741 case aco_opcode::v_cmp_lt_f32:
742 op = aco_opcode::v_cmp_gt_f32;
743 break;
744 case aco_opcode::v_cmp_ge_f32:
745 op = aco_opcode::v_cmp_le_f32;
746 break;
747 case aco_opcode::v_cmp_lt_i32:
748 op = aco_opcode::v_cmp_gt_i32;
749 break;
750 case aco_opcode::v_cmp_ge_i32:
751 op = aco_opcode::v_cmp_le_i32;
752 break;
753 case aco_opcode::v_cmp_lt_u32:
754 op = aco_opcode::v_cmp_gt_u32;
755 break;
756 case aco_opcode::v_cmp_ge_u32:
757 op = aco_opcode::v_cmp_le_u32;
758 break;
759 case aco_opcode::v_cmp_lt_f64:
760 op = aco_opcode::v_cmp_gt_f64;
761 break;
762 case aco_opcode::v_cmp_ge_f64:
763 op = aco_opcode::v_cmp_le_f64;
764 break;
765 case aco_opcode::v_cmp_lt_i64:
766 op = aco_opcode::v_cmp_gt_i64;
767 break;
768 case aco_opcode::v_cmp_ge_i64:
769 op = aco_opcode::v_cmp_le_i64;
770 break;
771 case aco_opcode::v_cmp_lt_u64:
772 op = aco_opcode::v_cmp_gt_u64;
773 break;
774 case aco_opcode::v_cmp_ge_u64:
775 op = aco_opcode::v_cmp_le_u64;
776 break;
777 default: /* eq and ne are commutative */
778 break;
779 }
780 Temp t = src0;
781 src0 = src1;
782 src1 = t;
783 } else {
784 src1 = as_vgpr(ctx, src1);
785 }
786 }
787
788 Builder bld(ctx->program, ctx->block);
789 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
790 }
791
792 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
793 {
794 Temp src0 = get_alu_src(ctx, instr->src[0]);
795 Temp src1 = get_alu_src(ctx, instr->src[1]);
796 Builder bld(ctx->program, ctx->block);
797
798 assert(dst.regClass() == bld.lm);
799 assert(src0.type() == RegType::sgpr);
800 assert(src1.type() == RegType::sgpr);
801 assert(src0.regClass() == src1.regClass());
802
803 /* Emit the SALU comparison instruction */
804 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
805 /* Turn the result into a per-lane bool */
806 bool_to_vector_condition(ctx, cmp, dst);
807 }
808
809 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
810 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
811 {
812 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
813 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
814 bool use_valu = s_op == aco_opcode::num_opcodes ||
815 nir_dest_is_divergent(instr->dest.dest) ||
816 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
817 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
818 aco_opcode op = use_valu ? v_op : s_op;
819 assert(op != aco_opcode::num_opcodes);
820 assert(dst.regClass() == ctx->program->lane_mask);
821
822 if (use_valu)
823 emit_vopc_instruction(ctx, instr, op, dst);
824 else
825 emit_sopc_instruction(ctx, instr, op, dst);
826 }
827
828 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
829 {
830 Builder bld(ctx->program, ctx->block);
831 Temp src0 = get_alu_src(ctx, instr->src[0]);
832 Temp src1 = get_alu_src(ctx, instr->src[1]);
833
834 assert(dst.regClass() == bld.lm);
835 assert(src0.regClass() == bld.lm);
836 assert(src1.regClass() == bld.lm);
837
838 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
839 }
840
841 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
842 {
843 Builder bld(ctx->program, ctx->block);
844 Temp cond = get_alu_src(ctx, instr->src[0]);
845 Temp then = get_alu_src(ctx, instr->src[1]);
846 Temp els = get_alu_src(ctx, instr->src[2]);
847
848 assert(cond.regClass() == bld.lm);
849
850 if (dst.type() == RegType::vgpr) {
851 aco_ptr<Instruction> bcsel;
852 if (dst.size() == 1) {
853 then = as_vgpr(ctx, then);
854 els = as_vgpr(ctx, els);
855
856 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
857 } else if (dst.size() == 2) {
858 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
859 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
860 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
861 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
862
863 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
864 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
865
866 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
867 } else {
868 fprintf(stderr, "Unimplemented NIR instr bit size: ");
869 nir_print_instr(&instr->instr, stderr);
870 fprintf(stderr, "\n");
871 }
872 return;
873 }
874
875 if (instr->dest.dest.ssa.bit_size == 1) {
876 assert(dst.regClass() == bld.lm);
877 assert(then.regClass() == bld.lm);
878 assert(els.regClass() == bld.lm);
879 }
880
881 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
882 if (dst.regClass() == s1 || dst.regClass() == s2) {
883 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
884 assert(dst.size() == then.size());
885 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
886 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
887 } else {
888 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
889 nir_print_instr(&instr->instr, stderr);
890 fprintf(stderr, "\n");
891 }
892 return;
893 }
894
895 /* divergent boolean bcsel
896 * this implements bcsel on bools: dst = s0 ? s1 : s2
897 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
898 assert(instr->dest.dest.ssa.bit_size == 1);
899
900 if (cond.id() != then.id())
901 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
902
903 if (cond.id() == els.id())
904 bld.sop1(Builder::s_mov, Definition(dst), then);
905 else
906 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
907 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
908 }
909
910 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
911 aco_opcode op, uint32_t undo)
912 {
913 /* multiply by 16777216 to handle denormals */
914 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
915 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
916 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
917 scaled = bld.vop1(op, bld.def(v1), scaled);
918 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
919
920 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
921
922 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
923 }
924
925 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
926 {
927 if (ctx->block->fp_mode.denorm32 == 0) {
928 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
929 return;
930 }
931
932 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
933 }
934
935 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
936 {
937 if (ctx->block->fp_mode.denorm32 == 0) {
938 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
939 return;
940 }
941
942 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
943 }
944
945 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
946 {
947 if (ctx->block->fp_mode.denorm32 == 0) {
948 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
949 return;
950 }
951
952 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
953 }
954
955 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
956 {
957 if (ctx->block->fp_mode.denorm32 == 0) {
958 bld.vop1(aco_opcode::v_log_f32, dst, val);
959 return;
960 }
961
962 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
963 }
964
965 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
966 {
967 if (ctx->options->chip_class >= GFX7)
968 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
969
970 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
971 /* TODO: create more efficient code! */
972 if (val.type() == RegType::sgpr)
973 val = as_vgpr(ctx, val);
974
975 /* Split the input value. */
976 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
977 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
978
979 /* Extract the exponent and compute the unbiased value. */
980 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
981 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
982
983 /* Extract the fractional part. */
984 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
985 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
986
987 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
988 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
989
990 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
991 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
992 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
993 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
994 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
995
996 /* Get the sign bit. */
997 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
998
999 /* Decide the operation to apply depending on the unbiased exponent. */
1000 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
1001 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
1002 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
1003 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
1004 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
1005 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
1006
1007 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
1008 }
1009
1010 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1011 {
1012 if (ctx->options->chip_class >= GFX7)
1013 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
1014
1015 /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
1016 * lowered at NIR level for precision reasons). */
1017 Temp src0 = as_vgpr(ctx, val);
1018
1019 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
1020 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
1021
1022 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
1023 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
1024 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
1025
1026 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
1027 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
1028 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
1029 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
1030
1031 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
1032 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
1033
1034 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1035
1036 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1037 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1038
1039 return add->definitions[0].getTemp();
1040 }
1041
1042 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
1043 if (!dst.id()) {
1044 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
1045 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
1046 else
1047 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
1048 }
1049
1050 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
1051 return bld.copy(Definition(dst), src);
1052 else if (dst.bytes() < src.bytes())
1053 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
1054
1055 Temp tmp = dst;
1056 if (dst_bits == 64)
1057 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
1058
1059 if (tmp == src) {
1060 } else if (src.regClass() == s1) {
1061 if (is_signed)
1062 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
1063 else
1064 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
1065 } else if (ctx->options->chip_class >= GFX8) {
1066 assert(src_bits != 8 || src.regClass() == v1b);
1067 assert(src_bits != 16 || src.regClass() == v2b);
1068 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
1069 sdwa->operands[0] = Operand(src);
1070 sdwa->definitions[0] = Definition(tmp);
1071 if (is_signed)
1072 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
1073 else
1074 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
1075 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
1076 bld.insert(std::move(sdwa));
1077 } else {
1078 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
1079 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
1080 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
1081 }
1082
1083 if (dst_bits == 64) {
1084 if (is_signed && dst.regClass() == s2) {
1085 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
1086 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1087 } else if (is_signed && dst.regClass() == v2) {
1088 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
1089 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1090 } else {
1091 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
1092 }
1093 }
1094
1095 return dst;
1096 }
1097
1098 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1099 {
1100 if (!instr->dest.dest.is_ssa) {
1101 fprintf(stderr, "nir alu dst not in ssa: ");
1102 nir_print_instr(&instr->instr, stderr);
1103 fprintf(stderr, "\n");
1104 abort();
1105 }
1106 Builder bld(ctx->program, ctx->block);
1107 bld.is_precise = instr->exact;
1108 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1109 switch(instr->op) {
1110 case nir_op_vec2:
1111 case nir_op_vec3:
1112 case nir_op_vec4: {
1113 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1114 unsigned num = instr->dest.dest.ssa.num_components;
1115 for (unsigned i = 0; i < num; ++i)
1116 elems[i] = get_alu_src(ctx, instr->src[i]);
1117
1118 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1119 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1120 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1121 for (unsigned i = 0; i < num; ++i) {
1122 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1123 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1124 else
1125 vec->operands[i] = Operand{elems[i]};
1126 }
1127 vec->definitions[0] = Definition(dst);
1128 ctx->block->instructions.emplace_back(std::move(vec));
1129 ctx->allocated_vec.emplace(dst.id(), elems);
1130 } else {
1131 // TODO: that is a bit suboptimal..
1132 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1133 for (unsigned i = 0; i < num - 1; ++i)
1134 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1135 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1136 for (unsigned i = 0; i < num; ++i) {
1137 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1138 if (bit % 32 == 0) {
1139 elems[bit / 32] = elems[i];
1140 } else {
1141 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1142 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1143 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1144 }
1145 }
1146 if (dst.size() == 1)
1147 bld.copy(Definition(dst), elems[0]);
1148 else
1149 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1150 }
1151 break;
1152 }
1153 case nir_op_mov: {
1154 Temp src = get_alu_src(ctx, instr->src[0]);
1155 aco_ptr<Instruction> mov;
1156 if (dst.type() == RegType::sgpr) {
1157 if (src.type() == RegType::vgpr)
1158 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1159 else if (src.regClass() == s1)
1160 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1161 else if (src.regClass() == s2)
1162 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1163 else
1164 unreachable("wrong src register class for nir_op_imov");
1165 } else {
1166 if (dst.regClass() == v1)
1167 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1168 else if (dst.regClass() == v1b ||
1169 dst.regClass() == v2b ||
1170 dst.regClass() == v2)
1171 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1172 else
1173 unreachable("wrong src register class for nir_op_imov");
1174 }
1175 break;
1176 }
1177 case nir_op_inot: {
1178 Temp src = get_alu_src(ctx, instr->src[0]);
1179 if (instr->dest.dest.ssa.bit_size == 1) {
1180 assert(src.regClass() == bld.lm);
1181 assert(dst.regClass() == bld.lm);
1182 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1183 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1184 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1185 } else if (dst.regClass() == v1) {
1186 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1187 } else if (dst.regClass() == v2) {
1188 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1189 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1190 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1191 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1192 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1193 } else if (dst.type() == RegType::sgpr) {
1194 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1195 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1196 } else {
1197 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1198 nir_print_instr(&instr->instr, stderr);
1199 fprintf(stderr, "\n");
1200 }
1201 break;
1202 }
1203 case nir_op_ineg: {
1204 Temp src = get_alu_src(ctx, instr->src[0]);
1205 if (dst.regClass() == v1) {
1206 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1207 } else if (dst.regClass() == s1) {
1208 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1209 } else if (dst.size() == 2) {
1210 Temp src0 = bld.tmp(dst.type(), 1);
1211 Temp src1 = bld.tmp(dst.type(), 1);
1212 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1213
1214 if (dst.regClass() == s2) {
1215 Temp carry = bld.tmp(s1);
1216 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1217 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1218 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1219 } else {
1220 Temp lower = bld.tmp(v1);
1221 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1222 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1223 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1224 }
1225 } else {
1226 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1227 nir_print_instr(&instr->instr, stderr);
1228 fprintf(stderr, "\n");
1229 }
1230 break;
1231 }
1232 case nir_op_iabs: {
1233 if (dst.regClass() == s1) {
1234 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1235 } else if (dst.regClass() == v1) {
1236 Temp src = get_alu_src(ctx, instr->src[0]);
1237 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1238 } else {
1239 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1240 nir_print_instr(&instr->instr, stderr);
1241 fprintf(stderr, "\n");
1242 }
1243 break;
1244 }
1245 case nir_op_isign: {
1246 Temp src = get_alu_src(ctx, instr->src[0]);
1247 if (dst.regClass() == s1) {
1248 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1249 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1250 } else if (dst.regClass() == s2) {
1251 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1252 Temp neqz;
1253 if (ctx->program->chip_class >= GFX8)
1254 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1255 else
1256 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1257 /* SCC gets zero-extended to 64 bit */
1258 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1259 } else if (dst.regClass() == v1) {
1260 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1261 } else if (dst.regClass() == v2) {
1262 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1263 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1264 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1265 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1266 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1267 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1268 } else {
1269 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1270 nir_print_instr(&instr->instr, stderr);
1271 fprintf(stderr, "\n");
1272 }
1273 break;
1274 }
1275 case nir_op_imax: {
1276 if (dst.regClass() == v1) {
1277 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1278 } else if (dst.regClass() == s1) {
1279 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1280 } else {
1281 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1282 nir_print_instr(&instr->instr, stderr);
1283 fprintf(stderr, "\n");
1284 }
1285 break;
1286 }
1287 case nir_op_umax: {
1288 if (dst.regClass() == v1) {
1289 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1290 } else if (dst.regClass() == s1) {
1291 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1292 } else {
1293 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1294 nir_print_instr(&instr->instr, stderr);
1295 fprintf(stderr, "\n");
1296 }
1297 break;
1298 }
1299 case nir_op_imin: {
1300 if (dst.regClass() == v1) {
1301 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1302 } else if (dst.regClass() == s1) {
1303 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1304 } else {
1305 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1306 nir_print_instr(&instr->instr, stderr);
1307 fprintf(stderr, "\n");
1308 }
1309 break;
1310 }
1311 case nir_op_umin: {
1312 if (dst.regClass() == v1) {
1313 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1314 } else if (dst.regClass() == s1) {
1315 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1316 } else {
1317 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1318 nir_print_instr(&instr->instr, stderr);
1319 fprintf(stderr, "\n");
1320 }
1321 break;
1322 }
1323 case nir_op_ior: {
1324 if (instr->dest.dest.ssa.bit_size == 1) {
1325 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1326 } else if (dst.regClass() == v1) {
1327 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1328 } else if (dst.regClass() == v2) {
1329 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1330 } else if (dst.regClass() == s1) {
1331 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1332 } else if (dst.regClass() == s2) {
1333 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1334 } else {
1335 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1336 nir_print_instr(&instr->instr, stderr);
1337 fprintf(stderr, "\n");
1338 }
1339 break;
1340 }
1341 case nir_op_iand: {
1342 if (instr->dest.dest.ssa.bit_size == 1) {
1343 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1344 } else if (dst.regClass() == v1) {
1345 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1346 } else if (dst.regClass() == v2) {
1347 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1348 } else if (dst.regClass() == s1) {
1349 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1350 } else if (dst.regClass() == s2) {
1351 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1352 } else {
1353 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1354 nir_print_instr(&instr->instr, stderr);
1355 fprintf(stderr, "\n");
1356 }
1357 break;
1358 }
1359 case nir_op_ixor: {
1360 if (instr->dest.dest.ssa.bit_size == 1) {
1361 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1362 } else if (dst.regClass() == v1) {
1363 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1364 } else if (dst.regClass() == v2) {
1365 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1366 } else if (dst.regClass() == s1) {
1367 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1368 } else if (dst.regClass() == s2) {
1369 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1370 } else {
1371 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1372 nir_print_instr(&instr->instr, stderr);
1373 fprintf(stderr, "\n");
1374 }
1375 break;
1376 }
1377 case nir_op_ushr: {
1378 if (dst.regClass() == v1) {
1379 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1380 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1381 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1382 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1383 } else if (dst.regClass() == v2) {
1384 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1385 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1386 } else if (dst.regClass() == s2) {
1387 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1388 } else if (dst.regClass() == s1) {
1389 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1390 } else {
1391 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1392 nir_print_instr(&instr->instr, stderr);
1393 fprintf(stderr, "\n");
1394 }
1395 break;
1396 }
1397 case nir_op_ishl: {
1398 if (dst.regClass() == v1) {
1399 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1400 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1401 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1402 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1403 } else if (dst.regClass() == v2) {
1404 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1405 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1406 } else if (dst.regClass() == s1) {
1407 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1408 } else if (dst.regClass() == s2) {
1409 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1410 } else {
1411 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1412 nir_print_instr(&instr->instr, stderr);
1413 fprintf(stderr, "\n");
1414 }
1415 break;
1416 }
1417 case nir_op_ishr: {
1418 if (dst.regClass() == v1) {
1419 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1420 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1421 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1422 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1423 } else if (dst.regClass() == v2) {
1424 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1425 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1426 } else if (dst.regClass() == s1) {
1427 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1428 } else if (dst.regClass() == s2) {
1429 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1430 } else {
1431 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1432 nir_print_instr(&instr->instr, stderr);
1433 fprintf(stderr, "\n");
1434 }
1435 break;
1436 }
1437 case nir_op_find_lsb: {
1438 Temp src = get_alu_src(ctx, instr->src[0]);
1439 if (src.regClass() == s1) {
1440 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1441 } else if (src.regClass() == v1) {
1442 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1443 } else if (src.regClass() == s2) {
1444 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1445 } else {
1446 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1447 nir_print_instr(&instr->instr, stderr);
1448 fprintf(stderr, "\n");
1449 }
1450 break;
1451 }
1452 case nir_op_ufind_msb:
1453 case nir_op_ifind_msb: {
1454 Temp src = get_alu_src(ctx, instr->src[0]);
1455 if (src.regClass() == s1 || src.regClass() == s2) {
1456 aco_opcode op = src.regClass() == s2 ?
1457 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1458 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1459 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1460
1461 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1462 Operand(src.size() * 32u - 1u), msb_rev);
1463 Temp msb = sub.def(0).getTemp();
1464 Temp carry = sub.def(1).getTemp();
1465
1466 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1467 } else if (src.regClass() == v1) {
1468 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1469 Temp msb_rev = bld.tmp(v1);
1470 emit_vop1_instruction(ctx, instr, op, msb_rev);
1471 Temp msb = bld.tmp(v1);
1472 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1473 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_bitfield_reverse: {
1482 if (dst.regClass() == s1) {
1483 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1484 } else if (dst.regClass() == v1) {
1485 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1486 } else {
1487 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1488 nir_print_instr(&instr->instr, stderr);
1489 fprintf(stderr, "\n");
1490 }
1491 break;
1492 }
1493 case nir_op_iadd: {
1494 if (dst.regClass() == s1) {
1495 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1496 break;
1497 }
1498
1499 Temp src0 = get_alu_src(ctx, instr->src[0]);
1500 Temp src1 = get_alu_src(ctx, instr->src[1]);
1501 if (dst.regClass() == v1) {
1502 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1503 break;
1504 }
1505
1506 assert(src0.size() == 2 && src1.size() == 2);
1507 Temp src00 = bld.tmp(src0.type(), 1);
1508 Temp src01 = bld.tmp(dst.type(), 1);
1509 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1510 Temp src10 = bld.tmp(src1.type(), 1);
1511 Temp src11 = bld.tmp(dst.type(), 1);
1512 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1513
1514 if (dst.regClass() == s2) {
1515 Temp carry = bld.tmp(s1);
1516 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1517 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1518 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1519 } else if (dst.regClass() == v2) {
1520 Temp dst0 = bld.tmp(v1);
1521 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1522 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1523 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_uadd_sat: {
1532 Temp src0 = get_alu_src(ctx, instr->src[0]);
1533 Temp src1 = get_alu_src(ctx, instr->src[1]);
1534 if (dst.regClass() == s1) {
1535 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1536 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1537 src0, src1);
1538 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1539 } else if (dst.regClass() == v1) {
1540 if (ctx->options->chip_class >= GFX9) {
1541 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1542 add->operands[0] = Operand(src0);
1543 add->operands[1] = Operand(src1);
1544 add->definitions[0] = Definition(dst);
1545 add->clamp = 1;
1546 ctx->block->instructions.emplace_back(std::move(add));
1547 } else {
1548 if (src1.regClass() != v1)
1549 std::swap(src0, src1);
1550 assert(src1.regClass() == v1);
1551 Temp tmp = bld.tmp(v1);
1552 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1553 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1554 }
1555 } else {
1556 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1557 nir_print_instr(&instr->instr, stderr);
1558 fprintf(stderr, "\n");
1559 }
1560 break;
1561 }
1562 case nir_op_uadd_carry: {
1563 Temp src0 = get_alu_src(ctx, instr->src[0]);
1564 Temp src1 = get_alu_src(ctx, instr->src[1]);
1565 if (dst.regClass() == s1) {
1566 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1567 break;
1568 }
1569 if (dst.regClass() == v1) {
1570 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1571 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1572 break;
1573 }
1574
1575 Temp src00 = bld.tmp(src0.type(), 1);
1576 Temp src01 = bld.tmp(dst.type(), 1);
1577 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1578 Temp src10 = bld.tmp(src1.type(), 1);
1579 Temp src11 = bld.tmp(dst.type(), 1);
1580 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1581 if (dst.regClass() == s2) {
1582 Temp carry = bld.tmp(s1);
1583 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1584 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1585 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1586 } else if (dst.regClass() == v2) {
1587 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1588 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1589 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1590 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1591 } else {
1592 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1593 nir_print_instr(&instr->instr, stderr);
1594 fprintf(stderr, "\n");
1595 }
1596 break;
1597 }
1598 case nir_op_isub: {
1599 if (dst.regClass() == s1) {
1600 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1601 break;
1602 }
1603
1604 Temp src0 = get_alu_src(ctx, instr->src[0]);
1605 Temp src1 = get_alu_src(ctx, instr->src[1]);
1606 if (dst.regClass() == v1) {
1607 bld.vsub32(Definition(dst), src0, src1);
1608 break;
1609 }
1610
1611 Temp src00 = bld.tmp(src0.type(), 1);
1612 Temp src01 = bld.tmp(dst.type(), 1);
1613 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1614 Temp src10 = bld.tmp(src1.type(), 1);
1615 Temp src11 = bld.tmp(dst.type(), 1);
1616 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1617 if (dst.regClass() == s2) {
1618 Temp carry = bld.tmp(s1);
1619 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1620 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1622 } else if (dst.regClass() == v2) {
1623 Temp lower = bld.tmp(v1);
1624 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1625 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1626 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1627 } else {
1628 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1629 nir_print_instr(&instr->instr, stderr);
1630 fprintf(stderr, "\n");
1631 }
1632 break;
1633 }
1634 case nir_op_usub_borrow: {
1635 Temp src0 = get_alu_src(ctx, instr->src[0]);
1636 Temp src1 = get_alu_src(ctx, instr->src[1]);
1637 if (dst.regClass() == s1) {
1638 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1639 break;
1640 } else if (dst.regClass() == v1) {
1641 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1642 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1643 break;
1644 }
1645
1646 Temp src00 = bld.tmp(src0.type(), 1);
1647 Temp src01 = bld.tmp(dst.type(), 1);
1648 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1649 Temp src10 = bld.tmp(src1.type(), 1);
1650 Temp src11 = bld.tmp(dst.type(), 1);
1651 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1652 if (dst.regClass() == s2) {
1653 Temp borrow = bld.tmp(s1);
1654 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1655 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1656 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1657 } else if (dst.regClass() == v2) {
1658 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1659 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1660 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1661 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1662 } else {
1663 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1664 nir_print_instr(&instr->instr, stderr);
1665 fprintf(stderr, "\n");
1666 }
1667 break;
1668 }
1669 case nir_op_imul: {
1670 if (dst.regClass() == v1) {
1671 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1672 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1673 } else if (dst.regClass() == s1) {
1674 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1675 } else {
1676 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1677 nir_print_instr(&instr->instr, stderr);
1678 fprintf(stderr, "\n");
1679 }
1680 break;
1681 }
1682 case nir_op_umul_high: {
1683 if (dst.regClass() == v1) {
1684 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1685 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1686 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1687 } else if (dst.regClass() == s1) {
1688 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1689 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1690 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_imul_high: {
1699 if (dst.regClass() == v1) {
1700 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1701 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1702 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1703 } else if (dst.regClass() == s1) {
1704 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1705 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1706 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1707 } else {
1708 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1709 nir_print_instr(&instr->instr, stderr);
1710 fprintf(stderr, "\n");
1711 }
1712 break;
1713 }
1714 case nir_op_fmul: {
1715 Temp src0 = get_alu_src(ctx, instr->src[0]);
1716 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1717 if (dst.regClass() == v2b) {
1718 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1719 } else if (dst.regClass() == v1) {
1720 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1721 } else if (dst.regClass() == v2) {
1722 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1723 } else {
1724 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1725 nir_print_instr(&instr->instr, stderr);
1726 fprintf(stderr, "\n");
1727 }
1728 break;
1729 }
1730 case nir_op_fadd: {
1731 Temp src0 = get_alu_src(ctx, instr->src[0]);
1732 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1733 if (dst.regClass() == v2b) {
1734 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1735 } else if (dst.regClass() == v1) {
1736 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1737 } else if (dst.regClass() == v2) {
1738 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1739 } else {
1740 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1741 nir_print_instr(&instr->instr, stderr);
1742 fprintf(stderr, "\n");
1743 }
1744 break;
1745 }
1746 case nir_op_fsub: {
1747 Temp src0 = get_alu_src(ctx, instr->src[0]);
1748 Temp src1 = get_alu_src(ctx, instr->src[1]);
1749 if (dst.regClass() == v2b) {
1750 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1751 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1752 else
1753 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1754 } else if (dst.regClass() == v1) {
1755 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1756 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1757 else
1758 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1759 } else if (dst.regClass() == v2) {
1760 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1761 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1762 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1763 sub->neg[1] = true;
1764 } else {
1765 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1766 nir_print_instr(&instr->instr, stderr);
1767 fprintf(stderr, "\n");
1768 }
1769 break;
1770 }
1771 case nir_op_fmax: {
1772 Temp src0 = get_alu_src(ctx, instr->src[0]);
1773 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1774 if (dst.regClass() == v2b) {
1775 // TODO: check fp_mode.must_flush_denorms16_64
1776 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1777 } else if (dst.regClass() == v1) {
1778 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1779 } else if (dst.regClass() == v2) {
1780 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1781 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1782 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1783 } else {
1784 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1785 }
1786 } else {
1787 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1788 nir_print_instr(&instr->instr, stderr);
1789 fprintf(stderr, "\n");
1790 }
1791 break;
1792 }
1793 case nir_op_fmin: {
1794 Temp src0 = get_alu_src(ctx, instr->src[0]);
1795 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1796 if (dst.regClass() == v2b) {
1797 // TODO: check fp_mode.must_flush_denorms16_64
1798 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1799 } else if (dst.regClass() == v1) {
1800 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1801 } else if (dst.regClass() == v2) {
1802 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1803 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1804 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1805 } else {
1806 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1807 }
1808 } else {
1809 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1810 nir_print_instr(&instr->instr, stderr);
1811 fprintf(stderr, "\n");
1812 }
1813 break;
1814 }
1815 case nir_op_fmax3: {
1816 if (dst.regClass() == v2b) {
1817 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, dst, false);
1818 } else if (dst.regClass() == v1) {
1819 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1820 } else {
1821 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1822 nir_print_instr(&instr->instr, stderr);
1823 fprintf(stderr, "\n");
1824 }
1825 break;
1826 }
1827 case nir_op_fmin3: {
1828 if (dst.regClass() == v2b) {
1829 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, dst, false);
1830 } else if (dst.regClass() == v1) {
1831 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1832 } else {
1833 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1834 nir_print_instr(&instr->instr, stderr);
1835 fprintf(stderr, "\n");
1836 }
1837 break;
1838 }
1839 case nir_op_fmed3: {
1840 if (dst.regClass() == v2b) {
1841 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, dst, false);
1842 } else if (dst.regClass() == v1) {
1843 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_umax3: {
1852 if (dst.size() == 1) {
1853 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1854 } else {
1855 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1856 nir_print_instr(&instr->instr, stderr);
1857 fprintf(stderr, "\n");
1858 }
1859 break;
1860 }
1861 case nir_op_umin3: {
1862 if (dst.size() == 1) {
1863 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1864 } else {
1865 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1866 nir_print_instr(&instr->instr, stderr);
1867 fprintf(stderr, "\n");
1868 }
1869 break;
1870 }
1871 case nir_op_umed3: {
1872 if (dst.size() == 1) {
1873 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1874 } else {
1875 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1876 nir_print_instr(&instr->instr, stderr);
1877 fprintf(stderr, "\n");
1878 }
1879 break;
1880 }
1881 case nir_op_imax3: {
1882 if (dst.size() == 1) {
1883 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1884 } else {
1885 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1886 nir_print_instr(&instr->instr, stderr);
1887 fprintf(stderr, "\n");
1888 }
1889 break;
1890 }
1891 case nir_op_imin3: {
1892 if (dst.size() == 1) {
1893 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1894 } else {
1895 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1896 nir_print_instr(&instr->instr, stderr);
1897 fprintf(stderr, "\n");
1898 }
1899 break;
1900 }
1901 case nir_op_imed3: {
1902 if (dst.size() == 1) {
1903 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1904 } else {
1905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1906 nir_print_instr(&instr->instr, stderr);
1907 fprintf(stderr, "\n");
1908 }
1909 break;
1910 }
1911 case nir_op_cube_face_coord: {
1912 Temp in = get_alu_src(ctx, instr->src[0], 3);
1913 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1914 emit_extract_vector(ctx, in, 1, v1),
1915 emit_extract_vector(ctx, in, 2, v1) };
1916 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1917 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1918 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1919 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1920 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1921 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1922 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1923 break;
1924 }
1925 case nir_op_cube_face_index: {
1926 Temp in = get_alu_src(ctx, instr->src[0], 3);
1927 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1928 emit_extract_vector(ctx, in, 1, v1),
1929 emit_extract_vector(ctx, in, 2, v1) };
1930 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1931 break;
1932 }
1933 case nir_op_bcsel: {
1934 emit_bcsel(ctx, instr, dst);
1935 break;
1936 }
1937 case nir_op_frsq: {
1938 Temp src = get_alu_src(ctx, instr->src[0]);
1939 if (dst.regClass() == v2b) {
1940 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1941 } else if (dst.regClass() == v1) {
1942 emit_rsq(ctx, bld, Definition(dst), src);
1943 } else if (dst.regClass() == v2) {
1944 /* Lowered at NIR level for precision reasons. */
1945 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1946 } else {
1947 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1948 nir_print_instr(&instr->instr, stderr);
1949 fprintf(stderr, "\n");
1950 }
1951 break;
1952 }
1953 case nir_op_fneg: {
1954 Temp src = get_alu_src(ctx, instr->src[0]);
1955 if (dst.regClass() == v2b) {
1956 if (ctx->block->fp_mode.must_flush_denorms16_64)
1957 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1958 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1959 } else if (dst.regClass() == v1) {
1960 if (ctx->block->fp_mode.must_flush_denorms32)
1961 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1962 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1963 } else if (dst.regClass() == v2) {
1964 if (ctx->block->fp_mode.must_flush_denorms16_64)
1965 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1966 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1967 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1968 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1969 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1970 } else {
1971 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1972 nir_print_instr(&instr->instr, stderr);
1973 fprintf(stderr, "\n");
1974 }
1975 break;
1976 }
1977 case nir_op_fabs: {
1978 Temp src = get_alu_src(ctx, instr->src[0]);
1979 if (dst.regClass() == v2b) {
1980 if (ctx->block->fp_mode.must_flush_denorms16_64)
1981 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1982 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1983 } else if (dst.regClass() == v1) {
1984 if (ctx->block->fp_mode.must_flush_denorms32)
1985 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1986 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1987 } else if (dst.regClass() == v2) {
1988 if (ctx->block->fp_mode.must_flush_denorms16_64)
1989 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1990 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1991 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1992 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1993 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1994 } else {
1995 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1996 nir_print_instr(&instr->instr, stderr);
1997 fprintf(stderr, "\n");
1998 }
1999 break;
2000 }
2001 case nir_op_fsat: {
2002 Temp src = get_alu_src(ctx, instr->src[0]);
2003 if (dst.regClass() == v2b) {
2004 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
2005 } else if (dst.regClass() == v1) {
2006 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2007 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
2008 // TODO: confirm that this holds under any circumstances
2009 } else if (dst.regClass() == v2) {
2010 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
2011 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
2012 vop3->clamp = true;
2013 } else {
2014 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2015 nir_print_instr(&instr->instr, stderr);
2016 fprintf(stderr, "\n");
2017 }
2018 break;
2019 }
2020 case nir_op_flog2: {
2021 Temp src = get_alu_src(ctx, instr->src[0]);
2022 if (dst.regClass() == v2b) {
2023 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
2024 } else if (dst.regClass() == v1) {
2025 emit_log2(ctx, bld, Definition(dst), src);
2026 } else {
2027 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2028 nir_print_instr(&instr->instr, stderr);
2029 fprintf(stderr, "\n");
2030 }
2031 break;
2032 }
2033 case nir_op_frcp: {
2034 Temp src = get_alu_src(ctx, instr->src[0]);
2035 if (dst.regClass() == v2b) {
2036 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
2037 } else if (dst.regClass() == v1) {
2038 emit_rcp(ctx, bld, Definition(dst), src);
2039 } else if (dst.regClass() == v2) {
2040 /* Lowered at NIR level for precision reasons. */
2041 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
2042 } else {
2043 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2044 nir_print_instr(&instr->instr, stderr);
2045 fprintf(stderr, "\n");
2046 }
2047 break;
2048 }
2049 case nir_op_fexp2: {
2050 if (dst.regClass() == v2b) {
2051 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
2052 } else if (dst.regClass() == v1) {
2053 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
2054 } else {
2055 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2056 nir_print_instr(&instr->instr, stderr);
2057 fprintf(stderr, "\n");
2058 }
2059 break;
2060 }
2061 case nir_op_fsqrt: {
2062 Temp src = get_alu_src(ctx, instr->src[0]);
2063 if (dst.regClass() == v2b) {
2064 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
2065 } else if (dst.regClass() == v1) {
2066 emit_sqrt(ctx, bld, Definition(dst), src);
2067 } else if (dst.regClass() == v2) {
2068 /* Lowered at NIR level for precision reasons. */
2069 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
2070 } else {
2071 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2072 nir_print_instr(&instr->instr, stderr);
2073 fprintf(stderr, "\n");
2074 }
2075 break;
2076 }
2077 case nir_op_ffract: {
2078 if (dst.regClass() == v2b) {
2079 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
2080 } else if (dst.regClass() == v1) {
2081 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
2082 } else if (dst.regClass() == v2) {
2083 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
2084 } else {
2085 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2086 nir_print_instr(&instr->instr, stderr);
2087 fprintf(stderr, "\n");
2088 }
2089 break;
2090 }
2091 case nir_op_ffloor: {
2092 Temp src = get_alu_src(ctx, instr->src[0]);
2093 if (dst.regClass() == v2b) {
2094 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
2095 } else if (dst.regClass() == v1) {
2096 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
2097 } else if (dst.regClass() == v2) {
2098 emit_floor_f64(ctx, bld, Definition(dst), src);
2099 } else {
2100 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2101 nir_print_instr(&instr->instr, stderr);
2102 fprintf(stderr, "\n");
2103 }
2104 break;
2105 }
2106 case nir_op_fceil: {
2107 Temp src0 = get_alu_src(ctx, instr->src[0]);
2108 if (dst.regClass() == v2b) {
2109 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
2110 } else if (dst.regClass() == v1) {
2111 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2112 } else if (dst.regClass() == v2) {
2113 if (ctx->options->chip_class >= GFX7) {
2114 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2115 } else {
2116 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2117 /* trunc = trunc(src0)
2118 * if (src0 > 0.0 && src0 != trunc)
2119 * trunc += 1.0
2120 */
2121 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2122 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2123 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2124 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2125 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2126 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2127 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2128 }
2129 } else {
2130 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2131 nir_print_instr(&instr->instr, stderr);
2132 fprintf(stderr, "\n");
2133 }
2134 break;
2135 }
2136 case nir_op_ftrunc: {
2137 Temp src = get_alu_src(ctx, instr->src[0]);
2138 if (dst.regClass() == v2b) {
2139 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2140 } else if (dst.regClass() == v1) {
2141 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2142 } else if (dst.regClass() == v2) {
2143 emit_trunc_f64(ctx, bld, Definition(dst), src);
2144 } else {
2145 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2146 nir_print_instr(&instr->instr, stderr);
2147 fprintf(stderr, "\n");
2148 }
2149 break;
2150 }
2151 case nir_op_fround_even: {
2152 Temp src0 = get_alu_src(ctx, instr->src[0]);
2153 if (dst.regClass() == v2b) {
2154 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2155 } else if (dst.regClass() == v1) {
2156 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2157 } else if (dst.regClass() == v2) {
2158 if (ctx->options->chip_class >= GFX7) {
2159 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2160 } else {
2161 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2162 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2163 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2164
2165 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2166 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2167 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2168 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2169 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2170 tmp = sub->definitions[0].getTemp();
2171
2172 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2173 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2174 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2175 Temp cond = vop3->definitions[0].getTemp();
2176
2177 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2178 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2179 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2180 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2181
2182 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2183 }
2184 } else {
2185 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2186 nir_print_instr(&instr->instr, stderr);
2187 fprintf(stderr, "\n");
2188 }
2189 break;
2190 }
2191 case nir_op_fsin:
2192 case nir_op_fcos: {
2193 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2194 aco_ptr<Instruction> norm;
2195 if (dst.regClass() == v2b) {
2196 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2197 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2198 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2199 bld.vop1(opcode, Definition(dst), tmp);
2200 } else if (dst.regClass() == v1) {
2201 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2202 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2203
2204 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2205 if (ctx->options->chip_class < GFX9)
2206 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2207
2208 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2209 bld.vop1(opcode, Definition(dst), tmp);
2210 } else {
2211 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2212 nir_print_instr(&instr->instr, stderr);
2213 fprintf(stderr, "\n");
2214 }
2215 break;
2216 }
2217 case nir_op_ldexp: {
2218 Temp src0 = get_alu_src(ctx, instr->src[0]);
2219 Temp src1 = get_alu_src(ctx, instr->src[1]);
2220 if (dst.regClass() == v2b) {
2221 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2222 } else if (dst.regClass() == v1) {
2223 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2224 } else if (dst.regClass() == v2) {
2225 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2226 } else {
2227 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2228 nir_print_instr(&instr->instr, stderr);
2229 fprintf(stderr, "\n");
2230 }
2231 break;
2232 }
2233 case nir_op_frexp_sig: {
2234 Temp src = get_alu_src(ctx, instr->src[0]);
2235 if (dst.regClass() == v2b) {
2236 bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
2237 } else if (dst.regClass() == v1) {
2238 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2239 } else if (dst.regClass() == v2) {
2240 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2241 } else {
2242 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2243 nir_print_instr(&instr->instr, stderr);
2244 fprintf(stderr, "\n");
2245 }
2246 break;
2247 }
2248 case nir_op_frexp_exp: {
2249 Temp src = get_alu_src(ctx, instr->src[0]);
2250 if (instr->src[0].src.ssa->bit_size == 16) {
2251 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2252 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2253 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2254 } else if (instr->src[0].src.ssa->bit_size == 32) {
2255 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2256 } else if (instr->src[0].src.ssa->bit_size == 64) {
2257 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2258 } else {
2259 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2260 nir_print_instr(&instr->instr, stderr);
2261 fprintf(stderr, "\n");
2262 }
2263 break;
2264 }
2265 case nir_op_fsign: {
2266 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2267 if (dst.regClass() == v2b) {
2268 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2269 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2270 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2271 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2272 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2273 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
2274 } else if (dst.regClass() == v1) {
2275 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2276 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2277 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2278 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2279 } else if (dst.regClass() == v2) {
2280 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2281 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2282 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2283
2284 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2285 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2286 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2287
2288 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2289 } else {
2290 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2291 nir_print_instr(&instr->instr, stderr);
2292 fprintf(stderr, "\n");
2293 }
2294 break;
2295 }
2296 case nir_op_f2f16:
2297 case nir_op_f2f16_rtne: {
2298 Temp src = get_alu_src(ctx, instr->src[0]);
2299 if (instr->src[0].src.ssa->bit_size == 64)
2300 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2301 if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
2302 /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
2303 * keep value numbering and the scheduler simpler.
2304 */
2305 bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
2306 else
2307 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2308 break;
2309 }
2310 case nir_op_f2f16_rtz: {
2311 Temp src = get_alu_src(ctx, instr->src[0]);
2312 if (instr->src[0].src.ssa->bit_size == 64)
2313 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2314 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
2315 break;
2316 }
2317 case nir_op_f2f32: {
2318 if (instr->src[0].src.ssa->bit_size == 16) {
2319 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2320 } else if (instr->src[0].src.ssa->bit_size == 64) {
2321 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2322 } else {
2323 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2324 nir_print_instr(&instr->instr, stderr);
2325 fprintf(stderr, "\n");
2326 }
2327 break;
2328 }
2329 case nir_op_f2f64: {
2330 Temp src = get_alu_src(ctx, instr->src[0]);
2331 if (instr->src[0].src.ssa->bit_size == 16)
2332 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2333 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2334 break;
2335 }
2336 case nir_op_i2f16: {
2337 assert(dst.regClass() == v2b);
2338 Temp src = get_alu_src(ctx, instr->src[0]);
2339 if (instr->src[0].src.ssa->bit_size == 8)
2340 src = convert_int(ctx, bld, src, 8, 16, true);
2341 else if (instr->src[0].src.ssa->bit_size == 64)
2342 src = convert_int(ctx, bld, src, 64, 32, false);
2343 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2344 break;
2345 }
2346 case nir_op_i2f32: {
2347 assert(dst.size() == 1);
2348 Temp src = get_alu_src(ctx, instr->src[0]);
2349 if (instr->src[0].src.ssa->bit_size <= 16)
2350 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2351 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2352 break;
2353 }
2354 case nir_op_i2f64: {
2355 if (instr->src[0].src.ssa->bit_size <= 32) {
2356 Temp src = get_alu_src(ctx, instr->src[0]);
2357 if (instr->src[0].src.ssa->bit_size <= 16)
2358 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2359 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2360 } else if (instr->src[0].src.ssa->bit_size == 64) {
2361 Temp src = get_alu_src(ctx, instr->src[0]);
2362 RegClass rc = RegClass(src.type(), 1);
2363 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2364 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2365 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2366 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2367 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2368 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2369
2370 } else {
2371 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2372 nir_print_instr(&instr->instr, stderr);
2373 fprintf(stderr, "\n");
2374 }
2375 break;
2376 }
2377 case nir_op_u2f16: {
2378 assert(dst.regClass() == v2b);
2379 Temp src = get_alu_src(ctx, instr->src[0]);
2380 if (instr->src[0].src.ssa->bit_size == 8)
2381 src = convert_int(ctx, bld, src, 8, 16, false);
2382 else if (instr->src[0].src.ssa->bit_size == 64)
2383 src = convert_int(ctx, bld, src, 64, 32, false);
2384 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2385 break;
2386 }
2387 case nir_op_u2f32: {
2388 assert(dst.size() == 1);
2389 Temp src = get_alu_src(ctx, instr->src[0]);
2390 if (instr->src[0].src.ssa->bit_size == 8) {
2391 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2392 } else {
2393 if (instr->src[0].src.ssa->bit_size == 16)
2394 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2395 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2396 }
2397 break;
2398 }
2399 case nir_op_u2f64: {
2400 if (instr->src[0].src.ssa->bit_size <= 32) {
2401 Temp src = get_alu_src(ctx, instr->src[0]);
2402 if (instr->src[0].src.ssa->bit_size <= 16)
2403 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2404 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2405 } else if (instr->src[0].src.ssa->bit_size == 64) {
2406 Temp src = get_alu_src(ctx, instr->src[0]);
2407 RegClass rc = RegClass(src.type(), 1);
2408 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2409 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2410 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2411 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2412 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2413 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2414 } else {
2415 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2416 nir_print_instr(&instr->instr, stderr);
2417 fprintf(stderr, "\n");
2418 }
2419 break;
2420 }
2421 case nir_op_f2i8:
2422 case nir_op_f2i16: {
2423 if (instr->src[0].src.ssa->bit_size == 16)
2424 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2425 else if (instr->src[0].src.ssa->bit_size == 32)
2426 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2427 else
2428 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2429 break;
2430 }
2431 case nir_op_f2u8:
2432 case nir_op_f2u16: {
2433 if (instr->src[0].src.ssa->bit_size == 16)
2434 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2435 else if (instr->src[0].src.ssa->bit_size == 32)
2436 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2437 else
2438 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2439 break;
2440 }
2441 case nir_op_f2i32: {
2442 Temp src = get_alu_src(ctx, instr->src[0]);
2443 if (instr->src[0].src.ssa->bit_size == 16) {
2444 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2445 if (dst.type() == RegType::vgpr) {
2446 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2447 } else {
2448 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2449 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2450 }
2451 } else if (instr->src[0].src.ssa->bit_size == 32) {
2452 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2453 } else if (instr->src[0].src.ssa->bit_size == 64) {
2454 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2455 } else {
2456 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2457 nir_print_instr(&instr->instr, stderr);
2458 fprintf(stderr, "\n");
2459 }
2460 break;
2461 }
2462 case nir_op_f2u32: {
2463 Temp src = get_alu_src(ctx, instr->src[0]);
2464 if (instr->src[0].src.ssa->bit_size == 16) {
2465 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2466 if (dst.type() == RegType::vgpr) {
2467 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2468 } else {
2469 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2470 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2471 }
2472 } else if (instr->src[0].src.ssa->bit_size == 32) {
2473 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2474 } else if (instr->src[0].src.ssa->bit_size == 64) {
2475 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2476 } else {
2477 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2478 nir_print_instr(&instr->instr, stderr);
2479 fprintf(stderr, "\n");
2480 }
2481 break;
2482 }
2483 case nir_op_f2i64: {
2484 Temp src = get_alu_src(ctx, instr->src[0]);
2485 if (instr->src[0].src.ssa->bit_size == 16)
2486 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2487
2488 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2489 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2490 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2491 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2492 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2493 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2494 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2495 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2496 Temp new_exponent = bld.tmp(v1);
2497 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2498 if (ctx->program->chip_class >= GFX8)
2499 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2500 else
2501 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2502 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2503 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2504 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2505 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2506 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2507 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2508 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2509 Temp new_lower = bld.tmp(v1);
2510 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2511 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2512 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2513
2514 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2515 if (src.type() == RegType::vgpr)
2516 src = bld.as_uniform(src);
2517 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2518 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2519 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2520 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2521 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2522 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2523 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2524 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2525 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2526 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2527 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2528 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2529 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2530 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2531 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2532 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2533 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2534 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2535 Temp borrow = bld.tmp(s1);
2536 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2537 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2538 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2539
2540 } else if (instr->src[0].src.ssa->bit_size == 64) {
2541 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2542 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2543 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2544 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2545 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2546 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2547 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2548 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2549 if (dst.type() == RegType::sgpr) {
2550 lower = bld.as_uniform(lower);
2551 upper = bld.as_uniform(upper);
2552 }
2553 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2554
2555 } else {
2556 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2557 nir_print_instr(&instr->instr, stderr);
2558 fprintf(stderr, "\n");
2559 }
2560 break;
2561 }
2562 case nir_op_f2u64: {
2563 Temp src = get_alu_src(ctx, instr->src[0]);
2564 if (instr->src[0].src.ssa->bit_size == 16)
2565 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2566
2567 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2568 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2569 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2570 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2571 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2572 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2573 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2574 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2575 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2576 Temp new_exponent = bld.tmp(v1);
2577 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2578 if (ctx->program->chip_class >= GFX8)
2579 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2580 else
2581 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2582 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2583 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2584 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2585 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2586 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2587 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2589
2590 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2591 if (src.type() == RegType::vgpr)
2592 src = bld.as_uniform(src);
2593 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2594 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2595 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2596 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2597 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2598 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2599 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2600 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2601 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2602 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2603 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2604 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2605 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2606 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2607 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2608 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2609 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2610 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2611
2612 } else if (instr->src[0].src.ssa->bit_size == 64) {
2613 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2614 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2615 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2616 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2617 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2618 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2619 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2620 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2621 if (dst.type() == RegType::sgpr) {
2622 lower = bld.as_uniform(lower);
2623 upper = bld.as_uniform(upper);
2624 }
2625 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2626
2627 } else {
2628 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2629 nir_print_instr(&instr->instr, stderr);
2630 fprintf(stderr, "\n");
2631 }
2632 break;
2633 }
2634 case nir_op_b2f16: {
2635 Temp src = get_alu_src(ctx, instr->src[0]);
2636 assert(src.regClass() == bld.lm);
2637
2638 if (dst.regClass() == s1) {
2639 src = bool_to_scalar_condition(ctx, src);
2640 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2641 } else if (dst.regClass() == v2b) {
2642 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2643 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2644 } else {
2645 unreachable("Wrong destination register class for nir_op_b2f16.");
2646 }
2647 break;
2648 }
2649 case nir_op_b2f32: {
2650 Temp src = get_alu_src(ctx, instr->src[0]);
2651 assert(src.regClass() == bld.lm);
2652
2653 if (dst.regClass() == s1) {
2654 src = bool_to_scalar_condition(ctx, src);
2655 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2656 } else if (dst.regClass() == v1) {
2657 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2658 } else {
2659 unreachable("Wrong destination register class for nir_op_b2f32.");
2660 }
2661 break;
2662 }
2663 case nir_op_b2f64: {
2664 Temp src = get_alu_src(ctx, instr->src[0]);
2665 assert(src.regClass() == bld.lm);
2666
2667 if (dst.regClass() == s2) {
2668 src = bool_to_scalar_condition(ctx, src);
2669 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2670 } else if (dst.regClass() == v2) {
2671 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2672 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2673 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2674 } else {
2675 unreachable("Wrong destination register class for nir_op_b2f64.");
2676 }
2677 break;
2678 }
2679 case nir_op_i2i8:
2680 case nir_op_i2i16:
2681 case nir_op_i2i32:
2682 case nir_op_i2i64: {
2683 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2684 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2685 break;
2686 }
2687 case nir_op_u2u8:
2688 case nir_op_u2u16:
2689 case nir_op_u2u32:
2690 case nir_op_u2u64: {
2691 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2692 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2693 break;
2694 }
2695 case nir_op_b2b32:
2696 case nir_op_b2i32: {
2697 Temp src = get_alu_src(ctx, instr->src[0]);
2698 assert(src.regClass() == bld.lm);
2699
2700 if (dst.regClass() == s1) {
2701 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2702 bool_to_scalar_condition(ctx, src, dst);
2703 } else if (dst.regClass() == v1) {
2704 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2705 } else {
2706 unreachable("Invalid register class for b2i32");
2707 }
2708 break;
2709 }
2710 case nir_op_b2b1:
2711 case nir_op_i2b1: {
2712 Temp src = get_alu_src(ctx, instr->src[0]);
2713 assert(dst.regClass() == bld.lm);
2714
2715 if (src.type() == RegType::vgpr) {
2716 assert(src.regClass() == v1 || src.regClass() == v2);
2717 assert(dst.regClass() == bld.lm);
2718 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2719 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2720 } else {
2721 assert(src.regClass() == s1 || src.regClass() == s2);
2722 Temp tmp;
2723 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2724 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2725 } else {
2726 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2727 bld.scc(bld.def(s1)), Operand(0u), src);
2728 }
2729 bool_to_vector_condition(ctx, tmp, dst);
2730 }
2731 break;
2732 }
2733 case nir_op_pack_64_2x32_split: {
2734 Temp src0 = get_alu_src(ctx, instr->src[0]);
2735 Temp src1 = get_alu_src(ctx, instr->src[1]);
2736
2737 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2738 break;
2739 }
2740 case nir_op_unpack_64_2x32_split_x:
2741 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2742 break;
2743 case nir_op_unpack_64_2x32_split_y:
2744 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2745 break;
2746 case nir_op_unpack_32_2x16_split_x:
2747 if (dst.type() == RegType::vgpr) {
2748 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2749 } else {
2750 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2751 }
2752 break;
2753 case nir_op_unpack_32_2x16_split_y:
2754 if (dst.type() == RegType::vgpr) {
2755 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2756 } else {
2757 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2758 }
2759 break;
2760 case nir_op_pack_32_2x16_split: {
2761 Temp src0 = get_alu_src(ctx, instr->src[0]);
2762 Temp src1 = get_alu_src(ctx, instr->src[1]);
2763 if (dst.regClass() == v1) {
2764 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2765 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2766 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2767 } else {
2768 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2769 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2770 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2771 }
2772 break;
2773 }
2774 case nir_op_pack_half_2x16: {
2775 Temp src = get_alu_src(ctx, instr->src[0], 2);
2776
2777 if (dst.regClass() == v1) {
2778 Temp src0 = bld.tmp(v1);
2779 Temp src1 = bld.tmp(v1);
2780 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2781 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2782 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2783 else
2784 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2785 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2786 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2787 } else {
2788 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2789 nir_print_instr(&instr->instr, stderr);
2790 fprintf(stderr, "\n");
2791 }
2792 break;
2793 }
2794 case nir_op_unpack_half_2x16_split_x: {
2795 if (dst.regClass() == v1) {
2796 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2797 } else {
2798 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2799 nir_print_instr(&instr->instr, stderr);
2800 fprintf(stderr, "\n");
2801 }
2802 break;
2803 }
2804 case nir_op_unpack_half_2x16_split_y: {
2805 if (dst.regClass() == v1) {
2806 /* TODO: use SDWA here */
2807 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2808 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2809 } else {
2810 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2811 nir_print_instr(&instr->instr, stderr);
2812 fprintf(stderr, "\n");
2813 }
2814 break;
2815 }
2816 case nir_op_fquantize2f16: {
2817 Temp src = get_alu_src(ctx, instr->src[0]);
2818 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2819 Temp f32, cmp_res;
2820
2821 if (ctx->program->chip_class >= GFX8) {
2822 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2823 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2824 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2825 } else {
2826 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2827 * so compare the result and flush to 0 if it's smaller.
2828 */
2829 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2830 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2831 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2832 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2833 cmp_res = vop3->definitions[0].getTemp();
2834 }
2835
2836 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2837 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2838 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2839 } else {
2840 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2841 }
2842 break;
2843 }
2844 case nir_op_bfm: {
2845 Temp bits = get_alu_src(ctx, instr->src[0]);
2846 Temp offset = get_alu_src(ctx, instr->src[1]);
2847
2848 if (dst.regClass() == s1) {
2849 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2850 } else if (dst.regClass() == v1) {
2851 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2852 } else {
2853 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2854 nir_print_instr(&instr->instr, stderr);
2855 fprintf(stderr, "\n");
2856 }
2857 break;
2858 }
2859 case nir_op_bitfield_select: {
2860 /* (mask & insert) | (~mask & base) */
2861 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2862 Temp insert = get_alu_src(ctx, instr->src[1]);
2863 Temp base = get_alu_src(ctx, instr->src[2]);
2864
2865 /* dst = (insert & bitmask) | (base & ~bitmask) */
2866 if (dst.regClass() == s1) {
2867 aco_ptr<Instruction> sop2;
2868 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2869 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2870 Operand lhs;
2871 if (const_insert && const_bitmask) {
2872 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2873 } else {
2874 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2875 lhs = Operand(insert);
2876 }
2877
2878 Operand rhs;
2879 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2880 if (const_base && const_bitmask) {
2881 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2882 } else {
2883 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2884 rhs = Operand(base);
2885 }
2886
2887 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2888
2889 } else if (dst.regClass() == v1) {
2890 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2891 base = as_vgpr(ctx, base);
2892 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2893 insert = as_vgpr(ctx, insert);
2894
2895 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2896
2897 } else {
2898 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2899 nir_print_instr(&instr->instr, stderr);
2900 fprintf(stderr, "\n");
2901 }
2902 break;
2903 }
2904 case nir_op_ubfe:
2905 case nir_op_ibfe: {
2906 Temp base = get_alu_src(ctx, instr->src[0]);
2907 Temp offset = get_alu_src(ctx, instr->src[1]);
2908 Temp bits = get_alu_src(ctx, instr->src[2]);
2909
2910 if (dst.type() == RegType::sgpr) {
2911 Operand extract;
2912 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2913 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2914 if (const_offset && const_bits) {
2915 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2916 extract = Operand(const_extract);
2917 } else {
2918 Operand width;
2919 if (const_bits) {
2920 width = Operand(const_bits->u32 << 16);
2921 } else {
2922 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2923 }
2924 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2925 }
2926
2927 aco_opcode opcode;
2928 if (dst.regClass() == s1) {
2929 if (instr->op == nir_op_ubfe)
2930 opcode = aco_opcode::s_bfe_u32;
2931 else
2932 opcode = aco_opcode::s_bfe_i32;
2933 } else if (dst.regClass() == s2) {
2934 if (instr->op == nir_op_ubfe)
2935 opcode = aco_opcode::s_bfe_u64;
2936 else
2937 opcode = aco_opcode::s_bfe_i64;
2938 } else {
2939 unreachable("Unsupported BFE bit size");
2940 }
2941
2942 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2943
2944 } else {
2945 aco_opcode opcode;
2946 if (dst.regClass() == v1) {
2947 if (instr->op == nir_op_ubfe)
2948 opcode = aco_opcode::v_bfe_u32;
2949 else
2950 opcode = aco_opcode::v_bfe_i32;
2951 } else {
2952 unreachable("Unsupported BFE bit size");
2953 }
2954
2955 emit_vop3a_instruction(ctx, instr, opcode, dst);
2956 }
2957 break;
2958 }
2959 case nir_op_bit_count: {
2960 Temp src = get_alu_src(ctx, instr->src[0]);
2961 if (src.regClass() == s1) {
2962 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2963 } else if (src.regClass() == v1) {
2964 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2965 } else if (src.regClass() == v2) {
2966 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2967 emit_extract_vector(ctx, src, 1, v1),
2968 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2969 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2970 } else if (src.regClass() == s2) {
2971 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2972 } else {
2973 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2974 nir_print_instr(&instr->instr, stderr);
2975 fprintf(stderr, "\n");
2976 }
2977 break;
2978 }
2979 case nir_op_flt: {
2980 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2981 break;
2982 }
2983 case nir_op_fge: {
2984 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2985 break;
2986 }
2987 case nir_op_feq: {
2988 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2989 break;
2990 }
2991 case nir_op_fne: {
2992 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2993 break;
2994 }
2995 case nir_op_ilt: {
2996 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2997 break;
2998 }
2999 case nir_op_ige: {
3000 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
3001 break;
3002 }
3003 case nir_op_ieq: {
3004 if (instr->src[0].src.ssa->bit_size == 1)
3005 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
3006 else
3007 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
3008 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
3009 break;
3010 }
3011 case nir_op_ine: {
3012 if (instr->src[0].src.ssa->bit_size == 1)
3013 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
3014 else
3015 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
3016 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
3017 break;
3018 }
3019 case nir_op_ult: {
3020 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
3021 break;
3022 }
3023 case nir_op_uge: {
3024 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
3025 break;
3026 }
3027 case nir_op_fddx:
3028 case nir_op_fddy:
3029 case nir_op_fddx_fine:
3030 case nir_op_fddy_fine:
3031 case nir_op_fddx_coarse:
3032 case nir_op_fddy_coarse: {
3033 Temp src = get_alu_src(ctx, instr->src[0]);
3034 uint16_t dpp_ctrl1, dpp_ctrl2;
3035 if (instr->op == nir_op_fddx_fine) {
3036 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
3037 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
3038 } else if (instr->op == nir_op_fddy_fine) {
3039 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
3040 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
3041 } else {
3042 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
3043 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
3044 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
3045 else
3046 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
3047 }
3048
3049 Temp tmp;
3050 if (ctx->program->chip_class >= GFX8) {
3051 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
3052 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
3053 } else {
3054 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
3055 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
3056 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
3057 }
3058 emit_wqm(ctx, tmp, dst, true);
3059 break;
3060 }
3061 default:
3062 fprintf(stderr, "Unknown NIR ALU instr: ");
3063 nir_print_instr(&instr->instr, stderr);
3064 fprintf(stderr, "\n");
3065 }
3066 }
3067
3068 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3069 {
3070 Temp dst = get_ssa_temp(ctx, &instr->def);
3071
3072 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3073 // which get truncated the lsb if double and msb if int
3074 // for now, we only use s_mov_b64 with 64bit inline constants
3075 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3076 assert(dst.type() == RegType::sgpr);
3077
3078 Builder bld(ctx->program, ctx->block);
3079
3080 if (instr->def.bit_size == 1) {
3081 assert(dst.regClass() == bld.lm);
3082 int val = instr->value[0].b ? -1 : 0;
3083 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3084 bld.sop1(Builder::s_mov, Definition(dst), op);
3085 } else if (instr->def.bit_size == 8) {
3086 /* ensure that the value is correctly represented in the low byte of the register */
3087 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3088 } else if (instr->def.bit_size == 16) {
3089 /* ensure that the value is correctly represented in the low half of the register */
3090 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3091 } else if (dst.size() == 1) {
3092 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3093 } else {
3094 assert(dst.size() != 1);
3095 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3096 if (instr->def.bit_size == 64)
3097 for (unsigned i = 0; i < dst.size(); i++)
3098 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3099 else {
3100 for (unsigned i = 0; i < dst.size(); i++)
3101 vec->operands[i] = Operand{instr->value[i].u32};
3102 }
3103 vec->definitions[0] = Definition(dst);
3104 ctx->block->instructions.emplace_back(std::move(vec));
3105 }
3106 }
3107
3108 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3109 {
3110 uint32_t new_mask = 0;
3111 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3112 if (mask & (1u << i))
3113 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3114 return new_mask;
3115 }
3116
3117 struct LoadEmitInfo {
3118 Operand offset;
3119 Temp dst;
3120 unsigned num_components;
3121 unsigned component_size;
3122 Temp resource = Temp(0, s1);
3123 unsigned component_stride = 0;
3124 unsigned const_offset = 0;
3125 unsigned align_mul = 0;
3126 unsigned align_offset = 0;
3127
3128 bool glc = false;
3129 unsigned swizzle_component_size = 0;
3130 barrier_interaction barrier = barrier_none;
3131 bool can_reorder = true;
3132 Temp soffset = Temp(0, s1);
3133 };
3134
3135 using LoadCallback = Temp(*)(
3136 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3137 unsigned align, unsigned const_offset, Temp dst_hint);
3138
3139 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3140 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3141 {
3142 unsigned load_size = info->num_components * info->component_size;
3143 unsigned component_size = info->component_size;
3144
3145 unsigned num_vals = 0;
3146 Temp vals[info->dst.bytes()];
3147
3148 unsigned const_offset = info->const_offset;
3149
3150 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3151 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3152
3153 unsigned bytes_read = 0;
3154 while (bytes_read < load_size) {
3155 unsigned bytes_needed = load_size - bytes_read;
3156
3157 /* add buffer for unaligned loads */
3158 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3159
3160 if (byte_align) {
3161 if ((bytes_needed > 2 ||
3162 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
3163 !supports_8bit_16bit_loads) && byte_align_loads) {
3164 if (info->component_stride) {
3165 assert(supports_8bit_16bit_loads && "unimplemented");
3166 bytes_needed = 2;
3167 byte_align = 0;
3168 } else {
3169 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3170 bytes_needed = align(bytes_needed, 4);
3171 }
3172 } else {
3173 byte_align = 0;
3174 }
3175 }
3176
3177 if (info->swizzle_component_size)
3178 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3179 if (info->component_stride)
3180 bytes_needed = MIN2(bytes_needed, info->component_size);
3181
3182 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3183
3184 /* reduce constant offset */
3185 Operand offset = info->offset;
3186 unsigned reduced_const_offset = const_offset;
3187 bool remove_const_offset_completely = need_to_align_offset;
3188 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3189 unsigned to_add = const_offset;
3190 if (remove_const_offset_completely) {
3191 reduced_const_offset = 0;
3192 } else {
3193 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3194 reduced_const_offset %= max_const_offset_plus_one;
3195 }
3196 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3197 if (offset.isConstant()) {
3198 offset = Operand(offset.constantValue() + to_add);
3199 } else if (offset_tmp.regClass() == s1) {
3200 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3201 offset_tmp, Operand(to_add));
3202 } else if (offset_tmp.regClass() == v1) {
3203 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3204 } else {
3205 Temp lo = bld.tmp(offset_tmp.type(), 1);
3206 Temp hi = bld.tmp(offset_tmp.type(), 1);
3207 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3208
3209 if (offset_tmp.regClass() == s2) {
3210 Temp carry = bld.tmp(s1);
3211 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3212 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3213 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3214 } else {
3215 Temp new_lo = bld.tmp(v1);
3216 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3217 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3218 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3219 }
3220 }
3221 }
3222
3223 /* align offset down if needed */
3224 Operand aligned_offset = offset;
3225 if (need_to_align_offset) {
3226 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3227 if (offset.isConstant()) {
3228 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3229 } else if (offset_tmp.regClass() == s1) {
3230 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3231 } else if (offset_tmp.regClass() == s2) {
3232 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3233 } else if (offset_tmp.regClass() == v1) {
3234 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3235 } else if (offset_tmp.regClass() == v2) {
3236 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3237 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3238 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3239 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3240 }
3241 }
3242 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3243 bld.copy(bld.def(s1), aligned_offset);
3244
3245 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3246 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3247 reduced_const_offset, byte_align ? Temp() : info->dst);
3248
3249 /* the callback wrote directly to dst */
3250 if (val == info->dst) {
3251 assert(num_vals == 0);
3252 emit_split_vector(ctx, info->dst, info->num_components);
3253 return;
3254 }
3255
3256 /* shift result right if needed */
3257 if (info->component_size < 4 && byte_align_loads) {
3258 Operand align((uint32_t)byte_align);
3259 if (byte_align == -1) {
3260 if (offset.isConstant())
3261 align = Operand(offset.constantValue() % 4u);
3262 else if (offset.size() == 2)
3263 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3264 else
3265 align = offset;
3266 }
3267
3268 assert(val.bytes() >= load_size && "unimplemented");
3269 if (val.type() == RegType::sgpr)
3270 byte_align_scalar(ctx, val, align, info->dst);
3271 else
3272 byte_align_vector(ctx, val, align, info->dst, component_size);
3273 return;
3274 }
3275
3276 /* add result to list and advance */
3277 if (info->component_stride) {
3278 assert(val.bytes() == info->component_size && "unimplemented");
3279 const_offset += info->component_stride;
3280 align_offset = (align_offset + info->component_stride) % align_mul;
3281 } else {
3282 const_offset += val.bytes();
3283 align_offset = (align_offset + val.bytes()) % align_mul;
3284 }
3285 bytes_read += val.bytes();
3286 vals[num_vals++] = val;
3287 }
3288
3289 /* create array of components */
3290 unsigned components_split = 0;
3291 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3292 bool has_vgprs = false;
3293 for (unsigned i = 0; i < num_vals;) {
3294 Temp tmp[num_vals];
3295 unsigned num_tmps = 0;
3296 unsigned tmp_size = 0;
3297 RegType reg_type = RegType::sgpr;
3298 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3299 if (vals[i].type() == RegType::vgpr)
3300 reg_type = RegType::vgpr;
3301 tmp_size += vals[i].bytes();
3302 tmp[num_tmps++] = vals[i++];
3303 }
3304 if (num_tmps > 1) {
3305 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3306 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3307 for (unsigned i = 0; i < num_vals; i++)
3308 vec->operands[i] = Operand(tmp[i]);
3309 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3310 vec->definitions[0] = Definition(tmp[0]);
3311 bld.insert(std::move(vec));
3312 }
3313
3314 if (tmp[0].bytes() % component_size) {
3315 /* trim tmp[0] */
3316 assert(i == num_vals);
3317 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3318 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3319 }
3320
3321 RegClass elem_rc = RegClass::get(reg_type, component_size);
3322
3323 unsigned start = components_split;
3324
3325 if (tmp_size == elem_rc.bytes()) {
3326 allocated_vec[components_split++] = tmp[0];
3327 } else {
3328 assert(tmp_size % elem_rc.bytes() == 0);
3329 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3330 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3331 for (unsigned i = 0; i < split->definitions.size(); i++) {
3332 Temp component = bld.tmp(elem_rc);
3333 allocated_vec[components_split++] = component;
3334 split->definitions[i] = Definition(component);
3335 }
3336 split->operands[0] = Operand(tmp[0]);
3337 bld.insert(std::move(split));
3338 }
3339
3340 /* try to p_as_uniform early so we can create more optimizable code and
3341 * also update allocated_vec */
3342 for (unsigned j = start; j < components_split; j++) {
3343 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3344 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3345 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3346 }
3347 }
3348
3349 /* concatenate components and p_as_uniform() result if needed */
3350 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3351 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3352
3353 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3354
3355 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3356 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3357 for (unsigned i = 0; i < info->num_components; i++)
3358 vec->operands[i] = Operand(allocated_vec[i]);
3359 if (padding_bytes)
3360 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3361 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3362 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3363 vec->definitions[0] = Definition(tmp);
3364 bld.insert(std::move(vec));
3365 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3366 } else {
3367 vec->definitions[0] = Definition(info->dst);
3368 bld.insert(std::move(vec));
3369 }
3370 }
3371
3372 Operand load_lds_size_m0(Builder& bld)
3373 {
3374 /* TODO: m0 does not need to be initialized on GFX9+ */
3375 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3376 }
3377
3378 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3379 Temp offset, unsigned bytes_needed,
3380 unsigned align, unsigned const_offset,
3381 Temp dst_hint)
3382 {
3383 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3384
3385 Operand m = load_lds_size_m0(bld);
3386
3387 bool large_ds_read = bld.program->chip_class >= GFX7;
3388 bool usable_read2 = bld.program->chip_class >= GFX7;
3389
3390 bool read2 = false;
3391 unsigned size = 0;
3392 aco_opcode op;
3393 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3394 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3395 size = 16;
3396 op = aco_opcode::ds_read_b128;
3397 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3398 size = 16;
3399 read2 = true;
3400 op = aco_opcode::ds_read2_b64;
3401 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3402 size = 12;
3403 op = aco_opcode::ds_read_b96;
3404 } else if (bytes_needed >= 8 && align % 8 == 0) {
3405 size = 8;
3406 op = aco_opcode::ds_read_b64;
3407 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3408 size = 8;
3409 read2 = true;
3410 op = aco_opcode::ds_read2_b32;
3411 } else if (bytes_needed >= 4 && align % 4 == 0) {
3412 size = 4;
3413 op = aco_opcode::ds_read_b32;
3414 } else if (bytes_needed >= 2 && align % 2 == 0) {
3415 size = 2;
3416 op = aco_opcode::ds_read_u16;
3417 } else {
3418 size = 1;
3419 op = aco_opcode::ds_read_u8;
3420 }
3421
3422 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3423 if (const_offset >= max_offset_plus_one) {
3424 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3425 const_offset %= max_offset_plus_one;
3426 }
3427
3428 if (read2)
3429 const_offset /= (size / 2u);
3430
3431 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3432 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3433 if (read2)
3434 bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3435 else
3436 bld.ds(op, Definition(val), offset, m, const_offset);
3437
3438 if (size < 4)
3439 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3440
3441 return val;
3442 }
3443
3444 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3445
3446 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3447 Temp offset, unsigned bytes_needed,
3448 unsigned align, unsigned const_offset,
3449 Temp dst_hint)
3450 {
3451 unsigned size = 0;
3452 aco_opcode op;
3453 if (bytes_needed <= 4) {
3454 size = 1;
3455 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3456 } else if (bytes_needed <= 8) {
3457 size = 2;
3458 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3459 } else if (bytes_needed <= 16) {
3460 size = 4;
3461 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3462 } else if (bytes_needed <= 32) {
3463 size = 8;
3464 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3465 } else {
3466 size = 16;
3467 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3468 }
3469 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3470 if (info->resource.id()) {
3471 load->operands[0] = Operand(info->resource);
3472 load->operands[1] = Operand(offset);
3473 } else {
3474 load->operands[0] = Operand(offset);
3475 load->operands[1] = Operand(0u);
3476 }
3477 RegClass rc(RegType::sgpr, size);
3478 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3479 load->definitions[0] = Definition(val);
3480 load->glc = info->glc;
3481 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3482 load->barrier = info->barrier;
3483 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3484 bld.insert(std::move(load));
3485 return val;
3486 }
3487
3488 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3489
3490 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3491 Temp offset, unsigned bytes_needed,
3492 unsigned align_, unsigned const_offset,
3493 Temp dst_hint)
3494 {
3495 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3496 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3497
3498 if (info->soffset.id()) {
3499 if (soffset.isTemp())
3500 vaddr = bld.copy(bld.def(v1), soffset);
3501 soffset = Operand(info->soffset);
3502 }
3503
3504 unsigned bytes_size = 0;
3505 aco_opcode op;
3506 if (bytes_needed == 1) {
3507 bytes_size = 1;
3508 op = aco_opcode::buffer_load_ubyte;
3509 } else if (bytes_needed == 2) {
3510 bytes_size = 2;
3511 op = aco_opcode::buffer_load_ushort;
3512 } else if (bytes_needed <= 4) {
3513 bytes_size = 4;
3514 op = aco_opcode::buffer_load_dword;
3515 } else if (bytes_needed <= 8) {
3516 bytes_size = 8;
3517 op = aco_opcode::buffer_load_dwordx2;
3518 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3519 bytes_size = 12;
3520 op = aco_opcode::buffer_load_dwordx3;
3521 } else {
3522 bytes_size = 16;
3523 op = aco_opcode::buffer_load_dwordx4;
3524 }
3525 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3526 mubuf->operands[0] = Operand(info->resource);
3527 mubuf->operands[1] = vaddr;
3528 mubuf->operands[2] = soffset;
3529 mubuf->offen = (offset.type() == RegType::vgpr);
3530 mubuf->glc = info->glc;
3531 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3532 mubuf->barrier = info->barrier;
3533 mubuf->can_reorder = info->can_reorder;
3534 mubuf->offset = const_offset;
3535 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3536 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3537 mubuf->definitions[0] = Definition(val);
3538 bld.insert(std::move(mubuf));
3539
3540 return val;
3541 }
3542
3543 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3544
3545 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3546 {
3547 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3548 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3549
3550 if (addr.type() == RegType::vgpr)
3551 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3552 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3553 }
3554
3555 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3556 Temp offset, unsigned bytes_needed,
3557 unsigned align_, unsigned const_offset,
3558 Temp dst_hint)
3559 {
3560 unsigned bytes_size = 0;
3561 bool mubuf = bld.program->chip_class == GFX6;
3562 bool global = bld.program->chip_class >= GFX9;
3563 aco_opcode op;
3564 if (bytes_needed == 1) {
3565 bytes_size = 1;
3566 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3567 } else if (bytes_needed == 2) {
3568 bytes_size = 2;
3569 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3570 } else if (bytes_needed <= 4) {
3571 bytes_size = 4;
3572 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3573 } else if (bytes_needed <= 8) {
3574 bytes_size = 8;
3575 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3576 } else if (bytes_needed <= 12 && !mubuf) {
3577 bytes_size = 12;
3578 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3579 } else {
3580 bytes_size = 16;
3581 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3582 }
3583 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3584 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3585 if (mubuf) {
3586 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3587 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3588 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3589 mubuf->operands[2] = Operand(0u);
3590 mubuf->glc = info->glc;
3591 mubuf->dlc = false;
3592 mubuf->offset = 0;
3593 mubuf->addr64 = offset.type() == RegType::vgpr;
3594 mubuf->disable_wqm = false;
3595 mubuf->barrier = info->barrier;
3596 mubuf->definitions[0] = Definition(val);
3597 bld.insert(std::move(mubuf));
3598 } else {
3599 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3600
3601 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3602 flat->operands[0] = Operand(offset);
3603 flat->operands[1] = Operand(s1);
3604 flat->glc = info->glc;
3605 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3606 flat->barrier = info->barrier;
3607 flat->offset = 0u;
3608 flat->definitions[0] = Definition(val);
3609 bld.insert(std::move(flat));
3610 }
3611
3612 return val;
3613 }
3614
3615 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3616
3617 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3618 Temp address, unsigned base_offset, unsigned align)
3619 {
3620 assert(util_is_power_of_two_nonzero(align));
3621
3622 Builder bld(ctx->program, ctx->block);
3623
3624 unsigned num_components = dst.bytes() / elem_size_bytes;
3625 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3626 info.align_mul = align;
3627 info.align_offset = 0;
3628 info.barrier = barrier_shared;
3629 info.can_reorder = false;
3630 info.const_offset = base_offset;
3631 emit_lds_load(ctx, bld, &info);
3632
3633 return dst;
3634 }
3635
3636 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3637 {
3638 if (!count)
3639 return;
3640
3641 Builder bld(ctx->program, ctx->block);
3642
3643 ASSERTED bool is_subdword = false;
3644 for (unsigned i = 0; i < count; i++)
3645 is_subdword |= offsets[i] % 4;
3646 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3647 assert(!is_subdword || dst_type == RegType::vgpr);
3648
3649 /* count == 1 fast path */
3650 if (count == 1) {
3651 if (dst_type == RegType::sgpr)
3652 dst[0] = bld.as_uniform(src);
3653 else
3654 dst[0] = as_vgpr(ctx, src);
3655 return;
3656 }
3657
3658 for (unsigned i = 0; i < count - 1; i++)
3659 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3660 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3661
3662 if (is_subdword && src.type() == RegType::sgpr) {
3663 src = as_vgpr(ctx, src);
3664 } else {
3665 /* use allocated_vec if possible */
3666 auto it = ctx->allocated_vec.find(src.id());
3667 if (it != ctx->allocated_vec.end()) {
3668 unsigned total_size = 0;
3669 for (unsigned i = 0; it->second[i].bytes() && (i < NIR_MAX_VEC_COMPONENTS); i++)
3670 total_size += it->second[i].bytes();
3671 if (total_size != src.bytes())
3672 goto split;
3673
3674 unsigned elem_size = it->second[0].bytes();
3675
3676 for (unsigned i = 0; i < count; i++) {
3677 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3678 goto split;
3679 }
3680
3681 for (unsigned i = 0; i < count; i++) {
3682 unsigned start_idx = offsets[i] / elem_size;
3683 unsigned op_count = dst[i].bytes() / elem_size;
3684 if (op_count == 1) {
3685 if (dst_type == RegType::sgpr)
3686 dst[i] = bld.as_uniform(it->second[start_idx]);
3687 else
3688 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3689 continue;
3690 }
3691
3692 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3693 for (unsigned j = 0; j < op_count; j++) {
3694 Temp tmp = it->second[start_idx + j];
3695 if (dst_type == RegType::sgpr)
3696 tmp = bld.as_uniform(tmp);
3697 vec->operands[j] = Operand(tmp);
3698 }
3699 vec->definitions[0] = Definition(dst[i]);
3700 bld.insert(std::move(vec));
3701 }
3702 return;
3703 }
3704 }
3705
3706 if (dst_type == RegType::sgpr)
3707 src = bld.as_uniform(src);
3708
3709 split:
3710 /* just split it */
3711 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3712 split->operands[0] = Operand(src);
3713 for (unsigned i = 0; i < count; i++)
3714 split->definitions[i] = Definition(dst[i]);
3715 bld.insert(std::move(split));
3716 }
3717
3718 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3719 int *start, int *count)
3720 {
3721 unsigned start_elem = ffs(todo_mask) - 1;
3722 bool skip = !(mask & (1 << start_elem));
3723 if (skip)
3724 mask = ~mask & todo_mask;
3725
3726 mask &= todo_mask;
3727
3728 u_bit_scan_consecutive_range(&mask, start, count);
3729
3730 return !skip;
3731 }
3732
3733 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3734 {
3735 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3736 }
3737
3738 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3739 Temp address, unsigned base_offset, unsigned align)
3740 {
3741 assert(util_is_power_of_two_nonzero(align));
3742 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3743
3744 Builder bld(ctx->program, ctx->block);
3745 bool large_ds_write = ctx->options->chip_class >= GFX7;
3746 bool usable_write2 = ctx->options->chip_class >= GFX7;
3747
3748 unsigned write_count = 0;
3749 Temp write_datas[32];
3750 unsigned offsets[32];
3751 aco_opcode opcodes[32];
3752
3753 wrmask = widen_mask(wrmask, elem_size_bytes);
3754
3755 uint32_t todo = u_bit_consecutive(0, data.bytes());
3756 while (todo) {
3757 int offset, bytes;
3758 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3759 offsets[write_count] = offset;
3760 opcodes[write_count] = aco_opcode::num_opcodes;
3761 write_count++;
3762 advance_write_mask(&todo, offset, bytes);
3763 continue;
3764 }
3765
3766 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3767 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3768 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3769 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3770
3771 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3772 aco_opcode op = aco_opcode::num_opcodes;
3773 if (bytes >= 16 && aligned16 && large_ds_write) {
3774 op = aco_opcode::ds_write_b128;
3775 bytes = 16;
3776 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3777 op = aco_opcode::ds_write_b96;
3778 bytes = 12;
3779 } else if (bytes >= 8 && aligned8) {
3780 op = aco_opcode::ds_write_b64;
3781 bytes = 8;
3782 } else if (bytes >= 4 && aligned4) {
3783 op = aco_opcode::ds_write_b32;
3784 bytes = 4;
3785 } else if (bytes >= 2 && aligned2) {
3786 op = aco_opcode::ds_write_b16;
3787 bytes = 2;
3788 } else if (bytes >= 1) {
3789 op = aco_opcode::ds_write_b8;
3790 bytes = 1;
3791 } else {
3792 assert(false);
3793 }
3794
3795 offsets[write_count] = offset;
3796 opcodes[write_count] = op;
3797 write_count++;
3798 advance_write_mask(&todo, offset, bytes);
3799 }
3800
3801 Operand m = load_lds_size_m0(bld);
3802
3803 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3804
3805 for (unsigned i = 0; i < write_count; i++) {
3806 aco_opcode op = opcodes[i];
3807 if (op == aco_opcode::num_opcodes)
3808 continue;
3809
3810 Temp data = write_datas[i];
3811
3812 unsigned second = write_count;
3813 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3814 for (second = i + 1; second < write_count; second++) {
3815 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3816 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3817 opcodes[second] = aco_opcode::num_opcodes;
3818 break;
3819 }
3820 }
3821 }
3822
3823 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3824 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3825
3826 unsigned inline_offset = base_offset + offsets[i];
3827 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3828 Temp address_offset = address;
3829 if (inline_offset > max_offset) {
3830 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3831 inline_offset = offsets[i];
3832 }
3833 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3834
3835 if (write2) {
3836 Temp second_data = write_datas[second];
3837 inline_offset /= data.bytes();
3838 bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3839 } else {
3840 bld.ds(op, address_offset, data, m, inline_offset);
3841 }
3842 }
3843 }
3844
3845 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3846 {
3847 unsigned align = 16;
3848 if (const_offset)
3849 align = std::min(align, 1u << (ffs(const_offset) - 1));
3850
3851 return align;
3852 }
3853
3854
3855 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3856 {
3857 switch (bytes) {
3858 case 1:
3859 assert(!smem);
3860 return aco_opcode::buffer_store_byte;
3861 case 2:
3862 assert(!smem);
3863 return aco_opcode::buffer_store_short;
3864 case 4:
3865 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3866 case 8:
3867 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3868 case 12:
3869 assert(!smem);
3870 return aco_opcode::buffer_store_dwordx3;
3871 case 16:
3872 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3873 }
3874 unreachable("Unexpected store size");
3875 return aco_opcode::num_opcodes;
3876 }
3877
3878 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3879 Temp data, unsigned writemask, int swizzle_element_size,
3880 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3881 {
3882 unsigned write_count_with_skips = 0;
3883 bool skips[16];
3884
3885 /* determine how to split the data */
3886 unsigned todo = u_bit_consecutive(0, data.bytes());
3887 while (todo) {
3888 int offset, bytes;
3889 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3890 offsets[write_count_with_skips] = offset;
3891 if (skips[write_count_with_skips]) {
3892 advance_write_mask(&todo, offset, bytes);
3893 write_count_with_skips++;
3894 continue;
3895 }
3896
3897 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3898 * larger than swizzle_element_size */
3899 bytes = MIN2(bytes, swizzle_element_size);
3900 if (bytes % 4)
3901 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3902
3903 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3904 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3905 bytes = 8;
3906
3907 /* dword or larger stores have to be dword-aligned */
3908 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3909 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3910 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3911 if (!dword_aligned)
3912 bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3913
3914 advance_write_mask(&todo, offset, bytes);
3915 write_count_with_skips++;
3916 }
3917
3918 /* actually split data */
3919 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3920
3921 /* remove skips */
3922 for (unsigned i = 0; i < write_count_with_skips; i++) {
3923 if (skips[i])
3924 continue;
3925 write_datas[*write_count] = write_datas[i];
3926 offsets[*write_count] = offsets[i];
3927 (*write_count)++;
3928 }
3929 }
3930
3931 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3932 unsigned split_cnt = 0u, Temp dst = Temp())
3933 {
3934 Builder bld(ctx->program, ctx->block);
3935 unsigned dword_size = elem_size_bytes / 4;
3936
3937 if (!dst.id())
3938 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3939
3940 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3941 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3942 instr->definitions[0] = Definition(dst);
3943
3944 for (unsigned i = 0; i < cnt; ++i) {
3945 if (arr[i].id()) {
3946 assert(arr[i].size() == dword_size);
3947 allocated_vec[i] = arr[i];
3948 instr->operands[i] = Operand(arr[i]);
3949 } else {
3950 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3951 allocated_vec[i] = zero;
3952 instr->operands[i] = Operand(zero);
3953 }
3954 }
3955
3956 bld.insert(std::move(instr));
3957
3958 if (split_cnt)
3959 emit_split_vector(ctx, dst, split_cnt);
3960 else
3961 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3962
3963 return dst;
3964 }
3965
3966 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3967 {
3968 if (const_offset >= 4096) {
3969 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3970 const_offset %= 4096u;
3971
3972 if (!voffset.id())
3973 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3974 else if (unlikely(voffset.regClass() == s1))
3975 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3976 else if (likely(voffset.regClass() == v1))
3977 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3978 else
3979 unreachable("Unsupported register class of voffset");
3980 }
3981
3982 return const_offset;
3983 }
3984
3985 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3986 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3987 {
3988 assert(vdata.id());
3989 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3990 assert(vdata.size() >= 1 && vdata.size() <= 4);
3991
3992 Builder bld(ctx->program, ctx->block);
3993 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
3994 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3995
3996 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3997 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3998 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3999 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
4000 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
4001
4002 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
4003 }
4004
4005 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
4006 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
4007 bool allow_combining = true, bool reorder = true, bool slc = false)
4008 {
4009 Builder bld(ctx->program, ctx->block);
4010 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
4011 assert(write_mask);
4012 write_mask = widen_mask(write_mask, elem_size_bytes);
4013
4014 unsigned write_count = 0;
4015 Temp write_datas[32];
4016 unsigned offsets[32];
4017 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
4018 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
4019
4020 for (unsigned i = 0; i < write_count; i++) {
4021 unsigned const_offset = offsets[i] + base_const_offset;
4022 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, reorder, slc);
4023 }
4024 }
4025
4026 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
4027 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
4028 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
4029 {
4030 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
4031 assert((num_components * elem_size_bytes) == dst.bytes());
4032 assert(!!stride != allow_combining);
4033
4034 Builder bld(ctx->program, ctx->block);
4035
4036 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
4037 info.component_stride = allow_combining ? 0 : stride;
4038 info.glc = true;
4039 info.swizzle_component_size = allow_combining ? 0 : 4;
4040 info.align_mul = MIN2(elem_size_bytes, 4);
4041 info.align_offset = 0;
4042 info.soffset = soffset;
4043 info.const_offset = base_const_offset;
4044 emit_mubuf_load(ctx, bld, &info);
4045 }
4046
4047 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
4048 {
4049 Builder bld(ctx->program, ctx->block);
4050 Temp offset = base_offset.first;
4051 unsigned const_offset = base_offset.second;
4052
4053 if (!nir_src_is_const(*off_src)) {
4054 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
4055 Temp with_stride;
4056
4057 /* Calculate indirect offset with stride */
4058 if (likely(indirect_offset_arg.regClass() == v1))
4059 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
4060 else if (indirect_offset_arg.regClass() == s1)
4061 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
4062 else
4063 unreachable("Unsupported register class of indirect offset");
4064
4065 /* Add to the supplied base offset */
4066 if (offset.id() == 0)
4067 offset = with_stride;
4068 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
4069 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
4070 else if (offset.size() == 1 && with_stride.size() == 1)
4071 offset = bld.vadd32(bld.def(v1), with_stride, offset);
4072 else
4073 unreachable("Unsupported register class of indirect offset");
4074 } else {
4075 unsigned const_offset_arg = nir_src_as_uint(*off_src);
4076 const_offset += const_offset_arg * stride;
4077 }
4078
4079 return std::make_pair(offset, const_offset);
4080 }
4081
4082 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
4083 {
4084 Builder bld(ctx->program, ctx->block);
4085 Temp offset;
4086
4087 if (off1.first.id() && off2.first.id()) {
4088 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
4089 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
4090 else if (off1.first.size() == 1 && off2.first.size() == 1)
4091 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
4092 else
4093 unreachable("Unsupported register class of indirect offset");
4094 } else {
4095 offset = off1.first.id() ? off1.first : off2.first;
4096 }
4097
4098 return std::make_pair(offset, off1.second + off2.second);
4099 }
4100
4101 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
4102 {
4103 Builder bld(ctx->program, ctx->block);
4104 unsigned const_offset = offs.second * multiplier;
4105
4106 if (!offs.first.id())
4107 return std::make_pair(offs.first, const_offset);
4108
4109 Temp offset = unlikely(offs.first.regClass() == s1)
4110 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
4111 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
4112
4113 return std::make_pair(offset, const_offset);
4114 }
4115
4116 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
4117 {
4118 Builder bld(ctx->program, ctx->block);
4119
4120 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
4121 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
4122 /* component is in bytes */
4123 const_offset += nir_intrinsic_component(instr) * component_stride;
4124
4125 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
4126 nir_src *off_src = nir_get_io_offset_src(instr);
4127 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
4128 }
4129
4130 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
4131 {
4132 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
4133 }
4134
4135 Temp get_tess_rel_patch_id(isel_context *ctx)
4136 {
4137 Builder bld(ctx->program, ctx->block);
4138
4139 switch (ctx->shader->info.stage) {
4140 case MESA_SHADER_TESS_CTRL:
4141 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
4142 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
4143 case MESA_SHADER_TESS_EVAL:
4144 return get_arg(ctx, ctx->args->tes_rel_patch_id);
4145 default:
4146 unreachable("Unsupported stage in get_tess_rel_patch_id");
4147 }
4148 }
4149
4150 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4151 {
4152 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4153 Builder bld(ctx->program, ctx->block);
4154
4155 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4156 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4157
4158 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4159
4160 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4161 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4162
4163 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4164 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4165 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4166
4167 return offset_mul(ctx, offs, 4u);
4168 }
4169
4170 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4171 {
4172 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4173 Builder bld(ctx->program, ctx->block);
4174
4175 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4176 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4177 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4178 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4179
4180 std::pair<Temp, unsigned> offs = instr
4181 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4182 : std::make_pair(Temp(), 0u);
4183
4184 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4185 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4186
4187 if (per_vertex) {
4188 assert(instr);
4189
4190 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4191 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4192
4193 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4194 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4195 } else {
4196 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4197 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4198 }
4199
4200 return offs;
4201 }
4202
4203 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4204 {
4205 Builder bld(ctx->program, ctx->block);
4206
4207 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4208 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4209
4210 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4211
4212 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4213 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4214 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4215
4216 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4217 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4218
4219 return offs;
4220 }
4221
4222 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4223 {
4224 Builder bld(ctx->program, ctx->block);
4225
4226 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4227 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4228 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4229 unsigned attr_stride = ctx->tcs_num_patches;
4230
4231 std::pair<Temp, unsigned> offs = instr
4232 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4233 : std::make_pair(Temp(), 0u);
4234
4235 if (const_base_offset)
4236 offs.second += const_base_offset * attr_stride;
4237
4238 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4239 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4240 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4241
4242 return offs;
4243 }
4244
4245 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4246 {
4247 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4248
4249 if (mask == 0)
4250 return false;
4251
4252 unsigned drv_loc = nir_intrinsic_base(instr);
4253 nir_src *off_src = nir_get_io_offset_src(instr);
4254
4255 if (!nir_src_is_const(*off_src)) {
4256 *indirect = true;
4257 return false;
4258 }
4259
4260 *indirect = false;
4261 uint64_t slot = per_vertex
4262 ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
4263 : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
4264 return (((uint64_t) 1) << slot) & mask;
4265 }
4266
4267 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4268 {
4269 unsigned write_mask = nir_intrinsic_write_mask(instr);
4270 unsigned component = nir_intrinsic_component(instr);
4271 unsigned idx = nir_intrinsic_base(instr) + component;
4272
4273 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4274 if (off_instr->type != nir_instr_type_load_const)
4275 return false;
4276
4277 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4278 idx += nir_src_as_uint(instr->src[1]) * 4u;
4279
4280 if (instr->src[0].ssa->bit_size == 64)
4281 write_mask = widen_mask(write_mask, 2);
4282
4283 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4284
4285 for (unsigned i = 0; i < 8; ++i) {
4286 if (write_mask & (1 << i)) {
4287 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4288 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4289 }
4290 idx++;
4291 }
4292
4293 return true;
4294 }
4295
4296 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4297 {
4298 /* Only TCS per-vertex inputs are supported by this function.
4299 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4300 */
4301 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4302 return false;
4303
4304 nir_src *off_src = nir_get_io_offset_src(instr);
4305 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4306 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4307 bool can_use_temps = nir_src_is_const(*off_src) &&
4308 vertex_index_instr->type == nir_instr_type_intrinsic &&
4309 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4310
4311 if (!can_use_temps)
4312 return false;
4313
4314 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4315 Temp *src = &ctx->inputs.temps[idx];
4316 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4317
4318 return true;
4319 }
4320
4321 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4322 {
4323 Builder bld(ctx->program, ctx->block);
4324
4325 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4326 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4327 bool indirect_write;
4328 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4329 if (temp_only_input && !indirect_write)
4330 return;
4331 }
4332
4333 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4334 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4335 unsigned write_mask = nir_intrinsic_write_mask(instr);
4336 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4337
4338 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4339 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4340 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4341 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4342 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
4343 } else {
4344 Temp lds_base;
4345
4346 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4347 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4348 unsigned itemsize = ctx->stage == vertex_geometry_gs
4349 ? ctx->program->info->vs.es_info.esgs_itemsize
4350 : ctx->program->info->tes.es_info.esgs_itemsize;
4351 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4352 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4353 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4354 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4355 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4356 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4357 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4358 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4359 */
4360 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4361 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4362 } else {
4363 unreachable("Invalid LS or ES stage");
4364 }
4365
4366 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4367 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4368 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4369 }
4370 }
4371
4372 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4373 {
4374 if (per_vertex)
4375 return false;
4376
4377 unsigned off = nir_intrinsic_base(instr) * 4u;
4378 return off == ctx->tcs_tess_lvl_out_loc ||
4379 off == ctx->tcs_tess_lvl_in_loc;
4380
4381 }
4382
4383 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4384 {
4385 uint64_t mask = per_vertex
4386 ? ctx->program->info->tcs.tes_inputs_read
4387 : ctx->program->info->tcs.tes_patch_inputs_read;
4388
4389 bool indirect_write = false;
4390 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4391 return indirect_write || output_read_by_tes;
4392 }
4393
4394 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4395 {
4396 uint64_t mask = per_vertex
4397 ? ctx->shader->info.outputs_read
4398 : ctx->shader->info.patch_outputs_read;
4399
4400 bool indirect_write = false;
4401 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4402 return indirect_write || output_read;
4403 }
4404
4405 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4406 {
4407 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4408 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4409
4410 Builder bld(ctx->program, ctx->block);
4411
4412 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4413 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4414 unsigned write_mask = nir_intrinsic_write_mask(instr);
4415
4416 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4417 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4418 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4419
4420 if (write_to_vmem) {
4421 std::pair<Temp, unsigned> vmem_offs = per_vertex
4422 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4423 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4424
4425 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4426 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4427 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
4428 }
4429
4430 if (write_to_lds) {
4431 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4432 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4433 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4434 }
4435 }
4436
4437 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4438 {
4439 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4440 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4441
4442 Builder bld(ctx->program, ctx->block);
4443
4444 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4445 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4446 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4447 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4448
4449 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4450 }
4451
4452 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4453 {
4454 if (ctx->stage == vertex_vs ||
4455 ctx->stage == tess_eval_vs ||
4456 ctx->stage == fragment_fs ||
4457 ctx->stage == ngg_vertex_gs ||
4458 ctx->stage == ngg_tess_eval_gs ||
4459 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4460 bool stored_to_temps = store_output_to_temps(ctx, instr);
4461 if (!stored_to_temps) {
4462 fprintf(stderr, "Unimplemented output offset instruction:\n");
4463 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
4464 fprintf(stderr, "\n");
4465 abort();
4466 }
4467 } else if (ctx->stage == vertex_es ||
4468 ctx->stage == vertex_ls ||
4469 ctx->stage == tess_eval_es ||
4470 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4471 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4472 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4473 visit_store_ls_or_es_output(ctx, instr);
4474 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4475 visit_store_tcs_output(ctx, instr, false);
4476 } else {
4477 unreachable("Shader stage not implemented");
4478 }
4479 }
4480
4481 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4482 {
4483 visit_load_tcs_output(ctx, instr, false);
4484 }
4485
4486 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4487 {
4488 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4489 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4490
4491 Builder bld(ctx->program, ctx->block);
4492
4493 if (dst.regClass() == v2b) {
4494 if (ctx->program->has_16bank_lds) {
4495 assert(ctx->options->chip_class <= GFX8);
4496 Builder::Result interp_p1 =
4497 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4498 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4499 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4500 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4501 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4502 bld.m0(prim_mask), interp_p1, idx, component);
4503 } else {
4504 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4505
4506 if (ctx->options->chip_class == GFX8)
4507 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4508
4509 Builder::Result interp_p1 =
4510 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4511 coord1, bld.m0(prim_mask), idx, component);
4512 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4513 interp_p1, idx, component);
4514 }
4515 } else {
4516 Builder::Result interp_p1 =
4517 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4518 bld.m0(prim_mask), idx, component);
4519
4520 if (ctx->program->has_16bank_lds)
4521 interp_p1.instr->operands[0].setLateKill(true);
4522
4523 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4524 bld.m0(prim_mask), interp_p1, idx, component);
4525 }
4526 }
4527
4528 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4529 {
4530 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4531 for (unsigned i = 0; i < num_components; i++)
4532 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4533 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4534 assert(num_components == 4);
4535 Builder bld(ctx->program, ctx->block);
4536 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4537 }
4538
4539 for (Operand& op : vec->operands)
4540 op = op.isUndefined() ? Operand(0u) : op;
4541
4542 vec->definitions[0] = Definition(dst);
4543 ctx->block->instructions.emplace_back(std::move(vec));
4544 emit_split_vector(ctx, dst, num_components);
4545 return;
4546 }
4547
4548 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4549 {
4550 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4551 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4552 unsigned idx = nir_intrinsic_base(instr);
4553 unsigned component = nir_intrinsic_component(instr);
4554 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4555
4556 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4557 if (offset) {
4558 assert(offset->u32 == 0);
4559 } else {
4560 /* the lower 15bit of the prim_mask contain the offset into LDS
4561 * while the upper bits contain the number of prims */
4562 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4563 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4564 Builder bld(ctx->program, ctx->block);
4565 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4566 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4567 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4568 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4569 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4570 }
4571
4572 if (instr->dest.ssa.num_components == 1) {
4573 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4574 } else {
4575 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4576 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4577 {
4578 Temp tmp = {ctx->program->allocateId(), v1};
4579 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4580 vec->operands[i] = Operand(tmp);
4581 }
4582 vec->definitions[0] = Definition(dst);
4583 ctx->block->instructions.emplace_back(std::move(vec));
4584 }
4585 }
4586
4587 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4588 unsigned offset, unsigned stride, unsigned channels)
4589 {
4590 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4591 if (vtx_info->chan_byte_size != 4 && channels == 3)
4592 return false;
4593 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4594 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4595 }
4596
4597 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4598 unsigned offset, unsigned stride, unsigned *channels)
4599 {
4600 if (!vtx_info->chan_byte_size) {
4601 *channels = vtx_info->num_channels;
4602 return vtx_info->chan_format;
4603 }
4604
4605 unsigned num_channels = *channels;
4606 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4607 unsigned new_channels = num_channels + 1;
4608 /* first, assume more loads is worse and try using a larger data format */
4609 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4610 new_channels++;
4611 /* don't make the attribute potentially out-of-bounds */
4612 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4613 new_channels = 5;
4614 }
4615
4616 if (new_channels == 5) {
4617 /* then try decreasing load size (at the cost of more loads) */
4618 new_channels = *channels;
4619 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4620 new_channels--;
4621 }
4622
4623 if (new_channels < *channels)
4624 *channels = new_channels;
4625 num_channels = new_channels;
4626 }
4627
4628 switch (vtx_info->chan_format) {
4629 case V_008F0C_BUF_DATA_FORMAT_8:
4630 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4631 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4632 case V_008F0C_BUF_DATA_FORMAT_16:
4633 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4634 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4635 case V_008F0C_BUF_DATA_FORMAT_32:
4636 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4637 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4638 }
4639 unreachable("shouldn't reach here");
4640 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4641 }
4642
4643 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4644 * so we may need to fix it up. */
4645 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4646 {
4647 Builder bld(ctx->program, ctx->block);
4648
4649 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4650 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4651
4652 /* For the integer-like cases, do a natural sign extension.
4653 *
4654 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4655 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4656 * exponent.
4657 */
4658 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4659 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4660
4661 /* Convert back to the right type. */
4662 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4663 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4664 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4665 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4666 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4667 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4668 }
4669
4670 return alpha;
4671 }
4672
4673 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4674 {
4675 Builder bld(ctx->program, ctx->block);
4676 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4677 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4678
4679 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4680 if (off_instr->type != nir_instr_type_load_const) {
4681 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4682 nir_print_instr(off_instr, stderr);
4683 fprintf(stderr, "\n");
4684 }
4685 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4686
4687 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4688
4689 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4690 unsigned component = nir_intrinsic_component(instr);
4691 unsigned bitsize = instr->dest.ssa.bit_size;
4692 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4693 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4694 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4695 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4696
4697 unsigned dfmt = attrib_format & 0xf;
4698 unsigned nfmt = (attrib_format >> 4) & 0x7;
4699 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4700
4701 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4702 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4703 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4704 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4705 if (post_shuffle)
4706 num_channels = MAX2(num_channels, 3);
4707
4708 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4709 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4710
4711 Temp index;
4712 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4713 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4714 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4715 if (divisor) {
4716 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4717 if (divisor != 1) {
4718 Temp divided = bld.tmp(v1);
4719 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4720 index = bld.vadd32(bld.def(v1), start_instance, divided);
4721 } else {
4722 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4723 }
4724 } else {
4725 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4726 }
4727 } else {
4728 index = bld.vadd32(bld.def(v1),
4729 get_arg(ctx, ctx->args->ac.base_vertex),
4730 get_arg(ctx, ctx->args->ac.vertex_id));
4731 }
4732
4733 Temp channels[num_channels];
4734 unsigned channel_start = 0;
4735 bool direct_fetch = false;
4736
4737 /* skip unused channels at the start */
4738 if (vtx_info->chan_byte_size && !post_shuffle) {
4739 channel_start = ffs(mask) - 1;
4740 for (unsigned i = 0; i < channel_start; i++)
4741 channels[i] = Temp(0, s1);
4742 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4743 num_channels = 3 - (ffs(mask) - 1);
4744 }
4745
4746 /* load channels */
4747 while (channel_start < num_channels) {
4748 unsigned fetch_component = num_channels - channel_start;
4749 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4750 bool expanded = false;
4751
4752 /* use MUBUF when possible to avoid possible alignment issues */
4753 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4754 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4755 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4756 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4757 vtx_info->chan_byte_size == 4;
4758 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4759 if (!use_mubuf) {
4760 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4761 } else {
4762 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4763 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4764 fetch_component = 4;
4765 expanded = true;
4766 }
4767 }
4768
4769 unsigned fetch_bytes = fetch_component * bitsize / 8;
4770
4771 Temp fetch_index = index;
4772 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4773 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4774 fetch_offset = fetch_offset % attrib_stride;
4775 }
4776
4777 Operand soffset(0u);
4778 if (fetch_offset >= 4096) {
4779 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4780 fetch_offset %= 4096;
4781 }
4782
4783 aco_opcode opcode;
4784 switch (fetch_bytes) {
4785 case 2:
4786 assert(!use_mubuf && bitsize == 16);
4787 opcode = aco_opcode::tbuffer_load_format_d16_x;
4788 break;
4789 case 4:
4790 if (bitsize == 16) {
4791 assert(!use_mubuf);
4792 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4793 } else {
4794 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4795 }
4796 break;
4797 case 6:
4798 assert(!use_mubuf && bitsize == 16);
4799 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4800 break;
4801 case 8:
4802 if (bitsize == 16) {
4803 assert(!use_mubuf);
4804 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4805 } else {
4806 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4807 }
4808 break;
4809 case 12:
4810 assert(ctx->options->chip_class >= GFX7 ||
4811 (!use_mubuf && ctx->options->chip_class == GFX6));
4812 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4813 break;
4814 case 16:
4815 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4816 break;
4817 default:
4818 unreachable("Unimplemented load_input vector size");
4819 }
4820
4821 Temp fetch_dst;
4822 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4823 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4824 num_channels <= 3)) {
4825 direct_fetch = true;
4826 fetch_dst = dst;
4827 } else {
4828 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4829 }
4830
4831 if (use_mubuf) {
4832 Instruction *mubuf = bld.mubuf(opcode,
4833 Definition(fetch_dst), list, fetch_index, soffset,
4834 fetch_offset, false, true).instr;
4835 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4836 } else {
4837 Instruction *mtbuf = bld.mtbuf(opcode,
4838 Definition(fetch_dst), list, fetch_index, soffset,
4839 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4840 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4841 }
4842
4843 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4844
4845 if (fetch_component == 1) {
4846 channels[channel_start] = fetch_dst;
4847 } else {
4848 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4849 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4850 bitsize == 16 ? v2b : v1);
4851 }
4852
4853 channel_start += fetch_component;
4854 }
4855
4856 if (!direct_fetch) {
4857 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4858 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4859
4860 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4861 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4862 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4863
4864 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4865 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4866 unsigned num_temp = 0;
4867 for (unsigned i = 0; i < dst.size(); i++) {
4868 unsigned idx = i + component;
4869 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4870 Temp channel = channels[swizzle[idx]];
4871 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4872 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4873 vec->operands[i] = Operand(channel);
4874
4875 num_temp++;
4876 elems[i] = channel;
4877 } else if (is_float && idx == 3) {
4878 vec->operands[i] = Operand(0x3f800000u);
4879 } else if (!is_float && idx == 3) {
4880 vec->operands[i] = Operand(1u);
4881 } else {
4882 vec->operands[i] = Operand(0u);
4883 }
4884 }
4885 vec->definitions[0] = Definition(dst);
4886 ctx->block->instructions.emplace_back(std::move(vec));
4887 emit_split_vector(ctx, dst, dst.size());
4888
4889 if (num_temp == dst.size())
4890 ctx->allocated_vec.emplace(dst.id(), elems);
4891 }
4892 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4893 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4894 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4895 if (off_instr->type != nir_instr_type_load_const ||
4896 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4897 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4898 nir_print_instr(off_instr, stderr);
4899 fprintf(stderr, "\n");
4900 }
4901
4902 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4903 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4904 if (offset) {
4905 assert(offset->u32 == 0);
4906 } else {
4907 /* the lower 15bit of the prim_mask contain the offset into LDS
4908 * while the upper bits contain the number of prims */
4909 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4910 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4911 Builder bld(ctx->program, ctx->block);
4912 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4913 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4914 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4915 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4916 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4917 }
4918
4919 unsigned idx = nir_intrinsic_base(instr);
4920 unsigned component = nir_intrinsic_component(instr);
4921 unsigned vertex_id = 2; /* P0 */
4922
4923 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4924 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4925 switch (src0->u32) {
4926 case 0:
4927 vertex_id = 2; /* P0 */
4928 break;
4929 case 1:
4930 vertex_id = 0; /* P10 */
4931 break;
4932 case 2:
4933 vertex_id = 1; /* P20 */
4934 break;
4935 default:
4936 unreachable("invalid vertex index");
4937 }
4938 }
4939
4940 if (dst.size() == 1) {
4941 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4942 } else {
4943 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4944 for (unsigned i = 0; i < dst.size(); i++)
4945 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4946 vec->definitions[0] = Definition(dst);
4947 bld.insert(std::move(vec));
4948 }
4949
4950 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4951 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4952 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4953 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4954 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4955
4956 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4957 } else {
4958 unreachable("Shader stage not implemented");
4959 }
4960 }
4961
4962 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4963 {
4964 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4965
4966 Builder bld(ctx->program, ctx->block);
4967 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4968 Temp vertex_offset;
4969
4970 if (!nir_src_is_const(*vertex_src)) {
4971 /* better code could be created, but this case probably doesn't happen
4972 * much in practice */
4973 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4974 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4975 Temp elem;
4976
4977 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4978 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4979 if (i % 2u)
4980 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4981 } else {
4982 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4983 }
4984
4985 if (vertex_offset.id()) {
4986 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4987 Operand(i), indirect_vertex);
4988 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4989 } else {
4990 vertex_offset = elem;
4991 }
4992 }
4993
4994 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4995 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4996 } else {
4997 unsigned vertex = nir_src_as_uint(*vertex_src);
4998 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4999 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5000 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
5001 Operand((vertex % 2u) * 16u), Operand(16u));
5002 else
5003 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
5004 }
5005
5006 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
5007 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
5008 return offset_mul(ctx, offs, 4u);
5009 }
5010
5011 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5012 {
5013 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
5014
5015 Builder bld(ctx->program, ctx->block);
5016 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5017 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5018
5019 if (ctx->stage == geometry_gs) {
5020 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
5021 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
5022 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
5023 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
5024 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
5025 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
5026 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
5027 } else {
5028 unreachable("Unsupported GS stage.");
5029 }
5030 }
5031
5032 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5033 {
5034 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5035
5036 Builder bld(ctx->program, ctx->block);
5037 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5038
5039 if (load_input_from_temps(ctx, instr, dst))
5040 return;
5041
5042 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
5043 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5044 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
5045
5046 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
5047 }
5048
5049 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5050 {
5051 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5052
5053 Builder bld(ctx->program, ctx->block);
5054
5055 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
5056 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
5057 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5058
5059 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5060 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
5061
5062 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
5063 }
5064
5065 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5066 {
5067 switch (ctx->shader->info.stage) {
5068 case MESA_SHADER_GEOMETRY:
5069 visit_load_gs_per_vertex_input(ctx, instr);
5070 break;
5071 case MESA_SHADER_TESS_CTRL:
5072 visit_load_tcs_per_vertex_input(ctx, instr);
5073 break;
5074 case MESA_SHADER_TESS_EVAL:
5075 visit_load_tes_per_vertex_input(ctx, instr);
5076 break;
5077 default:
5078 unreachable("Unimplemented shader stage");
5079 }
5080 }
5081
5082 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5083 {
5084 visit_load_tcs_output(ctx, instr, true);
5085 }
5086
5087 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5088 {
5089 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
5090 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5091
5092 visit_store_tcs_output(ctx, instr, true);
5093 }
5094
5095 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
5096 {
5097 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5098
5099 Builder bld(ctx->program, ctx->block);
5100 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5101
5102 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
5103 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
5104 Operand tes_w(0u);
5105
5106 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
5107 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
5108 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
5109 tes_w = Operand(tmp);
5110 }
5111
5112 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
5113 emit_split_vector(ctx, tess_coord, 3);
5114 }
5115
5116 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
5117 {
5118 if (ctx->program->info->need_indirect_descriptor_sets) {
5119 Builder bld(ctx->program, ctx->block);
5120 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
5121 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
5122 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
5123 }
5124
5125 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
5126 }
5127
5128
5129 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
5130 {
5131 Builder bld(ctx->program, ctx->block);
5132 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
5133 if (!nir_dest_is_divergent(instr->dest))
5134 index = bld.as_uniform(index);
5135 unsigned desc_set = nir_intrinsic_desc_set(instr);
5136 unsigned binding = nir_intrinsic_binding(instr);
5137
5138 Temp desc_ptr;
5139 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
5140 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
5141 unsigned offset = layout->binding[binding].offset;
5142 unsigned stride;
5143 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
5144 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
5145 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
5146 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
5147 offset = pipeline_layout->push_constant_size + 16 * idx;
5148 stride = 16;
5149 } else {
5150 desc_ptr = load_desc_ptr(ctx, desc_set);
5151 stride = layout->binding[binding].size;
5152 }
5153
5154 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
5155 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
5156 if (stride != 1) {
5157 if (nir_const_index) {
5158 const_index = const_index * stride;
5159 } else if (index.type() == RegType::vgpr) {
5160 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
5161 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
5162 } else {
5163 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5164 }
5165 }
5166 if (offset) {
5167 if (nir_const_index) {
5168 const_index = const_index + offset;
5169 } else if (index.type() == RegType::vgpr) {
5170 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5171 } else {
5172 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5173 }
5174 }
5175
5176 if (nir_const_index && const_index == 0) {
5177 index = desc_ptr;
5178 } else if (index.type() == RegType::vgpr) {
5179 index = bld.vadd32(bld.def(v1),
5180 nir_const_index ? Operand(const_index) : Operand(index),
5181 Operand(desc_ptr));
5182 } else {
5183 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5184 nir_const_index ? Operand(const_index) : Operand(index),
5185 Operand(desc_ptr));
5186 }
5187
5188 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5189 }
5190
5191 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5192 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5193 bool glc=false, bool readonly=true, bool allow_smem=true)
5194 {
5195 Builder bld(ctx->program, ctx->block);
5196
5197 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5198 if (use_smem)
5199 offset = bld.as_uniform(offset);
5200
5201 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5202 info.glc = glc;
5203 info.barrier = readonly ? barrier_none : barrier_buffer;
5204 info.can_reorder = readonly;
5205 info.align_mul = align_mul;
5206 info.align_offset = align_offset;
5207 if (use_smem)
5208 emit_smem_load(ctx, bld, &info);
5209 else
5210 emit_mubuf_load(ctx, bld, &info);
5211 }
5212
5213 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5214 {
5215 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5216 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5217
5218 Builder bld(ctx->program, ctx->block);
5219
5220 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5221 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5222 unsigned binding = nir_intrinsic_binding(idx_instr);
5223 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5224
5225 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5226 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5227 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5228 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5229 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5230 if (ctx->options->chip_class >= GFX10) {
5231 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5232 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5233 S_008F0C_RESOURCE_LEVEL(1);
5234 } else {
5235 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5236 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5237 }
5238 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5239 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5240 Operand(0xFFFFFFFFu),
5241 Operand(desc_type));
5242 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5243 rsrc, upper_dwords);
5244 } else {
5245 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5246 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5247 }
5248 unsigned size = instr->dest.ssa.bit_size / 8;
5249 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5250 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5251 }
5252
5253 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5254 {
5255 Builder bld(ctx->program, ctx->block);
5256 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5257 unsigned offset = nir_intrinsic_base(instr);
5258 unsigned count = instr->dest.ssa.num_components;
5259 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5260
5261 if (index_cv && instr->dest.ssa.bit_size == 32) {
5262 unsigned start = (offset + index_cv->u32) / 4u;
5263 start -= ctx->args->ac.base_inline_push_consts;
5264 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5265 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5266 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5267 for (unsigned i = 0; i < count; ++i) {
5268 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5269 vec->operands[i] = Operand{elems[i]};
5270 }
5271 vec->definitions[0] = Definition(dst);
5272 ctx->block->instructions.emplace_back(std::move(vec));
5273 ctx->allocated_vec.emplace(dst.id(), elems);
5274 return;
5275 }
5276 }
5277
5278 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5279 if (offset != 0) // TODO check if index != 0 as well
5280 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5281 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5282 Temp vec = dst;
5283 bool trim = false;
5284 bool aligned = true;
5285
5286 if (instr->dest.ssa.bit_size == 8) {
5287 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5288 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5289 if (!aligned)
5290 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5291 } else if (instr->dest.ssa.bit_size == 16) {
5292 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5293 if (!aligned)
5294 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5295 }
5296
5297 aco_opcode op;
5298
5299 switch (vec.size()) {
5300 case 1:
5301 op = aco_opcode::s_load_dword;
5302 break;
5303 case 2:
5304 op = aco_opcode::s_load_dwordx2;
5305 break;
5306 case 3:
5307 vec = bld.tmp(s4);
5308 trim = true;
5309 case 4:
5310 op = aco_opcode::s_load_dwordx4;
5311 break;
5312 case 6:
5313 vec = bld.tmp(s8);
5314 trim = true;
5315 case 8:
5316 op = aco_opcode::s_load_dwordx8;
5317 break;
5318 default:
5319 unreachable("unimplemented or forbidden load_push_constant.");
5320 }
5321
5322 bld.smem(op, Definition(vec), ptr, index);
5323
5324 if (!aligned) {
5325 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5326 byte_align_scalar(ctx, vec, byte_offset, dst);
5327 return;
5328 }
5329
5330 if (trim) {
5331 emit_split_vector(ctx, vec, 4);
5332 RegClass rc = dst.size() == 3 ? s1 : s2;
5333 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5334 emit_extract_vector(ctx, vec, 0, rc),
5335 emit_extract_vector(ctx, vec, 1, rc),
5336 emit_extract_vector(ctx, vec, 2, rc));
5337
5338 }
5339 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5340 }
5341
5342 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5343 {
5344 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5345
5346 Builder bld(ctx->program, ctx->block);
5347
5348 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5349 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5350 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5351 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5352 if (ctx->options->chip_class >= GFX10) {
5353 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5354 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5355 S_008F0C_RESOURCE_LEVEL(1);
5356 } else {
5357 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5358 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5359 }
5360
5361 unsigned base = nir_intrinsic_base(instr);
5362 unsigned range = nir_intrinsic_range(instr);
5363
5364 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5365 if (base && offset.type() == RegType::sgpr)
5366 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5367 else if (base && offset.type() == RegType::vgpr)
5368 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5369
5370 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5371 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5372 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5373 Operand(desc_type));
5374 unsigned size = instr->dest.ssa.bit_size / 8;
5375 // TODO: get alignment information for subdword constants
5376 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5377 }
5378
5379 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5380 {
5381 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5382 ctx->cf_info.exec_potentially_empty_discard = true;
5383
5384 ctx->program->needs_exact = true;
5385
5386 // TODO: optimize uniform conditions
5387 Builder bld(ctx->program, ctx->block);
5388 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5389 assert(src.regClass() == bld.lm);
5390 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5391 bld.pseudo(aco_opcode::p_discard_if, src);
5392 ctx->block->kind |= block_kind_uses_discard_if;
5393 return;
5394 }
5395
5396 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5397 {
5398 Builder bld(ctx->program, ctx->block);
5399
5400 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5401 ctx->cf_info.exec_potentially_empty_discard = true;
5402
5403 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5404 ctx->cf_info.parent_loop.has_divergent_continue;
5405
5406 if (ctx->block->loop_nest_depth &&
5407 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5408 /* we handle discards the same way as jump instructions */
5409 append_logical_end(ctx->block);
5410
5411 /* in loops, discard behaves like break */
5412 Block *linear_target = ctx->cf_info.parent_loop.exit;
5413 ctx->block->kind |= block_kind_discard;
5414
5415 if (!divergent) {
5416 /* uniform discard - loop ends here */
5417 assert(nir_instr_is_last(&instr->instr));
5418 ctx->block->kind |= block_kind_uniform;
5419 ctx->cf_info.has_branch = true;
5420 bld.branch(aco_opcode::p_branch);
5421 add_linear_edge(ctx->block->index, linear_target);
5422 return;
5423 }
5424
5425 /* we add a break right behind the discard() instructions */
5426 ctx->block->kind |= block_kind_break;
5427 unsigned idx = ctx->block->index;
5428
5429 ctx->cf_info.parent_loop.has_divergent_branch = true;
5430 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5431
5432 /* remove critical edges from linear CFG */
5433 bld.branch(aco_opcode::p_branch);
5434 Block* break_block = ctx->program->create_and_insert_block();
5435 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5436 break_block->kind |= block_kind_uniform;
5437 add_linear_edge(idx, break_block);
5438 add_linear_edge(break_block->index, linear_target);
5439 bld.reset(break_block);
5440 bld.branch(aco_opcode::p_branch);
5441
5442 Block* continue_block = ctx->program->create_and_insert_block();
5443 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5444 add_linear_edge(idx, continue_block);
5445 append_logical_start(continue_block);
5446 ctx->block = continue_block;
5447
5448 return;
5449 }
5450
5451 /* it can currently happen that NIR doesn't remove the unreachable code */
5452 if (!nir_instr_is_last(&instr->instr)) {
5453 ctx->program->needs_exact = true;
5454 /* save exec somewhere temporarily so that it doesn't get
5455 * overwritten before the discard from outer exec masks */
5456 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5457 bld.pseudo(aco_opcode::p_discard_if, cond);
5458 ctx->block->kind |= block_kind_uses_discard_if;
5459 return;
5460 }
5461
5462 /* This condition is incorrect for uniformly branched discards in a loop
5463 * predicated by a divergent condition, but the above code catches that case
5464 * and the discard would end up turning into a discard_if.
5465 * For example:
5466 * if (divergent) {
5467 * while (...) {
5468 * if (uniform) {
5469 * discard;
5470 * }
5471 * }
5472 * }
5473 */
5474 if (!ctx->cf_info.parent_if.is_divergent) {
5475 /* program just ends here */
5476 ctx->block->kind |= block_kind_uniform;
5477 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5478 0 /* enabled mask */, 9 /* dest */,
5479 false /* compressed */, true/* done */, true /* valid mask */);
5480 bld.sopp(aco_opcode::s_endpgm);
5481 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5482 } else {
5483 ctx->block->kind |= block_kind_discard;
5484 /* branch and linear edge is added by visit_if() */
5485 }
5486 }
5487
5488 enum aco_descriptor_type {
5489 ACO_DESC_IMAGE,
5490 ACO_DESC_FMASK,
5491 ACO_DESC_SAMPLER,
5492 ACO_DESC_BUFFER,
5493 ACO_DESC_PLANE_0,
5494 ACO_DESC_PLANE_1,
5495 ACO_DESC_PLANE_2,
5496 };
5497
5498 static bool
5499 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5500 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5501 return false;
5502 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5503 return dim == ac_image_cube ||
5504 dim == ac_image_1darray ||
5505 dim == ac_image_2darray ||
5506 dim == ac_image_2darraymsaa;
5507 }
5508
5509 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5510 enum aco_descriptor_type desc_type,
5511 const nir_tex_instr *tex_instr, bool image, bool write)
5512 {
5513 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5514 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5515 if (it != ctx->tex_desc.end())
5516 return it->second;
5517 */
5518 Temp index = Temp();
5519 bool index_set = false;
5520 unsigned constant_index = 0;
5521 unsigned descriptor_set;
5522 unsigned base_index;
5523 Builder bld(ctx->program, ctx->block);
5524
5525 if (!deref_instr) {
5526 assert(tex_instr && !image);
5527 descriptor_set = 0;
5528 base_index = tex_instr->sampler_index;
5529 } else {
5530 while(deref_instr->deref_type != nir_deref_type_var) {
5531 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5532 if (!array_size)
5533 array_size = 1;
5534
5535 assert(deref_instr->deref_type == nir_deref_type_array);
5536 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5537 if (const_value) {
5538 constant_index += array_size * const_value->u32;
5539 } else {
5540 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5541 if (indirect.type() == RegType::vgpr)
5542 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5543
5544 if (array_size != 1)
5545 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5546
5547 if (!index_set) {
5548 index = indirect;
5549 index_set = true;
5550 } else {
5551 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5552 }
5553 }
5554
5555 deref_instr = nir_src_as_deref(deref_instr->parent);
5556 }
5557 descriptor_set = deref_instr->var->data.descriptor_set;
5558 base_index = deref_instr->var->data.binding;
5559 }
5560
5561 Temp list = load_desc_ptr(ctx, descriptor_set);
5562 list = convert_pointer_to_64_bit(ctx, list);
5563
5564 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5565 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5566 unsigned offset = binding->offset;
5567 unsigned stride = binding->size;
5568 aco_opcode opcode;
5569 RegClass type;
5570
5571 assert(base_index < layout->binding_count);
5572
5573 switch (desc_type) {
5574 case ACO_DESC_IMAGE:
5575 type = s8;
5576 opcode = aco_opcode::s_load_dwordx8;
5577 break;
5578 case ACO_DESC_FMASK:
5579 type = s8;
5580 opcode = aco_opcode::s_load_dwordx8;
5581 offset += 32;
5582 break;
5583 case ACO_DESC_SAMPLER:
5584 type = s4;
5585 opcode = aco_opcode::s_load_dwordx4;
5586 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5587 offset += radv_combined_image_descriptor_sampler_offset(binding);
5588 break;
5589 case ACO_DESC_BUFFER:
5590 type = s4;
5591 opcode = aco_opcode::s_load_dwordx4;
5592 break;
5593 case ACO_DESC_PLANE_0:
5594 case ACO_DESC_PLANE_1:
5595 type = s8;
5596 opcode = aco_opcode::s_load_dwordx8;
5597 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5598 break;
5599 case ACO_DESC_PLANE_2:
5600 type = s4;
5601 opcode = aco_opcode::s_load_dwordx4;
5602 offset += 64;
5603 break;
5604 default:
5605 unreachable("invalid desc_type\n");
5606 }
5607
5608 offset += constant_index * stride;
5609
5610 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5611 (!index_set || binding->immutable_samplers_equal)) {
5612 if (binding->immutable_samplers_equal)
5613 constant_index = 0;
5614
5615 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5616 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5617 Operand(samplers[constant_index * 4 + 0]),
5618 Operand(samplers[constant_index * 4 + 1]),
5619 Operand(samplers[constant_index * 4 + 2]),
5620 Operand(samplers[constant_index * 4 + 3]));
5621 }
5622
5623 Operand off;
5624 if (!index_set) {
5625 off = bld.copy(bld.def(s1), Operand(offset));
5626 } else {
5627 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5628 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5629 }
5630
5631 Temp res = bld.smem(opcode, bld.def(type), list, off);
5632
5633 if (desc_type == ACO_DESC_PLANE_2) {
5634 Temp components[8];
5635 for (unsigned i = 0; i < 8; i++)
5636 components[i] = bld.tmp(s1);
5637 bld.pseudo(aco_opcode::p_split_vector,
5638 Definition(components[0]),
5639 Definition(components[1]),
5640 Definition(components[2]),
5641 Definition(components[3]),
5642 res);
5643
5644 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5645 bld.pseudo(aco_opcode::p_split_vector,
5646 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5647 Definition(components[4]),
5648 Definition(components[5]),
5649 Definition(components[6]),
5650 Definition(components[7]),
5651 desc2);
5652
5653 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5654 components[0], components[1], components[2], components[3],
5655 components[4], components[5], components[6], components[7]);
5656 }
5657
5658 return res;
5659 }
5660
5661 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5662 {
5663 switch (dim) {
5664 case GLSL_SAMPLER_DIM_BUF:
5665 return 1;
5666 case GLSL_SAMPLER_DIM_1D:
5667 return array ? 2 : 1;
5668 case GLSL_SAMPLER_DIM_2D:
5669 return array ? 3 : 2;
5670 case GLSL_SAMPLER_DIM_MS:
5671 return array ? 4 : 3;
5672 case GLSL_SAMPLER_DIM_3D:
5673 case GLSL_SAMPLER_DIM_CUBE:
5674 return 3;
5675 case GLSL_SAMPLER_DIM_RECT:
5676 case GLSL_SAMPLER_DIM_SUBPASS:
5677 return 2;
5678 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5679 return 3;
5680 default:
5681 break;
5682 }
5683 return 0;
5684 }
5685
5686
5687 /* Adjust the sample index according to FMASK.
5688 *
5689 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5690 * which is the identity mapping. Each nibble says which physical sample
5691 * should be fetched to get that sample.
5692 *
5693 * For example, 0x11111100 means there are only 2 samples stored and
5694 * the second sample covers 3/4 of the pixel. When reading samples 0
5695 * and 1, return physical sample 0 (determined by the first two 0s
5696 * in FMASK), otherwise return physical sample 1.
5697 *
5698 * The sample index should be adjusted as follows:
5699 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5700 */
5701 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5702 {
5703 Builder bld(ctx->program, ctx->block);
5704 Temp fmask = bld.tmp(v1);
5705 unsigned dim = ctx->options->chip_class >= GFX10
5706 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5707 : 0;
5708
5709 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5710 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5711 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5712 load->operands[0] = Operand(fmask_desc_ptr);
5713 load->operands[1] = Operand(s4); /* no sampler */
5714 load->operands[2] = Operand(coord);
5715 load->definitions[0] = Definition(fmask);
5716 load->glc = false;
5717 load->dlc = false;
5718 load->dmask = 0x1;
5719 load->unrm = true;
5720 load->da = da;
5721 load->dim = dim;
5722 load->can_reorder = true; /* fmask images shouldn't be modified */
5723 ctx->block->instructions.emplace_back(std::move(load));
5724
5725 Operand sample_index4;
5726 if (sample_index.isConstant()) {
5727 if (sample_index.constantValue() < 16) {
5728 sample_index4 = Operand(sample_index.constantValue() << 2);
5729 } else {
5730 sample_index4 = Operand(0u);
5731 }
5732 } else if (sample_index.regClass() == s1) {
5733 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5734 } else {
5735 assert(sample_index.regClass() == v1);
5736 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5737 }
5738
5739 Temp final_sample;
5740 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5741 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5742 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5743 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5744 else
5745 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5746
5747 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5748 * resource descriptor is 0 (invalid),
5749 */
5750 Temp compare = bld.tmp(bld.lm);
5751 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5752 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5753
5754 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5755
5756 /* Replace the MSAA sample index. */
5757 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5758 }
5759
5760 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5761 {
5762
5763 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5764 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5765 bool is_array = glsl_sampler_type_is_array(type);
5766 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5767 assert(!add_frag_pos && "Input attachments should be lowered.");
5768 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5769 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5770 int count = image_type_to_components_count(dim, is_array);
5771 std::vector<Temp> coords(count);
5772 Builder bld(ctx->program, ctx->block);
5773
5774 if (is_ms) {
5775 count--;
5776 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5777 /* get sample index */
5778 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5779 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5780 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5781 std::vector<Temp> fmask_load_address;
5782 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5783 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5784
5785 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5786 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5787 } else {
5788 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5789 }
5790 }
5791
5792 if (gfx9_1d) {
5793 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5794 coords.resize(coords.size() + 1);
5795 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5796 if (is_array)
5797 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5798 } else {
5799 for (int i = 0; i < count; i++)
5800 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5801 }
5802
5803 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5804 instr->intrinsic == nir_intrinsic_image_deref_store) {
5805 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5806 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5807
5808 if (!level_zero)
5809 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5810 }
5811
5812 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5813 for (unsigned i = 0; i < coords.size(); i++)
5814 vec->operands[i] = Operand(coords[i]);
5815 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5816 vec->definitions[0] = Definition(res);
5817 ctx->block->instructions.emplace_back(std::move(vec));
5818 return res;
5819 }
5820
5821
5822 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5823 {
5824 Builder bld(ctx->program, ctx->block);
5825 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5826 const struct glsl_type *type = glsl_without_array(var->type);
5827 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5828 bool is_array = glsl_sampler_type_is_array(type);
5829 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5830
5831 if (dim == GLSL_SAMPLER_DIM_BUF) {
5832 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5833 unsigned num_channels = util_last_bit(mask);
5834 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5835 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5836
5837 aco_opcode opcode;
5838 switch (num_channels) {
5839 case 1:
5840 opcode = aco_opcode::buffer_load_format_x;
5841 break;
5842 case 2:
5843 opcode = aco_opcode::buffer_load_format_xy;
5844 break;
5845 case 3:
5846 opcode = aco_opcode::buffer_load_format_xyz;
5847 break;
5848 case 4:
5849 opcode = aco_opcode::buffer_load_format_xyzw;
5850 break;
5851 default:
5852 unreachable(">4 channel buffer image load");
5853 }
5854 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5855 load->operands[0] = Operand(rsrc);
5856 load->operands[1] = Operand(vindex);
5857 load->operands[2] = Operand((uint32_t) 0);
5858 Temp tmp;
5859 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5860 tmp = dst;
5861 else
5862 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5863 load->definitions[0] = Definition(tmp);
5864 load->idxen = true;
5865 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5866 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5867 load->barrier = barrier_image;
5868 ctx->block->instructions.emplace_back(std::move(load));
5869
5870 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5871 return;
5872 }
5873
5874 Temp coords = get_image_coords(ctx, instr, type);
5875 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5876
5877 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5878 unsigned num_components = util_bitcount(dmask);
5879 Temp tmp;
5880 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5881 tmp = dst;
5882 else
5883 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5884
5885 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5886 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5887
5888 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5889 load->operands[0] = Operand(resource);
5890 load->operands[1] = Operand(s4); /* no sampler */
5891 load->operands[2] = Operand(coords);
5892 load->definitions[0] = Definition(tmp);
5893 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5894 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5895 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5896 load->dmask = dmask;
5897 load->unrm = true;
5898 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5899 load->barrier = barrier_image;
5900 ctx->block->instructions.emplace_back(std::move(load));
5901
5902 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5903 return;
5904 }
5905
5906 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5907 {
5908 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5909 const struct glsl_type *type = glsl_without_array(var->type);
5910 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5911 bool is_array = glsl_sampler_type_is_array(type);
5912 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5913
5914 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5915
5916 if (dim == GLSL_SAMPLER_DIM_BUF) {
5917 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5918 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5919 aco_opcode opcode;
5920 switch (data.size()) {
5921 case 1:
5922 opcode = aco_opcode::buffer_store_format_x;
5923 break;
5924 case 2:
5925 opcode = aco_opcode::buffer_store_format_xy;
5926 break;
5927 case 3:
5928 opcode = aco_opcode::buffer_store_format_xyz;
5929 break;
5930 case 4:
5931 opcode = aco_opcode::buffer_store_format_xyzw;
5932 break;
5933 default:
5934 unreachable(">4 channel buffer image store");
5935 }
5936 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5937 store->operands[0] = Operand(rsrc);
5938 store->operands[1] = Operand(vindex);
5939 store->operands[2] = Operand((uint32_t) 0);
5940 store->operands[3] = Operand(data);
5941 store->idxen = true;
5942 store->glc = glc;
5943 store->dlc = false;
5944 store->disable_wqm = true;
5945 store->barrier = barrier_image;
5946 ctx->program->needs_exact = true;
5947 ctx->block->instructions.emplace_back(std::move(store));
5948 return;
5949 }
5950
5951 assert(data.type() == RegType::vgpr);
5952 Temp coords = get_image_coords(ctx, instr, type);
5953 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5954
5955 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5956 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5957
5958 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5959 store->operands[0] = Operand(resource);
5960 store->operands[1] = Operand(data);
5961 store->operands[2] = Operand(coords);
5962 store->glc = glc;
5963 store->dlc = false;
5964 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5965 store->dmask = (1 << data.size()) - 1;
5966 store->unrm = true;
5967 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5968 store->disable_wqm = true;
5969 store->barrier = barrier_image;
5970 ctx->program->needs_exact = true;
5971 ctx->block->instructions.emplace_back(std::move(store));
5972 return;
5973 }
5974
5975 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5976 {
5977 /* return the previous value if dest is ever used */
5978 bool return_previous = false;
5979 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5980 return_previous = true;
5981 break;
5982 }
5983 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5984 return_previous = true;
5985 break;
5986 }
5987
5988 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5989 const struct glsl_type *type = glsl_without_array(var->type);
5990 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5991 bool is_array = glsl_sampler_type_is_array(type);
5992 Builder bld(ctx->program, ctx->block);
5993
5994 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5995 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5996
5997 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5998 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5999
6000 aco_opcode buf_op, image_op;
6001 switch (instr->intrinsic) {
6002 case nir_intrinsic_image_deref_atomic_add:
6003 buf_op = aco_opcode::buffer_atomic_add;
6004 image_op = aco_opcode::image_atomic_add;
6005 break;
6006 case nir_intrinsic_image_deref_atomic_umin:
6007 buf_op = aco_opcode::buffer_atomic_umin;
6008 image_op = aco_opcode::image_atomic_umin;
6009 break;
6010 case nir_intrinsic_image_deref_atomic_imin:
6011 buf_op = aco_opcode::buffer_atomic_smin;
6012 image_op = aco_opcode::image_atomic_smin;
6013 break;
6014 case nir_intrinsic_image_deref_atomic_umax:
6015 buf_op = aco_opcode::buffer_atomic_umax;
6016 image_op = aco_opcode::image_atomic_umax;
6017 break;
6018 case nir_intrinsic_image_deref_atomic_imax:
6019 buf_op = aco_opcode::buffer_atomic_smax;
6020 image_op = aco_opcode::image_atomic_smax;
6021 break;
6022 case nir_intrinsic_image_deref_atomic_and:
6023 buf_op = aco_opcode::buffer_atomic_and;
6024 image_op = aco_opcode::image_atomic_and;
6025 break;
6026 case nir_intrinsic_image_deref_atomic_or:
6027 buf_op = aco_opcode::buffer_atomic_or;
6028 image_op = aco_opcode::image_atomic_or;
6029 break;
6030 case nir_intrinsic_image_deref_atomic_xor:
6031 buf_op = aco_opcode::buffer_atomic_xor;
6032 image_op = aco_opcode::image_atomic_xor;
6033 break;
6034 case nir_intrinsic_image_deref_atomic_exchange:
6035 buf_op = aco_opcode::buffer_atomic_swap;
6036 image_op = aco_opcode::image_atomic_swap;
6037 break;
6038 case nir_intrinsic_image_deref_atomic_comp_swap:
6039 buf_op = aco_opcode::buffer_atomic_cmpswap;
6040 image_op = aco_opcode::image_atomic_cmpswap;
6041 break;
6042 default:
6043 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
6044 }
6045
6046 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6047
6048 if (dim == GLSL_SAMPLER_DIM_BUF) {
6049 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
6050 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
6051 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
6052 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6053 mubuf->operands[0] = Operand(resource);
6054 mubuf->operands[1] = Operand(vindex);
6055 mubuf->operands[2] = Operand((uint32_t)0);
6056 mubuf->operands[3] = Operand(data);
6057 if (return_previous)
6058 mubuf->definitions[0] = Definition(dst);
6059 mubuf->offset = 0;
6060 mubuf->idxen = true;
6061 mubuf->glc = return_previous;
6062 mubuf->dlc = false; /* Not needed for atomics */
6063 mubuf->disable_wqm = true;
6064 mubuf->barrier = barrier_image;
6065 ctx->program->needs_exact = true;
6066 ctx->block->instructions.emplace_back(std::move(mubuf));
6067 return;
6068 }
6069
6070 Temp coords = get_image_coords(ctx, instr, type);
6071 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
6072 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
6073 mimg->operands[0] = Operand(resource);
6074 mimg->operands[1] = Operand(data);
6075 mimg->operands[2] = Operand(coords);
6076 if (return_previous)
6077 mimg->definitions[0] = Definition(dst);
6078 mimg->glc = return_previous;
6079 mimg->dlc = false; /* Not needed for atomics */
6080 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6081 mimg->dmask = (1 << data.size()) - 1;
6082 mimg->unrm = true;
6083 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6084 mimg->disable_wqm = true;
6085 mimg->barrier = barrier_image;
6086 ctx->program->needs_exact = true;
6087 ctx->block->instructions.emplace_back(std::move(mimg));
6088 return;
6089 }
6090
6091 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
6092 {
6093 if (in_elements && ctx->options->chip_class == GFX8) {
6094 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
6095 Builder bld(ctx->program, ctx->block);
6096
6097 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6098
6099 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6100 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
6101
6102 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6103 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6104
6105 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6106 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6107
6108 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6109 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6110 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6111 if (dst.type() == RegType::vgpr)
6112 bld.copy(Definition(dst), shr_dst);
6113
6114 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6115 } else {
6116 emit_extract_vector(ctx, desc, 2, dst);
6117 }
6118 }
6119
6120 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6121 {
6122 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6123 const struct glsl_type *type = glsl_without_array(var->type);
6124 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6125 bool is_array = glsl_sampler_type_is_array(type);
6126 Builder bld(ctx->program, ctx->block);
6127
6128 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6129 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6130 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6131 }
6132
6133 /* LOD */
6134 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6135
6136 /* Resource */
6137 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6138
6139 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6140
6141 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6142 mimg->operands[0] = Operand(resource);
6143 mimg->operands[1] = Operand(s4); /* no sampler */
6144 mimg->operands[2] = Operand(lod);
6145 uint8_t& dmask = mimg->dmask;
6146 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6147 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6148 mimg->da = glsl_sampler_type_is_array(type);
6149 mimg->can_reorder = true;
6150 Definition& def = mimg->definitions[0];
6151 ctx->block->instructions.emplace_back(std::move(mimg));
6152
6153 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6154 glsl_sampler_type_is_array(type)) {
6155
6156 assert(instr->dest.ssa.num_components == 3);
6157 Temp tmp = {ctx->program->allocateId(), v3};
6158 def = Definition(tmp);
6159 emit_split_vector(ctx, tmp, 3);
6160
6161 /* divide 3rd value by 6 by multiplying with magic number */
6162 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6163 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6164
6165 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6166 emit_extract_vector(ctx, tmp, 0, v1),
6167 emit_extract_vector(ctx, tmp, 1, v1),
6168 by_6);
6169
6170 } else if (ctx->options->chip_class == GFX9 &&
6171 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6172 glsl_sampler_type_is_array(type)) {
6173 assert(instr->dest.ssa.num_components == 2);
6174 def = Definition(dst);
6175 dmask = 0x5;
6176 } else {
6177 def = Definition(dst);
6178 }
6179
6180 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6181 }
6182
6183 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6184 {
6185 Builder bld(ctx->program, ctx->block);
6186 unsigned num_components = instr->num_components;
6187
6188 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6189 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6190 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6191
6192 unsigned access = nir_intrinsic_access(instr);
6193 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6194 unsigned size = instr->dest.ssa.bit_size / 8;
6195
6196 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6197 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6198 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6199 */
6200 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6201 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6202
6203 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6204 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, false, allow_smem);
6205 }
6206
6207 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6208 {
6209 Builder bld(ctx->program, ctx->block);
6210 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6211 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6212 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6213 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6214
6215 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6216 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6217
6218 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6219 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6220 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6221 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6222 */
6223 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6224
6225 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6226 ctx->options->chip_class >= GFX8 &&
6227 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6228 allow_smem;
6229 if (smem)
6230 offset = bld.as_uniform(offset);
6231 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6232
6233 unsigned write_count = 0;
6234 Temp write_datas[32];
6235 unsigned offsets[32];
6236 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6237 data, writemask, 16, &write_count, write_datas, offsets);
6238
6239 for (unsigned i = 0; i < write_count; i++) {
6240 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6241 if (smem && ctx->stage == fragment_fs)
6242 op = aco_opcode::p_fs_buffer_store_smem;
6243
6244 if (smem) {
6245 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6246 store->operands[0] = Operand(rsrc);
6247 if (offsets[i]) {
6248 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6249 offset, Operand(offsets[i]));
6250 store->operands[1] = Operand(off);
6251 } else {
6252 store->operands[1] = Operand(offset);
6253 }
6254 if (op != aco_opcode::p_fs_buffer_store_smem)
6255 store->operands[1].setFixed(m0);
6256 store->operands[2] = Operand(write_datas[i]);
6257 store->glc = glc;
6258 store->dlc = false;
6259 store->disable_wqm = true;
6260 store->barrier = barrier_buffer;
6261 ctx->block->instructions.emplace_back(std::move(store));
6262 ctx->program->wb_smem_l1_on_end = true;
6263 if (op == aco_opcode::p_fs_buffer_store_smem) {
6264 ctx->block->kind |= block_kind_needs_lowering;
6265 ctx->program->needs_exact = true;
6266 }
6267 } else {
6268 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6269 store->operands[0] = Operand(rsrc);
6270 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6271 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6272 store->operands[3] = Operand(write_datas[i]);
6273 store->offset = offsets[i];
6274 store->offen = (offset.type() == RegType::vgpr);
6275 store->glc = glc;
6276 store->dlc = false;
6277 store->disable_wqm = true;
6278 store->barrier = barrier_buffer;
6279 ctx->program->needs_exact = true;
6280 ctx->block->instructions.emplace_back(std::move(store));
6281 }
6282 }
6283 }
6284
6285 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6286 {
6287 /* return the previous value if dest is ever used */
6288 bool return_previous = false;
6289 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6290 return_previous = true;
6291 break;
6292 }
6293 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6294 return_previous = true;
6295 break;
6296 }
6297
6298 Builder bld(ctx->program, ctx->block);
6299 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6300
6301 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6302 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6303 get_ssa_temp(ctx, instr->src[3].ssa), data);
6304
6305 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6306 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6307 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6308
6309 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6310
6311 aco_opcode op32, op64;
6312 switch (instr->intrinsic) {
6313 case nir_intrinsic_ssbo_atomic_add:
6314 op32 = aco_opcode::buffer_atomic_add;
6315 op64 = aco_opcode::buffer_atomic_add_x2;
6316 break;
6317 case nir_intrinsic_ssbo_atomic_imin:
6318 op32 = aco_opcode::buffer_atomic_smin;
6319 op64 = aco_opcode::buffer_atomic_smin_x2;
6320 break;
6321 case nir_intrinsic_ssbo_atomic_umin:
6322 op32 = aco_opcode::buffer_atomic_umin;
6323 op64 = aco_opcode::buffer_atomic_umin_x2;
6324 break;
6325 case nir_intrinsic_ssbo_atomic_imax:
6326 op32 = aco_opcode::buffer_atomic_smax;
6327 op64 = aco_opcode::buffer_atomic_smax_x2;
6328 break;
6329 case nir_intrinsic_ssbo_atomic_umax:
6330 op32 = aco_opcode::buffer_atomic_umax;
6331 op64 = aco_opcode::buffer_atomic_umax_x2;
6332 break;
6333 case nir_intrinsic_ssbo_atomic_and:
6334 op32 = aco_opcode::buffer_atomic_and;
6335 op64 = aco_opcode::buffer_atomic_and_x2;
6336 break;
6337 case nir_intrinsic_ssbo_atomic_or:
6338 op32 = aco_opcode::buffer_atomic_or;
6339 op64 = aco_opcode::buffer_atomic_or_x2;
6340 break;
6341 case nir_intrinsic_ssbo_atomic_xor:
6342 op32 = aco_opcode::buffer_atomic_xor;
6343 op64 = aco_opcode::buffer_atomic_xor_x2;
6344 break;
6345 case nir_intrinsic_ssbo_atomic_exchange:
6346 op32 = aco_opcode::buffer_atomic_swap;
6347 op64 = aco_opcode::buffer_atomic_swap_x2;
6348 break;
6349 case nir_intrinsic_ssbo_atomic_comp_swap:
6350 op32 = aco_opcode::buffer_atomic_cmpswap;
6351 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6352 break;
6353 default:
6354 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6355 }
6356 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6357 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6358 mubuf->operands[0] = Operand(rsrc);
6359 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6360 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6361 mubuf->operands[3] = Operand(data);
6362 if (return_previous)
6363 mubuf->definitions[0] = Definition(dst);
6364 mubuf->offset = 0;
6365 mubuf->offen = (offset.type() == RegType::vgpr);
6366 mubuf->glc = return_previous;
6367 mubuf->dlc = false; /* Not needed for atomics */
6368 mubuf->disable_wqm = true;
6369 mubuf->barrier = barrier_buffer;
6370 ctx->program->needs_exact = true;
6371 ctx->block->instructions.emplace_back(std::move(mubuf));
6372 }
6373
6374 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6375
6376 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6377 Builder bld(ctx->program, ctx->block);
6378 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6379 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6380 }
6381
6382 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6383 {
6384 Builder bld(ctx->program, ctx->block);
6385 unsigned num_components = instr->num_components;
6386 unsigned component_size = instr->dest.ssa.bit_size / 8;
6387
6388 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6389 get_ssa_temp(ctx, &instr->dest.ssa),
6390 num_components, component_size};
6391 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6392 info.align_mul = nir_intrinsic_align_mul(instr);
6393 info.align_offset = nir_intrinsic_align_offset(instr);
6394 info.barrier = barrier_buffer;
6395 info.can_reorder = false;
6396 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6397 * it's safe to use SMEM */
6398 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6399 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6400 emit_global_load(ctx, bld, &info);
6401 } else {
6402 info.offset = Operand(bld.as_uniform(info.offset));
6403 emit_smem_load(ctx, bld, &info);
6404 }
6405 }
6406
6407 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6408 {
6409 Builder bld(ctx->program, ctx->block);
6410 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6411 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6412
6413 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6414 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6415 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6416
6417 if (ctx->options->chip_class >= GFX7)
6418 addr = as_vgpr(ctx, addr);
6419
6420 unsigned write_count = 0;
6421 Temp write_datas[32];
6422 unsigned offsets[32];
6423 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6424 16, &write_count, write_datas, offsets);
6425
6426 for (unsigned i = 0; i < write_count; i++) {
6427 if (ctx->options->chip_class >= GFX7) {
6428 unsigned offset = offsets[i];
6429 Temp store_addr = addr;
6430 if (offset > 0 && ctx->options->chip_class < GFX9) {
6431 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6432 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6433 Temp carry = bld.tmp(bld.lm);
6434 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6435
6436 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6437 Operand(offset), addr0);
6438 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6439 Operand(0u), addr1,
6440 carry).def(1).setHint(vcc);
6441
6442 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6443
6444 offset = 0;
6445 }
6446
6447 bool global = ctx->options->chip_class >= GFX9;
6448 aco_opcode op;
6449 switch (write_datas[i].bytes()) {
6450 case 1:
6451 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6452 break;
6453 case 2:
6454 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6455 break;
6456 case 4:
6457 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6458 break;
6459 case 8:
6460 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6461 break;
6462 case 12:
6463 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6464 break;
6465 case 16:
6466 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6467 break;
6468 default:
6469 unreachable("store_global not implemented for this size.");
6470 }
6471
6472 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6473 flat->operands[0] = Operand(store_addr);
6474 flat->operands[1] = Operand(s1);
6475 flat->operands[2] = Operand(write_datas[i]);
6476 flat->glc = glc;
6477 flat->dlc = false;
6478 flat->offset = offset;
6479 flat->disable_wqm = true;
6480 flat->barrier = barrier_buffer;
6481 ctx->program->needs_exact = true;
6482 ctx->block->instructions.emplace_back(std::move(flat));
6483 } else {
6484 assert(ctx->options->chip_class == GFX6);
6485
6486 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6487
6488 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6489
6490 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6491 mubuf->operands[0] = Operand(rsrc);
6492 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6493 mubuf->operands[2] = Operand(0u);
6494 mubuf->operands[3] = Operand(write_datas[i]);
6495 mubuf->glc = glc;
6496 mubuf->dlc = false;
6497 mubuf->offset = offsets[i];
6498 mubuf->addr64 = addr.type() == RegType::vgpr;
6499 mubuf->disable_wqm = true;
6500 mubuf->barrier = barrier_buffer;
6501 ctx->program->needs_exact = true;
6502 ctx->block->instructions.emplace_back(std::move(mubuf));
6503 }
6504 }
6505 }
6506
6507 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6508 {
6509 /* return the previous value if dest is ever used */
6510 bool return_previous = false;
6511 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6512 return_previous = true;
6513 break;
6514 }
6515 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6516 return_previous = true;
6517 break;
6518 }
6519
6520 Builder bld(ctx->program, ctx->block);
6521 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6522 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6523
6524 if (ctx->options->chip_class >= GFX7)
6525 addr = as_vgpr(ctx, addr);
6526
6527 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6528 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6529 get_ssa_temp(ctx, instr->src[2].ssa), data);
6530
6531 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6532
6533 aco_opcode op32, op64;
6534
6535 if (ctx->options->chip_class >= GFX7) {
6536 bool global = ctx->options->chip_class >= GFX9;
6537 switch (instr->intrinsic) {
6538 case nir_intrinsic_global_atomic_add:
6539 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6540 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6541 break;
6542 case nir_intrinsic_global_atomic_imin:
6543 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6544 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6545 break;
6546 case nir_intrinsic_global_atomic_umin:
6547 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6548 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6549 break;
6550 case nir_intrinsic_global_atomic_imax:
6551 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6552 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6553 break;
6554 case nir_intrinsic_global_atomic_umax:
6555 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6556 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6557 break;
6558 case nir_intrinsic_global_atomic_and:
6559 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6560 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6561 break;
6562 case nir_intrinsic_global_atomic_or:
6563 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6564 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6565 break;
6566 case nir_intrinsic_global_atomic_xor:
6567 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6568 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6569 break;
6570 case nir_intrinsic_global_atomic_exchange:
6571 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6572 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6573 break;
6574 case nir_intrinsic_global_atomic_comp_swap:
6575 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6576 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6577 break;
6578 default:
6579 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6580 }
6581
6582 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6583 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6584 flat->operands[0] = Operand(addr);
6585 flat->operands[1] = Operand(s1);
6586 flat->operands[2] = Operand(data);
6587 if (return_previous)
6588 flat->definitions[0] = Definition(dst);
6589 flat->glc = return_previous;
6590 flat->dlc = false; /* Not needed for atomics */
6591 flat->offset = 0;
6592 flat->disable_wqm = true;
6593 flat->barrier = barrier_buffer;
6594 ctx->program->needs_exact = true;
6595 ctx->block->instructions.emplace_back(std::move(flat));
6596 } else {
6597 assert(ctx->options->chip_class == GFX6);
6598
6599 switch (instr->intrinsic) {
6600 case nir_intrinsic_global_atomic_add:
6601 op32 = aco_opcode::buffer_atomic_add;
6602 op64 = aco_opcode::buffer_atomic_add_x2;
6603 break;
6604 case nir_intrinsic_global_atomic_imin:
6605 op32 = aco_opcode::buffer_atomic_smin;
6606 op64 = aco_opcode::buffer_atomic_smin_x2;
6607 break;
6608 case nir_intrinsic_global_atomic_umin:
6609 op32 = aco_opcode::buffer_atomic_umin;
6610 op64 = aco_opcode::buffer_atomic_umin_x2;
6611 break;
6612 case nir_intrinsic_global_atomic_imax:
6613 op32 = aco_opcode::buffer_atomic_smax;
6614 op64 = aco_opcode::buffer_atomic_smax_x2;
6615 break;
6616 case nir_intrinsic_global_atomic_umax:
6617 op32 = aco_opcode::buffer_atomic_umax;
6618 op64 = aco_opcode::buffer_atomic_umax_x2;
6619 break;
6620 case nir_intrinsic_global_atomic_and:
6621 op32 = aco_opcode::buffer_atomic_and;
6622 op64 = aco_opcode::buffer_atomic_and_x2;
6623 break;
6624 case nir_intrinsic_global_atomic_or:
6625 op32 = aco_opcode::buffer_atomic_or;
6626 op64 = aco_opcode::buffer_atomic_or_x2;
6627 break;
6628 case nir_intrinsic_global_atomic_xor:
6629 op32 = aco_opcode::buffer_atomic_xor;
6630 op64 = aco_opcode::buffer_atomic_xor_x2;
6631 break;
6632 case nir_intrinsic_global_atomic_exchange:
6633 op32 = aco_opcode::buffer_atomic_swap;
6634 op64 = aco_opcode::buffer_atomic_swap_x2;
6635 break;
6636 case nir_intrinsic_global_atomic_comp_swap:
6637 op32 = aco_opcode::buffer_atomic_cmpswap;
6638 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6639 break;
6640 default:
6641 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6642 }
6643
6644 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6645
6646 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6647
6648 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6649 mubuf->operands[0] = Operand(rsrc);
6650 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6651 mubuf->operands[2] = Operand(0u);
6652 mubuf->operands[3] = Operand(data);
6653 if (return_previous)
6654 mubuf->definitions[0] = Definition(dst);
6655 mubuf->glc = return_previous;
6656 mubuf->dlc = false;
6657 mubuf->offset = 0;
6658 mubuf->addr64 = addr.type() == RegType::vgpr;
6659 mubuf->disable_wqm = true;
6660 mubuf->barrier = barrier_buffer;
6661 ctx->program->needs_exact = true;
6662 ctx->block->instructions.emplace_back(std::move(mubuf));
6663 }
6664 }
6665
6666 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6667 Builder bld(ctx->program, ctx->block);
6668 switch(instr->intrinsic) {
6669 case nir_intrinsic_group_memory_barrier:
6670 case nir_intrinsic_memory_barrier:
6671 bld.barrier(aco_opcode::p_memory_barrier_common);
6672 break;
6673 case nir_intrinsic_memory_barrier_buffer:
6674 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6675 break;
6676 case nir_intrinsic_memory_barrier_image:
6677 bld.barrier(aco_opcode::p_memory_barrier_image);
6678 break;
6679 case nir_intrinsic_memory_barrier_tcs_patch:
6680 case nir_intrinsic_memory_barrier_shared:
6681 bld.barrier(aco_opcode::p_memory_barrier_shared);
6682 break;
6683 default:
6684 unreachable("Unimplemented memory barrier intrinsic");
6685 break;
6686 }
6687 }
6688
6689 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6690 {
6691 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6692 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6693 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6694 Builder bld(ctx->program, ctx->block);
6695
6696 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6697 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6698 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6699 }
6700
6701 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6702 {
6703 unsigned writemask = nir_intrinsic_write_mask(instr);
6704 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6705 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6706 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6707
6708 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6709 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6710 }
6711
6712 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6713 {
6714 unsigned offset = nir_intrinsic_base(instr);
6715 Builder bld(ctx->program, ctx->block);
6716 Operand m = load_lds_size_m0(bld);
6717 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6718 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6719
6720 unsigned num_operands = 3;
6721 aco_opcode op32, op64, op32_rtn, op64_rtn;
6722 switch(instr->intrinsic) {
6723 case nir_intrinsic_shared_atomic_add:
6724 op32 = aco_opcode::ds_add_u32;
6725 op64 = aco_opcode::ds_add_u64;
6726 op32_rtn = aco_opcode::ds_add_rtn_u32;
6727 op64_rtn = aco_opcode::ds_add_rtn_u64;
6728 break;
6729 case nir_intrinsic_shared_atomic_imin:
6730 op32 = aco_opcode::ds_min_i32;
6731 op64 = aco_opcode::ds_min_i64;
6732 op32_rtn = aco_opcode::ds_min_rtn_i32;
6733 op64_rtn = aco_opcode::ds_min_rtn_i64;
6734 break;
6735 case nir_intrinsic_shared_atomic_umin:
6736 op32 = aco_opcode::ds_min_u32;
6737 op64 = aco_opcode::ds_min_u64;
6738 op32_rtn = aco_opcode::ds_min_rtn_u32;
6739 op64_rtn = aco_opcode::ds_min_rtn_u64;
6740 break;
6741 case nir_intrinsic_shared_atomic_imax:
6742 op32 = aco_opcode::ds_max_i32;
6743 op64 = aco_opcode::ds_max_i64;
6744 op32_rtn = aco_opcode::ds_max_rtn_i32;
6745 op64_rtn = aco_opcode::ds_max_rtn_i64;
6746 break;
6747 case nir_intrinsic_shared_atomic_umax:
6748 op32 = aco_opcode::ds_max_u32;
6749 op64 = aco_opcode::ds_max_u64;
6750 op32_rtn = aco_opcode::ds_max_rtn_u32;
6751 op64_rtn = aco_opcode::ds_max_rtn_u64;
6752 break;
6753 case nir_intrinsic_shared_atomic_and:
6754 op32 = aco_opcode::ds_and_b32;
6755 op64 = aco_opcode::ds_and_b64;
6756 op32_rtn = aco_opcode::ds_and_rtn_b32;
6757 op64_rtn = aco_opcode::ds_and_rtn_b64;
6758 break;
6759 case nir_intrinsic_shared_atomic_or:
6760 op32 = aco_opcode::ds_or_b32;
6761 op64 = aco_opcode::ds_or_b64;
6762 op32_rtn = aco_opcode::ds_or_rtn_b32;
6763 op64_rtn = aco_opcode::ds_or_rtn_b64;
6764 break;
6765 case nir_intrinsic_shared_atomic_xor:
6766 op32 = aco_opcode::ds_xor_b32;
6767 op64 = aco_opcode::ds_xor_b64;
6768 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6769 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6770 break;
6771 case nir_intrinsic_shared_atomic_exchange:
6772 op32 = aco_opcode::ds_write_b32;
6773 op64 = aco_opcode::ds_write_b64;
6774 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6775 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6776 break;
6777 case nir_intrinsic_shared_atomic_comp_swap:
6778 op32 = aco_opcode::ds_cmpst_b32;
6779 op64 = aco_opcode::ds_cmpst_b64;
6780 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6781 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6782 num_operands = 4;
6783 break;
6784 default:
6785 unreachable("Unhandled shared atomic intrinsic");
6786 }
6787
6788 /* return the previous value if dest is ever used */
6789 bool return_previous = false;
6790 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6791 return_previous = true;
6792 break;
6793 }
6794 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6795 return_previous = true;
6796 break;
6797 }
6798
6799 aco_opcode op;
6800 if (data.size() == 1) {
6801 assert(instr->dest.ssa.bit_size == 32);
6802 op = return_previous ? op32_rtn : op32;
6803 } else {
6804 assert(instr->dest.ssa.bit_size == 64);
6805 op = return_previous ? op64_rtn : op64;
6806 }
6807
6808 if (offset > 65535) {
6809 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6810 offset = 0;
6811 }
6812
6813 aco_ptr<DS_instruction> ds;
6814 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6815 ds->operands[0] = Operand(address);
6816 ds->operands[1] = Operand(data);
6817 if (num_operands == 4)
6818 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6819 ds->operands[num_operands - 1] = m;
6820 ds->offset0 = offset;
6821 if (return_previous)
6822 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6823 ctx->block->instructions.emplace_back(std::move(ds));
6824 }
6825
6826 Temp get_scratch_resource(isel_context *ctx)
6827 {
6828 Builder bld(ctx->program, ctx->block);
6829 Temp scratch_addr = ctx->program->private_segment_buffer;
6830 if (ctx->stage != compute_cs)
6831 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6832
6833 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6834 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6835
6836 if (ctx->program->chip_class >= GFX10) {
6837 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6838 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6839 S_008F0C_RESOURCE_LEVEL(1);
6840 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6841 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6842 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6843 }
6844
6845 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6846 if (ctx->program->chip_class <= GFX8)
6847 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6848
6849 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6850 }
6851
6852 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6853 Builder bld(ctx->program, ctx->block);
6854 Temp rsrc = get_scratch_resource(ctx);
6855 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6856 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6857
6858 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6859 instr->dest.ssa.bit_size / 8u, rsrc};
6860 info.align_mul = nir_intrinsic_align_mul(instr);
6861 info.align_offset = nir_intrinsic_align_offset(instr);
6862 info.swizzle_component_size = 16;
6863 info.can_reorder = false;
6864 info.soffset = ctx->program->scratch_offset;
6865 emit_mubuf_load(ctx, bld, &info);
6866 }
6867
6868 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6869 Builder bld(ctx->program, ctx->block);
6870 Temp rsrc = get_scratch_resource(ctx);
6871 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6872 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6873
6874 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6875 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6876
6877 unsigned write_count = 0;
6878 Temp write_datas[32];
6879 unsigned offsets[32];
6880 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6881 16, &write_count, write_datas, offsets);
6882
6883 for (unsigned i = 0; i < write_count; i++) {
6884 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6885 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true);
6886 }
6887 }
6888
6889 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6890 uint8_t log2_ps_iter_samples;
6891 if (ctx->program->info->ps.force_persample) {
6892 log2_ps_iter_samples =
6893 util_logbase2(ctx->options->key.fs.num_samples);
6894 } else {
6895 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6896 }
6897
6898 /* The bit pattern matches that used by fixed function fragment
6899 * processing. */
6900 static const unsigned ps_iter_masks[] = {
6901 0xffff, /* not used */
6902 0x5555,
6903 0x1111,
6904 0x0101,
6905 0x0001,
6906 };
6907 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6908
6909 Builder bld(ctx->program, ctx->block);
6910
6911 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6912 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6913 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6914 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6915 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6916 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6917 }
6918
6919 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6920 Builder bld(ctx->program, ctx->block);
6921
6922 unsigned stream = nir_intrinsic_stream_id(instr);
6923 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6924 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6925 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6926
6927 /* get GSVS ring */
6928 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6929
6930 unsigned num_components =
6931 ctx->program->info->gs.num_stream_output_components[stream];
6932 assert(num_components);
6933
6934 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6935 unsigned stream_offset = 0;
6936 for (unsigned i = 0; i < stream; i++) {
6937 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6938 stream_offset += prev_stride * ctx->program->wave_size;
6939 }
6940
6941 /* Limit on the stride field for <= GFX7. */
6942 assert(stride < (1 << 14));
6943
6944 Temp gsvs_dwords[4];
6945 for (unsigned i = 0; i < 4; i++)
6946 gsvs_dwords[i] = bld.tmp(s1);
6947 bld.pseudo(aco_opcode::p_split_vector,
6948 Definition(gsvs_dwords[0]),
6949 Definition(gsvs_dwords[1]),
6950 Definition(gsvs_dwords[2]),
6951 Definition(gsvs_dwords[3]),
6952 gsvs_ring);
6953
6954 if (stream_offset) {
6955 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6956
6957 Temp carry = bld.tmp(s1);
6958 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6959 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6960 }
6961
6962 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6963 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6964
6965 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6966 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6967
6968 unsigned offset = 0;
6969 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6970 if (ctx->program->info->gs.output_streams[i] != stream)
6971 continue;
6972
6973 for (unsigned j = 0; j < 4; j++) {
6974 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6975 continue;
6976
6977 if (ctx->outputs.mask[i] & (1 << j)) {
6978 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6979 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6980 if (const_offset >= 4096u) {
6981 if (vaddr_offset.isUndefined())
6982 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6983 else
6984 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6985 const_offset %= 4096u;
6986 }
6987
6988 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6989 mtbuf->operands[0] = Operand(gsvs_ring);
6990 mtbuf->operands[1] = vaddr_offset;
6991 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6992 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6993 mtbuf->offen = !vaddr_offset.isUndefined();
6994 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6995 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6996 mtbuf->offset = const_offset;
6997 mtbuf->glc = true;
6998 mtbuf->slc = true;
6999 mtbuf->barrier = barrier_gs_data;
7000 mtbuf->can_reorder = true;
7001 bld.insert(std::move(mtbuf));
7002 }
7003
7004 offset += ctx->shader->info.gs.vertices_out;
7005 }
7006
7007 /* outputs for the next vertex are undefined and keeping them around can
7008 * create invalid IR with control flow */
7009 ctx->outputs.mask[i] = 0;
7010 }
7011
7012 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
7013 }
7014
7015 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
7016 {
7017 Builder bld(ctx->program, ctx->block);
7018
7019 if (cluster_size == 1) {
7020 return src;
7021 } if (op == nir_op_iand && cluster_size == 4) {
7022 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7023 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7024 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7025 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7026 } else if (op == nir_op_ior && cluster_size == 4) {
7027 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7028 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7029 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7030 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7031 //subgroupAnd(val) -> (exec & ~val) == 0
7032 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7033 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7034 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7035 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7036 //subgroupOr(val) -> (val & exec) != 0
7037 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7038 return bool_to_vector_condition(ctx, tmp);
7039 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7040 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7041 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7042 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7043 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7044 return bool_to_vector_condition(ctx, tmp);
7045 } else {
7046 //subgroupClustered{And,Or,Xor}(val, n) ->
7047 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7048 //cluster_offset = ~(n - 1) & lane_id
7049 //cluster_mask = ((1 << n) - 1)
7050 //subgroupClusteredAnd():
7051 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7052 //subgroupClusteredOr():
7053 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7054 //subgroupClusteredXor():
7055 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7056 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7057 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7058
7059 Temp tmp;
7060 if (op == nir_op_iand)
7061 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7062 else
7063 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7064
7065 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7066
7067 if (ctx->program->chip_class <= GFX7)
7068 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7069 else if (ctx->program->wave_size == 64)
7070 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7071 else
7072 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7073 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7074 if (cluster_mask != 0xffffffff)
7075 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7076
7077 Definition cmp_def = Definition();
7078 if (op == nir_op_iand) {
7079 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7080 } else if (op == nir_op_ior) {
7081 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7082 } else if (op == nir_op_ixor) {
7083 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7084 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7085 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7086 }
7087 cmp_def.setHint(vcc);
7088 return cmp_def.getTemp();
7089 }
7090 }
7091
7092 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7093 {
7094 Builder bld(ctx->program, ctx->block);
7095
7096 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7097 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7098 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7099 Temp tmp;
7100 if (op == nir_op_iand)
7101 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7102 else
7103 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7104
7105 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7106 Temp lo = lohi.def(0).getTemp();
7107 Temp hi = lohi.def(1).getTemp();
7108 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7109
7110 Definition cmp_def = Definition();
7111 if (op == nir_op_iand)
7112 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7113 else if (op == nir_op_ior)
7114 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7115 else if (op == nir_op_ixor)
7116 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7117 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7118 cmp_def.setHint(vcc);
7119 return cmp_def.getTemp();
7120 }
7121
7122 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7123 {
7124 Builder bld(ctx->program, ctx->block);
7125
7126 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7127 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7128 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7129 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7130 if (op == nir_op_iand)
7131 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7132 else if (op == nir_op_ior)
7133 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7134 else if (op == nir_op_ixor)
7135 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7136
7137 assert(false);
7138 return Temp();
7139 }
7140
7141 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7142 {
7143 Builder bld(ctx->program, ctx->block);
7144 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7145 if (src.regClass().type() == RegType::vgpr) {
7146 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7147 } else if (src.regClass() == s1) {
7148 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7149 } else if (src.regClass() == s2) {
7150 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7151 } else {
7152 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7153 nir_print_instr(&instr->instr, stderr);
7154 fprintf(stderr, "\n");
7155 }
7156 }
7157
7158 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7159 {
7160 Builder bld(ctx->program, ctx->block);
7161 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7162 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7163 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7164
7165 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7166 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7167 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7168 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7169
7170 /* Build DD X/Y */
7171 if (ctx->program->chip_class >= GFX8) {
7172 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7173 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7174 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7175 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7176 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7177 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7178 } else {
7179 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7180 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7181 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7182 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7183 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7184 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7185 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7186 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7187 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7188 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7189 }
7190
7191 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7192 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7193 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7194 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7195 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7196 Temp wqm1 = bld.tmp(v1);
7197 emit_wqm(ctx, tmp1, wqm1, true);
7198 Temp wqm2 = bld.tmp(v1);
7199 emit_wqm(ctx, tmp2, wqm2, true);
7200 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7201 return;
7202 }
7203
7204 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7205 {
7206 Builder bld(ctx->program, ctx->block);
7207 switch(instr->intrinsic) {
7208 case nir_intrinsic_load_barycentric_sample:
7209 case nir_intrinsic_load_barycentric_pixel:
7210 case nir_intrinsic_load_barycentric_centroid: {
7211 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7212 Temp bary = Temp(0, s2);
7213 switch (mode) {
7214 case INTERP_MODE_SMOOTH:
7215 case INTERP_MODE_NONE:
7216 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7217 bary = get_arg(ctx, ctx->args->ac.persp_center);
7218 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7219 bary = ctx->persp_centroid;
7220 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7221 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7222 break;
7223 case INTERP_MODE_NOPERSPECTIVE:
7224 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7225 bary = get_arg(ctx, ctx->args->ac.linear_center);
7226 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7227 bary = ctx->linear_centroid;
7228 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7229 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7230 break;
7231 default:
7232 break;
7233 }
7234 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7235 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7236 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7237 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7238 Operand(p1), Operand(p2));
7239 emit_split_vector(ctx, dst, 2);
7240 break;
7241 }
7242 case nir_intrinsic_load_barycentric_model: {
7243 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7244
7245 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7246 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7247 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7248 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7249 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7250 Operand(p1), Operand(p2), Operand(p3));
7251 emit_split_vector(ctx, dst, 3);
7252 break;
7253 }
7254 case nir_intrinsic_load_barycentric_at_sample: {
7255 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7256 switch (ctx->options->key.fs.num_samples) {
7257 case 2: sample_pos_offset += 1 << 3; break;
7258 case 4: sample_pos_offset += 3 << 3; break;
7259 case 8: sample_pos_offset += 7 << 3; break;
7260 default: break;
7261 }
7262 Temp sample_pos;
7263 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7264 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7265 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7266 if (addr.type() == RegType::sgpr) {
7267 Operand offset;
7268 if (const_addr) {
7269 sample_pos_offset += const_addr->u32 << 3;
7270 offset = Operand(sample_pos_offset);
7271 } else if (ctx->options->chip_class >= GFX9) {
7272 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7273 } else {
7274 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7275 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7276 }
7277
7278 Operand off = bld.copy(bld.def(s1), Operand(offset));
7279 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7280
7281 } else if (ctx->options->chip_class >= GFX9) {
7282 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7283 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7284 } else if (ctx->options->chip_class >= GFX7) {
7285 /* addr += private_segment_buffer + sample_pos_offset */
7286 Temp tmp0 = bld.tmp(s1);
7287 Temp tmp1 = bld.tmp(s1);
7288 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7289 Definition scc_tmp = bld.def(s1, scc);
7290 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7291 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7292 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7293 Temp pck0 = bld.tmp(v1);
7294 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7295 tmp1 = as_vgpr(ctx, tmp1);
7296 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7297 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7298
7299 /* sample_pos = flat_load_dwordx2 addr */
7300 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7301 } else {
7302 assert(ctx->options->chip_class == GFX6);
7303
7304 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7305 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7306 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7307
7308 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7309 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7310
7311 sample_pos = bld.tmp(v2);
7312
7313 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7314 load->definitions[0] = Definition(sample_pos);
7315 load->operands[0] = Operand(rsrc);
7316 load->operands[1] = Operand(addr);
7317 load->operands[2] = Operand(0u);
7318 load->offset = sample_pos_offset;
7319 load->offen = 0;
7320 load->addr64 = true;
7321 load->glc = false;
7322 load->dlc = false;
7323 load->disable_wqm = false;
7324 load->barrier = barrier_none;
7325 load->can_reorder = true;
7326 ctx->block->instructions.emplace_back(std::move(load));
7327 }
7328
7329 /* sample_pos -= 0.5 */
7330 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7331 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7332 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7333 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7334 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7335
7336 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7337 break;
7338 }
7339 case nir_intrinsic_load_barycentric_at_offset: {
7340 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7341 RegClass rc = RegClass(offset.type(), 1);
7342 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7343 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7344 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7345 break;
7346 }
7347 case nir_intrinsic_load_front_face: {
7348 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7349 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7350 break;
7351 }
7352 case nir_intrinsic_load_view_index: {
7353 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7354 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7355 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7356 break;
7357 }
7358
7359 /* fallthrough */
7360 }
7361 case nir_intrinsic_load_layer_id: {
7362 unsigned idx = nir_intrinsic_base(instr);
7363 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7364 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7365 break;
7366 }
7367 case nir_intrinsic_load_frag_coord: {
7368 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7369 break;
7370 }
7371 case nir_intrinsic_load_sample_pos: {
7372 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7373 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7374 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7375 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7376 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7377 break;
7378 }
7379 case nir_intrinsic_load_tess_coord:
7380 visit_load_tess_coord(ctx, instr);
7381 break;
7382 case nir_intrinsic_load_interpolated_input:
7383 visit_load_interpolated_input(ctx, instr);
7384 break;
7385 case nir_intrinsic_store_output:
7386 visit_store_output(ctx, instr);
7387 break;
7388 case nir_intrinsic_load_input:
7389 case nir_intrinsic_load_input_vertex:
7390 visit_load_input(ctx, instr);
7391 break;
7392 case nir_intrinsic_load_output:
7393 visit_load_output(ctx, instr);
7394 break;
7395 case nir_intrinsic_load_per_vertex_input:
7396 visit_load_per_vertex_input(ctx, instr);
7397 break;
7398 case nir_intrinsic_load_per_vertex_output:
7399 visit_load_per_vertex_output(ctx, instr);
7400 break;
7401 case nir_intrinsic_store_per_vertex_output:
7402 visit_store_per_vertex_output(ctx, instr);
7403 break;
7404 case nir_intrinsic_load_ubo:
7405 visit_load_ubo(ctx, instr);
7406 break;
7407 case nir_intrinsic_load_push_constant:
7408 visit_load_push_constant(ctx, instr);
7409 break;
7410 case nir_intrinsic_load_constant:
7411 visit_load_constant(ctx, instr);
7412 break;
7413 case nir_intrinsic_vulkan_resource_index:
7414 visit_load_resource(ctx, instr);
7415 break;
7416 case nir_intrinsic_discard:
7417 visit_discard(ctx, instr);
7418 break;
7419 case nir_intrinsic_discard_if:
7420 visit_discard_if(ctx, instr);
7421 break;
7422 case nir_intrinsic_load_shared:
7423 visit_load_shared(ctx, instr);
7424 break;
7425 case nir_intrinsic_store_shared:
7426 visit_store_shared(ctx, instr);
7427 break;
7428 case nir_intrinsic_shared_atomic_add:
7429 case nir_intrinsic_shared_atomic_imin:
7430 case nir_intrinsic_shared_atomic_umin:
7431 case nir_intrinsic_shared_atomic_imax:
7432 case nir_intrinsic_shared_atomic_umax:
7433 case nir_intrinsic_shared_atomic_and:
7434 case nir_intrinsic_shared_atomic_or:
7435 case nir_intrinsic_shared_atomic_xor:
7436 case nir_intrinsic_shared_atomic_exchange:
7437 case nir_intrinsic_shared_atomic_comp_swap:
7438 visit_shared_atomic(ctx, instr);
7439 break;
7440 case nir_intrinsic_image_deref_load:
7441 visit_image_load(ctx, instr);
7442 break;
7443 case nir_intrinsic_image_deref_store:
7444 visit_image_store(ctx, instr);
7445 break;
7446 case nir_intrinsic_image_deref_atomic_add:
7447 case nir_intrinsic_image_deref_atomic_umin:
7448 case nir_intrinsic_image_deref_atomic_imin:
7449 case nir_intrinsic_image_deref_atomic_umax:
7450 case nir_intrinsic_image_deref_atomic_imax:
7451 case nir_intrinsic_image_deref_atomic_and:
7452 case nir_intrinsic_image_deref_atomic_or:
7453 case nir_intrinsic_image_deref_atomic_xor:
7454 case nir_intrinsic_image_deref_atomic_exchange:
7455 case nir_intrinsic_image_deref_atomic_comp_swap:
7456 visit_image_atomic(ctx, instr);
7457 break;
7458 case nir_intrinsic_image_deref_size:
7459 visit_image_size(ctx, instr);
7460 break;
7461 case nir_intrinsic_load_ssbo:
7462 visit_load_ssbo(ctx, instr);
7463 break;
7464 case nir_intrinsic_store_ssbo:
7465 visit_store_ssbo(ctx, instr);
7466 break;
7467 case nir_intrinsic_load_global:
7468 visit_load_global(ctx, instr);
7469 break;
7470 case nir_intrinsic_store_global:
7471 visit_store_global(ctx, instr);
7472 break;
7473 case nir_intrinsic_global_atomic_add:
7474 case nir_intrinsic_global_atomic_imin:
7475 case nir_intrinsic_global_atomic_umin:
7476 case nir_intrinsic_global_atomic_imax:
7477 case nir_intrinsic_global_atomic_umax:
7478 case nir_intrinsic_global_atomic_and:
7479 case nir_intrinsic_global_atomic_or:
7480 case nir_intrinsic_global_atomic_xor:
7481 case nir_intrinsic_global_atomic_exchange:
7482 case nir_intrinsic_global_atomic_comp_swap:
7483 visit_global_atomic(ctx, instr);
7484 break;
7485 case nir_intrinsic_ssbo_atomic_add:
7486 case nir_intrinsic_ssbo_atomic_imin:
7487 case nir_intrinsic_ssbo_atomic_umin:
7488 case nir_intrinsic_ssbo_atomic_imax:
7489 case nir_intrinsic_ssbo_atomic_umax:
7490 case nir_intrinsic_ssbo_atomic_and:
7491 case nir_intrinsic_ssbo_atomic_or:
7492 case nir_intrinsic_ssbo_atomic_xor:
7493 case nir_intrinsic_ssbo_atomic_exchange:
7494 case nir_intrinsic_ssbo_atomic_comp_swap:
7495 visit_atomic_ssbo(ctx, instr);
7496 break;
7497 case nir_intrinsic_load_scratch:
7498 visit_load_scratch(ctx, instr);
7499 break;
7500 case nir_intrinsic_store_scratch:
7501 visit_store_scratch(ctx, instr);
7502 break;
7503 case nir_intrinsic_get_buffer_size:
7504 visit_get_buffer_size(ctx, instr);
7505 break;
7506 case nir_intrinsic_control_barrier: {
7507 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7508 /* GFX6 only (thanks to a hw bug workaround):
7509 * The real barrier instruction isn’t needed, because an entire patch
7510 * always fits into a single wave.
7511 */
7512 break;
7513 }
7514
7515 if (ctx->program->workgroup_size > ctx->program->wave_size)
7516 bld.sopp(aco_opcode::s_barrier);
7517
7518 break;
7519 }
7520 case nir_intrinsic_memory_barrier_tcs_patch:
7521 case nir_intrinsic_group_memory_barrier:
7522 case nir_intrinsic_memory_barrier:
7523 case nir_intrinsic_memory_barrier_buffer:
7524 case nir_intrinsic_memory_barrier_image:
7525 case nir_intrinsic_memory_barrier_shared:
7526 emit_memory_barrier(ctx, instr);
7527 break;
7528 case nir_intrinsic_load_num_work_groups: {
7529 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7530 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7531 emit_split_vector(ctx, dst, 3);
7532 break;
7533 }
7534 case nir_intrinsic_load_local_invocation_id: {
7535 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7536 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7537 emit_split_vector(ctx, dst, 3);
7538 break;
7539 }
7540 case nir_intrinsic_load_work_group_id: {
7541 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7542 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7543 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7544 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7545 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7546 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7547 emit_split_vector(ctx, dst, 3);
7548 break;
7549 }
7550 case nir_intrinsic_load_local_invocation_index: {
7551 Temp id = emit_mbcnt(ctx, bld.def(v1));
7552
7553 /* The tg_size bits [6:11] contain the subgroup id,
7554 * we need this multiplied by the wave size, and then OR the thread id to it.
7555 */
7556 if (ctx->program->wave_size == 64) {
7557 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7558 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7559 get_arg(ctx, ctx->args->ac.tg_size));
7560 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7561 } else {
7562 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7563 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7564 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7565 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7566 }
7567 break;
7568 }
7569 case nir_intrinsic_load_subgroup_id: {
7570 if (ctx->stage == compute_cs) {
7571 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7572 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7573 } else {
7574 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7575 }
7576 break;
7577 }
7578 case nir_intrinsic_load_subgroup_invocation: {
7579 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7580 break;
7581 }
7582 case nir_intrinsic_load_num_subgroups: {
7583 if (ctx->stage == compute_cs)
7584 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7585 get_arg(ctx, ctx->args->ac.tg_size));
7586 else
7587 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7588 break;
7589 }
7590 case nir_intrinsic_ballot: {
7591 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7592 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7593 Definition tmp = bld.def(dst.regClass());
7594 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7595 if (instr->src[0].ssa->bit_size == 1) {
7596 assert(src.regClass() == bld.lm);
7597 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7598 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7599 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7600 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7601 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7602 } else {
7603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7604 nir_print_instr(&instr->instr, stderr);
7605 fprintf(stderr, "\n");
7606 }
7607 if (dst.size() != bld.lm.size()) {
7608 /* Wave32 with ballot size set to 64 */
7609 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7610 }
7611 emit_wqm(ctx, tmp.getTemp(), dst);
7612 break;
7613 }
7614 case nir_intrinsic_shuffle:
7615 case nir_intrinsic_read_invocation: {
7616 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7617 if (!nir_src_is_divergent(instr->src[0])) {
7618 emit_uniform_subgroup(ctx, instr, src);
7619 } else {
7620 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7621 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7622 tid = bld.as_uniform(tid);
7623 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7624 if (src.regClass() == v1b || src.regClass() == v2b) {
7625 Temp tmp = bld.tmp(v1);
7626 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7627 if (dst.type() == RegType::vgpr)
7628 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7629 else
7630 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7631 } else if (src.regClass() == v1) {
7632 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7633 } else if (src.regClass() == v2) {
7634 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7635 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7636 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7637 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7638 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7639 emit_split_vector(ctx, dst, 2);
7640 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7641 assert(src.regClass() == bld.lm);
7642 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7643 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7644 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7645 assert(src.regClass() == bld.lm);
7646 Temp tmp;
7647 if (ctx->program->chip_class <= GFX7)
7648 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7649 else if (ctx->program->wave_size == 64)
7650 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7651 else
7652 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7653 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7654 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7655 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7656 } else {
7657 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7658 nir_print_instr(&instr->instr, stderr);
7659 fprintf(stderr, "\n");
7660 }
7661 }
7662 break;
7663 }
7664 case nir_intrinsic_load_sample_id: {
7665 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7666 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7667 break;
7668 }
7669 case nir_intrinsic_load_sample_mask_in: {
7670 visit_load_sample_mask_in(ctx, instr);
7671 break;
7672 }
7673 case nir_intrinsic_read_first_invocation: {
7674 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7675 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7676 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7677 emit_wqm(ctx,
7678 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7679 dst);
7680 } else if (src.regClass() == v2) {
7681 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7682 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7683 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7684 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7685 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7686 emit_split_vector(ctx, dst, 2);
7687 } else if (instr->dest.ssa.bit_size == 1) {
7688 assert(src.regClass() == bld.lm);
7689 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7690 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7691 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7692 } else if (src.regClass() == s1) {
7693 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7694 } else if (src.regClass() == s2) {
7695 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7696 } else {
7697 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7698 nir_print_instr(&instr->instr, stderr);
7699 fprintf(stderr, "\n");
7700 }
7701 break;
7702 }
7703 case nir_intrinsic_vote_all: {
7704 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7705 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7706 assert(src.regClass() == bld.lm);
7707 assert(dst.regClass() == bld.lm);
7708
7709 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7710 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7711 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7712 break;
7713 }
7714 case nir_intrinsic_vote_any: {
7715 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7716 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7717 assert(src.regClass() == bld.lm);
7718 assert(dst.regClass() == bld.lm);
7719
7720 Temp tmp = bool_to_scalar_condition(ctx, src);
7721 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7722 break;
7723 }
7724 case nir_intrinsic_reduce:
7725 case nir_intrinsic_inclusive_scan:
7726 case nir_intrinsic_exclusive_scan: {
7727 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7728 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7729 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7730 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7731 nir_intrinsic_cluster_size(instr) : 0;
7732 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7733
7734 if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
7735 emit_uniform_subgroup(ctx, instr, src);
7736 } else if (instr->dest.ssa.bit_size == 1) {
7737 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7738 op = nir_op_iand;
7739 else if (op == nir_op_iadd)
7740 op = nir_op_ixor;
7741 else if (op == nir_op_umax || op == nir_op_imax)
7742 op = nir_op_ior;
7743 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7744
7745 switch (instr->intrinsic) {
7746 case nir_intrinsic_reduce:
7747 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7748 break;
7749 case nir_intrinsic_exclusive_scan:
7750 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7751 break;
7752 case nir_intrinsic_inclusive_scan:
7753 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7754 break;
7755 default:
7756 assert(false);
7757 }
7758 } else if (cluster_size == 1) {
7759 bld.copy(Definition(dst), src);
7760 } else {
7761 unsigned bit_size = instr->src[0].ssa->bit_size;
7762
7763 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
7764
7765 ReduceOp reduce_op;
7766 switch (op) {
7767 #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
7768 #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
7769 CASEI(iadd)
7770 CASEI(imul)
7771 CASEI(imin)
7772 CASEI(umin)
7773 CASEI(imax)
7774 CASEI(umax)
7775 CASEI(iand)
7776 CASEI(ior)
7777 CASEI(ixor)
7778 CASEF(fadd)
7779 CASEF(fmul)
7780 CASEF(fmin)
7781 CASEF(fmax)
7782 default:
7783 unreachable("unknown reduction op");
7784 #undef CASEI
7785 #undef CASEF
7786 }
7787
7788 aco_opcode aco_op;
7789 switch (instr->intrinsic) {
7790 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7791 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7792 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7793 default:
7794 unreachable("unknown reduce intrinsic");
7795 }
7796
7797 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7798 reduce->operands[0] = Operand(src);
7799 // filled in by aco_reduce_assign.cpp, used internally as part of the
7800 // reduce sequence
7801 assert(dst.size() == 1 || dst.size() == 2);
7802 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7803 reduce->operands[2] = Operand(v1.as_linear());
7804
7805 Temp tmp_dst = bld.tmp(dst.regClass());
7806 reduce->definitions[0] = Definition(tmp_dst);
7807 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7808 reduce->definitions[2] = Definition();
7809 reduce->definitions[3] = Definition(scc, s1);
7810 reduce->definitions[4] = Definition();
7811 reduce->reduce_op = reduce_op;
7812 reduce->cluster_size = cluster_size;
7813 ctx->block->instructions.emplace_back(std::move(reduce));
7814
7815 emit_wqm(ctx, tmp_dst, dst);
7816 }
7817 break;
7818 }
7819 case nir_intrinsic_quad_broadcast: {
7820 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7821 if (!nir_dest_is_divergent(instr->dest)) {
7822 emit_uniform_subgroup(ctx, instr, src);
7823 } else {
7824 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7825 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7826 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7827
7828 if (instr->dest.ssa.bit_size == 1) {
7829 assert(src.regClass() == bld.lm);
7830 assert(dst.regClass() == bld.lm);
7831 uint32_t half_mask = 0x11111111u << lane;
7832 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7833 Temp tmp = bld.tmp(bld.lm);
7834 bld.sop1(Builder::s_wqm, Definition(tmp),
7835 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7836 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7837 emit_wqm(ctx, tmp, dst);
7838 } else if (instr->dest.ssa.bit_size == 8) {
7839 Temp tmp = bld.tmp(v1);
7840 if (ctx->program->chip_class >= GFX8)
7841 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7842 else
7843 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7844 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7845 } else if (instr->dest.ssa.bit_size == 16) {
7846 Temp tmp = bld.tmp(v1);
7847 if (ctx->program->chip_class >= GFX8)
7848 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7849 else
7850 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7851 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7852 } else if (instr->dest.ssa.bit_size == 32) {
7853 if (ctx->program->chip_class >= GFX8)
7854 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7855 else
7856 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7857 } else if (instr->dest.ssa.bit_size == 64) {
7858 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7859 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7860 if (ctx->program->chip_class >= GFX8) {
7861 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7862 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7863 } else {
7864 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7865 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7866 }
7867 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7868 emit_split_vector(ctx, dst, 2);
7869 } else {
7870 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7871 nir_print_instr(&instr->instr, stderr);
7872 fprintf(stderr, "\n");
7873 }
7874 }
7875 break;
7876 }
7877 case nir_intrinsic_quad_swap_horizontal:
7878 case nir_intrinsic_quad_swap_vertical:
7879 case nir_intrinsic_quad_swap_diagonal:
7880 case nir_intrinsic_quad_swizzle_amd: {
7881 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7882 if (!nir_dest_is_divergent(instr->dest)) {
7883 emit_uniform_subgroup(ctx, instr, src);
7884 break;
7885 }
7886 uint16_t dpp_ctrl = 0;
7887 switch (instr->intrinsic) {
7888 case nir_intrinsic_quad_swap_horizontal:
7889 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7890 break;
7891 case nir_intrinsic_quad_swap_vertical:
7892 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7893 break;
7894 case nir_intrinsic_quad_swap_diagonal:
7895 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7896 break;
7897 case nir_intrinsic_quad_swizzle_amd:
7898 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7899 break;
7900 default:
7901 break;
7902 }
7903 if (ctx->program->chip_class < GFX8)
7904 dpp_ctrl |= (1 << 15);
7905
7906 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7907 if (instr->dest.ssa.bit_size == 1) {
7908 assert(src.regClass() == bld.lm);
7909 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7910 if (ctx->program->chip_class >= GFX8)
7911 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7912 else
7913 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7914 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7915 emit_wqm(ctx, tmp, dst);
7916 } else if (instr->dest.ssa.bit_size == 8) {
7917 Temp tmp = bld.tmp(v1);
7918 if (ctx->program->chip_class >= GFX8)
7919 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7920 else
7921 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7922 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7923 } else if (instr->dest.ssa.bit_size == 16) {
7924 Temp tmp = bld.tmp(v1);
7925 if (ctx->program->chip_class >= GFX8)
7926 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7927 else
7928 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7929 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7930 } else if (instr->dest.ssa.bit_size == 32) {
7931 Temp tmp;
7932 if (ctx->program->chip_class >= GFX8)
7933 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7934 else
7935 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7936 emit_wqm(ctx, tmp, dst);
7937 } else if (instr->dest.ssa.bit_size == 64) {
7938 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7939 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7940 if (ctx->program->chip_class >= GFX8) {
7941 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7942 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7943 } else {
7944 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7945 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7946 }
7947 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7948 emit_split_vector(ctx, dst, 2);
7949 } else {
7950 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7951 nir_print_instr(&instr->instr, stderr);
7952 fprintf(stderr, "\n");
7953 }
7954 break;
7955 }
7956 case nir_intrinsic_masked_swizzle_amd: {
7957 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7958 if (!nir_dest_is_divergent(instr->dest)) {
7959 emit_uniform_subgroup(ctx, instr, src);
7960 break;
7961 }
7962 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7963 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7964 if (instr->dest.ssa.bit_size == 1) {
7965 assert(src.regClass() == bld.lm);
7966 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7967 src = emit_masked_swizzle(ctx, bld, src, mask);
7968 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7969 emit_wqm(ctx, tmp, dst);
7970 } else if (dst.regClass() == v1b) {
7971 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7972 emit_extract_vector(ctx, tmp, 0, dst);
7973 } else if (dst.regClass() == v2b) {
7974 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7975 emit_extract_vector(ctx, tmp, 0, dst);
7976 } else if (dst.regClass() == v1) {
7977 emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
7978 } else if (dst.regClass() == v2) {
7979 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7980 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7981 lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
7982 hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
7983 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7984 emit_split_vector(ctx, dst, 2);
7985 } else {
7986 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7987 nir_print_instr(&instr->instr, stderr);
7988 fprintf(stderr, "\n");
7989 }
7990 break;
7991 }
7992 case nir_intrinsic_write_invocation_amd: {
7993 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7994 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7995 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7996 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7997 if (dst.regClass() == v1) {
7998 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7999 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
8000 } else if (dst.regClass() == v2) {
8001 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
8002 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
8003 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
8004 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
8005 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
8006 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
8007 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8008 emit_split_vector(ctx, dst, 2);
8009 } else {
8010 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8011 nir_print_instr(&instr->instr, stderr);
8012 fprintf(stderr, "\n");
8013 }
8014 break;
8015 }
8016 case nir_intrinsic_mbcnt_amd: {
8017 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8018 RegClass rc = RegClass(src.type(), 1);
8019 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
8020 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
8021 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8022 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
8023 emit_wqm(ctx, wqm_tmp, dst);
8024 break;
8025 }
8026 case nir_intrinsic_load_helper_invocation: {
8027 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8028 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
8029 ctx->block->kind |= block_kind_needs_lowering;
8030 ctx->program->needs_exact = true;
8031 break;
8032 }
8033 case nir_intrinsic_is_helper_invocation: {
8034 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8035 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
8036 ctx->block->kind |= block_kind_needs_lowering;
8037 ctx->program->needs_exact = true;
8038 break;
8039 }
8040 case nir_intrinsic_demote:
8041 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
8042
8043 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8044 ctx->cf_info.exec_potentially_empty_discard = true;
8045 ctx->block->kind |= block_kind_uses_demote;
8046 ctx->program->needs_exact = true;
8047 break;
8048 case nir_intrinsic_demote_if: {
8049 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8050 assert(src.regClass() == bld.lm);
8051 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
8052 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
8053
8054 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8055 ctx->cf_info.exec_potentially_empty_discard = true;
8056 ctx->block->kind |= block_kind_uses_demote;
8057 ctx->program->needs_exact = true;
8058 break;
8059 }
8060 case nir_intrinsic_first_invocation: {
8061 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
8062 get_ssa_temp(ctx, &instr->dest.ssa));
8063 break;
8064 }
8065 case nir_intrinsic_shader_clock: {
8066 aco_opcode opcode =
8067 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
8068 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
8069 bld.smem(opcode, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
8070 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
8071 break;
8072 }
8073 case nir_intrinsic_load_vertex_id_zero_base: {
8074 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8075 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8076 break;
8077 }
8078 case nir_intrinsic_load_first_vertex: {
8079 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8080 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8081 break;
8082 }
8083 case nir_intrinsic_load_base_instance: {
8084 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8085 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8086 break;
8087 }
8088 case nir_intrinsic_load_instance_id: {
8089 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8090 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8091 break;
8092 }
8093 case nir_intrinsic_load_draw_id: {
8094 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8095 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8096 break;
8097 }
8098 case nir_intrinsic_load_invocation_id: {
8099 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8100
8101 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8102 if (ctx->options->chip_class >= GFX10)
8103 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8104 else
8105 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8106 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8107 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8108 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8109 } else {
8110 unreachable("Unsupported stage for load_invocation_id");
8111 }
8112
8113 break;
8114 }
8115 case nir_intrinsic_load_primitive_id: {
8116 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8117
8118 switch (ctx->shader->info.stage) {
8119 case MESA_SHADER_GEOMETRY:
8120 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8121 break;
8122 case MESA_SHADER_TESS_CTRL:
8123 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8124 break;
8125 case MESA_SHADER_TESS_EVAL:
8126 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8127 break;
8128 default:
8129 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8130 }
8131
8132 break;
8133 }
8134 case nir_intrinsic_load_patch_vertices_in: {
8135 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8136 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8137
8138 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8139 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8140 break;
8141 }
8142 case nir_intrinsic_emit_vertex_with_counter: {
8143 visit_emit_vertex_with_counter(ctx, instr);
8144 break;
8145 }
8146 case nir_intrinsic_end_primitive_with_counter: {
8147 unsigned stream = nir_intrinsic_stream_id(instr);
8148 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8149 break;
8150 }
8151 case nir_intrinsic_set_vertex_count: {
8152 /* unused, the HW keeps track of this for us */
8153 break;
8154 }
8155 default:
8156 fprintf(stderr, "Unimplemented intrinsic instr: ");
8157 nir_print_instr(&instr->instr, stderr);
8158 fprintf(stderr, "\n");
8159 abort();
8160
8161 break;
8162 }
8163 }
8164
8165
8166 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8167 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8168 enum glsl_base_type *stype)
8169 {
8170 nir_deref_instr *texture_deref_instr = NULL;
8171 nir_deref_instr *sampler_deref_instr = NULL;
8172 int plane = -1;
8173
8174 for (unsigned i = 0; i < instr->num_srcs; i++) {
8175 switch (instr->src[i].src_type) {
8176 case nir_tex_src_texture_deref:
8177 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8178 break;
8179 case nir_tex_src_sampler_deref:
8180 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8181 break;
8182 case nir_tex_src_plane:
8183 plane = nir_src_as_int(instr->src[i].src);
8184 break;
8185 default:
8186 break;
8187 }
8188 }
8189
8190 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8191
8192 if (!sampler_deref_instr)
8193 sampler_deref_instr = texture_deref_instr;
8194
8195 if (plane >= 0) {
8196 assert(instr->op != nir_texop_txf_ms &&
8197 instr->op != nir_texop_samples_identical);
8198 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8199 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8200 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8201 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8202 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8203 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8204 } else {
8205 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8206 }
8207 if (samp_ptr) {
8208 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8209
8210 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8211 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8212 Builder bld(ctx->program, ctx->block);
8213
8214 /* to avoid unnecessary moves, we split and recombine sampler and image */
8215 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8216 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8217 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8218 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8219 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8220 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8221 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8222 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8223
8224 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8225 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8226 img[0], img[1], img[2], img[3],
8227 img[4], img[5], img[6], img[7]);
8228 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8229 samp[0], samp[1], samp[2], samp[3]);
8230 }
8231 }
8232 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8233 instr->op == nir_texop_samples_identical))
8234 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8235 }
8236
8237 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8238 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8239 {
8240 Builder bld(ctx->program, ctx->block);
8241
8242 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8243 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8244 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8245
8246 Operand neg_one(0xbf800000u);
8247 Operand one(0x3f800000u);
8248 Operand two(0x40000000u);
8249 Operand four(0x40800000u);
8250
8251 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8252 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8253 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8254
8255 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8256 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8257 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8258 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8259
8260 // select sc
8261 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8262 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8263 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8264 one, is_ma_y);
8265 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8266
8267 // select tc
8268 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8269 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8270 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8271
8272 // select ma
8273 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8274 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8275 deriv_z, is_ma_z);
8276 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8277 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8278 }
8279
8280 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8281 {
8282 Builder bld(ctx->program, ctx->block);
8283 Temp ma, tc, sc, id;
8284
8285 if (is_array) {
8286 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8287
8288 // see comment in ac_prepare_cube_coords()
8289 if (ctx->options->chip_class <= GFX8)
8290 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8291 }
8292
8293 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8294
8295 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8296 vop3a->operands[0] = Operand(ma);
8297 vop3a->abs[0] = true;
8298 Temp invma = bld.tmp(v1);
8299 vop3a->definitions[0] = Definition(invma);
8300 ctx->block->instructions.emplace_back(std::move(vop3a));
8301
8302 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8303 if (!is_deriv)
8304 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8305
8306 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8307 if (!is_deriv)
8308 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8309
8310 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8311
8312 if (is_deriv) {
8313 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8314 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8315
8316 for (unsigned i = 0; i < 2; i++) {
8317 // see comment in ac_prepare_cube_coords()
8318 Temp deriv_ma;
8319 Temp deriv_sc, deriv_tc;
8320 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8321 &deriv_ma, &deriv_sc, &deriv_tc);
8322
8323 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8324
8325 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8326 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8327 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8328 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8329 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8330 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8331 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8332 }
8333
8334 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8335 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8336 }
8337
8338 if (is_array)
8339 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8340 coords.resize(3);
8341 coords[0] = sc;
8342 coords[1] = tc;
8343 coords[2] = id;
8344 }
8345
8346 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8347 {
8348 if (vec->parent_instr->type != nir_instr_type_alu)
8349 return;
8350 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8351 if (vec_instr->op != nir_op_vec(vec->num_components))
8352 return;
8353
8354 for (unsigned i = 0; i < vec->num_components; i++) {
8355 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8356 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8357 }
8358 }
8359
8360 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8361 {
8362 Builder bld(ctx->program, ctx->block);
8363 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8364 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8365 has_clamped_lod = false;
8366 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8367 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8368 clamped_lod = Temp();
8369 std::vector<Temp> coords;
8370 std::vector<Temp> derivs;
8371 nir_const_value *sample_index_cv = NULL;
8372 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8373 enum glsl_base_type stype;
8374 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8375
8376 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8377 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8378 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8379 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8380
8381 for (unsigned i = 0; i < instr->num_srcs; i++) {
8382 switch (instr->src[i].src_type) {
8383 case nir_tex_src_coord: {
8384 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8385 for (unsigned i = 0; i < coord.size(); i++)
8386 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8387 break;
8388 }
8389 case nir_tex_src_bias:
8390 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8391 has_bias = true;
8392 break;
8393 case nir_tex_src_lod: {
8394 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8395
8396 if (val && val->f32 <= 0.0) {
8397 level_zero = true;
8398 } else {
8399 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8400 has_lod = true;
8401 }
8402 break;
8403 }
8404 case nir_tex_src_min_lod:
8405 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8406 has_clamped_lod = true;
8407 break;
8408 case nir_tex_src_comparator:
8409 if (instr->is_shadow) {
8410 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8411 has_compare = true;
8412 }
8413 break;
8414 case nir_tex_src_offset:
8415 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8416 get_const_vec(instr->src[i].src.ssa, const_offset);
8417 has_offset = true;
8418 break;
8419 case nir_tex_src_ddx:
8420 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8421 has_ddx = true;
8422 break;
8423 case nir_tex_src_ddy:
8424 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8425 has_ddy = true;
8426 break;
8427 case nir_tex_src_ms_index:
8428 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8429 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8430 has_sample_index = true;
8431 break;
8432 case nir_tex_src_texture_offset:
8433 case nir_tex_src_sampler_offset:
8434 default:
8435 break;
8436 }
8437 }
8438
8439 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8440 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8441
8442 if (instr->op == nir_texop_texture_samples) {
8443 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8444
8445 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8446 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8447 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8448
8449 Operand default_sample = Operand(1u);
8450 if (ctx->options->robust_buffer_access) {
8451 /* Extract the second dword of the descriptor, if it's
8452 * all zero, then it's a null descriptor.
8453 */
8454 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8455 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8456 default_sample = Operand(is_non_null_descriptor);
8457 }
8458
8459 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8460 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8461 samples, default_sample, bld.scc(is_msaa));
8462 return;
8463 }
8464
8465 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8466 aco_ptr<Instruction> tmp_instr;
8467 Temp acc, pack = Temp();
8468
8469 uint32_t pack_const = 0;
8470 for (unsigned i = 0; i < offset.size(); i++) {
8471 if (!const_offset[i])
8472 continue;
8473 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8474 }
8475
8476 if (offset.type() == RegType::sgpr) {
8477 for (unsigned i = 0; i < offset.size(); i++) {
8478 if (const_offset[i])
8479 continue;
8480
8481 acc = emit_extract_vector(ctx, offset, i, s1);
8482 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8483
8484 if (i) {
8485 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8486 }
8487
8488 if (pack == Temp()) {
8489 pack = acc;
8490 } else {
8491 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8492 }
8493 }
8494
8495 if (pack_const && pack != Temp())
8496 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8497 } else {
8498 for (unsigned i = 0; i < offset.size(); i++) {
8499 if (const_offset[i])
8500 continue;
8501
8502 acc = emit_extract_vector(ctx, offset, i, v1);
8503 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8504
8505 if (i) {
8506 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8507 }
8508
8509 if (pack == Temp()) {
8510 pack = acc;
8511 } else {
8512 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8513 }
8514 }
8515
8516 if (pack_const && pack != Temp())
8517 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8518 }
8519 if (pack_const && pack == Temp())
8520 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8521 else if (pack == Temp())
8522 has_offset = false;
8523 else
8524 offset = pack;
8525 }
8526
8527 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8528 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8529
8530 /* pack derivatives */
8531 if (has_ddx || has_ddy) {
8532 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8533 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8534 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8535 derivs = {ddx, zero, ddy, zero};
8536 } else {
8537 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8538 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8539 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8540 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8541 }
8542 has_derivs = true;
8543 }
8544
8545 if (instr->coord_components > 1 &&
8546 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8547 instr->is_array &&
8548 instr->op != nir_texop_txf)
8549 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8550
8551 if (instr->coord_components > 2 &&
8552 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8553 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8554 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8555 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8556 instr->is_array &&
8557 instr->op != nir_texop_txf &&
8558 instr->op != nir_texop_txf_ms &&
8559 instr->op != nir_texop_fragment_fetch &&
8560 instr->op != nir_texop_fragment_mask_fetch)
8561 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8562
8563 if (ctx->options->chip_class == GFX9 &&
8564 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8565 instr->op != nir_texop_lod && instr->coord_components) {
8566 assert(coords.size() > 0 && coords.size() < 3);
8567
8568 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8569 Operand((uint32_t) 0) :
8570 Operand((uint32_t) 0x3f000000)));
8571 }
8572
8573 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8574
8575 if (instr->op == nir_texop_samples_identical)
8576 resource = fmask_ptr;
8577
8578 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8579 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8580 instr->op != nir_texop_txs &&
8581 instr->op != nir_texop_fragment_fetch &&
8582 instr->op != nir_texop_fragment_mask_fetch) {
8583 assert(has_sample_index);
8584 Operand op(sample_index);
8585 if (sample_index_cv)
8586 op = Operand(sample_index_cv->u32);
8587 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8588 }
8589
8590 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8591 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8592 Temp off = emit_extract_vector(ctx, offset, i, v1);
8593 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8594 }
8595 has_offset = false;
8596 }
8597
8598 /* Build tex instruction */
8599 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8600 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8601 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8602 : 0;
8603 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8604 Temp tmp_dst = dst;
8605
8606 /* gather4 selects the component by dmask and always returns vec4 */
8607 if (instr->op == nir_texop_tg4) {
8608 assert(instr->dest.ssa.num_components == 4);
8609 if (instr->is_shadow)
8610 dmask = 1;
8611 else
8612 dmask = 1 << instr->component;
8613 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8614 tmp_dst = bld.tmp(v4);
8615 } else if (instr->op == nir_texop_samples_identical) {
8616 tmp_dst = bld.tmp(v1);
8617 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8618 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8619 }
8620
8621 aco_ptr<MIMG_instruction> tex;
8622 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8623 if (!has_lod)
8624 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8625
8626 bool div_by_6 = instr->op == nir_texop_txs &&
8627 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8628 instr->is_array &&
8629 (dmask & (1 << 2));
8630 if (tmp_dst.id() == dst.id() && div_by_6)
8631 tmp_dst = bld.tmp(tmp_dst.regClass());
8632
8633 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8634 tex->operands[0] = Operand(resource);
8635 tex->operands[1] = Operand(s4); /* no sampler */
8636 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8637 if (ctx->options->chip_class == GFX9 &&
8638 instr->op == nir_texop_txs &&
8639 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8640 instr->is_array) {
8641 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8642 } else if (instr->op == nir_texop_query_levels) {
8643 tex->dmask = 1 << 3;
8644 } else {
8645 tex->dmask = dmask;
8646 }
8647 tex->da = da;
8648 tex->definitions[0] = Definition(tmp_dst);
8649 tex->dim = dim;
8650 tex->can_reorder = true;
8651 ctx->block->instructions.emplace_back(std::move(tex));
8652
8653 if (div_by_6) {
8654 /* divide 3rd value by 6 by multiplying with magic number */
8655 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8656 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8657 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8658 assert(instr->dest.ssa.num_components == 3);
8659 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8660 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8661 emit_extract_vector(ctx, tmp_dst, 0, v1),
8662 emit_extract_vector(ctx, tmp_dst, 1, v1),
8663 by_6);
8664
8665 }
8666
8667 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8668 return;
8669 }
8670
8671 Temp tg4_compare_cube_wa64 = Temp();
8672
8673 if (tg4_integer_workarounds) {
8674 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8675 tex->operands[0] = Operand(resource);
8676 tex->operands[1] = Operand(s4); /* no sampler */
8677 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8678 tex->dim = dim;
8679 tex->dmask = 0x3;
8680 tex->da = da;
8681 Temp size = bld.tmp(v2);
8682 tex->definitions[0] = Definition(size);
8683 tex->can_reorder = true;
8684 ctx->block->instructions.emplace_back(std::move(tex));
8685 emit_split_vector(ctx, size, size.size());
8686
8687 Temp half_texel[2];
8688 for (unsigned i = 0; i < 2; i++) {
8689 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8690 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8691 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8692 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8693 }
8694
8695 Temp new_coords[2] = {
8696 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8697 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8698 };
8699
8700 if (tg4_integer_cube_workaround) {
8701 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8702 Temp desc[resource.size()];
8703 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8704 Format::PSEUDO, 1, resource.size())};
8705 split->operands[0] = Operand(resource);
8706 for (unsigned i = 0; i < resource.size(); i++) {
8707 desc[i] = bld.tmp(s1);
8708 split->definitions[i] = Definition(desc[i]);
8709 }
8710 ctx->block->instructions.emplace_back(std::move(split));
8711
8712 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8713 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8714 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8715
8716 Temp nfmt;
8717 if (stype == GLSL_TYPE_UINT) {
8718 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8719 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8720 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8721 bld.scc(compare_cube_wa));
8722 } else {
8723 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8724 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8725 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8726 bld.scc(compare_cube_wa));
8727 }
8728 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8729 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8730
8731 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8732
8733 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8734 Operand((uint32_t)C_008F14_NUM_FORMAT));
8735 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8736
8737 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8738 Format::PSEUDO, resource.size(), 1)};
8739 for (unsigned i = 0; i < resource.size(); i++)
8740 vec->operands[i] = Operand(desc[i]);
8741 resource = bld.tmp(resource.regClass());
8742 vec->definitions[0] = Definition(resource);
8743 ctx->block->instructions.emplace_back(std::move(vec));
8744
8745 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8746 new_coords[0], coords[0], tg4_compare_cube_wa64);
8747 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8748 new_coords[1], coords[1], tg4_compare_cube_wa64);
8749 }
8750 coords[0] = new_coords[0];
8751 coords[1] = new_coords[1];
8752 }
8753
8754 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8755 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8756
8757 assert(coords.size() == 1);
8758 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8759 aco_opcode op;
8760 switch (last_bit) {
8761 case 1:
8762 op = aco_opcode::buffer_load_format_x; break;
8763 case 2:
8764 op = aco_opcode::buffer_load_format_xy; break;
8765 case 3:
8766 op = aco_opcode::buffer_load_format_xyz; break;
8767 case 4:
8768 op = aco_opcode::buffer_load_format_xyzw; break;
8769 default:
8770 unreachable("Tex instruction loads more than 4 components.");
8771 }
8772
8773 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8774 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8775 tmp_dst = dst;
8776 else
8777 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8778
8779 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8780 mubuf->operands[0] = Operand(resource);
8781 mubuf->operands[1] = Operand(coords[0]);
8782 mubuf->operands[2] = Operand((uint32_t) 0);
8783 mubuf->definitions[0] = Definition(tmp_dst);
8784 mubuf->idxen = true;
8785 mubuf->can_reorder = true;
8786 ctx->block->instructions.emplace_back(std::move(mubuf));
8787
8788 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8789 return;
8790 }
8791
8792 /* gather MIMG address components */
8793 std::vector<Temp> args;
8794 if (has_offset)
8795 args.emplace_back(offset);
8796 if (has_bias)
8797 args.emplace_back(bias);
8798 if (has_compare)
8799 args.emplace_back(compare);
8800 if (has_derivs)
8801 args.insert(args.end(), derivs.begin(), derivs.end());
8802
8803 args.insert(args.end(), coords.begin(), coords.end());
8804 if (has_sample_index)
8805 args.emplace_back(sample_index);
8806 if (has_lod)
8807 args.emplace_back(lod);
8808 if (has_clamped_lod)
8809 args.emplace_back(clamped_lod);
8810
8811 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8812 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8813 vec->definitions[0] = Definition(arg);
8814 for (unsigned i = 0; i < args.size(); i++)
8815 vec->operands[i] = Operand(args[i]);
8816 ctx->block->instructions.emplace_back(std::move(vec));
8817
8818
8819 if (instr->op == nir_texop_txf ||
8820 instr->op == nir_texop_txf_ms ||
8821 instr->op == nir_texop_samples_identical ||
8822 instr->op == nir_texop_fragment_fetch ||
8823 instr->op == nir_texop_fragment_mask_fetch) {
8824 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8825 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8826 tex->operands[0] = Operand(resource);
8827 tex->operands[1] = Operand(s4); /* no sampler */
8828 tex->operands[2] = Operand(arg);
8829 tex->dim = dim;
8830 tex->dmask = dmask;
8831 tex->unrm = true;
8832 tex->da = da;
8833 tex->definitions[0] = Definition(tmp_dst);
8834 tex->can_reorder = true;
8835 ctx->block->instructions.emplace_back(std::move(tex));
8836
8837 if (instr->op == nir_texop_samples_identical) {
8838 assert(dmask == 1 && dst.regClass() == v1);
8839 assert(dst.id() != tmp_dst.id());
8840
8841 Temp tmp = bld.tmp(bld.lm);
8842 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8843 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8844
8845 } else {
8846 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8847 }
8848 return;
8849 }
8850
8851 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8852 aco_opcode opcode = aco_opcode::image_sample;
8853 if (has_offset) { /* image_sample_*_o */
8854 if (has_clamped_lod) {
8855 if (has_compare) {
8856 opcode = aco_opcode::image_sample_c_cl_o;
8857 if (has_derivs)
8858 opcode = aco_opcode::image_sample_c_d_cl_o;
8859 if (has_bias)
8860 opcode = aco_opcode::image_sample_c_b_cl_o;
8861 } else {
8862 opcode = aco_opcode::image_sample_cl_o;
8863 if (has_derivs)
8864 opcode = aco_opcode::image_sample_d_cl_o;
8865 if (has_bias)
8866 opcode = aco_opcode::image_sample_b_cl_o;
8867 }
8868 } else if (has_compare) {
8869 opcode = aco_opcode::image_sample_c_o;
8870 if (has_derivs)
8871 opcode = aco_opcode::image_sample_c_d_o;
8872 if (has_bias)
8873 opcode = aco_opcode::image_sample_c_b_o;
8874 if (level_zero)
8875 opcode = aco_opcode::image_sample_c_lz_o;
8876 if (has_lod)
8877 opcode = aco_opcode::image_sample_c_l_o;
8878 } else {
8879 opcode = aco_opcode::image_sample_o;
8880 if (has_derivs)
8881 opcode = aco_opcode::image_sample_d_o;
8882 if (has_bias)
8883 opcode = aco_opcode::image_sample_b_o;
8884 if (level_zero)
8885 opcode = aco_opcode::image_sample_lz_o;
8886 if (has_lod)
8887 opcode = aco_opcode::image_sample_l_o;
8888 }
8889 } else if (has_clamped_lod) { /* image_sample_*_cl */
8890 if (has_compare) {
8891 opcode = aco_opcode::image_sample_c_cl;
8892 if (has_derivs)
8893 opcode = aco_opcode::image_sample_c_d_cl;
8894 if (has_bias)
8895 opcode = aco_opcode::image_sample_c_b_cl;
8896 } else {
8897 opcode = aco_opcode::image_sample_cl;
8898 if (has_derivs)
8899 opcode = aco_opcode::image_sample_d_cl;
8900 if (has_bias)
8901 opcode = aco_opcode::image_sample_b_cl;
8902 }
8903 } else { /* no offset */
8904 if (has_compare) {
8905 opcode = aco_opcode::image_sample_c;
8906 if (has_derivs)
8907 opcode = aco_opcode::image_sample_c_d;
8908 if (has_bias)
8909 opcode = aco_opcode::image_sample_c_b;
8910 if (level_zero)
8911 opcode = aco_opcode::image_sample_c_lz;
8912 if (has_lod)
8913 opcode = aco_opcode::image_sample_c_l;
8914 } else {
8915 opcode = aco_opcode::image_sample;
8916 if (has_derivs)
8917 opcode = aco_opcode::image_sample_d;
8918 if (has_bias)
8919 opcode = aco_opcode::image_sample_b;
8920 if (level_zero)
8921 opcode = aco_opcode::image_sample_lz;
8922 if (has_lod)
8923 opcode = aco_opcode::image_sample_l;
8924 }
8925 }
8926
8927 if (instr->op == nir_texop_tg4) {
8928 if (has_offset) { /* image_gather4_*_o */
8929 if (has_compare) {
8930 opcode = aco_opcode::image_gather4_c_lz_o;
8931 if (has_lod)
8932 opcode = aco_opcode::image_gather4_c_l_o;
8933 if (has_bias)
8934 opcode = aco_opcode::image_gather4_c_b_o;
8935 } else {
8936 opcode = aco_opcode::image_gather4_lz_o;
8937 if (has_lod)
8938 opcode = aco_opcode::image_gather4_l_o;
8939 if (has_bias)
8940 opcode = aco_opcode::image_gather4_b_o;
8941 }
8942 } else {
8943 if (has_compare) {
8944 opcode = aco_opcode::image_gather4_c_lz;
8945 if (has_lod)
8946 opcode = aco_opcode::image_gather4_c_l;
8947 if (has_bias)
8948 opcode = aco_opcode::image_gather4_c_b;
8949 } else {
8950 opcode = aco_opcode::image_gather4_lz;
8951 if (has_lod)
8952 opcode = aco_opcode::image_gather4_l;
8953 if (has_bias)
8954 opcode = aco_opcode::image_gather4_b;
8955 }
8956 }
8957 } else if (instr->op == nir_texop_lod) {
8958 opcode = aco_opcode::image_get_lod;
8959 }
8960
8961 /* we don't need the bias, sample index, compare value or offset to be
8962 * computed in WQM but if the p_create_vector copies the coordinates, then it
8963 * needs to be in WQM */
8964 if (ctx->stage == fragment_fs &&
8965 !has_derivs && !has_lod && !level_zero &&
8966 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8967 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8968 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8969
8970 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8971 tex->operands[0] = Operand(resource);
8972 tex->operands[1] = Operand(sampler);
8973 tex->operands[2] = Operand(arg);
8974 tex->dim = dim;
8975 tex->dmask = dmask;
8976 tex->da = da;
8977 tex->definitions[0] = Definition(tmp_dst);
8978 tex->can_reorder = true;
8979 ctx->block->instructions.emplace_back(std::move(tex));
8980
8981 if (tg4_integer_cube_workaround) {
8982 assert(tmp_dst.id() != dst.id());
8983 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8984
8985 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8986 Temp val[4];
8987 for (unsigned i = 0; i < dst.size(); i++) {
8988 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8989 Temp cvt_val;
8990 if (stype == GLSL_TYPE_UINT)
8991 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8992 else
8993 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8994 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8995 }
8996 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8997 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8998 val[0], val[1], val[2], val[3]);
8999 }
9000 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
9001 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
9002
9003 }
9004
9005
9006 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
9007 {
9008 Temp tmp = get_ssa_temp(ctx, ssa);
9009 if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
9010 return Operand(rc);
9011 } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
9012 if (ctx->program->wave_size == 64)
9013 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
9014 else
9015 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
9016 } else {
9017 return Operand(tmp);
9018 }
9019 }
9020
9021 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
9022 {
9023 aco_ptr<Pseudo_instruction> phi;
9024 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
9025 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
9026
9027 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
9028 logical |= ctx->block->kind & block_kind_merge;
9029 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
9030
9031 /* we want a sorted list of sources, since the predecessor list is also sorted */
9032 std::map<unsigned, nir_ssa_def*> phi_src;
9033 nir_foreach_phi_src(src, instr)
9034 phi_src[src->pred->index] = src->src.ssa;
9035
9036 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
9037 unsigned num_operands = 0;
9038 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
9039 unsigned num_defined = 0;
9040 unsigned cur_pred_idx = 0;
9041 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
9042 if (cur_pred_idx < preds.size()) {
9043 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
9044 unsigned block = ctx->cf_info.nir_to_aco[src.first];
9045 unsigned skipped = 0;
9046 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
9047 skipped++;
9048 if (cur_pred_idx + skipped < preds.size()) {
9049 for (unsigned i = 0; i < skipped; i++)
9050 operands[num_operands++] = Operand(dst.regClass());
9051 cur_pred_idx += skipped;
9052 } else {
9053 continue;
9054 }
9055 }
9056 /* Handle missing predecessors at the end. This shouldn't happen with loop
9057 * headers and we can't ignore these sources for loop header phis. */
9058 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
9059 continue;
9060 cur_pred_idx++;
9061 Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
9062 operands[num_operands++] = op;
9063 num_defined += !op.isUndefined();
9064 }
9065 /* handle block_kind_continue_or_break at loop exit blocks */
9066 while (cur_pred_idx++ < preds.size())
9067 operands[num_operands++] = Operand(dst.regClass());
9068
9069 /* If the loop ends with a break, still add a linear continue edge in case
9070 * that break is divergent or continue_or_break is used. We'll either remove
9071 * this operand later in visit_loop() if it's not necessary or replace the
9072 * undef with something correct. */
9073 if (!logical && ctx->block->kind & block_kind_loop_header) {
9074 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
9075 nir_block *last = nir_loop_last_block(loop);
9076 if (last->successors[0] != instr->instr.block)
9077 operands[num_operands++] = Operand(RegClass());
9078 }
9079
9080 if (num_defined == 0) {
9081 Builder bld(ctx->program, ctx->block);
9082 if (dst.regClass() == s1) {
9083 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
9084 } else if (dst.regClass() == v1) {
9085 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
9086 } else {
9087 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9088 for (unsigned i = 0; i < dst.size(); i++)
9089 vec->operands[i] = Operand(0u);
9090 vec->definitions[0] = Definition(dst);
9091 ctx->block->instructions.emplace_back(std::move(vec));
9092 }
9093 return;
9094 }
9095
9096 /* we can use a linear phi in some cases if one src is undef */
9097 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
9098 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
9099
9100 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
9101 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
9102 assert(invert->kind & block_kind_invert);
9103
9104 unsigned then_block = invert->linear_preds[0];
9105
9106 Block* insert_block = NULL;
9107 for (unsigned i = 0; i < num_operands; i++) {
9108 Operand op = operands[i];
9109 if (op.isUndefined())
9110 continue;
9111 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
9112 phi->operands[0] = op;
9113 break;
9114 }
9115 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
9116 phi->operands[1] = Operand(dst.regClass());
9117 phi->definitions[0] = Definition(dst);
9118 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
9119 return;
9120 }
9121
9122 /* try to scalarize vector phis */
9123 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
9124 // TODO: scalarize linear phis on divergent ifs
9125 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
9126 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
9127 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
9128 Operand src = operands[i];
9129 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
9130 can_scalarize = false;
9131 }
9132 if (can_scalarize) {
9133 unsigned num_components = instr->dest.ssa.num_components;
9134 assert(dst.size() % num_components == 0);
9135 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
9136
9137 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9138 for (unsigned k = 0; k < num_components; k++) {
9139 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9140 for (unsigned i = 0; i < num_operands; i++) {
9141 Operand src = operands[i];
9142 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9143 }
9144 Temp phi_dst = {ctx->program->allocateId(), rc};
9145 phi->definitions[0] = Definition(phi_dst);
9146 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9147 new_vec[k] = phi_dst;
9148 vec->operands[k] = Operand(phi_dst);
9149 }
9150 vec->definitions[0] = Definition(dst);
9151 ctx->block->instructions.emplace_back(std::move(vec));
9152 ctx->allocated_vec.emplace(dst.id(), new_vec);
9153 return;
9154 }
9155 }
9156
9157 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9158 for (unsigned i = 0; i < num_operands; i++)
9159 phi->operands[i] = operands[i];
9160 phi->definitions[0] = Definition(dst);
9161 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9162 }
9163
9164
9165 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9166 {
9167 Temp dst = get_ssa_temp(ctx, &instr->def);
9168
9169 assert(dst.type() == RegType::sgpr);
9170
9171 if (dst.size() == 1) {
9172 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9173 } else {
9174 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9175 for (unsigned i = 0; i < dst.size(); i++)
9176 vec->operands[i] = Operand(0u);
9177 vec->definitions[0] = Definition(dst);
9178 ctx->block->instructions.emplace_back(std::move(vec));
9179 }
9180 }
9181
9182 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9183 {
9184 Builder bld(ctx->program, ctx->block);
9185 Block *logical_target;
9186 append_logical_end(ctx->block);
9187 unsigned idx = ctx->block->index;
9188
9189 switch (instr->type) {
9190 case nir_jump_break:
9191 logical_target = ctx->cf_info.parent_loop.exit;
9192 add_logical_edge(idx, logical_target);
9193 ctx->block->kind |= block_kind_break;
9194
9195 if (!ctx->cf_info.parent_if.is_divergent &&
9196 !ctx->cf_info.parent_loop.has_divergent_continue) {
9197 /* uniform break - directly jump out of the loop */
9198 ctx->block->kind |= block_kind_uniform;
9199 ctx->cf_info.has_branch = true;
9200 bld.branch(aco_opcode::p_branch);
9201 add_linear_edge(idx, logical_target);
9202 return;
9203 }
9204 ctx->cf_info.parent_loop.has_divergent_branch = true;
9205 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9206 break;
9207 case nir_jump_continue:
9208 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9209 add_logical_edge(idx, logical_target);
9210 ctx->block->kind |= block_kind_continue;
9211
9212 if (ctx->cf_info.parent_if.is_divergent) {
9213 /* for potential uniform breaks after this continue,
9214 we must ensure that they are handled correctly */
9215 ctx->cf_info.parent_loop.has_divergent_continue = true;
9216 ctx->cf_info.parent_loop.has_divergent_branch = true;
9217 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9218 } else {
9219 /* uniform continue - directly jump to the loop header */
9220 ctx->block->kind |= block_kind_uniform;
9221 ctx->cf_info.has_branch = true;
9222 bld.branch(aco_opcode::p_branch);
9223 add_linear_edge(idx, logical_target);
9224 return;
9225 }
9226 break;
9227 default:
9228 fprintf(stderr, "Unknown NIR jump instr: ");
9229 nir_print_instr(&instr->instr, stderr);
9230 fprintf(stderr, "\n");
9231 abort();
9232 }
9233
9234 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9235 ctx->cf_info.exec_potentially_empty_break = true;
9236 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9237 }
9238
9239 /* remove critical edges from linear CFG */
9240 bld.branch(aco_opcode::p_branch);
9241 Block* break_block = ctx->program->create_and_insert_block();
9242 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9243 break_block->kind |= block_kind_uniform;
9244 add_linear_edge(idx, break_block);
9245 /* the loop_header pointer might be invalidated by this point */
9246 if (instr->type == nir_jump_continue)
9247 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9248 add_linear_edge(break_block->index, logical_target);
9249 bld.reset(break_block);
9250 bld.branch(aco_opcode::p_branch);
9251
9252 Block* continue_block = ctx->program->create_and_insert_block();
9253 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9254 add_linear_edge(idx, continue_block);
9255 append_logical_start(continue_block);
9256 ctx->block = continue_block;
9257 return;
9258 }
9259
9260 void visit_block(isel_context *ctx, nir_block *block)
9261 {
9262 nir_foreach_instr(instr, block) {
9263 switch (instr->type) {
9264 case nir_instr_type_alu:
9265 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9266 break;
9267 case nir_instr_type_load_const:
9268 visit_load_const(ctx, nir_instr_as_load_const(instr));
9269 break;
9270 case nir_instr_type_intrinsic:
9271 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9272 break;
9273 case nir_instr_type_tex:
9274 visit_tex(ctx, nir_instr_as_tex(instr));
9275 break;
9276 case nir_instr_type_phi:
9277 visit_phi(ctx, nir_instr_as_phi(instr));
9278 break;
9279 case nir_instr_type_ssa_undef:
9280 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9281 break;
9282 case nir_instr_type_deref:
9283 break;
9284 case nir_instr_type_jump:
9285 visit_jump(ctx, nir_instr_as_jump(instr));
9286 break;
9287 default:
9288 fprintf(stderr, "Unknown NIR instr type: ");
9289 nir_print_instr(instr, stderr);
9290 fprintf(stderr, "\n");
9291 //abort();
9292 }
9293 }
9294
9295 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9296 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9297 }
9298
9299
9300
9301 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9302 aco_ptr<Instruction>& header_phi, Operand *vals)
9303 {
9304 vals[0] = Operand(header_phi->definitions[0].getTemp());
9305 RegClass rc = vals[0].regClass();
9306
9307 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9308
9309 unsigned next_pred = 1;
9310
9311 for (unsigned idx = first + 1; idx <= last; idx++) {
9312 Block& block = ctx->program->blocks[idx];
9313 if (block.loop_nest_depth != loop_nest_depth) {
9314 vals[idx - first] = vals[idx - 1 - first];
9315 continue;
9316 }
9317
9318 if (block.kind & block_kind_continue) {
9319 vals[idx - first] = header_phi->operands[next_pred];
9320 next_pred++;
9321 continue;
9322 }
9323
9324 bool all_same = true;
9325 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9326 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9327
9328 Operand val;
9329 if (all_same) {
9330 val = vals[block.linear_preds[0] - first];
9331 } else {
9332 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9333 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9334 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9335 phi->operands[i] = vals[block.linear_preds[i] - first];
9336 val = Operand(Temp(ctx->program->allocateId(), rc));
9337 phi->definitions[0] = Definition(val.getTemp());
9338 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9339 }
9340 vals[idx - first] = val;
9341 }
9342
9343 return vals[last - first];
9344 }
9345
9346 static void visit_loop(isel_context *ctx, nir_loop *loop)
9347 {
9348 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9349 append_logical_end(ctx->block);
9350 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9351 Builder bld(ctx->program, ctx->block);
9352 bld.branch(aco_opcode::p_branch);
9353 unsigned loop_preheader_idx = ctx->block->index;
9354
9355 Block loop_exit = Block();
9356 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9357 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9358
9359 Block* loop_header = ctx->program->create_and_insert_block();
9360 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9361 loop_header->kind |= block_kind_loop_header;
9362 add_edge(loop_preheader_idx, loop_header);
9363 ctx->block = loop_header;
9364
9365 /* emit loop body */
9366 unsigned loop_header_idx = loop_header->index;
9367 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9368 append_logical_start(ctx->block);
9369 bool unreachable = visit_cf_list(ctx, &loop->body);
9370
9371 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9372 if (!ctx->cf_info.has_branch) {
9373 append_logical_end(ctx->block);
9374 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9375 /* Discards can result in code running with an empty exec mask.
9376 * This would result in divergent breaks not ever being taken. As a
9377 * workaround, break the loop when the loop mask is empty instead of
9378 * always continuing. */
9379 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9380 unsigned block_idx = ctx->block->index;
9381
9382 /* create helper blocks to avoid critical edges */
9383 Block *break_block = ctx->program->create_and_insert_block();
9384 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9385 break_block->kind = block_kind_uniform;
9386 bld.reset(break_block);
9387 bld.branch(aco_opcode::p_branch);
9388 add_linear_edge(block_idx, break_block);
9389 add_linear_edge(break_block->index, &loop_exit);
9390
9391 Block *continue_block = ctx->program->create_and_insert_block();
9392 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9393 continue_block->kind = block_kind_uniform;
9394 bld.reset(continue_block);
9395 bld.branch(aco_opcode::p_branch);
9396 add_linear_edge(block_idx, continue_block);
9397 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9398
9399 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9400 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9401 ctx->block = &ctx->program->blocks[block_idx];
9402 } else {
9403 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9404 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9405 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9406 else
9407 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9408 }
9409
9410 bld.reset(ctx->block);
9411 bld.branch(aco_opcode::p_branch);
9412 }
9413
9414 /* Fixup phis in loop header from unreachable blocks.
9415 * has_branch/has_divergent_branch also indicates if the loop ends with a
9416 * break/continue instruction, but we don't emit those if unreachable=true */
9417 if (unreachable) {
9418 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9419 bool linear = ctx->cf_info.has_branch;
9420 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9421 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9422 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9423 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9424 /* the last operand should be the one that needs to be removed */
9425 instr->operands.pop_back();
9426 } else if (!is_phi(instr)) {
9427 break;
9428 }
9429 }
9430 }
9431
9432 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9433 * and the previous one shouldn't both happen at once because a break in the
9434 * merge block would get CSE'd */
9435 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9436 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9437 Operand vals[num_vals];
9438 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9439 if (instr->opcode == aco_opcode::p_linear_phi) {
9440 if (ctx->cf_info.has_branch)
9441 instr->operands.pop_back();
9442 else
9443 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9444 } else if (!is_phi(instr)) {
9445 break;
9446 }
9447 }
9448 }
9449
9450 ctx->cf_info.has_branch = false;
9451
9452 // TODO: if the loop has not a single exit, we must add one °°
9453 /* emit loop successor block */
9454 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9455 append_logical_start(ctx->block);
9456
9457 #if 0
9458 // TODO: check if it is beneficial to not branch on continues
9459 /* trim linear phis in loop header */
9460 for (auto&& instr : loop_entry->instructions) {
9461 if (instr->opcode == aco_opcode::p_linear_phi) {
9462 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9463 new_phi->definitions[0] = instr->definitions[0];
9464 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9465 new_phi->operands[i] = instr->operands[i];
9466 /* check that the remaining operands are all the same */
9467 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9468 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9469 instr.swap(new_phi);
9470 } else if (instr->opcode == aco_opcode::p_phi) {
9471 continue;
9472 } else {
9473 break;
9474 }
9475 }
9476 #endif
9477 }
9478
9479 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9480 {
9481 ic->cond = cond;
9482
9483 append_logical_end(ctx->block);
9484 ctx->block->kind |= block_kind_branch;
9485
9486 /* branch to linear then block */
9487 assert(cond.regClass() == ctx->program->lane_mask);
9488 aco_ptr<Pseudo_branch_instruction> branch;
9489 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9490 branch->operands[0] = Operand(cond);
9491 ctx->block->instructions.push_back(std::move(branch));
9492
9493 ic->BB_if_idx = ctx->block->index;
9494 ic->BB_invert = Block();
9495 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9496 /* Invert blocks are intentionally not marked as top level because they
9497 * are not part of the logical cfg. */
9498 ic->BB_invert.kind |= block_kind_invert;
9499 ic->BB_endif = Block();
9500 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9501 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9502
9503 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9504 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9505 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9506 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9507 ctx->cf_info.parent_if.is_divergent = true;
9508
9509 /* divergent branches use cbranch_execz */
9510 ctx->cf_info.exec_potentially_empty_discard = false;
9511 ctx->cf_info.exec_potentially_empty_break = false;
9512 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9513
9514 /** emit logical then block */
9515 Block* BB_then_logical = ctx->program->create_and_insert_block();
9516 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9517 add_edge(ic->BB_if_idx, BB_then_logical);
9518 ctx->block = BB_then_logical;
9519 append_logical_start(BB_then_logical);
9520 }
9521
9522 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9523 {
9524 Block *BB_then_logical = ctx->block;
9525 append_logical_end(BB_then_logical);
9526 /* branch from logical then block to invert block */
9527 aco_ptr<Pseudo_branch_instruction> branch;
9528 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9529 BB_then_logical->instructions.emplace_back(std::move(branch));
9530 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9531 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9532 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9533 BB_then_logical->kind |= block_kind_uniform;
9534 assert(!ctx->cf_info.has_branch);
9535 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9536 ctx->cf_info.parent_loop.has_divergent_branch = false;
9537
9538 /** emit linear then block */
9539 Block* BB_then_linear = ctx->program->create_and_insert_block();
9540 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9541 BB_then_linear->kind |= block_kind_uniform;
9542 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9543 /* branch from linear then block to invert block */
9544 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9545 BB_then_linear->instructions.emplace_back(std::move(branch));
9546 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9547
9548 /** emit invert merge block */
9549 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9550 ic->invert_idx = ctx->block->index;
9551
9552 /* branch to linear else block (skip else) */
9553 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9554 branch->operands[0] = Operand(ic->cond);
9555 ctx->block->instructions.push_back(std::move(branch));
9556
9557 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9558 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9559 ic->exec_potentially_empty_break_depth_old =
9560 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9561 /* divergent branches use cbranch_execz */
9562 ctx->cf_info.exec_potentially_empty_discard = false;
9563 ctx->cf_info.exec_potentially_empty_break = false;
9564 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9565
9566 /** emit logical else block */
9567 Block* BB_else_logical = ctx->program->create_and_insert_block();
9568 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9569 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9570 add_linear_edge(ic->invert_idx, BB_else_logical);
9571 ctx->block = BB_else_logical;
9572 append_logical_start(BB_else_logical);
9573 }
9574
9575 static void end_divergent_if(isel_context *ctx, if_context *ic)
9576 {
9577 Block *BB_else_logical = ctx->block;
9578 append_logical_end(BB_else_logical);
9579
9580 /* branch from logical else block to endif block */
9581 aco_ptr<Pseudo_branch_instruction> branch;
9582 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9583 BB_else_logical->instructions.emplace_back(std::move(branch));
9584 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9585 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9586 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9587 BB_else_logical->kind |= block_kind_uniform;
9588
9589 assert(!ctx->cf_info.has_branch);
9590 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9591
9592
9593 /** emit linear else block */
9594 Block* BB_else_linear = ctx->program->create_and_insert_block();
9595 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9596 BB_else_linear->kind |= block_kind_uniform;
9597 add_linear_edge(ic->invert_idx, BB_else_linear);
9598
9599 /* branch from linear else block to endif block */
9600 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9601 BB_else_linear->instructions.emplace_back(std::move(branch));
9602 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9603
9604
9605 /** emit endif merge block */
9606 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9607 append_logical_start(ctx->block);
9608
9609
9610 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9611 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9612 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9613 ctx->cf_info.exec_potentially_empty_break_depth =
9614 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9615 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9616 !ctx->cf_info.parent_if.is_divergent) {
9617 ctx->cf_info.exec_potentially_empty_break = false;
9618 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9619 }
9620 /* uniform control flow never has an empty exec-mask */
9621 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9622 ctx->cf_info.exec_potentially_empty_discard = false;
9623 ctx->cf_info.exec_potentially_empty_break = false;
9624 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9625 }
9626 }
9627
9628 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9629 {
9630 assert(cond.regClass() == s1);
9631
9632 append_logical_end(ctx->block);
9633 ctx->block->kind |= block_kind_uniform;
9634
9635 aco_ptr<Pseudo_branch_instruction> branch;
9636 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9637 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9638 branch->operands[0] = Operand(cond);
9639 branch->operands[0].setFixed(scc);
9640 ctx->block->instructions.emplace_back(std::move(branch));
9641
9642 ic->BB_if_idx = ctx->block->index;
9643 ic->BB_endif = Block();
9644 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9645 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9646
9647 ctx->cf_info.has_branch = false;
9648 ctx->cf_info.parent_loop.has_divergent_branch = false;
9649
9650 /** emit then block */
9651 Block* BB_then = ctx->program->create_and_insert_block();
9652 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9653 add_edge(ic->BB_if_idx, BB_then);
9654 append_logical_start(BB_then);
9655 ctx->block = BB_then;
9656 }
9657
9658 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9659 {
9660 Block *BB_then = ctx->block;
9661
9662 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9663 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9664
9665 if (!ic->uniform_has_then_branch) {
9666 append_logical_end(BB_then);
9667 /* branch from then block to endif block */
9668 aco_ptr<Pseudo_branch_instruction> branch;
9669 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9670 BB_then->instructions.emplace_back(std::move(branch));
9671 add_linear_edge(BB_then->index, &ic->BB_endif);
9672 if (!ic->then_branch_divergent)
9673 add_logical_edge(BB_then->index, &ic->BB_endif);
9674 BB_then->kind |= block_kind_uniform;
9675 }
9676
9677 ctx->cf_info.has_branch = false;
9678 ctx->cf_info.parent_loop.has_divergent_branch = false;
9679
9680 /** emit else block */
9681 Block* BB_else = ctx->program->create_and_insert_block();
9682 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9683 add_edge(ic->BB_if_idx, BB_else);
9684 append_logical_start(BB_else);
9685 ctx->block = BB_else;
9686 }
9687
9688 static void end_uniform_if(isel_context *ctx, if_context *ic)
9689 {
9690 Block *BB_else = ctx->block;
9691
9692 if (!ctx->cf_info.has_branch) {
9693 append_logical_end(BB_else);
9694 /* branch from then block to endif block */
9695 aco_ptr<Pseudo_branch_instruction> branch;
9696 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9697 BB_else->instructions.emplace_back(std::move(branch));
9698 add_linear_edge(BB_else->index, &ic->BB_endif);
9699 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9700 add_logical_edge(BB_else->index, &ic->BB_endif);
9701 BB_else->kind |= block_kind_uniform;
9702 }
9703
9704 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9705 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9706
9707 /** emit endif merge block */
9708 if (!ctx->cf_info.has_branch) {
9709 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9710 append_logical_start(ctx->block);
9711 }
9712 }
9713
9714 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9715 {
9716 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9717 Builder bld(ctx->program, ctx->block);
9718 aco_ptr<Pseudo_branch_instruction> branch;
9719 if_context ic;
9720
9721 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
9722 /**
9723 * Uniform conditionals are represented in the following way*) :
9724 *
9725 * The linear and logical CFG:
9726 * BB_IF
9727 * / \
9728 * BB_THEN (logical) BB_ELSE (logical)
9729 * \ /
9730 * BB_ENDIF
9731 *
9732 * *) Exceptions may be due to break and continue statements within loops
9733 * If a break/continue happens within uniform control flow, it branches
9734 * to the loop exit/entry block. Otherwise, it branches to the next
9735 * merge block.
9736 **/
9737
9738 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9739 assert(cond.regClass() == ctx->program->lane_mask);
9740 cond = bool_to_scalar_condition(ctx, cond);
9741
9742 begin_uniform_if_then(ctx, &ic, cond);
9743 visit_cf_list(ctx, &if_stmt->then_list);
9744
9745 begin_uniform_if_else(ctx, &ic);
9746 visit_cf_list(ctx, &if_stmt->else_list);
9747
9748 end_uniform_if(ctx, &ic);
9749 } else { /* non-uniform condition */
9750 /**
9751 * To maintain a logical and linear CFG without critical edges,
9752 * non-uniform conditionals are represented in the following way*) :
9753 *
9754 * The linear CFG:
9755 * BB_IF
9756 * / \
9757 * BB_THEN (logical) BB_THEN (linear)
9758 * \ /
9759 * BB_INVERT (linear)
9760 * / \
9761 * BB_ELSE (logical) BB_ELSE (linear)
9762 * \ /
9763 * BB_ENDIF
9764 *
9765 * The logical CFG:
9766 * BB_IF
9767 * / \
9768 * BB_THEN (logical) BB_ELSE (logical)
9769 * \ /
9770 * BB_ENDIF
9771 *
9772 * *) Exceptions may be due to break and continue statements within loops
9773 **/
9774
9775 begin_divergent_if_then(ctx, &ic, cond);
9776 visit_cf_list(ctx, &if_stmt->then_list);
9777
9778 begin_divergent_if_else(ctx, &ic);
9779 visit_cf_list(ctx, &if_stmt->else_list);
9780
9781 end_divergent_if(ctx, &ic);
9782 }
9783
9784 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9785 }
9786
9787 static bool visit_cf_list(isel_context *ctx,
9788 struct exec_list *list)
9789 {
9790 foreach_list_typed(nir_cf_node, node, node, list) {
9791 switch (node->type) {
9792 case nir_cf_node_block:
9793 visit_block(ctx, nir_cf_node_as_block(node));
9794 break;
9795 case nir_cf_node_if:
9796 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9797 return true;
9798 break;
9799 case nir_cf_node_loop:
9800 visit_loop(ctx, nir_cf_node_as_loop(node));
9801 break;
9802 default:
9803 unreachable("unimplemented cf list type");
9804 }
9805 }
9806 return false;
9807 }
9808
9809 static void create_null_export(isel_context *ctx)
9810 {
9811 /* Some shader stages always need to have exports.
9812 * So when there is none, we need to add a null export.
9813 */
9814
9815 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9816 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9817 Builder bld(ctx->program, ctx->block);
9818 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9819 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9820 }
9821
9822 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9823 {
9824 assert(ctx->stage == vertex_vs ||
9825 ctx->stage == tess_eval_vs ||
9826 ctx->stage == gs_copy_vs ||
9827 ctx->stage == ngg_vertex_gs ||
9828 ctx->stage == ngg_tess_eval_gs);
9829
9830 int offset = (ctx->stage & sw_tes)
9831 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9832 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9833 uint64_t mask = ctx->outputs.mask[slot];
9834 if (!is_pos && !mask)
9835 return false;
9836 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9837 return false;
9838 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9839 exp->enabled_mask = mask;
9840 for (unsigned i = 0; i < 4; ++i) {
9841 if (mask & (1 << i))
9842 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9843 else
9844 exp->operands[i] = Operand(v1);
9845 }
9846 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9847 * Setting valid_mask=1 prevents it and has no other effect.
9848 */
9849 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9850 exp->done = false;
9851 exp->compressed = false;
9852 if (is_pos)
9853 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9854 else
9855 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9856 ctx->block->instructions.emplace_back(std::move(exp));
9857
9858 return true;
9859 }
9860
9861 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9862 {
9863 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9864 exp->enabled_mask = 0;
9865 for (unsigned i = 0; i < 4; ++i)
9866 exp->operands[i] = Operand(v1);
9867 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9868 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9869 exp->enabled_mask |= 0x1;
9870 }
9871 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9872 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9873 exp->enabled_mask |= 0x4;
9874 }
9875 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9876 if (ctx->options->chip_class < GFX9) {
9877 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9878 exp->enabled_mask |= 0x8;
9879 } else {
9880 Builder bld(ctx->program, ctx->block);
9881
9882 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9883 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9884 if (exp->operands[2].isTemp())
9885 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9886
9887 exp->operands[2] = Operand(out);
9888 exp->enabled_mask |= 0x4;
9889 }
9890 }
9891 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9892 exp->done = false;
9893 exp->compressed = false;
9894 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9895 ctx->block->instructions.emplace_back(std::move(exp));
9896 }
9897
9898 static void create_export_phis(isel_context *ctx)
9899 {
9900 /* Used when exports are needed, but the output temps are defined in a preceding block.
9901 * This function will set up phis in order to access the outputs in the next block.
9902 */
9903
9904 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9905 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9906 ctx->block->instructions.pop_back();
9907
9908 Builder bld(ctx->program, ctx->block);
9909
9910 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9911 uint64_t mask = ctx->outputs.mask[slot];
9912 for (unsigned i = 0; i < 4; ++i) {
9913 if (!(mask & (1 << i)))
9914 continue;
9915
9916 Temp old = ctx->outputs.temps[slot * 4 + i];
9917 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9918 ctx->outputs.temps[slot * 4 + i] = phi;
9919 }
9920 }
9921
9922 bld.insert(std::move(logical_start));
9923 }
9924
9925 static void create_vs_exports(isel_context *ctx)
9926 {
9927 assert(ctx->stage == vertex_vs ||
9928 ctx->stage == tess_eval_vs ||
9929 ctx->stage == gs_copy_vs ||
9930 ctx->stage == ngg_vertex_gs ||
9931 ctx->stage == ngg_tess_eval_gs);
9932
9933 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9934 ? &ctx->program->info->tes.outinfo
9935 : &ctx->program->info->vs.outinfo;
9936
9937 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9938 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9939 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9940 }
9941
9942 if (ctx->options->key.has_multiview_view_index) {
9943 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9944 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9945 }
9946
9947 /* the order these position exports are created is important */
9948 int next_pos = 0;
9949 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9950 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9951 export_vs_psiz_layer_viewport(ctx, &next_pos);
9952 exported_pos = true;
9953 }
9954 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9955 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9956 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9957 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9958
9959 if (ctx->export_clip_dists) {
9960 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9961 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9962 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9963 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9964 }
9965
9966 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9967 if (i < VARYING_SLOT_VAR0 &&
9968 i != VARYING_SLOT_LAYER &&
9969 i != VARYING_SLOT_PRIMITIVE_ID &&
9970 i != VARYING_SLOT_VIEWPORT)
9971 continue;
9972
9973 export_vs_varying(ctx, i, false, NULL);
9974 }
9975
9976 if (!exported_pos)
9977 create_null_export(ctx);
9978 }
9979
9980 static bool export_fs_mrt_z(isel_context *ctx)
9981 {
9982 Builder bld(ctx->program, ctx->block);
9983 unsigned enabled_channels = 0;
9984 bool compr = false;
9985 Operand values[4];
9986
9987 for (unsigned i = 0; i < 4; ++i) {
9988 values[i] = Operand(v1);
9989 }
9990
9991 /* Both stencil and sample mask only need 16-bits. */
9992 if (!ctx->program->info->ps.writes_z &&
9993 (ctx->program->info->ps.writes_stencil ||
9994 ctx->program->info->ps.writes_sample_mask)) {
9995 compr = true; /* COMPR flag */
9996
9997 if (ctx->program->info->ps.writes_stencil) {
9998 /* Stencil should be in X[23:16]. */
9999 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10000 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
10001 enabled_channels |= 0x3;
10002 }
10003
10004 if (ctx->program->info->ps.writes_sample_mask) {
10005 /* SampleMask should be in Y[15:0]. */
10006 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10007 enabled_channels |= 0xc;
10008 }
10009 } else {
10010 if (ctx->program->info->ps.writes_z) {
10011 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
10012 enabled_channels |= 0x1;
10013 }
10014
10015 if (ctx->program->info->ps.writes_stencil) {
10016 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10017 enabled_channels |= 0x2;
10018 }
10019
10020 if (ctx->program->info->ps.writes_sample_mask) {
10021 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10022 enabled_channels |= 0x4;
10023 }
10024 }
10025
10026 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
10027 * writemask component.
10028 */
10029 if (ctx->options->chip_class == GFX6 &&
10030 ctx->options->family != CHIP_OLAND &&
10031 ctx->options->family != CHIP_HAINAN) {
10032 enabled_channels |= 0x1;
10033 }
10034
10035 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10036 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
10037
10038 return true;
10039 }
10040
10041 static bool export_fs_mrt_color(isel_context *ctx, int slot)
10042 {
10043 Builder bld(ctx->program, ctx->block);
10044 unsigned write_mask = ctx->outputs.mask[slot];
10045 Operand values[4];
10046
10047 for (unsigned i = 0; i < 4; ++i) {
10048 if (write_mask & (1 << i)) {
10049 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
10050 } else {
10051 values[i] = Operand(v1);
10052 }
10053 }
10054
10055 unsigned target, col_format;
10056 unsigned enabled_channels = 0;
10057 aco_opcode compr_op = (aco_opcode)0;
10058
10059 slot -= FRAG_RESULT_DATA0;
10060 target = V_008DFC_SQ_EXP_MRT + slot;
10061 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
10062
10063 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
10064 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
10065 bool is_16bit = values[0].regClass() == v2b;
10066
10067 switch (col_format)
10068 {
10069 case V_028714_SPI_SHADER_ZERO:
10070 enabled_channels = 0; /* writemask */
10071 target = V_008DFC_SQ_EXP_NULL;
10072 break;
10073
10074 case V_028714_SPI_SHADER_32_R:
10075 enabled_channels = 1;
10076 break;
10077
10078 case V_028714_SPI_SHADER_32_GR:
10079 enabled_channels = 0x3;
10080 break;
10081
10082 case V_028714_SPI_SHADER_32_AR:
10083 if (ctx->options->chip_class >= GFX10) {
10084 /* Special case: on GFX10, the outputs are different for 32_AR */
10085 enabled_channels = 0x3;
10086 values[1] = values[3];
10087 values[3] = Operand(v1);
10088 } else {
10089 enabled_channels = 0x9;
10090 }
10091 break;
10092
10093 case V_028714_SPI_SHADER_FP16_ABGR:
10094 enabled_channels = 0x5;
10095 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
10096 if (is_16bit) {
10097 if (ctx->options->chip_class >= GFX9) {
10098 /* Pack the FP16 values together instead of converting them to
10099 * FP32 and back to FP16.
10100 * TODO: use p_create_vector and let the compiler optimizes.
10101 */
10102 compr_op = aco_opcode::v_pack_b32_f16;
10103 } else {
10104 for (unsigned i = 0; i < 4; i++) {
10105 if ((write_mask >> i) & 1)
10106 values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
10107 }
10108 }
10109 }
10110 break;
10111
10112 case V_028714_SPI_SHADER_UNORM16_ABGR:
10113 enabled_channels = 0x5;
10114 if (is_16bit && ctx->options->chip_class >= GFX9) {
10115 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
10116 } else {
10117 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
10118 }
10119 break;
10120
10121 case V_028714_SPI_SHADER_SNORM16_ABGR:
10122 enabled_channels = 0x5;
10123 if (is_16bit && ctx->options->chip_class >= GFX9) {
10124 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
10125 } else {
10126 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10127 }
10128 break;
10129
10130 case V_028714_SPI_SHADER_UINT16_ABGR: {
10131 enabled_channels = 0x5;
10132 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10133 if (is_int8 || is_int10) {
10134 /* clamp */
10135 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10136 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10137
10138 for (unsigned i = 0; i < 4; i++) {
10139 if ((write_mask >> i) & 1) {
10140 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10141 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10142 values[i]);
10143 }
10144 }
10145 } else if (is_16bit) {
10146 for (unsigned i = 0; i < 4; i++) {
10147 if ((write_mask >> i) & 1) {
10148 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10149 values[i] = Operand(tmp);
10150 }
10151 }
10152 }
10153 break;
10154 }
10155
10156 case V_028714_SPI_SHADER_SINT16_ABGR:
10157 enabled_channels = 0x5;
10158 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10159 if (is_int8 || is_int10) {
10160 /* clamp */
10161 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10162 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10163 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10164 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10165
10166 for (unsigned i = 0; i < 4; i++) {
10167 if ((write_mask >> i) & 1) {
10168 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10169 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10170 values[i]);
10171 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10172 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10173 values[i]);
10174 }
10175 }
10176 } else if (is_16bit) {
10177 for (unsigned i = 0; i < 4; i++) {
10178 if ((write_mask >> i) & 1) {
10179 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10180 values[i] = Operand(tmp);
10181 }
10182 }
10183 }
10184 break;
10185
10186 case V_028714_SPI_SHADER_32_ABGR:
10187 enabled_channels = 0xF;
10188 break;
10189
10190 default:
10191 break;
10192 }
10193
10194 if (target == V_008DFC_SQ_EXP_NULL)
10195 return false;
10196
10197 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10198 if (ctx->options->enable_mrt_output_nan_fixup &&
10199 !is_16bit &&
10200 (col_format == V_028714_SPI_SHADER_32_R ||
10201 col_format == V_028714_SPI_SHADER_32_GR ||
10202 col_format == V_028714_SPI_SHADER_32_AR ||
10203 col_format == V_028714_SPI_SHADER_32_ABGR ||
10204 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10205 for (int i = 0; i < 4; i++) {
10206 if (!(write_mask & (1 << i)))
10207 continue;
10208
10209 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10210 bld.hint_vcc(bld.def(bld.lm)), values[i],
10211 bld.copy(bld.def(v1), Operand(3u)));
10212 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10213 bld.copy(bld.def(v1), Operand(0u)), isnan);
10214 }
10215 }
10216
10217 if ((bool) compr_op) {
10218 for (int i = 0; i < 2; i++) {
10219 /* check if at least one of the values to be compressed is enabled */
10220 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10221 if (enabled) {
10222 enabled_channels |= enabled << (i*2);
10223 values[i] = bld.vop3(compr_op, bld.def(v1),
10224 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10225 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10226 } else {
10227 values[i] = Operand(v1);
10228 }
10229 }
10230 values[2] = Operand(v1);
10231 values[3] = Operand(v1);
10232 } else {
10233 for (int i = 0; i < 4; i++)
10234 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10235 }
10236
10237 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10238 enabled_channels, target, (bool) compr_op);
10239 return true;
10240 }
10241
10242 static void create_fs_exports(isel_context *ctx)
10243 {
10244 bool exported = false;
10245
10246 /* Export depth, stencil and sample mask. */
10247 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10248 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10249 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10250 exported |= export_fs_mrt_z(ctx);
10251
10252 /* Export all color render targets. */
10253 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10254 if (ctx->outputs.mask[i])
10255 exported |= export_fs_mrt_color(ctx, i);
10256
10257 if (!exported)
10258 create_null_export(ctx);
10259 }
10260
10261 static void write_tcs_tess_factors(isel_context *ctx)
10262 {
10263 unsigned outer_comps;
10264 unsigned inner_comps;
10265
10266 switch (ctx->args->options->key.tcs.primitive_mode) {
10267 case GL_ISOLINES:
10268 outer_comps = 2;
10269 inner_comps = 0;
10270 break;
10271 case GL_TRIANGLES:
10272 outer_comps = 3;
10273 inner_comps = 1;
10274 break;
10275 case GL_QUADS:
10276 outer_comps = 4;
10277 inner_comps = 2;
10278 break;
10279 default:
10280 return;
10281 }
10282
10283 Builder bld(ctx->program, ctx->block);
10284
10285 bld.barrier(aco_opcode::p_memory_barrier_shared);
10286 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10287 bld.sopp(aco_opcode::s_barrier);
10288
10289 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10290 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10291
10292 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10293 if_context ic_invocation_id_is_zero;
10294 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10295 bld.reset(ctx->block);
10296
10297 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10298
10299 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10300 unsigned stride = inner_comps + outer_comps;
10301 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10302 Temp tf_inner_vec;
10303 Temp tf_outer_vec;
10304 Temp out[6];
10305 assert(stride <= (sizeof(out) / sizeof(Temp)));
10306
10307 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10308 // LINES reversal
10309 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10310 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10311 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10312 } else {
10313 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10314 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10315
10316 for (unsigned i = 0; i < outer_comps; ++i)
10317 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10318 for (unsigned i = 0; i < inner_comps; ++i)
10319 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10320 }
10321
10322 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10323 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10324 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10325 unsigned tf_const_offset = 0;
10326
10327 if (ctx->program->chip_class <= GFX8) {
10328 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10329 if_context ic_rel_patch_id_is_zero;
10330 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10331 bld.reset(ctx->block);
10332
10333 /* Store the dynamic HS control word. */
10334 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10335 bld.mubuf(aco_opcode::buffer_store_dword,
10336 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10337 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10338 /* disable_wqm */ false, /* glc */ true);
10339 tf_const_offset += 4;
10340
10341 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10342 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10343 bld.reset(ctx->block);
10344 }
10345
10346 assert(stride == 2 || stride == 4 || stride == 6);
10347 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10348 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10349
10350 /* Store to offchip for TES to read - only if TES reads them */
10351 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10352 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10353 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10354
10355 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10356 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10357
10358 if (likely(inner_comps)) {
10359 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10360 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10361 }
10362 }
10363
10364 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10365 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10366 }
10367
10368 static void emit_stream_output(isel_context *ctx,
10369 Temp const *so_buffers,
10370 Temp const *so_write_offset,
10371 const struct radv_stream_output *output)
10372 {
10373 unsigned num_comps = util_bitcount(output->component_mask);
10374 unsigned writemask = (1 << num_comps) - 1;
10375 unsigned loc = output->location;
10376 unsigned buf = output->buffer;
10377
10378 assert(num_comps && num_comps <= 4);
10379 if (!num_comps || num_comps > 4)
10380 return;
10381
10382 unsigned start = ffs(output->component_mask) - 1;
10383
10384 Temp out[4];
10385 bool all_undef = true;
10386 assert(ctx->stage & hw_vs);
10387 for (unsigned i = 0; i < num_comps; i++) {
10388 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10389 all_undef = all_undef && !out[i].id();
10390 }
10391 if (all_undef)
10392 return;
10393
10394 while (writemask) {
10395 int start, count;
10396 u_bit_scan_consecutive_range(&writemask, &start, &count);
10397 if (count == 3 && ctx->options->chip_class == GFX6) {
10398 /* GFX6 doesn't support storing vec3, split it. */
10399 writemask |= 1u << (start + 2);
10400 count = 2;
10401 }
10402
10403 unsigned offset = output->offset + start * 4;
10404
10405 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10406 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10407 for (int i = 0; i < count; ++i)
10408 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10409 vec->definitions[0] = Definition(write_data);
10410 ctx->block->instructions.emplace_back(std::move(vec));
10411
10412 aco_opcode opcode;
10413 switch (count) {
10414 case 1:
10415 opcode = aco_opcode::buffer_store_dword;
10416 break;
10417 case 2:
10418 opcode = aco_opcode::buffer_store_dwordx2;
10419 break;
10420 case 3:
10421 opcode = aco_opcode::buffer_store_dwordx3;
10422 break;
10423 case 4:
10424 opcode = aco_opcode::buffer_store_dwordx4;
10425 break;
10426 default:
10427 unreachable("Unsupported dword count.");
10428 }
10429
10430 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10431 store->operands[0] = Operand(so_buffers[buf]);
10432 store->operands[1] = Operand(so_write_offset[buf]);
10433 store->operands[2] = Operand((uint32_t) 0);
10434 store->operands[3] = Operand(write_data);
10435 if (offset > 4095) {
10436 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10437 Builder bld(ctx->program, ctx->block);
10438 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10439 } else {
10440 store->offset = offset;
10441 }
10442 store->offen = true;
10443 store->glc = true;
10444 store->dlc = false;
10445 store->slc = true;
10446 store->can_reorder = true;
10447 ctx->block->instructions.emplace_back(std::move(store));
10448 }
10449 }
10450
10451 static void emit_streamout(isel_context *ctx, unsigned stream)
10452 {
10453 Builder bld(ctx->program, ctx->block);
10454
10455 Temp so_buffers[4];
10456 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10457 for (unsigned i = 0; i < 4; i++) {
10458 unsigned stride = ctx->program->info->so.strides[i];
10459 if (!stride)
10460 continue;
10461
10462 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10463 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10464 }
10465
10466 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10467 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10468
10469 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10470
10471 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10472
10473 if_context ic;
10474 begin_divergent_if_then(ctx, &ic, can_emit);
10475
10476 bld.reset(ctx->block);
10477
10478 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10479
10480 Temp so_write_offset[4];
10481
10482 for (unsigned i = 0; i < 4; i++) {
10483 unsigned stride = ctx->program->info->so.strides[i];
10484 if (!stride)
10485 continue;
10486
10487 if (stride == 1) {
10488 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10489 get_arg(ctx, ctx->args->streamout_write_idx),
10490 get_arg(ctx, ctx->args->streamout_offset[i]));
10491 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10492
10493 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10494 } else {
10495 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10496 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10497 get_arg(ctx, ctx->args->streamout_offset[i]));
10498 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10499 }
10500 }
10501
10502 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10503 struct radv_stream_output *output =
10504 &ctx->program->info->so.outputs[i];
10505 if (stream != output->stream)
10506 continue;
10507
10508 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10509 }
10510
10511 begin_divergent_if_else(ctx, &ic);
10512 end_divergent_if(ctx, &ic);
10513 }
10514
10515 } /* end namespace */
10516
10517 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10518 {
10519 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10520 Builder bld(ctx->program, ctx->block);
10521 constexpr unsigned hs_idx = 1u;
10522 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10523 get_arg(ctx, ctx->args->merged_wave_info),
10524 Operand((8u << 16) | (hs_idx * 8u)));
10525 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10526
10527 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10528
10529 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10530 get_arg(ctx, ctx->args->rel_auto_id),
10531 get_arg(ctx, ctx->args->ac.instance_id),
10532 ls_has_nonzero_hs_threads);
10533 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10534 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10535 get_arg(ctx, ctx->args->rel_auto_id),
10536 ls_has_nonzero_hs_threads);
10537 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10538 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10539 get_arg(ctx, ctx->args->ac.vertex_id),
10540 ls_has_nonzero_hs_threads);
10541
10542 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10543 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10544 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10545 }
10546
10547 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10548 {
10549 /* Split all arguments except for the first (ring_offsets) and the last
10550 * (exec) so that the dead channels don't stay live throughout the program.
10551 */
10552 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10553 if (startpgm->definitions[i].regClass().size() > 1) {
10554 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10555 startpgm->definitions[i].regClass().size());
10556 }
10557 }
10558 }
10559
10560 void handle_bc_optimize(isel_context *ctx)
10561 {
10562 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10563 Builder bld(ctx->program, ctx->block);
10564 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10565 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10566 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10567 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10568 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10569 if (uses_center && uses_centroid) {
10570 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10571 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10572
10573 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10574 Temp new_coord[2];
10575 for (unsigned i = 0; i < 2; i++) {
10576 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10577 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10578 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10579 persp_centroid, persp_center, sel);
10580 }
10581 ctx->persp_centroid = bld.tmp(v2);
10582 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10583 Operand(new_coord[0]), Operand(new_coord[1]));
10584 emit_split_vector(ctx, ctx->persp_centroid, 2);
10585 }
10586
10587 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10588 Temp new_coord[2];
10589 for (unsigned i = 0; i < 2; i++) {
10590 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10591 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10592 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10593 linear_centroid, linear_center, sel);
10594 }
10595 ctx->linear_centroid = bld.tmp(v2);
10596 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10597 Operand(new_coord[0]), Operand(new_coord[1]));
10598 emit_split_vector(ctx, ctx->linear_centroid, 2);
10599 }
10600 }
10601 }
10602
10603 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10604 {
10605 Program *program = ctx->program;
10606
10607 unsigned float_controls = shader->info.float_controls_execution_mode;
10608
10609 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10610 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10611 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10612 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10613 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10614
10615 program->next_fp_mode.must_flush_denorms32 =
10616 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10617 program->next_fp_mode.must_flush_denorms16_64 =
10618 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10619 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10620
10621 program->next_fp_mode.care_about_round32 =
10622 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10623
10624 program->next_fp_mode.care_about_round16_64 =
10625 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10626 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10627
10628 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
10629 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
10630 if (program->next_fp_mode.must_flush_denorms16_64)
10631 program->next_fp_mode.denorm16_64 = 0;
10632 else
10633 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10634
10635 /* preserving fp32 denorms is expensive, so only do it if asked */
10636 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10637 program->next_fp_mode.denorm32 = fp_denorm_keep;
10638 else
10639 program->next_fp_mode.denorm32 = 0;
10640
10641 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10642 program->next_fp_mode.round32 = fp_round_tz;
10643 else
10644 program->next_fp_mode.round32 = fp_round_ne;
10645
10646 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10647 program->next_fp_mode.round16_64 = fp_round_tz;
10648 else
10649 program->next_fp_mode.round16_64 = fp_round_ne;
10650
10651 ctx->block->fp_mode = program->next_fp_mode;
10652 }
10653
10654 void cleanup_cfg(Program *program)
10655 {
10656 /* create linear_succs/logical_succs */
10657 for (Block& BB : program->blocks) {
10658 for (unsigned idx : BB.linear_preds)
10659 program->blocks[idx].linear_succs.emplace_back(BB.index);
10660 for (unsigned idx : BB.logical_preds)
10661 program->blocks[idx].logical_succs.emplace_back(BB.index);
10662 }
10663 }
10664
10665 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10666 {
10667 Builder bld(ctx->program, ctx->block);
10668
10669 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10670 Temp count = i == 0
10671 ? get_arg(ctx, ctx->args->merged_wave_info)
10672 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10673 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10674
10675 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10676 Temp cond;
10677
10678 if (ctx->program->wave_size == 64) {
10679 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10680 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10681 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10682 } else {
10683 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10684 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10685 }
10686
10687 return cond;
10688 }
10689
10690 bool ngg_early_prim_export(isel_context *ctx)
10691 {
10692 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10693 return true;
10694 }
10695
10696 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10697 {
10698 Builder bld(ctx->program, ctx->block);
10699
10700 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10701 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10702
10703 /* Get the id of the current wave within the threadgroup (workgroup) */
10704 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10705 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10706
10707 /* Execute the following code only on the first wave (wave id 0),
10708 * use the SCC def to tell if the wave id is zero or not.
10709 */
10710 Temp cond = wave_id_in_tg.def(1).getTemp();
10711 if_context ic;
10712 begin_uniform_if_then(ctx, &ic, cond);
10713 begin_uniform_if_else(ctx, &ic);
10714 bld.reset(ctx->block);
10715
10716 /* Number of vertices output by VS/TES */
10717 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10718 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10719 /* Number of primitives output by VS/TES */
10720 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10721 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10722
10723 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10724 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10725 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10726
10727 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10728 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10729
10730 end_uniform_if(ctx, &ic);
10731
10732 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10733 bld.reset(ctx->block);
10734 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10735 }
10736
10737 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10738 {
10739 Builder bld(ctx->program, ctx->block);
10740
10741 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10742 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10743 }
10744
10745 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10746 Temp tmp;
10747
10748 for (unsigned i = 0; i < num_vertices; ++i) {
10749 assert(vtxindex[i].id());
10750
10751 if (i)
10752 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10753 else
10754 tmp = vtxindex[i];
10755
10756 /* The initial edge flag is always false in tess eval shaders. */
10757 if (ctx->stage == ngg_vertex_gs) {
10758 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10759 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10760 }
10761 }
10762
10763 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10764
10765 return tmp;
10766 }
10767
10768 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10769 {
10770 Builder bld(ctx->program, ctx->block);
10771 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10772
10773 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10774 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10775 false /* compressed */, true/* done */, false /* valid mask */);
10776 }
10777
10778 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10779 {
10780 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10781 * These must always come before VS exports.
10782 *
10783 * It is recommended to do these as early as possible. They can be at the beginning when
10784 * there is no SW GS and the shader doesn't write edge flags.
10785 */
10786
10787 if_context ic;
10788 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10789 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10790
10791 Builder bld(ctx->program, ctx->block);
10792 constexpr unsigned max_vertices_per_primitive = 3;
10793 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10794
10795 if (ctx->stage == ngg_vertex_gs) {
10796 /* TODO: optimize for points & lines */
10797 } else if (ctx->stage == ngg_tess_eval_gs) {
10798 if (ctx->shader->info.tess.point_mode)
10799 num_vertices_per_primitive = 1;
10800 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10801 num_vertices_per_primitive = 2;
10802 } else {
10803 unreachable("Unsupported NGG shader stage");
10804 }
10805
10806 Temp vtxindex[max_vertices_per_primitive];
10807 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10808 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10809 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10810 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10811 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10812 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10813 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10814 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10815
10816 /* Export primitive data to the index buffer. */
10817 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10818
10819 /* Export primitive ID. */
10820 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10821 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10822 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10823 Temp provoking_vtx_index = vtxindex[0];
10824 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10825
10826 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10827 }
10828
10829 begin_divergent_if_else(ctx, &ic);
10830 end_divergent_if(ctx, &ic);
10831 }
10832
10833 void ngg_emit_nogs_output(isel_context *ctx)
10834 {
10835 /* Emits NGG GS output, for stages that don't have SW GS. */
10836
10837 if_context ic;
10838 Builder bld(ctx->program, ctx->block);
10839 bool late_prim_export = !ngg_early_prim_export(ctx);
10840
10841 /* NGG streamout is currently disabled by default. */
10842 assert(!ctx->args->shader_info->so.num_outputs);
10843
10844 if (late_prim_export) {
10845 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10846 create_export_phis(ctx);
10847 /* Do what we need to do in the GS threads. */
10848 ngg_emit_nogs_gsthreads(ctx);
10849
10850 /* What comes next should be executed on ES threads. */
10851 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10852 begin_divergent_if_then(ctx, &ic, is_es_thread);
10853 bld.reset(ctx->block);
10854 }
10855
10856 /* Export VS outputs */
10857 ctx->block->kind |= block_kind_export_end;
10858 create_vs_exports(ctx);
10859
10860 /* Export primitive ID */
10861 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10862 Temp prim_id;
10863
10864 if (ctx->stage == ngg_vertex_gs) {
10865 /* Wait for GS threads to store primitive ID in LDS. */
10866 bld.barrier(aco_opcode::p_memory_barrier_shared);
10867 bld.sopp(aco_opcode::s_barrier);
10868
10869 /* Calculate LDS address where the GS threads stored the primitive ID. */
10870 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10871 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10872 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10873 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10874 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10875 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10876
10877 /* Load primitive ID from LDS. */
10878 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10879 } else if (ctx->stage == ngg_tess_eval_gs) {
10880 /* TES: Just use the patch ID as the primitive ID. */
10881 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10882 } else {
10883 unreachable("unsupported NGG shader stage.");
10884 }
10885
10886 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10887 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10888
10889 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10890 }
10891
10892 if (late_prim_export) {
10893 begin_divergent_if_else(ctx, &ic);
10894 end_divergent_if(ctx, &ic);
10895 bld.reset(ctx->block);
10896 }
10897 }
10898
10899 void select_program(Program *program,
10900 unsigned shader_count,
10901 struct nir_shader *const *shaders,
10902 ac_shader_config* config,
10903 struct radv_shader_args *args)
10904 {
10905 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10906 if_context ic_merged_wave_info;
10907 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10908
10909 for (unsigned i = 0; i < shader_count; i++) {
10910 nir_shader *nir = shaders[i];
10911 init_context(&ctx, nir);
10912
10913 setup_fp_mode(&ctx, nir);
10914
10915 if (!i) {
10916 /* needs to be after init_context() for FS */
10917 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10918 append_logical_start(ctx.block);
10919
10920 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10921 fix_ls_vgpr_init_bug(&ctx, startpgm);
10922
10923 split_arguments(&ctx, startpgm);
10924 }
10925
10926 if (ngg_no_gs) {
10927 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10928
10929 if (ngg_early_prim_export(&ctx))
10930 ngg_emit_nogs_gsthreads(&ctx);
10931 }
10932
10933 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10934 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10935 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10936 ((nir->info.stage == MESA_SHADER_VERTEX &&
10937 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10938 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10939 ctx.stage == tess_eval_geometry_gs));
10940
10941 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10942 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10943 if (check_merged_wave_info) {
10944 Temp cond = merged_wave_info_to_mask(&ctx, i);
10945 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10946 }
10947
10948 if (i) {
10949 Builder bld(ctx.program, ctx.block);
10950
10951 bld.barrier(aco_opcode::p_memory_barrier_shared);
10952 bld.sopp(aco_opcode::s_barrier);
10953
10954 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10955 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10956 }
10957 } else if (ctx.stage == geometry_gs)
10958 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10959
10960 if (ctx.stage == fragment_fs)
10961 handle_bc_optimize(&ctx);
10962
10963 visit_cf_list(&ctx, &func->body);
10964
10965 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10966 emit_streamout(&ctx, 0);
10967
10968 if (ctx.stage & hw_vs) {
10969 create_vs_exports(&ctx);
10970 ctx.block->kind |= block_kind_export_end;
10971 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10972 ngg_emit_nogs_output(&ctx);
10973 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10974 Builder bld(ctx.program, ctx.block);
10975 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10976 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10977 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10978 write_tcs_tess_factors(&ctx);
10979 }
10980
10981 if (ctx.stage == fragment_fs) {
10982 create_fs_exports(&ctx);
10983 ctx.block->kind |= block_kind_export_end;
10984 }
10985
10986 if (endif_merged_wave_info) {
10987 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10988 end_divergent_if(&ctx, &ic_merged_wave_info);
10989 }
10990
10991 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10992 ngg_emit_nogs_output(&ctx);
10993
10994 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10995 /* Outputs of the previous stage are inputs to the next stage */
10996 ctx.inputs = ctx.outputs;
10997 ctx.outputs = shader_io_state();
10998 }
10999 }
11000
11001 program->config->float_mode = program->blocks[0].fp_mode.val;
11002
11003 append_logical_end(ctx.block);
11004 ctx.block->kind |= block_kind_uniform;
11005 Builder bld(ctx.program, ctx.block);
11006 if (ctx.program->wb_smem_l1_on_end)
11007 bld.smem(aco_opcode::s_dcache_wb, false);
11008 bld.sopp(aco_opcode::s_endpgm);
11009
11010 cleanup_cfg(program);
11011 }
11012
11013 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
11014 ac_shader_config* config,
11015 struct radv_shader_args *args)
11016 {
11017 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
11018
11019 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
11020 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
11021 program->next_fp_mode.must_flush_denorms32 = false;
11022 program->next_fp_mode.must_flush_denorms16_64 = false;
11023 program->next_fp_mode.care_about_round32 = false;
11024 program->next_fp_mode.care_about_round16_64 = false;
11025 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
11026 program->next_fp_mode.denorm32 = 0;
11027 program->next_fp_mode.round32 = fp_round_ne;
11028 program->next_fp_mode.round16_64 = fp_round_ne;
11029 ctx.block->fp_mode = program->next_fp_mode;
11030
11031 add_startpgm(&ctx);
11032 append_logical_start(ctx.block);
11033
11034 Builder bld(ctx.program, ctx.block);
11035
11036 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
11037
11038 Operand stream_id(0u);
11039 if (args->shader_info->so.num_outputs)
11040 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11041 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
11042
11043 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
11044
11045 std::stack<Block> endif_blocks;
11046
11047 for (unsigned stream = 0; stream < 4; stream++) {
11048 if (stream_id.isConstant() && stream != stream_id.constantValue())
11049 continue;
11050
11051 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
11052 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
11053 continue;
11054
11055 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
11056
11057 unsigned BB_if_idx = ctx.block->index;
11058 Block BB_endif = Block();
11059 if (!stream_id.isConstant()) {
11060 /* begin IF */
11061 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
11062 append_logical_end(ctx.block);
11063 ctx.block->kind |= block_kind_uniform;
11064 bld.branch(aco_opcode::p_cbranch_z, cond);
11065
11066 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
11067
11068 ctx.block = ctx.program->create_and_insert_block();
11069 add_edge(BB_if_idx, ctx.block);
11070 bld.reset(ctx.block);
11071 append_logical_start(ctx.block);
11072 }
11073
11074 unsigned offset = 0;
11075 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
11076 if (args->shader_info->gs.output_streams[i] != stream)
11077 continue;
11078
11079 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
11080 unsigned length = util_last_bit(output_usage_mask);
11081 for (unsigned j = 0; j < length; ++j) {
11082 if (!(output_usage_mask & (1 << j)))
11083 continue;
11084
11085 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
11086 Temp voffset = vtx_offset;
11087 if (const_offset >= 4096u) {
11088 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
11089 const_offset %= 4096u;
11090 }
11091
11092 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
11093 mubuf->definitions[0] = bld.def(v1);
11094 mubuf->operands[0] = Operand(gsvs_ring);
11095 mubuf->operands[1] = Operand(voffset);
11096 mubuf->operands[2] = Operand(0u);
11097 mubuf->offen = true;
11098 mubuf->offset = const_offset;
11099 mubuf->glc = true;
11100 mubuf->slc = true;
11101 mubuf->dlc = args->options->chip_class >= GFX10;
11102 mubuf->barrier = barrier_none;
11103 mubuf->can_reorder = true;
11104
11105 ctx.outputs.mask[i] |= 1 << j;
11106 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
11107
11108 bld.insert(std::move(mubuf));
11109
11110 offset++;
11111 }
11112 }
11113
11114 if (args->shader_info->so.num_outputs) {
11115 emit_streamout(&ctx, stream);
11116 bld.reset(ctx.block);
11117 }
11118
11119 if (stream == 0) {
11120 create_vs_exports(&ctx);
11121 ctx.block->kind |= block_kind_export_end;
11122 }
11123
11124 if (!stream_id.isConstant()) {
11125 append_logical_end(ctx.block);
11126
11127 /* branch from then block to endif block */
11128 bld.branch(aco_opcode::p_branch);
11129 add_edge(ctx.block->index, &BB_endif);
11130 ctx.block->kind |= block_kind_uniform;
11131
11132 /* emit else block */
11133 ctx.block = ctx.program->create_and_insert_block();
11134 add_edge(BB_if_idx, ctx.block);
11135 bld.reset(ctx.block);
11136 append_logical_start(ctx.block);
11137
11138 endif_blocks.push(std::move(BB_endif));
11139 }
11140 }
11141
11142 while (!endif_blocks.empty()) {
11143 Block BB_endif = std::move(endif_blocks.top());
11144 endif_blocks.pop();
11145
11146 Block *BB_else = ctx.block;
11147
11148 append_logical_end(BB_else);
11149 /* branch from else block to endif block */
11150 bld.branch(aco_opcode::p_branch);
11151 add_edge(BB_else->index, &BB_endif);
11152 BB_else->kind |= block_kind_uniform;
11153
11154 /** emit endif merge block */
11155 ctx.block = program->insert_block(std::move(BB_endif));
11156 bld.reset(ctx.block);
11157 append_logical_start(ctx.block);
11158 }
11159
11160 program->config->float_mode = program->blocks[0].fp_mode.val;
11161
11162 append_logical_end(ctx.block);
11163 ctx.block->kind |= block_kind_uniform;
11164 bld.sopp(aco_opcode::s_endpgm);
11165
11166 cleanup_cfg(program);
11167 }
11168 }