aco: fix sgpr ubfe/ibfe if the offset is too large
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 #define isel_err(...) _isel_err(ctx, __FILE__, __LINE__, __VA_ARGS__)
42
43 static void _isel_err(isel_context *ctx, const char *file, unsigned line,
44 const nir_instr *instr, const char *msg)
45 {
46 char *out;
47 size_t outsize;
48 FILE *memf = open_memstream(&out, &outsize);
49
50 fprintf(memf, "%s: ", msg);
51 nir_print_instr(instr, memf);
52 fclose(memf);
53
54 _aco_err(ctx->program, file, line, out);
55 free(out);
56 }
57
58 class loop_info_RAII {
59 isel_context* ctx;
60 unsigned header_idx_old;
61 Block* exit_old;
62 bool divergent_cont_old;
63 bool divergent_branch_old;
64 bool divergent_if_old;
65
66 public:
67 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
68 : ctx(ctx),
69 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
70 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
71 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
72 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
73 {
74 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
75 ctx->cf_info.parent_loop.exit = loop_exit;
76 ctx->cf_info.parent_loop.has_divergent_continue = false;
77 ctx->cf_info.parent_loop.has_divergent_branch = false;
78 ctx->cf_info.parent_if.is_divergent = false;
79 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
80 }
81
82 ~loop_info_RAII()
83 {
84 ctx->cf_info.parent_loop.header_idx = header_idx_old;
85 ctx->cf_info.parent_loop.exit = exit_old;
86 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
87 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
88 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
89 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
90 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
91 ctx->cf_info.exec_potentially_empty_discard = false;
92 }
93 };
94
95 struct if_context {
96 Temp cond;
97
98 bool divergent_old;
99 bool exec_potentially_empty_discard_old;
100 bool exec_potentially_empty_break_old;
101 uint16_t exec_potentially_empty_break_depth_old;
102
103 unsigned BB_if_idx;
104 unsigned invert_idx;
105 bool uniform_has_then_branch;
106 bool then_branch_divergent;
107 Block BB_invert;
108 Block BB_endif;
109 };
110
111 static bool visit_cf_list(struct isel_context *ctx,
112 struct exec_list *list);
113
114 static void add_logical_edge(unsigned pred_idx, Block *succ)
115 {
116 succ->logical_preds.emplace_back(pred_idx);
117 }
118
119
120 static void add_linear_edge(unsigned pred_idx, Block *succ)
121 {
122 succ->linear_preds.emplace_back(pred_idx);
123 }
124
125 static void add_edge(unsigned pred_idx, Block *succ)
126 {
127 add_logical_edge(pred_idx, succ);
128 add_linear_edge(pred_idx, succ);
129 }
130
131 static void append_logical_start(Block *b)
132 {
133 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
134 }
135
136 static void append_logical_end(Block *b)
137 {
138 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
139 }
140
141 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
142 {
143 assert(ctx->allocated[def->index].id());
144 return ctx->allocated[def->index];
145 }
146
147 Temp emit_mbcnt(isel_context *ctx, Definition dst,
148 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
149 {
150 Builder bld(ctx->program, ctx->block);
151 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
152 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
153
154 if (ctx->program->wave_size == 32) {
155 return thread_id_lo;
156 } else if (ctx->program->chip_class <= GFX7) {
157 Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
158 return thread_id_hi;
159 } else {
160 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo);
161 return thread_id_hi;
162 }
163 }
164
165 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
166 {
167 Builder bld(ctx->program, ctx->block);
168
169 if (!dst.id())
170 dst = bld.tmp(src.regClass());
171
172 assert(src.size() == dst.size());
173
174 if (ctx->stage != fragment_fs) {
175 if (!dst.id())
176 return src;
177
178 bld.copy(Definition(dst), src);
179 return dst;
180 }
181
182 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
183 ctx->program->needs_wqm |= program_needs_wqm;
184 return dst;
185 }
186
187 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
188 {
189 if (index.regClass() == s1)
190 return bld.readlane(bld.def(s1), data, index);
191
192 if (ctx->options->chip_class <= GFX7) {
193 /* GFX6-7: there is no bpermute instruction */
194 Operand index_op(index);
195 Operand input_data(data);
196 index_op.setLateKill(true);
197 input_data.setLateKill(true);
198
199 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
200 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
201 /* GFX10 wave64 mode: emulate full-wave bpermute */
202 if (!ctx->has_gfx10_wave64_bpermute) {
203 ctx->has_gfx10_wave64_bpermute = true;
204 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
205 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
206 }
207
208 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
209 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
210 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
211 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
212 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
213 Operand input_data(data);
214
215 index_x4.setLateKill(true);
216 input_data.setLateKill(true);
217 same_half.setLateKill(true);
218
219 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
220 } else {
221 /* GFX8-9 or GFX10 wave32: bpermute works normally */
222 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
223 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
224 }
225 }
226
227 static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
228 {
229 if (ctx->options->chip_class >= GFX8) {
230 unsigned and_mask = mask & 0x1f;
231 unsigned or_mask = (mask >> 5) & 0x1f;
232 unsigned xor_mask = (mask >> 10) & 0x1f;
233
234 uint16_t dpp_ctrl = 0xffff;
235
236 // TODO: we could use DPP8 for some swizzles
237 if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
238 unsigned res[4] = {0, 1, 2, 3};
239 for (unsigned i = 0; i < 4; i++)
240 res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
241 dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
242 } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
243 dpp_ctrl = dpp_row_rr(8);
244 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
245 dpp_ctrl = dpp_row_mirror;
246 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
247 dpp_ctrl = dpp_row_half_mirror;
248 }
249
250 if (dpp_ctrl != 0xffff)
251 return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
252 }
253
254 return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
255 }
256
257 Temp as_vgpr(isel_context *ctx, Temp val)
258 {
259 if (val.type() == RegType::sgpr) {
260 Builder bld(ctx->program, ctx->block);
261 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
262 }
263 assert(val.type() == RegType::vgpr);
264 return val;
265 }
266
267 //assumes a != 0xffffffff
268 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
269 {
270 assert(b != 0);
271 Builder bld(ctx->program, ctx->block);
272
273 if (util_is_power_of_two_or_zero(b)) {
274 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
275 return;
276 }
277
278 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
279
280 assert(info.multiplier <= 0xffffffff);
281
282 bool pre_shift = info.pre_shift != 0;
283 bool increment = info.increment != 0;
284 bool multiply = true;
285 bool post_shift = info.post_shift != 0;
286
287 if (!pre_shift && !increment && !multiply && !post_shift) {
288 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
289 return;
290 }
291
292 Temp pre_shift_dst = a;
293 if (pre_shift) {
294 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
295 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
296 }
297
298 Temp increment_dst = pre_shift_dst;
299 if (increment) {
300 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
301 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
302 }
303
304 Temp multiply_dst = increment_dst;
305 if (multiply) {
306 multiply_dst = post_shift ? bld.tmp(v1) : dst;
307 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
308 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
309 }
310
311 if (post_shift) {
312 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
313 }
314 }
315
316 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
317 {
318 Builder bld(ctx->program, ctx->block);
319 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
320 }
321
322
323 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
324 {
325 /* no need to extract the whole vector */
326 if (src.regClass() == dst_rc) {
327 assert(idx == 0);
328 return src;
329 }
330
331 assert(src.bytes() > (idx * dst_rc.bytes()));
332 Builder bld(ctx->program, ctx->block);
333 auto it = ctx->allocated_vec.find(src.id());
334 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
335 if (it->second[idx].regClass() == dst_rc) {
336 return it->second[idx];
337 } else {
338 assert(!dst_rc.is_subdword());
339 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
340 return bld.copy(bld.def(dst_rc), it->second[idx]);
341 }
342 }
343
344 if (dst_rc.is_subdword())
345 src = as_vgpr(ctx, src);
346
347 if (src.bytes() == dst_rc.bytes()) {
348 assert(idx == 0);
349 return bld.copy(bld.def(dst_rc), src);
350 } else {
351 Temp dst = bld.tmp(dst_rc);
352 emit_extract_vector(ctx, src, idx, dst);
353 return dst;
354 }
355 }
356
357 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
358 {
359 if (num_components == 1)
360 return;
361 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
362 return;
363 RegClass rc;
364 if (num_components > vec_src.size()) {
365 if (vec_src.type() == RegType::sgpr) {
366 /* should still help get_alu_src() */
367 emit_split_vector(ctx, vec_src, vec_src.size());
368 return;
369 }
370 /* sub-dword split */
371 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
372 } else {
373 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
374 }
375 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
376 split->operands[0] = Operand(vec_src);
377 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
378 for (unsigned i = 0; i < num_components; i++) {
379 elems[i] = {ctx->program->allocateId(), rc};
380 split->definitions[i] = Definition(elems[i]);
381 }
382 ctx->block->instructions.emplace_back(std::move(split));
383 ctx->allocated_vec.emplace(vec_src.id(), elems);
384 }
385
386 /* This vector expansion uses a mask to determine which elements in the new vector
387 * come from the original vector. The other elements are undefined. */
388 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
389 {
390 emit_split_vector(ctx, vec_src, util_bitcount(mask));
391
392 if (vec_src == dst)
393 return;
394
395 Builder bld(ctx->program, ctx->block);
396 if (num_components == 1) {
397 if (dst.type() == RegType::sgpr)
398 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
399 else
400 bld.copy(Definition(dst), vec_src);
401 return;
402 }
403
404 unsigned component_size = dst.size() / num_components;
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406
407 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
408 vec->definitions[0] = Definition(dst);
409 unsigned k = 0;
410 for (unsigned i = 0; i < num_components; i++) {
411 if (mask & (1 << i)) {
412 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
413 if (dst.type() == RegType::sgpr)
414 src = bld.as_uniform(src);
415 vec->operands[i] = Operand(src);
416 } else {
417 vec->operands[i] = Operand(0u);
418 }
419 elems[i] = vec->operands[i].getTemp();
420 }
421 ctx->block->instructions.emplace_back(std::move(vec));
422 ctx->allocated_vec.emplace(dst.id(), elems);
423 }
424
425 /* adjust misaligned small bit size loads */
426 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
427 {
428 Builder bld(ctx->program, ctx->block);
429 Operand shift;
430 Temp select = Temp();
431 if (offset.isConstant()) {
432 assert(offset.constantValue() && offset.constantValue() < 4);
433 shift = Operand(offset.constantValue() * 8);
434 } else {
435 /* bit_offset = 8 * (offset & 0x3) */
436 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
437 select = bld.tmp(s1);
438 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
439 }
440
441 if (vec.size() == 1) {
442 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
443 } else if (vec.size() == 2) {
444 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
445 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
446 if (tmp == dst)
447 emit_split_vector(ctx, dst, 2);
448 else
449 emit_extract_vector(ctx, tmp, 0, dst);
450 } else if (vec.size() == 4) {
451 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
452 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
453 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
454 if (select != Temp())
455 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
456 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
457 Temp mid = bld.tmp(s1);
458 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
459 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
460 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
461 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
462 emit_split_vector(ctx, dst, 2);
463 }
464 }
465
466 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
467 {
468 Builder bld(ctx->program, ctx->block);
469 if (offset.isTemp()) {
470 Temp tmp[4] = {vec, vec, vec, vec};
471
472 if (vec.size() == 4) {
473 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
474 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
475 } else if (vec.size() == 3) {
476 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
477 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
478 } else if (vec.size() == 2) {
479 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
480 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
481 }
482 for (unsigned i = 0; i < dst.size(); i++)
483 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
484
485 vec = tmp[0];
486 if (dst.size() == 2)
487 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
488
489 offset = Operand(0u);
490 }
491
492 unsigned num_components = vec.bytes() / component_size;
493 if (vec.regClass() == dst.regClass()) {
494 assert(offset.constantValue() == 0);
495 bld.copy(Definition(dst), vec);
496 emit_split_vector(ctx, dst, num_components);
497 return;
498 }
499
500 emit_split_vector(ctx, vec, num_components);
501 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
502 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
503
504 assert(offset.constantValue() % component_size == 0);
505 unsigned skip = offset.constantValue() / component_size;
506 for (unsigned i = skip; i < num_components; i++)
507 elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
508
509 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
510 if (dst.type() == RegType::vgpr) {
511 num_components = dst.bytes() / component_size;
512 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
513 for (unsigned i = 0; i < num_components; i++)
514 create_vec->operands[i] = Operand(elems[i]);
515 create_vec->definitions[0] = Definition(dst);
516 bld.insert(std::move(create_vec));
517
518 /* if dst is sgpr - split the src, but move the original to sgpr. */
519 } else if (skip) {
520 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
521 byte_align_scalar(ctx, vec, offset, dst);
522 } else {
523 assert(dst.size() == vec.size());
524 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
525 }
526
527 ctx->allocated_vec.emplace(dst.id(), elems);
528 }
529
530 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
531 {
532 Builder bld(ctx->program, ctx->block);
533 if (!dst.id())
534 dst = bld.tmp(bld.lm);
535
536 assert(val.regClass() == s1);
537 assert(dst.regClass() == bld.lm);
538
539 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
540 }
541
542 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
543 {
544 Builder bld(ctx->program, ctx->block);
545 if (!dst.id())
546 dst = bld.tmp(s1);
547
548 assert(val.regClass() == bld.lm);
549 assert(dst.regClass() == s1);
550
551 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
552 Temp tmp = bld.tmp(s1);
553 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
554 return emit_wqm(ctx, tmp, dst);
555 }
556
557 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp())
558 {
559 if (!dst.id()) {
560 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
561 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
562 else
563 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
564 }
565
566 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
567 return bld.copy(Definition(dst), src);
568 else if (dst.bytes() < src.bytes())
569 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
570
571 Temp tmp = dst;
572 if (dst_bits == 64)
573 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
574
575 if (tmp == src) {
576 } else if (src.regClass() == s1) {
577 if (is_signed)
578 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
579 else
580 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
581 } else if (ctx->options->chip_class >= GFX8) {
582 assert(src_bits != 8 || src.regClass() == v1b);
583 assert(src_bits != 16 || src.regClass() == v2b);
584 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
585 sdwa->operands[0] = Operand(src);
586 sdwa->definitions[0] = Definition(tmp);
587 if (is_signed)
588 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
589 else
590 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
591 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
592 bld.insert(std::move(sdwa));
593 } else {
594 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
595 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
596 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
597 }
598
599 if (dst_bits == 64) {
600 if (is_signed && dst.regClass() == s2) {
601 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
602 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
603 } else if (is_signed && dst.regClass() == v2) {
604 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
605 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
606 } else {
607 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
608 }
609 }
610
611 return dst;
612 }
613
614 enum sgpr_extract_mode {
615 sgpr_extract_sext,
616 sgpr_extract_zext,
617 sgpr_extract_undef,
618 };
619
620 Temp extract_8_16_bit_sgpr_element(isel_context *ctx, Temp dst, nir_alu_src *src, sgpr_extract_mode mode)
621 {
622 Temp vec = get_ssa_temp(ctx, src->src.ssa);
623 unsigned src_size = src->src.ssa->bit_size;
624 unsigned swizzle = src->swizzle[0];
625
626 if (vec.size() > 1) {
627 assert(src_size == 16);
628 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
629 swizzle = swizzle & 1;
630 }
631
632 Builder bld(ctx->program, ctx->block);
633 unsigned offset = src_size * swizzle;
634 Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst;
635
636 if (mode == sgpr_extract_undef && swizzle == 0) {
637 bld.copy(Definition(tmp), vec);
638 } else if (mode == sgpr_extract_undef || (offset == 24 && mode == sgpr_extract_zext)) {
639 bld.sop2(aco_opcode::s_lshr_b32, Definition(tmp), bld.def(s1, scc), vec, Operand(offset));
640 } else if (src_size == 8 && swizzle == 0 && mode == sgpr_extract_sext) {
641 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(tmp), vec);
642 } else if (src_size == 16 && swizzle == 0 && mode == sgpr_extract_sext) {
643 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(tmp), vec);
644 } else {
645 aco_opcode op = mode == sgpr_extract_zext ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
646 bld.sop2(op, Definition(tmp), bld.def(s1, scc), vec, Operand((src_size << 16) | offset));
647 }
648
649 if (dst.regClass() == s2)
650 convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst);
651
652 return dst;
653 }
654
655 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
656 {
657 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
658 return get_ssa_temp(ctx, src.src.ssa);
659
660 if (src.src.ssa->num_components == size) {
661 bool identity_swizzle = true;
662 for (unsigned i = 0; identity_swizzle && i < size; i++) {
663 if (src.swizzle[i] != i)
664 identity_swizzle = false;
665 }
666 if (identity_swizzle)
667 return get_ssa_temp(ctx, src.src.ssa);
668 }
669
670 Temp vec = get_ssa_temp(ctx, src.src.ssa);
671 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
672 assert(elem_size > 0);
673 assert(vec.bytes() % elem_size == 0);
674
675 if (elem_size < 4 && vec.type() == RegType::sgpr) {
676 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
677 assert(size == 1);
678 return extract_8_16_bit_sgpr_element(
679 ctx, Temp(ctx->program->allocateId(), s1), &src, sgpr_extract_undef);
680 }
681
682 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
683 if (size == 1) {
684 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
685 } else {
686 assert(size <= 4);
687 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
688 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
689 for (unsigned i = 0; i < size; ++i) {
690 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
691 vec_instr->operands[i] = Operand{elems[i]};
692 }
693 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
694 vec_instr->definitions[0] = Definition(dst);
695 ctx->block->instructions.emplace_back(std::move(vec_instr));
696 ctx->allocated_vec.emplace(dst.id(), elems);
697 return dst;
698 }
699 }
700
701 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
702 {
703 if (ptr.size() == 2)
704 return ptr;
705 Builder bld(ctx->program, ctx->block);
706 if (ptr.type() == RegType::vgpr)
707 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
708 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
709 ptr, Operand((unsigned)ctx->options->address32_hi));
710 }
711
712 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
713 {
714 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
715 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
716 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
717 sop2->definitions[0] = Definition(dst);
718 if (instr->no_unsigned_wrap)
719 sop2->definitions[0].setNUW(true);
720 if (writes_scc)
721 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
722 ctx->block->instructions.emplace_back(std::move(sop2));
723 }
724
725 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
726 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
727 {
728 Builder bld(ctx->program, ctx->block);
729 bld.is_precise = instr->exact;
730
731 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
732 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
733 if (src1.type() == RegType::sgpr) {
734 if (commutative && src0.type() == RegType::vgpr) {
735 Temp t = src0;
736 src0 = src1;
737 src1 = t;
738 } else {
739 src1 = as_vgpr(ctx, src1);
740 }
741 }
742
743 if (flush_denorms && ctx->program->chip_class < GFX9) {
744 assert(dst.size() == 1);
745 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
746 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
747 } else {
748 bld.vop2(op, Definition(dst), src0, src1);
749 }
750 }
751
752 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
753 aco_opcode op, Temp dst)
754 {
755 Builder bld(ctx->program, ctx->block);
756 bld.is_precise = instr->exact;
757
758 Temp src0 = get_alu_src(ctx, instr->src[0]);
759 Temp src1 = get_alu_src(ctx, instr->src[1]);
760
761 if (src1.type() == RegType::sgpr) {
762 assert(src0.type() == RegType::vgpr);
763 std::swap(src0, src1);
764 }
765
766 Temp src00 = bld.tmp(src0.type(), 1);
767 Temp src01 = bld.tmp(src0.type(), 1);
768 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
769 Temp src10 = bld.tmp(v1);
770 Temp src11 = bld.tmp(v1);
771 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
772 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
773 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
774 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
775 }
776
777 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
778 bool flush_denorms = false)
779 {
780 Temp src0 = get_alu_src(ctx, instr->src[0]);
781 Temp src1 = get_alu_src(ctx, instr->src[1]);
782 Temp src2 = get_alu_src(ctx, instr->src[2]);
783
784 /* ensure that the instruction has at most 1 sgpr operand
785 * The optimizer will inline constants for us */
786 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
787 src0 = as_vgpr(ctx, src0);
788 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
789 src1 = as_vgpr(ctx, src1);
790 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
791 src2 = as_vgpr(ctx, src2);
792
793 Builder bld(ctx->program, ctx->block);
794 bld.is_precise = instr->exact;
795 if (flush_denorms && ctx->program->chip_class < GFX9) {
796 assert(dst.size() == 1);
797 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
798 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
799 } else {
800 bld.vop3(op, Definition(dst), src0, src1, src2);
801 }
802 }
803
804 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
805 {
806 Builder bld(ctx->program, ctx->block);
807 bld.is_precise = instr->exact;
808 if (dst.type() == RegType::sgpr)
809 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
810 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
811 else
812 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
813 }
814
815 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
816 {
817 Temp src0 = get_alu_src(ctx, instr->src[0]);
818 Temp src1 = get_alu_src(ctx, instr->src[1]);
819 assert(src0.size() == src1.size());
820
821 aco_ptr<Instruction> vopc;
822 if (src1.type() == RegType::sgpr) {
823 if (src0.type() == RegType::vgpr) {
824 /* to swap the operands, we might also have to change the opcode */
825 switch (op) {
826 case aco_opcode::v_cmp_lt_f16:
827 op = aco_opcode::v_cmp_gt_f16;
828 break;
829 case aco_opcode::v_cmp_ge_f16:
830 op = aco_opcode::v_cmp_le_f16;
831 break;
832 case aco_opcode::v_cmp_lt_i16:
833 op = aco_opcode::v_cmp_gt_i16;
834 break;
835 case aco_opcode::v_cmp_ge_i16:
836 op = aco_opcode::v_cmp_le_i16;
837 break;
838 case aco_opcode::v_cmp_lt_u16:
839 op = aco_opcode::v_cmp_gt_u16;
840 break;
841 case aco_opcode::v_cmp_ge_u16:
842 op = aco_opcode::v_cmp_le_u16;
843 break;
844 case aco_opcode::v_cmp_lt_f32:
845 op = aco_opcode::v_cmp_gt_f32;
846 break;
847 case aco_opcode::v_cmp_ge_f32:
848 op = aco_opcode::v_cmp_le_f32;
849 break;
850 case aco_opcode::v_cmp_lt_i32:
851 op = aco_opcode::v_cmp_gt_i32;
852 break;
853 case aco_opcode::v_cmp_ge_i32:
854 op = aco_opcode::v_cmp_le_i32;
855 break;
856 case aco_opcode::v_cmp_lt_u32:
857 op = aco_opcode::v_cmp_gt_u32;
858 break;
859 case aco_opcode::v_cmp_ge_u32:
860 op = aco_opcode::v_cmp_le_u32;
861 break;
862 case aco_opcode::v_cmp_lt_f64:
863 op = aco_opcode::v_cmp_gt_f64;
864 break;
865 case aco_opcode::v_cmp_ge_f64:
866 op = aco_opcode::v_cmp_le_f64;
867 break;
868 case aco_opcode::v_cmp_lt_i64:
869 op = aco_opcode::v_cmp_gt_i64;
870 break;
871 case aco_opcode::v_cmp_ge_i64:
872 op = aco_opcode::v_cmp_le_i64;
873 break;
874 case aco_opcode::v_cmp_lt_u64:
875 op = aco_opcode::v_cmp_gt_u64;
876 break;
877 case aco_opcode::v_cmp_ge_u64:
878 op = aco_opcode::v_cmp_le_u64;
879 break;
880 default: /* eq and ne are commutative */
881 break;
882 }
883 Temp t = src0;
884 src0 = src1;
885 src1 = t;
886 } else {
887 src1 = as_vgpr(ctx, src1);
888 }
889 }
890
891 Builder bld(ctx->program, ctx->block);
892 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
893 }
894
895 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
896 {
897 Temp src0 = get_alu_src(ctx, instr->src[0]);
898 Temp src1 = get_alu_src(ctx, instr->src[1]);
899 Builder bld(ctx->program, ctx->block);
900
901 assert(dst.regClass() == bld.lm);
902 assert(src0.type() == RegType::sgpr);
903 assert(src1.type() == RegType::sgpr);
904 assert(src0.regClass() == src1.regClass());
905
906 /* Emit the SALU comparison instruction */
907 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
908 /* Turn the result into a per-lane bool */
909 bool_to_vector_condition(ctx, cmp, dst);
910 }
911
912 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
913 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
914 {
915 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
916 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
917 bool use_valu = s_op == aco_opcode::num_opcodes ||
918 nir_dest_is_divergent(instr->dest.dest) ||
919 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
920 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
921 aco_opcode op = use_valu ? v_op : s_op;
922 assert(op != aco_opcode::num_opcodes);
923 assert(dst.regClass() == ctx->program->lane_mask);
924
925 if (use_valu)
926 emit_vopc_instruction(ctx, instr, op, dst);
927 else
928 emit_sopc_instruction(ctx, instr, op, dst);
929 }
930
931 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
932 {
933 Builder bld(ctx->program, ctx->block);
934 Temp src0 = get_alu_src(ctx, instr->src[0]);
935 Temp src1 = get_alu_src(ctx, instr->src[1]);
936
937 assert(dst.regClass() == bld.lm);
938 assert(src0.regClass() == bld.lm);
939 assert(src1.regClass() == bld.lm);
940
941 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
942 }
943
944 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
945 {
946 Builder bld(ctx->program, ctx->block);
947 Temp cond = get_alu_src(ctx, instr->src[0]);
948 Temp then = get_alu_src(ctx, instr->src[1]);
949 Temp els = get_alu_src(ctx, instr->src[2]);
950
951 assert(cond.regClass() == bld.lm);
952
953 if (dst.type() == RegType::vgpr) {
954 aco_ptr<Instruction> bcsel;
955 if (dst.size() == 1) {
956 then = as_vgpr(ctx, then);
957 els = as_vgpr(ctx, els);
958
959 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
960 } else if (dst.size() == 2) {
961 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
962 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
963 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
964 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
965
966 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
967 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
968
969 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
970 } else {
971 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
972 }
973 return;
974 }
975
976 if (instr->dest.dest.ssa.bit_size == 1) {
977 assert(dst.regClass() == bld.lm);
978 assert(then.regClass() == bld.lm);
979 assert(els.regClass() == bld.lm);
980 }
981
982 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
983 if (dst.regClass() == s1 || dst.regClass() == s2) {
984 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
985 assert(dst.size() == then.size());
986 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
987 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
988 } else {
989 isel_err(&instr->instr, "Unimplemented uniform bcsel bit size");
990 }
991 return;
992 }
993
994 /* divergent boolean bcsel
995 * this implements bcsel on bools: dst = s0 ? s1 : s2
996 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
997 assert(instr->dest.dest.ssa.bit_size == 1);
998
999 if (cond.id() != then.id())
1000 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
1001
1002 if (cond.id() == els.id())
1003 bld.sop1(Builder::s_mov, Definition(dst), then);
1004 else
1005 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
1006 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
1007 }
1008
1009 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
1010 aco_opcode op, uint32_t undo)
1011 {
1012 /* multiply by 16777216 to handle denormals */
1013 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
1014 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
1015 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
1016 scaled = bld.vop1(op, bld.def(v1), scaled);
1017 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
1018
1019 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
1020
1021 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
1022 }
1023
1024 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1025 {
1026 if (ctx->block->fp_mode.denorm32 == 0) {
1027 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
1028 return;
1029 }
1030
1031 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
1032 }
1033
1034 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1035 {
1036 if (ctx->block->fp_mode.denorm32 == 0) {
1037 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
1038 return;
1039 }
1040
1041 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
1042 }
1043
1044 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1045 {
1046 if (ctx->block->fp_mode.denorm32 == 0) {
1047 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
1048 return;
1049 }
1050
1051 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
1052 }
1053
1054 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1055 {
1056 if (ctx->block->fp_mode.denorm32 == 0) {
1057 bld.vop1(aco_opcode::v_log_f32, dst, val);
1058 return;
1059 }
1060
1061 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
1062 }
1063
1064 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1065 {
1066 if (ctx->options->chip_class >= GFX7)
1067 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
1068
1069 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
1070 /* TODO: create more efficient code! */
1071 if (val.type() == RegType::sgpr)
1072 val = as_vgpr(ctx, val);
1073
1074 /* Split the input value. */
1075 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
1076 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
1077
1078 /* Extract the exponent and compute the unbiased value. */
1079 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
1080 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
1081
1082 /* Extract the fractional part. */
1083 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
1084 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
1085
1086 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
1087 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
1088
1089 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
1090 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
1091 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
1092 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
1093 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
1094
1095 /* Get the sign bit. */
1096 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
1097
1098 /* Decide the operation to apply depending on the unbiased exponent. */
1099 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
1100 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
1101 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
1102 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
1103 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
1104 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
1105
1106 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
1107 }
1108
1109 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1110 {
1111 if (ctx->options->chip_class >= GFX7)
1112 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
1113
1114 /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
1115 * lowered at NIR level for precision reasons). */
1116 Temp src0 = as_vgpr(ctx, val);
1117
1118 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
1119 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
1120
1121 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
1122 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
1123 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
1124
1125 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
1126 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
1127 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
1128 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
1129
1130 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
1131 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
1132
1133 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1134
1135 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1136 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1137
1138 return add->definitions[0].getTemp();
1139 }
1140
1141 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1142 {
1143 if (!instr->dest.dest.is_ssa) {
1144 isel_err(&instr->instr, "nir alu dst not in ssa");
1145 abort();
1146 }
1147 Builder bld(ctx->program, ctx->block);
1148 bld.is_precise = instr->exact;
1149 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1150 switch(instr->op) {
1151 case nir_op_vec2:
1152 case nir_op_vec3:
1153 case nir_op_vec4: {
1154 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1155 unsigned num = instr->dest.dest.ssa.num_components;
1156 for (unsigned i = 0; i < num; ++i)
1157 elems[i] = get_alu_src(ctx, instr->src[i]);
1158
1159 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1160 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1161 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1162 for (unsigned i = 0; i < num; ++i) {
1163 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1164 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1165 else
1166 vec->operands[i] = Operand{elems[i]};
1167 }
1168 vec->definitions[0] = Definition(dst);
1169 ctx->block->instructions.emplace_back(std::move(vec));
1170 ctx->allocated_vec.emplace(dst.id(), elems);
1171 } else {
1172 // TODO: that is a bit suboptimal..
1173 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1174 for (unsigned i = 0; i < num - 1; ++i)
1175 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1176 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1177 for (unsigned i = 0; i < num; ++i) {
1178 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1179 if (bit % 32 == 0) {
1180 elems[bit / 32] = elems[i];
1181 } else {
1182 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1183 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1184 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1185 }
1186 }
1187 if (dst.size() == 1)
1188 bld.copy(Definition(dst), elems[0]);
1189 else
1190 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1191 }
1192 break;
1193 }
1194 case nir_op_mov: {
1195 Temp src = get_alu_src(ctx, instr->src[0]);
1196 aco_ptr<Instruction> mov;
1197 if (dst.type() == RegType::sgpr) {
1198 if (src.type() == RegType::vgpr)
1199 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1200 else if (src.regClass() == s1)
1201 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1202 else if (src.regClass() == s2)
1203 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1204 else
1205 unreachable("wrong src register class for nir_op_imov");
1206 } else {
1207 if (dst.regClass() == v1)
1208 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1209 else if (dst.regClass() == v1b ||
1210 dst.regClass() == v2b ||
1211 dst.regClass() == v2)
1212 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1213 else
1214 unreachable("wrong src register class for nir_op_imov");
1215 }
1216 break;
1217 }
1218 case nir_op_inot: {
1219 Temp src = get_alu_src(ctx, instr->src[0]);
1220 if (instr->dest.dest.ssa.bit_size == 1) {
1221 assert(src.regClass() == bld.lm);
1222 assert(dst.regClass() == bld.lm);
1223 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1224 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1225 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1226 } else if (dst.regClass() == v1) {
1227 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1228 } else if (dst.regClass() == v2) {
1229 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1230 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1231 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1232 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1233 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1234 } else if (dst.type() == RegType::sgpr) {
1235 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1236 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1237 } else {
1238 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1239 }
1240 break;
1241 }
1242 case nir_op_ineg: {
1243 Temp src = get_alu_src(ctx, instr->src[0]);
1244 if (dst.regClass() == v1) {
1245 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1246 } else if (dst.regClass() == s1) {
1247 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1248 } else if (dst.size() == 2) {
1249 Temp src0 = bld.tmp(dst.type(), 1);
1250 Temp src1 = bld.tmp(dst.type(), 1);
1251 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1252
1253 if (dst.regClass() == s2) {
1254 Temp carry = bld.tmp(s1);
1255 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1256 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1257 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1258 } else {
1259 Temp lower = bld.tmp(v1);
1260 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1261 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1262 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1263 }
1264 } else {
1265 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1266 }
1267 break;
1268 }
1269 case nir_op_iabs: {
1270 if (dst.regClass() == s1) {
1271 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1272 } else if (dst.regClass() == v1) {
1273 Temp src = get_alu_src(ctx, instr->src[0]);
1274 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1275 } else {
1276 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1277 }
1278 break;
1279 }
1280 case nir_op_isign: {
1281 Temp src = get_alu_src(ctx, instr->src[0]);
1282 if (dst.regClass() == s1) {
1283 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1284 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1285 } else if (dst.regClass() == s2) {
1286 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1287 Temp neqz;
1288 if (ctx->program->chip_class >= GFX8)
1289 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1290 else
1291 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1292 /* SCC gets zero-extended to 64 bit */
1293 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1294 } else if (dst.regClass() == v1) {
1295 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1296 } else if (dst.regClass() == v2) {
1297 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1298 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1299 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1300 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1301 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1302 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1303 } else {
1304 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1305 }
1306 break;
1307 }
1308 case nir_op_imax: {
1309 if (dst.regClass() == v1) {
1310 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1311 } else if (dst.regClass() == s1) {
1312 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1313 } else {
1314 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1315 }
1316 break;
1317 }
1318 case nir_op_umax: {
1319 if (dst.regClass() == v1) {
1320 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1321 } else if (dst.regClass() == s1) {
1322 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1323 } else {
1324 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1325 }
1326 break;
1327 }
1328 case nir_op_imin: {
1329 if (dst.regClass() == v1) {
1330 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1331 } else if (dst.regClass() == s1) {
1332 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1333 } else {
1334 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1335 }
1336 break;
1337 }
1338 case nir_op_umin: {
1339 if (dst.regClass() == v1) {
1340 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1341 } else if (dst.regClass() == s1) {
1342 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1343 } else {
1344 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1345 }
1346 break;
1347 }
1348 case nir_op_ior: {
1349 if (instr->dest.dest.ssa.bit_size == 1) {
1350 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1351 } else if (dst.regClass() == v1) {
1352 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1353 } else if (dst.regClass() == v2) {
1354 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1355 } else if (dst.regClass() == s1) {
1356 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1357 } else if (dst.regClass() == s2) {
1358 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1359 } else {
1360 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1361 }
1362 break;
1363 }
1364 case nir_op_iand: {
1365 if (instr->dest.dest.ssa.bit_size == 1) {
1366 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1367 } else if (dst.regClass() == v1) {
1368 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1369 } else if (dst.regClass() == v2) {
1370 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1371 } else if (dst.regClass() == s1) {
1372 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1373 } else if (dst.regClass() == s2) {
1374 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1375 } else {
1376 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1377 }
1378 break;
1379 }
1380 case nir_op_ixor: {
1381 if (instr->dest.dest.ssa.bit_size == 1) {
1382 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1383 } else if (dst.regClass() == v1) {
1384 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1385 } else if (dst.regClass() == v2) {
1386 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1387 } else if (dst.regClass() == s1) {
1388 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1389 } else if (dst.regClass() == s2) {
1390 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1391 } else {
1392 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1393 }
1394 break;
1395 }
1396 case nir_op_ushr: {
1397 if (dst.regClass() == v1) {
1398 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1399 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1400 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1401 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1402 } else if (dst.regClass() == v2) {
1403 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1404 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1405 } else if (dst.regClass() == s2) {
1406 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1407 } else if (dst.regClass() == s1) {
1408 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1409 } else {
1410 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1411 }
1412 break;
1413 }
1414 case nir_op_ishl: {
1415 if (dst.regClass() == v1) {
1416 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1417 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1418 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1419 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1420 } else if (dst.regClass() == v2) {
1421 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1422 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1423 } else if (dst.regClass() == s1) {
1424 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1425 } else if (dst.regClass() == s2) {
1426 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1427 } else {
1428 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1429 }
1430 break;
1431 }
1432 case nir_op_ishr: {
1433 if (dst.regClass() == v1) {
1434 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1435 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1436 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1437 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1438 } else if (dst.regClass() == v2) {
1439 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1440 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1441 } else if (dst.regClass() == s1) {
1442 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1443 } else if (dst.regClass() == s2) {
1444 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1445 } else {
1446 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1447 }
1448 break;
1449 }
1450 case nir_op_find_lsb: {
1451 Temp src = get_alu_src(ctx, instr->src[0]);
1452 if (src.regClass() == s1) {
1453 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1454 } else if (src.regClass() == v1) {
1455 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1456 } else if (src.regClass() == s2) {
1457 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1458 } else {
1459 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1460 }
1461 break;
1462 }
1463 case nir_op_ufind_msb:
1464 case nir_op_ifind_msb: {
1465 Temp src = get_alu_src(ctx, instr->src[0]);
1466 if (src.regClass() == s1 || src.regClass() == s2) {
1467 aco_opcode op = src.regClass() == s2 ?
1468 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1469 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1470 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1471
1472 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1473 Operand(src.size() * 32u - 1u), msb_rev);
1474 Temp msb = sub.def(0).getTemp();
1475 Temp carry = sub.def(1).getTemp();
1476
1477 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1478 } else if (src.regClass() == v1) {
1479 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1480 Temp msb_rev = bld.tmp(v1);
1481 emit_vop1_instruction(ctx, instr, op, msb_rev);
1482 Temp msb = bld.tmp(v1);
1483 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1484 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1485 } else {
1486 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1487 }
1488 break;
1489 }
1490 case nir_op_bitfield_reverse: {
1491 if (dst.regClass() == s1) {
1492 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1493 } else if (dst.regClass() == v1) {
1494 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1495 } else {
1496 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1497 }
1498 break;
1499 }
1500 case nir_op_iadd: {
1501 if (dst.regClass() == s1) {
1502 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1503 break;
1504 }
1505
1506 Temp src0 = get_alu_src(ctx, instr->src[0]);
1507 Temp src1 = get_alu_src(ctx, instr->src[1]);
1508 if (dst.regClass() == v1) {
1509 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1510 break;
1511 }
1512
1513 assert(src0.size() == 2 && src1.size() == 2);
1514 Temp src00 = bld.tmp(src0.type(), 1);
1515 Temp src01 = bld.tmp(dst.type(), 1);
1516 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1517 Temp src10 = bld.tmp(src1.type(), 1);
1518 Temp src11 = bld.tmp(dst.type(), 1);
1519 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1520
1521 if (dst.regClass() == s2) {
1522 Temp carry = bld.tmp(s1);
1523 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1524 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1525 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1526 } else if (dst.regClass() == v2) {
1527 Temp dst0 = bld.tmp(v1);
1528 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1529 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1530 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1531 } else {
1532 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1533 }
1534 break;
1535 }
1536 case nir_op_uadd_sat: {
1537 Temp src0 = get_alu_src(ctx, instr->src[0]);
1538 Temp src1 = get_alu_src(ctx, instr->src[1]);
1539 if (dst.regClass() == s1) {
1540 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1541 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1542 src0, src1);
1543 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1544 } else if (dst.regClass() == v1) {
1545 if (ctx->options->chip_class >= GFX9) {
1546 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1547 add->operands[0] = Operand(src0);
1548 add->operands[1] = Operand(src1);
1549 add->definitions[0] = Definition(dst);
1550 add->clamp = 1;
1551 ctx->block->instructions.emplace_back(std::move(add));
1552 } else {
1553 if (src1.regClass() != v1)
1554 std::swap(src0, src1);
1555 assert(src1.regClass() == v1);
1556 Temp tmp = bld.tmp(v1);
1557 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1558 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1559 }
1560 } else {
1561 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1562 }
1563 break;
1564 }
1565 case nir_op_uadd_carry: {
1566 Temp src0 = get_alu_src(ctx, instr->src[0]);
1567 Temp src1 = get_alu_src(ctx, instr->src[1]);
1568 if (dst.regClass() == s1) {
1569 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1570 break;
1571 }
1572 if (dst.regClass() == v1) {
1573 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1574 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1575 break;
1576 }
1577
1578 Temp src00 = bld.tmp(src0.type(), 1);
1579 Temp src01 = bld.tmp(dst.type(), 1);
1580 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1581 Temp src10 = bld.tmp(src1.type(), 1);
1582 Temp src11 = bld.tmp(dst.type(), 1);
1583 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1584 if (dst.regClass() == s2) {
1585 Temp carry = bld.tmp(s1);
1586 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1587 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1589 } else if (dst.regClass() == v2) {
1590 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1591 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1592 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1593 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1594 } else {
1595 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1596 }
1597 break;
1598 }
1599 case nir_op_isub: {
1600 if (dst.regClass() == s1) {
1601 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1602 break;
1603 }
1604
1605 Temp src0 = get_alu_src(ctx, instr->src[0]);
1606 Temp src1 = get_alu_src(ctx, instr->src[1]);
1607 if (dst.regClass() == v1) {
1608 bld.vsub32(Definition(dst), src0, src1);
1609 break;
1610 }
1611
1612 Temp src00 = bld.tmp(src0.type(), 1);
1613 Temp src01 = bld.tmp(dst.type(), 1);
1614 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1615 Temp src10 = bld.tmp(src1.type(), 1);
1616 Temp src11 = bld.tmp(dst.type(), 1);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1618 if (dst.regClass() == s2) {
1619 Temp carry = bld.tmp(s1);
1620 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1621 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1622 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1623 } else if (dst.regClass() == v2) {
1624 Temp lower = bld.tmp(v1);
1625 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1626 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1627 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1628 } else {
1629 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1630 }
1631 break;
1632 }
1633 case nir_op_usub_borrow: {
1634 Temp src0 = get_alu_src(ctx, instr->src[0]);
1635 Temp src1 = get_alu_src(ctx, instr->src[1]);
1636 if (dst.regClass() == s1) {
1637 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1638 break;
1639 } else if (dst.regClass() == v1) {
1640 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1641 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1642 break;
1643 }
1644
1645 Temp src00 = bld.tmp(src0.type(), 1);
1646 Temp src01 = bld.tmp(dst.type(), 1);
1647 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1648 Temp src10 = bld.tmp(src1.type(), 1);
1649 Temp src11 = bld.tmp(dst.type(), 1);
1650 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1651 if (dst.regClass() == s2) {
1652 Temp borrow = bld.tmp(s1);
1653 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1654 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1655 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1656 } else if (dst.regClass() == v2) {
1657 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1658 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1659 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1660 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1661 } else {
1662 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1663 }
1664 break;
1665 }
1666 case nir_op_imul: {
1667 if (dst.regClass() == v1) {
1668 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1669 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1670 } else if (dst.regClass() == s1) {
1671 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1672 } else {
1673 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1674 }
1675 break;
1676 }
1677 case nir_op_umul_high: {
1678 if (dst.regClass() == v1) {
1679 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1680 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1681 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1682 } else if (dst.regClass() == s1) {
1683 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1684 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1685 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1686 } else {
1687 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1688 }
1689 break;
1690 }
1691 case nir_op_imul_high: {
1692 if (dst.regClass() == v1) {
1693 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1694 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1695 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1696 } else if (dst.regClass() == s1) {
1697 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1698 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1699 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1700 } else {
1701 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1702 }
1703 break;
1704 }
1705 case nir_op_fmul: {
1706 Temp src0 = get_alu_src(ctx, instr->src[0]);
1707 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1708 if (dst.regClass() == v2b) {
1709 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1710 } else if (dst.regClass() == v1) {
1711 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1712 } else if (dst.regClass() == v2) {
1713 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1714 } else {
1715 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1716 }
1717 break;
1718 }
1719 case nir_op_fadd: {
1720 Temp src0 = get_alu_src(ctx, instr->src[0]);
1721 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1722 if (dst.regClass() == v2b) {
1723 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1724 } else if (dst.regClass() == v1) {
1725 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1726 } else if (dst.regClass() == v2) {
1727 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1728 } else {
1729 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1730 }
1731 break;
1732 }
1733 case nir_op_fsub: {
1734 Temp src0 = get_alu_src(ctx, instr->src[0]);
1735 Temp src1 = get_alu_src(ctx, instr->src[1]);
1736 if (dst.regClass() == v2b) {
1737 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1738 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1739 else
1740 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1741 } else if (dst.regClass() == v1) {
1742 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1743 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1744 else
1745 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1746 } else if (dst.regClass() == v2) {
1747 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1748 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1749 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1750 sub->neg[1] = true;
1751 } else {
1752 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1753 }
1754 break;
1755 }
1756 case nir_op_fmax: {
1757 Temp src0 = get_alu_src(ctx, instr->src[0]);
1758 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1759 if (dst.regClass() == v2b) {
1760 // TODO: check fp_mode.must_flush_denorms16_64
1761 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1762 } else if (dst.regClass() == v1) {
1763 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1764 } else if (dst.regClass() == v2) {
1765 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1766 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1767 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1768 } else {
1769 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1770 }
1771 } else {
1772 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1773 }
1774 break;
1775 }
1776 case nir_op_fmin: {
1777 Temp src0 = get_alu_src(ctx, instr->src[0]);
1778 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1779 if (dst.regClass() == v2b) {
1780 // TODO: check fp_mode.must_flush_denorms16_64
1781 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1782 } else if (dst.regClass() == v1) {
1783 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1784 } else if (dst.regClass() == v2) {
1785 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1786 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1787 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1788 } else {
1789 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1790 }
1791 } else {
1792 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1793 }
1794 break;
1795 }
1796 case nir_op_cube_face_coord: {
1797 Temp in = get_alu_src(ctx, instr->src[0], 3);
1798 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1799 emit_extract_vector(ctx, in, 1, v1),
1800 emit_extract_vector(ctx, in, 2, v1) };
1801 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1802 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1803 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1804 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1805 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1806 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, ma), Operand(0x3f000000u/*0.5*/));
1807 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1808 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, ma), Operand(0x3f000000u/*0.5*/));
1809 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1810 break;
1811 }
1812 case nir_op_cube_face_index: {
1813 Temp in = get_alu_src(ctx, instr->src[0], 3);
1814 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1815 emit_extract_vector(ctx, in, 1, v1),
1816 emit_extract_vector(ctx, in, 2, v1) };
1817 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1818 break;
1819 }
1820 case nir_op_bcsel: {
1821 emit_bcsel(ctx, instr, dst);
1822 break;
1823 }
1824 case nir_op_frsq: {
1825 Temp src = get_alu_src(ctx, instr->src[0]);
1826 if (dst.regClass() == v2b) {
1827 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1828 } else if (dst.regClass() == v1) {
1829 emit_rsq(ctx, bld, Definition(dst), src);
1830 } else if (dst.regClass() == v2) {
1831 /* Lowered at NIR level for precision reasons. */
1832 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1833 } else {
1834 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1835 }
1836 break;
1837 }
1838 case nir_op_fneg: {
1839 Temp src = get_alu_src(ctx, instr->src[0]);
1840 if (dst.regClass() == v2b) {
1841 if (ctx->block->fp_mode.must_flush_denorms16_64)
1842 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1843 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1844 } else if (dst.regClass() == v1) {
1845 if (ctx->block->fp_mode.must_flush_denorms32)
1846 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1847 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1848 } else if (dst.regClass() == v2) {
1849 if (ctx->block->fp_mode.must_flush_denorms16_64)
1850 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1851 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1852 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1853 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1854 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1855 } else {
1856 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1857 }
1858 break;
1859 }
1860 case nir_op_fabs: {
1861 Temp src = get_alu_src(ctx, instr->src[0]);
1862 if (dst.regClass() == v2b) {
1863 if (ctx->block->fp_mode.must_flush_denorms16_64)
1864 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1865 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1866 } else if (dst.regClass() == v1) {
1867 if (ctx->block->fp_mode.must_flush_denorms32)
1868 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1869 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1870 } else if (dst.regClass() == v2) {
1871 if (ctx->block->fp_mode.must_flush_denorms16_64)
1872 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1873 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1874 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1875 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1876 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1877 } else {
1878 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1879 }
1880 break;
1881 }
1882 case nir_op_fsat: {
1883 Temp src = get_alu_src(ctx, instr->src[0]);
1884 if (dst.regClass() == v2b) {
1885 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
1886 } else if (dst.regClass() == v1) {
1887 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1888 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1889 // TODO: confirm that this holds under any circumstances
1890 } else if (dst.regClass() == v2) {
1891 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1892 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1893 vop3->clamp = true;
1894 } else {
1895 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1896 }
1897 break;
1898 }
1899 case nir_op_flog2: {
1900 Temp src = get_alu_src(ctx, instr->src[0]);
1901 if (dst.regClass() == v2b) {
1902 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
1903 } else if (dst.regClass() == v1) {
1904 emit_log2(ctx, bld, Definition(dst), src);
1905 } else {
1906 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1907 }
1908 break;
1909 }
1910 case nir_op_frcp: {
1911 Temp src = get_alu_src(ctx, instr->src[0]);
1912 if (dst.regClass() == v2b) {
1913 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
1914 } else if (dst.regClass() == v1) {
1915 emit_rcp(ctx, bld, Definition(dst), src);
1916 } else if (dst.regClass() == v2) {
1917 /* Lowered at NIR level for precision reasons. */
1918 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1919 } else {
1920 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1921 }
1922 break;
1923 }
1924 case nir_op_fexp2: {
1925 if (dst.regClass() == v2b) {
1926 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
1927 } else if (dst.regClass() == v1) {
1928 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1929 } else {
1930 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1931 }
1932 break;
1933 }
1934 case nir_op_fsqrt: {
1935 Temp src = get_alu_src(ctx, instr->src[0]);
1936 if (dst.regClass() == v2b) {
1937 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
1938 } else if (dst.regClass() == v1) {
1939 emit_sqrt(ctx, bld, Definition(dst), src);
1940 } else if (dst.regClass() == v2) {
1941 /* Lowered at NIR level for precision reasons. */
1942 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1943 } else {
1944 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1945 }
1946 break;
1947 }
1948 case nir_op_ffract: {
1949 if (dst.regClass() == v2b) {
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
1951 } else if (dst.regClass() == v1) {
1952 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1953 } else if (dst.regClass() == v2) {
1954 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1955 } else {
1956 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1957 }
1958 break;
1959 }
1960 case nir_op_ffloor: {
1961 Temp src = get_alu_src(ctx, instr->src[0]);
1962 if (dst.regClass() == v2b) {
1963 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
1964 } else if (dst.regClass() == v1) {
1965 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1966 } else if (dst.regClass() == v2) {
1967 emit_floor_f64(ctx, bld, Definition(dst), src);
1968 } else {
1969 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1970 }
1971 break;
1972 }
1973 case nir_op_fceil: {
1974 Temp src0 = get_alu_src(ctx, instr->src[0]);
1975 if (dst.regClass() == v2b) {
1976 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
1977 } else if (dst.regClass() == v1) {
1978 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1979 } else if (dst.regClass() == v2) {
1980 if (ctx->options->chip_class >= GFX7) {
1981 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1982 } else {
1983 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1984 /* trunc = trunc(src0)
1985 * if (src0 > 0.0 && src0 != trunc)
1986 * trunc += 1.0
1987 */
1988 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1989 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1990 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1991 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1992 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1993 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1994 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1995 }
1996 } else {
1997 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1998 }
1999 break;
2000 }
2001 case nir_op_ftrunc: {
2002 Temp src = get_alu_src(ctx, instr->src[0]);
2003 if (dst.regClass() == v2b) {
2004 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2005 } else if (dst.regClass() == v1) {
2006 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2007 } else if (dst.regClass() == v2) {
2008 emit_trunc_f64(ctx, bld, Definition(dst), src);
2009 } else {
2010 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2011 }
2012 break;
2013 }
2014 case nir_op_fround_even: {
2015 Temp src0 = get_alu_src(ctx, instr->src[0]);
2016 if (dst.regClass() == v2b) {
2017 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2018 } else if (dst.regClass() == v1) {
2019 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2020 } else if (dst.regClass() == v2) {
2021 if (ctx->options->chip_class >= GFX7) {
2022 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2023 } else {
2024 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2025 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2026 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2027
2028 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2029 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2030 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2031 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2032 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2033 tmp = sub->definitions[0].getTemp();
2034
2035 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2036 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2037 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2038 Temp cond = vop3->definitions[0].getTemp();
2039
2040 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2041 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2042 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2043 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2044
2045 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2046 }
2047 } else {
2048 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2049 }
2050 break;
2051 }
2052 case nir_op_fsin:
2053 case nir_op_fcos: {
2054 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2055 aco_ptr<Instruction> norm;
2056 if (dst.regClass() == v2b) {
2057 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2058 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2059 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2060 bld.vop1(opcode, Definition(dst), tmp);
2061 } else if (dst.regClass() == v1) {
2062 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2063 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2064
2065 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2066 if (ctx->options->chip_class < GFX9)
2067 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2068
2069 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2070 bld.vop1(opcode, Definition(dst), tmp);
2071 } else {
2072 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2073 }
2074 break;
2075 }
2076 case nir_op_ldexp: {
2077 Temp src0 = get_alu_src(ctx, instr->src[0]);
2078 Temp src1 = get_alu_src(ctx, instr->src[1]);
2079 if (dst.regClass() == v2b) {
2080 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2081 } else if (dst.regClass() == v1) {
2082 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2083 } else if (dst.regClass() == v2) {
2084 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2085 } else {
2086 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2087 }
2088 break;
2089 }
2090 case nir_op_frexp_sig: {
2091 Temp src = get_alu_src(ctx, instr->src[0]);
2092 if (dst.regClass() == v2b) {
2093 bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
2094 } else if (dst.regClass() == v1) {
2095 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2096 } else if (dst.regClass() == v2) {
2097 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2098 } else {
2099 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2100 }
2101 break;
2102 }
2103 case nir_op_frexp_exp: {
2104 Temp src = get_alu_src(ctx, instr->src[0]);
2105 if (instr->src[0].src.ssa->bit_size == 16) {
2106 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2107 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2108 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2109 } else if (instr->src[0].src.ssa->bit_size == 32) {
2110 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2111 } else if (instr->src[0].src.ssa->bit_size == 64) {
2112 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2113 } else {
2114 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2115 }
2116 break;
2117 }
2118 case nir_op_fsign: {
2119 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2120 if (dst.regClass() == v2b) {
2121 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2122 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2123 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2124 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2125 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2126 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
2127 } else if (dst.regClass() == v1) {
2128 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2129 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2130 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2131 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2132 } else if (dst.regClass() == v2) {
2133 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2134 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2135 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2136
2137 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2138 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2139 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2140
2141 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2142 } else {
2143 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2144 }
2145 break;
2146 }
2147 case nir_op_f2f16:
2148 case nir_op_f2f16_rtne: {
2149 Temp src = get_alu_src(ctx, instr->src[0]);
2150 if (instr->src[0].src.ssa->bit_size == 64)
2151 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2152 if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
2153 /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
2154 * keep value numbering and the scheduler simpler.
2155 */
2156 bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
2157 else
2158 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2159 break;
2160 }
2161 case nir_op_f2f16_rtz: {
2162 Temp src = get_alu_src(ctx, instr->src[0]);
2163 if (instr->src[0].src.ssa->bit_size == 64)
2164 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2165 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
2166 break;
2167 }
2168 case nir_op_f2f32: {
2169 if (instr->src[0].src.ssa->bit_size == 16) {
2170 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2171 } else if (instr->src[0].src.ssa->bit_size == 64) {
2172 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2173 } else {
2174 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2175 }
2176 break;
2177 }
2178 case nir_op_f2f64: {
2179 Temp src = get_alu_src(ctx, instr->src[0]);
2180 if (instr->src[0].src.ssa->bit_size == 16)
2181 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2182 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2183 break;
2184 }
2185 case nir_op_i2f16: {
2186 assert(dst.regClass() == v2b);
2187 Temp src = get_alu_src(ctx, instr->src[0]);
2188 if (instr->src[0].src.ssa->bit_size == 8)
2189 src = convert_int(ctx, bld, src, 8, 16, true);
2190 else if (instr->src[0].src.ssa->bit_size == 64)
2191 src = convert_int(ctx, bld, src, 64, 32, false);
2192 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2193 break;
2194 }
2195 case nir_op_i2f32: {
2196 assert(dst.size() == 1);
2197 Temp src = get_alu_src(ctx, instr->src[0]);
2198 if (instr->src[0].src.ssa->bit_size <= 16)
2199 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2200 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2201 break;
2202 }
2203 case nir_op_i2f64: {
2204 if (instr->src[0].src.ssa->bit_size <= 32) {
2205 Temp src = get_alu_src(ctx, instr->src[0]);
2206 if (instr->src[0].src.ssa->bit_size <= 16)
2207 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2208 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2209 } else if (instr->src[0].src.ssa->bit_size == 64) {
2210 Temp src = get_alu_src(ctx, instr->src[0]);
2211 RegClass rc = RegClass(src.type(), 1);
2212 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2213 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2214 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2215 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2216 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2217 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2218
2219 } else {
2220 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2221 }
2222 break;
2223 }
2224 case nir_op_u2f16: {
2225 assert(dst.regClass() == v2b);
2226 Temp src = get_alu_src(ctx, instr->src[0]);
2227 if (instr->src[0].src.ssa->bit_size == 8)
2228 src = convert_int(ctx, bld, src, 8, 16, false);
2229 else if (instr->src[0].src.ssa->bit_size == 64)
2230 src = convert_int(ctx, bld, src, 64, 32, false);
2231 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2232 break;
2233 }
2234 case nir_op_u2f32: {
2235 assert(dst.size() == 1);
2236 Temp src = get_alu_src(ctx, instr->src[0]);
2237 if (instr->src[0].src.ssa->bit_size == 8) {
2238 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2239 } else {
2240 if (instr->src[0].src.ssa->bit_size == 16)
2241 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2242 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2243 }
2244 break;
2245 }
2246 case nir_op_u2f64: {
2247 if (instr->src[0].src.ssa->bit_size <= 32) {
2248 Temp src = get_alu_src(ctx, instr->src[0]);
2249 if (instr->src[0].src.ssa->bit_size <= 16)
2250 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2251 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2252 } else if (instr->src[0].src.ssa->bit_size == 64) {
2253 Temp src = get_alu_src(ctx, instr->src[0]);
2254 RegClass rc = RegClass(src.type(), 1);
2255 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2256 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2257 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2258 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2259 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2260 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2261 } else {
2262 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2263 }
2264 break;
2265 }
2266 case nir_op_f2i8:
2267 case nir_op_f2i16: {
2268 if (instr->src[0].src.ssa->bit_size == 16)
2269 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2270 else if (instr->src[0].src.ssa->bit_size == 32)
2271 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2272 else
2273 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2274 break;
2275 }
2276 case nir_op_f2u8:
2277 case nir_op_f2u16: {
2278 if (instr->src[0].src.ssa->bit_size == 16)
2279 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2280 else if (instr->src[0].src.ssa->bit_size == 32)
2281 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2282 else
2283 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2284 break;
2285 }
2286 case nir_op_f2i32: {
2287 Temp src = get_alu_src(ctx, instr->src[0]);
2288 if (instr->src[0].src.ssa->bit_size == 16) {
2289 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2290 if (dst.type() == RegType::vgpr) {
2291 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2292 } else {
2293 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2294 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2295 }
2296 } else if (instr->src[0].src.ssa->bit_size == 32) {
2297 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2298 } else if (instr->src[0].src.ssa->bit_size == 64) {
2299 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2300 } else {
2301 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2302 }
2303 break;
2304 }
2305 case nir_op_f2u32: {
2306 Temp src = get_alu_src(ctx, instr->src[0]);
2307 if (instr->src[0].src.ssa->bit_size == 16) {
2308 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2309 if (dst.type() == RegType::vgpr) {
2310 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2311 } else {
2312 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2313 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2314 }
2315 } else if (instr->src[0].src.ssa->bit_size == 32) {
2316 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2317 } else if (instr->src[0].src.ssa->bit_size == 64) {
2318 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2319 } else {
2320 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2321 }
2322 break;
2323 }
2324 case nir_op_f2i64: {
2325 Temp src = get_alu_src(ctx, instr->src[0]);
2326 if (instr->src[0].src.ssa->bit_size == 16)
2327 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2328
2329 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2330 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2331 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2332 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2333 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2334 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2335 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2336 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2337 Temp new_exponent = bld.tmp(v1);
2338 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2339 if (ctx->program->chip_class >= GFX8)
2340 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2341 else
2342 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2343 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2344 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2345 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2346 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2347 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2348 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2349 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2350 Temp new_lower = bld.tmp(v1);
2351 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2352 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2353 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2354
2355 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2356 if (src.type() == RegType::vgpr)
2357 src = bld.as_uniform(src);
2358 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2359 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2360 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2361 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2362 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2363 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2364 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2365 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2366 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2367 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2368 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2369 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2370 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2371 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2372 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2373 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2374 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2375 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2376 Temp borrow = bld.tmp(s1);
2377 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2378 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2379 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2380
2381 } else if (instr->src[0].src.ssa->bit_size == 64) {
2382 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2383 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2384 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2385 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2386 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2387 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2388 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2389 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2390 if (dst.type() == RegType::sgpr) {
2391 lower = bld.as_uniform(lower);
2392 upper = bld.as_uniform(upper);
2393 }
2394 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2395
2396 } else {
2397 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2398 }
2399 break;
2400 }
2401 case nir_op_f2u64: {
2402 Temp src = get_alu_src(ctx, instr->src[0]);
2403 if (instr->src[0].src.ssa->bit_size == 16)
2404 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2405
2406 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2407 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2408 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2409 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2410 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2411 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2412 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2413 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2414 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2415 Temp new_exponent = bld.tmp(v1);
2416 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2417 if (ctx->program->chip_class >= GFX8)
2418 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2419 else
2420 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2421 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2422 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2423 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2424 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2425 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2426 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2427 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2428
2429 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2430 if (src.type() == RegType::vgpr)
2431 src = bld.as_uniform(src);
2432 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2433 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2434 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2435 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2436 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2437 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2438 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2439 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2440 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2441 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2442 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2443 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2444 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2445 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2446 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2447 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2448 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2449 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2450
2451 } else if (instr->src[0].src.ssa->bit_size == 64) {
2452 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2453 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2454 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2455 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2456 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2457 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2458 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2459 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2460 if (dst.type() == RegType::sgpr) {
2461 lower = bld.as_uniform(lower);
2462 upper = bld.as_uniform(upper);
2463 }
2464 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2465
2466 } else {
2467 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2468 }
2469 break;
2470 }
2471 case nir_op_b2f16: {
2472 Temp src = get_alu_src(ctx, instr->src[0]);
2473 assert(src.regClass() == bld.lm);
2474
2475 if (dst.regClass() == s1) {
2476 src = bool_to_scalar_condition(ctx, src);
2477 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2478 } else if (dst.regClass() == v2b) {
2479 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2480 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2481 } else {
2482 unreachable("Wrong destination register class for nir_op_b2f16.");
2483 }
2484 break;
2485 }
2486 case nir_op_b2f32: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 assert(src.regClass() == bld.lm);
2489
2490 if (dst.regClass() == s1) {
2491 src = bool_to_scalar_condition(ctx, src);
2492 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2493 } else if (dst.regClass() == v1) {
2494 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2495 } else {
2496 unreachable("Wrong destination register class for nir_op_b2f32.");
2497 }
2498 break;
2499 }
2500 case nir_op_b2f64: {
2501 Temp src = get_alu_src(ctx, instr->src[0]);
2502 assert(src.regClass() == bld.lm);
2503
2504 if (dst.regClass() == s2) {
2505 src = bool_to_scalar_condition(ctx, src);
2506 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2507 } else if (dst.regClass() == v2) {
2508 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2509 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2510 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2511 } else {
2512 unreachable("Wrong destination register class for nir_op_b2f64.");
2513 }
2514 break;
2515 }
2516 case nir_op_i2i8:
2517 case nir_op_i2i16:
2518 case nir_op_i2i32:
2519 case nir_op_i2i64: {
2520 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2521 /* no need to do the extract in get_alu_src() */
2522 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2523 sgpr_extract_sext : sgpr_extract_undef;
2524 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2525 } else {
2526 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2527 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2528 }
2529 break;
2530 }
2531 case nir_op_u2u8:
2532 case nir_op_u2u16:
2533 case nir_op_u2u32:
2534 case nir_op_u2u64: {
2535 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2536 /* no need to do the extract in get_alu_src() */
2537 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2538 sgpr_extract_zext : sgpr_extract_undef;
2539 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2540 } else {
2541 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2542 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2543 }
2544 break;
2545 }
2546 case nir_op_b2b32:
2547 case nir_op_b2i8:
2548 case nir_op_b2i16:
2549 case nir_op_b2i32:
2550 case nir_op_b2i64: {
2551 Temp src = get_alu_src(ctx, instr->src[0]);
2552 assert(src.regClass() == bld.lm);
2553
2554 Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst;
2555 if (tmp.regClass() == s1) {
2556 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2557 bool_to_scalar_condition(ctx, src, tmp);
2558 } else if (tmp.type() == RegType::vgpr) {
2559 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src);
2560 } else {
2561 unreachable("Invalid register class for b2i32");
2562 }
2563
2564 if (tmp != dst)
2565 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
2566 break;
2567 }
2568 case nir_op_b2b1:
2569 case nir_op_i2b1: {
2570 Temp src = get_alu_src(ctx, instr->src[0]);
2571 assert(dst.regClass() == bld.lm);
2572
2573 if (src.type() == RegType::vgpr) {
2574 assert(src.regClass() == v1 || src.regClass() == v2);
2575 assert(dst.regClass() == bld.lm);
2576 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2577 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2578 } else {
2579 assert(src.regClass() == s1 || src.regClass() == s2);
2580 Temp tmp;
2581 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2582 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2583 } else {
2584 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2585 bld.scc(bld.def(s1)), Operand(0u), src);
2586 }
2587 bool_to_vector_condition(ctx, tmp, dst);
2588 }
2589 break;
2590 }
2591 case nir_op_pack_64_2x32_split: {
2592 Temp src0 = get_alu_src(ctx, instr->src[0]);
2593 Temp src1 = get_alu_src(ctx, instr->src[1]);
2594
2595 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2596 break;
2597 }
2598 case nir_op_unpack_64_2x32_split_x:
2599 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2600 break;
2601 case nir_op_unpack_64_2x32_split_y:
2602 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2603 break;
2604 case nir_op_unpack_32_2x16_split_x:
2605 if (dst.type() == RegType::vgpr) {
2606 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2607 } else {
2608 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2609 }
2610 break;
2611 case nir_op_unpack_32_2x16_split_y:
2612 if (dst.type() == RegType::vgpr) {
2613 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2614 } else {
2615 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2616 }
2617 break;
2618 case nir_op_pack_32_2x16_split: {
2619 Temp src0 = get_alu_src(ctx, instr->src[0]);
2620 Temp src1 = get_alu_src(ctx, instr->src[1]);
2621 if (dst.regClass() == v1) {
2622 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2623 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2624 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2625 } else {
2626 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2627 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2628 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2629 }
2630 break;
2631 }
2632 case nir_op_pack_half_2x16: {
2633 Temp src = get_alu_src(ctx, instr->src[0], 2);
2634
2635 if (dst.regClass() == v1) {
2636 Temp src0 = bld.tmp(v1);
2637 Temp src1 = bld.tmp(v1);
2638 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2639 if (0 && (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)) {
2640 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2641 } else {
2642 src0 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src0);
2643 src1 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src1);
2644 if (ctx->program->chip_class >= GFX10) {
2645 /* the high bits of v_cvt_f16_f32 isn't zero'd on GFX10 */
2646 bld.vop3(aco_opcode::v_pack_b32_f16, Definition(dst), src0, src1);
2647 } else {
2648 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst), src0, src1);
2649 }
2650 }
2651 } else {
2652 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2653 }
2654 break;
2655 }
2656 case nir_op_unpack_half_2x16_split_x: {
2657 if (dst.regClass() == v1) {
2658 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2659 } else {
2660 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2661 }
2662 break;
2663 }
2664 case nir_op_unpack_half_2x16_split_y: {
2665 if (dst.regClass() == v1) {
2666 /* TODO: use SDWA here */
2667 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2668 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2669 } else {
2670 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2671 }
2672 break;
2673 }
2674 case nir_op_fquantize2f16: {
2675 Temp src = get_alu_src(ctx, instr->src[0]);
2676 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2677 Temp f32, cmp_res;
2678
2679 if (ctx->program->chip_class >= GFX8) {
2680 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2681 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2682 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2683 } else {
2684 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2685 * so compare the result and flush to 0 if it's smaller.
2686 */
2687 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2688 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2689 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2690 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2691 cmp_res = vop3->definitions[0].getTemp();
2692 }
2693
2694 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2695 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2696 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2697 } else {
2698 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2699 }
2700 break;
2701 }
2702 case nir_op_bfm: {
2703 Temp bits = get_alu_src(ctx, instr->src[0]);
2704 Temp offset = get_alu_src(ctx, instr->src[1]);
2705
2706 if (dst.regClass() == s1) {
2707 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2708 } else if (dst.regClass() == v1) {
2709 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2710 } else {
2711 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2712 }
2713 break;
2714 }
2715 case nir_op_bitfield_select: {
2716 /* (mask & insert) | (~mask & base) */
2717 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2718 Temp insert = get_alu_src(ctx, instr->src[1]);
2719 Temp base = get_alu_src(ctx, instr->src[2]);
2720
2721 /* dst = (insert & bitmask) | (base & ~bitmask) */
2722 if (dst.regClass() == s1) {
2723 aco_ptr<Instruction> sop2;
2724 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2725 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2726 Operand lhs;
2727 if (const_insert && const_bitmask) {
2728 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2729 } else {
2730 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2731 lhs = Operand(insert);
2732 }
2733
2734 Operand rhs;
2735 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2736 if (const_base && const_bitmask) {
2737 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2738 } else {
2739 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2740 rhs = Operand(base);
2741 }
2742
2743 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2744
2745 } else if (dst.regClass() == v1) {
2746 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2747 base = as_vgpr(ctx, base);
2748 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2749 insert = as_vgpr(ctx, insert);
2750
2751 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2752
2753 } else {
2754 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2755 }
2756 break;
2757 }
2758 case nir_op_ubfe:
2759 case nir_op_ibfe: {
2760 Temp base = get_alu_src(ctx, instr->src[0]);
2761 Temp offset = get_alu_src(ctx, instr->src[1]);
2762 Temp bits = get_alu_src(ctx, instr->src[2]);
2763
2764 if (dst.bytes() != 4)
2765 unreachable("Unsupported BFE bit size");
2766
2767 if (dst.type() == RegType::sgpr) {
2768 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2769 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2770 if (const_offset && const_bits) {
2771 uint32_t extract = (const_bits->u32 << 16) | (const_offset->u32 & 0x1f);
2772 aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
2773 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, Operand(extract));
2774 } else if (instr->op == nir_op_ubfe) {
2775 Temp mask = bld.sop2(aco_opcode::s_bfm_b32, bld.def(s1), bits, offset);
2776 Temp masked = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), base, mask);
2777 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), masked, offset);
2778 } else {
2779 Operand bits_op = const_bits ? Operand(const_bits->u32 << 16) :
2780 bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2781 Operand offset_op = const_offset ? Operand(const_offset->u32 & 0x1fu) :
2782 bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(0x1fu));
2783
2784 Temp extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), bits_op, offset_op);
2785 bld.sop2(aco_opcode::s_bfe_i32, Definition(dst), bld.def(s1, scc), base, extract);
2786 }
2787
2788 } else {
2789 aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::v_bfe_u32 : aco_opcode::v_bfe_i32;
2790 emit_vop3a_instruction(ctx, instr, opcode, dst);
2791 }
2792 break;
2793 }
2794 case nir_op_bit_count: {
2795 Temp src = get_alu_src(ctx, instr->src[0]);
2796 if (src.regClass() == s1) {
2797 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2798 } else if (src.regClass() == v1) {
2799 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2800 } else if (src.regClass() == v2) {
2801 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2802 emit_extract_vector(ctx, src, 1, v1),
2803 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2804 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2805 } else if (src.regClass() == s2) {
2806 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2807 } else {
2808 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2809 }
2810 break;
2811 }
2812 case nir_op_flt: {
2813 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2814 break;
2815 }
2816 case nir_op_fge: {
2817 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2818 break;
2819 }
2820 case nir_op_feq: {
2821 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2822 break;
2823 }
2824 case nir_op_fneu: {
2825 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2826 break;
2827 }
2828 case nir_op_ilt: {
2829 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2830 break;
2831 }
2832 case nir_op_ige: {
2833 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2834 break;
2835 }
2836 case nir_op_ieq: {
2837 if (instr->src[0].src.ssa->bit_size == 1)
2838 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2839 else
2840 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2841 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2842 break;
2843 }
2844 case nir_op_ine: {
2845 if (instr->src[0].src.ssa->bit_size == 1)
2846 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2847 else
2848 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2849 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2850 break;
2851 }
2852 case nir_op_ult: {
2853 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2854 break;
2855 }
2856 case nir_op_uge: {
2857 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2858 break;
2859 }
2860 case nir_op_fddx:
2861 case nir_op_fddy:
2862 case nir_op_fddx_fine:
2863 case nir_op_fddy_fine:
2864 case nir_op_fddx_coarse:
2865 case nir_op_fddy_coarse: {
2866 Temp src = get_alu_src(ctx, instr->src[0]);
2867 uint16_t dpp_ctrl1, dpp_ctrl2;
2868 if (instr->op == nir_op_fddx_fine) {
2869 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2870 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2871 } else if (instr->op == nir_op_fddy_fine) {
2872 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2873 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2874 } else {
2875 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2876 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2877 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2878 else
2879 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2880 }
2881
2882 Temp tmp;
2883 if (ctx->program->chip_class >= GFX8) {
2884 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2885 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2886 } else {
2887 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2888 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2889 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2890 }
2891 emit_wqm(ctx, tmp, dst, true);
2892 break;
2893 }
2894 default:
2895 isel_err(&instr->instr, "Unknown NIR ALU instr");
2896 }
2897 }
2898
2899 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2900 {
2901 Temp dst = get_ssa_temp(ctx, &instr->def);
2902
2903 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2904 // which get truncated the lsb if double and msb if int
2905 // for now, we only use s_mov_b64 with 64bit inline constants
2906 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2907 assert(dst.type() == RegType::sgpr);
2908
2909 Builder bld(ctx->program, ctx->block);
2910
2911 if (instr->def.bit_size == 1) {
2912 assert(dst.regClass() == bld.lm);
2913 int val = instr->value[0].b ? -1 : 0;
2914 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2915 bld.sop1(Builder::s_mov, Definition(dst), op);
2916 } else if (instr->def.bit_size == 8) {
2917 /* ensure that the value is correctly represented in the low byte of the register */
2918 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
2919 } else if (instr->def.bit_size == 16) {
2920 /* ensure that the value is correctly represented in the low half of the register */
2921 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
2922 } else if (dst.size() == 1) {
2923 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2924 } else {
2925 assert(dst.size() != 1);
2926 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2927 if (instr->def.bit_size == 64)
2928 for (unsigned i = 0; i < dst.size(); i++)
2929 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2930 else {
2931 for (unsigned i = 0; i < dst.size(); i++)
2932 vec->operands[i] = Operand{instr->value[i].u32};
2933 }
2934 vec->definitions[0] = Definition(dst);
2935 ctx->block->instructions.emplace_back(std::move(vec));
2936 }
2937 }
2938
2939 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2940 {
2941 uint32_t new_mask = 0;
2942 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2943 if (mask & (1u << i))
2944 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2945 return new_mask;
2946 }
2947
2948 struct LoadEmitInfo {
2949 Operand offset;
2950 Temp dst;
2951 unsigned num_components;
2952 unsigned component_size;
2953 Temp resource = Temp(0, s1);
2954 unsigned component_stride = 0;
2955 unsigned const_offset = 0;
2956 unsigned align_mul = 0;
2957 unsigned align_offset = 0;
2958
2959 bool glc = false;
2960 unsigned swizzle_component_size = 0;
2961 memory_sync_info sync;
2962 Temp soffset = Temp(0, s1);
2963 };
2964
2965 using LoadCallback = Temp(*)(
2966 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
2967 unsigned align, unsigned const_offset, Temp dst_hint);
2968
2969 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
2970 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
2971 {
2972 unsigned load_size = info->num_components * info->component_size;
2973 unsigned component_size = info->component_size;
2974
2975 unsigned num_vals = 0;
2976 Temp vals[info->dst.bytes()];
2977
2978 unsigned const_offset = info->const_offset;
2979
2980 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
2981 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
2982
2983 unsigned bytes_read = 0;
2984 while (bytes_read < load_size) {
2985 unsigned bytes_needed = load_size - bytes_read;
2986
2987 /* add buffer for unaligned loads */
2988 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
2989
2990 if (byte_align) {
2991 if ((bytes_needed > 2 ||
2992 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
2993 !supports_8bit_16bit_loads) && byte_align_loads) {
2994 if (info->component_stride) {
2995 assert(supports_8bit_16bit_loads && "unimplemented");
2996 bytes_needed = 2;
2997 byte_align = 0;
2998 } else {
2999 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3000 bytes_needed = align(bytes_needed, 4);
3001 }
3002 } else {
3003 byte_align = 0;
3004 }
3005 }
3006
3007 if (info->swizzle_component_size)
3008 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3009 if (info->component_stride)
3010 bytes_needed = MIN2(bytes_needed, info->component_size);
3011
3012 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3013
3014 /* reduce constant offset */
3015 Operand offset = info->offset;
3016 unsigned reduced_const_offset = const_offset;
3017 bool remove_const_offset_completely = need_to_align_offset;
3018 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3019 unsigned to_add = const_offset;
3020 if (remove_const_offset_completely) {
3021 reduced_const_offset = 0;
3022 } else {
3023 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3024 reduced_const_offset %= max_const_offset_plus_one;
3025 }
3026 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3027 if (offset.isConstant()) {
3028 offset = Operand(offset.constantValue() + to_add);
3029 } else if (offset_tmp.regClass() == s1) {
3030 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3031 offset_tmp, Operand(to_add));
3032 } else if (offset_tmp.regClass() == v1) {
3033 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3034 } else {
3035 Temp lo = bld.tmp(offset_tmp.type(), 1);
3036 Temp hi = bld.tmp(offset_tmp.type(), 1);
3037 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3038
3039 if (offset_tmp.regClass() == s2) {
3040 Temp carry = bld.tmp(s1);
3041 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3042 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3043 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3044 } else {
3045 Temp new_lo = bld.tmp(v1);
3046 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3047 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3048 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3049 }
3050 }
3051 }
3052
3053 /* align offset down if needed */
3054 Operand aligned_offset = offset;
3055 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3056 if (need_to_align_offset) {
3057 align = 4;
3058 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3059 if (offset.isConstant()) {
3060 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3061 } else if (offset_tmp.regClass() == s1) {
3062 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3063 } else if (offset_tmp.regClass() == s2) {
3064 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3065 } else if (offset_tmp.regClass() == v1) {
3066 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3067 } else if (offset_tmp.regClass() == v2) {
3068 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3069 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3070 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3071 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3072 }
3073 }
3074 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3075 bld.copy(bld.def(s1), aligned_offset);
3076
3077 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3078 reduced_const_offset, byte_align ? Temp() : info->dst);
3079
3080 /* the callback wrote directly to dst */
3081 if (val == info->dst) {
3082 assert(num_vals == 0);
3083 emit_split_vector(ctx, info->dst, info->num_components);
3084 return;
3085 }
3086
3087 /* shift result right if needed */
3088 if (info->component_size < 4 && byte_align_loads) {
3089 Operand align((uint32_t)byte_align);
3090 if (byte_align == -1) {
3091 if (offset.isConstant())
3092 align = Operand(offset.constantValue() % 4u);
3093 else if (offset.size() == 2)
3094 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3095 else
3096 align = offset;
3097 }
3098
3099 assert(val.bytes() >= load_size && "unimplemented");
3100 if (val.type() == RegType::sgpr)
3101 byte_align_scalar(ctx, val, align, info->dst);
3102 else
3103 byte_align_vector(ctx, val, align, info->dst, component_size);
3104 return;
3105 }
3106
3107 /* add result to list and advance */
3108 if (info->component_stride) {
3109 assert(val.bytes() == info->component_size && "unimplemented");
3110 const_offset += info->component_stride;
3111 align_offset = (align_offset + info->component_stride) % align_mul;
3112 } else {
3113 const_offset += val.bytes();
3114 align_offset = (align_offset + val.bytes()) % align_mul;
3115 }
3116 bytes_read += val.bytes();
3117 vals[num_vals++] = val;
3118 }
3119
3120 /* create array of components */
3121 unsigned components_split = 0;
3122 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3123 bool has_vgprs = false;
3124 for (unsigned i = 0; i < num_vals;) {
3125 Temp tmp[num_vals];
3126 unsigned num_tmps = 0;
3127 unsigned tmp_size = 0;
3128 RegType reg_type = RegType::sgpr;
3129 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3130 if (vals[i].type() == RegType::vgpr)
3131 reg_type = RegType::vgpr;
3132 tmp_size += vals[i].bytes();
3133 tmp[num_tmps++] = vals[i++];
3134 }
3135 if (num_tmps > 1) {
3136 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3137 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3138 for (unsigned i = 0; i < num_tmps; i++)
3139 vec->operands[i] = Operand(tmp[i]);
3140 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3141 vec->definitions[0] = Definition(tmp[0]);
3142 bld.insert(std::move(vec));
3143 }
3144
3145 if (tmp[0].bytes() % component_size) {
3146 /* trim tmp[0] */
3147 assert(i == num_vals);
3148 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3149 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3150 }
3151
3152 RegClass elem_rc = RegClass::get(reg_type, component_size);
3153
3154 unsigned start = components_split;
3155
3156 if (tmp_size == elem_rc.bytes()) {
3157 allocated_vec[components_split++] = tmp[0];
3158 } else {
3159 assert(tmp_size % elem_rc.bytes() == 0);
3160 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3161 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3162 for (unsigned i = 0; i < split->definitions.size(); i++) {
3163 Temp component = bld.tmp(elem_rc);
3164 allocated_vec[components_split++] = component;
3165 split->definitions[i] = Definition(component);
3166 }
3167 split->operands[0] = Operand(tmp[0]);
3168 bld.insert(std::move(split));
3169 }
3170
3171 /* try to p_as_uniform early so we can create more optimizable code and
3172 * also update allocated_vec */
3173 for (unsigned j = start; j < components_split; j++) {
3174 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3175 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3176 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3177 }
3178 }
3179
3180 /* concatenate components and p_as_uniform() result if needed */
3181 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3182 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3183
3184 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3185
3186 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3187 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3188 for (unsigned i = 0; i < info->num_components; i++)
3189 vec->operands[i] = Operand(allocated_vec[i]);
3190 if (padding_bytes)
3191 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3192 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3193 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3194 vec->definitions[0] = Definition(tmp);
3195 bld.insert(std::move(vec));
3196 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3197 } else {
3198 vec->definitions[0] = Definition(info->dst);
3199 bld.insert(std::move(vec));
3200 }
3201 }
3202
3203 Operand load_lds_size_m0(Builder& bld)
3204 {
3205 /* TODO: m0 does not need to be initialized on GFX9+ */
3206 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3207 }
3208
3209 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3210 Temp offset, unsigned bytes_needed,
3211 unsigned align, unsigned const_offset,
3212 Temp dst_hint)
3213 {
3214 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3215
3216 Operand m = load_lds_size_m0(bld);
3217
3218 bool large_ds_read = bld.program->chip_class >= GFX7;
3219 bool usable_read2 = bld.program->chip_class >= GFX7;
3220
3221 bool read2 = false;
3222 unsigned size = 0;
3223 aco_opcode op;
3224 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3225 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3226 size = 16;
3227 op = aco_opcode::ds_read_b128;
3228 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3229 size = 16;
3230 read2 = true;
3231 op = aco_opcode::ds_read2_b64;
3232 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3233 size = 12;
3234 op = aco_opcode::ds_read_b96;
3235 } else if (bytes_needed >= 8 && align % 8 == 0) {
3236 size = 8;
3237 op = aco_opcode::ds_read_b64;
3238 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3239 size = 8;
3240 read2 = true;
3241 op = aco_opcode::ds_read2_b32;
3242 } else if (bytes_needed >= 4 && align % 4 == 0) {
3243 size = 4;
3244 op = aco_opcode::ds_read_b32;
3245 } else if (bytes_needed >= 2 && align % 2 == 0) {
3246 size = 2;
3247 op = aco_opcode::ds_read_u16;
3248 } else {
3249 size = 1;
3250 op = aco_opcode::ds_read_u8;
3251 }
3252
3253 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3254 if (const_offset >= max_offset_plus_one) {
3255 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3256 const_offset %= max_offset_plus_one;
3257 }
3258
3259 if (read2)
3260 const_offset /= (size / 2u);
3261
3262 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3263 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3264 Instruction *instr;
3265 if (read2)
3266 instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3267 else
3268 instr = bld.ds(op, Definition(val), offset, m, const_offset);
3269 static_cast<DS_instruction *>(instr)->sync = info->sync;
3270
3271 if (size < 4)
3272 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3273
3274 return val;
3275 }
3276
3277 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3278
3279 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3280 Temp offset, unsigned bytes_needed,
3281 unsigned align, unsigned const_offset,
3282 Temp dst_hint)
3283 {
3284 unsigned size = 0;
3285 aco_opcode op;
3286 if (bytes_needed <= 4) {
3287 size = 1;
3288 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3289 } else if (bytes_needed <= 8) {
3290 size = 2;
3291 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3292 } else if (bytes_needed <= 16) {
3293 size = 4;
3294 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3295 } else if (bytes_needed <= 32) {
3296 size = 8;
3297 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3298 } else {
3299 size = 16;
3300 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3301 }
3302 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3303 if (info->resource.id()) {
3304 load->operands[0] = Operand(info->resource);
3305 load->operands[1] = Operand(offset);
3306 } else {
3307 load->operands[0] = Operand(offset);
3308 load->operands[1] = Operand(0u);
3309 }
3310 RegClass rc(RegType::sgpr, size);
3311 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3312 load->definitions[0] = Definition(val);
3313 load->glc = info->glc;
3314 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3315 load->sync = info->sync;
3316 bld.insert(std::move(load));
3317 return val;
3318 }
3319
3320 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3321
3322 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3323 Temp offset, unsigned bytes_needed,
3324 unsigned align_, unsigned const_offset,
3325 Temp dst_hint)
3326 {
3327 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3328 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3329
3330 if (info->soffset.id()) {
3331 if (soffset.isTemp())
3332 vaddr = bld.copy(bld.def(v1), soffset);
3333 soffset = Operand(info->soffset);
3334 }
3335
3336 unsigned bytes_size = 0;
3337 aco_opcode op;
3338 if (bytes_needed == 1 || align_ % 2) {
3339 bytes_size = 1;
3340 op = aco_opcode::buffer_load_ubyte;
3341 } else if (bytes_needed == 2 || align_ % 4) {
3342 bytes_size = 2;
3343 op = aco_opcode::buffer_load_ushort;
3344 } else if (bytes_needed <= 4) {
3345 bytes_size = 4;
3346 op = aco_opcode::buffer_load_dword;
3347 } else if (bytes_needed <= 8) {
3348 bytes_size = 8;
3349 op = aco_opcode::buffer_load_dwordx2;
3350 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3351 bytes_size = 12;
3352 op = aco_opcode::buffer_load_dwordx3;
3353 } else {
3354 bytes_size = 16;
3355 op = aco_opcode::buffer_load_dwordx4;
3356 }
3357 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3358 mubuf->operands[0] = Operand(info->resource);
3359 mubuf->operands[1] = vaddr;
3360 mubuf->operands[2] = soffset;
3361 mubuf->offen = (offset.type() == RegType::vgpr);
3362 mubuf->glc = info->glc;
3363 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3364 mubuf->sync = info->sync;
3365 mubuf->offset = const_offset;
3366 mubuf->swizzled = info->swizzle_component_size != 0;
3367 RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
3368 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3369 mubuf->definitions[0] = Definition(val);
3370 bld.insert(std::move(mubuf));
3371
3372 return val;
3373 }
3374
3375 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3376 static auto emit_scratch_load = emit_load<mubuf_load_callback, false, true, 4096>;
3377
3378 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3379 {
3380 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3381 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3382
3383 if (addr.type() == RegType::vgpr)
3384 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3385 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3386 }
3387
3388 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3389 Temp offset, unsigned bytes_needed,
3390 unsigned align_, unsigned const_offset,
3391 Temp dst_hint)
3392 {
3393 unsigned bytes_size = 0;
3394 bool mubuf = bld.program->chip_class == GFX6;
3395 bool global = bld.program->chip_class >= GFX9;
3396 aco_opcode op;
3397 if (bytes_needed == 1) {
3398 bytes_size = 1;
3399 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3400 } else if (bytes_needed == 2) {
3401 bytes_size = 2;
3402 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3403 } else if (bytes_needed <= 4) {
3404 bytes_size = 4;
3405 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3406 } else if (bytes_needed <= 8) {
3407 bytes_size = 8;
3408 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3409 } else if (bytes_needed <= 12 && !mubuf) {
3410 bytes_size = 12;
3411 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3412 } else {
3413 bytes_size = 16;
3414 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3415 }
3416 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3417 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3418 if (mubuf) {
3419 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3420 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3421 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3422 mubuf->operands[2] = Operand(0u);
3423 mubuf->glc = info->glc;
3424 mubuf->dlc = false;
3425 mubuf->offset = 0;
3426 mubuf->addr64 = offset.type() == RegType::vgpr;
3427 mubuf->disable_wqm = false;
3428 mubuf->sync = info->sync;
3429 mubuf->definitions[0] = Definition(val);
3430 bld.insert(std::move(mubuf));
3431 } else {
3432 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3433
3434 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3435 flat->operands[0] = Operand(offset);
3436 flat->operands[1] = Operand(s1);
3437 flat->glc = info->glc;
3438 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3439 flat->sync = info->sync;
3440 flat->offset = 0u;
3441 flat->definitions[0] = Definition(val);
3442 bld.insert(std::move(flat));
3443 }
3444
3445 return val;
3446 }
3447
3448 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3449
3450 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3451 Temp address, unsigned base_offset, unsigned align)
3452 {
3453 assert(util_is_power_of_two_nonzero(align));
3454
3455 Builder bld(ctx->program, ctx->block);
3456
3457 unsigned num_components = dst.bytes() / elem_size_bytes;
3458 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3459 info.align_mul = align;
3460 info.align_offset = 0;
3461 info.sync = memory_sync_info(storage_shared);
3462 info.const_offset = base_offset;
3463 emit_lds_load(ctx, bld, &info);
3464
3465 return dst;
3466 }
3467
3468 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3469 {
3470 if (!count)
3471 return;
3472
3473 Builder bld(ctx->program, ctx->block);
3474
3475 ASSERTED bool is_subdword = false;
3476 for (unsigned i = 0; i < count; i++)
3477 is_subdword |= offsets[i] % 4;
3478 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3479 assert(!is_subdword || dst_type == RegType::vgpr);
3480
3481 /* count == 1 fast path */
3482 if (count == 1) {
3483 if (dst_type == RegType::sgpr)
3484 dst[0] = bld.as_uniform(src);
3485 else
3486 dst[0] = as_vgpr(ctx, src);
3487 return;
3488 }
3489
3490 for (unsigned i = 0; i < count - 1; i++)
3491 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3492 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3493
3494 if (is_subdword && src.type() == RegType::sgpr) {
3495 src = as_vgpr(ctx, src);
3496 } else {
3497 /* use allocated_vec if possible */
3498 auto it = ctx->allocated_vec.find(src.id());
3499 if (it != ctx->allocated_vec.end()) {
3500 if (!it->second[0].id())
3501 goto split;
3502 unsigned elem_size = it->second[0].bytes();
3503 assert(src.bytes() % elem_size == 0);
3504
3505 for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
3506 if (!it->second[i].id())
3507 goto split;
3508 }
3509
3510 for (unsigned i = 0; i < count; i++) {
3511 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3512 goto split;
3513 }
3514
3515 for (unsigned i = 0; i < count; i++) {
3516 unsigned start_idx = offsets[i] / elem_size;
3517 unsigned op_count = dst[i].bytes() / elem_size;
3518 if (op_count == 1) {
3519 if (dst_type == RegType::sgpr)
3520 dst[i] = bld.as_uniform(it->second[start_idx]);
3521 else
3522 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3523 continue;
3524 }
3525
3526 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3527 for (unsigned j = 0; j < op_count; j++) {
3528 Temp tmp = it->second[start_idx + j];
3529 if (dst_type == RegType::sgpr)
3530 tmp = bld.as_uniform(tmp);
3531 vec->operands[j] = Operand(tmp);
3532 }
3533 vec->definitions[0] = Definition(dst[i]);
3534 bld.insert(std::move(vec));
3535 }
3536 return;
3537 }
3538 }
3539
3540 split:
3541
3542 if (dst_type == RegType::sgpr)
3543 src = bld.as_uniform(src);
3544
3545 /* just split it */
3546 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3547 split->operands[0] = Operand(src);
3548 for (unsigned i = 0; i < count; i++)
3549 split->definitions[i] = Definition(dst[i]);
3550 bld.insert(std::move(split));
3551 }
3552
3553 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3554 int *start, int *count)
3555 {
3556 unsigned start_elem = ffs(todo_mask) - 1;
3557 bool skip = !(mask & (1 << start_elem));
3558 if (skip)
3559 mask = ~mask & todo_mask;
3560
3561 mask &= todo_mask;
3562
3563 u_bit_scan_consecutive_range(&mask, start, count);
3564
3565 return !skip;
3566 }
3567
3568 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3569 {
3570 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3571 }
3572
3573 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3574 Temp address, unsigned base_offset, unsigned align)
3575 {
3576 assert(util_is_power_of_two_nonzero(align));
3577 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3578
3579 Builder bld(ctx->program, ctx->block);
3580 bool large_ds_write = ctx->options->chip_class >= GFX7;
3581 bool usable_write2 = ctx->options->chip_class >= GFX7;
3582
3583 unsigned write_count = 0;
3584 Temp write_datas[32];
3585 unsigned offsets[32];
3586 aco_opcode opcodes[32];
3587
3588 wrmask = widen_mask(wrmask, elem_size_bytes);
3589
3590 uint32_t todo = u_bit_consecutive(0, data.bytes());
3591 while (todo) {
3592 int offset, bytes;
3593 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3594 offsets[write_count] = offset;
3595 opcodes[write_count] = aco_opcode::num_opcodes;
3596 write_count++;
3597 advance_write_mask(&todo, offset, bytes);
3598 continue;
3599 }
3600
3601 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3602 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3603 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3604 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3605
3606 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3607 aco_opcode op = aco_opcode::num_opcodes;
3608 if (bytes >= 16 && aligned16 && large_ds_write) {
3609 op = aco_opcode::ds_write_b128;
3610 bytes = 16;
3611 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3612 op = aco_opcode::ds_write_b96;
3613 bytes = 12;
3614 } else if (bytes >= 8 && aligned8) {
3615 op = aco_opcode::ds_write_b64;
3616 bytes = 8;
3617 } else if (bytes >= 4 && aligned4) {
3618 op = aco_opcode::ds_write_b32;
3619 bytes = 4;
3620 } else if (bytes >= 2 && aligned2) {
3621 op = aco_opcode::ds_write_b16;
3622 bytes = 2;
3623 } else if (bytes >= 1) {
3624 op = aco_opcode::ds_write_b8;
3625 bytes = 1;
3626 } else {
3627 assert(false);
3628 }
3629
3630 offsets[write_count] = offset;
3631 opcodes[write_count] = op;
3632 write_count++;
3633 advance_write_mask(&todo, offset, bytes);
3634 }
3635
3636 Operand m = load_lds_size_m0(bld);
3637
3638 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3639
3640 for (unsigned i = 0; i < write_count; i++) {
3641 aco_opcode op = opcodes[i];
3642 if (op == aco_opcode::num_opcodes)
3643 continue;
3644
3645 Temp data = write_datas[i];
3646
3647 unsigned second = write_count;
3648 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3649 for (second = i + 1; second < write_count; second++) {
3650 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3651 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3652 opcodes[second] = aco_opcode::num_opcodes;
3653 break;
3654 }
3655 }
3656 }
3657
3658 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3659 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3660
3661 unsigned inline_offset = base_offset + offsets[i];
3662 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3663 Temp address_offset = address;
3664 if (inline_offset > max_offset) {
3665 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3666 inline_offset = offsets[i];
3667 }
3668 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3669
3670 Instruction *instr;
3671 if (write2) {
3672 Temp second_data = write_datas[second];
3673 inline_offset /= data.bytes();
3674 instr = bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3675 } else {
3676 instr = bld.ds(op, address_offset, data, m, inline_offset);
3677 }
3678 static_cast<DS_instruction *>(instr)->sync =
3679 memory_sync_info(storage_shared);
3680 }
3681 }
3682
3683 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3684 {
3685 unsigned align = 16;
3686 if (const_offset)
3687 align = std::min(align, 1u << (ffs(const_offset) - 1));
3688
3689 return align;
3690 }
3691
3692
3693 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3694 {
3695 switch (bytes) {
3696 case 1:
3697 assert(!smem);
3698 return aco_opcode::buffer_store_byte;
3699 case 2:
3700 assert(!smem);
3701 return aco_opcode::buffer_store_short;
3702 case 4:
3703 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3704 case 8:
3705 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3706 case 12:
3707 assert(!smem);
3708 return aco_opcode::buffer_store_dwordx3;
3709 case 16:
3710 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3711 }
3712 unreachable("Unexpected store size");
3713 return aco_opcode::num_opcodes;
3714 }
3715
3716 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3717 Temp data, unsigned writemask, int swizzle_element_size,
3718 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3719 {
3720 unsigned write_count_with_skips = 0;
3721 bool skips[16];
3722
3723 /* determine how to split the data */
3724 unsigned todo = u_bit_consecutive(0, data.bytes());
3725 while (todo) {
3726 int offset, bytes;
3727 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3728 offsets[write_count_with_skips] = offset;
3729 if (skips[write_count_with_skips]) {
3730 advance_write_mask(&todo, offset, bytes);
3731 write_count_with_skips++;
3732 continue;
3733 }
3734
3735 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3736 * larger than swizzle_element_size */
3737 bytes = MIN2(bytes, swizzle_element_size);
3738 if (bytes % 4)
3739 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3740
3741 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3742 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3743 bytes = 8;
3744
3745 /* dword or larger stores have to be dword-aligned */
3746 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3747 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3748 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3749 if (!dword_aligned)
3750 bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3751
3752 advance_write_mask(&todo, offset, bytes);
3753 write_count_with_skips++;
3754 }
3755
3756 /* actually split data */
3757 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3758
3759 /* remove skips */
3760 for (unsigned i = 0; i < write_count_with_skips; i++) {
3761 if (skips[i])
3762 continue;
3763 write_datas[*write_count] = write_datas[i];
3764 offsets[*write_count] = offsets[i];
3765 (*write_count)++;
3766 }
3767 }
3768
3769 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3770 unsigned split_cnt = 0u, Temp dst = Temp())
3771 {
3772 Builder bld(ctx->program, ctx->block);
3773 unsigned dword_size = elem_size_bytes / 4;
3774
3775 if (!dst.id())
3776 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3777
3778 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3779 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3780 instr->definitions[0] = Definition(dst);
3781
3782 for (unsigned i = 0; i < cnt; ++i) {
3783 if (arr[i].id()) {
3784 assert(arr[i].size() == dword_size);
3785 allocated_vec[i] = arr[i];
3786 instr->operands[i] = Operand(arr[i]);
3787 } else {
3788 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3789 allocated_vec[i] = zero;
3790 instr->operands[i] = Operand(zero);
3791 }
3792 }
3793
3794 bld.insert(std::move(instr));
3795
3796 if (split_cnt)
3797 emit_split_vector(ctx, dst, split_cnt);
3798 else
3799 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3800
3801 return dst;
3802 }
3803
3804 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3805 {
3806 if (const_offset >= 4096) {
3807 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3808 const_offset %= 4096u;
3809
3810 if (!voffset.id())
3811 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3812 else if (unlikely(voffset.regClass() == s1))
3813 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3814 else if (likely(voffset.regClass() == v1))
3815 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3816 else
3817 unreachable("Unsupported register class of voffset");
3818 }
3819
3820 return const_offset;
3821 }
3822
3823 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3824 unsigned const_offset = 0u, memory_sync_info sync=memory_sync_info(),
3825 bool slc = false, bool swizzled = false)
3826 {
3827 assert(vdata.id());
3828 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3829 assert(vdata.size() >= 1 && vdata.size() <= 4);
3830
3831 Builder bld(ctx->program, ctx->block);
3832 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
3833 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3834
3835 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3836 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3837 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3838 /* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled,
3839 /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true,
3840 /* dlc*/ false, /* slc */ slc);
3841
3842 static_cast<MUBUF_instruction *>(r.instr)->sync = sync;
3843 }
3844
3845 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3846 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3847 bool allow_combining = true, memory_sync_info sync=memory_sync_info(), bool slc = false)
3848 {
3849 Builder bld(ctx->program, ctx->block);
3850 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3851 assert(write_mask);
3852 write_mask = widen_mask(write_mask, elem_size_bytes);
3853
3854 unsigned write_count = 0;
3855 Temp write_datas[32];
3856 unsigned offsets[32];
3857 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
3858 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
3859
3860 for (unsigned i = 0; i < write_count; i++) {
3861 unsigned const_offset = offsets[i] + base_const_offset;
3862 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, sync, slc, !allow_combining);
3863 }
3864 }
3865
3866 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3867 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3868 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3869 {
3870 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3871 assert((num_components * elem_size_bytes) == dst.bytes());
3872 assert(!!stride != allow_combining);
3873
3874 Builder bld(ctx->program, ctx->block);
3875
3876 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
3877 info.component_stride = allow_combining ? 0 : stride;
3878 info.glc = true;
3879 info.swizzle_component_size = allow_combining ? 0 : 4;
3880 info.align_mul = MIN2(elem_size_bytes, 4);
3881 info.align_offset = 0;
3882 info.soffset = soffset;
3883 info.const_offset = base_const_offset;
3884 emit_mubuf_load(ctx, bld, &info);
3885 }
3886
3887 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3888 {
3889 Builder bld(ctx->program, ctx->block);
3890 Temp offset = base_offset.first;
3891 unsigned const_offset = base_offset.second;
3892
3893 if (!nir_src_is_const(*off_src)) {
3894 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3895 Temp with_stride;
3896
3897 /* Calculate indirect offset with stride */
3898 if (likely(indirect_offset_arg.regClass() == v1))
3899 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
3900 else if (indirect_offset_arg.regClass() == s1)
3901 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3902 else
3903 unreachable("Unsupported register class of indirect offset");
3904
3905 /* Add to the supplied base offset */
3906 if (offset.id() == 0)
3907 offset = with_stride;
3908 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3909 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3910 else if (offset.size() == 1 && with_stride.size() == 1)
3911 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3912 else
3913 unreachable("Unsupported register class of indirect offset");
3914 } else {
3915 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3916 const_offset += const_offset_arg * stride;
3917 }
3918
3919 return std::make_pair(offset, const_offset);
3920 }
3921
3922 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3923 {
3924 Builder bld(ctx->program, ctx->block);
3925 Temp offset;
3926
3927 if (off1.first.id() && off2.first.id()) {
3928 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3929 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3930 else if (off1.first.size() == 1 && off2.first.size() == 1)
3931 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3932 else
3933 unreachable("Unsupported register class of indirect offset");
3934 } else {
3935 offset = off1.first.id() ? off1.first : off2.first;
3936 }
3937
3938 return std::make_pair(offset, off1.second + off2.second);
3939 }
3940
3941 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3942 {
3943 Builder bld(ctx->program, ctx->block);
3944 unsigned const_offset = offs.second * multiplier;
3945
3946 if (!offs.first.id())
3947 return std::make_pair(offs.first, const_offset);
3948
3949 Temp offset = unlikely(offs.first.regClass() == s1)
3950 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3951 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
3952
3953 return std::make_pair(offset, const_offset);
3954 }
3955
3956 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3957 {
3958 Builder bld(ctx->program, ctx->block);
3959
3960 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3961 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3962 /* component is in bytes */
3963 const_offset += nir_intrinsic_component(instr) * component_stride;
3964
3965 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3966 nir_src *off_src = nir_get_io_offset_src(instr);
3967 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3968 }
3969
3970 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3971 {
3972 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3973 }
3974
3975 Temp get_tess_rel_patch_id(isel_context *ctx)
3976 {
3977 Builder bld(ctx->program, ctx->block);
3978
3979 switch (ctx->shader->info.stage) {
3980 case MESA_SHADER_TESS_CTRL:
3981 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3982 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3983 case MESA_SHADER_TESS_EVAL:
3984 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3985 default:
3986 unreachable("Unsupported stage in get_tess_rel_patch_id");
3987 }
3988 }
3989
3990 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3991 {
3992 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3993 Builder bld(ctx->program, ctx->block);
3994
3995 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3996 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3997
3998 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3999
4000 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4001 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4002
4003 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4004 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4005 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4006
4007 return offset_mul(ctx, offs, 4u);
4008 }
4009
4010 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4011 {
4012 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4013 Builder bld(ctx->program, ctx->block);
4014
4015 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4016 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4017 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4018 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4019
4020 std::pair<Temp, unsigned> offs = instr
4021 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4022 : std::make_pair(Temp(), 0u);
4023
4024 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4025 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4026
4027 if (per_vertex) {
4028 assert(instr);
4029
4030 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4031 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4032
4033 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4034 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4035 } else {
4036 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4037 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4038 }
4039
4040 return offs;
4041 }
4042
4043 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4044 {
4045 Builder bld(ctx->program, ctx->block);
4046
4047 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4048 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4049
4050 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4051
4052 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4053 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4054 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4055
4056 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4057 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4058
4059 return offs;
4060 }
4061
4062 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4063 {
4064 Builder bld(ctx->program, ctx->block);
4065
4066 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4067 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4068 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4069 unsigned attr_stride = ctx->tcs_num_patches;
4070
4071 std::pair<Temp, unsigned> offs = instr
4072 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4073 : std::make_pair(Temp(), 0u);
4074
4075 if (const_base_offset)
4076 offs.second += const_base_offset * attr_stride;
4077
4078 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4079 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4080 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4081
4082 return offs;
4083 }
4084
4085 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4086 {
4087 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4088
4089 if (mask == 0)
4090 return false;
4091
4092 unsigned drv_loc = nir_intrinsic_base(instr);
4093 nir_src *off_src = nir_get_io_offset_src(instr);
4094
4095 if (!nir_src_is_const(*off_src)) {
4096 *indirect = true;
4097 return false;
4098 }
4099
4100 *indirect = false;
4101 uint64_t slot = per_vertex
4102 ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
4103 : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
4104 return (((uint64_t) 1) << slot) & mask;
4105 }
4106
4107 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4108 {
4109 unsigned write_mask = nir_intrinsic_write_mask(instr);
4110 unsigned component = nir_intrinsic_component(instr);
4111 unsigned idx = nir_intrinsic_base(instr) + component;
4112
4113 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4114 if (off_instr->type != nir_instr_type_load_const)
4115 return false;
4116
4117 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4118 idx += nir_src_as_uint(instr->src[1]) * 4u;
4119
4120 if (instr->src[0].ssa->bit_size == 64)
4121 write_mask = widen_mask(write_mask, 2);
4122
4123 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4124
4125 for (unsigned i = 0; i < 8; ++i) {
4126 if (write_mask & (1 << i)) {
4127 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4128 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4129 }
4130 idx++;
4131 }
4132
4133 return true;
4134 }
4135
4136 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4137 {
4138 /* Only TCS per-vertex inputs are supported by this function.
4139 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4140 */
4141 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4142 return false;
4143
4144 nir_src *off_src = nir_get_io_offset_src(instr);
4145 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4146 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4147 bool can_use_temps = nir_src_is_const(*off_src) &&
4148 vertex_index_instr->type == nir_instr_type_intrinsic &&
4149 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4150
4151 if (!can_use_temps)
4152 return false;
4153
4154 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4155 Temp *src = &ctx->inputs.temps[idx];
4156 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4157
4158 return true;
4159 }
4160
4161 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4162 {
4163 Builder bld(ctx->program, ctx->block);
4164
4165 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4166 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4167 bool indirect_write;
4168 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4169 if (temp_only_input && !indirect_write)
4170 return;
4171 }
4172
4173 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4174 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4175 unsigned write_mask = nir_intrinsic_write_mask(instr);
4176 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4177
4178 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4179 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4180 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4181 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4182 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, memory_sync_info(), true);
4183 } else {
4184 Temp lds_base;
4185
4186 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4187 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4188 unsigned itemsize = ctx->stage == vertex_geometry_gs
4189 ? ctx->program->info->vs.es_info.esgs_itemsize
4190 : ctx->program->info->tes.es_info.esgs_itemsize;
4191 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4192 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4193 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4194 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4195 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4196 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4197 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4198 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4199 */
4200 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4201 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4202 } else {
4203 unreachable("Invalid LS or ES stage");
4204 }
4205
4206 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4207 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4208 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4209 }
4210 }
4211
4212 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4213 {
4214 if (per_vertex)
4215 return false;
4216
4217 unsigned off = nir_intrinsic_base(instr) * 4u;
4218 return off == ctx->tcs_tess_lvl_out_loc ||
4219 off == ctx->tcs_tess_lvl_in_loc;
4220
4221 }
4222
4223 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4224 {
4225 uint64_t mask = per_vertex
4226 ? ctx->program->info->tcs.tes_inputs_read
4227 : ctx->program->info->tcs.tes_patch_inputs_read;
4228
4229 bool indirect_write = false;
4230 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4231 return indirect_write || output_read_by_tes;
4232 }
4233
4234 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4235 {
4236 uint64_t mask = per_vertex
4237 ? ctx->shader->info.outputs_read
4238 : ctx->shader->info.patch_outputs_read;
4239
4240 bool indirect_write = false;
4241 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4242 return indirect_write || output_read;
4243 }
4244
4245 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4246 {
4247 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4248 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4249
4250 Builder bld(ctx->program, ctx->block);
4251
4252 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4253 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4254 unsigned write_mask = nir_intrinsic_write_mask(instr);
4255
4256 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4257 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4258 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4259
4260 if (write_to_vmem) {
4261 std::pair<Temp, unsigned> vmem_offs = per_vertex
4262 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4263 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4264
4265 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4266 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4267 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, memory_sync_info(storage_vmem_output));
4268 }
4269
4270 if (write_to_lds) {
4271 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4272 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4273 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4274 }
4275 }
4276
4277 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4278 {
4279 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4280 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4281
4282 Builder bld(ctx->program, ctx->block);
4283
4284 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4285 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4286 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4287 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4288
4289 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4290 }
4291
4292 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4293 {
4294 if (ctx->stage == vertex_vs ||
4295 ctx->stage == tess_eval_vs ||
4296 ctx->stage == fragment_fs ||
4297 ctx->stage == ngg_vertex_gs ||
4298 ctx->stage == ngg_tess_eval_gs ||
4299 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4300 bool stored_to_temps = store_output_to_temps(ctx, instr);
4301 if (!stored_to_temps) {
4302 isel_err(instr->src[1].ssa->parent_instr, "Unimplemented output offset instruction");
4303 abort();
4304 }
4305 } else if (ctx->stage == vertex_es ||
4306 ctx->stage == vertex_ls ||
4307 ctx->stage == tess_eval_es ||
4308 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4309 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4310 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4311 visit_store_ls_or_es_output(ctx, instr);
4312 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4313 visit_store_tcs_output(ctx, instr, false);
4314 } else {
4315 unreachable("Shader stage not implemented");
4316 }
4317 }
4318
4319 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4320 {
4321 visit_load_tcs_output(ctx, instr, false);
4322 }
4323
4324 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4325 {
4326 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4327 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4328
4329 Builder bld(ctx->program, ctx->block);
4330
4331 if (dst.regClass() == v2b) {
4332 if (ctx->program->has_16bank_lds) {
4333 assert(ctx->options->chip_class <= GFX8);
4334 Builder::Result interp_p1 =
4335 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4336 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4337 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4338 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4339 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4340 bld.m0(prim_mask), interp_p1, idx, component);
4341 } else {
4342 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4343
4344 if (ctx->options->chip_class == GFX8)
4345 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4346
4347 Builder::Result interp_p1 =
4348 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4349 coord1, bld.m0(prim_mask), idx, component);
4350 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4351 interp_p1, idx, component);
4352 }
4353 } else {
4354 Builder::Result interp_p1 =
4355 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4356 bld.m0(prim_mask), idx, component);
4357
4358 if (ctx->program->has_16bank_lds)
4359 interp_p1.instr->operands[0].setLateKill(true);
4360
4361 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4362 bld.m0(prim_mask), interp_p1, idx, component);
4363 }
4364 }
4365
4366 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4367 {
4368 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4369 for (unsigned i = 0; i < num_components; i++)
4370 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4371 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4372 assert(num_components == 4);
4373 Builder bld(ctx->program, ctx->block);
4374 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4375 }
4376
4377 for (Operand& op : vec->operands)
4378 op = op.isUndefined() ? Operand(0u) : op;
4379
4380 vec->definitions[0] = Definition(dst);
4381 ctx->block->instructions.emplace_back(std::move(vec));
4382 emit_split_vector(ctx, dst, num_components);
4383 return;
4384 }
4385
4386 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4387 {
4388 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4389 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4390 unsigned idx = nir_intrinsic_base(instr);
4391 unsigned component = nir_intrinsic_component(instr);
4392 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4393
4394 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4395 if (offset) {
4396 assert(offset->u32 == 0);
4397 } else {
4398 /* the lower 15bit of the prim_mask contain the offset into LDS
4399 * while the upper bits contain the number of prims */
4400 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4401 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4402 Builder bld(ctx->program, ctx->block);
4403 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4404 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4405 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4406 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4407 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4408 }
4409
4410 if (instr->dest.ssa.num_components == 1) {
4411 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4412 } else {
4413 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4414 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4415 {
4416 Temp tmp = {ctx->program->allocateId(), v1};
4417 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4418 vec->operands[i] = Operand(tmp);
4419 }
4420 vec->definitions[0] = Definition(dst);
4421 ctx->block->instructions.emplace_back(std::move(vec));
4422 }
4423 }
4424
4425 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4426 unsigned offset, unsigned stride, unsigned channels)
4427 {
4428 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4429 if (vtx_info->chan_byte_size != 4 && channels == 3)
4430 return false;
4431 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4432 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4433 }
4434
4435 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4436 unsigned offset, unsigned stride, unsigned *channels)
4437 {
4438 if (!vtx_info->chan_byte_size) {
4439 *channels = vtx_info->num_channels;
4440 return vtx_info->chan_format;
4441 }
4442
4443 unsigned num_channels = *channels;
4444 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4445 unsigned new_channels = num_channels + 1;
4446 /* first, assume more loads is worse and try using a larger data format */
4447 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4448 new_channels++;
4449 /* don't make the attribute potentially out-of-bounds */
4450 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4451 new_channels = 5;
4452 }
4453
4454 if (new_channels == 5) {
4455 /* then try decreasing load size (at the cost of more loads) */
4456 new_channels = *channels;
4457 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4458 new_channels--;
4459 }
4460
4461 if (new_channels < *channels)
4462 *channels = new_channels;
4463 num_channels = new_channels;
4464 }
4465
4466 switch (vtx_info->chan_format) {
4467 case V_008F0C_BUF_DATA_FORMAT_8:
4468 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4469 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4470 case V_008F0C_BUF_DATA_FORMAT_16:
4471 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4472 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4473 case V_008F0C_BUF_DATA_FORMAT_32:
4474 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4475 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4476 }
4477 unreachable("shouldn't reach here");
4478 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4479 }
4480
4481 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4482 * so we may need to fix it up. */
4483 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4484 {
4485 Builder bld(ctx->program, ctx->block);
4486
4487 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4488 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4489
4490 /* For the integer-like cases, do a natural sign extension.
4491 *
4492 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4493 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4494 * exponent.
4495 */
4496 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4497 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4498
4499 /* Convert back to the right type. */
4500 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4501 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4502 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4503 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4504 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4505 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4506 }
4507
4508 return alpha;
4509 }
4510
4511 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4512 {
4513 Builder bld(ctx->program, ctx->block);
4514 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4515 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4516
4517 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4518 if (off_instr->type != nir_instr_type_load_const) {
4519 isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
4520 }
4521 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4522
4523 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4524
4525 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4526 unsigned component = nir_intrinsic_component(instr);
4527 unsigned bitsize = instr->dest.ssa.bit_size;
4528 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4529 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4530 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4531 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4532
4533 unsigned dfmt = attrib_format & 0xf;
4534 unsigned nfmt = (attrib_format >> 4) & 0x7;
4535 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4536
4537 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4538 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4539 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4540 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4541 if (post_shuffle)
4542 num_channels = MAX2(num_channels, 3);
4543
4544 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4545 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4546
4547 Temp index;
4548 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4549 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4550 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4551 if (divisor) {
4552 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4553 if (divisor != 1) {
4554 Temp divided = bld.tmp(v1);
4555 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4556 index = bld.vadd32(bld.def(v1), start_instance, divided);
4557 } else {
4558 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4559 }
4560 } else {
4561 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4562 }
4563 } else {
4564 index = bld.vadd32(bld.def(v1),
4565 get_arg(ctx, ctx->args->ac.base_vertex),
4566 get_arg(ctx, ctx->args->ac.vertex_id));
4567 }
4568
4569 Temp channels[num_channels];
4570 unsigned channel_start = 0;
4571 bool direct_fetch = false;
4572
4573 /* skip unused channels at the start */
4574 if (vtx_info->chan_byte_size && !post_shuffle) {
4575 channel_start = ffs(mask) - 1;
4576 for (unsigned i = 0; i < channel_start; i++)
4577 channels[i] = Temp(0, s1);
4578 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4579 num_channels = 3 - (ffs(mask) - 1);
4580 }
4581
4582 /* load channels */
4583 while (channel_start < num_channels) {
4584 unsigned fetch_component = num_channels - channel_start;
4585 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4586 bool expanded = false;
4587
4588 /* use MUBUF when possible to avoid possible alignment issues */
4589 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4590 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4591 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4592 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4593 vtx_info->chan_byte_size == 4;
4594 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4595 if (!use_mubuf) {
4596 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4597 } else {
4598 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4599 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4600 fetch_component = 4;
4601 expanded = true;
4602 }
4603 }
4604
4605 unsigned fetch_bytes = fetch_component * bitsize / 8;
4606
4607 Temp fetch_index = index;
4608 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4609 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4610 fetch_offset = fetch_offset % attrib_stride;
4611 }
4612
4613 Operand soffset(0u);
4614 if (fetch_offset >= 4096) {
4615 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4616 fetch_offset %= 4096;
4617 }
4618
4619 aco_opcode opcode;
4620 switch (fetch_bytes) {
4621 case 2:
4622 assert(!use_mubuf && bitsize == 16);
4623 opcode = aco_opcode::tbuffer_load_format_d16_x;
4624 break;
4625 case 4:
4626 if (bitsize == 16) {
4627 assert(!use_mubuf);
4628 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4629 } else {
4630 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4631 }
4632 break;
4633 case 6:
4634 assert(!use_mubuf && bitsize == 16);
4635 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4636 break;
4637 case 8:
4638 if (bitsize == 16) {
4639 assert(!use_mubuf);
4640 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4641 } else {
4642 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4643 }
4644 break;
4645 case 12:
4646 assert(ctx->options->chip_class >= GFX7 ||
4647 (!use_mubuf && ctx->options->chip_class == GFX6));
4648 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4649 break;
4650 case 16:
4651 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4652 break;
4653 default:
4654 unreachable("Unimplemented load_input vector size");
4655 }
4656
4657 Temp fetch_dst;
4658 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4659 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4660 num_channels <= 3)) {
4661 direct_fetch = true;
4662 fetch_dst = dst;
4663 } else {
4664 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4665 }
4666
4667 if (use_mubuf) {
4668 bld.mubuf(opcode,
4669 Definition(fetch_dst), list, fetch_index, soffset,
4670 fetch_offset, false, false, true).instr;
4671 } else {
4672 bld.mtbuf(opcode,
4673 Definition(fetch_dst), list, fetch_index, soffset,
4674 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4675 }
4676
4677 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4678
4679 if (fetch_component == 1) {
4680 channels[channel_start] = fetch_dst;
4681 } else {
4682 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4683 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4684 bitsize == 16 ? v2b : v1);
4685 }
4686
4687 channel_start += fetch_component;
4688 }
4689
4690 if (!direct_fetch) {
4691 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4692 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4693
4694 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4695 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4696 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4697
4698 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4699 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4700 unsigned num_temp = 0;
4701 for (unsigned i = 0; i < dst.size(); i++) {
4702 unsigned idx = i + component;
4703 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4704 Temp channel = channels[swizzle[idx]];
4705 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4706 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4707 vec->operands[i] = Operand(channel);
4708
4709 num_temp++;
4710 elems[i] = channel;
4711 } else if (is_float && idx == 3) {
4712 vec->operands[i] = Operand(0x3f800000u);
4713 } else if (!is_float && idx == 3) {
4714 vec->operands[i] = Operand(1u);
4715 } else {
4716 vec->operands[i] = Operand(0u);
4717 }
4718 }
4719 vec->definitions[0] = Definition(dst);
4720 ctx->block->instructions.emplace_back(std::move(vec));
4721 emit_split_vector(ctx, dst, dst.size());
4722
4723 if (num_temp == dst.size())
4724 ctx->allocated_vec.emplace(dst.id(), elems);
4725 }
4726 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4727 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4728 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4729 if (off_instr->type != nir_instr_type_load_const ||
4730 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4731 isel_err(off_instr, "Unimplemented nir_intrinsic_load_input offset");
4732 }
4733
4734 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4735 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4736 if (offset) {
4737 assert(offset->u32 == 0);
4738 } else {
4739 /* the lower 15bit of the prim_mask contain the offset into LDS
4740 * while the upper bits contain the number of prims */
4741 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4742 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4743 Builder bld(ctx->program, ctx->block);
4744 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4745 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4746 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4747 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4748 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4749 }
4750
4751 unsigned idx = nir_intrinsic_base(instr);
4752 unsigned component = nir_intrinsic_component(instr);
4753 unsigned vertex_id = 2; /* P0 */
4754
4755 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4756 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4757 switch (src0->u32) {
4758 case 0:
4759 vertex_id = 2; /* P0 */
4760 break;
4761 case 1:
4762 vertex_id = 0; /* P10 */
4763 break;
4764 case 2:
4765 vertex_id = 1; /* P20 */
4766 break;
4767 default:
4768 unreachable("invalid vertex index");
4769 }
4770 }
4771
4772 if (dst.size() == 1) {
4773 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4774 } else {
4775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4776 for (unsigned i = 0; i < dst.size(); i++)
4777 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4778 vec->definitions[0] = Definition(dst);
4779 bld.insert(std::move(vec));
4780 }
4781
4782 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4783 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4784 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4785 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4786 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4787
4788 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4789 } else {
4790 unreachable("Shader stage not implemented");
4791 }
4792 }
4793
4794 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4795 {
4796 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4797
4798 Builder bld(ctx->program, ctx->block);
4799 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4800 Temp vertex_offset;
4801
4802 if (!nir_src_is_const(*vertex_src)) {
4803 /* better code could be created, but this case probably doesn't happen
4804 * much in practice */
4805 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4806 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4807 Temp elem;
4808
4809 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4810 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4811 if (i % 2u)
4812 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4813 } else {
4814 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4815 }
4816
4817 if (vertex_offset.id()) {
4818 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4819 Operand(i), indirect_vertex);
4820 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4821 } else {
4822 vertex_offset = elem;
4823 }
4824 }
4825
4826 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4827 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4828 } else {
4829 unsigned vertex = nir_src_as_uint(*vertex_src);
4830 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4831 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4832 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4833 Operand((vertex % 2u) * 16u), Operand(16u));
4834 else
4835 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4836 }
4837
4838 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4839 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4840 return offset_mul(ctx, offs, 4u);
4841 }
4842
4843 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4844 {
4845 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4846
4847 Builder bld(ctx->program, ctx->block);
4848 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4849 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4850
4851 if (ctx->stage == geometry_gs) {
4852 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4853 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4854 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4855 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4856 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4857 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4858 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4859 } else {
4860 unreachable("Unsupported GS stage.");
4861 }
4862 }
4863
4864 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4865 {
4866 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4867
4868 Builder bld(ctx->program, ctx->block);
4869 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4870
4871 if (load_input_from_temps(ctx, instr, dst))
4872 return;
4873
4874 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4875 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4876 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4877
4878 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4879 }
4880
4881 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4882 {
4883 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4884
4885 Builder bld(ctx->program, ctx->block);
4886
4887 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4888 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4889 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4890
4891 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4892 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4893
4894 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4895 }
4896
4897 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4898 {
4899 switch (ctx->shader->info.stage) {
4900 case MESA_SHADER_GEOMETRY:
4901 visit_load_gs_per_vertex_input(ctx, instr);
4902 break;
4903 case MESA_SHADER_TESS_CTRL:
4904 visit_load_tcs_per_vertex_input(ctx, instr);
4905 break;
4906 case MESA_SHADER_TESS_EVAL:
4907 visit_load_tes_per_vertex_input(ctx, instr);
4908 break;
4909 default:
4910 unreachable("Unimplemented shader stage");
4911 }
4912 }
4913
4914 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4915 {
4916 visit_load_tcs_output(ctx, instr, true);
4917 }
4918
4919 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4920 {
4921 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4922 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4923
4924 visit_store_tcs_output(ctx, instr, true);
4925 }
4926
4927 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4928 {
4929 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4930
4931 Builder bld(ctx->program, ctx->block);
4932 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4933
4934 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4935 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4936 Operand tes_w(0u);
4937
4938 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4939 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4940 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4941 tes_w = Operand(tmp);
4942 }
4943
4944 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4945 emit_split_vector(ctx, tess_coord, 3);
4946 }
4947
4948 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4949 {
4950 if (ctx->program->info->need_indirect_descriptor_sets) {
4951 Builder bld(ctx->program, ctx->block);
4952 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4953 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4954 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4955 }
4956
4957 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4958 }
4959
4960
4961 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4962 {
4963 Builder bld(ctx->program, ctx->block);
4964 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4965 if (!nir_dest_is_divergent(instr->dest))
4966 index = bld.as_uniform(index);
4967 unsigned desc_set = nir_intrinsic_desc_set(instr);
4968 unsigned binding = nir_intrinsic_binding(instr);
4969
4970 Temp desc_ptr;
4971 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4972 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4973 unsigned offset = layout->binding[binding].offset;
4974 unsigned stride;
4975 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4976 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4977 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4978 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4979 offset = pipeline_layout->push_constant_size + 16 * idx;
4980 stride = 16;
4981 } else {
4982 desc_ptr = load_desc_ptr(ctx, desc_set);
4983 stride = layout->binding[binding].size;
4984 }
4985
4986 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4987 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4988 if (stride != 1) {
4989 if (nir_const_index) {
4990 const_index = const_index * stride;
4991 } else if (index.type() == RegType::vgpr) {
4992 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4993 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4994 } else {
4995 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4996 }
4997 }
4998 if (offset) {
4999 if (nir_const_index) {
5000 const_index = const_index + offset;
5001 } else if (index.type() == RegType::vgpr) {
5002 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5003 } else {
5004 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5005 }
5006 }
5007
5008 if (nir_const_index && const_index == 0) {
5009 index = desc_ptr;
5010 } else if (index.type() == RegType::vgpr) {
5011 index = bld.vadd32(bld.def(v1),
5012 nir_const_index ? Operand(const_index) : Operand(index),
5013 Operand(desc_ptr));
5014 } else {
5015 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5016 nir_const_index ? Operand(const_index) : Operand(index),
5017 Operand(desc_ptr));
5018 }
5019
5020 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5021 }
5022
5023 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5024 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5025 bool glc=false, bool allow_smem=true, memory_sync_info sync=memory_sync_info())
5026 {
5027 Builder bld(ctx->program, ctx->block);
5028
5029 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5030 if (use_smem)
5031 offset = bld.as_uniform(offset);
5032
5033 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5034 info.glc = glc;
5035 info.sync = sync;
5036 info.align_mul = align_mul;
5037 info.align_offset = align_offset;
5038 if (use_smem)
5039 emit_smem_load(ctx, bld, &info);
5040 else
5041 emit_mubuf_load(ctx, bld, &info);
5042 }
5043
5044 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5045 {
5046 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5047 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5048
5049 Builder bld(ctx->program, ctx->block);
5050
5051 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5052 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5053 unsigned binding = nir_intrinsic_binding(idx_instr);
5054 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5055
5056 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5057 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5058 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5059 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5060 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5061 if (ctx->options->chip_class >= GFX10) {
5062 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5063 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5064 S_008F0C_RESOURCE_LEVEL(1);
5065 } else {
5066 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5067 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5068 }
5069 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5070 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5071 Operand(0xFFFFFFFFu),
5072 Operand(desc_type));
5073 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5074 rsrc, upper_dwords);
5075 } else {
5076 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5077 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5078 }
5079 unsigned size = instr->dest.ssa.bit_size / 8;
5080 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5081 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5082 }
5083
5084 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5085 {
5086 Builder bld(ctx->program, ctx->block);
5087 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5088 unsigned offset = nir_intrinsic_base(instr);
5089 unsigned count = instr->dest.ssa.num_components;
5090 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5091
5092 if (index_cv && instr->dest.ssa.bit_size == 32) {
5093 unsigned start = (offset + index_cv->u32) / 4u;
5094 start -= ctx->args->ac.base_inline_push_consts;
5095 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5096 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5097 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5098 for (unsigned i = 0; i < count; ++i) {
5099 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5100 vec->operands[i] = Operand{elems[i]};
5101 }
5102 vec->definitions[0] = Definition(dst);
5103 ctx->block->instructions.emplace_back(std::move(vec));
5104 ctx->allocated_vec.emplace(dst.id(), elems);
5105 return;
5106 }
5107 }
5108
5109 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5110 if (offset != 0) // TODO check if index != 0 as well
5111 index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5112 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5113 Temp vec = dst;
5114 bool trim = false;
5115 bool aligned = true;
5116
5117 if (instr->dest.ssa.bit_size == 8) {
5118 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5119 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5120 if (!aligned)
5121 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5122 } else if (instr->dest.ssa.bit_size == 16) {
5123 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5124 if (!aligned)
5125 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5126 }
5127
5128 aco_opcode op;
5129
5130 switch (vec.size()) {
5131 case 1:
5132 op = aco_opcode::s_load_dword;
5133 break;
5134 case 2:
5135 op = aco_opcode::s_load_dwordx2;
5136 break;
5137 case 3:
5138 vec = bld.tmp(s4);
5139 trim = true;
5140 case 4:
5141 op = aco_opcode::s_load_dwordx4;
5142 break;
5143 case 6:
5144 vec = bld.tmp(s8);
5145 trim = true;
5146 case 8:
5147 op = aco_opcode::s_load_dwordx8;
5148 break;
5149 default:
5150 unreachable("unimplemented or forbidden load_push_constant.");
5151 }
5152
5153 static_cast<SMEM_instruction*>(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true;
5154
5155 if (!aligned) {
5156 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5157 byte_align_scalar(ctx, vec, byte_offset, dst);
5158 return;
5159 }
5160
5161 if (trim) {
5162 emit_split_vector(ctx, vec, 4);
5163 RegClass rc = dst.size() == 3 ? s1 : s2;
5164 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5165 emit_extract_vector(ctx, vec, 0, rc),
5166 emit_extract_vector(ctx, vec, 1, rc),
5167 emit_extract_vector(ctx, vec, 2, rc));
5168
5169 }
5170 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5171 }
5172
5173 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5174 {
5175 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5176
5177 Builder bld(ctx->program, ctx->block);
5178
5179 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5180 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5181 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5182 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5183 if (ctx->options->chip_class >= GFX10) {
5184 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5185 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5186 S_008F0C_RESOURCE_LEVEL(1);
5187 } else {
5188 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5189 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5190 }
5191
5192 unsigned base = nir_intrinsic_base(instr);
5193 unsigned range = nir_intrinsic_range(instr);
5194
5195 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5196 if (base && offset.type() == RegType::sgpr)
5197 offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5198 else if (base && offset.type() == RegType::vgpr)
5199 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5200
5201 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5202 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5203 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5204 Operand(desc_type));
5205 unsigned size = instr->dest.ssa.bit_size / 8;
5206 // TODO: get alignment information for subdword constants
5207 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5208 }
5209
5210 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5211 {
5212 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5213 ctx->cf_info.exec_potentially_empty_discard = true;
5214
5215 ctx->program->needs_exact = true;
5216
5217 // TODO: optimize uniform conditions
5218 Builder bld(ctx->program, ctx->block);
5219 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5220 assert(src.regClass() == bld.lm);
5221 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5222 bld.pseudo(aco_opcode::p_discard_if, src);
5223 ctx->block->kind |= block_kind_uses_discard_if;
5224 return;
5225 }
5226
5227 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5228 {
5229 Builder bld(ctx->program, ctx->block);
5230
5231 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5232 ctx->cf_info.exec_potentially_empty_discard = true;
5233
5234 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5235 ctx->cf_info.parent_loop.has_divergent_continue;
5236
5237 if (ctx->block->loop_nest_depth &&
5238 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5239 /* we handle discards the same way as jump instructions */
5240 append_logical_end(ctx->block);
5241
5242 /* in loops, discard behaves like break */
5243 Block *linear_target = ctx->cf_info.parent_loop.exit;
5244 ctx->block->kind |= block_kind_discard;
5245
5246 if (!divergent) {
5247 /* uniform discard - loop ends here */
5248 assert(nir_instr_is_last(&instr->instr));
5249 ctx->block->kind |= block_kind_uniform;
5250 ctx->cf_info.has_branch = true;
5251 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5252 add_linear_edge(ctx->block->index, linear_target);
5253 return;
5254 }
5255
5256 /* we add a break right behind the discard() instructions */
5257 ctx->block->kind |= block_kind_break;
5258 unsigned idx = ctx->block->index;
5259
5260 ctx->cf_info.parent_loop.has_divergent_branch = true;
5261 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5262
5263 /* remove critical edges from linear CFG */
5264 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5265 Block* break_block = ctx->program->create_and_insert_block();
5266 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5267 break_block->kind |= block_kind_uniform;
5268 add_linear_edge(idx, break_block);
5269 add_linear_edge(break_block->index, linear_target);
5270 bld.reset(break_block);
5271 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5272
5273 Block* continue_block = ctx->program->create_and_insert_block();
5274 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5275 add_linear_edge(idx, continue_block);
5276 append_logical_start(continue_block);
5277 ctx->block = continue_block;
5278
5279 return;
5280 }
5281
5282 /* it can currently happen that NIR doesn't remove the unreachable code */
5283 if (!nir_instr_is_last(&instr->instr)) {
5284 ctx->program->needs_exact = true;
5285 /* save exec somewhere temporarily so that it doesn't get
5286 * overwritten before the discard from outer exec masks */
5287 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5288 bld.pseudo(aco_opcode::p_discard_if, cond);
5289 ctx->block->kind |= block_kind_uses_discard_if;
5290 return;
5291 }
5292
5293 /* This condition is incorrect for uniformly branched discards in a loop
5294 * predicated by a divergent condition, but the above code catches that case
5295 * and the discard would end up turning into a discard_if.
5296 * For example:
5297 * if (divergent) {
5298 * while (...) {
5299 * if (uniform) {
5300 * discard;
5301 * }
5302 * }
5303 * }
5304 */
5305 if (!ctx->cf_info.parent_if.is_divergent) {
5306 /* program just ends here */
5307 ctx->block->kind |= block_kind_uniform;
5308 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5309 0 /* enabled mask */, 9 /* dest */,
5310 false /* compressed */, true/* done */, true /* valid mask */);
5311 bld.sopp(aco_opcode::s_endpgm);
5312 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5313 } else {
5314 ctx->block->kind |= block_kind_discard;
5315 /* branch and linear edge is added by visit_if() */
5316 }
5317 }
5318
5319 enum aco_descriptor_type {
5320 ACO_DESC_IMAGE,
5321 ACO_DESC_FMASK,
5322 ACO_DESC_SAMPLER,
5323 ACO_DESC_BUFFER,
5324 ACO_DESC_PLANE_0,
5325 ACO_DESC_PLANE_1,
5326 ACO_DESC_PLANE_2,
5327 };
5328
5329 static bool
5330 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5331 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5332 return false;
5333 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5334 return dim == ac_image_cube ||
5335 dim == ac_image_1darray ||
5336 dim == ac_image_2darray ||
5337 dim == ac_image_2darraymsaa;
5338 }
5339
5340 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5341 enum aco_descriptor_type desc_type,
5342 const nir_tex_instr *tex_instr, bool image, bool write)
5343 {
5344 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5345 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5346 if (it != ctx->tex_desc.end())
5347 return it->second;
5348 */
5349 Temp index = Temp();
5350 bool index_set = false;
5351 unsigned constant_index = 0;
5352 unsigned descriptor_set;
5353 unsigned base_index;
5354 Builder bld(ctx->program, ctx->block);
5355
5356 if (!deref_instr) {
5357 assert(tex_instr && !image);
5358 descriptor_set = 0;
5359 base_index = tex_instr->sampler_index;
5360 } else {
5361 while(deref_instr->deref_type != nir_deref_type_var) {
5362 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5363 if (!array_size)
5364 array_size = 1;
5365
5366 assert(deref_instr->deref_type == nir_deref_type_array);
5367 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5368 if (const_value) {
5369 constant_index += array_size * const_value->u32;
5370 } else {
5371 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5372 if (indirect.type() == RegType::vgpr)
5373 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5374
5375 if (array_size != 1)
5376 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5377
5378 if (!index_set) {
5379 index = indirect;
5380 index_set = true;
5381 } else {
5382 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5383 }
5384 }
5385
5386 deref_instr = nir_src_as_deref(deref_instr->parent);
5387 }
5388 descriptor_set = deref_instr->var->data.descriptor_set;
5389 base_index = deref_instr->var->data.binding;
5390 }
5391
5392 Temp list = load_desc_ptr(ctx, descriptor_set);
5393 list = convert_pointer_to_64_bit(ctx, list);
5394
5395 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5396 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5397 unsigned offset = binding->offset;
5398 unsigned stride = binding->size;
5399 aco_opcode opcode;
5400 RegClass type;
5401
5402 assert(base_index < layout->binding_count);
5403
5404 switch (desc_type) {
5405 case ACO_DESC_IMAGE:
5406 type = s8;
5407 opcode = aco_opcode::s_load_dwordx8;
5408 break;
5409 case ACO_DESC_FMASK:
5410 type = s8;
5411 opcode = aco_opcode::s_load_dwordx8;
5412 offset += 32;
5413 break;
5414 case ACO_DESC_SAMPLER:
5415 type = s4;
5416 opcode = aco_opcode::s_load_dwordx4;
5417 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5418 offset += radv_combined_image_descriptor_sampler_offset(binding);
5419 break;
5420 case ACO_DESC_BUFFER:
5421 type = s4;
5422 opcode = aco_opcode::s_load_dwordx4;
5423 break;
5424 case ACO_DESC_PLANE_0:
5425 case ACO_DESC_PLANE_1:
5426 type = s8;
5427 opcode = aco_opcode::s_load_dwordx8;
5428 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5429 break;
5430 case ACO_DESC_PLANE_2:
5431 type = s4;
5432 opcode = aco_opcode::s_load_dwordx4;
5433 offset += 64;
5434 break;
5435 default:
5436 unreachable("invalid desc_type\n");
5437 }
5438
5439 offset += constant_index * stride;
5440
5441 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5442 (!index_set || binding->immutable_samplers_equal)) {
5443 if (binding->immutable_samplers_equal)
5444 constant_index = 0;
5445
5446 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5447 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5448 Operand(samplers[constant_index * 4 + 0]),
5449 Operand(samplers[constant_index * 4 + 1]),
5450 Operand(samplers[constant_index * 4 + 2]),
5451 Operand(samplers[constant_index * 4 + 3]));
5452 }
5453
5454 Operand off;
5455 if (!index_set) {
5456 off = bld.copy(bld.def(s1), Operand(offset));
5457 } else {
5458 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5459 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5460 }
5461
5462 Temp res = bld.smem(opcode, bld.def(type), list, off);
5463
5464 if (desc_type == ACO_DESC_PLANE_2) {
5465 Temp components[8];
5466 for (unsigned i = 0; i < 8; i++)
5467 components[i] = bld.tmp(s1);
5468 bld.pseudo(aco_opcode::p_split_vector,
5469 Definition(components[0]),
5470 Definition(components[1]),
5471 Definition(components[2]),
5472 Definition(components[3]),
5473 res);
5474
5475 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5476 bld.pseudo(aco_opcode::p_split_vector,
5477 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5478 Definition(components[4]),
5479 Definition(components[5]),
5480 Definition(components[6]),
5481 Definition(components[7]),
5482 desc2);
5483
5484 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5485 components[0], components[1], components[2], components[3],
5486 components[4], components[5], components[6], components[7]);
5487 }
5488
5489 return res;
5490 }
5491
5492 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5493 {
5494 switch (dim) {
5495 case GLSL_SAMPLER_DIM_BUF:
5496 return 1;
5497 case GLSL_SAMPLER_DIM_1D:
5498 return array ? 2 : 1;
5499 case GLSL_SAMPLER_DIM_2D:
5500 return array ? 3 : 2;
5501 case GLSL_SAMPLER_DIM_MS:
5502 return array ? 4 : 3;
5503 case GLSL_SAMPLER_DIM_3D:
5504 case GLSL_SAMPLER_DIM_CUBE:
5505 return 3;
5506 case GLSL_SAMPLER_DIM_RECT:
5507 case GLSL_SAMPLER_DIM_SUBPASS:
5508 return 2;
5509 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5510 return 3;
5511 default:
5512 break;
5513 }
5514 return 0;
5515 }
5516
5517
5518 /* Adjust the sample index according to FMASK.
5519 *
5520 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5521 * which is the identity mapping. Each nibble says which physical sample
5522 * should be fetched to get that sample.
5523 *
5524 * For example, 0x11111100 means there are only 2 samples stored and
5525 * the second sample covers 3/4 of the pixel. When reading samples 0
5526 * and 1, return physical sample 0 (determined by the first two 0s
5527 * in FMASK), otherwise return physical sample 1.
5528 *
5529 * The sample index should be adjusted as follows:
5530 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5531 */
5532 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5533 {
5534 Builder bld(ctx->program, ctx->block);
5535 Temp fmask = bld.tmp(v1);
5536 unsigned dim = ctx->options->chip_class >= GFX10
5537 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5538 : 0;
5539
5540 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5541 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5542 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5543 load->operands[0] = Operand(fmask_desc_ptr);
5544 load->operands[1] = Operand(s4); /* no sampler */
5545 load->operands[2] = Operand(coord);
5546 load->definitions[0] = Definition(fmask);
5547 load->glc = false;
5548 load->dlc = false;
5549 load->dmask = 0x1;
5550 load->unrm = true;
5551 load->da = da;
5552 load->dim = dim;
5553 ctx->block->instructions.emplace_back(std::move(load));
5554
5555 Operand sample_index4;
5556 if (sample_index.isConstant()) {
5557 if (sample_index.constantValue() < 16) {
5558 sample_index4 = Operand(sample_index.constantValue() << 2);
5559 } else {
5560 sample_index4 = Operand(0u);
5561 }
5562 } else if (sample_index.regClass() == s1) {
5563 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5564 } else {
5565 assert(sample_index.regClass() == v1);
5566 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5567 }
5568
5569 Temp final_sample;
5570 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5571 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5572 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5573 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5574 else
5575 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5576
5577 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5578 * resource descriptor is 0 (invalid),
5579 */
5580 Temp compare = bld.tmp(bld.lm);
5581 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5582 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5583
5584 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5585
5586 /* Replace the MSAA sample index. */
5587 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5588 }
5589
5590 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5591 {
5592
5593 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5594 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5595 bool is_array = glsl_sampler_type_is_array(type);
5596 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5597 assert(!add_frag_pos && "Input attachments should be lowered.");
5598 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5599 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5600 int count = image_type_to_components_count(dim, is_array);
5601 std::vector<Temp> coords(count);
5602 Builder bld(ctx->program, ctx->block);
5603
5604 if (is_ms) {
5605 count--;
5606 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5607 /* get sample index */
5608 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5609 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5610 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5611 std::vector<Temp> fmask_load_address;
5612 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5613 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5614
5615 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5616 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5617 } else {
5618 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5619 }
5620 }
5621
5622 if (gfx9_1d) {
5623 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5624 coords.resize(coords.size() + 1);
5625 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5626 if (is_array)
5627 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5628 } else {
5629 for (int i = 0; i < count; i++)
5630 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5631 }
5632
5633 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5634 instr->intrinsic == nir_intrinsic_image_deref_store) {
5635 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5636 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5637
5638 if (!level_zero)
5639 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5640 }
5641
5642 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5643 for (unsigned i = 0; i < coords.size(); i++)
5644 vec->operands[i] = Operand(coords[i]);
5645 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5646 vec->definitions[0] = Definition(res);
5647 ctx->block->instructions.emplace_back(std::move(vec));
5648 return res;
5649 }
5650
5651
5652 memory_sync_info get_memory_sync_info(nir_intrinsic_instr *instr, storage_class storage, unsigned semantics)
5653 {
5654 /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */
5655 if (semantics & semantic_atomicrmw)
5656 return memory_sync_info(storage, semantics);
5657
5658 unsigned access = nir_intrinsic_access(instr);
5659
5660 if (access & ACCESS_VOLATILE)
5661 semantics |= semantic_volatile;
5662 if (access & ACCESS_CAN_REORDER)
5663 semantics |= semantic_can_reorder | semantic_private;
5664
5665 return memory_sync_info(storage, semantics);
5666 }
5667
5668 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5669 {
5670 Builder bld(ctx->program, ctx->block);
5671 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5672 const struct glsl_type *type = glsl_without_array(var->type);
5673 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5674 bool is_array = glsl_sampler_type_is_array(type);
5675 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5676
5677 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5678 unsigned access = var->data.access | nir_intrinsic_access(instr);
5679
5680 if (dim == GLSL_SAMPLER_DIM_BUF) {
5681 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5682 unsigned num_channels = util_last_bit(mask);
5683 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5684 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5685
5686 aco_opcode opcode;
5687 switch (num_channels) {
5688 case 1:
5689 opcode = aco_opcode::buffer_load_format_x;
5690 break;
5691 case 2:
5692 opcode = aco_opcode::buffer_load_format_xy;
5693 break;
5694 case 3:
5695 opcode = aco_opcode::buffer_load_format_xyz;
5696 break;
5697 case 4:
5698 opcode = aco_opcode::buffer_load_format_xyzw;
5699 break;
5700 default:
5701 unreachable(">4 channel buffer image load");
5702 }
5703 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5704 load->operands[0] = Operand(rsrc);
5705 load->operands[1] = Operand(vindex);
5706 load->operands[2] = Operand((uint32_t) 0);
5707 Temp tmp;
5708 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5709 tmp = dst;
5710 else
5711 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5712 load->definitions[0] = Definition(tmp);
5713 load->idxen = true;
5714 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5715 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5716 load->sync = sync;
5717 ctx->block->instructions.emplace_back(std::move(load));
5718
5719 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5720 return;
5721 }
5722
5723 Temp coords = get_image_coords(ctx, instr, type);
5724 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5725
5726 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5727 unsigned num_components = util_bitcount(dmask);
5728 Temp tmp;
5729 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5730 tmp = dst;
5731 else
5732 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5733
5734 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5735 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5736
5737 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5738 load->operands[0] = Operand(resource);
5739 load->operands[1] = Operand(s4); /* no sampler */
5740 load->operands[2] = Operand(coords);
5741 load->definitions[0] = Definition(tmp);
5742 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5743 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5744 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5745 load->dmask = dmask;
5746 load->unrm = true;
5747 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5748 load->sync = sync;
5749 ctx->block->instructions.emplace_back(std::move(load));
5750
5751 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5752 return;
5753 }
5754
5755 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5756 {
5757 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5758 const struct glsl_type *type = glsl_without_array(var->type);
5759 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5760 bool is_array = glsl_sampler_type_is_array(type);
5761 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5762
5763 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5764 unsigned access = var->data.access | nir_intrinsic_access(instr);
5765 bool glc = ctx->options->chip_class == GFX6 || access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5766
5767 if (dim == GLSL_SAMPLER_DIM_BUF) {
5768 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5769 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5770 aco_opcode opcode;
5771 switch (data.size()) {
5772 case 1:
5773 opcode = aco_opcode::buffer_store_format_x;
5774 break;
5775 case 2:
5776 opcode = aco_opcode::buffer_store_format_xy;
5777 break;
5778 case 3:
5779 opcode = aco_opcode::buffer_store_format_xyz;
5780 break;
5781 case 4:
5782 opcode = aco_opcode::buffer_store_format_xyzw;
5783 break;
5784 default:
5785 unreachable(">4 channel buffer image store");
5786 }
5787 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5788 store->operands[0] = Operand(rsrc);
5789 store->operands[1] = Operand(vindex);
5790 store->operands[2] = Operand((uint32_t) 0);
5791 store->operands[3] = Operand(data);
5792 store->idxen = true;
5793 store->glc = glc;
5794 store->dlc = false;
5795 store->disable_wqm = true;
5796 store->sync = sync;
5797 ctx->program->needs_exact = true;
5798 ctx->block->instructions.emplace_back(std::move(store));
5799 return;
5800 }
5801
5802 assert(data.type() == RegType::vgpr);
5803 Temp coords = get_image_coords(ctx, instr, type);
5804 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5805
5806 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5807 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5808
5809 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5810 store->operands[0] = Operand(resource);
5811 store->operands[1] = Operand(data);
5812 store->operands[2] = Operand(coords);
5813 store->glc = glc;
5814 store->dlc = false;
5815 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5816 store->dmask = (1 << data.size()) - 1;
5817 store->unrm = true;
5818 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5819 store->disable_wqm = true;
5820 store->sync = sync;
5821 ctx->program->needs_exact = true;
5822 ctx->block->instructions.emplace_back(std::move(store));
5823 return;
5824 }
5825
5826 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5827 {
5828 /* return the previous value if dest is ever used */
5829 bool return_previous = false;
5830 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5831 return_previous = true;
5832 break;
5833 }
5834 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5835 return_previous = true;
5836 break;
5837 }
5838
5839 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5840 const struct glsl_type *type = glsl_without_array(var->type);
5841 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5842 bool is_array = glsl_sampler_type_is_array(type);
5843 Builder bld(ctx->program, ctx->block);
5844
5845 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5846 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5847
5848 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5849 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5850
5851 aco_opcode buf_op, image_op;
5852 switch (instr->intrinsic) {
5853 case nir_intrinsic_image_deref_atomic_add:
5854 buf_op = aco_opcode::buffer_atomic_add;
5855 image_op = aco_opcode::image_atomic_add;
5856 break;
5857 case nir_intrinsic_image_deref_atomic_umin:
5858 buf_op = aco_opcode::buffer_atomic_umin;
5859 image_op = aco_opcode::image_atomic_umin;
5860 break;
5861 case nir_intrinsic_image_deref_atomic_imin:
5862 buf_op = aco_opcode::buffer_atomic_smin;
5863 image_op = aco_opcode::image_atomic_smin;
5864 break;
5865 case nir_intrinsic_image_deref_atomic_umax:
5866 buf_op = aco_opcode::buffer_atomic_umax;
5867 image_op = aco_opcode::image_atomic_umax;
5868 break;
5869 case nir_intrinsic_image_deref_atomic_imax:
5870 buf_op = aco_opcode::buffer_atomic_smax;
5871 image_op = aco_opcode::image_atomic_smax;
5872 break;
5873 case nir_intrinsic_image_deref_atomic_and:
5874 buf_op = aco_opcode::buffer_atomic_and;
5875 image_op = aco_opcode::image_atomic_and;
5876 break;
5877 case nir_intrinsic_image_deref_atomic_or:
5878 buf_op = aco_opcode::buffer_atomic_or;
5879 image_op = aco_opcode::image_atomic_or;
5880 break;
5881 case nir_intrinsic_image_deref_atomic_xor:
5882 buf_op = aco_opcode::buffer_atomic_xor;
5883 image_op = aco_opcode::image_atomic_xor;
5884 break;
5885 case nir_intrinsic_image_deref_atomic_exchange:
5886 buf_op = aco_opcode::buffer_atomic_swap;
5887 image_op = aco_opcode::image_atomic_swap;
5888 break;
5889 case nir_intrinsic_image_deref_atomic_comp_swap:
5890 buf_op = aco_opcode::buffer_atomic_cmpswap;
5891 image_op = aco_opcode::image_atomic_cmpswap;
5892 break;
5893 default:
5894 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5895 }
5896
5897 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5898 memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw);
5899
5900 if (dim == GLSL_SAMPLER_DIM_BUF) {
5901 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5902 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5903 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5904 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5905 mubuf->operands[0] = Operand(resource);
5906 mubuf->operands[1] = Operand(vindex);
5907 mubuf->operands[2] = Operand((uint32_t)0);
5908 mubuf->operands[3] = Operand(data);
5909 if (return_previous)
5910 mubuf->definitions[0] = Definition(dst);
5911 mubuf->offset = 0;
5912 mubuf->idxen = true;
5913 mubuf->glc = return_previous;
5914 mubuf->dlc = false; /* Not needed for atomics */
5915 mubuf->disable_wqm = true;
5916 mubuf->sync = sync;
5917 ctx->program->needs_exact = true;
5918 ctx->block->instructions.emplace_back(std::move(mubuf));
5919 return;
5920 }
5921
5922 Temp coords = get_image_coords(ctx, instr, type);
5923 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5924 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5925 mimg->operands[0] = Operand(resource);
5926 mimg->operands[1] = Operand(data);
5927 mimg->operands[2] = Operand(coords);
5928 if (return_previous)
5929 mimg->definitions[0] = Definition(dst);
5930 mimg->glc = return_previous;
5931 mimg->dlc = false; /* Not needed for atomics */
5932 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5933 mimg->dmask = (1 << data.size()) - 1;
5934 mimg->unrm = true;
5935 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5936 mimg->disable_wqm = true;
5937 mimg->sync = sync;
5938 ctx->program->needs_exact = true;
5939 ctx->block->instructions.emplace_back(std::move(mimg));
5940 return;
5941 }
5942
5943 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5944 {
5945 if (in_elements && ctx->options->chip_class == GFX8) {
5946 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5947 Builder bld(ctx->program, ctx->block);
5948
5949 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5950
5951 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5952 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5953
5954 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5955 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5956
5957 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5958 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5959
5960 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5961 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5962 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5963 if (dst.type() == RegType::vgpr)
5964 bld.copy(Definition(dst), shr_dst);
5965
5966 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5967 } else {
5968 emit_extract_vector(ctx, desc, 2, dst);
5969 }
5970 }
5971
5972 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5973 {
5974 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5975 const struct glsl_type *type = glsl_without_array(var->type);
5976 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5977 bool is_array = glsl_sampler_type_is_array(type);
5978 Builder bld(ctx->program, ctx->block);
5979
5980 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5981 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5982 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5983 }
5984
5985 /* LOD */
5986 assert(nir_src_as_uint(instr->src[1]) == 0);
5987 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5988
5989 /* Resource */
5990 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5991
5992 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5993
5994 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5995 mimg->operands[0] = Operand(resource);
5996 mimg->operands[1] = Operand(s4); /* no sampler */
5997 mimg->operands[2] = Operand(lod);
5998 uint8_t& dmask = mimg->dmask;
5999 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6000 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6001 mimg->da = glsl_sampler_type_is_array(type);
6002 Definition& def = mimg->definitions[0];
6003 ctx->block->instructions.emplace_back(std::move(mimg));
6004
6005 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6006 glsl_sampler_type_is_array(type)) {
6007
6008 assert(instr->dest.ssa.num_components == 3);
6009 Temp tmp = {ctx->program->allocateId(), v3};
6010 def = Definition(tmp);
6011 emit_split_vector(ctx, tmp, 3);
6012
6013 /* divide 3rd value by 6 by multiplying with magic number */
6014 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6015 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6016
6017 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6018 emit_extract_vector(ctx, tmp, 0, v1),
6019 emit_extract_vector(ctx, tmp, 1, v1),
6020 by_6);
6021
6022 } else if (ctx->options->chip_class == GFX9 &&
6023 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6024 glsl_sampler_type_is_array(type)) {
6025 assert(instr->dest.ssa.num_components == 2);
6026 def = Definition(dst);
6027 dmask = 0x5;
6028 } else {
6029 def = Definition(dst);
6030 }
6031
6032 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6033 }
6034
6035 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6036 {
6037 Builder bld(ctx->program, ctx->block);
6038 unsigned num_components = instr->num_components;
6039
6040 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6041 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6042 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6043
6044 unsigned access = nir_intrinsic_access(instr);
6045 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6046 unsigned size = instr->dest.ssa.bit_size / 8;
6047
6048 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6049 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6050 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6051 */
6052 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6053 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6054
6055 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6056 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem,
6057 get_memory_sync_info(instr, storage_buffer, 0));
6058 }
6059
6060 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6061 {
6062 Builder bld(ctx->program, ctx->block);
6063 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6064 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6065 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6066 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6067
6068 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6069 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6070
6071 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6072 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6073 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6074 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6075 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6076 */
6077 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6078
6079 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6080 ctx->options->chip_class >= GFX8 &&
6081 ctx->options->chip_class < GFX10_3 &&
6082 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6083 allow_smem;
6084 if (smem)
6085 offset = bld.as_uniform(offset);
6086 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6087
6088 unsigned write_count = 0;
6089 Temp write_datas[32];
6090 unsigned offsets[32];
6091 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6092 data, writemask, 16, &write_count, write_datas, offsets);
6093
6094 for (unsigned i = 0; i < write_count; i++) {
6095 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6096 if (smem && ctx->stage == fragment_fs)
6097 op = aco_opcode::p_fs_buffer_store_smem;
6098
6099 if (smem) {
6100 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6101 store->operands[0] = Operand(rsrc);
6102 if (offsets[i]) {
6103 Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6104 offset, Operand(offsets[i]));
6105 store->operands[1] = Operand(off);
6106 } else {
6107 store->operands[1] = Operand(offset);
6108 }
6109 if (op != aco_opcode::p_fs_buffer_store_smem)
6110 store->operands[1].setFixed(m0);
6111 store->operands[2] = Operand(write_datas[i]);
6112 store->glc = glc;
6113 store->dlc = false;
6114 store->disable_wqm = true;
6115 store->sync = sync;
6116 ctx->block->instructions.emplace_back(std::move(store));
6117 ctx->program->wb_smem_l1_on_end = true;
6118 if (op == aco_opcode::p_fs_buffer_store_smem) {
6119 ctx->block->kind |= block_kind_needs_lowering;
6120 ctx->program->needs_exact = true;
6121 }
6122 } else {
6123 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6124 store->operands[0] = Operand(rsrc);
6125 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6126 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6127 store->operands[3] = Operand(write_datas[i]);
6128 store->offset = offsets[i];
6129 store->offen = (offset.type() == RegType::vgpr);
6130 store->glc = glc;
6131 store->dlc = false;
6132 store->disable_wqm = true;
6133 store->sync = sync;
6134 ctx->program->needs_exact = true;
6135 ctx->block->instructions.emplace_back(std::move(store));
6136 }
6137 }
6138 }
6139
6140 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6141 {
6142 /* return the previous value if dest is ever used */
6143 bool return_previous = false;
6144 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6145 return_previous = true;
6146 break;
6147 }
6148 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6149 return_previous = true;
6150 break;
6151 }
6152
6153 Builder bld(ctx->program, ctx->block);
6154 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6155
6156 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6157 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6158 get_ssa_temp(ctx, instr->src[3].ssa), data);
6159
6160 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6161 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6162 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6163
6164 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6165
6166 aco_opcode op32, op64;
6167 switch (instr->intrinsic) {
6168 case nir_intrinsic_ssbo_atomic_add:
6169 op32 = aco_opcode::buffer_atomic_add;
6170 op64 = aco_opcode::buffer_atomic_add_x2;
6171 break;
6172 case nir_intrinsic_ssbo_atomic_imin:
6173 op32 = aco_opcode::buffer_atomic_smin;
6174 op64 = aco_opcode::buffer_atomic_smin_x2;
6175 break;
6176 case nir_intrinsic_ssbo_atomic_umin:
6177 op32 = aco_opcode::buffer_atomic_umin;
6178 op64 = aco_opcode::buffer_atomic_umin_x2;
6179 break;
6180 case nir_intrinsic_ssbo_atomic_imax:
6181 op32 = aco_opcode::buffer_atomic_smax;
6182 op64 = aco_opcode::buffer_atomic_smax_x2;
6183 break;
6184 case nir_intrinsic_ssbo_atomic_umax:
6185 op32 = aco_opcode::buffer_atomic_umax;
6186 op64 = aco_opcode::buffer_atomic_umax_x2;
6187 break;
6188 case nir_intrinsic_ssbo_atomic_and:
6189 op32 = aco_opcode::buffer_atomic_and;
6190 op64 = aco_opcode::buffer_atomic_and_x2;
6191 break;
6192 case nir_intrinsic_ssbo_atomic_or:
6193 op32 = aco_opcode::buffer_atomic_or;
6194 op64 = aco_opcode::buffer_atomic_or_x2;
6195 break;
6196 case nir_intrinsic_ssbo_atomic_xor:
6197 op32 = aco_opcode::buffer_atomic_xor;
6198 op64 = aco_opcode::buffer_atomic_xor_x2;
6199 break;
6200 case nir_intrinsic_ssbo_atomic_exchange:
6201 op32 = aco_opcode::buffer_atomic_swap;
6202 op64 = aco_opcode::buffer_atomic_swap_x2;
6203 break;
6204 case nir_intrinsic_ssbo_atomic_comp_swap:
6205 op32 = aco_opcode::buffer_atomic_cmpswap;
6206 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6207 break;
6208 default:
6209 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6210 }
6211 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6212 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6213 mubuf->operands[0] = Operand(rsrc);
6214 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6215 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6216 mubuf->operands[3] = Operand(data);
6217 if (return_previous)
6218 mubuf->definitions[0] = Definition(dst);
6219 mubuf->offset = 0;
6220 mubuf->offen = (offset.type() == RegType::vgpr);
6221 mubuf->glc = return_previous;
6222 mubuf->dlc = false; /* Not needed for atomics */
6223 mubuf->disable_wqm = true;
6224 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6225 ctx->program->needs_exact = true;
6226 ctx->block->instructions.emplace_back(std::move(mubuf));
6227 }
6228
6229 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6230
6231 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6232 Builder bld(ctx->program, ctx->block);
6233 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6234 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6235 }
6236
6237 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6238 {
6239 Builder bld(ctx->program, ctx->block);
6240 unsigned num_components = instr->num_components;
6241 unsigned component_size = instr->dest.ssa.bit_size / 8;
6242
6243 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6244 get_ssa_temp(ctx, &instr->dest.ssa),
6245 num_components, component_size};
6246 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6247 info.align_mul = nir_intrinsic_align_mul(instr);
6248 info.align_offset = nir_intrinsic_align_offset(instr);
6249 info.sync = get_memory_sync_info(instr, storage_buffer, 0);
6250 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6251 * it's safe to use SMEM */
6252 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6253 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6254 emit_global_load(ctx, bld, &info);
6255 } else {
6256 info.offset = Operand(bld.as_uniform(info.offset));
6257 emit_smem_load(ctx, bld, &info);
6258 }
6259 }
6260
6261 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6262 {
6263 Builder bld(ctx->program, ctx->block);
6264 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6265 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6266
6267 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6268 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6269 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6270 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6271
6272 if (ctx->options->chip_class >= GFX7)
6273 addr = as_vgpr(ctx, addr);
6274
6275 unsigned write_count = 0;
6276 Temp write_datas[32];
6277 unsigned offsets[32];
6278 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6279 16, &write_count, write_datas, offsets);
6280
6281 for (unsigned i = 0; i < write_count; i++) {
6282 if (ctx->options->chip_class >= GFX7) {
6283 unsigned offset = offsets[i];
6284 Temp store_addr = addr;
6285 if (offset > 0 && ctx->options->chip_class < GFX9) {
6286 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6287 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6288 Temp carry = bld.tmp(bld.lm);
6289 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6290
6291 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6292 Operand(offset), addr0);
6293 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6294 Operand(0u), addr1,
6295 carry).def(1).setHint(vcc);
6296
6297 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6298
6299 offset = 0;
6300 }
6301
6302 bool global = ctx->options->chip_class >= GFX9;
6303 aco_opcode op;
6304 switch (write_datas[i].bytes()) {
6305 case 1:
6306 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6307 break;
6308 case 2:
6309 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6310 break;
6311 case 4:
6312 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6313 break;
6314 case 8:
6315 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6316 break;
6317 case 12:
6318 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6319 break;
6320 case 16:
6321 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6322 break;
6323 default:
6324 unreachable("store_global not implemented for this size.");
6325 }
6326
6327 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6328 flat->operands[0] = Operand(store_addr);
6329 flat->operands[1] = Operand(s1);
6330 flat->operands[2] = Operand(write_datas[i]);
6331 flat->glc = glc;
6332 flat->dlc = false;
6333 flat->offset = offset;
6334 flat->disable_wqm = true;
6335 flat->sync = sync;
6336 ctx->program->needs_exact = true;
6337 ctx->block->instructions.emplace_back(std::move(flat));
6338 } else {
6339 assert(ctx->options->chip_class == GFX6);
6340
6341 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6342
6343 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6344
6345 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6346 mubuf->operands[0] = Operand(rsrc);
6347 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6348 mubuf->operands[2] = Operand(0u);
6349 mubuf->operands[3] = Operand(write_datas[i]);
6350 mubuf->glc = glc;
6351 mubuf->dlc = false;
6352 mubuf->offset = offsets[i];
6353 mubuf->addr64 = addr.type() == RegType::vgpr;
6354 mubuf->disable_wqm = true;
6355 mubuf->sync = sync;
6356 ctx->program->needs_exact = true;
6357 ctx->block->instructions.emplace_back(std::move(mubuf));
6358 }
6359 }
6360 }
6361
6362 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6363 {
6364 /* return the previous value if dest is ever used */
6365 bool return_previous = false;
6366 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6367 return_previous = true;
6368 break;
6369 }
6370 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6371 return_previous = true;
6372 break;
6373 }
6374
6375 Builder bld(ctx->program, ctx->block);
6376 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6377 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6378
6379 if (ctx->options->chip_class >= GFX7)
6380 addr = as_vgpr(ctx, addr);
6381
6382 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6383 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6384 get_ssa_temp(ctx, instr->src[2].ssa), data);
6385
6386 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6387
6388 aco_opcode op32, op64;
6389
6390 if (ctx->options->chip_class >= GFX7) {
6391 bool global = ctx->options->chip_class >= GFX9;
6392 switch (instr->intrinsic) {
6393 case nir_intrinsic_global_atomic_add:
6394 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6395 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6396 break;
6397 case nir_intrinsic_global_atomic_imin:
6398 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6399 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6400 break;
6401 case nir_intrinsic_global_atomic_umin:
6402 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6403 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6404 break;
6405 case nir_intrinsic_global_atomic_imax:
6406 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6407 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6408 break;
6409 case nir_intrinsic_global_atomic_umax:
6410 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6411 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6412 break;
6413 case nir_intrinsic_global_atomic_and:
6414 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6415 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6416 break;
6417 case nir_intrinsic_global_atomic_or:
6418 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6419 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6420 break;
6421 case nir_intrinsic_global_atomic_xor:
6422 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6423 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6424 break;
6425 case nir_intrinsic_global_atomic_exchange:
6426 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6427 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6428 break;
6429 case nir_intrinsic_global_atomic_comp_swap:
6430 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6431 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6432 break;
6433 default:
6434 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6435 }
6436
6437 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6438 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6439 flat->operands[0] = Operand(addr);
6440 flat->operands[1] = Operand(s1);
6441 flat->operands[2] = Operand(data);
6442 if (return_previous)
6443 flat->definitions[0] = Definition(dst);
6444 flat->glc = return_previous;
6445 flat->dlc = false; /* Not needed for atomics */
6446 flat->offset = 0;
6447 flat->disable_wqm = true;
6448 flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6449 ctx->program->needs_exact = true;
6450 ctx->block->instructions.emplace_back(std::move(flat));
6451 } else {
6452 assert(ctx->options->chip_class == GFX6);
6453
6454 switch (instr->intrinsic) {
6455 case nir_intrinsic_global_atomic_add:
6456 op32 = aco_opcode::buffer_atomic_add;
6457 op64 = aco_opcode::buffer_atomic_add_x2;
6458 break;
6459 case nir_intrinsic_global_atomic_imin:
6460 op32 = aco_opcode::buffer_atomic_smin;
6461 op64 = aco_opcode::buffer_atomic_smin_x2;
6462 break;
6463 case nir_intrinsic_global_atomic_umin:
6464 op32 = aco_opcode::buffer_atomic_umin;
6465 op64 = aco_opcode::buffer_atomic_umin_x2;
6466 break;
6467 case nir_intrinsic_global_atomic_imax:
6468 op32 = aco_opcode::buffer_atomic_smax;
6469 op64 = aco_opcode::buffer_atomic_smax_x2;
6470 break;
6471 case nir_intrinsic_global_atomic_umax:
6472 op32 = aco_opcode::buffer_atomic_umax;
6473 op64 = aco_opcode::buffer_atomic_umax_x2;
6474 break;
6475 case nir_intrinsic_global_atomic_and:
6476 op32 = aco_opcode::buffer_atomic_and;
6477 op64 = aco_opcode::buffer_atomic_and_x2;
6478 break;
6479 case nir_intrinsic_global_atomic_or:
6480 op32 = aco_opcode::buffer_atomic_or;
6481 op64 = aco_opcode::buffer_atomic_or_x2;
6482 break;
6483 case nir_intrinsic_global_atomic_xor:
6484 op32 = aco_opcode::buffer_atomic_xor;
6485 op64 = aco_opcode::buffer_atomic_xor_x2;
6486 break;
6487 case nir_intrinsic_global_atomic_exchange:
6488 op32 = aco_opcode::buffer_atomic_swap;
6489 op64 = aco_opcode::buffer_atomic_swap_x2;
6490 break;
6491 case nir_intrinsic_global_atomic_comp_swap:
6492 op32 = aco_opcode::buffer_atomic_cmpswap;
6493 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6494 break;
6495 default:
6496 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6497 }
6498
6499 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6500
6501 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6502
6503 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6504 mubuf->operands[0] = Operand(rsrc);
6505 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6506 mubuf->operands[2] = Operand(0u);
6507 mubuf->operands[3] = Operand(data);
6508 if (return_previous)
6509 mubuf->definitions[0] = Definition(dst);
6510 mubuf->glc = return_previous;
6511 mubuf->dlc = false;
6512 mubuf->offset = 0;
6513 mubuf->addr64 = addr.type() == RegType::vgpr;
6514 mubuf->disable_wqm = true;
6515 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6516 ctx->program->needs_exact = true;
6517 ctx->block->instructions.emplace_back(std::move(mubuf));
6518 }
6519 }
6520
6521 sync_scope translate_nir_scope(nir_scope scope)
6522 {
6523 switch (scope) {
6524 case NIR_SCOPE_NONE:
6525 case NIR_SCOPE_INVOCATION:
6526 return scope_invocation;
6527 case NIR_SCOPE_SUBGROUP:
6528 return scope_subgroup;
6529 case NIR_SCOPE_WORKGROUP:
6530 return scope_workgroup;
6531 case NIR_SCOPE_QUEUE_FAMILY:
6532 return scope_queuefamily;
6533 case NIR_SCOPE_DEVICE:
6534 return scope_device;
6535 }
6536 unreachable("invalid scope");
6537 }
6538
6539 void emit_scoped_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6540 Builder bld(ctx->program, ctx->block);
6541
6542 unsigned semantics = 0;
6543 unsigned storage = 0;
6544 sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr));
6545 sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr));
6546
6547 unsigned nir_storage = nir_intrinsic_memory_modes(instr);
6548 if (nir_storage & (nir_var_mem_ssbo | nir_var_mem_global))
6549 storage |= storage_buffer | storage_image; //TODO: split this when NIR gets nir_var_mem_image
6550 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && (nir_storage & nir_var_mem_shared))
6551 storage |= storage_shared;
6552 if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL && (nir_storage & nir_var_shader_out))
6553 storage |= storage_shared;
6554
6555 unsigned nir_semantics = nir_intrinsic_memory_semantics(instr);
6556 if (nir_semantics & NIR_MEMORY_ACQUIRE)
6557 semantics |= semantic_acquire | semantic_release;
6558 if (nir_semantics & NIR_MEMORY_RELEASE)
6559 semantics |= semantic_acquire | semantic_release;
6560
6561 assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
6562
6563 bld.barrier(aco_opcode::p_barrier,
6564 memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope),
6565 exec_scope);
6566 }
6567
6568 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6569 {
6570 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6571 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6572 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6573 Builder bld(ctx->program, ctx->block);
6574
6575 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6576 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6577 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6578 }
6579
6580 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6581 {
6582 unsigned writemask = nir_intrinsic_write_mask(instr);
6583 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6584 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6585 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6586
6587 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6588 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6589 }
6590
6591 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6592 {
6593 unsigned offset = nir_intrinsic_base(instr);
6594 Builder bld(ctx->program, ctx->block);
6595 Operand m = load_lds_size_m0(bld);
6596 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6597 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6598
6599 unsigned num_operands = 3;
6600 aco_opcode op32, op64, op32_rtn, op64_rtn;
6601 switch(instr->intrinsic) {
6602 case nir_intrinsic_shared_atomic_add:
6603 op32 = aco_opcode::ds_add_u32;
6604 op64 = aco_opcode::ds_add_u64;
6605 op32_rtn = aco_opcode::ds_add_rtn_u32;
6606 op64_rtn = aco_opcode::ds_add_rtn_u64;
6607 break;
6608 case nir_intrinsic_shared_atomic_imin:
6609 op32 = aco_opcode::ds_min_i32;
6610 op64 = aco_opcode::ds_min_i64;
6611 op32_rtn = aco_opcode::ds_min_rtn_i32;
6612 op64_rtn = aco_opcode::ds_min_rtn_i64;
6613 break;
6614 case nir_intrinsic_shared_atomic_umin:
6615 op32 = aco_opcode::ds_min_u32;
6616 op64 = aco_opcode::ds_min_u64;
6617 op32_rtn = aco_opcode::ds_min_rtn_u32;
6618 op64_rtn = aco_opcode::ds_min_rtn_u64;
6619 break;
6620 case nir_intrinsic_shared_atomic_imax:
6621 op32 = aco_opcode::ds_max_i32;
6622 op64 = aco_opcode::ds_max_i64;
6623 op32_rtn = aco_opcode::ds_max_rtn_i32;
6624 op64_rtn = aco_opcode::ds_max_rtn_i64;
6625 break;
6626 case nir_intrinsic_shared_atomic_umax:
6627 op32 = aco_opcode::ds_max_u32;
6628 op64 = aco_opcode::ds_max_u64;
6629 op32_rtn = aco_opcode::ds_max_rtn_u32;
6630 op64_rtn = aco_opcode::ds_max_rtn_u64;
6631 break;
6632 case nir_intrinsic_shared_atomic_and:
6633 op32 = aco_opcode::ds_and_b32;
6634 op64 = aco_opcode::ds_and_b64;
6635 op32_rtn = aco_opcode::ds_and_rtn_b32;
6636 op64_rtn = aco_opcode::ds_and_rtn_b64;
6637 break;
6638 case nir_intrinsic_shared_atomic_or:
6639 op32 = aco_opcode::ds_or_b32;
6640 op64 = aco_opcode::ds_or_b64;
6641 op32_rtn = aco_opcode::ds_or_rtn_b32;
6642 op64_rtn = aco_opcode::ds_or_rtn_b64;
6643 break;
6644 case nir_intrinsic_shared_atomic_xor:
6645 op32 = aco_opcode::ds_xor_b32;
6646 op64 = aco_opcode::ds_xor_b64;
6647 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6648 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6649 break;
6650 case nir_intrinsic_shared_atomic_exchange:
6651 op32 = aco_opcode::ds_write_b32;
6652 op64 = aco_opcode::ds_write_b64;
6653 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6654 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6655 break;
6656 case nir_intrinsic_shared_atomic_comp_swap:
6657 op32 = aco_opcode::ds_cmpst_b32;
6658 op64 = aco_opcode::ds_cmpst_b64;
6659 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6660 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6661 num_operands = 4;
6662 break;
6663 case nir_intrinsic_shared_atomic_fadd:
6664 op32 = aco_opcode::ds_add_f32;
6665 op32_rtn = aco_opcode::ds_add_rtn_f32;
6666 op64 = aco_opcode::num_opcodes;
6667 op64_rtn = aco_opcode::num_opcodes;
6668 break;
6669 default:
6670 unreachable("Unhandled shared atomic intrinsic");
6671 }
6672
6673 /* return the previous value if dest is ever used */
6674 bool return_previous = false;
6675 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6676 return_previous = true;
6677 break;
6678 }
6679 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6680 return_previous = true;
6681 break;
6682 }
6683
6684 aco_opcode op;
6685 if (data.size() == 1) {
6686 assert(instr->dest.ssa.bit_size == 32);
6687 op = return_previous ? op32_rtn : op32;
6688 } else {
6689 assert(instr->dest.ssa.bit_size == 64);
6690 op = return_previous ? op64_rtn : op64;
6691 }
6692
6693 if (offset > 65535) {
6694 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6695 offset = 0;
6696 }
6697
6698 aco_ptr<DS_instruction> ds;
6699 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6700 ds->operands[0] = Operand(address);
6701 ds->operands[1] = Operand(data);
6702 if (num_operands == 4)
6703 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6704 ds->operands[num_operands - 1] = m;
6705 ds->offset0 = offset;
6706 if (return_previous)
6707 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6708 ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw);
6709 ctx->block->instructions.emplace_back(std::move(ds));
6710 }
6711
6712 Temp get_scratch_resource(isel_context *ctx)
6713 {
6714 Builder bld(ctx->program, ctx->block);
6715 Temp scratch_addr = ctx->program->private_segment_buffer;
6716 if (ctx->stage != compute_cs)
6717 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6718
6719 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6720 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
6721
6722 if (ctx->program->chip_class >= GFX10) {
6723 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6724 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6725 S_008F0C_RESOURCE_LEVEL(1);
6726 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6727 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6728 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6729 }
6730
6731 /* older generations need element size = 4 bytes. element size removed in GFX9 */
6732 if (ctx->program->chip_class <= GFX8)
6733 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
6734
6735 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6736 }
6737
6738 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6739 Builder bld(ctx->program, ctx->block);
6740 Temp rsrc = get_scratch_resource(ctx);
6741 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6742 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6743
6744 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6745 instr->dest.ssa.bit_size / 8u, rsrc};
6746 info.align_mul = nir_intrinsic_align_mul(instr);
6747 info.align_offset = nir_intrinsic_align_offset(instr);
6748 info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0;
6749 info.sync = memory_sync_info(storage_scratch, semantic_private);
6750 info.soffset = ctx->program->scratch_offset;
6751 emit_scratch_load(ctx, bld, &info);
6752 }
6753
6754 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6755 Builder bld(ctx->program, ctx->block);
6756 Temp rsrc = get_scratch_resource(ctx);
6757 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6758 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6759
6760 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6761 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6762
6763 unsigned write_count = 0;
6764 Temp write_datas[32];
6765 unsigned offsets[32];
6766 unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16;
6767 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6768 swizzle_component_size, &write_count, write_datas, offsets);
6769
6770 for (unsigned i = 0; i < write_count; i++) {
6771 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6772 Instruction *instr = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true);
6773 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_scratch, semantic_private);
6774 }
6775 }
6776
6777 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6778 uint8_t log2_ps_iter_samples;
6779 if (ctx->program->info->ps.force_persample) {
6780 log2_ps_iter_samples =
6781 util_logbase2(ctx->options->key.fs.num_samples);
6782 } else {
6783 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6784 }
6785
6786 /* The bit pattern matches that used by fixed function fragment
6787 * processing. */
6788 static const unsigned ps_iter_masks[] = {
6789 0xffff, /* not used */
6790 0x5555,
6791 0x1111,
6792 0x0101,
6793 0x0001,
6794 };
6795 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6796
6797 Builder bld(ctx->program, ctx->block);
6798
6799 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6800 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6801 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6802 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6803 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6804 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6805 }
6806
6807 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6808 Builder bld(ctx->program, ctx->block);
6809
6810 unsigned stream = nir_intrinsic_stream_id(instr);
6811 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6812 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6813 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6814
6815 /* get GSVS ring */
6816 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6817
6818 unsigned num_components =
6819 ctx->program->info->gs.num_stream_output_components[stream];
6820 assert(num_components);
6821
6822 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6823 unsigned stream_offset = 0;
6824 for (unsigned i = 0; i < stream; i++) {
6825 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6826 stream_offset += prev_stride * ctx->program->wave_size;
6827 }
6828
6829 /* Limit on the stride field for <= GFX7. */
6830 assert(stride < (1 << 14));
6831
6832 Temp gsvs_dwords[4];
6833 for (unsigned i = 0; i < 4; i++)
6834 gsvs_dwords[i] = bld.tmp(s1);
6835 bld.pseudo(aco_opcode::p_split_vector,
6836 Definition(gsvs_dwords[0]),
6837 Definition(gsvs_dwords[1]),
6838 Definition(gsvs_dwords[2]),
6839 Definition(gsvs_dwords[3]),
6840 gsvs_ring);
6841
6842 if (stream_offset) {
6843 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6844
6845 Temp carry = bld.tmp(s1);
6846 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6847 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6848 }
6849
6850 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6851 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6852
6853 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6854 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6855
6856 unsigned offset = 0;
6857 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6858 if (ctx->program->info->gs.output_streams[i] != stream)
6859 continue;
6860
6861 for (unsigned j = 0; j < 4; j++) {
6862 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6863 continue;
6864
6865 if (ctx->outputs.mask[i] & (1 << j)) {
6866 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6867 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6868 if (const_offset >= 4096u) {
6869 if (vaddr_offset.isUndefined())
6870 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6871 else
6872 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6873 const_offset %= 4096u;
6874 }
6875
6876 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6877 mtbuf->operands[0] = Operand(gsvs_ring);
6878 mtbuf->operands[1] = vaddr_offset;
6879 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6880 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6881 mtbuf->offen = !vaddr_offset.isUndefined();
6882 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6883 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6884 mtbuf->offset = const_offset;
6885 mtbuf->glc = true;
6886 mtbuf->slc = true;
6887 mtbuf->sync = memory_sync_info(storage_vmem_output, semantic_can_reorder);
6888 bld.insert(std::move(mtbuf));
6889 }
6890
6891 offset += ctx->shader->info.gs.vertices_out;
6892 }
6893
6894 /* outputs for the next vertex are undefined and keeping them around can
6895 * create invalid IR with control flow */
6896 ctx->outputs.mask[i] = 0;
6897 }
6898
6899 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6900 }
6901
6902 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6903 {
6904 Builder bld(ctx->program, ctx->block);
6905
6906 if (cluster_size == 1) {
6907 return src;
6908 } if (op == nir_op_iand && cluster_size == 4) {
6909 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6910 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6911 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6912 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6913 } else if (op == nir_op_ior && cluster_size == 4) {
6914 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6915 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6916 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6917 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6918 //subgroupAnd(val) -> (exec & ~val) == 0
6919 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6920 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6921 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6922 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6923 //subgroupOr(val) -> (val & exec) != 0
6924 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6925 return bool_to_vector_condition(ctx, tmp);
6926 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6927 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6928 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6929 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6930 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6931 return bool_to_vector_condition(ctx, tmp);
6932 } else {
6933 //subgroupClustered{And,Or,Xor}(val, n) ->
6934 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6935 //cluster_offset = ~(n - 1) & lane_id
6936 //cluster_mask = ((1 << n) - 1)
6937 //subgroupClusteredAnd():
6938 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6939 //subgroupClusteredOr():
6940 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6941 //subgroupClusteredXor():
6942 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6943 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6944 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6945
6946 Temp tmp;
6947 if (op == nir_op_iand)
6948 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6949 else
6950 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6951
6952 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6953
6954 if (ctx->program->chip_class <= GFX7)
6955 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6956 else if (ctx->program->wave_size == 64)
6957 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6958 else
6959 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6960 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6961 if (cluster_mask != 0xffffffff)
6962 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6963
6964 Definition cmp_def = Definition();
6965 if (op == nir_op_iand) {
6966 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6967 } else if (op == nir_op_ior) {
6968 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6969 } else if (op == nir_op_ixor) {
6970 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6971 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6972 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6973 }
6974 cmp_def.setHint(vcc);
6975 return cmp_def.getTemp();
6976 }
6977 }
6978
6979 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6980 {
6981 Builder bld(ctx->program, ctx->block);
6982
6983 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6984 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6985 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6986 Temp tmp;
6987 if (op == nir_op_iand)
6988 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6989 else
6990 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6991
6992 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6993 Temp lo = lohi.def(0).getTemp();
6994 Temp hi = lohi.def(1).getTemp();
6995 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6996
6997 Definition cmp_def = Definition();
6998 if (op == nir_op_iand)
6999 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7000 else if (op == nir_op_ior)
7001 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7002 else if (op == nir_op_ixor)
7003 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7004 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7005 cmp_def.setHint(vcc);
7006 return cmp_def.getTemp();
7007 }
7008
7009 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7010 {
7011 Builder bld(ctx->program, ctx->block);
7012
7013 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7014 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7015 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7016 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7017 if (op == nir_op_iand)
7018 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7019 else if (op == nir_op_ior)
7020 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7021 else if (op == nir_op_ixor)
7022 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7023
7024 assert(false);
7025 return Temp();
7026 }
7027
7028 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7029 {
7030 Builder bld(ctx->program, ctx->block);
7031 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7032 if (src.regClass().type() == RegType::vgpr) {
7033 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7034 } else if (src.regClass() == s1) {
7035 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7036 } else if (src.regClass() == s2) {
7037 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7038 } else {
7039 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7040 }
7041 }
7042
7043 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7044 {
7045 Builder bld(ctx->program, ctx->block);
7046 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7047 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7048 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7049
7050 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7051 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7052 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7053 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7054
7055 /* Build DD X/Y */
7056 if (ctx->program->chip_class >= GFX8) {
7057 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7058 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7059 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7060 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7061 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7062 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7063 } else {
7064 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7065 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7066 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7067 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7068 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7069 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7070 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7071 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7072 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7073 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7074 }
7075
7076 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7077 aco_opcode mad = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
7078 Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1);
7079 Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2);
7080 tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1);
7081 tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2);
7082 Temp wqm1 = bld.tmp(v1);
7083 emit_wqm(ctx, tmp1, wqm1, true);
7084 Temp wqm2 = bld.tmp(v1);
7085 emit_wqm(ctx, tmp2, wqm2, true);
7086 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7087 return;
7088 }
7089
7090 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7091 {
7092 Builder bld(ctx->program, ctx->block);
7093 switch(instr->intrinsic) {
7094 case nir_intrinsic_load_barycentric_sample:
7095 case nir_intrinsic_load_barycentric_pixel:
7096 case nir_intrinsic_load_barycentric_centroid: {
7097 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7098 Temp bary = Temp(0, s2);
7099 switch (mode) {
7100 case INTERP_MODE_SMOOTH:
7101 case INTERP_MODE_NONE:
7102 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7103 bary = get_arg(ctx, ctx->args->ac.persp_center);
7104 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7105 bary = ctx->persp_centroid;
7106 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7107 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7108 break;
7109 case INTERP_MODE_NOPERSPECTIVE:
7110 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7111 bary = get_arg(ctx, ctx->args->ac.linear_center);
7112 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7113 bary = ctx->linear_centroid;
7114 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7115 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7116 break;
7117 default:
7118 break;
7119 }
7120 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7121 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7122 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7123 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7124 Operand(p1), Operand(p2));
7125 emit_split_vector(ctx, dst, 2);
7126 break;
7127 }
7128 case nir_intrinsic_load_barycentric_model: {
7129 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7130
7131 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7132 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7133 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7134 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7135 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7136 Operand(p1), Operand(p2), Operand(p3));
7137 emit_split_vector(ctx, dst, 3);
7138 break;
7139 }
7140 case nir_intrinsic_load_barycentric_at_sample: {
7141 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7142 switch (ctx->options->key.fs.num_samples) {
7143 case 2: sample_pos_offset += 1 << 3; break;
7144 case 4: sample_pos_offset += 3 << 3; break;
7145 case 8: sample_pos_offset += 7 << 3; break;
7146 default: break;
7147 }
7148 Temp sample_pos;
7149 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7150 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7151 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7152 //TODO: bounds checking?
7153 if (addr.type() == RegType::sgpr) {
7154 Operand offset;
7155 if (const_addr) {
7156 sample_pos_offset += const_addr->u32 << 3;
7157 offset = Operand(sample_pos_offset);
7158 } else if (ctx->options->chip_class >= GFX9) {
7159 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7160 } else {
7161 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7162 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7163 }
7164
7165 Operand off = bld.copy(bld.def(s1), Operand(offset));
7166 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7167
7168 } else if (ctx->options->chip_class >= GFX9) {
7169 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7170 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7171 } else if (ctx->options->chip_class >= GFX7) {
7172 /* addr += private_segment_buffer + sample_pos_offset */
7173 Temp tmp0 = bld.tmp(s1);
7174 Temp tmp1 = bld.tmp(s1);
7175 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7176 Definition scc_tmp = bld.def(s1, scc);
7177 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7178 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7179 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7180 Temp pck0 = bld.tmp(v1);
7181 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7182 tmp1 = as_vgpr(ctx, tmp1);
7183 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7184 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7185
7186 /* sample_pos = flat_load_dwordx2 addr */
7187 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7188 } else {
7189 assert(ctx->options->chip_class == GFX6);
7190
7191 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7192 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7193 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7194
7195 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7196 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7197
7198 sample_pos = bld.tmp(v2);
7199
7200 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7201 load->definitions[0] = Definition(sample_pos);
7202 load->operands[0] = Operand(rsrc);
7203 load->operands[1] = Operand(addr);
7204 load->operands[2] = Operand(0u);
7205 load->offset = sample_pos_offset;
7206 load->offen = 0;
7207 load->addr64 = true;
7208 load->glc = false;
7209 load->dlc = false;
7210 load->disable_wqm = false;
7211 ctx->block->instructions.emplace_back(std::move(load));
7212 }
7213
7214 /* sample_pos -= 0.5 */
7215 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7216 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7217 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7218 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7219 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7220
7221 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7222 break;
7223 }
7224 case nir_intrinsic_load_barycentric_at_offset: {
7225 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7226 RegClass rc = RegClass(offset.type(), 1);
7227 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7228 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7229 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7230 break;
7231 }
7232 case nir_intrinsic_load_front_face: {
7233 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7234 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7235 break;
7236 }
7237 case nir_intrinsic_load_view_index: {
7238 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7239 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7240 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7241 break;
7242 }
7243
7244 /* fallthrough */
7245 }
7246 case nir_intrinsic_load_layer_id: {
7247 unsigned idx = nir_intrinsic_base(instr);
7248 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7249 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7250 break;
7251 }
7252 case nir_intrinsic_load_frag_coord: {
7253 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7254 break;
7255 }
7256 case nir_intrinsic_load_sample_pos: {
7257 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7258 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7259 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7260 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7261 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7262 break;
7263 }
7264 case nir_intrinsic_load_tess_coord:
7265 visit_load_tess_coord(ctx, instr);
7266 break;
7267 case nir_intrinsic_load_interpolated_input:
7268 visit_load_interpolated_input(ctx, instr);
7269 break;
7270 case nir_intrinsic_store_output:
7271 visit_store_output(ctx, instr);
7272 break;
7273 case nir_intrinsic_load_input:
7274 case nir_intrinsic_load_input_vertex:
7275 visit_load_input(ctx, instr);
7276 break;
7277 case nir_intrinsic_load_output:
7278 visit_load_output(ctx, instr);
7279 break;
7280 case nir_intrinsic_load_per_vertex_input:
7281 visit_load_per_vertex_input(ctx, instr);
7282 break;
7283 case nir_intrinsic_load_per_vertex_output:
7284 visit_load_per_vertex_output(ctx, instr);
7285 break;
7286 case nir_intrinsic_store_per_vertex_output:
7287 visit_store_per_vertex_output(ctx, instr);
7288 break;
7289 case nir_intrinsic_load_ubo:
7290 visit_load_ubo(ctx, instr);
7291 break;
7292 case nir_intrinsic_load_push_constant:
7293 visit_load_push_constant(ctx, instr);
7294 break;
7295 case nir_intrinsic_load_constant:
7296 visit_load_constant(ctx, instr);
7297 break;
7298 case nir_intrinsic_vulkan_resource_index:
7299 visit_load_resource(ctx, instr);
7300 break;
7301 case nir_intrinsic_discard:
7302 visit_discard(ctx, instr);
7303 break;
7304 case nir_intrinsic_discard_if:
7305 visit_discard_if(ctx, instr);
7306 break;
7307 case nir_intrinsic_load_shared:
7308 visit_load_shared(ctx, instr);
7309 break;
7310 case nir_intrinsic_store_shared:
7311 visit_store_shared(ctx, instr);
7312 break;
7313 case nir_intrinsic_shared_atomic_add:
7314 case nir_intrinsic_shared_atomic_imin:
7315 case nir_intrinsic_shared_atomic_umin:
7316 case nir_intrinsic_shared_atomic_imax:
7317 case nir_intrinsic_shared_atomic_umax:
7318 case nir_intrinsic_shared_atomic_and:
7319 case nir_intrinsic_shared_atomic_or:
7320 case nir_intrinsic_shared_atomic_xor:
7321 case nir_intrinsic_shared_atomic_exchange:
7322 case nir_intrinsic_shared_atomic_comp_swap:
7323 case nir_intrinsic_shared_atomic_fadd:
7324 visit_shared_atomic(ctx, instr);
7325 break;
7326 case nir_intrinsic_image_deref_load:
7327 visit_image_load(ctx, instr);
7328 break;
7329 case nir_intrinsic_image_deref_store:
7330 visit_image_store(ctx, instr);
7331 break;
7332 case nir_intrinsic_image_deref_atomic_add:
7333 case nir_intrinsic_image_deref_atomic_umin:
7334 case nir_intrinsic_image_deref_atomic_imin:
7335 case nir_intrinsic_image_deref_atomic_umax:
7336 case nir_intrinsic_image_deref_atomic_imax:
7337 case nir_intrinsic_image_deref_atomic_and:
7338 case nir_intrinsic_image_deref_atomic_or:
7339 case nir_intrinsic_image_deref_atomic_xor:
7340 case nir_intrinsic_image_deref_atomic_exchange:
7341 case nir_intrinsic_image_deref_atomic_comp_swap:
7342 visit_image_atomic(ctx, instr);
7343 break;
7344 case nir_intrinsic_image_deref_size:
7345 visit_image_size(ctx, instr);
7346 break;
7347 case nir_intrinsic_load_ssbo:
7348 visit_load_ssbo(ctx, instr);
7349 break;
7350 case nir_intrinsic_store_ssbo:
7351 visit_store_ssbo(ctx, instr);
7352 break;
7353 case nir_intrinsic_load_global:
7354 visit_load_global(ctx, instr);
7355 break;
7356 case nir_intrinsic_store_global:
7357 visit_store_global(ctx, instr);
7358 break;
7359 case nir_intrinsic_global_atomic_add:
7360 case nir_intrinsic_global_atomic_imin:
7361 case nir_intrinsic_global_atomic_umin:
7362 case nir_intrinsic_global_atomic_imax:
7363 case nir_intrinsic_global_atomic_umax:
7364 case nir_intrinsic_global_atomic_and:
7365 case nir_intrinsic_global_atomic_or:
7366 case nir_intrinsic_global_atomic_xor:
7367 case nir_intrinsic_global_atomic_exchange:
7368 case nir_intrinsic_global_atomic_comp_swap:
7369 visit_global_atomic(ctx, instr);
7370 break;
7371 case nir_intrinsic_ssbo_atomic_add:
7372 case nir_intrinsic_ssbo_atomic_imin:
7373 case nir_intrinsic_ssbo_atomic_umin:
7374 case nir_intrinsic_ssbo_atomic_imax:
7375 case nir_intrinsic_ssbo_atomic_umax:
7376 case nir_intrinsic_ssbo_atomic_and:
7377 case nir_intrinsic_ssbo_atomic_or:
7378 case nir_intrinsic_ssbo_atomic_xor:
7379 case nir_intrinsic_ssbo_atomic_exchange:
7380 case nir_intrinsic_ssbo_atomic_comp_swap:
7381 visit_atomic_ssbo(ctx, instr);
7382 break;
7383 case nir_intrinsic_load_scratch:
7384 visit_load_scratch(ctx, instr);
7385 break;
7386 case nir_intrinsic_store_scratch:
7387 visit_store_scratch(ctx, instr);
7388 break;
7389 case nir_intrinsic_get_buffer_size:
7390 visit_get_buffer_size(ctx, instr);
7391 break;
7392 case nir_intrinsic_scoped_barrier:
7393 emit_scoped_barrier(ctx, instr);
7394 break;
7395 case nir_intrinsic_load_num_work_groups: {
7396 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7397 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7398 emit_split_vector(ctx, dst, 3);
7399 break;
7400 }
7401 case nir_intrinsic_load_local_invocation_id: {
7402 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7403 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7404 emit_split_vector(ctx, dst, 3);
7405 break;
7406 }
7407 case nir_intrinsic_load_work_group_id: {
7408 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7409 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7410 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7411 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7412 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7413 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7414 emit_split_vector(ctx, dst, 3);
7415 break;
7416 }
7417 case nir_intrinsic_load_local_invocation_index: {
7418 Temp id = emit_mbcnt(ctx, bld.def(v1));
7419
7420 /* The tg_size bits [6:11] contain the subgroup id,
7421 * we need this multiplied by the wave size, and then OR the thread id to it.
7422 */
7423 if (ctx->program->wave_size == 64) {
7424 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7425 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7426 get_arg(ctx, ctx->args->ac.tg_size));
7427 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7428 } else {
7429 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7430 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7431 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7432 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7433 }
7434 break;
7435 }
7436 case nir_intrinsic_load_subgroup_id: {
7437 if (ctx->stage == compute_cs) {
7438 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7439 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7440 } else {
7441 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7442 }
7443 break;
7444 }
7445 case nir_intrinsic_load_subgroup_invocation: {
7446 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7447 break;
7448 }
7449 case nir_intrinsic_load_num_subgroups: {
7450 if (ctx->stage == compute_cs)
7451 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7452 get_arg(ctx, ctx->args->ac.tg_size));
7453 else
7454 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7455 break;
7456 }
7457 case nir_intrinsic_ballot: {
7458 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7459 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7460 Definition tmp = bld.def(dst.regClass());
7461 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7462 if (instr->src[0].ssa->bit_size == 1) {
7463 assert(src.regClass() == bld.lm);
7464 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7465 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7466 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7467 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7468 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7469 } else {
7470 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7471 }
7472 if (dst.size() != bld.lm.size()) {
7473 /* Wave32 with ballot size set to 64 */
7474 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7475 }
7476 emit_wqm(ctx, tmp.getTemp(), dst);
7477 break;
7478 }
7479 case nir_intrinsic_shuffle:
7480 case nir_intrinsic_read_invocation: {
7481 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7482 if (!nir_src_is_divergent(instr->src[0])) {
7483 emit_uniform_subgroup(ctx, instr, src);
7484 } else {
7485 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7486 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7487 tid = bld.as_uniform(tid);
7488 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7489 if (src.regClass() == v1b || src.regClass() == v2b) {
7490 Temp tmp = bld.tmp(v1);
7491 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7492 if (dst.type() == RegType::vgpr)
7493 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7494 else
7495 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7496 } else if (src.regClass() == v1) {
7497 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7498 } else if (src.regClass() == v2) {
7499 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7500 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7501 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7502 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7503 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7504 emit_split_vector(ctx, dst, 2);
7505 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7506 assert(src.regClass() == bld.lm);
7507 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7508 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7509 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7510 assert(src.regClass() == bld.lm);
7511 Temp tmp;
7512 if (ctx->program->chip_class <= GFX7)
7513 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7514 else if (ctx->program->wave_size == 64)
7515 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7516 else
7517 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7518 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7519 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7520 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7521 } else {
7522 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7523 }
7524 }
7525 break;
7526 }
7527 case nir_intrinsic_load_sample_id: {
7528 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7529 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7530 break;
7531 }
7532 case nir_intrinsic_load_sample_mask_in: {
7533 visit_load_sample_mask_in(ctx, instr);
7534 break;
7535 }
7536 case nir_intrinsic_read_first_invocation: {
7537 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7538 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7539 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7540 emit_wqm(ctx,
7541 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7542 dst);
7543 } else if (src.regClass() == v2) {
7544 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7545 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7546 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7547 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7548 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7549 emit_split_vector(ctx, dst, 2);
7550 } else if (instr->dest.ssa.bit_size == 1) {
7551 assert(src.regClass() == bld.lm);
7552 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7553 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7554 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7555 } else if (src.regClass() == s1) {
7556 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7557 } else if (src.regClass() == s2) {
7558 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7559 } else {
7560 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7561 }
7562 break;
7563 }
7564 case nir_intrinsic_vote_all: {
7565 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7566 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7567 assert(src.regClass() == bld.lm);
7568 assert(dst.regClass() == bld.lm);
7569
7570 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7571 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7572 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7573 break;
7574 }
7575 case nir_intrinsic_vote_any: {
7576 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7577 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7578 assert(src.regClass() == bld.lm);
7579 assert(dst.regClass() == bld.lm);
7580
7581 Temp tmp = bool_to_scalar_condition(ctx, src);
7582 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7583 break;
7584 }
7585 case nir_intrinsic_reduce:
7586 case nir_intrinsic_inclusive_scan:
7587 case nir_intrinsic_exclusive_scan: {
7588 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7589 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7590 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7591 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7592 nir_intrinsic_cluster_size(instr) : 0;
7593 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7594
7595 if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
7596 emit_uniform_subgroup(ctx, instr, src);
7597 } else if (instr->dest.ssa.bit_size == 1) {
7598 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7599 op = nir_op_iand;
7600 else if (op == nir_op_iadd)
7601 op = nir_op_ixor;
7602 else if (op == nir_op_umax || op == nir_op_imax)
7603 op = nir_op_ior;
7604 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7605
7606 switch (instr->intrinsic) {
7607 case nir_intrinsic_reduce:
7608 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7609 break;
7610 case nir_intrinsic_exclusive_scan:
7611 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7612 break;
7613 case nir_intrinsic_inclusive_scan:
7614 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7615 break;
7616 default:
7617 assert(false);
7618 }
7619 } else if (cluster_size == 1) {
7620 bld.copy(Definition(dst), src);
7621 } else {
7622 unsigned bit_size = instr->src[0].ssa->bit_size;
7623
7624 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
7625
7626 ReduceOp reduce_op;
7627 switch (op) {
7628 #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
7629 #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
7630 CASEI(iadd)
7631 CASEI(imul)
7632 CASEI(imin)
7633 CASEI(umin)
7634 CASEI(imax)
7635 CASEI(umax)
7636 CASEI(iand)
7637 CASEI(ior)
7638 CASEI(ixor)
7639 CASEF(fadd)
7640 CASEF(fmul)
7641 CASEF(fmin)
7642 CASEF(fmax)
7643 default:
7644 unreachable("unknown reduction op");
7645 #undef CASEI
7646 #undef CASEF
7647 }
7648
7649 aco_opcode aco_op;
7650 switch (instr->intrinsic) {
7651 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7652 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7653 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7654 default:
7655 unreachable("unknown reduce intrinsic");
7656 }
7657
7658 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7659 reduce->operands[0] = Operand(src);
7660 // filled in by aco_reduce_assign.cpp, used internally as part of the
7661 // reduce sequence
7662 assert(dst.size() == 1 || dst.size() == 2);
7663 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7664 reduce->operands[2] = Operand(v1.as_linear());
7665
7666 Temp tmp_dst = bld.tmp(dst.regClass());
7667 reduce->definitions[0] = Definition(tmp_dst);
7668 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7669 reduce->definitions[2] = Definition();
7670 reduce->definitions[3] = Definition(scc, s1);
7671 reduce->definitions[4] = Definition();
7672 reduce->reduce_op = reduce_op;
7673 reduce->cluster_size = cluster_size;
7674 ctx->block->instructions.emplace_back(std::move(reduce));
7675
7676 emit_wqm(ctx, tmp_dst, dst);
7677 }
7678 break;
7679 }
7680 case nir_intrinsic_quad_broadcast: {
7681 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7682 if (!nir_dest_is_divergent(instr->dest)) {
7683 emit_uniform_subgroup(ctx, instr, src);
7684 } else {
7685 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7686 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7687 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7688
7689 if (instr->dest.ssa.bit_size == 1) {
7690 assert(src.regClass() == bld.lm);
7691 assert(dst.regClass() == bld.lm);
7692 uint32_t half_mask = 0x11111111u << lane;
7693 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7694 Temp tmp = bld.tmp(bld.lm);
7695 bld.sop1(Builder::s_wqm, Definition(tmp),
7696 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7697 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7698 emit_wqm(ctx, tmp, dst);
7699 } else if (instr->dest.ssa.bit_size == 8) {
7700 Temp tmp = bld.tmp(v1);
7701 if (ctx->program->chip_class >= GFX8)
7702 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7703 else
7704 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7705 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7706 } else if (instr->dest.ssa.bit_size == 16) {
7707 Temp tmp = bld.tmp(v1);
7708 if (ctx->program->chip_class >= GFX8)
7709 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7710 else
7711 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7712 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7713 } else if (instr->dest.ssa.bit_size == 32) {
7714 if (ctx->program->chip_class >= GFX8)
7715 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7716 else
7717 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7718 } else if (instr->dest.ssa.bit_size == 64) {
7719 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7720 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7721 if (ctx->program->chip_class >= GFX8) {
7722 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7723 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7724 } else {
7725 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7726 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7727 }
7728 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7729 emit_split_vector(ctx, dst, 2);
7730 } else {
7731 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7732 }
7733 }
7734 break;
7735 }
7736 case nir_intrinsic_quad_swap_horizontal:
7737 case nir_intrinsic_quad_swap_vertical:
7738 case nir_intrinsic_quad_swap_diagonal:
7739 case nir_intrinsic_quad_swizzle_amd: {
7740 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7741 if (!nir_dest_is_divergent(instr->dest)) {
7742 emit_uniform_subgroup(ctx, instr, src);
7743 break;
7744 }
7745 uint16_t dpp_ctrl = 0;
7746 switch (instr->intrinsic) {
7747 case nir_intrinsic_quad_swap_horizontal:
7748 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7749 break;
7750 case nir_intrinsic_quad_swap_vertical:
7751 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7752 break;
7753 case nir_intrinsic_quad_swap_diagonal:
7754 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7755 break;
7756 case nir_intrinsic_quad_swizzle_amd:
7757 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7758 break;
7759 default:
7760 break;
7761 }
7762 if (ctx->program->chip_class < GFX8)
7763 dpp_ctrl |= (1 << 15);
7764
7765 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7766 if (instr->dest.ssa.bit_size == 1) {
7767 assert(src.regClass() == bld.lm);
7768 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7769 if (ctx->program->chip_class >= GFX8)
7770 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7771 else
7772 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7773 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7774 emit_wqm(ctx, tmp, dst);
7775 } else if (instr->dest.ssa.bit_size == 8) {
7776 Temp tmp = bld.tmp(v1);
7777 if (ctx->program->chip_class >= GFX8)
7778 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7779 else
7780 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7781 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7782 } else if (instr->dest.ssa.bit_size == 16) {
7783 Temp tmp = bld.tmp(v1);
7784 if (ctx->program->chip_class >= GFX8)
7785 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7786 else
7787 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7788 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7789 } else if (instr->dest.ssa.bit_size == 32) {
7790 Temp tmp;
7791 if (ctx->program->chip_class >= GFX8)
7792 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7793 else
7794 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7795 emit_wqm(ctx, tmp, dst);
7796 } else if (instr->dest.ssa.bit_size == 64) {
7797 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7798 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7799 if (ctx->program->chip_class >= GFX8) {
7800 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7801 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7802 } else {
7803 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7804 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7805 }
7806 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7807 emit_split_vector(ctx, dst, 2);
7808 } else {
7809 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7810 }
7811 break;
7812 }
7813 case nir_intrinsic_masked_swizzle_amd: {
7814 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7815 if (!nir_dest_is_divergent(instr->dest)) {
7816 emit_uniform_subgroup(ctx, instr, src);
7817 break;
7818 }
7819 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7820 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7821 if (instr->dest.ssa.bit_size == 1) {
7822 assert(src.regClass() == bld.lm);
7823 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7824 src = emit_masked_swizzle(ctx, bld, src, mask);
7825 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7826 emit_wqm(ctx, tmp, dst);
7827 } else if (dst.regClass() == v1b) {
7828 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7829 emit_extract_vector(ctx, tmp, 0, dst);
7830 } else if (dst.regClass() == v2b) {
7831 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7832 emit_extract_vector(ctx, tmp, 0, dst);
7833 } else if (dst.regClass() == v1) {
7834 emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
7835 } else if (dst.regClass() == v2) {
7836 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7837 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7838 lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
7839 hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
7840 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7841 emit_split_vector(ctx, dst, 2);
7842 } else {
7843 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7844 }
7845 break;
7846 }
7847 case nir_intrinsic_write_invocation_amd: {
7848 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7849 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7850 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7851 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7852 if (dst.regClass() == v1) {
7853 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7854 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7855 } else if (dst.regClass() == v2) {
7856 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7857 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7858 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7859 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7860 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7861 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7862 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7863 emit_split_vector(ctx, dst, 2);
7864 } else {
7865 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7866 }
7867 break;
7868 }
7869 case nir_intrinsic_mbcnt_amd: {
7870 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7871 RegClass rc = RegClass(src.type(), 1);
7872 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7873 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7874 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7875 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7876 emit_wqm(ctx, wqm_tmp, dst);
7877 break;
7878 }
7879 case nir_intrinsic_load_helper_invocation: {
7880 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7881 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7882 ctx->block->kind |= block_kind_needs_lowering;
7883 ctx->program->needs_exact = true;
7884 break;
7885 }
7886 case nir_intrinsic_is_helper_invocation: {
7887 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7888 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7889 ctx->block->kind |= block_kind_needs_lowering;
7890 ctx->program->needs_exact = true;
7891 break;
7892 }
7893 case nir_intrinsic_demote:
7894 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7895
7896 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7897 ctx->cf_info.exec_potentially_empty_discard = true;
7898 ctx->block->kind |= block_kind_uses_demote;
7899 ctx->program->needs_exact = true;
7900 break;
7901 case nir_intrinsic_demote_if: {
7902 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7903 assert(src.regClass() == bld.lm);
7904 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7905 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7906
7907 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7908 ctx->cf_info.exec_potentially_empty_discard = true;
7909 ctx->block->kind |= block_kind_uses_demote;
7910 ctx->program->needs_exact = true;
7911 break;
7912 }
7913 case nir_intrinsic_first_invocation: {
7914 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7915 get_ssa_temp(ctx, &instr->dest.ssa));
7916 break;
7917 }
7918 case nir_intrinsic_shader_clock: {
7919 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7920 if (nir_intrinsic_memory_scope(instr) == NIR_SCOPE_SUBGROUP && ctx->options->chip_class >= GFX10_3) {
7921 /* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */
7922 Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29);
7923 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand(0u));
7924 } else {
7925 aco_opcode opcode =
7926 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
7927 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
7928 bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile));
7929 }
7930 emit_split_vector(ctx, dst, 2);
7931 break;
7932 }
7933 case nir_intrinsic_load_vertex_id_zero_base: {
7934 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7935 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7936 break;
7937 }
7938 case nir_intrinsic_load_first_vertex: {
7939 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7940 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7941 break;
7942 }
7943 case nir_intrinsic_load_base_instance: {
7944 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7945 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7946 break;
7947 }
7948 case nir_intrinsic_load_instance_id: {
7949 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7950 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7951 break;
7952 }
7953 case nir_intrinsic_load_draw_id: {
7954 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7955 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7956 break;
7957 }
7958 case nir_intrinsic_load_invocation_id: {
7959 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7960
7961 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7962 if (ctx->options->chip_class >= GFX10)
7963 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7964 else
7965 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7966 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7967 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7968 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7969 } else {
7970 unreachable("Unsupported stage for load_invocation_id");
7971 }
7972
7973 break;
7974 }
7975 case nir_intrinsic_load_primitive_id: {
7976 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7977
7978 switch (ctx->shader->info.stage) {
7979 case MESA_SHADER_GEOMETRY:
7980 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7981 break;
7982 case MESA_SHADER_TESS_CTRL:
7983 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7984 break;
7985 case MESA_SHADER_TESS_EVAL:
7986 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7987 break;
7988 default:
7989 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7990 }
7991
7992 break;
7993 }
7994 case nir_intrinsic_load_patch_vertices_in: {
7995 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7996 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7997
7998 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7999 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8000 break;
8001 }
8002 case nir_intrinsic_emit_vertex_with_counter: {
8003 visit_emit_vertex_with_counter(ctx, instr);
8004 break;
8005 }
8006 case nir_intrinsic_end_primitive_with_counter: {
8007 unsigned stream = nir_intrinsic_stream_id(instr);
8008 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8009 break;
8010 }
8011 case nir_intrinsic_set_vertex_count: {
8012 /* unused, the HW keeps track of this for us */
8013 break;
8014 }
8015 default:
8016 isel_err(&instr->instr, "Unimplemented intrinsic instr");
8017 abort();
8018
8019 break;
8020 }
8021 }
8022
8023
8024 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8025 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8026 enum glsl_base_type *stype)
8027 {
8028 nir_deref_instr *texture_deref_instr = NULL;
8029 nir_deref_instr *sampler_deref_instr = NULL;
8030 int plane = -1;
8031
8032 for (unsigned i = 0; i < instr->num_srcs; i++) {
8033 switch (instr->src[i].src_type) {
8034 case nir_tex_src_texture_deref:
8035 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8036 break;
8037 case nir_tex_src_sampler_deref:
8038 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8039 break;
8040 case nir_tex_src_plane:
8041 plane = nir_src_as_int(instr->src[i].src);
8042 break;
8043 default:
8044 break;
8045 }
8046 }
8047
8048 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8049
8050 if (!sampler_deref_instr)
8051 sampler_deref_instr = texture_deref_instr;
8052
8053 if (plane >= 0) {
8054 assert(instr->op != nir_texop_txf_ms &&
8055 instr->op != nir_texop_samples_identical);
8056 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8057 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8058 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8059 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8060 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8061 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8062 } else {
8063 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8064 }
8065 if (samp_ptr) {
8066 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8067
8068 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8069 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8070 Builder bld(ctx->program, ctx->block);
8071
8072 /* to avoid unnecessary moves, we split and recombine sampler and image */
8073 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8074 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8075 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8076 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8077 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8078 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8079 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8080 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8081
8082 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8083 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8084 img[0], img[1], img[2], img[3],
8085 img[4], img[5], img[6], img[7]);
8086 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8087 samp[0], samp[1], samp[2], samp[3]);
8088 }
8089 }
8090 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8091 instr->op == nir_texop_samples_identical))
8092 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8093 }
8094
8095 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8096 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8097 {
8098 Builder bld(ctx->program, ctx->block);
8099
8100 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8101 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8102 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8103
8104 Operand neg_one(0xbf800000u);
8105 Operand one(0x3f800000u);
8106 Operand two(0x40000000u);
8107 Operand four(0x40800000u);
8108
8109 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8110 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8111 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8112
8113 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8114 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8115 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8116 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8117
8118 // select sc
8119 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8120 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8121 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8122 one, is_ma_y);
8123 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8124
8125 // select tc
8126 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8127 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8128 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8129
8130 // select ma
8131 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8132 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8133 deriv_z, is_ma_z);
8134 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8135 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8136 }
8137
8138 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8139 {
8140 Builder bld(ctx->program, ctx->block);
8141 Temp ma, tc, sc, id;
8142 aco_opcode madak = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_madak_f32;
8143 aco_opcode madmk = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmamk_f32 : aco_opcode::v_madmk_f32;
8144
8145 if (is_array) {
8146 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8147
8148 // see comment in ac_prepare_cube_coords()
8149 if (ctx->options->chip_class <= GFX8)
8150 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8151 }
8152
8153 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8154
8155 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8156 vop3a->operands[0] = Operand(ma);
8157 vop3a->abs[0] = true;
8158 Temp invma = bld.tmp(v1);
8159 vop3a->definitions[0] = Definition(invma);
8160 ctx->block->instructions.emplace_back(std::move(vop3a));
8161
8162 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8163 if (!is_deriv)
8164 sc = bld.vop2(madak, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8165
8166 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8167 if (!is_deriv)
8168 tc = bld.vop2(madak, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8169
8170 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8171
8172 if (is_deriv) {
8173 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8174 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8175
8176 for (unsigned i = 0; i < 2; i++) {
8177 // see comment in ac_prepare_cube_coords()
8178 Temp deriv_ma;
8179 Temp deriv_sc, deriv_tc;
8180 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8181 &deriv_ma, &deriv_sc, &deriv_tc);
8182
8183 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8184
8185 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8186 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8187 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8188 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8189 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8190 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8191 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8192 }
8193
8194 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8195 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8196 }
8197
8198 if (is_array)
8199 id = bld.vop2(madmk, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8200 coords.resize(3);
8201 coords[0] = sc;
8202 coords[1] = tc;
8203 coords[2] = id;
8204 }
8205
8206 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8207 {
8208 if (vec->parent_instr->type != nir_instr_type_alu)
8209 return;
8210 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8211 if (vec_instr->op != nir_op_vec(vec->num_components))
8212 return;
8213
8214 for (unsigned i = 0; i < vec->num_components; i++) {
8215 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8216 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8217 }
8218 }
8219
8220 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8221 {
8222 Builder bld(ctx->program, ctx->block);
8223 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8224 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8225 has_clamped_lod = false;
8226 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8227 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8228 clamped_lod = Temp();
8229 std::vector<Temp> coords;
8230 std::vector<Temp> derivs;
8231 nir_const_value *sample_index_cv = NULL;
8232 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8233 enum glsl_base_type stype;
8234 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8235
8236 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8237 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8238 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8239 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8240
8241 for (unsigned i = 0; i < instr->num_srcs; i++) {
8242 switch (instr->src[i].src_type) {
8243 case nir_tex_src_coord: {
8244 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8245 for (unsigned i = 0; i < coord.size(); i++)
8246 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8247 break;
8248 }
8249 case nir_tex_src_bias:
8250 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8251 has_bias = true;
8252 break;
8253 case nir_tex_src_lod: {
8254 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8255
8256 if (val && val->f32 <= 0.0) {
8257 level_zero = true;
8258 } else {
8259 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8260 has_lod = true;
8261 }
8262 break;
8263 }
8264 case nir_tex_src_min_lod:
8265 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8266 has_clamped_lod = true;
8267 break;
8268 case nir_tex_src_comparator:
8269 if (instr->is_shadow) {
8270 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8271 has_compare = true;
8272 }
8273 break;
8274 case nir_tex_src_offset:
8275 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8276 get_const_vec(instr->src[i].src.ssa, const_offset);
8277 has_offset = true;
8278 break;
8279 case nir_tex_src_ddx:
8280 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8281 has_ddx = true;
8282 break;
8283 case nir_tex_src_ddy:
8284 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8285 has_ddy = true;
8286 break;
8287 case nir_tex_src_ms_index:
8288 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8289 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8290 has_sample_index = true;
8291 break;
8292 case nir_tex_src_texture_offset:
8293 case nir_tex_src_sampler_offset:
8294 default:
8295 break;
8296 }
8297 }
8298
8299 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8300 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8301
8302 if (instr->op == nir_texop_texture_samples) {
8303 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8304
8305 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8306 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8307 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8308
8309 Operand default_sample = Operand(1u);
8310 if (ctx->options->robust_buffer_access) {
8311 /* Extract the second dword of the descriptor, if it's
8312 * all zero, then it's a null descriptor.
8313 */
8314 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8315 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8316 default_sample = Operand(is_non_null_descriptor);
8317 }
8318
8319 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8320 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8321 samples, default_sample, bld.scc(is_msaa));
8322 return;
8323 }
8324
8325 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8326 aco_ptr<Instruction> tmp_instr;
8327 Temp acc, pack = Temp();
8328
8329 uint32_t pack_const = 0;
8330 for (unsigned i = 0; i < offset.size(); i++) {
8331 if (!const_offset[i])
8332 continue;
8333 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8334 }
8335
8336 if (offset.type() == RegType::sgpr) {
8337 for (unsigned i = 0; i < offset.size(); i++) {
8338 if (const_offset[i])
8339 continue;
8340
8341 acc = emit_extract_vector(ctx, offset, i, s1);
8342 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8343
8344 if (i) {
8345 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8346 }
8347
8348 if (pack == Temp()) {
8349 pack = acc;
8350 } else {
8351 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8352 }
8353 }
8354
8355 if (pack_const && pack != Temp())
8356 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8357 } else {
8358 for (unsigned i = 0; i < offset.size(); i++) {
8359 if (const_offset[i])
8360 continue;
8361
8362 acc = emit_extract_vector(ctx, offset, i, v1);
8363 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8364
8365 if (i) {
8366 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8367 }
8368
8369 if (pack == Temp()) {
8370 pack = acc;
8371 } else {
8372 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8373 }
8374 }
8375
8376 if (pack_const && pack != Temp())
8377 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8378 }
8379 if (pack_const && pack == Temp())
8380 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8381 else if (pack == Temp())
8382 has_offset = false;
8383 else
8384 offset = pack;
8385 }
8386
8387 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8388 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8389
8390 /* pack derivatives */
8391 if (has_ddx || has_ddy) {
8392 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8393 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8394 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8395 derivs = {ddx, zero, ddy, zero};
8396 } else {
8397 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8398 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8399 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8400 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8401 }
8402 has_derivs = true;
8403 }
8404
8405 if (instr->coord_components > 1 &&
8406 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8407 instr->is_array &&
8408 instr->op != nir_texop_txf)
8409 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8410
8411 if (instr->coord_components > 2 &&
8412 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8413 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8414 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8415 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8416 instr->is_array &&
8417 instr->op != nir_texop_txf &&
8418 instr->op != nir_texop_txf_ms &&
8419 instr->op != nir_texop_fragment_fetch &&
8420 instr->op != nir_texop_fragment_mask_fetch)
8421 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8422
8423 if (ctx->options->chip_class == GFX9 &&
8424 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8425 instr->op != nir_texop_lod && instr->coord_components) {
8426 assert(coords.size() > 0 && coords.size() < 3);
8427
8428 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8429 Operand((uint32_t) 0) :
8430 Operand((uint32_t) 0x3f000000)));
8431 }
8432
8433 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8434
8435 if (instr->op == nir_texop_samples_identical)
8436 resource = fmask_ptr;
8437
8438 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8439 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8440 instr->op != nir_texop_txs &&
8441 instr->op != nir_texop_fragment_fetch &&
8442 instr->op != nir_texop_fragment_mask_fetch) {
8443 assert(has_sample_index);
8444 Operand op(sample_index);
8445 if (sample_index_cv)
8446 op = Operand(sample_index_cv->u32);
8447 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8448 }
8449
8450 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8451 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8452 Temp off = emit_extract_vector(ctx, offset, i, v1);
8453 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8454 }
8455 has_offset = false;
8456 }
8457
8458 /* Build tex instruction */
8459 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8460 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8461 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8462 : 0;
8463 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8464 Temp tmp_dst = dst;
8465
8466 /* gather4 selects the component by dmask and always returns vec4 */
8467 if (instr->op == nir_texop_tg4) {
8468 assert(instr->dest.ssa.num_components == 4);
8469 if (instr->is_shadow)
8470 dmask = 1;
8471 else
8472 dmask = 1 << instr->component;
8473 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8474 tmp_dst = bld.tmp(v4);
8475 } else if (instr->op == nir_texop_samples_identical) {
8476 tmp_dst = bld.tmp(v1);
8477 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8478 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8479 }
8480
8481 aco_ptr<MIMG_instruction> tex;
8482 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8483 if (!has_lod)
8484 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8485
8486 bool div_by_6 = instr->op == nir_texop_txs &&
8487 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8488 instr->is_array &&
8489 (dmask & (1 << 2));
8490 if (tmp_dst.id() == dst.id() && div_by_6)
8491 tmp_dst = bld.tmp(tmp_dst.regClass());
8492
8493 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8494 tex->operands[0] = Operand(resource);
8495 tex->operands[1] = Operand(s4); /* no sampler */
8496 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8497 if (ctx->options->chip_class == GFX9 &&
8498 instr->op == nir_texop_txs &&
8499 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8500 instr->is_array) {
8501 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8502 } else if (instr->op == nir_texop_query_levels) {
8503 tex->dmask = 1 << 3;
8504 } else {
8505 tex->dmask = dmask;
8506 }
8507 tex->da = da;
8508 tex->definitions[0] = Definition(tmp_dst);
8509 tex->dim = dim;
8510 ctx->block->instructions.emplace_back(std::move(tex));
8511
8512 if (div_by_6) {
8513 /* divide 3rd value by 6 by multiplying with magic number */
8514 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8515 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8516 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8517 assert(instr->dest.ssa.num_components == 3);
8518 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8519 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8520 emit_extract_vector(ctx, tmp_dst, 0, v1),
8521 emit_extract_vector(ctx, tmp_dst, 1, v1),
8522 by_6);
8523
8524 }
8525
8526 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8527 return;
8528 }
8529
8530 Temp tg4_compare_cube_wa64 = Temp();
8531
8532 if (tg4_integer_workarounds) {
8533 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8534 tex->operands[0] = Operand(resource);
8535 tex->operands[1] = Operand(s4); /* no sampler */
8536 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8537 tex->dim = dim;
8538 tex->dmask = 0x3;
8539 tex->da = da;
8540 Temp size = bld.tmp(v2);
8541 tex->definitions[0] = Definition(size);
8542 ctx->block->instructions.emplace_back(std::move(tex));
8543 emit_split_vector(ctx, size, size.size());
8544
8545 Temp half_texel[2];
8546 for (unsigned i = 0; i < 2; i++) {
8547 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8548 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8549 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8550 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8551 }
8552
8553 Temp new_coords[2] = {
8554 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8555 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8556 };
8557
8558 if (tg4_integer_cube_workaround) {
8559 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8560 Temp desc[resource.size()];
8561 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8562 Format::PSEUDO, 1, resource.size())};
8563 split->operands[0] = Operand(resource);
8564 for (unsigned i = 0; i < resource.size(); i++) {
8565 desc[i] = bld.tmp(s1);
8566 split->definitions[i] = Definition(desc[i]);
8567 }
8568 ctx->block->instructions.emplace_back(std::move(split));
8569
8570 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8571 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8572 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8573
8574 Temp nfmt;
8575 if (stype == GLSL_TYPE_UINT) {
8576 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8577 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8578 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8579 bld.scc(compare_cube_wa));
8580 } else {
8581 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8582 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8583 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8584 bld.scc(compare_cube_wa));
8585 }
8586 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8587 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8588
8589 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8590
8591 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8592 Operand((uint32_t)C_008F14_NUM_FORMAT));
8593 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8594
8595 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8596 Format::PSEUDO, resource.size(), 1)};
8597 for (unsigned i = 0; i < resource.size(); i++)
8598 vec->operands[i] = Operand(desc[i]);
8599 resource = bld.tmp(resource.regClass());
8600 vec->definitions[0] = Definition(resource);
8601 ctx->block->instructions.emplace_back(std::move(vec));
8602
8603 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8604 new_coords[0], coords[0], tg4_compare_cube_wa64);
8605 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8606 new_coords[1], coords[1], tg4_compare_cube_wa64);
8607 }
8608 coords[0] = new_coords[0];
8609 coords[1] = new_coords[1];
8610 }
8611
8612 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8613 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8614
8615 assert(coords.size() == 1);
8616 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8617 aco_opcode op;
8618 switch (last_bit) {
8619 case 1:
8620 op = aco_opcode::buffer_load_format_x; break;
8621 case 2:
8622 op = aco_opcode::buffer_load_format_xy; break;
8623 case 3:
8624 op = aco_opcode::buffer_load_format_xyz; break;
8625 case 4:
8626 op = aco_opcode::buffer_load_format_xyzw; break;
8627 default:
8628 unreachable("Tex instruction loads more than 4 components.");
8629 }
8630
8631 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8632 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8633 tmp_dst = dst;
8634 else
8635 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8636
8637 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8638 mubuf->operands[0] = Operand(resource);
8639 mubuf->operands[1] = Operand(coords[0]);
8640 mubuf->operands[2] = Operand((uint32_t) 0);
8641 mubuf->definitions[0] = Definition(tmp_dst);
8642 mubuf->idxen = true;
8643 ctx->block->instructions.emplace_back(std::move(mubuf));
8644
8645 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8646 return;
8647 }
8648
8649 /* gather MIMG address components */
8650 std::vector<Temp> args;
8651 if (has_offset)
8652 args.emplace_back(offset);
8653 if (has_bias)
8654 args.emplace_back(bias);
8655 if (has_compare)
8656 args.emplace_back(compare);
8657 if (has_derivs)
8658 args.insert(args.end(), derivs.begin(), derivs.end());
8659
8660 args.insert(args.end(), coords.begin(), coords.end());
8661 if (has_sample_index)
8662 args.emplace_back(sample_index);
8663 if (has_lod)
8664 args.emplace_back(lod);
8665 if (has_clamped_lod)
8666 args.emplace_back(clamped_lod);
8667
8668 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8669 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8670 vec->definitions[0] = Definition(arg);
8671 for (unsigned i = 0; i < args.size(); i++)
8672 vec->operands[i] = Operand(args[i]);
8673 ctx->block->instructions.emplace_back(std::move(vec));
8674
8675
8676 if (instr->op == nir_texop_txf ||
8677 instr->op == nir_texop_txf_ms ||
8678 instr->op == nir_texop_samples_identical ||
8679 instr->op == nir_texop_fragment_fetch ||
8680 instr->op == nir_texop_fragment_mask_fetch) {
8681 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8682 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8683 tex->operands[0] = Operand(resource);
8684 tex->operands[1] = Operand(s4); /* no sampler */
8685 tex->operands[2] = Operand(arg);
8686 tex->dim = dim;
8687 tex->dmask = dmask;
8688 tex->unrm = true;
8689 tex->da = da;
8690 tex->definitions[0] = Definition(tmp_dst);
8691 ctx->block->instructions.emplace_back(std::move(tex));
8692
8693 if (instr->op == nir_texop_samples_identical) {
8694 assert(dmask == 1 && dst.regClass() == v1);
8695 assert(dst.id() != tmp_dst.id());
8696
8697 Temp tmp = bld.tmp(bld.lm);
8698 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8699 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8700
8701 } else {
8702 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8703 }
8704 return;
8705 }
8706
8707 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8708 aco_opcode opcode = aco_opcode::image_sample;
8709 if (has_offset) { /* image_sample_*_o */
8710 if (has_clamped_lod) {
8711 if (has_compare) {
8712 opcode = aco_opcode::image_sample_c_cl_o;
8713 if (has_derivs)
8714 opcode = aco_opcode::image_sample_c_d_cl_o;
8715 if (has_bias)
8716 opcode = aco_opcode::image_sample_c_b_cl_o;
8717 } else {
8718 opcode = aco_opcode::image_sample_cl_o;
8719 if (has_derivs)
8720 opcode = aco_opcode::image_sample_d_cl_o;
8721 if (has_bias)
8722 opcode = aco_opcode::image_sample_b_cl_o;
8723 }
8724 } else if (has_compare) {
8725 opcode = aco_opcode::image_sample_c_o;
8726 if (has_derivs)
8727 opcode = aco_opcode::image_sample_c_d_o;
8728 if (has_bias)
8729 opcode = aco_opcode::image_sample_c_b_o;
8730 if (level_zero)
8731 opcode = aco_opcode::image_sample_c_lz_o;
8732 if (has_lod)
8733 opcode = aco_opcode::image_sample_c_l_o;
8734 } else {
8735 opcode = aco_opcode::image_sample_o;
8736 if (has_derivs)
8737 opcode = aco_opcode::image_sample_d_o;
8738 if (has_bias)
8739 opcode = aco_opcode::image_sample_b_o;
8740 if (level_zero)
8741 opcode = aco_opcode::image_sample_lz_o;
8742 if (has_lod)
8743 opcode = aco_opcode::image_sample_l_o;
8744 }
8745 } else if (has_clamped_lod) { /* image_sample_*_cl */
8746 if (has_compare) {
8747 opcode = aco_opcode::image_sample_c_cl;
8748 if (has_derivs)
8749 opcode = aco_opcode::image_sample_c_d_cl;
8750 if (has_bias)
8751 opcode = aco_opcode::image_sample_c_b_cl;
8752 } else {
8753 opcode = aco_opcode::image_sample_cl;
8754 if (has_derivs)
8755 opcode = aco_opcode::image_sample_d_cl;
8756 if (has_bias)
8757 opcode = aco_opcode::image_sample_b_cl;
8758 }
8759 } else { /* no offset */
8760 if (has_compare) {
8761 opcode = aco_opcode::image_sample_c;
8762 if (has_derivs)
8763 opcode = aco_opcode::image_sample_c_d;
8764 if (has_bias)
8765 opcode = aco_opcode::image_sample_c_b;
8766 if (level_zero)
8767 opcode = aco_opcode::image_sample_c_lz;
8768 if (has_lod)
8769 opcode = aco_opcode::image_sample_c_l;
8770 } else {
8771 opcode = aco_opcode::image_sample;
8772 if (has_derivs)
8773 opcode = aco_opcode::image_sample_d;
8774 if (has_bias)
8775 opcode = aco_opcode::image_sample_b;
8776 if (level_zero)
8777 opcode = aco_opcode::image_sample_lz;
8778 if (has_lod)
8779 opcode = aco_opcode::image_sample_l;
8780 }
8781 }
8782
8783 if (instr->op == nir_texop_tg4) {
8784 if (has_offset) { /* image_gather4_*_o */
8785 if (has_compare) {
8786 opcode = aco_opcode::image_gather4_c_lz_o;
8787 if (has_lod)
8788 opcode = aco_opcode::image_gather4_c_l_o;
8789 if (has_bias)
8790 opcode = aco_opcode::image_gather4_c_b_o;
8791 } else {
8792 opcode = aco_opcode::image_gather4_lz_o;
8793 if (has_lod)
8794 opcode = aco_opcode::image_gather4_l_o;
8795 if (has_bias)
8796 opcode = aco_opcode::image_gather4_b_o;
8797 }
8798 } else {
8799 if (has_compare) {
8800 opcode = aco_opcode::image_gather4_c_lz;
8801 if (has_lod)
8802 opcode = aco_opcode::image_gather4_c_l;
8803 if (has_bias)
8804 opcode = aco_opcode::image_gather4_c_b;
8805 } else {
8806 opcode = aco_opcode::image_gather4_lz;
8807 if (has_lod)
8808 opcode = aco_opcode::image_gather4_l;
8809 if (has_bias)
8810 opcode = aco_opcode::image_gather4_b;
8811 }
8812 }
8813 } else if (instr->op == nir_texop_lod) {
8814 opcode = aco_opcode::image_get_lod;
8815 }
8816
8817 /* we don't need the bias, sample index, compare value or offset to be
8818 * computed in WQM but if the p_create_vector copies the coordinates, then it
8819 * needs to be in WQM */
8820 if (ctx->stage == fragment_fs &&
8821 !has_derivs && !has_lod && !level_zero &&
8822 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8823 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8824 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8825
8826 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8827 tex->operands[0] = Operand(resource);
8828 tex->operands[1] = Operand(sampler);
8829 tex->operands[2] = Operand(arg);
8830 tex->dim = dim;
8831 tex->dmask = dmask;
8832 tex->da = da;
8833 tex->definitions[0] = Definition(tmp_dst);
8834 ctx->block->instructions.emplace_back(std::move(tex));
8835
8836 if (tg4_integer_cube_workaround) {
8837 assert(tmp_dst.id() != dst.id());
8838 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8839
8840 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8841 Temp val[4];
8842 for (unsigned i = 0; i < dst.size(); i++) {
8843 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8844 Temp cvt_val;
8845 if (stype == GLSL_TYPE_UINT)
8846 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8847 else
8848 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8849 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8850 }
8851 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8852 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8853 val[0], val[1], val[2], val[3]);
8854 }
8855 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8856 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8857
8858 }
8859
8860
8861 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
8862 {
8863 Temp tmp = get_ssa_temp(ctx, ssa);
8864 if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
8865 return Operand(rc);
8866 } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
8867 if (ctx->program->wave_size == 64)
8868 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
8869 else
8870 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
8871 } else {
8872 return Operand(tmp);
8873 }
8874 }
8875
8876 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8877 {
8878 aco_ptr<Pseudo_instruction> phi;
8879 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8880 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8881
8882 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
8883 logical |= ctx->block->kind & block_kind_merge;
8884 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8885
8886 /* we want a sorted list of sources, since the predecessor list is also sorted */
8887 std::map<unsigned, nir_ssa_def*> phi_src;
8888 nir_foreach_phi_src(src, instr)
8889 phi_src[src->pred->index] = src->src.ssa;
8890
8891 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8892 unsigned num_operands = 0;
8893 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8894 unsigned num_defined = 0;
8895 unsigned cur_pred_idx = 0;
8896 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8897 if (cur_pred_idx < preds.size()) {
8898 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8899 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8900 unsigned skipped = 0;
8901 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8902 skipped++;
8903 if (cur_pred_idx + skipped < preds.size()) {
8904 for (unsigned i = 0; i < skipped; i++)
8905 operands[num_operands++] = Operand(dst.regClass());
8906 cur_pred_idx += skipped;
8907 } else {
8908 continue;
8909 }
8910 }
8911 /* Handle missing predecessors at the end. This shouldn't happen with loop
8912 * headers and we can't ignore these sources for loop header phis. */
8913 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8914 continue;
8915 cur_pred_idx++;
8916 Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
8917 operands[num_operands++] = op;
8918 num_defined += !op.isUndefined();
8919 }
8920 /* handle block_kind_continue_or_break at loop exit blocks */
8921 while (cur_pred_idx++ < preds.size())
8922 operands[num_operands++] = Operand(dst.regClass());
8923
8924 /* If the loop ends with a break, still add a linear continue edge in case
8925 * that break is divergent or continue_or_break is used. We'll either remove
8926 * this operand later in visit_loop() if it's not necessary or replace the
8927 * undef with something correct. */
8928 if (!logical && ctx->block->kind & block_kind_loop_header) {
8929 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8930 nir_block *last = nir_loop_last_block(loop);
8931 if (last->successors[0] != instr->instr.block)
8932 operands[num_operands++] = Operand(RegClass());
8933 }
8934
8935 if (num_defined == 0) {
8936 Builder bld(ctx->program, ctx->block);
8937 if (dst.regClass() == s1) {
8938 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8939 } else if (dst.regClass() == v1) {
8940 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8941 } else {
8942 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8943 for (unsigned i = 0; i < dst.size(); i++)
8944 vec->operands[i] = Operand(0u);
8945 vec->definitions[0] = Definition(dst);
8946 ctx->block->instructions.emplace_back(std::move(vec));
8947 }
8948 return;
8949 }
8950
8951 /* we can use a linear phi in some cases if one src is undef */
8952 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8953 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8954
8955 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8956 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8957 assert(invert->kind & block_kind_invert);
8958
8959 unsigned then_block = invert->linear_preds[0];
8960
8961 Block* insert_block = NULL;
8962 for (unsigned i = 0; i < num_operands; i++) {
8963 Operand op = operands[i];
8964 if (op.isUndefined())
8965 continue;
8966 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8967 phi->operands[0] = op;
8968 break;
8969 }
8970 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8971 phi->operands[1] = Operand(dst.regClass());
8972 phi->definitions[0] = Definition(dst);
8973 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8974 return;
8975 }
8976
8977 /* try to scalarize vector phis */
8978 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8979 // TODO: scalarize linear phis on divergent ifs
8980 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8981 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8982 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8983 Operand src = operands[i];
8984 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8985 can_scalarize = false;
8986 }
8987 if (can_scalarize) {
8988 unsigned num_components = instr->dest.ssa.num_components;
8989 assert(dst.size() % num_components == 0);
8990 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8991
8992 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8993 for (unsigned k = 0; k < num_components; k++) {
8994 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8995 for (unsigned i = 0; i < num_operands; i++) {
8996 Operand src = operands[i];
8997 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8998 }
8999 Temp phi_dst = {ctx->program->allocateId(), rc};
9000 phi->definitions[0] = Definition(phi_dst);
9001 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9002 new_vec[k] = phi_dst;
9003 vec->operands[k] = Operand(phi_dst);
9004 }
9005 vec->definitions[0] = Definition(dst);
9006 ctx->block->instructions.emplace_back(std::move(vec));
9007 ctx->allocated_vec.emplace(dst.id(), new_vec);
9008 return;
9009 }
9010 }
9011
9012 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9013 for (unsigned i = 0; i < num_operands; i++)
9014 phi->operands[i] = operands[i];
9015 phi->definitions[0] = Definition(dst);
9016 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9017 }
9018
9019
9020 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9021 {
9022 Temp dst = get_ssa_temp(ctx, &instr->def);
9023
9024 assert(dst.type() == RegType::sgpr);
9025
9026 if (dst.size() == 1) {
9027 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9028 } else {
9029 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9030 for (unsigned i = 0; i < dst.size(); i++)
9031 vec->operands[i] = Operand(0u);
9032 vec->definitions[0] = Definition(dst);
9033 ctx->block->instructions.emplace_back(std::move(vec));
9034 }
9035 }
9036
9037 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9038 {
9039 Builder bld(ctx->program, ctx->block);
9040 Block *logical_target;
9041 append_logical_end(ctx->block);
9042 unsigned idx = ctx->block->index;
9043
9044 switch (instr->type) {
9045 case nir_jump_break:
9046 logical_target = ctx->cf_info.parent_loop.exit;
9047 add_logical_edge(idx, logical_target);
9048 ctx->block->kind |= block_kind_break;
9049
9050 if (!ctx->cf_info.parent_if.is_divergent &&
9051 !ctx->cf_info.parent_loop.has_divergent_continue) {
9052 /* uniform break - directly jump out of the loop */
9053 ctx->block->kind |= block_kind_uniform;
9054 ctx->cf_info.has_branch = true;
9055 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9056 add_linear_edge(idx, logical_target);
9057 return;
9058 }
9059 ctx->cf_info.parent_loop.has_divergent_branch = true;
9060 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9061 break;
9062 case nir_jump_continue:
9063 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9064 add_logical_edge(idx, logical_target);
9065 ctx->block->kind |= block_kind_continue;
9066
9067 if (ctx->cf_info.parent_if.is_divergent) {
9068 /* for potential uniform breaks after this continue,
9069 we must ensure that they are handled correctly */
9070 ctx->cf_info.parent_loop.has_divergent_continue = true;
9071 ctx->cf_info.parent_loop.has_divergent_branch = true;
9072 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9073 } else {
9074 /* uniform continue - directly jump to the loop header */
9075 ctx->block->kind |= block_kind_uniform;
9076 ctx->cf_info.has_branch = true;
9077 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9078 add_linear_edge(idx, logical_target);
9079 return;
9080 }
9081 break;
9082 default:
9083 isel_err(&instr->instr, "Unknown NIR jump instr");
9084 abort();
9085 }
9086
9087 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9088 ctx->cf_info.exec_potentially_empty_break = true;
9089 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9090 }
9091
9092 /* remove critical edges from linear CFG */
9093 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9094 Block* break_block = ctx->program->create_and_insert_block();
9095 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9096 break_block->kind |= block_kind_uniform;
9097 add_linear_edge(idx, break_block);
9098 /* the loop_header pointer might be invalidated by this point */
9099 if (instr->type == nir_jump_continue)
9100 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9101 add_linear_edge(break_block->index, logical_target);
9102 bld.reset(break_block);
9103 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9104
9105 Block* continue_block = ctx->program->create_and_insert_block();
9106 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9107 add_linear_edge(idx, continue_block);
9108 append_logical_start(continue_block);
9109 ctx->block = continue_block;
9110 return;
9111 }
9112
9113 void visit_block(isel_context *ctx, nir_block *block)
9114 {
9115 nir_foreach_instr(instr, block) {
9116 switch (instr->type) {
9117 case nir_instr_type_alu:
9118 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9119 break;
9120 case nir_instr_type_load_const:
9121 visit_load_const(ctx, nir_instr_as_load_const(instr));
9122 break;
9123 case nir_instr_type_intrinsic:
9124 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9125 break;
9126 case nir_instr_type_tex:
9127 visit_tex(ctx, nir_instr_as_tex(instr));
9128 break;
9129 case nir_instr_type_phi:
9130 visit_phi(ctx, nir_instr_as_phi(instr));
9131 break;
9132 case nir_instr_type_ssa_undef:
9133 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9134 break;
9135 case nir_instr_type_deref:
9136 break;
9137 case nir_instr_type_jump:
9138 visit_jump(ctx, nir_instr_as_jump(instr));
9139 break;
9140 default:
9141 isel_err(instr, "Unknown NIR instr type");
9142 //abort();
9143 }
9144 }
9145
9146 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9147 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9148 }
9149
9150
9151
9152 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9153 aco_ptr<Instruction>& header_phi, Operand *vals)
9154 {
9155 vals[0] = Operand(header_phi->definitions[0].getTemp());
9156 RegClass rc = vals[0].regClass();
9157
9158 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9159
9160 unsigned next_pred = 1;
9161
9162 for (unsigned idx = first + 1; idx <= last; idx++) {
9163 Block& block = ctx->program->blocks[idx];
9164 if (block.loop_nest_depth != loop_nest_depth) {
9165 vals[idx - first] = vals[idx - 1 - first];
9166 continue;
9167 }
9168
9169 if (block.kind & block_kind_continue) {
9170 vals[idx - first] = header_phi->operands[next_pred];
9171 next_pred++;
9172 continue;
9173 }
9174
9175 bool all_same = true;
9176 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9177 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9178
9179 Operand val;
9180 if (all_same) {
9181 val = vals[block.linear_preds[0] - first];
9182 } else {
9183 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9184 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9185 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9186 phi->operands[i] = vals[block.linear_preds[i] - first];
9187 val = Operand(Temp(ctx->program->allocateId(), rc));
9188 phi->definitions[0] = Definition(val.getTemp());
9189 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9190 }
9191 vals[idx - first] = val;
9192 }
9193
9194 return vals[last - first];
9195 }
9196
9197 static void visit_loop(isel_context *ctx, nir_loop *loop)
9198 {
9199 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9200 append_logical_end(ctx->block);
9201 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9202 Builder bld(ctx->program, ctx->block);
9203 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9204 unsigned loop_preheader_idx = ctx->block->index;
9205
9206 Block loop_exit = Block();
9207 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9208 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9209
9210 Block* loop_header = ctx->program->create_and_insert_block();
9211 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9212 loop_header->kind |= block_kind_loop_header;
9213 add_edge(loop_preheader_idx, loop_header);
9214 ctx->block = loop_header;
9215
9216 /* emit loop body */
9217 unsigned loop_header_idx = loop_header->index;
9218 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9219 append_logical_start(ctx->block);
9220 bool unreachable = visit_cf_list(ctx, &loop->body);
9221
9222 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9223 if (!ctx->cf_info.has_branch) {
9224 append_logical_end(ctx->block);
9225 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9226 /* Discards can result in code running with an empty exec mask.
9227 * This would result in divergent breaks not ever being taken. As a
9228 * workaround, break the loop when the loop mask is empty instead of
9229 * always continuing. */
9230 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9231 unsigned block_idx = ctx->block->index;
9232
9233 /* create helper blocks to avoid critical edges */
9234 Block *break_block = ctx->program->create_and_insert_block();
9235 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9236 break_block->kind = block_kind_uniform;
9237 bld.reset(break_block);
9238 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9239 add_linear_edge(block_idx, break_block);
9240 add_linear_edge(break_block->index, &loop_exit);
9241
9242 Block *continue_block = ctx->program->create_and_insert_block();
9243 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9244 continue_block->kind = block_kind_uniform;
9245 bld.reset(continue_block);
9246 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9247 add_linear_edge(block_idx, continue_block);
9248 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9249
9250 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9251 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9252 ctx->block = &ctx->program->blocks[block_idx];
9253 } else {
9254 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9255 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9256 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9257 else
9258 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9259 }
9260
9261 bld.reset(ctx->block);
9262 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9263 }
9264
9265 /* Fixup phis in loop header from unreachable blocks.
9266 * has_branch/has_divergent_branch also indicates if the loop ends with a
9267 * break/continue instruction, but we don't emit those if unreachable=true */
9268 if (unreachable) {
9269 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9270 bool linear = ctx->cf_info.has_branch;
9271 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9272 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9273 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9274 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9275 /* the last operand should be the one that needs to be removed */
9276 instr->operands.pop_back();
9277 } else if (!is_phi(instr)) {
9278 break;
9279 }
9280 }
9281 }
9282
9283 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9284 * and the previous one shouldn't both happen at once because a break in the
9285 * merge block would get CSE'd */
9286 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9287 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9288 Operand vals[num_vals];
9289 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9290 if (instr->opcode == aco_opcode::p_linear_phi) {
9291 if (ctx->cf_info.has_branch)
9292 instr->operands.pop_back();
9293 else
9294 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9295 } else if (!is_phi(instr)) {
9296 break;
9297 }
9298 }
9299 }
9300
9301 ctx->cf_info.has_branch = false;
9302
9303 // TODO: if the loop has not a single exit, we must add one °°
9304 /* emit loop successor block */
9305 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9306 append_logical_start(ctx->block);
9307
9308 #if 0
9309 // TODO: check if it is beneficial to not branch on continues
9310 /* trim linear phis in loop header */
9311 for (auto&& instr : loop_entry->instructions) {
9312 if (instr->opcode == aco_opcode::p_linear_phi) {
9313 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9314 new_phi->definitions[0] = instr->definitions[0];
9315 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9316 new_phi->operands[i] = instr->operands[i];
9317 /* check that the remaining operands are all the same */
9318 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9319 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9320 instr.swap(new_phi);
9321 } else if (instr->opcode == aco_opcode::p_phi) {
9322 continue;
9323 } else {
9324 break;
9325 }
9326 }
9327 #endif
9328 }
9329
9330 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9331 {
9332 ic->cond = cond;
9333
9334 append_logical_end(ctx->block);
9335 ctx->block->kind |= block_kind_branch;
9336
9337 /* branch to linear then block */
9338 assert(cond.regClass() == ctx->program->lane_mask);
9339 aco_ptr<Pseudo_branch_instruction> branch;
9340 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 1));
9341 branch->definitions[0] = {ctx->program->allocateId(), s2};
9342 branch->definitions[0].setHint(vcc);
9343 branch->operands[0] = Operand(cond);
9344 ctx->block->instructions.push_back(std::move(branch));
9345
9346 ic->BB_if_idx = ctx->block->index;
9347 ic->BB_invert = Block();
9348 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9349 /* Invert blocks are intentionally not marked as top level because they
9350 * are not part of the logical cfg. */
9351 ic->BB_invert.kind |= block_kind_invert;
9352 ic->BB_endif = Block();
9353 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9354 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9355
9356 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9357 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9358 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9359 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9360 ctx->cf_info.parent_if.is_divergent = true;
9361
9362 /* divergent branches use cbranch_execz */
9363 ctx->cf_info.exec_potentially_empty_discard = false;
9364 ctx->cf_info.exec_potentially_empty_break = false;
9365 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9366
9367 /** emit logical then block */
9368 Block* BB_then_logical = ctx->program->create_and_insert_block();
9369 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9370 add_edge(ic->BB_if_idx, BB_then_logical);
9371 ctx->block = BB_then_logical;
9372 append_logical_start(BB_then_logical);
9373 }
9374
9375 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9376 {
9377 Block *BB_then_logical = ctx->block;
9378 append_logical_end(BB_then_logical);
9379 /* branch from logical then block to invert block */
9380 aco_ptr<Pseudo_branch_instruction> branch;
9381 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9382 branch->definitions[0] = {ctx->program->allocateId(), s2};
9383 branch->definitions[0].setHint(vcc);
9384 BB_then_logical->instructions.emplace_back(std::move(branch));
9385 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9386 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9387 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9388 BB_then_logical->kind |= block_kind_uniform;
9389 assert(!ctx->cf_info.has_branch);
9390 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9391 ctx->cf_info.parent_loop.has_divergent_branch = false;
9392
9393 /** emit linear then block */
9394 Block* BB_then_linear = ctx->program->create_and_insert_block();
9395 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9396 BB_then_linear->kind |= block_kind_uniform;
9397 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9398 /* branch from linear then block to invert block */
9399 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9400 branch->definitions[0] = {ctx->program->allocateId(), s2};
9401 branch->definitions[0].setHint(vcc);
9402 BB_then_linear->instructions.emplace_back(std::move(branch));
9403 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9404
9405 /** emit invert merge block */
9406 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9407 ic->invert_idx = ctx->block->index;
9408
9409 /* branch to linear else block (skip else) */
9410 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 1));
9411 branch->definitions[0] = {ctx->program->allocateId(), s2};
9412 branch->definitions[0].setHint(vcc);
9413 branch->operands[0] = Operand(ic->cond);
9414 ctx->block->instructions.push_back(std::move(branch));
9415
9416 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9417 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9418 ic->exec_potentially_empty_break_depth_old =
9419 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9420 /* divergent branches use cbranch_execz */
9421 ctx->cf_info.exec_potentially_empty_discard = false;
9422 ctx->cf_info.exec_potentially_empty_break = false;
9423 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9424
9425 /** emit logical else block */
9426 Block* BB_else_logical = ctx->program->create_and_insert_block();
9427 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9428 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9429 add_linear_edge(ic->invert_idx, BB_else_logical);
9430 ctx->block = BB_else_logical;
9431 append_logical_start(BB_else_logical);
9432 }
9433
9434 static void end_divergent_if(isel_context *ctx, if_context *ic)
9435 {
9436 Block *BB_else_logical = ctx->block;
9437 append_logical_end(BB_else_logical);
9438
9439 /* branch from logical else block to endif block */
9440 aco_ptr<Pseudo_branch_instruction> branch;
9441 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9442 branch->definitions[0] = {ctx->program->allocateId(), s2};
9443 branch->definitions[0].setHint(vcc);
9444 BB_else_logical->instructions.emplace_back(std::move(branch));
9445 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9446 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9447 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9448 BB_else_logical->kind |= block_kind_uniform;
9449
9450 assert(!ctx->cf_info.has_branch);
9451 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9452
9453
9454 /** emit linear else block */
9455 Block* BB_else_linear = ctx->program->create_and_insert_block();
9456 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9457 BB_else_linear->kind |= block_kind_uniform;
9458 add_linear_edge(ic->invert_idx, BB_else_linear);
9459
9460 /* branch from linear else block to endif block */
9461 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9462 branch->definitions[0] = {ctx->program->allocateId(), s2};
9463 branch->definitions[0].setHint(vcc);
9464 BB_else_linear->instructions.emplace_back(std::move(branch));
9465 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9466
9467
9468 /** emit endif merge block */
9469 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9470 append_logical_start(ctx->block);
9471
9472
9473 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9474 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9475 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9476 ctx->cf_info.exec_potentially_empty_break_depth =
9477 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9478 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9479 !ctx->cf_info.parent_if.is_divergent) {
9480 ctx->cf_info.exec_potentially_empty_break = false;
9481 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9482 }
9483 /* uniform control flow never has an empty exec-mask */
9484 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9485 ctx->cf_info.exec_potentially_empty_discard = false;
9486 ctx->cf_info.exec_potentially_empty_break = false;
9487 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9488 }
9489 }
9490
9491 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9492 {
9493 assert(cond.regClass() == s1);
9494
9495 append_logical_end(ctx->block);
9496 ctx->block->kind |= block_kind_uniform;
9497
9498 aco_ptr<Pseudo_branch_instruction> branch;
9499 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9500 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 1));
9501 branch->definitions[0] = {ctx->program->allocateId(), s2};
9502 branch->definitions[0].setHint(vcc);
9503 branch->operands[0] = Operand(cond);
9504 branch->operands[0].setFixed(scc);
9505 ctx->block->instructions.emplace_back(std::move(branch));
9506
9507 ic->BB_if_idx = ctx->block->index;
9508 ic->BB_endif = Block();
9509 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9510 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9511
9512 ctx->cf_info.has_branch = false;
9513 ctx->cf_info.parent_loop.has_divergent_branch = false;
9514
9515 /** emit then block */
9516 Block* BB_then = ctx->program->create_and_insert_block();
9517 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9518 add_edge(ic->BB_if_idx, BB_then);
9519 append_logical_start(BB_then);
9520 ctx->block = BB_then;
9521 }
9522
9523 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9524 {
9525 Block *BB_then = ctx->block;
9526
9527 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9528 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9529
9530 if (!ic->uniform_has_then_branch) {
9531 append_logical_end(BB_then);
9532 /* branch from then block to endif block */
9533 aco_ptr<Pseudo_branch_instruction> branch;
9534 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9535 branch->definitions[0] = {ctx->program->allocateId(), s2};
9536 branch->definitions[0].setHint(vcc);
9537 BB_then->instructions.emplace_back(std::move(branch));
9538 add_linear_edge(BB_then->index, &ic->BB_endif);
9539 if (!ic->then_branch_divergent)
9540 add_logical_edge(BB_then->index, &ic->BB_endif);
9541 BB_then->kind |= block_kind_uniform;
9542 }
9543
9544 ctx->cf_info.has_branch = false;
9545 ctx->cf_info.parent_loop.has_divergent_branch = false;
9546
9547 /** emit else block */
9548 Block* BB_else = ctx->program->create_and_insert_block();
9549 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9550 add_edge(ic->BB_if_idx, BB_else);
9551 append_logical_start(BB_else);
9552 ctx->block = BB_else;
9553 }
9554
9555 static void end_uniform_if(isel_context *ctx, if_context *ic)
9556 {
9557 Block *BB_else = ctx->block;
9558
9559 if (!ctx->cf_info.has_branch) {
9560 append_logical_end(BB_else);
9561 /* branch from then block to endif block */
9562 aco_ptr<Pseudo_branch_instruction> branch;
9563 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9564 branch->definitions[0] = {ctx->program->allocateId(), s2};
9565 branch->definitions[0].setHint(vcc);
9566 BB_else->instructions.emplace_back(std::move(branch));
9567 add_linear_edge(BB_else->index, &ic->BB_endif);
9568 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9569 add_logical_edge(BB_else->index, &ic->BB_endif);
9570 BB_else->kind |= block_kind_uniform;
9571 }
9572
9573 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9574 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9575
9576 /** emit endif merge block */
9577 if (!ctx->cf_info.has_branch) {
9578 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9579 append_logical_start(ctx->block);
9580 }
9581 }
9582
9583 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9584 {
9585 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9586 Builder bld(ctx->program, ctx->block);
9587 aco_ptr<Pseudo_branch_instruction> branch;
9588 if_context ic;
9589
9590 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
9591 /**
9592 * Uniform conditionals are represented in the following way*) :
9593 *
9594 * The linear and logical CFG:
9595 * BB_IF
9596 * / \
9597 * BB_THEN (logical) BB_ELSE (logical)
9598 * \ /
9599 * BB_ENDIF
9600 *
9601 * *) Exceptions may be due to break and continue statements within loops
9602 * If a break/continue happens within uniform control flow, it branches
9603 * to the loop exit/entry block. Otherwise, it branches to the next
9604 * merge block.
9605 **/
9606
9607 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9608 assert(cond.regClass() == ctx->program->lane_mask);
9609 cond = bool_to_scalar_condition(ctx, cond);
9610
9611 begin_uniform_if_then(ctx, &ic, cond);
9612 visit_cf_list(ctx, &if_stmt->then_list);
9613
9614 begin_uniform_if_else(ctx, &ic);
9615 visit_cf_list(ctx, &if_stmt->else_list);
9616
9617 end_uniform_if(ctx, &ic);
9618 } else { /* non-uniform condition */
9619 /**
9620 * To maintain a logical and linear CFG without critical edges,
9621 * non-uniform conditionals are represented in the following way*) :
9622 *
9623 * The linear CFG:
9624 * BB_IF
9625 * / \
9626 * BB_THEN (logical) BB_THEN (linear)
9627 * \ /
9628 * BB_INVERT (linear)
9629 * / \
9630 * BB_ELSE (logical) BB_ELSE (linear)
9631 * \ /
9632 * BB_ENDIF
9633 *
9634 * The logical CFG:
9635 * BB_IF
9636 * / \
9637 * BB_THEN (logical) BB_ELSE (logical)
9638 * \ /
9639 * BB_ENDIF
9640 *
9641 * *) Exceptions may be due to break and continue statements within loops
9642 **/
9643
9644 begin_divergent_if_then(ctx, &ic, cond);
9645 visit_cf_list(ctx, &if_stmt->then_list);
9646
9647 begin_divergent_if_else(ctx, &ic);
9648 visit_cf_list(ctx, &if_stmt->else_list);
9649
9650 end_divergent_if(ctx, &ic);
9651 }
9652
9653 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9654 }
9655
9656 static bool visit_cf_list(isel_context *ctx,
9657 struct exec_list *list)
9658 {
9659 foreach_list_typed(nir_cf_node, node, node, list) {
9660 switch (node->type) {
9661 case nir_cf_node_block:
9662 visit_block(ctx, nir_cf_node_as_block(node));
9663 break;
9664 case nir_cf_node_if:
9665 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9666 return true;
9667 break;
9668 case nir_cf_node_loop:
9669 visit_loop(ctx, nir_cf_node_as_loop(node));
9670 break;
9671 default:
9672 unreachable("unimplemented cf list type");
9673 }
9674 }
9675 return false;
9676 }
9677
9678 static void create_null_export(isel_context *ctx)
9679 {
9680 /* Some shader stages always need to have exports.
9681 * So when there is none, we need to add a null export.
9682 */
9683
9684 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9685 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9686 Builder bld(ctx->program, ctx->block);
9687 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9688 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9689 }
9690
9691 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9692 {
9693 assert(ctx->stage == vertex_vs ||
9694 ctx->stage == tess_eval_vs ||
9695 ctx->stage == gs_copy_vs ||
9696 ctx->stage == ngg_vertex_gs ||
9697 ctx->stage == ngg_tess_eval_gs);
9698
9699 int offset = (ctx->stage & sw_tes)
9700 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9701 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9702 uint64_t mask = ctx->outputs.mask[slot];
9703 if (!is_pos && !mask)
9704 return false;
9705 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9706 return false;
9707 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9708 exp->enabled_mask = mask;
9709 for (unsigned i = 0; i < 4; ++i) {
9710 if (mask & (1 << i))
9711 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9712 else
9713 exp->operands[i] = Operand(v1);
9714 }
9715 /* GFX10 (Navi1x) skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9716 * Setting valid_mask=1 prevents it and has no other effect.
9717 */
9718 exp->valid_mask = ctx->options->chip_class == GFX10 && is_pos && *next_pos == 0;
9719 exp->done = false;
9720 exp->compressed = false;
9721 if (is_pos)
9722 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9723 else
9724 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9725 ctx->block->instructions.emplace_back(std::move(exp));
9726
9727 return true;
9728 }
9729
9730 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9731 {
9732 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9733 exp->enabled_mask = 0;
9734 for (unsigned i = 0; i < 4; ++i)
9735 exp->operands[i] = Operand(v1);
9736 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9737 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9738 exp->enabled_mask |= 0x1;
9739 }
9740 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9741 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9742 exp->enabled_mask |= 0x4;
9743 }
9744 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9745 if (ctx->options->chip_class < GFX9) {
9746 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9747 exp->enabled_mask |= 0x8;
9748 } else {
9749 Builder bld(ctx->program, ctx->block);
9750
9751 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9752 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9753 if (exp->operands[2].isTemp())
9754 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9755
9756 exp->operands[2] = Operand(out);
9757 exp->enabled_mask |= 0x4;
9758 }
9759 }
9760 exp->valid_mask = ctx->options->chip_class == GFX10 && *next_pos == 0;
9761 exp->done = false;
9762 exp->compressed = false;
9763 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9764 ctx->block->instructions.emplace_back(std::move(exp));
9765 }
9766
9767 static void create_export_phis(isel_context *ctx)
9768 {
9769 /* Used when exports are needed, but the output temps are defined in a preceding block.
9770 * This function will set up phis in order to access the outputs in the next block.
9771 */
9772
9773 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9774 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9775 ctx->block->instructions.pop_back();
9776
9777 Builder bld(ctx->program, ctx->block);
9778
9779 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9780 uint64_t mask = ctx->outputs.mask[slot];
9781 for (unsigned i = 0; i < 4; ++i) {
9782 if (!(mask & (1 << i)))
9783 continue;
9784
9785 Temp old = ctx->outputs.temps[slot * 4 + i];
9786 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9787 ctx->outputs.temps[slot * 4 + i] = phi;
9788 }
9789 }
9790
9791 bld.insert(std::move(logical_start));
9792 }
9793
9794 static void create_vs_exports(isel_context *ctx)
9795 {
9796 assert(ctx->stage == vertex_vs ||
9797 ctx->stage == tess_eval_vs ||
9798 ctx->stage == gs_copy_vs ||
9799 ctx->stage == ngg_vertex_gs ||
9800 ctx->stage == ngg_tess_eval_gs);
9801
9802 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9803 ? &ctx->program->info->tes.outinfo
9804 : &ctx->program->info->vs.outinfo;
9805
9806 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9807 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9808 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9809 }
9810
9811 if (ctx->options->key.has_multiview_view_index) {
9812 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9813 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9814 }
9815
9816 /* the order these position exports are created is important */
9817 int next_pos = 0;
9818 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9819 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9820 export_vs_psiz_layer_viewport(ctx, &next_pos);
9821 exported_pos = true;
9822 }
9823 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9824 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9825 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9826 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9827
9828 if (ctx->export_clip_dists) {
9829 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9830 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9831 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9832 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9833 }
9834
9835 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9836 if (i < VARYING_SLOT_VAR0 &&
9837 i != VARYING_SLOT_LAYER &&
9838 i != VARYING_SLOT_PRIMITIVE_ID &&
9839 i != VARYING_SLOT_VIEWPORT)
9840 continue;
9841
9842 export_vs_varying(ctx, i, false, NULL);
9843 }
9844
9845 if (!exported_pos)
9846 create_null_export(ctx);
9847 }
9848
9849 static bool export_fs_mrt_z(isel_context *ctx)
9850 {
9851 Builder bld(ctx->program, ctx->block);
9852 unsigned enabled_channels = 0;
9853 bool compr = false;
9854 Operand values[4];
9855
9856 for (unsigned i = 0; i < 4; ++i) {
9857 values[i] = Operand(v1);
9858 }
9859
9860 /* Both stencil and sample mask only need 16-bits. */
9861 if (!ctx->program->info->ps.writes_z &&
9862 (ctx->program->info->ps.writes_stencil ||
9863 ctx->program->info->ps.writes_sample_mask)) {
9864 compr = true; /* COMPR flag */
9865
9866 if (ctx->program->info->ps.writes_stencil) {
9867 /* Stencil should be in X[23:16]. */
9868 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9869 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9870 enabled_channels |= 0x3;
9871 }
9872
9873 if (ctx->program->info->ps.writes_sample_mask) {
9874 /* SampleMask should be in Y[15:0]. */
9875 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9876 enabled_channels |= 0xc;
9877 }
9878 } else {
9879 if (ctx->program->info->ps.writes_z) {
9880 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9881 enabled_channels |= 0x1;
9882 }
9883
9884 if (ctx->program->info->ps.writes_stencil) {
9885 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9886 enabled_channels |= 0x2;
9887 }
9888
9889 if (ctx->program->info->ps.writes_sample_mask) {
9890 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9891 enabled_channels |= 0x4;
9892 }
9893 }
9894
9895 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9896 * writemask component.
9897 */
9898 if (ctx->options->chip_class == GFX6 &&
9899 ctx->options->family != CHIP_OLAND &&
9900 ctx->options->family != CHIP_HAINAN) {
9901 enabled_channels |= 0x1;
9902 }
9903
9904 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9905 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9906
9907 return true;
9908 }
9909
9910 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9911 {
9912 Builder bld(ctx->program, ctx->block);
9913 unsigned write_mask = ctx->outputs.mask[slot];
9914 Operand values[4];
9915
9916 for (unsigned i = 0; i < 4; ++i) {
9917 if (write_mask & (1 << i)) {
9918 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9919 } else {
9920 values[i] = Operand(v1);
9921 }
9922 }
9923
9924 unsigned target, col_format;
9925 unsigned enabled_channels = 0;
9926 aco_opcode compr_op = (aco_opcode)0;
9927
9928 slot -= FRAG_RESULT_DATA0;
9929 target = V_008DFC_SQ_EXP_MRT + slot;
9930 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9931
9932 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9933 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9934 bool is_16bit = values[0].regClass() == v2b;
9935
9936 switch (col_format)
9937 {
9938 case V_028714_SPI_SHADER_ZERO:
9939 enabled_channels = 0; /* writemask */
9940 target = V_008DFC_SQ_EXP_NULL;
9941 break;
9942
9943 case V_028714_SPI_SHADER_32_R:
9944 enabled_channels = 1;
9945 break;
9946
9947 case V_028714_SPI_SHADER_32_GR:
9948 enabled_channels = 0x3;
9949 break;
9950
9951 case V_028714_SPI_SHADER_32_AR:
9952 if (ctx->options->chip_class >= GFX10) {
9953 /* Special case: on GFX10, the outputs are different for 32_AR */
9954 enabled_channels = 0x3;
9955 values[1] = values[3];
9956 values[3] = Operand(v1);
9957 } else {
9958 enabled_channels = 0x9;
9959 }
9960 break;
9961
9962 case V_028714_SPI_SHADER_FP16_ABGR:
9963 enabled_channels = 0x5;
9964 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9965 if (is_16bit) {
9966 if (ctx->options->chip_class >= GFX9) {
9967 /* Pack the FP16 values together instead of converting them to
9968 * FP32 and back to FP16.
9969 * TODO: use p_create_vector and let the compiler optimizes.
9970 */
9971 compr_op = aco_opcode::v_pack_b32_f16;
9972 } else {
9973 for (unsigned i = 0; i < 4; i++) {
9974 if ((write_mask >> i) & 1)
9975 values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
9976 }
9977 }
9978 }
9979 break;
9980
9981 case V_028714_SPI_SHADER_UNORM16_ABGR:
9982 enabled_channels = 0x5;
9983 if (is_16bit && ctx->options->chip_class >= GFX9) {
9984 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
9985 } else {
9986 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9987 }
9988 break;
9989
9990 case V_028714_SPI_SHADER_SNORM16_ABGR:
9991 enabled_channels = 0x5;
9992 if (is_16bit && ctx->options->chip_class >= GFX9) {
9993 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
9994 } else {
9995 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9996 }
9997 break;
9998
9999 case V_028714_SPI_SHADER_UINT16_ABGR: {
10000 enabled_channels = 0x5;
10001 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10002 if (is_int8 || is_int10) {
10003 /* clamp */
10004 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10005 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10006
10007 for (unsigned i = 0; i < 4; i++) {
10008 if ((write_mask >> i) & 1) {
10009 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10010 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10011 values[i]);
10012 }
10013 }
10014 } else if (is_16bit) {
10015 for (unsigned i = 0; i < 4; i++) {
10016 if ((write_mask >> i) & 1) {
10017 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10018 values[i] = Operand(tmp);
10019 }
10020 }
10021 }
10022 break;
10023 }
10024
10025 case V_028714_SPI_SHADER_SINT16_ABGR:
10026 enabled_channels = 0x5;
10027 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10028 if (is_int8 || is_int10) {
10029 /* clamp */
10030 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10031 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10032 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10033 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10034
10035 for (unsigned i = 0; i < 4; i++) {
10036 if ((write_mask >> i) & 1) {
10037 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10038 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10039 values[i]);
10040 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10041 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10042 values[i]);
10043 }
10044 }
10045 } else if (is_16bit) {
10046 for (unsigned i = 0; i < 4; i++) {
10047 if ((write_mask >> i) & 1) {
10048 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10049 values[i] = Operand(tmp);
10050 }
10051 }
10052 }
10053 break;
10054
10055 case V_028714_SPI_SHADER_32_ABGR:
10056 enabled_channels = 0xF;
10057 break;
10058
10059 default:
10060 break;
10061 }
10062
10063 if (target == V_008DFC_SQ_EXP_NULL)
10064 return false;
10065
10066 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10067 if (ctx->options->enable_mrt_output_nan_fixup &&
10068 !is_16bit &&
10069 (col_format == V_028714_SPI_SHADER_32_R ||
10070 col_format == V_028714_SPI_SHADER_32_GR ||
10071 col_format == V_028714_SPI_SHADER_32_AR ||
10072 col_format == V_028714_SPI_SHADER_32_ABGR ||
10073 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10074 for (int i = 0; i < 4; i++) {
10075 if (!(write_mask & (1 << i)))
10076 continue;
10077
10078 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10079 bld.hint_vcc(bld.def(bld.lm)), values[i],
10080 bld.copy(bld.def(v1), Operand(3u)));
10081 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10082 bld.copy(bld.def(v1), Operand(0u)), isnan);
10083 }
10084 }
10085
10086 if ((bool) compr_op) {
10087 for (int i = 0; i < 2; i++) {
10088 /* check if at least one of the values to be compressed is enabled */
10089 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10090 if (enabled) {
10091 enabled_channels |= enabled << (i*2);
10092 values[i] = bld.vop3(compr_op, bld.def(v1),
10093 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10094 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10095 } else {
10096 values[i] = Operand(v1);
10097 }
10098 }
10099 values[2] = Operand(v1);
10100 values[3] = Operand(v1);
10101 } else {
10102 for (int i = 0; i < 4; i++)
10103 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10104 }
10105
10106 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10107 enabled_channels, target, (bool) compr_op);
10108 return true;
10109 }
10110
10111 static void create_fs_exports(isel_context *ctx)
10112 {
10113 bool exported = false;
10114
10115 /* Export depth, stencil and sample mask. */
10116 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10117 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10118 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10119 exported |= export_fs_mrt_z(ctx);
10120
10121 /* Export all color render targets. */
10122 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10123 if (ctx->outputs.mask[i])
10124 exported |= export_fs_mrt_color(ctx, i);
10125
10126 if (!exported)
10127 create_null_export(ctx);
10128 }
10129
10130 static void create_workgroup_barrier(Builder& bld)
10131 {
10132 bld.barrier(aco_opcode::p_barrier,
10133 memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup),
10134 scope_workgroup);
10135 }
10136
10137 static void write_tcs_tess_factors(isel_context *ctx)
10138 {
10139 unsigned outer_comps;
10140 unsigned inner_comps;
10141
10142 switch (ctx->args->options->key.tcs.primitive_mode) {
10143 case GL_ISOLINES:
10144 outer_comps = 2;
10145 inner_comps = 0;
10146 break;
10147 case GL_TRIANGLES:
10148 outer_comps = 3;
10149 inner_comps = 1;
10150 break;
10151 case GL_QUADS:
10152 outer_comps = 4;
10153 inner_comps = 2;
10154 break;
10155 default:
10156 return;
10157 }
10158
10159 Builder bld(ctx->program, ctx->block);
10160
10161 create_workgroup_barrier(bld);
10162
10163 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10164 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10165
10166 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10167 if_context ic_invocation_id_is_zero;
10168 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10169 bld.reset(ctx->block);
10170
10171 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10172
10173 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10174 unsigned stride = inner_comps + outer_comps;
10175 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10176 Temp tf_inner_vec;
10177 Temp tf_outer_vec;
10178 Temp out[6];
10179 assert(stride <= (sizeof(out) / sizeof(Temp)));
10180
10181 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10182 // LINES reversal
10183 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10184 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10185 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10186 } else {
10187 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10188 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10189
10190 for (unsigned i = 0; i < outer_comps; ++i)
10191 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10192 for (unsigned i = 0; i < inner_comps; ++i)
10193 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10194 }
10195
10196 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10197 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10198 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10199 unsigned tf_const_offset = 0;
10200
10201 if (ctx->program->chip_class <= GFX8) {
10202 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10203 if_context ic_rel_patch_id_is_zero;
10204 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10205 bld.reset(ctx->block);
10206
10207 /* Store the dynamic HS control word. */
10208 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10209 bld.mubuf(aco_opcode::buffer_store_dword,
10210 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10211 /* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false,
10212 /* addr64 */ false, /* disable_wqm */ false, /* glc */ true);
10213 tf_const_offset += 4;
10214
10215 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10216 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10217 bld.reset(ctx->block);
10218 }
10219
10220 assert(stride == 2 || stride == 4 || stride == 6);
10221 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10222 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, memory_sync_info());
10223
10224 /* Store to offchip for TES to read - only if TES reads them */
10225 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10226 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10227 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10228
10229 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10230 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, memory_sync_info(storage_vmem_output));
10231
10232 if (likely(inner_comps)) {
10233 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10234 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, memory_sync_info(storage_vmem_output));
10235 }
10236 }
10237
10238 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10239 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10240 }
10241
10242 static void emit_stream_output(isel_context *ctx,
10243 Temp const *so_buffers,
10244 Temp const *so_write_offset,
10245 const struct radv_stream_output *output)
10246 {
10247 unsigned num_comps = util_bitcount(output->component_mask);
10248 unsigned writemask = (1 << num_comps) - 1;
10249 unsigned loc = output->location;
10250 unsigned buf = output->buffer;
10251
10252 assert(num_comps && num_comps <= 4);
10253 if (!num_comps || num_comps > 4)
10254 return;
10255
10256 unsigned start = ffs(output->component_mask) - 1;
10257
10258 Temp out[4];
10259 bool all_undef = true;
10260 assert(ctx->stage & hw_vs);
10261 for (unsigned i = 0; i < num_comps; i++) {
10262 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10263 all_undef = all_undef && !out[i].id();
10264 }
10265 if (all_undef)
10266 return;
10267
10268 while (writemask) {
10269 int start, count;
10270 u_bit_scan_consecutive_range(&writemask, &start, &count);
10271 if (count == 3 && ctx->options->chip_class == GFX6) {
10272 /* GFX6 doesn't support storing vec3, split it. */
10273 writemask |= 1u << (start + 2);
10274 count = 2;
10275 }
10276
10277 unsigned offset = output->offset + start * 4;
10278
10279 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10280 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10281 for (int i = 0; i < count; ++i)
10282 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10283 vec->definitions[0] = Definition(write_data);
10284 ctx->block->instructions.emplace_back(std::move(vec));
10285
10286 aco_opcode opcode;
10287 switch (count) {
10288 case 1:
10289 opcode = aco_opcode::buffer_store_dword;
10290 break;
10291 case 2:
10292 opcode = aco_opcode::buffer_store_dwordx2;
10293 break;
10294 case 3:
10295 opcode = aco_opcode::buffer_store_dwordx3;
10296 break;
10297 case 4:
10298 opcode = aco_opcode::buffer_store_dwordx4;
10299 break;
10300 default:
10301 unreachable("Unsupported dword count.");
10302 }
10303
10304 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10305 store->operands[0] = Operand(so_buffers[buf]);
10306 store->operands[1] = Operand(so_write_offset[buf]);
10307 store->operands[2] = Operand((uint32_t) 0);
10308 store->operands[3] = Operand(write_data);
10309 if (offset > 4095) {
10310 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10311 Builder bld(ctx->program, ctx->block);
10312 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10313 } else {
10314 store->offset = offset;
10315 }
10316 store->offen = true;
10317 store->glc = true;
10318 store->dlc = false;
10319 store->slc = true;
10320 ctx->block->instructions.emplace_back(std::move(store));
10321 }
10322 }
10323
10324 static void emit_streamout(isel_context *ctx, unsigned stream)
10325 {
10326 Builder bld(ctx->program, ctx->block);
10327
10328 Temp so_buffers[4];
10329 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10330 for (unsigned i = 0; i < 4; i++) {
10331 unsigned stride = ctx->program->info->so.strides[i];
10332 if (!stride)
10333 continue;
10334
10335 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10336 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10337 }
10338
10339 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10340 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10341
10342 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10343
10344 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10345
10346 if_context ic;
10347 begin_divergent_if_then(ctx, &ic, can_emit);
10348
10349 bld.reset(ctx->block);
10350
10351 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10352
10353 Temp so_write_offset[4];
10354
10355 for (unsigned i = 0; i < 4; i++) {
10356 unsigned stride = ctx->program->info->so.strides[i];
10357 if (!stride)
10358 continue;
10359
10360 if (stride == 1) {
10361 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10362 get_arg(ctx, ctx->args->streamout_write_idx),
10363 get_arg(ctx, ctx->args->streamout_offset[i]));
10364 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10365
10366 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10367 } else {
10368 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10369 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10370 get_arg(ctx, ctx->args->streamout_offset[i]));
10371 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10372 }
10373 }
10374
10375 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10376 struct radv_stream_output *output =
10377 &ctx->program->info->so.outputs[i];
10378 if (stream != output->stream)
10379 continue;
10380
10381 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10382 }
10383
10384 begin_divergent_if_else(ctx, &ic);
10385 end_divergent_if(ctx, &ic);
10386 }
10387
10388 } /* end namespace */
10389
10390 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10391 {
10392 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10393 Builder bld(ctx->program, ctx->block);
10394 constexpr unsigned hs_idx = 1u;
10395 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10396 get_arg(ctx, ctx->args->merged_wave_info),
10397 Operand((8u << 16) | (hs_idx * 8u)));
10398 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10399
10400 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10401
10402 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10403 get_arg(ctx, ctx->args->rel_auto_id),
10404 get_arg(ctx, ctx->args->ac.instance_id),
10405 ls_has_nonzero_hs_threads);
10406 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10407 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10408 get_arg(ctx, ctx->args->rel_auto_id),
10409 ls_has_nonzero_hs_threads);
10410 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10411 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10412 get_arg(ctx, ctx->args->ac.vertex_id),
10413 ls_has_nonzero_hs_threads);
10414
10415 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10416 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10417 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10418 }
10419
10420 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10421 {
10422 /* Split all arguments except for the first (ring_offsets) and the last
10423 * (exec) so that the dead channels don't stay live throughout the program.
10424 */
10425 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10426 if (startpgm->definitions[i].regClass().size() > 1) {
10427 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10428 startpgm->definitions[i].regClass().size());
10429 }
10430 }
10431 }
10432
10433 void handle_bc_optimize(isel_context *ctx)
10434 {
10435 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10436 Builder bld(ctx->program, ctx->block);
10437 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10438 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10439 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10440 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10441 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10442 if (uses_center && uses_centroid) {
10443 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10444 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10445
10446 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10447 Temp new_coord[2];
10448 for (unsigned i = 0; i < 2; i++) {
10449 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10450 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10451 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10452 persp_centroid, persp_center, sel);
10453 }
10454 ctx->persp_centroid = bld.tmp(v2);
10455 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10456 Operand(new_coord[0]), Operand(new_coord[1]));
10457 emit_split_vector(ctx, ctx->persp_centroid, 2);
10458 }
10459
10460 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10461 Temp new_coord[2];
10462 for (unsigned i = 0; i < 2; i++) {
10463 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10464 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10465 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10466 linear_centroid, linear_center, sel);
10467 }
10468 ctx->linear_centroid = bld.tmp(v2);
10469 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10470 Operand(new_coord[0]), Operand(new_coord[1]));
10471 emit_split_vector(ctx, ctx->linear_centroid, 2);
10472 }
10473 }
10474 }
10475
10476 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10477 {
10478 Program *program = ctx->program;
10479
10480 unsigned float_controls = shader->info.float_controls_execution_mode;
10481
10482 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10483 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10484 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10485 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10486 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10487
10488 program->next_fp_mode.must_flush_denorms32 =
10489 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10490 program->next_fp_mode.must_flush_denorms16_64 =
10491 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10492 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10493
10494 program->next_fp_mode.care_about_round32 =
10495 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10496
10497 program->next_fp_mode.care_about_round16_64 =
10498 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10499 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10500
10501 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
10502 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
10503 if (program->next_fp_mode.must_flush_denorms16_64)
10504 program->next_fp_mode.denorm16_64 = 0;
10505 else
10506 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10507
10508 /* preserving fp32 denorms is expensive, so only do it if asked */
10509 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10510 program->next_fp_mode.denorm32 = fp_denorm_keep;
10511 else
10512 program->next_fp_mode.denorm32 = 0;
10513
10514 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10515 program->next_fp_mode.round32 = fp_round_tz;
10516 else
10517 program->next_fp_mode.round32 = fp_round_ne;
10518
10519 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10520 program->next_fp_mode.round16_64 = fp_round_tz;
10521 else
10522 program->next_fp_mode.round16_64 = fp_round_ne;
10523
10524 ctx->block->fp_mode = program->next_fp_mode;
10525 }
10526
10527 void cleanup_cfg(Program *program)
10528 {
10529 /* create linear_succs/logical_succs */
10530 for (Block& BB : program->blocks) {
10531 for (unsigned idx : BB.linear_preds)
10532 program->blocks[idx].linear_succs.emplace_back(BB.index);
10533 for (unsigned idx : BB.logical_preds)
10534 program->blocks[idx].logical_succs.emplace_back(BB.index);
10535 }
10536 }
10537
10538 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10539 {
10540 Builder bld(ctx->program, ctx->block);
10541
10542 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10543 Temp count = i == 0
10544 ? get_arg(ctx, ctx->args->merged_wave_info)
10545 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10546 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10547
10548 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10549 Temp cond;
10550
10551 if (ctx->program->wave_size == 64) {
10552 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10553 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10554 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10555 } else {
10556 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10557 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10558 }
10559
10560 return cond;
10561 }
10562
10563 bool ngg_early_prim_export(isel_context *ctx)
10564 {
10565 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10566 return true;
10567 }
10568
10569 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10570 {
10571 Builder bld(ctx->program, ctx->block);
10572
10573 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10574 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10575
10576 /* Get the id of the current wave within the threadgroup (workgroup) */
10577 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10578 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10579
10580 /* Execute the following code only on the first wave (wave id 0),
10581 * use the SCC def to tell if the wave id is zero or not.
10582 */
10583 Temp cond = wave_id_in_tg.def(1).getTemp();
10584 if_context ic;
10585 begin_uniform_if_then(ctx, &ic, cond);
10586 begin_uniform_if_else(ctx, &ic);
10587 bld.reset(ctx->block);
10588
10589 /* Number of vertices output by VS/TES */
10590 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10591 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10592 /* Number of primitives output by VS/TES */
10593 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10594 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10595
10596 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10597 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10598 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10599
10600 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10601 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10602
10603 end_uniform_if(ctx, &ic);
10604
10605 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10606 bld.reset(ctx->block);
10607 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10608 }
10609
10610 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10611 {
10612 Builder bld(ctx->program, ctx->block);
10613
10614 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10615 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10616 }
10617
10618 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10619 Temp tmp;
10620
10621 for (unsigned i = 0; i < num_vertices; ++i) {
10622 assert(vtxindex[i].id());
10623
10624 if (i)
10625 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10626 else
10627 tmp = vtxindex[i];
10628
10629 /* The initial edge flag is always false in tess eval shaders. */
10630 if (ctx->stage == ngg_vertex_gs) {
10631 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10632 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10633 }
10634 }
10635
10636 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10637
10638 return tmp;
10639 }
10640
10641 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10642 {
10643 Builder bld(ctx->program, ctx->block);
10644 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10645
10646 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10647 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10648 false /* compressed */, true/* done */, false /* valid mask */);
10649 }
10650
10651 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10652 {
10653 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10654 * These must always come before VS exports.
10655 *
10656 * It is recommended to do these as early as possible. They can be at the beginning when
10657 * there is no SW GS and the shader doesn't write edge flags.
10658 */
10659
10660 if_context ic;
10661 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10662 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10663
10664 Builder bld(ctx->program, ctx->block);
10665 constexpr unsigned max_vertices_per_primitive = 3;
10666 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10667
10668 if (ctx->stage == ngg_vertex_gs) {
10669 /* TODO: optimize for points & lines */
10670 } else if (ctx->stage == ngg_tess_eval_gs) {
10671 if (ctx->shader->info.tess.point_mode)
10672 num_vertices_per_primitive = 1;
10673 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10674 num_vertices_per_primitive = 2;
10675 } else {
10676 unreachable("Unsupported NGG shader stage");
10677 }
10678
10679 Temp vtxindex[max_vertices_per_primitive];
10680 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10681 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10682 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10683 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10684 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10685 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10686 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10687 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10688
10689 /* Export primitive data to the index buffer. */
10690 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10691
10692 /* Export primitive ID. */
10693 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10694 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10695 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10696 Temp provoking_vtx_index = vtxindex[0];
10697 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10698
10699 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10700 }
10701
10702 begin_divergent_if_else(ctx, &ic);
10703 end_divergent_if(ctx, &ic);
10704 }
10705
10706 void ngg_emit_nogs_output(isel_context *ctx)
10707 {
10708 /* Emits NGG GS output, for stages that don't have SW GS. */
10709
10710 if_context ic;
10711 Builder bld(ctx->program, ctx->block);
10712 bool late_prim_export = !ngg_early_prim_export(ctx);
10713
10714 /* NGG streamout is currently disabled by default. */
10715 assert(!ctx->args->shader_info->so.num_outputs);
10716
10717 if (late_prim_export) {
10718 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10719 create_export_phis(ctx);
10720 /* Do what we need to do in the GS threads. */
10721 ngg_emit_nogs_gsthreads(ctx);
10722
10723 /* What comes next should be executed on ES threads. */
10724 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10725 begin_divergent_if_then(ctx, &ic, is_es_thread);
10726 bld.reset(ctx->block);
10727 }
10728
10729 /* Export VS outputs */
10730 ctx->block->kind |= block_kind_export_end;
10731 create_vs_exports(ctx);
10732
10733 /* Export primitive ID */
10734 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10735 Temp prim_id;
10736
10737 if (ctx->stage == ngg_vertex_gs) {
10738 /* Wait for GS threads to store primitive ID in LDS. */
10739 create_workgroup_barrier(bld);
10740
10741 /* Calculate LDS address where the GS threads stored the primitive ID. */
10742 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10743 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10744 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10745 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10746 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10747 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10748
10749 /* Load primitive ID from LDS. */
10750 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10751 } else if (ctx->stage == ngg_tess_eval_gs) {
10752 /* TES: Just use the patch ID as the primitive ID. */
10753 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10754 } else {
10755 unreachable("unsupported NGG shader stage.");
10756 }
10757
10758 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10759 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10760
10761 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10762 }
10763
10764 if (late_prim_export) {
10765 begin_divergent_if_else(ctx, &ic);
10766 end_divergent_if(ctx, &ic);
10767 bld.reset(ctx->block);
10768 }
10769 }
10770
10771 void select_program(Program *program,
10772 unsigned shader_count,
10773 struct nir_shader *const *shaders,
10774 ac_shader_config* config,
10775 struct radv_shader_args *args)
10776 {
10777 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10778 if_context ic_merged_wave_info;
10779 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10780
10781 for (unsigned i = 0; i < shader_count; i++) {
10782 nir_shader *nir = shaders[i];
10783 init_context(&ctx, nir);
10784
10785 setup_fp_mode(&ctx, nir);
10786
10787 if (!i) {
10788 /* needs to be after init_context() for FS */
10789 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10790 append_logical_start(ctx.block);
10791
10792 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10793 fix_ls_vgpr_init_bug(&ctx, startpgm);
10794
10795 split_arguments(&ctx, startpgm);
10796 }
10797
10798 if (ngg_no_gs) {
10799 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10800
10801 if (ngg_early_prim_export(&ctx))
10802 ngg_emit_nogs_gsthreads(&ctx);
10803 }
10804
10805 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10806 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10807 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10808 ((nir->info.stage == MESA_SHADER_VERTEX &&
10809 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10810 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10811 ctx.stage == tess_eval_geometry_gs));
10812
10813 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10814 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10815 if (check_merged_wave_info) {
10816 Temp cond = merged_wave_info_to_mask(&ctx, i);
10817 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10818 }
10819
10820 if (i) {
10821 Builder bld(ctx.program, ctx.block);
10822
10823 create_workgroup_barrier(bld);
10824
10825 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10826 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10827 }
10828 } else if (ctx.stage == geometry_gs)
10829 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10830
10831 if (ctx.stage == fragment_fs)
10832 handle_bc_optimize(&ctx);
10833
10834 visit_cf_list(&ctx, &func->body);
10835
10836 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10837 emit_streamout(&ctx, 0);
10838
10839 if (ctx.stage & hw_vs) {
10840 create_vs_exports(&ctx);
10841 ctx.block->kind |= block_kind_export_end;
10842 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10843 ngg_emit_nogs_output(&ctx);
10844 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10845 Builder bld(ctx.program, ctx.block);
10846 bld.barrier(aco_opcode::p_barrier,
10847 memory_sync_info(storage_vmem_output, semantic_release, scope_device));
10848 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10849 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10850 write_tcs_tess_factors(&ctx);
10851 }
10852
10853 if (ctx.stage == fragment_fs) {
10854 create_fs_exports(&ctx);
10855 ctx.block->kind |= block_kind_export_end;
10856 }
10857
10858 if (endif_merged_wave_info) {
10859 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10860 end_divergent_if(&ctx, &ic_merged_wave_info);
10861 }
10862
10863 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10864 ngg_emit_nogs_output(&ctx);
10865
10866 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10867 /* Outputs of the previous stage are inputs to the next stage */
10868 ctx.inputs = ctx.outputs;
10869 ctx.outputs = shader_io_state();
10870 }
10871 }
10872
10873 program->config->float_mode = program->blocks[0].fp_mode.val;
10874
10875 append_logical_end(ctx.block);
10876 ctx.block->kind |= block_kind_uniform;
10877 Builder bld(ctx.program, ctx.block);
10878 if (ctx.program->wb_smem_l1_on_end)
10879 bld.smem(aco_opcode::s_dcache_wb, memory_sync_info(storage_buffer, semantic_volatile));
10880 bld.sopp(aco_opcode::s_endpgm);
10881
10882 cleanup_cfg(program);
10883 }
10884
10885 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10886 ac_shader_config* config,
10887 struct radv_shader_args *args)
10888 {
10889 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10890
10891 ctx.block->fp_mode = program->next_fp_mode;
10892
10893 add_startpgm(&ctx);
10894 append_logical_start(ctx.block);
10895
10896 Builder bld(ctx.program, ctx.block);
10897
10898 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10899
10900 Operand stream_id(0u);
10901 if (args->shader_info->so.num_outputs)
10902 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10903 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10904
10905 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10906
10907 std::stack<Block> endif_blocks;
10908
10909 for (unsigned stream = 0; stream < 4; stream++) {
10910 if (stream_id.isConstant() && stream != stream_id.constantValue())
10911 continue;
10912
10913 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10914 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10915 continue;
10916
10917 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10918
10919 unsigned BB_if_idx = ctx.block->index;
10920 Block BB_endif = Block();
10921 if (!stream_id.isConstant()) {
10922 /* begin IF */
10923 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10924 append_logical_end(ctx.block);
10925 ctx.block->kind |= block_kind_uniform;
10926 bld.branch(aco_opcode::p_cbranch_z, bld.hint_vcc(bld.def(s2)), cond);
10927
10928 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10929
10930 ctx.block = ctx.program->create_and_insert_block();
10931 add_edge(BB_if_idx, ctx.block);
10932 bld.reset(ctx.block);
10933 append_logical_start(ctx.block);
10934 }
10935
10936 unsigned offset = 0;
10937 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10938 if (args->shader_info->gs.output_streams[i] != stream)
10939 continue;
10940
10941 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10942 unsigned length = util_last_bit(output_usage_mask);
10943 for (unsigned j = 0; j < length; ++j) {
10944 if (!(output_usage_mask & (1 << j)))
10945 continue;
10946
10947 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10948 Temp voffset = vtx_offset;
10949 if (const_offset >= 4096u) {
10950 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10951 const_offset %= 4096u;
10952 }
10953
10954 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10955 mubuf->definitions[0] = bld.def(v1);
10956 mubuf->operands[0] = Operand(gsvs_ring);
10957 mubuf->operands[1] = Operand(voffset);
10958 mubuf->operands[2] = Operand(0u);
10959 mubuf->offen = true;
10960 mubuf->offset = const_offset;
10961 mubuf->glc = true;
10962 mubuf->slc = true;
10963 mubuf->dlc = args->options->chip_class >= GFX10;
10964
10965 ctx.outputs.mask[i] |= 1 << j;
10966 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10967
10968 bld.insert(std::move(mubuf));
10969
10970 offset++;
10971 }
10972 }
10973
10974 if (args->shader_info->so.num_outputs) {
10975 emit_streamout(&ctx, stream);
10976 bld.reset(ctx.block);
10977 }
10978
10979 if (stream == 0) {
10980 create_vs_exports(&ctx);
10981 ctx.block->kind |= block_kind_export_end;
10982 }
10983
10984 if (!stream_id.isConstant()) {
10985 append_logical_end(ctx.block);
10986
10987 /* branch from then block to endif block */
10988 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
10989 add_edge(ctx.block->index, &BB_endif);
10990 ctx.block->kind |= block_kind_uniform;
10991
10992 /* emit else block */
10993 ctx.block = ctx.program->create_and_insert_block();
10994 add_edge(BB_if_idx, ctx.block);
10995 bld.reset(ctx.block);
10996 append_logical_start(ctx.block);
10997
10998 endif_blocks.push(std::move(BB_endif));
10999 }
11000 }
11001
11002 while (!endif_blocks.empty()) {
11003 Block BB_endif = std::move(endif_blocks.top());
11004 endif_blocks.pop();
11005
11006 Block *BB_else = ctx.block;
11007
11008 append_logical_end(BB_else);
11009 /* branch from else block to endif block */
11010 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
11011 add_edge(BB_else->index, &BB_endif);
11012 BB_else->kind |= block_kind_uniform;
11013
11014 /** emit endif merge block */
11015 ctx.block = program->insert_block(std::move(BB_endif));
11016 bld.reset(ctx.block);
11017 append_logical_start(ctx.block);
11018 }
11019
11020 program->config->float_mode = program->blocks[0].fp_mode.val;
11021
11022 append_logical_end(ctx.block);
11023 ctx.block->kind |= block_kind_uniform;
11024 bld.sopp(aco_opcode::s_endpgm);
11025
11026 cleanup_cfg(program);
11027 }
11028
11029 void select_trap_handler_shader(Program *program, struct nir_shader *shader,
11030 ac_shader_config* config,
11031 struct radv_shader_args *args)
11032 {
11033 assert(args->options->chip_class == GFX8);
11034
11035 init_program(program, compute_cs, args->shader_info,
11036 args->options->chip_class, args->options->family, config);
11037
11038 isel_context ctx = {};
11039 ctx.program = program;
11040 ctx.args = args;
11041 ctx.options = args->options;
11042 ctx.stage = program->stage;
11043
11044 ctx.block = ctx.program->create_and_insert_block();
11045 ctx.block->loop_nest_depth = 0;
11046 ctx.block->kind = block_kind_top_level;
11047
11048 program->workgroup_size = 1; /* XXX */
11049
11050 add_startpgm(&ctx);
11051 append_logical_start(ctx.block);
11052
11053 Builder bld(ctx.program, ctx.block);
11054
11055 /* Load the buffer descriptor from TMA. */
11056 bld.smem(aco_opcode::s_load_dwordx4, Definition(PhysReg{ttmp4}, s4),
11057 Operand(PhysReg{tma}, s2), Operand(0u));
11058
11059 /* Store TTMP0-TTMP1. */
11060 bld.smem(aco_opcode::s_buffer_store_dwordx2, Operand(PhysReg{ttmp4}, s4),
11061 Operand(0u), Operand(PhysReg{ttmp0}, s2), memory_sync_info(), true);
11062
11063 uint32_t hw_regs_idx[] = {
11064 2, /* HW_REG_STATUS */
11065 3, /* HW_REG_TRAP_STS */
11066 4, /* HW_REG_HW_ID */
11067 7, /* HW_REG_IB_STS */
11068 };
11069
11070 /* Store some hardware registers. */
11071 for (unsigned i = 0; i < ARRAY_SIZE(hw_regs_idx); i++) {
11072 /* "((size - 1) << 11) | register" */
11073 bld.sopk(aco_opcode::s_getreg_b32, Definition(PhysReg{ttmp8}, s1),
11074 ((20 - 1) << 11) | hw_regs_idx[i]);
11075
11076 bld.smem(aco_opcode::s_buffer_store_dword, Operand(PhysReg{ttmp4}, s4),
11077 Operand(8u + i * 4), Operand(PhysReg{ttmp8}, s1), memory_sync_info(), true);
11078 }
11079
11080 program->config->float_mode = program->blocks[0].fp_mode.val;
11081
11082 append_logical_end(ctx.block);
11083 ctx.block->kind |= block_kind_uniform;
11084 bld.sopp(aco_opcode::s_endpgm);
11085
11086 cleanup_cfg(program);
11087 }
11088 }