aco: refactor load_lds to use new helpers
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else {
565 src1 = as_vgpr(ctx, src1);
566 }
567 }
568
569 if (flush_denorms && ctx->program->chip_class < GFX9) {
570 assert(dst.size() == 1);
571 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
572 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
573 } else {
574 bld.vop2(op, Definition(dst), src0, src1);
575 }
576 }
577
578 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
579 bool flush_denorms = false)
580 {
581 Temp src0 = get_alu_src(ctx, instr->src[0]);
582 Temp src1 = get_alu_src(ctx, instr->src[1]);
583 Temp src2 = get_alu_src(ctx, instr->src[2]);
584
585 /* ensure that the instruction has at most 1 sgpr operand
586 * The optimizer will inline constants for us */
587 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
588 src0 = as_vgpr(ctx, src0);
589 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
590 src1 = as_vgpr(ctx, src1);
591 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
592 src2 = as_vgpr(ctx, src2);
593
594 Builder bld(ctx->program, ctx->block);
595 if (flush_denorms && ctx->program->chip_class < GFX9) {
596 assert(dst.size() == 1);
597 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
598 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
599 } else {
600 bld.vop3(op, Definition(dst), src0, src1, src2);
601 }
602 }
603
604 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
605 {
606 Builder bld(ctx->program, ctx->block);
607 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
608 }
609
610 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
611 {
612 Temp src0 = get_alu_src(ctx, instr->src[0]);
613 Temp src1 = get_alu_src(ctx, instr->src[1]);
614 assert(src0.size() == src1.size());
615
616 aco_ptr<Instruction> vopc;
617 if (src1.type() == RegType::sgpr) {
618 if (src0.type() == RegType::vgpr) {
619 /* to swap the operands, we might also have to change the opcode */
620 switch (op) {
621 case aco_opcode::v_cmp_lt_f16:
622 op = aco_opcode::v_cmp_gt_f16;
623 break;
624 case aco_opcode::v_cmp_ge_f16:
625 op = aco_opcode::v_cmp_le_f16;
626 break;
627 case aco_opcode::v_cmp_lt_i16:
628 op = aco_opcode::v_cmp_gt_i16;
629 break;
630 case aco_opcode::v_cmp_ge_i16:
631 op = aco_opcode::v_cmp_le_i16;
632 break;
633 case aco_opcode::v_cmp_lt_u16:
634 op = aco_opcode::v_cmp_gt_u16;
635 break;
636 case aco_opcode::v_cmp_ge_u16:
637 op = aco_opcode::v_cmp_le_u16;
638 break;
639 case aco_opcode::v_cmp_lt_f32:
640 op = aco_opcode::v_cmp_gt_f32;
641 break;
642 case aco_opcode::v_cmp_ge_f32:
643 op = aco_opcode::v_cmp_le_f32;
644 break;
645 case aco_opcode::v_cmp_lt_i32:
646 op = aco_opcode::v_cmp_gt_i32;
647 break;
648 case aco_opcode::v_cmp_ge_i32:
649 op = aco_opcode::v_cmp_le_i32;
650 break;
651 case aco_opcode::v_cmp_lt_u32:
652 op = aco_opcode::v_cmp_gt_u32;
653 break;
654 case aco_opcode::v_cmp_ge_u32:
655 op = aco_opcode::v_cmp_le_u32;
656 break;
657 case aco_opcode::v_cmp_lt_f64:
658 op = aco_opcode::v_cmp_gt_f64;
659 break;
660 case aco_opcode::v_cmp_ge_f64:
661 op = aco_opcode::v_cmp_le_f64;
662 break;
663 case aco_opcode::v_cmp_lt_i64:
664 op = aco_opcode::v_cmp_gt_i64;
665 break;
666 case aco_opcode::v_cmp_ge_i64:
667 op = aco_opcode::v_cmp_le_i64;
668 break;
669 case aco_opcode::v_cmp_lt_u64:
670 op = aco_opcode::v_cmp_gt_u64;
671 break;
672 case aco_opcode::v_cmp_ge_u64:
673 op = aco_opcode::v_cmp_le_u64;
674 break;
675 default: /* eq and ne are commutative */
676 break;
677 }
678 Temp t = src0;
679 src0 = src1;
680 src1 = t;
681 } else {
682 src1 = as_vgpr(ctx, src1);
683 }
684 }
685
686 Builder bld(ctx->program, ctx->block);
687 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
688 }
689
690 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
691 {
692 Temp src0 = get_alu_src(ctx, instr->src[0]);
693 Temp src1 = get_alu_src(ctx, instr->src[1]);
694 Builder bld(ctx->program, ctx->block);
695
696 assert(dst.regClass() == bld.lm);
697 assert(src0.type() == RegType::sgpr);
698 assert(src1.type() == RegType::sgpr);
699 assert(src0.regClass() == src1.regClass());
700
701 /* Emit the SALU comparison instruction */
702 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
703 /* Turn the result into a per-lane bool */
704 bool_to_vector_condition(ctx, cmp, dst);
705 }
706
707 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
708 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
709 {
710 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
711 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
712 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
713 bool use_valu = s_op == aco_opcode::num_opcodes ||
714 divergent_vals ||
715 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
716 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
717 aco_opcode op = use_valu ? v_op : s_op;
718 assert(op != aco_opcode::num_opcodes);
719 assert(dst.regClass() == ctx->program->lane_mask);
720
721 if (use_valu)
722 emit_vopc_instruction(ctx, instr, op, dst);
723 else
724 emit_sopc_instruction(ctx, instr, op, dst);
725 }
726
727 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
728 {
729 Builder bld(ctx->program, ctx->block);
730 Temp src0 = get_alu_src(ctx, instr->src[0]);
731 Temp src1 = get_alu_src(ctx, instr->src[1]);
732
733 assert(dst.regClass() == bld.lm);
734 assert(src0.regClass() == bld.lm);
735 assert(src1.regClass() == bld.lm);
736
737 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
738 }
739
740 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
741 {
742 Builder bld(ctx->program, ctx->block);
743 Temp cond = get_alu_src(ctx, instr->src[0]);
744 Temp then = get_alu_src(ctx, instr->src[1]);
745 Temp els = get_alu_src(ctx, instr->src[2]);
746
747 assert(cond.regClass() == bld.lm);
748
749 if (dst.type() == RegType::vgpr) {
750 aco_ptr<Instruction> bcsel;
751 if (dst.regClass() == v2b) {
752 then = as_vgpr(ctx, then);
753 els = as_vgpr(ctx, els);
754
755 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), els, then, cond);
756 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
757 } else if (dst.regClass() == v1) {
758 then = as_vgpr(ctx, then);
759 els = as_vgpr(ctx, els);
760
761 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
762 } else if (dst.regClass() == v2) {
763 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
765 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
766 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
767
768 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
769 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
770
771 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
772 } else {
773 fprintf(stderr, "Unimplemented NIR instr bit size: ");
774 nir_print_instr(&instr->instr, stderr);
775 fprintf(stderr, "\n");
776 }
777 return;
778 }
779
780 if (instr->dest.dest.ssa.bit_size == 1) {
781 assert(dst.regClass() == bld.lm);
782 assert(then.regClass() == bld.lm);
783 assert(els.regClass() == bld.lm);
784 }
785
786 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
787 if (dst.regClass() == s1 || dst.regClass() == s2) {
788 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
789 assert(dst.size() == then.size());
790 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
791 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
792 } else {
793 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
794 nir_print_instr(&instr->instr, stderr);
795 fprintf(stderr, "\n");
796 }
797 return;
798 }
799
800 /* divergent boolean bcsel
801 * this implements bcsel on bools: dst = s0 ? s1 : s2
802 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
803 assert(instr->dest.dest.ssa.bit_size == 1);
804
805 if (cond.id() != then.id())
806 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
807
808 if (cond.id() == els.id())
809 bld.sop1(Builder::s_mov, Definition(dst), then);
810 else
811 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
812 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
813 }
814
815 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
816 aco_opcode op, uint32_t undo)
817 {
818 /* multiply by 16777216 to handle denormals */
819 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
820 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
821 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
822 scaled = bld.vop1(op, bld.def(v1), scaled);
823 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
824
825 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
826
827 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
828 }
829
830 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
831 {
832 if (ctx->block->fp_mode.denorm32 == 0) {
833 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
834 return;
835 }
836
837 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
838 }
839
840 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
841 {
842 if (ctx->block->fp_mode.denorm32 == 0) {
843 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
844 return;
845 }
846
847 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
848 }
849
850 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
851 {
852 if (ctx->block->fp_mode.denorm32 == 0) {
853 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
854 return;
855 }
856
857 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
858 }
859
860 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
861 {
862 if (ctx->block->fp_mode.denorm32 == 0) {
863 bld.vop1(aco_opcode::v_log_f32, dst, val);
864 return;
865 }
866
867 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
868 }
869
870 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
871 {
872 if (ctx->options->chip_class >= GFX7)
873 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
874
875 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
876 /* TODO: create more efficient code! */
877 if (val.type() == RegType::sgpr)
878 val = as_vgpr(ctx, val);
879
880 /* Split the input value. */
881 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
882 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
883
884 /* Extract the exponent and compute the unbiased value. */
885 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
886
887 /* Extract the fractional part. */
888 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
889 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
890
891 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
892 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
893
894 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
895 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
896 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
897 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
898 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
899
900 /* Get the sign bit. */
901 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
902
903 /* Decide the operation to apply depending on the unbiased exponent. */
904 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
905 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
906 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
907 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
908 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
909 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
910
911 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
912 }
913
914 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
915 {
916 if (ctx->options->chip_class >= GFX7)
917 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
918
919 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
920 Temp src0 = as_vgpr(ctx, val);
921
922 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
923 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
924
925 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
926 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
927 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
928
929 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
930 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
931 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
932 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
933
934 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
935 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
936
937 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
938
939 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
940 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
941
942 return add->definitions[0].getTemp();
943 }
944
945 Temp convert_int(Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
946 if (!dst.id()) {
947 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
948 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
949 else
950 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
951 }
952
953 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
954 return bld.copy(Definition(dst), src);
955 else if (dst.bytes() < src.bytes())
956 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
957
958 Temp tmp = dst;
959 if (dst_bits == 64)
960 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
961
962 if (tmp == src) {
963 } else if (src.regClass() == s1) {
964 if (is_signed)
965 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
966 else
967 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
968 } else {
969 assert(src_bits != 8 || src.regClass() == v1b);
970 assert(src_bits != 16 || src.regClass() == v2b);
971 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
972 sdwa->operands[0] = Operand(src);
973 sdwa->definitions[0] = Definition(tmp);
974 if (is_signed)
975 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
976 else
977 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
978 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
979 bld.insert(std::move(sdwa));
980 }
981
982 if (dst_bits == 64) {
983 if (is_signed && dst.regClass() == s2) {
984 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
985 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
986 } else if (is_signed && dst.regClass() == v2) {
987 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
988 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
989 } else {
990 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
991 }
992 }
993
994 return dst;
995 }
996
997 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
998 {
999 if (!instr->dest.dest.is_ssa) {
1000 fprintf(stderr, "nir alu dst not in ssa: ");
1001 nir_print_instr(&instr->instr, stderr);
1002 fprintf(stderr, "\n");
1003 abort();
1004 }
1005 Builder bld(ctx->program, ctx->block);
1006 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1007 switch(instr->op) {
1008 case nir_op_vec2:
1009 case nir_op_vec3:
1010 case nir_op_vec4: {
1011 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1012 unsigned num = instr->dest.dest.ssa.num_components;
1013 for (unsigned i = 0; i < num; ++i)
1014 elems[i] = get_alu_src(ctx, instr->src[i]);
1015
1016 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1017 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1018 for (unsigned i = 0; i < num; ++i)
1019 vec->operands[i] = Operand{elems[i]};
1020 vec->definitions[0] = Definition(dst);
1021 ctx->block->instructions.emplace_back(std::move(vec));
1022 ctx->allocated_vec.emplace(dst.id(), elems);
1023 } else {
1024 // TODO: that is a bit suboptimal..
1025 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1026 for (unsigned i = 0; i < num - 1; ++i)
1027 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1028 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1029 for (unsigned i = 0; i < num; ++i) {
1030 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1031 if (bit % 32 == 0) {
1032 elems[bit / 32] = elems[i];
1033 } else {
1034 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1035 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1036 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1037 }
1038 }
1039 if (dst.size() == 1)
1040 bld.copy(Definition(dst), elems[0]);
1041 else
1042 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1043 }
1044 break;
1045 }
1046 case nir_op_mov: {
1047 Temp src = get_alu_src(ctx, instr->src[0]);
1048 aco_ptr<Instruction> mov;
1049 if (dst.type() == RegType::sgpr) {
1050 if (src.type() == RegType::vgpr)
1051 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1052 else if (src.regClass() == s1)
1053 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1054 else if (src.regClass() == s2)
1055 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1056 else
1057 unreachable("wrong src register class for nir_op_imov");
1058 } else if (dst.regClass() == v1) {
1059 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1060 } else if (dst.regClass() == v2) {
1061 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1062 } else {
1063 nir_print_instr(&instr->instr, stderr);
1064 unreachable("Should have been lowered to scalar.");
1065 }
1066 break;
1067 }
1068 case nir_op_inot: {
1069 Temp src = get_alu_src(ctx, instr->src[0]);
1070 if (instr->dest.dest.ssa.bit_size == 1) {
1071 assert(src.regClass() == bld.lm);
1072 assert(dst.regClass() == bld.lm);
1073 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1074 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1075 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1076 } else if (dst.regClass() == v1) {
1077 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1078 } else if (dst.type() == RegType::sgpr) {
1079 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1080 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1081 } else {
1082 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1083 nir_print_instr(&instr->instr, stderr);
1084 fprintf(stderr, "\n");
1085 }
1086 break;
1087 }
1088 case nir_op_ineg: {
1089 Temp src = get_alu_src(ctx, instr->src[0]);
1090 if (dst.regClass() == v1) {
1091 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1092 } else if (dst.regClass() == s1) {
1093 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1094 } else if (dst.size() == 2) {
1095 Temp src0 = bld.tmp(dst.type(), 1);
1096 Temp src1 = bld.tmp(dst.type(), 1);
1097 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1098
1099 if (dst.regClass() == s2) {
1100 Temp carry = bld.tmp(s1);
1101 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1102 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1103 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1104 } else {
1105 Temp lower = bld.tmp(v1);
1106 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1107 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1108 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1109 }
1110 } else {
1111 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1112 nir_print_instr(&instr->instr, stderr);
1113 fprintf(stderr, "\n");
1114 }
1115 break;
1116 }
1117 case nir_op_iabs: {
1118 if (dst.regClass() == s1) {
1119 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1120 } else if (dst.regClass() == v1) {
1121 Temp src = get_alu_src(ctx, instr->src[0]);
1122 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_isign: {
1131 Temp src = get_alu_src(ctx, instr->src[0]);
1132 if (dst.regClass() == s1) {
1133 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1134 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1135 } else if (dst.regClass() == s2) {
1136 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1137 Temp neqz;
1138 if (ctx->program->chip_class >= GFX8)
1139 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1140 else
1141 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1142 /* SCC gets zero-extended to 64 bit */
1143 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1144 } else if (dst.regClass() == v1) {
1145 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1146 } else if (dst.regClass() == v2) {
1147 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1148 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1149 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1150 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1151 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1153 } else {
1154 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1155 nir_print_instr(&instr->instr, stderr);
1156 fprintf(stderr, "\n");
1157 }
1158 break;
1159 }
1160 case nir_op_imax: {
1161 if (dst.regClass() == v1) {
1162 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1163 } else if (dst.regClass() == s1) {
1164 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1165 } else {
1166 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1167 nir_print_instr(&instr->instr, stderr);
1168 fprintf(stderr, "\n");
1169 }
1170 break;
1171 }
1172 case nir_op_umax: {
1173 if (dst.regClass() == v1) {
1174 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1175 } else if (dst.regClass() == s1) {
1176 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1177 } else {
1178 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1179 nir_print_instr(&instr->instr, stderr);
1180 fprintf(stderr, "\n");
1181 }
1182 break;
1183 }
1184 case nir_op_imin: {
1185 if (dst.regClass() == v1) {
1186 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1187 } else if (dst.regClass() == s1) {
1188 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1189 } else {
1190 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1191 nir_print_instr(&instr->instr, stderr);
1192 fprintf(stderr, "\n");
1193 }
1194 break;
1195 }
1196 case nir_op_umin: {
1197 if (dst.regClass() == v1) {
1198 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1199 } else if (dst.regClass() == s1) {
1200 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1201 } else {
1202 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1203 nir_print_instr(&instr->instr, stderr);
1204 fprintf(stderr, "\n");
1205 }
1206 break;
1207 }
1208 case nir_op_ior: {
1209 if (instr->dest.dest.ssa.bit_size == 1) {
1210 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1211 } else if (dst.regClass() == v1) {
1212 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1213 } else if (dst.regClass() == s1) {
1214 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1215 } else if (dst.regClass() == s2) {
1216 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1217 } else {
1218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1219 nir_print_instr(&instr->instr, stderr);
1220 fprintf(stderr, "\n");
1221 }
1222 break;
1223 }
1224 case nir_op_iand: {
1225 if (instr->dest.dest.ssa.bit_size == 1) {
1226 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1227 } else if (dst.regClass() == v1) {
1228 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1229 } else if (dst.regClass() == s1) {
1230 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1231 } else if (dst.regClass() == s2) {
1232 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_ixor: {
1241 if (instr->dest.dest.ssa.bit_size == 1) {
1242 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1243 } else if (dst.regClass() == v1) {
1244 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1245 } else if (dst.regClass() == s1) {
1246 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1247 } else if (dst.regClass() == s2) {
1248 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1249 } else {
1250 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1251 nir_print_instr(&instr->instr, stderr);
1252 fprintf(stderr, "\n");
1253 }
1254 break;
1255 }
1256 case nir_op_ushr: {
1257 if (dst.regClass() == v1) {
1258 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1259 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1260 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1261 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1262 } else if (dst.regClass() == v2) {
1263 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1264 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1265 } else if (dst.regClass() == s2) {
1266 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1267 } else if (dst.regClass() == s1) {
1268 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_ishl: {
1277 if (dst.regClass() == v1) {
1278 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1279 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1280 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1281 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1282 } else if (dst.regClass() == v2) {
1283 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1284 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1285 } else if (dst.regClass() == s1) {
1286 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1287 } else if (dst.regClass() == s2) {
1288 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1289 } else {
1290 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1291 nir_print_instr(&instr->instr, stderr);
1292 fprintf(stderr, "\n");
1293 }
1294 break;
1295 }
1296 case nir_op_ishr: {
1297 if (dst.regClass() == v1) {
1298 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1299 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1300 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1301 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1302 } else if (dst.regClass() == v2) {
1303 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1304 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1305 } else if (dst.regClass() == s1) {
1306 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1307 } else if (dst.regClass() == s2) {
1308 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1309 } else {
1310 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1311 nir_print_instr(&instr->instr, stderr);
1312 fprintf(stderr, "\n");
1313 }
1314 break;
1315 }
1316 case nir_op_find_lsb: {
1317 Temp src = get_alu_src(ctx, instr->src[0]);
1318 if (src.regClass() == s1) {
1319 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1320 } else if (src.regClass() == v1) {
1321 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1322 } else if (src.regClass() == s2) {
1323 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1324 } else {
1325 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1326 nir_print_instr(&instr->instr, stderr);
1327 fprintf(stderr, "\n");
1328 }
1329 break;
1330 }
1331 case nir_op_ufind_msb:
1332 case nir_op_ifind_msb: {
1333 Temp src = get_alu_src(ctx, instr->src[0]);
1334 if (src.regClass() == s1 || src.regClass() == s2) {
1335 aco_opcode op = src.regClass() == s2 ?
1336 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1337 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1338 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1339
1340 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1341 Operand(src.size() * 32u - 1u), msb_rev);
1342 Temp msb = sub.def(0).getTemp();
1343 Temp carry = sub.def(1).getTemp();
1344
1345 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1346 } else if (src.regClass() == v1) {
1347 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1348 Temp msb_rev = bld.tmp(v1);
1349 emit_vop1_instruction(ctx, instr, op, msb_rev);
1350 Temp msb = bld.tmp(v1);
1351 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1352 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_bitfield_reverse: {
1361 if (dst.regClass() == s1) {
1362 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1363 } else if (dst.regClass() == v1) {
1364 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1365 } else {
1366 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1367 nir_print_instr(&instr->instr, stderr);
1368 fprintf(stderr, "\n");
1369 }
1370 break;
1371 }
1372 case nir_op_iadd: {
1373 if (dst.regClass() == s1) {
1374 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1375 break;
1376 }
1377
1378 Temp src0 = get_alu_src(ctx, instr->src[0]);
1379 Temp src1 = get_alu_src(ctx, instr->src[1]);
1380 if (dst.regClass() == v1) {
1381 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1382 break;
1383 }
1384
1385 assert(src0.size() == 2 && src1.size() == 2);
1386 Temp src00 = bld.tmp(src0.type(), 1);
1387 Temp src01 = bld.tmp(dst.type(), 1);
1388 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1389 Temp src10 = bld.tmp(src1.type(), 1);
1390 Temp src11 = bld.tmp(dst.type(), 1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1392
1393 if (dst.regClass() == s2) {
1394 Temp carry = bld.tmp(s1);
1395 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1396 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1397 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1398 } else if (dst.regClass() == v2) {
1399 Temp dst0 = bld.tmp(v1);
1400 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1401 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1402 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1403 } else {
1404 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1405 nir_print_instr(&instr->instr, stderr);
1406 fprintf(stderr, "\n");
1407 }
1408 break;
1409 }
1410 case nir_op_uadd_sat: {
1411 Temp src0 = get_alu_src(ctx, instr->src[0]);
1412 Temp src1 = get_alu_src(ctx, instr->src[1]);
1413 if (dst.regClass() == s1) {
1414 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1415 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1416 src0, src1);
1417 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1418 } else if (dst.regClass() == v1) {
1419 if (ctx->options->chip_class >= GFX9) {
1420 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1421 add->operands[0] = Operand(src0);
1422 add->operands[1] = Operand(src1);
1423 add->definitions[0] = Definition(dst);
1424 add->clamp = 1;
1425 ctx->block->instructions.emplace_back(std::move(add));
1426 } else {
1427 if (src1.regClass() != v1)
1428 std::swap(src0, src1);
1429 assert(src1.regClass() == v1);
1430 Temp tmp = bld.tmp(v1);
1431 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1432 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1433 }
1434 } else {
1435 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1436 nir_print_instr(&instr->instr, stderr);
1437 fprintf(stderr, "\n");
1438 }
1439 break;
1440 }
1441 case nir_op_uadd_carry: {
1442 Temp src0 = get_alu_src(ctx, instr->src[0]);
1443 Temp src1 = get_alu_src(ctx, instr->src[1]);
1444 if (dst.regClass() == s1) {
1445 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1446 break;
1447 }
1448 if (dst.regClass() == v1) {
1449 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1450 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1451 break;
1452 }
1453
1454 Temp src00 = bld.tmp(src0.type(), 1);
1455 Temp src01 = bld.tmp(dst.type(), 1);
1456 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1457 Temp src10 = bld.tmp(src1.type(), 1);
1458 Temp src11 = bld.tmp(dst.type(), 1);
1459 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1460 if (dst.regClass() == s2) {
1461 Temp carry = bld.tmp(s1);
1462 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1463 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1464 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1465 } else if (dst.regClass() == v2) {
1466 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1467 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1468 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1469 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1470 } else {
1471 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1472 nir_print_instr(&instr->instr, stderr);
1473 fprintf(stderr, "\n");
1474 }
1475 break;
1476 }
1477 case nir_op_isub: {
1478 if (dst.regClass() == s1) {
1479 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1480 break;
1481 }
1482
1483 Temp src0 = get_alu_src(ctx, instr->src[0]);
1484 Temp src1 = get_alu_src(ctx, instr->src[1]);
1485 if (dst.regClass() == v1) {
1486 bld.vsub32(Definition(dst), src0, src1);
1487 break;
1488 }
1489
1490 Temp src00 = bld.tmp(src0.type(), 1);
1491 Temp src01 = bld.tmp(dst.type(), 1);
1492 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1493 Temp src10 = bld.tmp(src1.type(), 1);
1494 Temp src11 = bld.tmp(dst.type(), 1);
1495 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1496 if (dst.regClass() == s2) {
1497 Temp carry = bld.tmp(s1);
1498 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1499 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1500 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1501 } else if (dst.regClass() == v2) {
1502 Temp lower = bld.tmp(v1);
1503 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1504 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1505 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1506 } else {
1507 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1508 nir_print_instr(&instr->instr, stderr);
1509 fprintf(stderr, "\n");
1510 }
1511 break;
1512 }
1513 case nir_op_usub_borrow: {
1514 Temp src0 = get_alu_src(ctx, instr->src[0]);
1515 Temp src1 = get_alu_src(ctx, instr->src[1]);
1516 if (dst.regClass() == s1) {
1517 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1518 break;
1519 } else if (dst.regClass() == v1) {
1520 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1521 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1522 break;
1523 }
1524
1525 Temp src00 = bld.tmp(src0.type(), 1);
1526 Temp src01 = bld.tmp(dst.type(), 1);
1527 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1528 Temp src10 = bld.tmp(src1.type(), 1);
1529 Temp src11 = bld.tmp(dst.type(), 1);
1530 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1531 if (dst.regClass() == s2) {
1532 Temp borrow = bld.tmp(s1);
1533 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1534 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1535 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1536 } else if (dst.regClass() == v2) {
1537 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1538 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1539 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1540 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1541 } else {
1542 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1543 nir_print_instr(&instr->instr, stderr);
1544 fprintf(stderr, "\n");
1545 }
1546 break;
1547 }
1548 case nir_op_imul: {
1549 if (dst.regClass() == v1) {
1550 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1551 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1552 } else if (dst.regClass() == s1) {
1553 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_umul_high: {
1562 if (dst.regClass() == v1) {
1563 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1564 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1565 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1566 } else if (dst.regClass() == s1) {
1567 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1568 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1569 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1570 } else {
1571 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1572 nir_print_instr(&instr->instr, stderr);
1573 fprintf(stderr, "\n");
1574 }
1575 break;
1576 }
1577 case nir_op_imul_high: {
1578 if (dst.regClass() == v1) {
1579 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1580 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1581 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1582 } else if (dst.regClass() == s1) {
1583 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1584 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1585 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1586 } else {
1587 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1588 nir_print_instr(&instr->instr, stderr);
1589 fprintf(stderr, "\n");
1590 }
1591 break;
1592 }
1593 case nir_op_fmul: {
1594 Temp src0 = get_alu_src(ctx, instr->src[0]);
1595 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1596 if (dst.regClass() == v2b) {
1597 Temp tmp = bld.tmp(v1);
1598 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, tmp, true);
1599 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1600 } else if (dst.regClass() == v1) {
1601 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1602 } else if (dst.regClass() == v2) {
1603 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1604 } else {
1605 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1606 nir_print_instr(&instr->instr, stderr);
1607 fprintf(stderr, "\n");
1608 }
1609 break;
1610 }
1611 case nir_op_fadd: {
1612 Temp src0 = get_alu_src(ctx, instr->src[0]);
1613 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1614 if (dst.regClass() == v2b) {
1615 Temp tmp = bld.tmp(v1);
1616 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, tmp, true);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1618 } else if (dst.regClass() == v1) {
1619 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1620 } else if (dst.regClass() == v2) {
1621 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fsub: {
1630 Temp src0 = get_alu_src(ctx, instr->src[0]);
1631 Temp src1 = get_alu_src(ctx, instr->src[1]);
1632 if (dst.regClass() == v2b) {
1633 Temp tmp = bld.tmp(v1);
1634 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1635 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, tmp, false);
1636 else
1637 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, tmp, true);
1638 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1639 } else if (dst.regClass() == v1) {
1640 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1641 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1642 else
1643 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1644 } else if (dst.regClass() == v2) {
1645 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1646 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1647 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1648 sub->neg[1] = true;
1649 } else {
1650 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1651 nir_print_instr(&instr->instr, stderr);
1652 fprintf(stderr, "\n");
1653 }
1654 break;
1655 }
1656 case nir_op_fmax: {
1657 Temp src0 = get_alu_src(ctx, instr->src[0]);
1658 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1659 if (dst.regClass() == v2b) {
1660 // TODO: check fp_mode.must_flush_denorms16_64
1661 Temp tmp = bld.tmp(v1);
1662 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1663 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1664 } else if (dst.regClass() == v1) {
1665 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1666 } else if (dst.regClass() == v2) {
1667 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1668 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1669 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1670 } else {
1671 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1672 }
1673 } else {
1674 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1675 nir_print_instr(&instr->instr, stderr);
1676 fprintf(stderr, "\n");
1677 }
1678 break;
1679 }
1680 case nir_op_fmin: {
1681 Temp src0 = get_alu_src(ctx, instr->src[0]);
1682 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1683 if (dst.regClass() == v2b) {
1684 // TODO: check fp_mode.must_flush_denorms16_64
1685 Temp tmp = bld.tmp(v1);
1686 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1687 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1688 } else if (dst.regClass() == v1) {
1689 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1690 } else if (dst.regClass() == v2) {
1691 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1692 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1693 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1694 } else {
1695 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1696 }
1697 } else {
1698 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1699 nir_print_instr(&instr->instr, stderr);
1700 fprintf(stderr, "\n");
1701 }
1702 break;
1703 }
1704 case nir_op_fmax3: {
1705 if (dst.regClass() == v2b) {
1706 Temp tmp = bld.tmp(v1);
1707 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, tmp, false);
1708 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1709 } else if (dst.regClass() == v1) {
1710 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1711 } else {
1712 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1713 nir_print_instr(&instr->instr, stderr);
1714 fprintf(stderr, "\n");
1715 }
1716 break;
1717 }
1718 case nir_op_fmin3: {
1719 if (dst.regClass() == v2b) {
1720 Temp tmp = bld.tmp(v1);
1721 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, tmp, false);
1722 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1723 } else if (dst.regClass() == v1) {
1724 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1725 } else {
1726 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1727 nir_print_instr(&instr->instr, stderr);
1728 fprintf(stderr, "\n");
1729 }
1730 break;
1731 }
1732 case nir_op_fmed3: {
1733 if (dst.regClass() == v2b) {
1734 Temp tmp = bld.tmp(v1);
1735 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, tmp, false);
1736 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1737 } else if (dst.regClass() == v1) {
1738 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1739 } else {
1740 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1741 nir_print_instr(&instr->instr, stderr);
1742 fprintf(stderr, "\n");
1743 }
1744 break;
1745 }
1746 case nir_op_umax3: {
1747 if (dst.size() == 1) {
1748 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1749 } else {
1750 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1751 nir_print_instr(&instr->instr, stderr);
1752 fprintf(stderr, "\n");
1753 }
1754 break;
1755 }
1756 case nir_op_umin3: {
1757 if (dst.size() == 1) {
1758 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1759 } else {
1760 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1761 nir_print_instr(&instr->instr, stderr);
1762 fprintf(stderr, "\n");
1763 }
1764 break;
1765 }
1766 case nir_op_umed3: {
1767 if (dst.size() == 1) {
1768 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1769 } else {
1770 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1771 nir_print_instr(&instr->instr, stderr);
1772 fprintf(stderr, "\n");
1773 }
1774 break;
1775 }
1776 case nir_op_imax3: {
1777 if (dst.size() == 1) {
1778 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1779 } else {
1780 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1781 nir_print_instr(&instr->instr, stderr);
1782 fprintf(stderr, "\n");
1783 }
1784 break;
1785 }
1786 case nir_op_imin3: {
1787 if (dst.size() == 1) {
1788 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1789 } else {
1790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1791 nir_print_instr(&instr->instr, stderr);
1792 fprintf(stderr, "\n");
1793 }
1794 break;
1795 }
1796 case nir_op_imed3: {
1797 if (dst.size() == 1) {
1798 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1799 } else {
1800 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1801 nir_print_instr(&instr->instr, stderr);
1802 fprintf(stderr, "\n");
1803 }
1804 break;
1805 }
1806 case nir_op_cube_face_coord: {
1807 Temp in = get_alu_src(ctx, instr->src[0], 3);
1808 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1809 emit_extract_vector(ctx, in, 1, v1),
1810 emit_extract_vector(ctx, in, 2, v1) };
1811 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1812 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1813 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1814 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1815 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1816 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1817 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1818 break;
1819 }
1820 case nir_op_cube_face_index: {
1821 Temp in = get_alu_src(ctx, instr->src[0], 3);
1822 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1823 emit_extract_vector(ctx, in, 1, v1),
1824 emit_extract_vector(ctx, in, 2, v1) };
1825 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1826 break;
1827 }
1828 case nir_op_bcsel: {
1829 emit_bcsel(ctx, instr, dst);
1830 break;
1831 }
1832 case nir_op_frsq: {
1833 Temp src = get_alu_src(ctx, instr->src[0]);
1834 if (dst.regClass() == v2b) {
1835 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1836 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1837 } else if (dst.regClass() == v1) {
1838 emit_rsq(ctx, bld, Definition(dst), src);
1839 } else if (dst.regClass() == v2) {
1840 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1841 } else {
1842 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1843 nir_print_instr(&instr->instr, stderr);
1844 fprintf(stderr, "\n");
1845 }
1846 break;
1847 }
1848 case nir_op_fneg: {
1849 Temp src = get_alu_src(ctx, instr->src[0]);
1850 if (dst.regClass() == v2b) {
1851 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1852 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1853 } else if (dst.regClass() == v1) {
1854 if (ctx->block->fp_mode.must_flush_denorms32)
1855 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1856 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1857 } else if (dst.regClass() == v2) {
1858 if (ctx->block->fp_mode.must_flush_denorms16_64)
1859 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1860 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1861 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1862 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1863 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1864 } else {
1865 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1866 nir_print_instr(&instr->instr, stderr);
1867 fprintf(stderr, "\n");
1868 }
1869 break;
1870 }
1871 case nir_op_fabs: {
1872 Temp src = get_alu_src(ctx, instr->src[0]);
1873 if (dst.regClass() == v2b) {
1874 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1875 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1876 } else if (dst.regClass() == v1) {
1877 if (ctx->block->fp_mode.must_flush_denorms32)
1878 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1879 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1880 } else if (dst.regClass() == v2) {
1881 if (ctx->block->fp_mode.must_flush_denorms16_64)
1882 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1883 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1884 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1885 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1886 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1887 } else {
1888 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1889 nir_print_instr(&instr->instr, stderr);
1890 fprintf(stderr, "\n");
1891 }
1892 break;
1893 }
1894 case nir_op_fsat: {
1895 Temp src = get_alu_src(ctx, instr->src[0]);
1896 if (dst.regClass() == v2b) {
1897 Temp tmp = bld.vop3(aco_opcode::v_med3_f16, bld.def(v1), Operand(0u), Operand(0x3f800000u), src);
1898 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1899 } else if (dst.regClass() == v1) {
1900 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1901 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1902 // TODO: confirm that this holds under any circumstances
1903 } else if (dst.regClass() == v2) {
1904 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1905 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1906 vop3->clamp = true;
1907 } else {
1908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1909 nir_print_instr(&instr->instr, stderr);
1910 fprintf(stderr, "\n");
1911 }
1912 break;
1913 }
1914 case nir_op_flog2: {
1915 Temp src = get_alu_src(ctx, instr->src[0]);
1916 if (dst.regClass() == v2b) {
1917 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1918 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1919 } else if (dst.regClass() == v1) {
1920 emit_log2(ctx, bld, Definition(dst), src);
1921 } else {
1922 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1923 nir_print_instr(&instr->instr, stderr);
1924 fprintf(stderr, "\n");
1925 }
1926 break;
1927 }
1928 case nir_op_frcp: {
1929 Temp src = get_alu_src(ctx, instr->src[0]);
1930 if (dst.regClass() == v2b) {
1931 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1932 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1933 } else if (dst.regClass() == v1) {
1934 emit_rcp(ctx, bld, Definition(dst), src);
1935 } else if (dst.regClass() == v2) {
1936 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1937 } else {
1938 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1939 nir_print_instr(&instr->instr, stderr);
1940 fprintf(stderr, "\n");
1941 }
1942 break;
1943 }
1944 case nir_op_fexp2: {
1945 if (dst.regClass() == v2b) {
1946 Temp src = get_alu_src(ctx, instr->src[0]);
1947 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1948 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1949 } else if (dst.regClass() == v1) {
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1951 } else {
1952 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1953 nir_print_instr(&instr->instr, stderr);
1954 fprintf(stderr, "\n");
1955 }
1956 break;
1957 }
1958 case nir_op_fsqrt: {
1959 Temp src = get_alu_src(ctx, instr->src[0]);
1960 if (dst.regClass() == v2b) {
1961 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1962 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1963 } else if (dst.regClass() == v1) {
1964 emit_sqrt(ctx, bld, Definition(dst), src);
1965 } else if (dst.regClass() == v2) {
1966 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1967 } else {
1968 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1969 nir_print_instr(&instr->instr, stderr);
1970 fprintf(stderr, "\n");
1971 }
1972 break;
1973 }
1974 case nir_op_ffract: {
1975 if (dst.regClass() == v2b) {
1976 Temp src = get_alu_src(ctx, instr->src[0]);
1977 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1978 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1979 } else if (dst.regClass() == v1) {
1980 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1981 } else if (dst.regClass() == v2) {
1982 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1983 } else {
1984 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1985 nir_print_instr(&instr->instr, stderr);
1986 fprintf(stderr, "\n");
1987 }
1988 break;
1989 }
1990 case nir_op_ffloor: {
1991 Temp src = get_alu_src(ctx, instr->src[0]);
1992 if (dst.regClass() == v2b) {
1993 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
1994 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1995 } else if (dst.regClass() == v1) {
1996 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1997 } else if (dst.regClass() == v2) {
1998 emit_floor_f64(ctx, bld, Definition(dst), src);
1999 } else {
2000 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2001 nir_print_instr(&instr->instr, stderr);
2002 fprintf(stderr, "\n");
2003 }
2004 break;
2005 }
2006 case nir_op_fceil: {
2007 Temp src0 = get_alu_src(ctx, instr->src[0]);
2008 if (dst.regClass() == v2b) {
2009 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
2010 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2011 } else if (dst.regClass() == v1) {
2012 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2013 } else if (dst.regClass() == v2) {
2014 if (ctx->options->chip_class >= GFX7) {
2015 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2016 } else {
2017 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2018 /* trunc = trunc(src0)
2019 * if (src0 > 0.0 && src0 != trunc)
2020 * trunc += 1.0
2021 */
2022 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2023 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2024 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2025 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2026 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2027 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2028 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2029 }
2030 } else {
2031 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2032 nir_print_instr(&instr->instr, stderr);
2033 fprintf(stderr, "\n");
2034 }
2035 break;
2036 }
2037 case nir_op_ftrunc: {
2038 Temp src = get_alu_src(ctx, instr->src[0]);
2039 if (dst.regClass() == v2b) {
2040 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
2041 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2042 } else if (dst.regClass() == v1) {
2043 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2044 } else if (dst.regClass() == v2) {
2045 emit_trunc_f64(ctx, bld, Definition(dst), src);
2046 } else {
2047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2048 nir_print_instr(&instr->instr, stderr);
2049 fprintf(stderr, "\n");
2050 }
2051 break;
2052 }
2053 case nir_op_fround_even: {
2054 Temp src0 = get_alu_src(ctx, instr->src[0]);
2055 if (dst.regClass() == v2b) {
2056 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
2057 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2058 } else if (dst.regClass() == v1) {
2059 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2060 } else if (dst.regClass() == v2) {
2061 if (ctx->options->chip_class >= GFX7) {
2062 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2063 } else {
2064 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2065 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2066 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2067
2068 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2069 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2070 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2071 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2072 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2073 tmp = sub->definitions[0].getTemp();
2074
2075 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2076 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2077 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2078 Temp cond = vop3->definitions[0].getTemp();
2079
2080 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2081 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2082 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2083 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2084
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2086 }
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_fsin:
2095 case nir_op_fcos: {
2096 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2097 aco_ptr<Instruction> norm;
2098 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2099 if (dst.regClass() == v2b) {
2100 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2101 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2102 tmp = bld.vop1(opcode, bld.def(v1), tmp);
2103 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2104 } else if (dst.regClass() == v1) {
2105 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2106
2107 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2108 if (ctx->options->chip_class < GFX9)
2109 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2110
2111 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2112 bld.vop1(opcode, Definition(dst), tmp);
2113 } else {
2114 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2115 nir_print_instr(&instr->instr, stderr);
2116 fprintf(stderr, "\n");
2117 }
2118 break;
2119 }
2120 case nir_op_ldexp: {
2121 Temp src0 = get_alu_src(ctx, instr->src[0]);
2122 Temp src1 = get_alu_src(ctx, instr->src[1]);
2123 if (dst.regClass() == v2b) {
2124 Temp tmp = bld.tmp(v1);
2125 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, tmp, false);
2126 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2127 } else if (dst.regClass() == v1) {
2128 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2129 } else if (dst.regClass() == v2) {
2130 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2131 } else {
2132 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2133 nir_print_instr(&instr->instr, stderr);
2134 fprintf(stderr, "\n");
2135 }
2136 break;
2137 }
2138 case nir_op_frexp_sig: {
2139 Temp src = get_alu_src(ctx, instr->src[0]);
2140 if (dst.regClass() == v2b) {
2141 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2142 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2143 } else if (dst.regClass() == v1) {
2144 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2145 } else if (dst.regClass() == v2) {
2146 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2147 } else {
2148 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2149 nir_print_instr(&instr->instr, stderr);
2150 fprintf(stderr, "\n");
2151 }
2152 break;
2153 }
2154 case nir_op_frexp_exp: {
2155 Temp src = get_alu_src(ctx, instr->src[0]);
2156 if (instr->src[0].src.ssa->bit_size == 16) {
2157 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2158 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2159 convert_int(bld, tmp, 8, 32, true, dst);
2160 } else if (instr->src[0].src.ssa->bit_size == 32) {
2161 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2162 } else if (instr->src[0].src.ssa->bit_size == 64) {
2163 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2164 } else {
2165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2166 nir_print_instr(&instr->instr, stderr);
2167 fprintf(stderr, "\n");
2168 }
2169 break;
2170 }
2171 case nir_op_fsign: {
2172 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2173 if (dst.regClass() == v2b) {
2174 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2175 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2176 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2177 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2178 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2179 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), minus_one, src, cond);
2180 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2181 } else if (dst.regClass() == v1) {
2182 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2183 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2184 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2185 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2186 } else if (dst.regClass() == v2) {
2187 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2188 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2189 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2190
2191 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2192 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2193 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2194
2195 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2196 } else {
2197 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2198 nir_print_instr(&instr->instr, stderr);
2199 fprintf(stderr, "\n");
2200 }
2201 break;
2202 }
2203 case nir_op_f2f16:
2204 case nir_op_f2f16_rtne: {
2205 Temp src = get_alu_src(ctx, instr->src[0]);
2206 if (instr->src[0].src.ssa->bit_size == 64)
2207 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2208 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2209 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2210 break;
2211 }
2212 case nir_op_f2f16_rtz: {
2213 Temp src = get_alu_src(ctx, instr->src[0]);
2214 if (instr->src[0].src.ssa->bit_size == 64)
2215 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2216 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2217 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2218 break;
2219 }
2220 case nir_op_f2f32: {
2221 if (instr->src[0].src.ssa->bit_size == 16) {
2222 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2223 } else if (instr->src[0].src.ssa->bit_size == 64) {
2224 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2225 } else {
2226 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2227 nir_print_instr(&instr->instr, stderr);
2228 fprintf(stderr, "\n");
2229 }
2230 break;
2231 }
2232 case nir_op_f2f64: {
2233 Temp src = get_alu_src(ctx, instr->src[0]);
2234 if (instr->src[0].src.ssa->bit_size == 16)
2235 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2236 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2237 break;
2238 }
2239 case nir_op_i2f16: {
2240 assert(dst.regClass() == v2b);
2241 Temp src = get_alu_src(ctx, instr->src[0]);
2242 if (instr->src[0].src.ssa->bit_size == 8)
2243 src = convert_int(bld, src, 8, 16, true);
2244 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_i16, bld.def(v1), src);
2245 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2246 break;
2247 }
2248 case nir_op_i2f32: {
2249 assert(dst.size() == 1);
2250 Temp src = get_alu_src(ctx, instr->src[0]);
2251 if (instr->src[0].src.ssa->bit_size <= 16)
2252 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2253 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2254 break;
2255 }
2256 case nir_op_i2f64: {
2257 if (instr->src[0].src.ssa->bit_size <= 32) {
2258 Temp src = get_alu_src(ctx, instr->src[0]);
2259 if (instr->src[0].src.ssa->bit_size <= 16)
2260 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2261 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2262 } else if (instr->src[0].src.ssa->bit_size == 64) {
2263 Temp src = get_alu_src(ctx, instr->src[0]);
2264 RegClass rc = RegClass(src.type(), 1);
2265 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2266 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2267 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2268 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2269 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2270 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2271
2272 } else {
2273 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2274 nir_print_instr(&instr->instr, stderr);
2275 fprintf(stderr, "\n");
2276 }
2277 break;
2278 }
2279 case nir_op_u2f16: {
2280 assert(dst.regClass() == v2b);
2281 Temp src = get_alu_src(ctx, instr->src[0]);
2282 if (instr->src[0].src.ssa->bit_size == 8)
2283 src = convert_int(bld, src, 8, 16, false);
2284 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v1), src);
2285 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2286 break;
2287 }
2288 case nir_op_u2f32: {
2289 assert(dst.size() == 1);
2290 Temp src = get_alu_src(ctx, instr->src[0]);
2291 if (instr->src[0].src.ssa->bit_size == 8) {
2292 //TODO: we should use v_cvt_f32_ubyte1/v_cvt_f32_ubyte2/etc depending on the register assignment
2293 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2294 } else {
2295 if (instr->src[0].src.ssa->bit_size == 16)
2296 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2297 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2298 }
2299 break;
2300 }
2301 case nir_op_u2f64: {
2302 if (instr->src[0].src.ssa->bit_size <= 32) {
2303 Temp src = get_alu_src(ctx, instr->src[0]);
2304 if (instr->src[0].src.ssa->bit_size <= 16)
2305 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2306 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2307 } else if (instr->src[0].src.ssa->bit_size == 64) {
2308 Temp src = get_alu_src(ctx, instr->src[0]);
2309 RegClass rc = RegClass(src.type(), 1);
2310 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2311 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2312 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2313 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2314 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2315 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2316 } else {
2317 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2318 nir_print_instr(&instr->instr, stderr);
2319 fprintf(stderr, "\n");
2320 }
2321 break;
2322 }
2323 case nir_op_f2i8:
2324 case nir_op_f2i16: {
2325 Temp src = get_alu_src(ctx, instr->src[0]);
2326 if (instr->src[0].src.ssa->bit_size == 16)
2327 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2328 else if (instr->src[0].src.ssa->bit_size == 32)
2329 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2330 else
2331 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2332
2333 if (dst.type() == RegType::vgpr)
2334 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2335 else
2336 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2337 break;
2338 }
2339 case nir_op_f2u8:
2340 case nir_op_f2u16: {
2341 Temp src = get_alu_src(ctx, instr->src[0]);
2342 if (instr->src[0].src.ssa->bit_size == 16)
2343 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2344 else if (instr->src[0].src.ssa->bit_size == 32)
2345 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2346 else
2347 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2348
2349 if (dst.type() == RegType::vgpr)
2350 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2351 else
2352 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2353 break;
2354 }
2355 case nir_op_f2i32: {
2356 Temp src = get_alu_src(ctx, instr->src[0]);
2357 if (instr->src[0].src.ssa->bit_size == 16) {
2358 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2359 if (dst.type() == RegType::vgpr) {
2360 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2361 } else {
2362 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2363 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2364 }
2365 } else if (instr->src[0].src.ssa->bit_size == 32) {
2366 if (dst.type() == RegType::vgpr)
2367 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2368 else
2369 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2370 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2371
2372 } else if (instr->src[0].src.ssa->bit_size == 64) {
2373 if (dst.type() == RegType::vgpr)
2374 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2375 else
2376 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2377 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2378
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_f2u32: {
2387 Temp src = get_alu_src(ctx, instr->src[0]);
2388 if (instr->src[0].src.ssa->bit_size == 16) {
2389 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2390 if (dst.type() == RegType::vgpr) {
2391 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2392 } else {
2393 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2394 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2395 }
2396 } else if (instr->src[0].src.ssa->bit_size == 32) {
2397 if (dst.type() == RegType::vgpr)
2398 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2399 else
2400 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2401 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2402
2403 } else if (instr->src[0].src.ssa->bit_size == 64) {
2404 if (dst.type() == RegType::vgpr)
2405 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2406 else
2407 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2408 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2409
2410 } else {
2411 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2412 nir_print_instr(&instr->instr, stderr);
2413 fprintf(stderr, "\n");
2414 }
2415 break;
2416 }
2417 case nir_op_f2i64: {
2418 Temp src = get_alu_src(ctx, instr->src[0]);
2419 if (instr->src[0].src.ssa->bit_size == 16)
2420 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2421
2422 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2423 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2424 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2425 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2426 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2427 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2428 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2429 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2430 Temp new_exponent = bld.tmp(v1);
2431 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2432 if (ctx->program->chip_class >= GFX8)
2433 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2434 else
2435 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2436 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2437 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2438 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2439 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2440 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2441 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2442 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2443 Temp new_lower = bld.tmp(v1);
2444 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2445 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2446 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2447
2448 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2449 if (src.type() == RegType::vgpr)
2450 src = bld.as_uniform(src);
2451 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2452 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2453 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2454 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2455 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2456 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2457 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2458 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2459 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2460 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2461 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2462 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2463 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2464 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2465 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2466 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2467 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2468 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2469 Temp borrow = bld.tmp(s1);
2470 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2471 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2472 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2473
2474 } else if (instr->src[0].src.ssa->bit_size == 64) {
2475 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2476 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2477 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2478 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2479 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2480 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2481 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2482 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2483 if (dst.type() == RegType::sgpr) {
2484 lower = bld.as_uniform(lower);
2485 upper = bld.as_uniform(upper);
2486 }
2487 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2488
2489 } else {
2490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2491 nir_print_instr(&instr->instr, stderr);
2492 fprintf(stderr, "\n");
2493 }
2494 break;
2495 }
2496 case nir_op_f2u64: {
2497 Temp src = get_alu_src(ctx, instr->src[0]);
2498 if (instr->src[0].src.ssa->bit_size == 16)
2499 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2500
2501 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2502 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2503 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2504 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2505 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2506 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2507 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2508 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2509 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2510 Temp new_exponent = bld.tmp(v1);
2511 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2512 if (ctx->program->chip_class >= GFX8)
2513 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2514 else
2515 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2516 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2517 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2518 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2519 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2520 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2521 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2522 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2523
2524 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2525 if (src.type() == RegType::vgpr)
2526 src = bld.as_uniform(src);
2527 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2528 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2529 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2530 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2531 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2532 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2533 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2534 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2535 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2536 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2537 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2538 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2539 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2540 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2541 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2542 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2543 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2544 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2545
2546 } else if (instr->src[0].src.ssa->bit_size == 64) {
2547 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2548 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2549 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2550 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2551 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2552 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2553 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2554 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2555 if (dst.type() == RegType::sgpr) {
2556 lower = bld.as_uniform(lower);
2557 upper = bld.as_uniform(upper);
2558 }
2559 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2560
2561 } else {
2562 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2563 nir_print_instr(&instr->instr, stderr);
2564 fprintf(stderr, "\n");
2565 }
2566 break;
2567 }
2568 case nir_op_b2f16: {
2569 Temp src = get_alu_src(ctx, instr->src[0]);
2570 assert(src.regClass() == bld.lm);
2571
2572 if (dst.regClass() == s1) {
2573 src = bool_to_scalar_condition(ctx, src);
2574 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2575 } else if (dst.regClass() == v2b) {
2576 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2577 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2578 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2579 } else {
2580 unreachable("Wrong destination register class for nir_op_b2f16.");
2581 }
2582 break;
2583 }
2584 case nir_op_b2f32: {
2585 Temp src = get_alu_src(ctx, instr->src[0]);
2586 assert(src.regClass() == bld.lm);
2587
2588 if (dst.regClass() == s1) {
2589 src = bool_to_scalar_condition(ctx, src);
2590 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2591 } else if (dst.regClass() == v1) {
2592 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2593 } else {
2594 unreachable("Wrong destination register class for nir_op_b2f32.");
2595 }
2596 break;
2597 }
2598 case nir_op_b2f64: {
2599 Temp src = get_alu_src(ctx, instr->src[0]);
2600 assert(src.regClass() == bld.lm);
2601
2602 if (dst.regClass() == s2) {
2603 src = bool_to_scalar_condition(ctx, src);
2604 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2605 } else if (dst.regClass() == v2) {
2606 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2607 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2608 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2609 } else {
2610 unreachable("Wrong destination register class for nir_op_b2f64.");
2611 }
2612 break;
2613 }
2614 case nir_op_i2i8:
2615 case nir_op_i2i16:
2616 case nir_op_i2i32:
2617 case nir_op_i2i64: {
2618 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2619 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2620 break;
2621 }
2622 case nir_op_u2u8:
2623 case nir_op_u2u16:
2624 case nir_op_u2u32:
2625 case nir_op_u2u64: {
2626 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2627 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2628 break;
2629 }
2630 case nir_op_b2b32:
2631 case nir_op_b2i32: {
2632 Temp src = get_alu_src(ctx, instr->src[0]);
2633 assert(src.regClass() == bld.lm);
2634
2635 if (dst.regClass() == s1) {
2636 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2637 bool_to_scalar_condition(ctx, src, dst);
2638 } else if (dst.regClass() == v1) {
2639 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2640 } else {
2641 unreachable("Invalid register class for b2i32");
2642 }
2643 break;
2644 }
2645 case nir_op_b2b1:
2646 case nir_op_i2b1: {
2647 Temp src = get_alu_src(ctx, instr->src[0]);
2648 assert(dst.regClass() == bld.lm);
2649
2650 if (src.type() == RegType::vgpr) {
2651 assert(src.regClass() == v1 || src.regClass() == v2);
2652 assert(dst.regClass() == bld.lm);
2653 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2654 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2655 } else {
2656 assert(src.regClass() == s1 || src.regClass() == s2);
2657 Temp tmp;
2658 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2659 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2660 } else {
2661 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2662 bld.scc(bld.def(s1)), Operand(0u), src);
2663 }
2664 bool_to_vector_condition(ctx, tmp, dst);
2665 }
2666 break;
2667 }
2668 case nir_op_pack_64_2x32_split: {
2669 Temp src0 = get_alu_src(ctx, instr->src[0]);
2670 Temp src1 = get_alu_src(ctx, instr->src[1]);
2671
2672 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2673 break;
2674 }
2675 case nir_op_unpack_64_2x32_split_x:
2676 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2677 break;
2678 case nir_op_unpack_64_2x32_split_y:
2679 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2680 break;
2681 case nir_op_unpack_32_2x16_split_x:
2682 if (dst.type() == RegType::vgpr) {
2683 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2684 } else {
2685 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2686 }
2687 break;
2688 case nir_op_unpack_32_2x16_split_y:
2689 if (dst.type() == RegType::vgpr) {
2690 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2691 } else {
2692 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2693 }
2694 break;
2695 case nir_op_pack_32_2x16_split: {
2696 Temp src0 = get_alu_src(ctx, instr->src[0]);
2697 Temp src1 = get_alu_src(ctx, instr->src[1]);
2698 if (dst.regClass() == v1) {
2699 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2700 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2701 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2702 } else {
2703 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2704 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2705 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2706 }
2707 break;
2708 }
2709 case nir_op_pack_half_2x16: {
2710 Temp src = get_alu_src(ctx, instr->src[0], 2);
2711
2712 if (dst.regClass() == v1) {
2713 Temp src0 = bld.tmp(v1);
2714 Temp src1 = bld.tmp(v1);
2715 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2716 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2717 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2718 else
2719 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2720 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2721 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2722 } else {
2723 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2724 nir_print_instr(&instr->instr, stderr);
2725 fprintf(stderr, "\n");
2726 }
2727 break;
2728 }
2729 case nir_op_unpack_half_2x16_split_x: {
2730 if (dst.regClass() == v1) {
2731 Builder bld(ctx->program, ctx->block);
2732 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2733 } else {
2734 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2735 nir_print_instr(&instr->instr, stderr);
2736 fprintf(stderr, "\n");
2737 }
2738 break;
2739 }
2740 case nir_op_unpack_half_2x16_split_y: {
2741 if (dst.regClass() == v1) {
2742 Builder bld(ctx->program, ctx->block);
2743 /* TODO: use SDWA here */
2744 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2745 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2746 } else {
2747 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2748 nir_print_instr(&instr->instr, stderr);
2749 fprintf(stderr, "\n");
2750 }
2751 break;
2752 }
2753 case nir_op_fquantize2f16: {
2754 Temp src = get_alu_src(ctx, instr->src[0]);
2755 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2756 Temp f32, cmp_res;
2757
2758 if (ctx->program->chip_class >= GFX8) {
2759 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2760 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2761 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2762 } else {
2763 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2764 * so compare the result and flush to 0 if it's smaller.
2765 */
2766 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2767 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2768 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2769 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2770 cmp_res = vop3->definitions[0].getTemp();
2771 }
2772
2773 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2774 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2775 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2776 } else {
2777 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2778 }
2779 break;
2780 }
2781 case nir_op_bfm: {
2782 Temp bits = get_alu_src(ctx, instr->src[0]);
2783 Temp offset = get_alu_src(ctx, instr->src[1]);
2784
2785 if (dst.regClass() == s1) {
2786 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2787 } else if (dst.regClass() == v1) {
2788 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2789 } else {
2790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2791 nir_print_instr(&instr->instr, stderr);
2792 fprintf(stderr, "\n");
2793 }
2794 break;
2795 }
2796 case nir_op_bitfield_select: {
2797 /* (mask & insert) | (~mask & base) */
2798 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2799 Temp insert = get_alu_src(ctx, instr->src[1]);
2800 Temp base = get_alu_src(ctx, instr->src[2]);
2801
2802 /* dst = (insert & bitmask) | (base & ~bitmask) */
2803 if (dst.regClass() == s1) {
2804 aco_ptr<Instruction> sop2;
2805 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2806 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2807 Operand lhs;
2808 if (const_insert && const_bitmask) {
2809 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2810 } else {
2811 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2812 lhs = Operand(insert);
2813 }
2814
2815 Operand rhs;
2816 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2817 if (const_base && const_bitmask) {
2818 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2819 } else {
2820 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2821 rhs = Operand(base);
2822 }
2823
2824 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2825
2826 } else if (dst.regClass() == v1) {
2827 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2828 base = as_vgpr(ctx, base);
2829 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2830 insert = as_vgpr(ctx, insert);
2831
2832 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2833
2834 } else {
2835 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2836 nir_print_instr(&instr->instr, stderr);
2837 fprintf(stderr, "\n");
2838 }
2839 break;
2840 }
2841 case nir_op_ubfe:
2842 case nir_op_ibfe: {
2843 Temp base = get_alu_src(ctx, instr->src[0]);
2844 Temp offset = get_alu_src(ctx, instr->src[1]);
2845 Temp bits = get_alu_src(ctx, instr->src[2]);
2846
2847 if (dst.type() == RegType::sgpr) {
2848 Operand extract;
2849 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2850 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2851 if (const_offset && const_bits) {
2852 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2853 extract = Operand(const_extract);
2854 } else {
2855 Operand width;
2856 if (const_bits) {
2857 width = Operand(const_bits->u32 << 16);
2858 } else {
2859 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2860 }
2861 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2862 }
2863
2864 aco_opcode opcode;
2865 if (dst.regClass() == s1) {
2866 if (instr->op == nir_op_ubfe)
2867 opcode = aco_opcode::s_bfe_u32;
2868 else
2869 opcode = aco_opcode::s_bfe_i32;
2870 } else if (dst.regClass() == s2) {
2871 if (instr->op == nir_op_ubfe)
2872 opcode = aco_opcode::s_bfe_u64;
2873 else
2874 opcode = aco_opcode::s_bfe_i64;
2875 } else {
2876 unreachable("Unsupported BFE bit size");
2877 }
2878
2879 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2880
2881 } else {
2882 aco_opcode opcode;
2883 if (dst.regClass() == v1) {
2884 if (instr->op == nir_op_ubfe)
2885 opcode = aco_opcode::v_bfe_u32;
2886 else
2887 opcode = aco_opcode::v_bfe_i32;
2888 } else {
2889 unreachable("Unsupported BFE bit size");
2890 }
2891
2892 emit_vop3a_instruction(ctx, instr, opcode, dst);
2893 }
2894 break;
2895 }
2896 case nir_op_bit_count: {
2897 Temp src = get_alu_src(ctx, instr->src[0]);
2898 if (src.regClass() == s1) {
2899 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2900 } else if (src.regClass() == v1) {
2901 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2902 } else if (src.regClass() == v2) {
2903 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2904 emit_extract_vector(ctx, src, 1, v1),
2905 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2906 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2907 } else if (src.regClass() == s2) {
2908 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2909 } else {
2910 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2911 nir_print_instr(&instr->instr, stderr);
2912 fprintf(stderr, "\n");
2913 }
2914 break;
2915 }
2916 case nir_op_flt: {
2917 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2918 break;
2919 }
2920 case nir_op_fge: {
2921 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2922 break;
2923 }
2924 case nir_op_feq: {
2925 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2926 break;
2927 }
2928 case nir_op_fne: {
2929 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2930 break;
2931 }
2932 case nir_op_ilt: {
2933 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2934 break;
2935 }
2936 case nir_op_ige: {
2937 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2938 break;
2939 }
2940 case nir_op_ieq: {
2941 if (instr->src[0].src.ssa->bit_size == 1)
2942 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2943 else
2944 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2945 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2946 break;
2947 }
2948 case nir_op_ine: {
2949 if (instr->src[0].src.ssa->bit_size == 1)
2950 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2951 else
2952 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2953 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2954 break;
2955 }
2956 case nir_op_ult: {
2957 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2958 break;
2959 }
2960 case nir_op_uge: {
2961 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2962 break;
2963 }
2964 case nir_op_fddx:
2965 case nir_op_fddy:
2966 case nir_op_fddx_fine:
2967 case nir_op_fddy_fine:
2968 case nir_op_fddx_coarse:
2969 case nir_op_fddy_coarse: {
2970 Temp src = get_alu_src(ctx, instr->src[0]);
2971 uint16_t dpp_ctrl1, dpp_ctrl2;
2972 if (instr->op == nir_op_fddx_fine) {
2973 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2974 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2975 } else if (instr->op == nir_op_fddy_fine) {
2976 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2977 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2978 } else {
2979 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2980 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2981 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2982 else
2983 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2984 }
2985
2986 Temp tmp;
2987 if (ctx->program->chip_class >= GFX8) {
2988 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2989 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2990 } else {
2991 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2992 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2993 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2994 }
2995 emit_wqm(ctx, tmp, dst, true);
2996 break;
2997 }
2998 default:
2999 fprintf(stderr, "Unknown NIR ALU instr: ");
3000 nir_print_instr(&instr->instr, stderr);
3001 fprintf(stderr, "\n");
3002 }
3003 }
3004
3005 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3006 {
3007 Temp dst = get_ssa_temp(ctx, &instr->def);
3008
3009 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3010 // which get truncated the lsb if double and msb if int
3011 // for now, we only use s_mov_b64 with 64bit inline constants
3012 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3013 assert(dst.type() == RegType::sgpr);
3014
3015 Builder bld(ctx->program, ctx->block);
3016
3017 if (instr->def.bit_size == 1) {
3018 assert(dst.regClass() == bld.lm);
3019 int val = instr->value[0].b ? -1 : 0;
3020 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3021 bld.sop1(Builder::s_mov, Definition(dst), op);
3022 } else if (instr->def.bit_size == 8) {
3023 /* ensure that the value is correctly represented in the low byte of the register */
3024 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3025 } else if (instr->def.bit_size == 16) {
3026 /* ensure that the value is correctly represented in the low half of the register */
3027 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3028 } else if (dst.size() == 1) {
3029 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3030 } else {
3031 assert(dst.size() != 1);
3032 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3033 if (instr->def.bit_size == 64)
3034 for (unsigned i = 0; i < dst.size(); i++)
3035 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3036 else {
3037 for (unsigned i = 0; i < dst.size(); i++)
3038 vec->operands[i] = Operand{instr->value[i].u32};
3039 }
3040 vec->definitions[0] = Definition(dst);
3041 ctx->block->instructions.emplace_back(std::move(vec));
3042 }
3043 }
3044
3045 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3046 {
3047 uint32_t new_mask = 0;
3048 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3049 if (mask & (1u << i))
3050 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3051 return new_mask;
3052 }
3053
3054 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst)
3055 {
3056 Builder bld(ctx->program, ctx->block);
3057 if (offset.isTemp()) {
3058 Temp tmp[3] = {vec, vec, vec};
3059
3060 if (vec.size() == 3) {
3061 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
3062 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
3063 } else if (vec.size() == 2) {
3064 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
3065 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
3066 }
3067 for (unsigned i = 0; i < dst.size(); i++)
3068 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
3069
3070 vec = tmp[0];
3071 if (dst.size() == 2)
3072 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
3073
3074 offset = Operand(0u);
3075 }
3076
3077 if (vec.bytes() == dst.bytes() && offset.constantValue() == 0)
3078 bld.copy(Definition(dst), vec);
3079 else
3080 trim_subdword_vector(ctx, vec, dst, vec.bytes(), ((1 << dst.bytes()) - 1) << offset.constantValue());
3081 }
3082
3083 struct LoadEmitInfo {
3084 Operand offset;
3085 Temp dst;
3086 unsigned num_components;
3087 unsigned component_size;
3088 Temp resource = Temp(0, s1);
3089 unsigned component_stride = 0;
3090 unsigned const_offset = 0;
3091 unsigned align_mul = 0;
3092 unsigned align_offset = 0;
3093
3094 bool glc = false;
3095 unsigned swizzle_component_size = 0;
3096 barrier_interaction barrier = barrier_none;
3097 bool can_reorder = true;
3098 Temp soffset = Temp(0, s1);
3099 };
3100
3101 using LoadCallback = Temp(*)(
3102 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3103 unsigned align, unsigned const_offset, Temp dst_hint);
3104
3105 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3106 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3107 {
3108 unsigned load_size = info->num_components * info->component_size;
3109 unsigned component_size = info->component_size;
3110
3111 unsigned num_vals = 0;
3112 Temp vals[info->dst.bytes()];
3113
3114 unsigned const_offset = info->const_offset;
3115
3116 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3117 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3118
3119 unsigned bytes_read = 0;
3120 while (bytes_read < load_size) {
3121 unsigned bytes_needed = load_size - bytes_read;
3122
3123 /* add buffer for unaligned loads */
3124 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3125
3126 if (byte_align) {
3127 if ((bytes_needed > 2 || !supports_8bit_16bit_loads) && byte_align_loads) {
3128 if (info->component_stride) {
3129 assert(supports_8bit_16bit_loads && "unimplemented");
3130 bytes_needed = 2;
3131 byte_align = 0;
3132 } else {
3133 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3134 bytes_needed = align(bytes_needed, 4);
3135 }
3136 } else {
3137 byte_align = 0;
3138 }
3139 }
3140
3141 if (info->swizzle_component_size)
3142 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3143 if (info->component_stride)
3144 bytes_needed = MIN2(bytes_needed, info->component_size);
3145
3146 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3147
3148 /* reduce constant offset */
3149 Operand offset = info->offset;
3150 unsigned reduced_const_offset = const_offset;
3151 bool remove_const_offset_completely = need_to_align_offset;
3152 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3153 unsigned to_add = const_offset;
3154 if (remove_const_offset_completely) {
3155 reduced_const_offset = 0;
3156 } else {
3157 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3158 reduced_const_offset %= max_const_offset_plus_one;
3159 }
3160 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3161 if (offset.isConstant()) {
3162 offset = Operand(offset.constantValue() + to_add);
3163 } else if (offset_tmp.regClass() == s1) {
3164 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3165 offset_tmp, Operand(to_add));
3166 } else if (offset_tmp.regClass() == v1) {
3167 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3168 } else {
3169 Temp lo = bld.tmp(offset_tmp.type(), 1);
3170 Temp hi = bld.tmp(offset_tmp.type(), 1);
3171 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3172
3173 if (offset_tmp.regClass() == s2) {
3174 Temp carry = bld.tmp(s1);
3175 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3176 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3177 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3178 } else {
3179 Temp new_lo = bld.tmp(v1);
3180 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3181 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3182 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3183 }
3184 }
3185 }
3186
3187 /* align offset down if needed */
3188 Operand aligned_offset = offset;
3189 if (need_to_align_offset) {
3190 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3191 if (offset.isConstant()) {
3192 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3193 } else if (offset_tmp.regClass() == s1) {
3194 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3195 } else if (offset_tmp.regClass() == s2) {
3196 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3197 } else if (offset_tmp.regClass() == v1) {
3198 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3199 } else if (offset_tmp.regClass() == v2) {
3200 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3201 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3202 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3203 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3204 }
3205 }
3206 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3207 bld.copy(bld.def(s1), aligned_offset);
3208
3209 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3210 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3211 reduced_const_offset, byte_align ? Temp() : info->dst);
3212
3213 /* shift result right if needed */
3214 if (byte_align) {
3215 Operand align((uint32_t)byte_align);
3216 if (byte_align == -1) {
3217 if (offset.isConstant())
3218 align = Operand(offset.constantValue() % 4u);
3219 else if (offset.size() == 2)
3220 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3221 else
3222 align = offset;
3223 }
3224
3225 if (align.isTemp() || align.constantValue()) {
3226 assert(val.bytes() >= load_size && "unimplemented");
3227 Temp new_val = bld.tmp(RegClass::get(val.type(), load_size));
3228 if (val.type() == RegType::sgpr)
3229 byte_align_scalar(ctx, val, align, new_val);
3230 else
3231 byte_align_vector(ctx, val, align, new_val);
3232 val = new_val;
3233 }
3234 }
3235
3236 /* add result to list and advance */
3237 if (info->component_stride) {
3238 assert(val.bytes() == info->component_size && "unimplemented");
3239 const_offset += info->component_stride;
3240 align_offset = (align_offset + info->component_stride) % align_mul;
3241 } else {
3242 const_offset += val.bytes();
3243 align_offset = (align_offset + val.bytes()) % align_mul;
3244 }
3245 bytes_read += val.bytes();
3246 vals[num_vals++] = val;
3247 }
3248
3249 /* the callback wrote directly to dst */
3250 if (vals[0] == info->dst) {
3251 assert(num_vals == 1);
3252 emit_split_vector(ctx, info->dst, info->num_components);
3253 return;
3254 }
3255
3256 /* create array of components */
3257 unsigned components_split = 0;
3258 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3259 bool has_vgprs = false;
3260 for (unsigned i = 0; i < num_vals;) {
3261 Temp tmp[num_vals];
3262 unsigned num_tmps = 0;
3263 unsigned tmp_size = 0;
3264 RegType reg_type = RegType::sgpr;
3265 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3266 if (vals[i].type() == RegType::vgpr)
3267 reg_type = RegType::vgpr;
3268 tmp_size += vals[i].bytes();
3269 tmp[num_tmps++] = vals[i++];
3270 }
3271 if (num_tmps > 1) {
3272 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3273 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3274 for (unsigned i = 0; i < num_vals; i++)
3275 vec->operands[i] = Operand(tmp[i]);
3276 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3277 vec->definitions[0] = Definition(tmp[0]);
3278 bld.insert(std::move(vec));
3279 }
3280
3281 if (tmp[0].bytes() % component_size) {
3282 /* trim tmp[0] */
3283 assert(i == num_vals);
3284 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3285 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3286 }
3287
3288 RegClass elem_rc = RegClass::get(reg_type, component_size);
3289
3290 unsigned start = components_split;
3291
3292 if (tmp_size == elem_rc.bytes()) {
3293 allocated_vec[components_split++] = tmp[0];
3294 } else {
3295 assert(tmp_size % elem_rc.bytes() == 0);
3296 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3297 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3298 for (unsigned i = 0; i < split->definitions.size(); i++) {
3299 Temp component = bld.tmp(elem_rc);
3300 allocated_vec[components_split++] = component;
3301 split->definitions[i] = Definition(component);
3302 }
3303 split->operands[0] = Operand(tmp[0]);
3304 bld.insert(std::move(split));
3305 }
3306
3307 /* try to p_as_uniform early so we can create more optimizable code and
3308 * also update allocated_vec */
3309 for (unsigned j = start; j < components_split; j++) {
3310 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3311 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3312 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3313 }
3314 }
3315
3316 /* concatenate components and p_as_uniform() result if needed */
3317 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3318 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3319
3320 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3321
3322 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3323 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3324 for (unsigned i = 0; i < info->num_components; i++)
3325 vec->operands[i] = Operand(allocated_vec[i]);
3326 if (padding_bytes)
3327 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3328 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3329 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3330 vec->definitions[0] = Definition(tmp);
3331 bld.insert(std::move(vec));
3332 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3333 } else {
3334 vec->definitions[0] = Definition(info->dst);
3335 bld.insert(std::move(vec));
3336 }
3337 }
3338
3339 Operand load_lds_size_m0(Builder& bld)
3340 {
3341 /* TODO: m0 does not need to be initialized on GFX9+ */
3342 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3343 }
3344
3345 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3346 Temp offset, unsigned bytes_needed,
3347 unsigned align, unsigned const_offset,
3348 Temp dst_hint)
3349 {
3350 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3351
3352 Operand m = load_lds_size_m0(bld);
3353
3354 bool large_ds_read = bld.program->chip_class >= GFX7;
3355 bool usable_read2 = bld.program->chip_class >= GFX7;
3356
3357 bool read2 = false;
3358 unsigned size = 0;
3359 aco_opcode op;
3360 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3361 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3362 size = 16;
3363 op = aco_opcode::ds_read_b128;
3364 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3365 size = 16;
3366 read2 = true;
3367 op = aco_opcode::ds_read2_b64;
3368 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3369 size = 12;
3370 op = aco_opcode::ds_read_b96;
3371 } else if (bytes_needed >= 8 && align % 8 == 0) {
3372 size = 8;
3373 op = aco_opcode::ds_read_b64;
3374 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3375 size = 8;
3376 read2 = true;
3377 op = aco_opcode::ds_read2_b32;
3378 } else if (bytes_needed >= 4 && align % 4 == 0) {
3379 size = 4;
3380 op = aco_opcode::ds_read_b32;
3381 } else if (bytes_needed >= 2 && align % 2 == 0) {
3382 size = 2;
3383 op = aco_opcode::ds_read_u16;
3384 } else {
3385 size = 1;
3386 op = aco_opcode::ds_read_u8;
3387 }
3388
3389 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3390 if (const_offset >= max_offset_plus_one) {
3391 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3392 const_offset %= max_offset_plus_one;
3393 }
3394
3395 if (read2)
3396 const_offset /= (size / 2u);
3397
3398 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3399 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3400 if (read2)
3401 bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3402 else
3403 bld.ds(op, Definition(val), offset, m, const_offset);
3404
3405 if (size < 4)
3406 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3407
3408 return val;
3409 }
3410
3411 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3412
3413 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3414 Temp address, unsigned base_offset, unsigned align)
3415 {
3416 assert(util_is_power_of_two_nonzero(align));
3417
3418 Builder bld(ctx->program, ctx->block);
3419
3420 unsigned num_components = dst.bytes() / elem_size_bytes;
3421 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3422 info.align_mul = align;
3423 info.align_offset = 0;
3424 info.barrier = barrier_shared;
3425 info.can_reorder = false;
3426 info.const_offset = base_offset;
3427 emit_lds_load(ctx, bld, &info);
3428
3429 return dst;
3430 }
3431
3432 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3433 {
3434 if (start == 0 && size == data.size())
3435 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3436
3437 unsigned size_hint = 1;
3438 auto it = ctx->allocated_vec.find(data.id());
3439 if (it != ctx->allocated_vec.end())
3440 size_hint = it->second[0].size();
3441 if (size % size_hint || start % size_hint)
3442 size_hint = 1;
3443
3444 start /= size_hint;
3445 size /= size_hint;
3446
3447 Temp elems[size];
3448 for (unsigned i = 0; i < size; i++)
3449 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3450
3451 if (size == 1)
3452 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3453
3454 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3455 for (unsigned i = 0; i < size; i++)
3456 vec->operands[i] = Operand(elems[i]);
3457 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3458 vec->definitions[0] = Definition(res);
3459 ctx->block->instructions.emplace_back(std::move(vec));
3460 return res;
3461 }
3462
3463 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3464 {
3465 Builder bld(ctx->program, ctx->block);
3466 unsigned bytes_written = 0;
3467 bool large_ds_write = ctx->options->chip_class >= GFX7;
3468 bool usable_write2 = ctx->options->chip_class >= GFX7;
3469
3470 while (bytes_written < total_size * 4) {
3471 unsigned todo = total_size * 4 - bytes_written;
3472 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3473 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3474
3475 aco_opcode op = aco_opcode::last_opcode;
3476 bool write2 = false;
3477 unsigned size = 0;
3478 if (todo >= 16 && aligned16 && large_ds_write) {
3479 op = aco_opcode::ds_write_b128;
3480 size = 4;
3481 } else if (todo >= 16 && aligned8 && usable_write2) {
3482 op = aco_opcode::ds_write2_b64;
3483 write2 = true;
3484 size = 4;
3485 } else if (todo >= 12 && aligned16 && large_ds_write) {
3486 op = aco_opcode::ds_write_b96;
3487 size = 3;
3488 } else if (todo >= 8 && aligned8) {
3489 op = aco_opcode::ds_write_b64;
3490 size = 2;
3491 } else if (todo >= 8 && usable_write2) {
3492 op = aco_opcode::ds_write2_b32;
3493 write2 = true;
3494 size = 2;
3495 } else if (todo >= 4) {
3496 op = aco_opcode::ds_write_b32;
3497 size = 1;
3498 } else {
3499 assert(false);
3500 }
3501
3502 unsigned offset = offset0 + offset1 + bytes_written;
3503 unsigned max_offset = write2 ? 1020 : 65535;
3504 Temp address_offset = address;
3505 if (offset > max_offset) {
3506 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3507 offset = offset1 + bytes_written;
3508 }
3509 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3510
3511 if (write2) {
3512 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3513 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3514 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3515 } else {
3516 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3517 bld.ds(op, address_offset, val, m, offset);
3518 }
3519
3520 bytes_written += size * 4;
3521 }
3522 }
3523
3524 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3525 Temp address, unsigned base_offset, unsigned align)
3526 {
3527 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3528 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3529
3530 Builder bld(ctx->program, ctx->block);
3531 Operand m = load_lds_size_m0(bld);
3532
3533 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3534 assert(wrmask <= 0x0f);
3535 int start[2], count[2];
3536 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3537 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3538 assert(wrmask == 0);
3539
3540 /* one combined store is sufficient */
3541 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3542 Temp address_offset = address;
3543 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3544 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3545 base_offset = 0;
3546 }
3547
3548 assert(count[0] == 1);
3549 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3550
3551 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3552 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3553 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3554 base_offset = base_offset / elem_size_bytes;
3555 bld.ds(op, address_offset, val0, val1, m,
3556 base_offset + start[0], base_offset + start[1]);
3557 return;
3558 }
3559
3560 for (unsigned i = 0; i < 2; i++) {
3561 if (count[i] == 0)
3562 continue;
3563
3564 unsigned elem_size_words = elem_size_bytes / 4;
3565 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3566 base_offset, start[i] * elem_size_bytes, align);
3567 }
3568 return;
3569 }
3570
3571 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3572 {
3573 unsigned align = 16;
3574 if (const_offset)
3575 align = std::min(align, 1u << (ffs(const_offset) - 1));
3576
3577 return align;
3578 }
3579
3580
3581 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3582 unsigned split_cnt = 0u, Temp dst = Temp())
3583 {
3584 Builder bld(ctx->program, ctx->block);
3585 unsigned dword_size = elem_size_bytes / 4;
3586
3587 if (!dst.id())
3588 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3589
3590 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3591 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3592 instr->definitions[0] = Definition(dst);
3593
3594 for (unsigned i = 0; i < cnt; ++i) {
3595 if (arr[i].id()) {
3596 assert(arr[i].size() == dword_size);
3597 allocated_vec[i] = arr[i];
3598 instr->operands[i] = Operand(arr[i]);
3599 } else {
3600 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3601 allocated_vec[i] = zero;
3602 instr->operands[i] = Operand(zero);
3603 }
3604 }
3605
3606 bld.insert(std::move(instr));
3607
3608 if (split_cnt)
3609 emit_split_vector(ctx, dst, split_cnt);
3610 else
3611 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3612
3613 return dst;
3614 }
3615
3616 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3617 {
3618 if (const_offset >= 4096) {
3619 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3620 const_offset %= 4096u;
3621
3622 if (!voffset.id())
3623 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3624 else if (unlikely(voffset.regClass() == s1))
3625 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3626 else if (likely(voffset.regClass() == v1))
3627 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3628 else
3629 unreachable("Unsupported register class of voffset");
3630 }
3631
3632 return const_offset;
3633 }
3634
3635 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3636 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3637 {
3638 assert(vdata.id());
3639 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3640 assert(vdata.size() >= 1 && vdata.size() <= 4);
3641
3642 Builder bld(ctx->program, ctx->block);
3643 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3644 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3645
3646 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3647 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3648 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3649 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3650 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3651
3652 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3653 }
3654
3655 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3656 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3657 bool allow_combining = true, bool reorder = true, bool slc = false)
3658 {
3659 Builder bld(ctx->program, ctx->block);
3660 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3661 assert(write_mask);
3662
3663 if (elem_size_bytes == 8) {
3664 elem_size_bytes = 4;
3665 write_mask = widen_mask(write_mask, 2);
3666 }
3667
3668 while (write_mask) {
3669 int start = 0;
3670 int count = 0;
3671 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3672 assert(count > 0);
3673 assert(start >= 0);
3674
3675 while (count > 0) {
3676 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3677 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3678
3679 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3680 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3681 sub_count = 2;
3682
3683 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3684 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3685
3686 count -= sub_count;
3687 start += sub_count;
3688 }
3689
3690 assert(count == 0);
3691 }
3692 }
3693
3694 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3695 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3696 {
3697 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3698 assert(size_dwords >= 1 && size_dwords <= 4);
3699
3700 Builder bld(ctx->program, ctx->block);
3701 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3702 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3703 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3704
3705 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3706 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3707 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3708 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3709 /* disable_wqm */ false, /* glc */ true,
3710 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3711
3712 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3713
3714 return vdata;
3715 }
3716
3717 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3718 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3719 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3720 {
3721 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3722 assert((num_components * elem_size_bytes / 4) == dst.size());
3723 assert(!!stride != allow_combining);
3724
3725 Builder bld(ctx->program, ctx->block);
3726 unsigned split_cnt = num_components;
3727
3728 if (elem_size_bytes == 8) {
3729 elem_size_bytes = 4;
3730 num_components *= 2;
3731 }
3732
3733 if (!stride)
3734 stride = elem_size_bytes;
3735
3736 unsigned load_size = 1;
3737 if (allow_combining) {
3738 if ((num_components % 4) == 0)
3739 load_size = 4;
3740 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3741 load_size = 3;
3742 else if ((num_components % 2) == 0)
3743 load_size = 2;
3744 }
3745
3746 unsigned num_loads = num_components / load_size;
3747 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3748
3749 for (unsigned i = 0; i < num_loads; ++i) {
3750 unsigned const_offset = i * stride * load_size + base_const_offset;
3751 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3752 }
3753
3754 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3755 }
3756
3757 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3758 {
3759 Builder bld(ctx->program, ctx->block);
3760 Temp offset = base_offset.first;
3761 unsigned const_offset = base_offset.second;
3762
3763 if (!nir_src_is_const(*off_src)) {
3764 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3765 Temp with_stride;
3766
3767 /* Calculate indirect offset with stride */
3768 if (likely(indirect_offset_arg.regClass() == v1))
3769 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
3770 else if (indirect_offset_arg.regClass() == s1)
3771 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3772 else
3773 unreachable("Unsupported register class of indirect offset");
3774
3775 /* Add to the supplied base offset */
3776 if (offset.id() == 0)
3777 offset = with_stride;
3778 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3779 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3780 else if (offset.size() == 1 && with_stride.size() == 1)
3781 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3782 else
3783 unreachable("Unsupported register class of indirect offset");
3784 } else {
3785 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3786 const_offset += const_offset_arg * stride;
3787 }
3788
3789 return std::make_pair(offset, const_offset);
3790 }
3791
3792 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3793 {
3794 Builder bld(ctx->program, ctx->block);
3795 Temp offset;
3796
3797 if (off1.first.id() && off2.first.id()) {
3798 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3799 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3800 else if (off1.first.size() == 1 && off2.first.size() == 1)
3801 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3802 else
3803 unreachable("Unsupported register class of indirect offset");
3804 } else {
3805 offset = off1.first.id() ? off1.first : off2.first;
3806 }
3807
3808 return std::make_pair(offset, off1.second + off2.second);
3809 }
3810
3811 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3812 {
3813 Builder bld(ctx->program, ctx->block);
3814 unsigned const_offset = offs.second * multiplier;
3815
3816 if (!offs.first.id())
3817 return std::make_pair(offs.first, const_offset);
3818
3819 Temp offset = unlikely(offs.first.regClass() == s1)
3820 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3821 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
3822
3823 return std::make_pair(offset, const_offset);
3824 }
3825
3826 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3827 {
3828 Builder bld(ctx->program, ctx->block);
3829
3830 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3831 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3832 /* component is in bytes */
3833 const_offset += nir_intrinsic_component(instr) * component_stride;
3834
3835 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3836 nir_src *off_src = nir_get_io_offset_src(instr);
3837 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3838 }
3839
3840 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3841 {
3842 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3843 }
3844
3845 Temp get_tess_rel_patch_id(isel_context *ctx)
3846 {
3847 Builder bld(ctx->program, ctx->block);
3848
3849 switch (ctx->shader->info.stage) {
3850 case MESA_SHADER_TESS_CTRL:
3851 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3852 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3853 case MESA_SHADER_TESS_EVAL:
3854 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3855 default:
3856 unreachable("Unsupported stage in get_tess_rel_patch_id");
3857 }
3858 }
3859
3860 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3861 {
3862 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3863 Builder bld(ctx->program, ctx->block);
3864
3865 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3866 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3867
3868 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3869
3870 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3871 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3872
3873 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3874 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3875 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3876
3877 return offset_mul(ctx, offs, 4u);
3878 }
3879
3880 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3881 {
3882 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3883 Builder bld(ctx->program, ctx->block);
3884
3885 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3886 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3887 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3888 uint32_t output_vertex_size = num_tcs_outputs * 16;
3889 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3890 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3891
3892 std::pair<Temp, unsigned> offs = instr
3893 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3894 : std::make_pair(Temp(), 0u);
3895
3896 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3897 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3898
3899 if (per_vertex) {
3900 assert(instr);
3901
3902 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3903 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3904
3905 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3906 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3907 } else {
3908 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3909 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3910 }
3911
3912 return offs;
3913 }
3914
3915 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3916 {
3917 Builder bld(ctx->program, ctx->block);
3918
3919 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3920 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3921
3922 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3923
3924 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3925 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3926 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3927
3928 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3929 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3930
3931 return offs;
3932 }
3933
3934 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3935 {
3936 Builder bld(ctx->program, ctx->block);
3937
3938 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3939 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3940 : ctx->args->options->key.tes.tcs_num_outputs;
3941
3942 unsigned output_vertex_size = num_tcs_outputs * 16;
3943 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3944 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3945 unsigned attr_stride = ctx->tcs_num_patches;
3946
3947 std::pair<Temp, unsigned> offs = instr
3948 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3949 : std::make_pair(Temp(), 0u);
3950
3951 if (const_base_offset)
3952 offs.second += const_base_offset * attr_stride;
3953
3954 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3955 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
3956 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3957
3958 return offs;
3959 }
3960
3961 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3962 {
3963 if (mask == 0)
3964 return false;
3965
3966 unsigned off = nir_intrinsic_base(instr) * 4u;
3967 nir_src *off_src = nir_get_io_offset_src(instr);
3968
3969 if (!nir_src_is_const(*off_src)) {
3970 *indirect = true;
3971 return false;
3972 }
3973
3974 *indirect = false;
3975 off += nir_src_as_uint(*off_src) * 16u;
3976
3977 while (mask) {
3978 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3979 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3980 return true;
3981 }
3982
3983 return false;
3984 }
3985
3986 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3987 {
3988 unsigned write_mask = nir_intrinsic_write_mask(instr);
3989 unsigned component = nir_intrinsic_component(instr);
3990 unsigned idx = nir_intrinsic_base(instr) + component;
3991
3992 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3993 if (off_instr->type != nir_instr_type_load_const)
3994 return false;
3995
3996 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3997 idx += nir_src_as_uint(instr->src[1]) * 4u;
3998
3999 if (instr->src[0].ssa->bit_size == 64)
4000 write_mask = widen_mask(write_mask, 2);
4001
4002 for (unsigned i = 0; i < 8; ++i) {
4003 if (write_mask & (1 << i)) {
4004 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4005 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
4006 }
4007 idx++;
4008 }
4009
4010 return true;
4011 }
4012
4013 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4014 {
4015 /* Only TCS per-vertex inputs are supported by this function.
4016 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4017 */
4018 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4019 return false;
4020
4021 nir_src *off_src = nir_get_io_offset_src(instr);
4022 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4023 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4024 bool can_use_temps = nir_src_is_const(*off_src) &&
4025 vertex_index_instr->type == nir_instr_type_intrinsic &&
4026 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4027
4028 if (!can_use_temps)
4029 return false;
4030
4031 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4032 Temp *src = &ctx->inputs.temps[idx];
4033 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4034
4035 return true;
4036 }
4037
4038 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4039 {
4040 Builder bld(ctx->program, ctx->block);
4041
4042 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4043 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4044 bool indirect_write;
4045 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4046 if (temp_only_input && !indirect_write)
4047 return;
4048 }
4049
4050 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4051 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4052 unsigned write_mask = nir_intrinsic_write_mask(instr);
4053 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4054
4055 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4056 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4057 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4058 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4059 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
4060 } else {
4061 Temp lds_base;
4062
4063 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4064 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4065 unsigned itemsize = ctx->stage == vertex_geometry_gs
4066 ? ctx->program->info->vs.es_info.esgs_itemsize
4067 : ctx->program->info->tes.es_info.esgs_itemsize;
4068 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4069 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4070 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4071 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4072 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4073 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4074 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4075 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4076 */
4077 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
4078 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4079 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
4080 } else {
4081 unreachable("Invalid LS or ES stage");
4082 }
4083
4084 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4085 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4086 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4087 }
4088 }
4089
4090 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4091 {
4092 if (per_vertex)
4093 return false;
4094
4095 unsigned off = nir_intrinsic_base(instr) * 4u;
4096 return off == ctx->tcs_tess_lvl_out_loc ||
4097 off == ctx->tcs_tess_lvl_in_loc;
4098
4099 }
4100
4101 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4102 {
4103 uint64_t mask = per_vertex
4104 ? ctx->program->info->tcs.tes_inputs_read
4105 : ctx->program->info->tcs.tes_patch_inputs_read;
4106
4107 bool indirect_write = false;
4108 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4109 return indirect_write || output_read_by_tes;
4110 }
4111
4112 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4113 {
4114 uint64_t mask = per_vertex
4115 ? ctx->shader->info.outputs_read
4116 : ctx->shader->info.patch_outputs_read;
4117
4118 bool indirect_write = false;
4119 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4120 return indirect_write || output_read;
4121 }
4122
4123 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4124 {
4125 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4126 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4127
4128 Builder bld(ctx->program, ctx->block);
4129
4130 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4131 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4132 unsigned write_mask = nir_intrinsic_write_mask(instr);
4133
4134 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4135 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4136 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4137
4138 if (write_to_vmem) {
4139 std::pair<Temp, unsigned> vmem_offs = per_vertex
4140 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4141 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4142
4143 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4144 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4145 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
4146 }
4147
4148 if (write_to_lds) {
4149 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4150 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4151 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4152 }
4153 }
4154
4155 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4156 {
4157 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4158 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4159
4160 Builder bld(ctx->program, ctx->block);
4161
4162 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4163 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4164 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4165 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4166
4167 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4168 }
4169
4170 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4171 {
4172 if (ctx->stage == vertex_vs ||
4173 ctx->stage == tess_eval_vs ||
4174 ctx->stage == fragment_fs ||
4175 ctx->stage == ngg_vertex_gs ||
4176 ctx->stage == ngg_tess_eval_gs ||
4177 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4178 bool stored_to_temps = store_output_to_temps(ctx, instr);
4179 if (!stored_to_temps) {
4180 fprintf(stderr, "Unimplemented output offset instruction:\n");
4181 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
4182 fprintf(stderr, "\n");
4183 abort();
4184 }
4185 } else if (ctx->stage == vertex_es ||
4186 ctx->stage == vertex_ls ||
4187 ctx->stage == tess_eval_es ||
4188 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4189 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4190 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4191 visit_store_ls_or_es_output(ctx, instr);
4192 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4193 visit_store_tcs_output(ctx, instr, false);
4194 } else {
4195 unreachable("Shader stage not implemented");
4196 }
4197 }
4198
4199 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4200 {
4201 visit_load_tcs_output(ctx, instr, false);
4202 }
4203
4204 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4205 {
4206 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4207 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4208
4209 Builder bld(ctx->program, ctx->block);
4210 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
4211 if (ctx->program->has_16bank_lds)
4212 interp_p1.instr->operands[0].setLateKill(true);
4213 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
4214 }
4215
4216 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4217 {
4218 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4219 for (unsigned i = 0; i < num_components; i++)
4220 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4221 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4222 assert(num_components == 4);
4223 Builder bld(ctx->program, ctx->block);
4224 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4225 }
4226
4227 for (Operand& op : vec->operands)
4228 op = op.isUndefined() ? Operand(0u) : op;
4229
4230 vec->definitions[0] = Definition(dst);
4231 ctx->block->instructions.emplace_back(std::move(vec));
4232 emit_split_vector(ctx, dst, num_components);
4233 return;
4234 }
4235
4236 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4237 {
4238 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4239 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4240 unsigned idx = nir_intrinsic_base(instr);
4241 unsigned component = nir_intrinsic_component(instr);
4242 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4243
4244 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4245 if (offset) {
4246 assert(offset->u32 == 0);
4247 } else {
4248 /* the lower 15bit of the prim_mask contain the offset into LDS
4249 * while the upper bits contain the number of prims */
4250 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4251 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4252 Builder bld(ctx->program, ctx->block);
4253 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4254 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4255 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4256 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4257 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4258 }
4259
4260 if (instr->dest.ssa.num_components == 1) {
4261 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4262 } else {
4263 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4264 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4265 {
4266 Temp tmp = {ctx->program->allocateId(), v1};
4267 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4268 vec->operands[i] = Operand(tmp);
4269 }
4270 vec->definitions[0] = Definition(dst);
4271 ctx->block->instructions.emplace_back(std::move(vec));
4272 }
4273 }
4274
4275 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4276 unsigned offset, unsigned stride, unsigned channels)
4277 {
4278 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4279 if (vtx_info->chan_byte_size != 4 && channels == 3)
4280 return false;
4281 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4282 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4283 }
4284
4285 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4286 unsigned offset, unsigned stride, unsigned *channels)
4287 {
4288 if (!vtx_info->chan_byte_size) {
4289 *channels = vtx_info->num_channels;
4290 return vtx_info->chan_format;
4291 }
4292
4293 unsigned num_channels = *channels;
4294 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4295 unsigned new_channels = num_channels + 1;
4296 /* first, assume more loads is worse and try using a larger data format */
4297 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4298 new_channels++;
4299 /* don't make the attribute potentially out-of-bounds */
4300 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4301 new_channels = 5;
4302 }
4303
4304 if (new_channels == 5) {
4305 /* then try decreasing load size (at the cost of more loads) */
4306 new_channels = *channels;
4307 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4308 new_channels--;
4309 }
4310
4311 if (new_channels < *channels)
4312 *channels = new_channels;
4313 num_channels = new_channels;
4314 }
4315
4316 switch (vtx_info->chan_format) {
4317 case V_008F0C_BUF_DATA_FORMAT_8:
4318 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4319 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4320 case V_008F0C_BUF_DATA_FORMAT_16:
4321 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4322 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4323 case V_008F0C_BUF_DATA_FORMAT_32:
4324 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4325 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4326 }
4327 unreachable("shouldn't reach here");
4328 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4329 }
4330
4331 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4332 * so we may need to fix it up. */
4333 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4334 {
4335 Builder bld(ctx->program, ctx->block);
4336
4337 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4338 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4339
4340 /* For the integer-like cases, do a natural sign extension.
4341 *
4342 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4343 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4344 * exponent.
4345 */
4346 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4347 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4348
4349 /* Convert back to the right type. */
4350 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4351 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4352 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4353 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4354 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4355 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4356 }
4357
4358 return alpha;
4359 }
4360
4361 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4362 {
4363 Builder bld(ctx->program, ctx->block);
4364 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4365 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4366
4367 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4368 if (off_instr->type != nir_instr_type_load_const) {
4369 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4370 nir_print_instr(off_instr, stderr);
4371 fprintf(stderr, "\n");
4372 }
4373 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4374
4375 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4376
4377 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4378 unsigned component = nir_intrinsic_component(instr);
4379 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4380 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4381 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4382 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4383
4384 unsigned dfmt = attrib_format & 0xf;
4385 unsigned nfmt = (attrib_format >> 4) & 0x7;
4386 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4387
4388 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4389 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4390 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4391 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4392 if (post_shuffle)
4393 num_channels = MAX2(num_channels, 3);
4394
4395 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4396 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4397
4398 Temp index;
4399 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4400 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4401 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4402 if (divisor) {
4403 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4404 if (divisor != 1) {
4405 Temp divided = bld.tmp(v1);
4406 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4407 index = bld.vadd32(bld.def(v1), start_instance, divided);
4408 } else {
4409 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4410 }
4411 } else {
4412 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4413 }
4414 } else {
4415 index = bld.vadd32(bld.def(v1),
4416 get_arg(ctx, ctx->args->ac.base_vertex),
4417 get_arg(ctx, ctx->args->ac.vertex_id));
4418 }
4419
4420 Temp channels[num_channels];
4421 unsigned channel_start = 0;
4422 bool direct_fetch = false;
4423
4424 /* skip unused channels at the start */
4425 if (vtx_info->chan_byte_size && !post_shuffle) {
4426 channel_start = ffs(mask) - 1;
4427 for (unsigned i = 0; i < channel_start; i++)
4428 channels[i] = Temp(0, s1);
4429 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4430 num_channels = 3 - (ffs(mask) - 1);
4431 }
4432
4433 /* load channels */
4434 while (channel_start < num_channels) {
4435 unsigned fetch_size = num_channels - channel_start;
4436 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4437 bool expanded = false;
4438
4439 /* use MUBUF when possible to avoid possible alignment issues */
4440 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4441 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4442 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4443 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4444 vtx_info->chan_byte_size == 4;
4445 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4446 if (!use_mubuf) {
4447 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4448 } else {
4449 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4450 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4451 fetch_size = 4;
4452 expanded = true;
4453 }
4454 }
4455
4456 Temp fetch_index = index;
4457 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4458 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4459 fetch_offset = fetch_offset % attrib_stride;
4460 }
4461
4462 Operand soffset(0u);
4463 if (fetch_offset >= 4096) {
4464 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4465 fetch_offset %= 4096;
4466 }
4467
4468 aco_opcode opcode;
4469 switch (fetch_size) {
4470 case 1:
4471 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4472 break;
4473 case 2:
4474 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4475 break;
4476 case 3:
4477 assert(ctx->options->chip_class >= GFX7 ||
4478 (!use_mubuf && ctx->options->chip_class == GFX6));
4479 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4480 break;
4481 case 4:
4482 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4483 break;
4484 default:
4485 unreachable("Unimplemented load_input vector size");
4486 }
4487
4488 Temp fetch_dst;
4489 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4490 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4491 num_channels <= 3)) {
4492 direct_fetch = true;
4493 fetch_dst = dst;
4494 } else {
4495 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4496 }
4497
4498 if (use_mubuf) {
4499 Instruction *mubuf = bld.mubuf(opcode,
4500 Definition(fetch_dst), list, fetch_index, soffset,
4501 fetch_offset, false, true).instr;
4502 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4503 } else {
4504 Instruction *mtbuf = bld.mtbuf(opcode,
4505 Definition(fetch_dst), list, fetch_index, soffset,
4506 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4507 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4508 }
4509
4510 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4511
4512 if (fetch_size == 1) {
4513 channels[channel_start] = fetch_dst;
4514 } else {
4515 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4516 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4517 }
4518
4519 channel_start += fetch_size;
4520 }
4521
4522 if (!direct_fetch) {
4523 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4524 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4525
4526 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4527 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4528 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4529
4530 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4531 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4532 unsigned num_temp = 0;
4533 for (unsigned i = 0; i < dst.size(); i++) {
4534 unsigned idx = i + component;
4535 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4536 Temp channel = channels[swizzle[idx]];
4537 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4538 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4539 vec->operands[i] = Operand(channel);
4540
4541 num_temp++;
4542 elems[i] = channel;
4543 } else if (is_float && idx == 3) {
4544 vec->operands[i] = Operand(0x3f800000u);
4545 } else if (!is_float && idx == 3) {
4546 vec->operands[i] = Operand(1u);
4547 } else {
4548 vec->operands[i] = Operand(0u);
4549 }
4550 }
4551 vec->definitions[0] = Definition(dst);
4552 ctx->block->instructions.emplace_back(std::move(vec));
4553 emit_split_vector(ctx, dst, dst.size());
4554
4555 if (num_temp == dst.size())
4556 ctx->allocated_vec.emplace(dst.id(), elems);
4557 }
4558 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4559 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4560 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4561 if (off_instr->type != nir_instr_type_load_const ||
4562 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4563 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4564 nir_print_instr(off_instr, stderr);
4565 fprintf(stderr, "\n");
4566 }
4567
4568 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4569 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4570 if (offset) {
4571 assert(offset->u32 == 0);
4572 } else {
4573 /* the lower 15bit of the prim_mask contain the offset into LDS
4574 * while the upper bits contain the number of prims */
4575 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4576 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4577 Builder bld(ctx->program, ctx->block);
4578 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4579 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4580 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4581 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4582 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4583 }
4584
4585 unsigned idx = nir_intrinsic_base(instr);
4586 unsigned component = nir_intrinsic_component(instr);
4587 unsigned vertex_id = 2; /* P0 */
4588
4589 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4590 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4591 switch (src0->u32) {
4592 case 0:
4593 vertex_id = 2; /* P0 */
4594 break;
4595 case 1:
4596 vertex_id = 0; /* P10 */
4597 break;
4598 case 2:
4599 vertex_id = 1; /* P20 */
4600 break;
4601 default:
4602 unreachable("invalid vertex index");
4603 }
4604 }
4605
4606 if (dst.size() == 1) {
4607 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4608 } else {
4609 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4610 for (unsigned i = 0; i < dst.size(); i++)
4611 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4612 vec->definitions[0] = Definition(dst);
4613 bld.insert(std::move(vec));
4614 }
4615
4616 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4617 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4618 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4619 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4620 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4621
4622 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4623 } else {
4624 unreachable("Shader stage not implemented");
4625 }
4626 }
4627
4628 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4629 {
4630 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4631
4632 Builder bld(ctx->program, ctx->block);
4633 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4634 Temp vertex_offset;
4635
4636 if (!nir_src_is_const(*vertex_src)) {
4637 /* better code could be created, but this case probably doesn't happen
4638 * much in practice */
4639 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4640 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4641 Temp elem;
4642
4643 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4644 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4645 if (i % 2u)
4646 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4647 } else {
4648 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4649 }
4650
4651 if (vertex_offset.id()) {
4652 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4653 Operand(i), indirect_vertex);
4654 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4655 } else {
4656 vertex_offset = elem;
4657 }
4658 }
4659
4660 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4661 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4662 } else {
4663 unsigned vertex = nir_src_as_uint(*vertex_src);
4664 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4665 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4666 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4667 Operand((vertex % 2u) * 16u), Operand(16u));
4668 else
4669 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4670 }
4671
4672 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4673 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4674 return offset_mul(ctx, offs, 4u);
4675 }
4676
4677 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4678 {
4679 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4680
4681 Builder bld(ctx->program, ctx->block);
4682 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4683 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4684
4685 if (ctx->stage == geometry_gs) {
4686 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4687 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4688 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4689 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4690 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4691 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4692 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4693 } else {
4694 unreachable("Unsupported GS stage.");
4695 }
4696 }
4697
4698 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4699 {
4700 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4701
4702 Builder bld(ctx->program, ctx->block);
4703 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4704
4705 if (load_input_from_temps(ctx, instr, dst))
4706 return;
4707
4708 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4709 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4710 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4711
4712 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4713 }
4714
4715 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4716 {
4717 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4718
4719 Builder bld(ctx->program, ctx->block);
4720
4721 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4722 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4723 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4724
4725 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4726 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4727
4728 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4729 }
4730
4731 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4732 {
4733 switch (ctx->shader->info.stage) {
4734 case MESA_SHADER_GEOMETRY:
4735 visit_load_gs_per_vertex_input(ctx, instr);
4736 break;
4737 case MESA_SHADER_TESS_CTRL:
4738 visit_load_tcs_per_vertex_input(ctx, instr);
4739 break;
4740 case MESA_SHADER_TESS_EVAL:
4741 visit_load_tes_per_vertex_input(ctx, instr);
4742 break;
4743 default:
4744 unreachable("Unimplemented shader stage");
4745 }
4746 }
4747
4748 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4749 {
4750 visit_load_tcs_output(ctx, instr, true);
4751 }
4752
4753 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4754 {
4755 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4756 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4757
4758 visit_store_tcs_output(ctx, instr, true);
4759 }
4760
4761 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4762 {
4763 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4764
4765 Builder bld(ctx->program, ctx->block);
4766 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4767
4768 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4769 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4770 Operand tes_w(0u);
4771
4772 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4773 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4774 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4775 tes_w = Operand(tmp);
4776 }
4777
4778 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4779 emit_split_vector(ctx, tess_coord, 3);
4780 }
4781
4782 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4783 {
4784 if (ctx->program->info->need_indirect_descriptor_sets) {
4785 Builder bld(ctx->program, ctx->block);
4786 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4787 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4788 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4789 }
4790
4791 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4792 }
4793
4794
4795 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4796 {
4797 Builder bld(ctx->program, ctx->block);
4798 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4799 if (!ctx->divergent_vals[instr->dest.ssa.index])
4800 index = bld.as_uniform(index);
4801 unsigned desc_set = nir_intrinsic_desc_set(instr);
4802 unsigned binding = nir_intrinsic_binding(instr);
4803
4804 Temp desc_ptr;
4805 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4806 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4807 unsigned offset = layout->binding[binding].offset;
4808 unsigned stride;
4809 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4810 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4811 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4812 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4813 offset = pipeline_layout->push_constant_size + 16 * idx;
4814 stride = 16;
4815 } else {
4816 desc_ptr = load_desc_ptr(ctx, desc_set);
4817 stride = layout->binding[binding].size;
4818 }
4819
4820 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4821 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4822 if (stride != 1) {
4823 if (nir_const_index) {
4824 const_index = const_index * stride;
4825 } else if (index.type() == RegType::vgpr) {
4826 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4827 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4828 } else {
4829 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4830 }
4831 }
4832 if (offset) {
4833 if (nir_const_index) {
4834 const_index = const_index + offset;
4835 } else if (index.type() == RegType::vgpr) {
4836 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4837 } else {
4838 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4839 }
4840 }
4841
4842 if (nir_const_index && const_index == 0) {
4843 index = desc_ptr;
4844 } else if (index.type() == RegType::vgpr) {
4845 index = bld.vadd32(bld.def(v1),
4846 nir_const_index ? Operand(const_index) : Operand(index),
4847 Operand(desc_ptr));
4848 } else {
4849 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4850 nir_const_index ? Operand(const_index) : Operand(index),
4851 Operand(desc_ptr));
4852 }
4853
4854 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4855 }
4856
4857 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4858 Temp dst, Temp rsrc, Temp offset, int byte_align,
4859 bool glc=false, bool readonly=true)
4860 {
4861 Builder bld(ctx->program, ctx->block);
4862 bool dlc = glc && ctx->options->chip_class >= GFX10;
4863 unsigned num_bytes = num_components * component_size;
4864
4865 aco_opcode op;
4866 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4867 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4868 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4869 unsigned const_offset = 0;
4870
4871 /* for small bit sizes add buffer for unaligned loads */
4872 if (byte_align) {
4873 if (num_bytes > 2)
4874 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4875 else
4876 byte_align = 0;
4877 }
4878
4879 Temp lower = Temp();
4880 if (num_bytes > 16) {
4881 assert(num_components == 3 || num_components == 4);
4882 op = aco_opcode::buffer_load_dwordx4;
4883 lower = bld.tmp(v4);
4884 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4885 mubuf->definitions[0] = Definition(lower);
4886 mubuf->operands[0] = Operand(rsrc);
4887 mubuf->operands[1] = vaddr;
4888 mubuf->operands[2] = soffset;
4889 mubuf->offen = (offset.type() == RegType::vgpr);
4890 mubuf->glc = glc;
4891 mubuf->dlc = dlc;
4892 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4893 mubuf->can_reorder = readonly;
4894 bld.insert(std::move(mubuf));
4895 emit_split_vector(ctx, lower, 2);
4896 num_bytes -= 16;
4897 const_offset = 16;
4898 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4899 /* GFX6 doesn't support loading vec3, expand to vec4. */
4900 num_bytes = 16;
4901 }
4902
4903 switch (num_bytes) {
4904 case 1:
4905 op = aco_opcode::buffer_load_ubyte;
4906 break;
4907 case 2:
4908 op = aco_opcode::buffer_load_ushort;
4909 break;
4910 case 3:
4911 case 4:
4912 op = aco_opcode::buffer_load_dword;
4913 break;
4914 case 5:
4915 case 6:
4916 case 7:
4917 case 8:
4918 op = aco_opcode::buffer_load_dwordx2;
4919 break;
4920 case 10:
4921 case 12:
4922 assert(ctx->options->chip_class > GFX6);
4923 op = aco_opcode::buffer_load_dwordx3;
4924 break;
4925 case 16:
4926 op = aco_opcode::buffer_load_dwordx4;
4927 break;
4928 default:
4929 unreachable("Load SSBO not implemented for this size.");
4930 }
4931 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4932 mubuf->operands[0] = Operand(rsrc);
4933 mubuf->operands[1] = vaddr;
4934 mubuf->operands[2] = soffset;
4935 mubuf->offen = (offset.type() == RegType::vgpr);
4936 mubuf->glc = glc;
4937 mubuf->dlc = dlc;
4938 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4939 mubuf->can_reorder = readonly;
4940 mubuf->offset = const_offset;
4941 aco_ptr<Instruction> instr = std::move(mubuf);
4942
4943 if (component_size < 4) {
4944 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4945 instr->definitions[0] = Definition(vec);
4946 bld.insert(std::move(instr));
4947
4948 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4949 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4950 Temp tmp[3] = {vec, vec, vec};
4951
4952 if (vec.size() == 3) {
4953 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4954 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4955 } else if (vec.size() == 2) {
4956 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4957 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4958 }
4959 for (unsigned i = 0; i < dst.size(); i++)
4960 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4961
4962 vec = tmp[0];
4963 if (dst.size() == 2)
4964 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4965
4966 byte_align = 0;
4967 }
4968
4969 if (dst.type() == RegType::vgpr && num_components == 1) {
4970 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4971 } else {
4972 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4973 }
4974
4975 return;
4976
4977 } else if (dst.size() > 4) {
4978 assert(lower != Temp());
4979 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4980 instr->definitions[0] = Definition(upper);
4981 bld.insert(std::move(instr));
4982 if (dst.size() == 8)
4983 emit_split_vector(ctx, upper, 2);
4984 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4985 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4986 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4987 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4988 if (dst.size() == 8)
4989 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4990 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4991 Temp vec = bld.tmp(v4);
4992 instr->definitions[0] = Definition(vec);
4993 bld.insert(std::move(instr));
4994 emit_split_vector(ctx, vec, 4);
4995
4996 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4997 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4998 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4999 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5000 }
5001
5002 if (dst.type() == RegType::sgpr) {
5003 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5004 instr->definitions[0] = Definition(vec);
5005 bld.insert(std::move(instr));
5006 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5007 } else {
5008 instr->definitions[0] = Definition(dst);
5009 bld.insert(std::move(instr));
5010 emit_split_vector(ctx, dst, num_components);
5011 }
5012 } else {
5013 /* for small bit sizes add buffer for unaligned loads */
5014 if (byte_align)
5015 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
5016
5017 switch (num_bytes) {
5018 case 1:
5019 case 2:
5020 case 3:
5021 case 4:
5022 op = aco_opcode::s_buffer_load_dword;
5023 break;
5024 case 5:
5025 case 6:
5026 case 7:
5027 case 8:
5028 op = aco_opcode::s_buffer_load_dwordx2;
5029 break;
5030 case 10:
5031 case 12:
5032 case 16:
5033 op = aco_opcode::s_buffer_load_dwordx4;
5034 break;
5035 case 24:
5036 case 32:
5037 op = aco_opcode::s_buffer_load_dwordx8;
5038 break;
5039 default:
5040 unreachable("Load SSBO not implemented for this size.");
5041 }
5042 offset = bld.as_uniform(offset);
5043 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5044 load->operands[0] = Operand(rsrc);
5045 load->operands[1] = Operand(offset);
5046 assert(load->operands[1].getTemp().type() == RegType::sgpr);
5047 load->definitions[0] = Definition(dst);
5048 load->glc = glc;
5049 load->dlc = dlc;
5050 load->barrier = readonly ? barrier_none : barrier_buffer;
5051 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
5052 assert(ctx->options->chip_class >= GFX8 || !glc);
5053
5054 /* adjust misaligned small bit size loads */
5055 if (byte_align) {
5056 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
5057 load->definitions[0] = Definition(vec);
5058 bld.insert(std::move(load));
5059 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
5060 byte_align_scalar(ctx, vec, byte_offset, dst);
5061
5062 /* trim vector */
5063 } else if (dst.size() == 3) {
5064 Temp vec = bld.tmp(s4);
5065 load->definitions[0] = Definition(vec);
5066 bld.insert(std::move(load));
5067 emit_split_vector(ctx, vec, 4);
5068
5069 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5070 emit_extract_vector(ctx, vec, 0, s1),
5071 emit_extract_vector(ctx, vec, 1, s1),
5072 emit_extract_vector(ctx, vec, 2, s1));
5073 } else if (dst.size() == 6) {
5074 Temp vec = bld.tmp(s8);
5075 load->definitions[0] = Definition(vec);
5076 bld.insert(std::move(load));
5077 emit_split_vector(ctx, vec, 4);
5078
5079 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5080 emit_extract_vector(ctx, vec, 0, s2),
5081 emit_extract_vector(ctx, vec, 1, s2),
5082 emit_extract_vector(ctx, vec, 2, s2));
5083 } else {
5084 bld.insert(std::move(load));
5085 }
5086 emit_split_vector(ctx, dst, num_components);
5087 }
5088 }
5089
5090 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5091 {
5092 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5093 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5094
5095 Builder bld(ctx->program, ctx->block);
5096
5097 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5098 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5099 unsigned binding = nir_intrinsic_binding(idx_instr);
5100 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5101
5102 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5103 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5104 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5105 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5106 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5107 if (ctx->options->chip_class >= GFX10) {
5108 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5109 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5110 S_008F0C_RESOURCE_LEVEL(1);
5111 } else {
5112 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5113 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5114 }
5115 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5116 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5117 Operand(0xFFFFFFFFu),
5118 Operand(desc_type));
5119 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5120 rsrc, upper_dwords);
5121 } else {
5122 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5123 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5124 }
5125 unsigned size = instr->dest.ssa.bit_size / 8;
5126 int byte_align = 0;
5127 if (size < 4) {
5128 unsigned align_mul = nir_intrinsic_align_mul(instr);
5129 unsigned align_offset = nir_intrinsic_align_offset(instr);
5130 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5131 }
5132 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
5133 }
5134
5135 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5136 {
5137 Builder bld(ctx->program, ctx->block);
5138 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5139 unsigned offset = nir_intrinsic_base(instr);
5140 unsigned count = instr->dest.ssa.num_components;
5141 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5142
5143 if (index_cv && instr->dest.ssa.bit_size == 32) {
5144 unsigned start = (offset + index_cv->u32) / 4u;
5145 start -= ctx->args->ac.base_inline_push_consts;
5146 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5147 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5148 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5149 for (unsigned i = 0; i < count; ++i) {
5150 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5151 vec->operands[i] = Operand{elems[i]};
5152 }
5153 vec->definitions[0] = Definition(dst);
5154 ctx->block->instructions.emplace_back(std::move(vec));
5155 ctx->allocated_vec.emplace(dst.id(), elems);
5156 return;
5157 }
5158 }
5159
5160 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5161 if (offset != 0) // TODO check if index != 0 as well
5162 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5163 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5164 Temp vec = dst;
5165 bool trim = false;
5166 bool aligned = true;
5167
5168 if (instr->dest.ssa.bit_size == 8) {
5169 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5170 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5171 if (!aligned)
5172 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5173 } else if (instr->dest.ssa.bit_size == 16) {
5174 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5175 if (!aligned)
5176 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5177 }
5178
5179 aco_opcode op;
5180
5181 switch (vec.size()) {
5182 case 1:
5183 op = aco_opcode::s_load_dword;
5184 break;
5185 case 2:
5186 op = aco_opcode::s_load_dwordx2;
5187 break;
5188 case 3:
5189 vec = bld.tmp(s4);
5190 trim = true;
5191 case 4:
5192 op = aco_opcode::s_load_dwordx4;
5193 break;
5194 case 6:
5195 vec = bld.tmp(s8);
5196 trim = true;
5197 case 8:
5198 op = aco_opcode::s_load_dwordx8;
5199 break;
5200 default:
5201 unreachable("unimplemented or forbidden load_push_constant.");
5202 }
5203
5204 bld.smem(op, Definition(vec), ptr, index);
5205
5206 if (!aligned) {
5207 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5208 byte_align_scalar(ctx, vec, byte_offset, dst);
5209 return;
5210 }
5211
5212 if (trim) {
5213 emit_split_vector(ctx, vec, 4);
5214 RegClass rc = dst.size() == 3 ? s1 : s2;
5215 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5216 emit_extract_vector(ctx, vec, 0, rc),
5217 emit_extract_vector(ctx, vec, 1, rc),
5218 emit_extract_vector(ctx, vec, 2, rc));
5219
5220 }
5221 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5222 }
5223
5224 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5225 {
5226 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5227
5228 Builder bld(ctx->program, ctx->block);
5229
5230 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5231 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5232 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5233 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5234 if (ctx->options->chip_class >= GFX10) {
5235 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5236 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5237 S_008F0C_RESOURCE_LEVEL(1);
5238 } else {
5239 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5240 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5241 }
5242
5243 unsigned base = nir_intrinsic_base(instr);
5244 unsigned range = nir_intrinsic_range(instr);
5245
5246 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5247 if (base && offset.type() == RegType::sgpr)
5248 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5249 else if (base && offset.type() == RegType::vgpr)
5250 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5251
5252 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5253 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5254 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5255 Operand(desc_type));
5256 unsigned size = instr->dest.ssa.bit_size / 8;
5257 // TODO: get alignment information for subdword constants
5258 unsigned byte_align = size < 4 ? -1 : 0;
5259 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
5260 }
5261
5262 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5263 {
5264 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5265 ctx->cf_info.exec_potentially_empty_discard = true;
5266
5267 ctx->program->needs_exact = true;
5268
5269 // TODO: optimize uniform conditions
5270 Builder bld(ctx->program, ctx->block);
5271 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5272 assert(src.regClass() == bld.lm);
5273 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5274 bld.pseudo(aco_opcode::p_discard_if, src);
5275 ctx->block->kind |= block_kind_uses_discard_if;
5276 return;
5277 }
5278
5279 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5280 {
5281 Builder bld(ctx->program, ctx->block);
5282
5283 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5284 ctx->cf_info.exec_potentially_empty_discard = true;
5285
5286 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5287 ctx->cf_info.parent_loop.has_divergent_continue;
5288
5289 if (ctx->block->loop_nest_depth &&
5290 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5291 /* we handle discards the same way as jump instructions */
5292 append_logical_end(ctx->block);
5293
5294 /* in loops, discard behaves like break */
5295 Block *linear_target = ctx->cf_info.parent_loop.exit;
5296 ctx->block->kind |= block_kind_discard;
5297
5298 if (!divergent) {
5299 /* uniform discard - loop ends here */
5300 assert(nir_instr_is_last(&instr->instr));
5301 ctx->block->kind |= block_kind_uniform;
5302 ctx->cf_info.has_branch = true;
5303 bld.branch(aco_opcode::p_branch);
5304 add_linear_edge(ctx->block->index, linear_target);
5305 return;
5306 }
5307
5308 /* we add a break right behind the discard() instructions */
5309 ctx->block->kind |= block_kind_break;
5310 unsigned idx = ctx->block->index;
5311
5312 ctx->cf_info.parent_loop.has_divergent_branch = true;
5313 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5314
5315 /* remove critical edges from linear CFG */
5316 bld.branch(aco_opcode::p_branch);
5317 Block* break_block = ctx->program->create_and_insert_block();
5318 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5319 break_block->kind |= block_kind_uniform;
5320 add_linear_edge(idx, break_block);
5321 add_linear_edge(break_block->index, linear_target);
5322 bld.reset(break_block);
5323 bld.branch(aco_opcode::p_branch);
5324
5325 Block* continue_block = ctx->program->create_and_insert_block();
5326 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5327 add_linear_edge(idx, continue_block);
5328 append_logical_start(continue_block);
5329 ctx->block = continue_block;
5330
5331 return;
5332 }
5333
5334 /* it can currently happen that NIR doesn't remove the unreachable code */
5335 if (!nir_instr_is_last(&instr->instr)) {
5336 ctx->program->needs_exact = true;
5337 /* save exec somewhere temporarily so that it doesn't get
5338 * overwritten before the discard from outer exec masks */
5339 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5340 bld.pseudo(aco_opcode::p_discard_if, cond);
5341 ctx->block->kind |= block_kind_uses_discard_if;
5342 return;
5343 }
5344
5345 /* This condition is incorrect for uniformly branched discards in a loop
5346 * predicated by a divergent condition, but the above code catches that case
5347 * and the discard would end up turning into a discard_if.
5348 * For example:
5349 * if (divergent) {
5350 * while (...) {
5351 * if (uniform) {
5352 * discard;
5353 * }
5354 * }
5355 * }
5356 */
5357 if (!ctx->cf_info.parent_if.is_divergent) {
5358 /* program just ends here */
5359 ctx->block->kind |= block_kind_uniform;
5360 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5361 0 /* enabled mask */, 9 /* dest */,
5362 false /* compressed */, true/* done */, true /* valid mask */);
5363 bld.sopp(aco_opcode::s_endpgm);
5364 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5365 } else {
5366 ctx->block->kind |= block_kind_discard;
5367 /* branch and linear edge is added by visit_if() */
5368 }
5369 }
5370
5371 enum aco_descriptor_type {
5372 ACO_DESC_IMAGE,
5373 ACO_DESC_FMASK,
5374 ACO_DESC_SAMPLER,
5375 ACO_DESC_BUFFER,
5376 ACO_DESC_PLANE_0,
5377 ACO_DESC_PLANE_1,
5378 ACO_DESC_PLANE_2,
5379 };
5380
5381 static bool
5382 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5383 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5384 return false;
5385 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5386 return dim == ac_image_cube ||
5387 dim == ac_image_1darray ||
5388 dim == ac_image_2darray ||
5389 dim == ac_image_2darraymsaa;
5390 }
5391
5392 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5393 enum aco_descriptor_type desc_type,
5394 const nir_tex_instr *tex_instr, bool image, bool write)
5395 {
5396 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5397 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5398 if (it != ctx->tex_desc.end())
5399 return it->second;
5400 */
5401 Temp index = Temp();
5402 bool index_set = false;
5403 unsigned constant_index = 0;
5404 unsigned descriptor_set;
5405 unsigned base_index;
5406 Builder bld(ctx->program, ctx->block);
5407
5408 if (!deref_instr) {
5409 assert(tex_instr && !image);
5410 descriptor_set = 0;
5411 base_index = tex_instr->sampler_index;
5412 } else {
5413 while(deref_instr->deref_type != nir_deref_type_var) {
5414 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5415 if (!array_size)
5416 array_size = 1;
5417
5418 assert(deref_instr->deref_type == nir_deref_type_array);
5419 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5420 if (const_value) {
5421 constant_index += array_size * const_value->u32;
5422 } else {
5423 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5424 if (indirect.type() == RegType::vgpr)
5425 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5426
5427 if (array_size != 1)
5428 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5429
5430 if (!index_set) {
5431 index = indirect;
5432 index_set = true;
5433 } else {
5434 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5435 }
5436 }
5437
5438 deref_instr = nir_src_as_deref(deref_instr->parent);
5439 }
5440 descriptor_set = deref_instr->var->data.descriptor_set;
5441 base_index = deref_instr->var->data.binding;
5442 }
5443
5444 Temp list = load_desc_ptr(ctx, descriptor_set);
5445 list = convert_pointer_to_64_bit(ctx, list);
5446
5447 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5448 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5449 unsigned offset = binding->offset;
5450 unsigned stride = binding->size;
5451 aco_opcode opcode;
5452 RegClass type;
5453
5454 assert(base_index < layout->binding_count);
5455
5456 switch (desc_type) {
5457 case ACO_DESC_IMAGE:
5458 type = s8;
5459 opcode = aco_opcode::s_load_dwordx8;
5460 break;
5461 case ACO_DESC_FMASK:
5462 type = s8;
5463 opcode = aco_opcode::s_load_dwordx8;
5464 offset += 32;
5465 break;
5466 case ACO_DESC_SAMPLER:
5467 type = s4;
5468 opcode = aco_opcode::s_load_dwordx4;
5469 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5470 offset += radv_combined_image_descriptor_sampler_offset(binding);
5471 break;
5472 case ACO_DESC_BUFFER:
5473 type = s4;
5474 opcode = aco_opcode::s_load_dwordx4;
5475 break;
5476 case ACO_DESC_PLANE_0:
5477 case ACO_DESC_PLANE_1:
5478 type = s8;
5479 opcode = aco_opcode::s_load_dwordx8;
5480 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5481 break;
5482 case ACO_DESC_PLANE_2:
5483 type = s4;
5484 opcode = aco_opcode::s_load_dwordx4;
5485 offset += 64;
5486 break;
5487 default:
5488 unreachable("invalid desc_type\n");
5489 }
5490
5491 offset += constant_index * stride;
5492
5493 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5494 (!index_set || binding->immutable_samplers_equal)) {
5495 if (binding->immutable_samplers_equal)
5496 constant_index = 0;
5497
5498 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5499 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5500 Operand(samplers[constant_index * 4 + 0]),
5501 Operand(samplers[constant_index * 4 + 1]),
5502 Operand(samplers[constant_index * 4 + 2]),
5503 Operand(samplers[constant_index * 4 + 3]));
5504 }
5505
5506 Operand off;
5507 if (!index_set) {
5508 off = bld.copy(bld.def(s1), Operand(offset));
5509 } else {
5510 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5511 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5512 }
5513
5514 Temp res = bld.smem(opcode, bld.def(type), list, off);
5515
5516 if (desc_type == ACO_DESC_PLANE_2) {
5517 Temp components[8];
5518 for (unsigned i = 0; i < 8; i++)
5519 components[i] = bld.tmp(s1);
5520 bld.pseudo(aco_opcode::p_split_vector,
5521 Definition(components[0]),
5522 Definition(components[1]),
5523 Definition(components[2]),
5524 Definition(components[3]),
5525 res);
5526
5527 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5528 bld.pseudo(aco_opcode::p_split_vector,
5529 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5530 Definition(components[4]),
5531 Definition(components[5]),
5532 Definition(components[6]),
5533 Definition(components[7]),
5534 desc2);
5535
5536 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5537 components[0], components[1], components[2], components[3],
5538 components[4], components[5], components[6], components[7]);
5539 }
5540
5541 return res;
5542 }
5543
5544 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5545 {
5546 switch (dim) {
5547 case GLSL_SAMPLER_DIM_BUF:
5548 return 1;
5549 case GLSL_SAMPLER_DIM_1D:
5550 return array ? 2 : 1;
5551 case GLSL_SAMPLER_DIM_2D:
5552 return array ? 3 : 2;
5553 case GLSL_SAMPLER_DIM_MS:
5554 return array ? 4 : 3;
5555 case GLSL_SAMPLER_DIM_3D:
5556 case GLSL_SAMPLER_DIM_CUBE:
5557 return 3;
5558 case GLSL_SAMPLER_DIM_RECT:
5559 case GLSL_SAMPLER_DIM_SUBPASS:
5560 return 2;
5561 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5562 return 3;
5563 default:
5564 break;
5565 }
5566 return 0;
5567 }
5568
5569
5570 /* Adjust the sample index according to FMASK.
5571 *
5572 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5573 * which is the identity mapping. Each nibble says which physical sample
5574 * should be fetched to get that sample.
5575 *
5576 * For example, 0x11111100 means there are only 2 samples stored and
5577 * the second sample covers 3/4 of the pixel. When reading samples 0
5578 * and 1, return physical sample 0 (determined by the first two 0s
5579 * in FMASK), otherwise return physical sample 1.
5580 *
5581 * The sample index should be adjusted as follows:
5582 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5583 */
5584 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5585 {
5586 Builder bld(ctx->program, ctx->block);
5587 Temp fmask = bld.tmp(v1);
5588 unsigned dim = ctx->options->chip_class >= GFX10
5589 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5590 : 0;
5591
5592 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5593 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5594 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5595 load->operands[0] = Operand(fmask_desc_ptr);
5596 load->operands[1] = Operand(s4); /* no sampler */
5597 load->operands[2] = Operand(coord);
5598 load->definitions[0] = Definition(fmask);
5599 load->glc = false;
5600 load->dlc = false;
5601 load->dmask = 0x1;
5602 load->unrm = true;
5603 load->da = da;
5604 load->dim = dim;
5605 load->can_reorder = true; /* fmask images shouldn't be modified */
5606 ctx->block->instructions.emplace_back(std::move(load));
5607
5608 Operand sample_index4;
5609 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5610 sample_index4 = Operand(sample_index.constantValue() << 2);
5611 } else if (sample_index.regClass() == s1) {
5612 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5613 } else {
5614 assert(sample_index.regClass() == v1);
5615 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5616 }
5617
5618 Temp final_sample;
5619 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5620 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5621 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5622 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5623 else
5624 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5625
5626 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5627 * resource descriptor is 0 (invalid),
5628 */
5629 Temp compare = bld.tmp(bld.lm);
5630 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5631 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5632
5633 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5634
5635 /* Replace the MSAA sample index. */
5636 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5637 }
5638
5639 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5640 {
5641
5642 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5643 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5644 bool is_array = glsl_sampler_type_is_array(type);
5645 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5646 assert(!add_frag_pos && "Input attachments should be lowered.");
5647 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5648 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5649 int count = image_type_to_components_count(dim, is_array);
5650 std::vector<Temp> coords(count);
5651 Builder bld(ctx->program, ctx->block);
5652
5653 if (is_ms) {
5654 count--;
5655 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5656 /* get sample index */
5657 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5658 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5659 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5660 std::vector<Temp> fmask_load_address;
5661 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5662 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5663
5664 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5665 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5666 } else {
5667 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5668 }
5669 }
5670
5671 if (gfx9_1d) {
5672 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5673 coords.resize(coords.size() + 1);
5674 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5675 if (is_array)
5676 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5677 } else {
5678 for (int i = 0; i < count; i++)
5679 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5680 }
5681
5682 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5683 instr->intrinsic == nir_intrinsic_image_deref_store) {
5684 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5685 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5686
5687 if (!level_zero)
5688 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5689 }
5690
5691 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5692 for (unsigned i = 0; i < coords.size(); i++)
5693 vec->operands[i] = Operand(coords[i]);
5694 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5695 vec->definitions[0] = Definition(res);
5696 ctx->block->instructions.emplace_back(std::move(vec));
5697 return res;
5698 }
5699
5700
5701 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5702 {
5703 Builder bld(ctx->program, ctx->block);
5704 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5705 const struct glsl_type *type = glsl_without_array(var->type);
5706 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5707 bool is_array = glsl_sampler_type_is_array(type);
5708 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5709
5710 if (dim == GLSL_SAMPLER_DIM_BUF) {
5711 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5712 unsigned num_channels = util_last_bit(mask);
5713 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5714 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5715
5716 aco_opcode opcode;
5717 switch (num_channels) {
5718 case 1:
5719 opcode = aco_opcode::buffer_load_format_x;
5720 break;
5721 case 2:
5722 opcode = aco_opcode::buffer_load_format_xy;
5723 break;
5724 case 3:
5725 opcode = aco_opcode::buffer_load_format_xyz;
5726 break;
5727 case 4:
5728 opcode = aco_opcode::buffer_load_format_xyzw;
5729 break;
5730 default:
5731 unreachable(">4 channel buffer image load");
5732 }
5733 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5734 load->operands[0] = Operand(rsrc);
5735 load->operands[1] = Operand(vindex);
5736 load->operands[2] = Operand((uint32_t) 0);
5737 Temp tmp;
5738 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5739 tmp = dst;
5740 else
5741 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5742 load->definitions[0] = Definition(tmp);
5743 load->idxen = true;
5744 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5745 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5746 load->barrier = barrier_image;
5747 ctx->block->instructions.emplace_back(std::move(load));
5748
5749 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5750 return;
5751 }
5752
5753 Temp coords = get_image_coords(ctx, instr, type);
5754 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5755
5756 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5757 unsigned num_components = util_bitcount(dmask);
5758 Temp tmp;
5759 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5760 tmp = dst;
5761 else
5762 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5763
5764 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5765 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5766
5767 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5768 load->operands[0] = Operand(resource);
5769 load->operands[1] = Operand(s4); /* no sampler */
5770 load->operands[2] = Operand(coords);
5771 load->definitions[0] = Definition(tmp);
5772 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5773 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5774 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5775 load->dmask = dmask;
5776 load->unrm = true;
5777 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5778 load->barrier = barrier_image;
5779 ctx->block->instructions.emplace_back(std::move(load));
5780
5781 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5782 return;
5783 }
5784
5785 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5786 {
5787 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5788 const struct glsl_type *type = glsl_without_array(var->type);
5789 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5790 bool is_array = glsl_sampler_type_is_array(type);
5791 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5792
5793 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5794
5795 if (dim == GLSL_SAMPLER_DIM_BUF) {
5796 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5797 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5798 aco_opcode opcode;
5799 switch (data.size()) {
5800 case 1:
5801 opcode = aco_opcode::buffer_store_format_x;
5802 break;
5803 case 2:
5804 opcode = aco_opcode::buffer_store_format_xy;
5805 break;
5806 case 3:
5807 opcode = aco_opcode::buffer_store_format_xyz;
5808 break;
5809 case 4:
5810 opcode = aco_opcode::buffer_store_format_xyzw;
5811 break;
5812 default:
5813 unreachable(">4 channel buffer image store");
5814 }
5815 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5816 store->operands[0] = Operand(rsrc);
5817 store->operands[1] = Operand(vindex);
5818 store->operands[2] = Operand((uint32_t) 0);
5819 store->operands[3] = Operand(data);
5820 store->idxen = true;
5821 store->glc = glc;
5822 store->dlc = false;
5823 store->disable_wqm = true;
5824 store->barrier = barrier_image;
5825 ctx->program->needs_exact = true;
5826 ctx->block->instructions.emplace_back(std::move(store));
5827 return;
5828 }
5829
5830 assert(data.type() == RegType::vgpr);
5831 Temp coords = get_image_coords(ctx, instr, type);
5832 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5833
5834 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5835 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5836
5837 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5838 store->operands[0] = Operand(resource);
5839 store->operands[1] = Operand(data);
5840 store->operands[2] = Operand(coords);
5841 store->glc = glc;
5842 store->dlc = false;
5843 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5844 store->dmask = (1 << data.size()) - 1;
5845 store->unrm = true;
5846 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5847 store->disable_wqm = true;
5848 store->barrier = barrier_image;
5849 ctx->program->needs_exact = true;
5850 ctx->block->instructions.emplace_back(std::move(store));
5851 return;
5852 }
5853
5854 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5855 {
5856 /* return the previous value if dest is ever used */
5857 bool return_previous = false;
5858 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5859 return_previous = true;
5860 break;
5861 }
5862 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5863 return_previous = true;
5864 break;
5865 }
5866
5867 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5868 const struct glsl_type *type = glsl_without_array(var->type);
5869 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5870 bool is_array = glsl_sampler_type_is_array(type);
5871 Builder bld(ctx->program, ctx->block);
5872
5873 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5874 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5875
5876 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5877 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5878
5879 aco_opcode buf_op, image_op;
5880 switch (instr->intrinsic) {
5881 case nir_intrinsic_image_deref_atomic_add:
5882 buf_op = aco_opcode::buffer_atomic_add;
5883 image_op = aco_opcode::image_atomic_add;
5884 break;
5885 case nir_intrinsic_image_deref_atomic_umin:
5886 buf_op = aco_opcode::buffer_atomic_umin;
5887 image_op = aco_opcode::image_atomic_umin;
5888 break;
5889 case nir_intrinsic_image_deref_atomic_imin:
5890 buf_op = aco_opcode::buffer_atomic_smin;
5891 image_op = aco_opcode::image_atomic_smin;
5892 break;
5893 case nir_intrinsic_image_deref_atomic_umax:
5894 buf_op = aco_opcode::buffer_atomic_umax;
5895 image_op = aco_opcode::image_atomic_umax;
5896 break;
5897 case nir_intrinsic_image_deref_atomic_imax:
5898 buf_op = aco_opcode::buffer_atomic_smax;
5899 image_op = aco_opcode::image_atomic_smax;
5900 break;
5901 case nir_intrinsic_image_deref_atomic_and:
5902 buf_op = aco_opcode::buffer_atomic_and;
5903 image_op = aco_opcode::image_atomic_and;
5904 break;
5905 case nir_intrinsic_image_deref_atomic_or:
5906 buf_op = aco_opcode::buffer_atomic_or;
5907 image_op = aco_opcode::image_atomic_or;
5908 break;
5909 case nir_intrinsic_image_deref_atomic_xor:
5910 buf_op = aco_opcode::buffer_atomic_xor;
5911 image_op = aco_opcode::image_atomic_xor;
5912 break;
5913 case nir_intrinsic_image_deref_atomic_exchange:
5914 buf_op = aco_opcode::buffer_atomic_swap;
5915 image_op = aco_opcode::image_atomic_swap;
5916 break;
5917 case nir_intrinsic_image_deref_atomic_comp_swap:
5918 buf_op = aco_opcode::buffer_atomic_cmpswap;
5919 image_op = aco_opcode::image_atomic_cmpswap;
5920 break;
5921 default:
5922 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5923 }
5924
5925 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5926
5927 if (dim == GLSL_SAMPLER_DIM_BUF) {
5928 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5929 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5930 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5931 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5932 mubuf->operands[0] = Operand(resource);
5933 mubuf->operands[1] = Operand(vindex);
5934 mubuf->operands[2] = Operand((uint32_t)0);
5935 mubuf->operands[3] = Operand(data);
5936 if (return_previous)
5937 mubuf->definitions[0] = Definition(dst);
5938 mubuf->offset = 0;
5939 mubuf->idxen = true;
5940 mubuf->glc = return_previous;
5941 mubuf->dlc = false; /* Not needed for atomics */
5942 mubuf->disable_wqm = true;
5943 mubuf->barrier = barrier_image;
5944 ctx->program->needs_exact = true;
5945 ctx->block->instructions.emplace_back(std::move(mubuf));
5946 return;
5947 }
5948
5949 Temp coords = get_image_coords(ctx, instr, type);
5950 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5951 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5952 mimg->operands[0] = Operand(resource);
5953 mimg->operands[1] = Operand(data);
5954 mimg->operands[2] = Operand(coords);
5955 if (return_previous)
5956 mimg->definitions[0] = Definition(dst);
5957 mimg->glc = return_previous;
5958 mimg->dlc = false; /* Not needed for atomics */
5959 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5960 mimg->dmask = (1 << data.size()) - 1;
5961 mimg->unrm = true;
5962 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5963 mimg->disable_wqm = true;
5964 mimg->barrier = barrier_image;
5965 ctx->program->needs_exact = true;
5966 ctx->block->instructions.emplace_back(std::move(mimg));
5967 return;
5968 }
5969
5970 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5971 {
5972 if (in_elements && ctx->options->chip_class == GFX8) {
5973 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5974 Builder bld(ctx->program, ctx->block);
5975
5976 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5977
5978 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5979 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5980
5981 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5982 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5983
5984 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5985 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5986
5987 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5988 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5989 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5990 if (dst.type() == RegType::vgpr)
5991 bld.copy(Definition(dst), shr_dst);
5992
5993 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5994 } else {
5995 emit_extract_vector(ctx, desc, 2, dst);
5996 }
5997 }
5998
5999 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6000 {
6001 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6002 const struct glsl_type *type = glsl_without_array(var->type);
6003 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6004 bool is_array = glsl_sampler_type_is_array(type);
6005 Builder bld(ctx->program, ctx->block);
6006
6007 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6008 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6009 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6010 }
6011
6012 /* LOD */
6013 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6014
6015 /* Resource */
6016 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6017
6018 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6019
6020 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6021 mimg->operands[0] = Operand(resource);
6022 mimg->operands[1] = Operand(s4); /* no sampler */
6023 mimg->operands[2] = Operand(lod);
6024 uint8_t& dmask = mimg->dmask;
6025 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6026 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6027 mimg->da = glsl_sampler_type_is_array(type);
6028 mimg->can_reorder = true;
6029 Definition& def = mimg->definitions[0];
6030 ctx->block->instructions.emplace_back(std::move(mimg));
6031
6032 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6033 glsl_sampler_type_is_array(type)) {
6034
6035 assert(instr->dest.ssa.num_components == 3);
6036 Temp tmp = {ctx->program->allocateId(), v3};
6037 def = Definition(tmp);
6038 emit_split_vector(ctx, tmp, 3);
6039
6040 /* divide 3rd value by 6 by multiplying with magic number */
6041 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6042 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6043
6044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6045 emit_extract_vector(ctx, tmp, 0, v1),
6046 emit_extract_vector(ctx, tmp, 1, v1),
6047 by_6);
6048
6049 } else if (ctx->options->chip_class == GFX9 &&
6050 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6051 glsl_sampler_type_is_array(type)) {
6052 assert(instr->dest.ssa.num_components == 2);
6053 def = Definition(dst);
6054 dmask = 0x5;
6055 } else {
6056 def = Definition(dst);
6057 }
6058
6059 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6060 }
6061
6062 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6063 {
6064 Builder bld(ctx->program, ctx->block);
6065 unsigned num_components = instr->num_components;
6066
6067 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6068 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6069 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6070
6071 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6072 unsigned size = instr->dest.ssa.bit_size / 8;
6073 int byte_align = 0;
6074 if (size < 4) {
6075 unsigned align_mul = nir_intrinsic_align_mul(instr);
6076 unsigned align_offset = nir_intrinsic_align_offset(instr);
6077 byte_align = align_mul % 4 == 0 ? align_offset : -1;
6078 }
6079 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
6080 }
6081
6082 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6083 {
6084 Builder bld(ctx->program, ctx->block);
6085 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6086 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6087 unsigned writemask = nir_intrinsic_write_mask(instr);
6088 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6089
6090 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6091 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6092
6093 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
6094 ctx->options->chip_class >= GFX8 &&
6095 elem_size_bytes >= 4;
6096 if (smem)
6097 offset = bld.as_uniform(offset);
6098 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6099
6100 while (writemask) {
6101 int start, count;
6102 u_bit_scan_consecutive_range(&writemask, &start, &count);
6103 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
6104 /* GFX6 doesn't support storing vec3, split it. */
6105 writemask |= 1u << (start + 2);
6106 count = 2;
6107 }
6108 int num_bytes = count * elem_size_bytes;
6109
6110 /* dword or larger stores have to be dword-aligned */
6111 if (elem_size_bytes < 4 && num_bytes > 2) {
6112 // TODO: improve alignment check of sub-dword stores
6113 unsigned count_new = 2 / elem_size_bytes;
6114 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
6115 count = count_new;
6116 num_bytes = 2;
6117 }
6118
6119 if (num_bytes > 16) {
6120 assert(elem_size_bytes == 8);
6121 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6122 count = 2;
6123 num_bytes = 16;
6124 }
6125
6126 Temp write_data;
6127 if (elem_size_bytes < 4) {
6128 if (data.type() == RegType::sgpr) {
6129 data = as_vgpr(ctx, data);
6130 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
6131 }
6132 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
6133 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6134 for (int i = 0; i < count; i++)
6135 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
6136 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
6137 vec->definitions[0] = Definition(write_data);
6138 bld.insert(std::move(vec));
6139 } else if (count != instr->num_components) {
6140 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6141 for (int i = 0; i < count; i++) {
6142 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
6143 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
6144 }
6145 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
6146 vec->definitions[0] = Definition(write_data);
6147 ctx->block->instructions.emplace_back(std::move(vec));
6148 } else if (!smem && data.type() != RegType::vgpr) {
6149 assert(num_bytes % 4 == 0);
6150 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
6151 } else if (smem_nonfs && data.type() == RegType::vgpr) {
6152 assert(num_bytes % 4 == 0);
6153 write_data = bld.as_uniform(data);
6154 } else {
6155 write_data = data;
6156 }
6157
6158 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
6159 switch (num_bytes) {
6160 case 1:
6161 vmem_op = aco_opcode::buffer_store_byte;
6162 break;
6163 case 2:
6164 vmem_op = aco_opcode::buffer_store_short;
6165 break;
6166 case 4:
6167 vmem_op = aco_opcode::buffer_store_dword;
6168 smem_op = aco_opcode::s_buffer_store_dword;
6169 break;
6170 case 8:
6171 vmem_op = aco_opcode::buffer_store_dwordx2;
6172 smem_op = aco_opcode::s_buffer_store_dwordx2;
6173 break;
6174 case 12:
6175 vmem_op = aco_opcode::buffer_store_dwordx3;
6176 assert(!smem && ctx->options->chip_class > GFX6);
6177 break;
6178 case 16:
6179 vmem_op = aco_opcode::buffer_store_dwordx4;
6180 smem_op = aco_opcode::s_buffer_store_dwordx4;
6181 break;
6182 default:
6183 unreachable("Store SSBO not implemented for this size.");
6184 }
6185 if (ctx->stage == fragment_fs)
6186 smem_op = aco_opcode::p_fs_buffer_store_smem;
6187
6188 if (smem) {
6189 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
6190 store->operands[0] = Operand(rsrc);
6191 if (start) {
6192 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6193 offset, Operand(start * elem_size_bytes));
6194 store->operands[1] = Operand(off);
6195 } else {
6196 store->operands[1] = Operand(offset);
6197 }
6198 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
6199 store->operands[1].setFixed(m0);
6200 store->operands[2] = Operand(write_data);
6201 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6202 store->dlc = false;
6203 store->disable_wqm = true;
6204 store->barrier = barrier_buffer;
6205 ctx->block->instructions.emplace_back(std::move(store));
6206 ctx->program->wb_smem_l1_on_end = true;
6207 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
6208 ctx->block->kind |= block_kind_needs_lowering;
6209 ctx->program->needs_exact = true;
6210 }
6211 } else {
6212 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
6213 store->operands[0] = Operand(rsrc);
6214 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6215 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6216 store->operands[3] = Operand(write_data);
6217 store->offset = start * elem_size_bytes;
6218 store->offen = (offset.type() == RegType::vgpr);
6219 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6220 store->dlc = false;
6221 store->disable_wqm = true;
6222 store->barrier = barrier_buffer;
6223 ctx->program->needs_exact = true;
6224 ctx->block->instructions.emplace_back(std::move(store));
6225 }
6226 }
6227 }
6228
6229 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6230 {
6231 /* return the previous value if dest is ever used */
6232 bool return_previous = false;
6233 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6234 return_previous = true;
6235 break;
6236 }
6237 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6238 return_previous = true;
6239 break;
6240 }
6241
6242 Builder bld(ctx->program, ctx->block);
6243 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6244
6245 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6246 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6247 get_ssa_temp(ctx, instr->src[3].ssa), data);
6248
6249 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6250 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6251 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6252
6253 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6254
6255 aco_opcode op32, op64;
6256 switch (instr->intrinsic) {
6257 case nir_intrinsic_ssbo_atomic_add:
6258 op32 = aco_opcode::buffer_atomic_add;
6259 op64 = aco_opcode::buffer_atomic_add_x2;
6260 break;
6261 case nir_intrinsic_ssbo_atomic_imin:
6262 op32 = aco_opcode::buffer_atomic_smin;
6263 op64 = aco_opcode::buffer_atomic_smin_x2;
6264 break;
6265 case nir_intrinsic_ssbo_atomic_umin:
6266 op32 = aco_opcode::buffer_atomic_umin;
6267 op64 = aco_opcode::buffer_atomic_umin_x2;
6268 break;
6269 case nir_intrinsic_ssbo_atomic_imax:
6270 op32 = aco_opcode::buffer_atomic_smax;
6271 op64 = aco_opcode::buffer_atomic_smax_x2;
6272 break;
6273 case nir_intrinsic_ssbo_atomic_umax:
6274 op32 = aco_opcode::buffer_atomic_umax;
6275 op64 = aco_opcode::buffer_atomic_umax_x2;
6276 break;
6277 case nir_intrinsic_ssbo_atomic_and:
6278 op32 = aco_opcode::buffer_atomic_and;
6279 op64 = aco_opcode::buffer_atomic_and_x2;
6280 break;
6281 case nir_intrinsic_ssbo_atomic_or:
6282 op32 = aco_opcode::buffer_atomic_or;
6283 op64 = aco_opcode::buffer_atomic_or_x2;
6284 break;
6285 case nir_intrinsic_ssbo_atomic_xor:
6286 op32 = aco_opcode::buffer_atomic_xor;
6287 op64 = aco_opcode::buffer_atomic_xor_x2;
6288 break;
6289 case nir_intrinsic_ssbo_atomic_exchange:
6290 op32 = aco_opcode::buffer_atomic_swap;
6291 op64 = aco_opcode::buffer_atomic_swap_x2;
6292 break;
6293 case nir_intrinsic_ssbo_atomic_comp_swap:
6294 op32 = aco_opcode::buffer_atomic_cmpswap;
6295 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6296 break;
6297 default:
6298 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6299 }
6300 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6301 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6302 mubuf->operands[0] = Operand(rsrc);
6303 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6304 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6305 mubuf->operands[3] = Operand(data);
6306 if (return_previous)
6307 mubuf->definitions[0] = Definition(dst);
6308 mubuf->offset = 0;
6309 mubuf->offen = (offset.type() == RegType::vgpr);
6310 mubuf->glc = return_previous;
6311 mubuf->dlc = false; /* Not needed for atomics */
6312 mubuf->disable_wqm = true;
6313 mubuf->barrier = barrier_buffer;
6314 ctx->program->needs_exact = true;
6315 ctx->block->instructions.emplace_back(std::move(mubuf));
6316 }
6317
6318 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6319
6320 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6321 Builder bld(ctx->program, ctx->block);
6322 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6323 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6324 }
6325
6326 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
6327 {
6328 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6329 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6330
6331 if (addr.type() == RegType::vgpr)
6332 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
6333 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
6334 }
6335
6336 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6337 {
6338 Builder bld(ctx->program, ctx->block);
6339 unsigned num_components = instr->num_components;
6340 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
6341
6342 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6343 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6344
6345 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6346 bool dlc = glc && ctx->options->chip_class >= GFX10;
6347 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6348 * it's safe to use SMEM */
6349 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6350 aco_opcode op;
6351 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6352 bool global = ctx->options->chip_class >= GFX9;
6353
6354 if (ctx->options->chip_class >= GFX7) {
6355 switch (num_bytes) {
6356 case 4:
6357 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
6358 break;
6359 case 8:
6360 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
6361 break;
6362 case 12:
6363 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
6364 break;
6365 case 16:
6366 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
6367 break;
6368 default:
6369 unreachable("load_global not implemented for this size.");
6370 }
6371
6372 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
6373 flat->operands[0] = Operand(addr);
6374 flat->operands[1] = Operand(s1);
6375 flat->glc = glc;
6376 flat->dlc = dlc;
6377 flat->barrier = barrier_buffer;
6378
6379 if (dst.type() == RegType::sgpr) {
6380 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6381 flat->definitions[0] = Definition(vec);
6382 ctx->block->instructions.emplace_back(std::move(flat));
6383 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6384 } else {
6385 flat->definitions[0] = Definition(dst);
6386 ctx->block->instructions.emplace_back(std::move(flat));
6387 }
6388 emit_split_vector(ctx, dst, num_components);
6389 } else {
6390 assert(ctx->options->chip_class == GFX6);
6391
6392 /* GFX6 doesn't support loading vec3, expand to vec4. */
6393 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6394
6395 switch (num_bytes) {
6396 case 4:
6397 op = aco_opcode::buffer_load_dword;
6398 break;
6399 case 8:
6400 op = aco_opcode::buffer_load_dwordx2;
6401 break;
6402 case 16:
6403 op = aco_opcode::buffer_load_dwordx4;
6404 break;
6405 default:
6406 unreachable("load_global not implemented for this size.");
6407 }
6408
6409 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6410
6411 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6412 mubuf->operands[0] = Operand(rsrc);
6413 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6414 mubuf->operands[2] = Operand(0u);
6415 mubuf->glc = glc;
6416 mubuf->dlc = false;
6417 mubuf->offset = 0;
6418 mubuf->addr64 = addr.type() == RegType::vgpr;
6419 mubuf->disable_wqm = false;
6420 mubuf->barrier = barrier_buffer;
6421 aco_ptr<Instruction> instr = std::move(mubuf);
6422
6423 /* expand vector */
6424 if (dst.size() == 3) {
6425 Temp vec = bld.tmp(v4);
6426 instr->definitions[0] = Definition(vec);
6427 bld.insert(std::move(instr));
6428 emit_split_vector(ctx, vec, 4);
6429
6430 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6431 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6432 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6433 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6434 }
6435
6436 if (dst.type() == RegType::sgpr) {
6437 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6438 instr->definitions[0] = Definition(vec);
6439 bld.insert(std::move(instr));
6440 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6441 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6442 } else {
6443 instr->definitions[0] = Definition(dst);
6444 bld.insert(std::move(instr));
6445 emit_split_vector(ctx, dst, num_components);
6446 }
6447 }
6448 } else {
6449 switch (num_bytes) {
6450 case 4:
6451 op = aco_opcode::s_load_dword;
6452 break;
6453 case 8:
6454 op = aco_opcode::s_load_dwordx2;
6455 break;
6456 case 12:
6457 case 16:
6458 op = aco_opcode::s_load_dwordx4;
6459 break;
6460 default:
6461 unreachable("load_global not implemented for this size.");
6462 }
6463 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6464 load->operands[0] = Operand(addr);
6465 load->operands[1] = Operand(0u);
6466 load->definitions[0] = Definition(dst);
6467 load->glc = glc;
6468 load->dlc = dlc;
6469 load->barrier = barrier_buffer;
6470 assert(ctx->options->chip_class >= GFX8 || !glc);
6471
6472 if (dst.size() == 3) {
6473 /* trim vector */
6474 Temp vec = bld.tmp(s4);
6475 load->definitions[0] = Definition(vec);
6476 ctx->block->instructions.emplace_back(std::move(load));
6477 emit_split_vector(ctx, vec, 4);
6478
6479 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6480 emit_extract_vector(ctx, vec, 0, s1),
6481 emit_extract_vector(ctx, vec, 1, s1),
6482 emit_extract_vector(ctx, vec, 2, s1));
6483 } else {
6484 ctx->block->instructions.emplace_back(std::move(load));
6485 }
6486 }
6487 }
6488
6489 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6490 {
6491 Builder bld(ctx->program, ctx->block);
6492 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6493
6494 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6495 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6496
6497 if (ctx->options->chip_class >= GFX7)
6498 addr = as_vgpr(ctx, addr);
6499
6500 unsigned writemask = nir_intrinsic_write_mask(instr);
6501 while (writemask) {
6502 int start, count;
6503 u_bit_scan_consecutive_range(&writemask, &start, &count);
6504 if (count == 3 && ctx->options->chip_class == GFX6) {
6505 /* GFX6 doesn't support storing vec3, split it. */
6506 writemask |= 1u << (start + 2);
6507 count = 2;
6508 }
6509 unsigned num_bytes = count * elem_size_bytes;
6510
6511 Temp write_data = data;
6512 if (count != instr->num_components) {
6513 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6514 for (int i = 0; i < count; i++)
6515 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6516 write_data = bld.tmp(RegType::vgpr, count);
6517 vec->definitions[0] = Definition(write_data);
6518 ctx->block->instructions.emplace_back(std::move(vec));
6519 }
6520
6521 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6522 unsigned offset = start * elem_size_bytes;
6523
6524 if (ctx->options->chip_class >= GFX7) {
6525 if (offset > 0 && ctx->options->chip_class < GFX9) {
6526 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6527 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6528 Temp carry = bld.tmp(bld.lm);
6529 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6530
6531 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6532 Operand(offset), addr0);
6533 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6534 Operand(0u), addr1,
6535 carry).def(1).setHint(vcc);
6536
6537 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6538
6539 offset = 0;
6540 }
6541
6542 bool global = ctx->options->chip_class >= GFX9;
6543 aco_opcode op;
6544 switch (num_bytes) {
6545 case 4:
6546 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6547 break;
6548 case 8:
6549 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6550 break;
6551 case 12:
6552 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6553 break;
6554 case 16:
6555 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6556 break;
6557 default:
6558 unreachable("store_global not implemented for this size.");
6559 }
6560
6561 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6562 flat->operands[0] = Operand(addr);
6563 flat->operands[1] = Operand(s1);
6564 flat->operands[2] = Operand(data);
6565 flat->glc = glc;
6566 flat->dlc = false;
6567 flat->offset = offset;
6568 flat->disable_wqm = true;
6569 flat->barrier = barrier_buffer;
6570 ctx->program->needs_exact = true;
6571 ctx->block->instructions.emplace_back(std::move(flat));
6572 } else {
6573 assert(ctx->options->chip_class == GFX6);
6574
6575 aco_opcode op;
6576 switch (num_bytes) {
6577 case 4:
6578 op = aco_opcode::buffer_store_dword;
6579 break;
6580 case 8:
6581 op = aco_opcode::buffer_store_dwordx2;
6582 break;
6583 case 16:
6584 op = aco_opcode::buffer_store_dwordx4;
6585 break;
6586 default:
6587 unreachable("store_global not implemented for this size.");
6588 }
6589
6590 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6591
6592 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6593 mubuf->operands[0] = Operand(rsrc);
6594 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6595 mubuf->operands[2] = Operand(0u);
6596 mubuf->operands[3] = Operand(write_data);
6597 mubuf->glc = glc;
6598 mubuf->dlc = false;
6599 mubuf->offset = offset;
6600 mubuf->addr64 = addr.type() == RegType::vgpr;
6601 mubuf->disable_wqm = true;
6602 mubuf->barrier = barrier_buffer;
6603 ctx->program->needs_exact = true;
6604 ctx->block->instructions.emplace_back(std::move(mubuf));
6605 }
6606 }
6607 }
6608
6609 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6610 {
6611 /* return the previous value if dest is ever used */
6612 bool return_previous = false;
6613 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6614 return_previous = true;
6615 break;
6616 }
6617 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6618 return_previous = true;
6619 break;
6620 }
6621
6622 Builder bld(ctx->program, ctx->block);
6623 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6624 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6625
6626 if (ctx->options->chip_class >= GFX7)
6627 addr = as_vgpr(ctx, addr);
6628
6629 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6630 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6631 get_ssa_temp(ctx, instr->src[2].ssa), data);
6632
6633 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6634
6635 aco_opcode op32, op64;
6636
6637 if (ctx->options->chip_class >= GFX7) {
6638 bool global = ctx->options->chip_class >= GFX9;
6639 switch (instr->intrinsic) {
6640 case nir_intrinsic_global_atomic_add:
6641 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6642 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6643 break;
6644 case nir_intrinsic_global_atomic_imin:
6645 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6646 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6647 break;
6648 case nir_intrinsic_global_atomic_umin:
6649 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6650 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6651 break;
6652 case nir_intrinsic_global_atomic_imax:
6653 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6654 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6655 break;
6656 case nir_intrinsic_global_atomic_umax:
6657 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6658 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6659 break;
6660 case nir_intrinsic_global_atomic_and:
6661 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6662 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6663 break;
6664 case nir_intrinsic_global_atomic_or:
6665 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6666 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6667 break;
6668 case nir_intrinsic_global_atomic_xor:
6669 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6670 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6671 break;
6672 case nir_intrinsic_global_atomic_exchange:
6673 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6674 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6675 break;
6676 case nir_intrinsic_global_atomic_comp_swap:
6677 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6678 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6679 break;
6680 default:
6681 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6682 }
6683
6684 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6685 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6686 flat->operands[0] = Operand(addr);
6687 flat->operands[1] = Operand(s1);
6688 flat->operands[2] = Operand(data);
6689 if (return_previous)
6690 flat->definitions[0] = Definition(dst);
6691 flat->glc = return_previous;
6692 flat->dlc = false; /* Not needed for atomics */
6693 flat->offset = 0;
6694 flat->disable_wqm = true;
6695 flat->barrier = barrier_buffer;
6696 ctx->program->needs_exact = true;
6697 ctx->block->instructions.emplace_back(std::move(flat));
6698 } else {
6699 assert(ctx->options->chip_class == GFX6);
6700
6701 switch (instr->intrinsic) {
6702 case nir_intrinsic_global_atomic_add:
6703 op32 = aco_opcode::buffer_atomic_add;
6704 op64 = aco_opcode::buffer_atomic_add_x2;
6705 break;
6706 case nir_intrinsic_global_atomic_imin:
6707 op32 = aco_opcode::buffer_atomic_smin;
6708 op64 = aco_opcode::buffer_atomic_smin_x2;
6709 break;
6710 case nir_intrinsic_global_atomic_umin:
6711 op32 = aco_opcode::buffer_atomic_umin;
6712 op64 = aco_opcode::buffer_atomic_umin_x2;
6713 break;
6714 case nir_intrinsic_global_atomic_imax:
6715 op32 = aco_opcode::buffer_atomic_smax;
6716 op64 = aco_opcode::buffer_atomic_smax_x2;
6717 break;
6718 case nir_intrinsic_global_atomic_umax:
6719 op32 = aco_opcode::buffer_atomic_umax;
6720 op64 = aco_opcode::buffer_atomic_umax_x2;
6721 break;
6722 case nir_intrinsic_global_atomic_and:
6723 op32 = aco_opcode::buffer_atomic_and;
6724 op64 = aco_opcode::buffer_atomic_and_x2;
6725 break;
6726 case nir_intrinsic_global_atomic_or:
6727 op32 = aco_opcode::buffer_atomic_or;
6728 op64 = aco_opcode::buffer_atomic_or_x2;
6729 break;
6730 case nir_intrinsic_global_atomic_xor:
6731 op32 = aco_opcode::buffer_atomic_xor;
6732 op64 = aco_opcode::buffer_atomic_xor_x2;
6733 break;
6734 case nir_intrinsic_global_atomic_exchange:
6735 op32 = aco_opcode::buffer_atomic_swap;
6736 op64 = aco_opcode::buffer_atomic_swap_x2;
6737 break;
6738 case nir_intrinsic_global_atomic_comp_swap:
6739 op32 = aco_opcode::buffer_atomic_cmpswap;
6740 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6741 break;
6742 default:
6743 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6744 }
6745
6746 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6747
6748 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6749
6750 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6751 mubuf->operands[0] = Operand(rsrc);
6752 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6753 mubuf->operands[2] = Operand(0u);
6754 mubuf->operands[3] = Operand(data);
6755 if (return_previous)
6756 mubuf->definitions[0] = Definition(dst);
6757 mubuf->glc = return_previous;
6758 mubuf->dlc = false;
6759 mubuf->offset = 0;
6760 mubuf->addr64 = addr.type() == RegType::vgpr;
6761 mubuf->disable_wqm = true;
6762 mubuf->barrier = barrier_buffer;
6763 ctx->program->needs_exact = true;
6764 ctx->block->instructions.emplace_back(std::move(mubuf));
6765 }
6766 }
6767
6768 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6769 Builder bld(ctx->program, ctx->block);
6770 switch(instr->intrinsic) {
6771 case nir_intrinsic_group_memory_barrier:
6772 case nir_intrinsic_memory_barrier:
6773 bld.barrier(aco_opcode::p_memory_barrier_common);
6774 break;
6775 case nir_intrinsic_memory_barrier_buffer:
6776 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6777 break;
6778 case nir_intrinsic_memory_barrier_image:
6779 bld.barrier(aco_opcode::p_memory_barrier_image);
6780 break;
6781 case nir_intrinsic_memory_barrier_tcs_patch:
6782 case nir_intrinsic_memory_barrier_shared:
6783 bld.barrier(aco_opcode::p_memory_barrier_shared);
6784 break;
6785 default:
6786 unreachable("Unimplemented memory barrier intrinsic");
6787 break;
6788 }
6789 }
6790
6791 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6792 {
6793 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6794 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6795 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6796 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6797 Builder bld(ctx->program, ctx->block);
6798
6799 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6800 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6801 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6802 }
6803
6804 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6805 {
6806 unsigned writemask = nir_intrinsic_write_mask(instr);
6807 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6808 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6809 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6810 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6811
6812 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6813 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6814 }
6815
6816 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6817 {
6818 unsigned offset = nir_intrinsic_base(instr);
6819 Builder bld(ctx->program, ctx->block);
6820 Operand m = load_lds_size_m0(bld);
6821 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6822 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6823
6824 unsigned num_operands = 3;
6825 aco_opcode op32, op64, op32_rtn, op64_rtn;
6826 switch(instr->intrinsic) {
6827 case nir_intrinsic_shared_atomic_add:
6828 op32 = aco_opcode::ds_add_u32;
6829 op64 = aco_opcode::ds_add_u64;
6830 op32_rtn = aco_opcode::ds_add_rtn_u32;
6831 op64_rtn = aco_opcode::ds_add_rtn_u64;
6832 break;
6833 case nir_intrinsic_shared_atomic_imin:
6834 op32 = aco_opcode::ds_min_i32;
6835 op64 = aco_opcode::ds_min_i64;
6836 op32_rtn = aco_opcode::ds_min_rtn_i32;
6837 op64_rtn = aco_opcode::ds_min_rtn_i64;
6838 break;
6839 case nir_intrinsic_shared_atomic_umin:
6840 op32 = aco_opcode::ds_min_u32;
6841 op64 = aco_opcode::ds_min_u64;
6842 op32_rtn = aco_opcode::ds_min_rtn_u32;
6843 op64_rtn = aco_opcode::ds_min_rtn_u64;
6844 break;
6845 case nir_intrinsic_shared_atomic_imax:
6846 op32 = aco_opcode::ds_max_i32;
6847 op64 = aco_opcode::ds_max_i64;
6848 op32_rtn = aco_opcode::ds_max_rtn_i32;
6849 op64_rtn = aco_opcode::ds_max_rtn_i64;
6850 break;
6851 case nir_intrinsic_shared_atomic_umax:
6852 op32 = aco_opcode::ds_max_u32;
6853 op64 = aco_opcode::ds_max_u64;
6854 op32_rtn = aco_opcode::ds_max_rtn_u32;
6855 op64_rtn = aco_opcode::ds_max_rtn_u64;
6856 break;
6857 case nir_intrinsic_shared_atomic_and:
6858 op32 = aco_opcode::ds_and_b32;
6859 op64 = aco_opcode::ds_and_b64;
6860 op32_rtn = aco_opcode::ds_and_rtn_b32;
6861 op64_rtn = aco_opcode::ds_and_rtn_b64;
6862 break;
6863 case nir_intrinsic_shared_atomic_or:
6864 op32 = aco_opcode::ds_or_b32;
6865 op64 = aco_opcode::ds_or_b64;
6866 op32_rtn = aco_opcode::ds_or_rtn_b32;
6867 op64_rtn = aco_opcode::ds_or_rtn_b64;
6868 break;
6869 case nir_intrinsic_shared_atomic_xor:
6870 op32 = aco_opcode::ds_xor_b32;
6871 op64 = aco_opcode::ds_xor_b64;
6872 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6873 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6874 break;
6875 case nir_intrinsic_shared_atomic_exchange:
6876 op32 = aco_opcode::ds_write_b32;
6877 op64 = aco_opcode::ds_write_b64;
6878 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6879 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6880 break;
6881 case nir_intrinsic_shared_atomic_comp_swap:
6882 op32 = aco_opcode::ds_cmpst_b32;
6883 op64 = aco_opcode::ds_cmpst_b64;
6884 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6885 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6886 num_operands = 4;
6887 break;
6888 default:
6889 unreachable("Unhandled shared atomic intrinsic");
6890 }
6891
6892 /* return the previous value if dest is ever used */
6893 bool return_previous = false;
6894 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6895 return_previous = true;
6896 break;
6897 }
6898 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6899 return_previous = true;
6900 break;
6901 }
6902
6903 aco_opcode op;
6904 if (data.size() == 1) {
6905 assert(instr->dest.ssa.bit_size == 32);
6906 op = return_previous ? op32_rtn : op32;
6907 } else {
6908 assert(instr->dest.ssa.bit_size == 64);
6909 op = return_previous ? op64_rtn : op64;
6910 }
6911
6912 if (offset > 65535) {
6913 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6914 offset = 0;
6915 }
6916
6917 aco_ptr<DS_instruction> ds;
6918 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6919 ds->operands[0] = Operand(address);
6920 ds->operands[1] = Operand(data);
6921 if (num_operands == 4)
6922 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6923 ds->operands[num_operands - 1] = m;
6924 ds->offset0 = offset;
6925 if (return_previous)
6926 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6927 ctx->block->instructions.emplace_back(std::move(ds));
6928 }
6929
6930 Temp get_scratch_resource(isel_context *ctx)
6931 {
6932 Builder bld(ctx->program, ctx->block);
6933 Temp scratch_addr = ctx->program->private_segment_buffer;
6934 if (ctx->stage != compute_cs)
6935 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6936
6937 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6938 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6939
6940 if (ctx->program->chip_class >= GFX10) {
6941 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6942 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6943 S_008F0C_RESOURCE_LEVEL(1);
6944 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6945 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6946 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6947 }
6948
6949 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6950 if (ctx->program->chip_class <= GFX8)
6951 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6952
6953 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6954 }
6955
6956 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6957 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6958 Builder bld(ctx->program, ctx->block);
6959 Temp rsrc = get_scratch_resource(ctx);
6960 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6961 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6962
6963 aco_opcode op;
6964 switch (dst.size()) {
6965 case 1:
6966 op = aco_opcode::buffer_load_dword;
6967 break;
6968 case 2:
6969 op = aco_opcode::buffer_load_dwordx2;
6970 break;
6971 case 3:
6972 op = aco_opcode::buffer_load_dwordx3;
6973 break;
6974 case 4:
6975 op = aco_opcode::buffer_load_dwordx4;
6976 break;
6977 case 6:
6978 case 8: {
6979 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6980 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6981 bld.def(v4), rsrc, offset,
6982 ctx->program->scratch_offset, 0, true);
6983 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6984 aco_opcode::buffer_load_dwordx4,
6985 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6986 rsrc, offset, ctx->program->scratch_offset, 16, true);
6987 emit_split_vector(ctx, lower, 2);
6988 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6989 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6990 if (dst.size() == 8) {
6991 emit_split_vector(ctx, upper, 2);
6992 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6993 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6994 } else {
6995 elems[2] = upper;
6996 }
6997
6998 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6999 Format::PSEUDO, dst.size() / 2, 1)};
7000 for (unsigned i = 0; i < dst.size() / 2; i++)
7001 vec->operands[i] = Operand(elems[i]);
7002 vec->definitions[0] = Definition(dst);
7003 bld.insert(std::move(vec));
7004 ctx->allocated_vec.emplace(dst.id(), elems);
7005 return;
7006 }
7007 default:
7008 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
7009 }
7010
7011 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
7012 emit_split_vector(ctx, dst, instr->num_components);
7013 }
7014
7015 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
7016 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
7017 Builder bld(ctx->program, ctx->block);
7018 Temp rsrc = get_scratch_resource(ctx);
7019 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7020 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
7021
7022 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
7023 unsigned writemask = nir_intrinsic_write_mask(instr);
7024
7025 while (writemask) {
7026 int start, count;
7027 u_bit_scan_consecutive_range(&writemask, &start, &count);
7028 int num_bytes = count * elem_size_bytes;
7029
7030 if (num_bytes > 16) {
7031 assert(elem_size_bytes == 8);
7032 writemask |= (((count - 2) << 1) - 1) << (start + 2);
7033 count = 2;
7034 num_bytes = 16;
7035 }
7036
7037 // TODO: check alignment of sub-dword stores
7038 // TODO: split 3 bytes. there is no store instruction for that
7039
7040 Temp write_data;
7041 if (count != instr->num_components) {
7042 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
7043 for (int i = 0; i < count; i++) {
7044 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
7045 vec->operands[i] = Operand(elem);
7046 }
7047 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
7048 vec->definitions[0] = Definition(write_data);
7049 ctx->block->instructions.emplace_back(std::move(vec));
7050 } else {
7051 write_data = data;
7052 }
7053
7054 aco_opcode op;
7055 switch (num_bytes) {
7056 case 4:
7057 op = aco_opcode::buffer_store_dword;
7058 break;
7059 case 8:
7060 op = aco_opcode::buffer_store_dwordx2;
7061 break;
7062 case 12:
7063 op = aco_opcode::buffer_store_dwordx3;
7064 break;
7065 case 16:
7066 op = aco_opcode::buffer_store_dwordx4;
7067 break;
7068 default:
7069 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
7070 }
7071
7072 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
7073 }
7074 }
7075
7076 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
7077 uint8_t log2_ps_iter_samples;
7078 if (ctx->program->info->ps.force_persample) {
7079 log2_ps_iter_samples =
7080 util_logbase2(ctx->options->key.fs.num_samples);
7081 } else {
7082 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
7083 }
7084
7085 /* The bit pattern matches that used by fixed function fragment
7086 * processing. */
7087 static const unsigned ps_iter_masks[] = {
7088 0xffff, /* not used */
7089 0x5555,
7090 0x1111,
7091 0x0101,
7092 0x0001,
7093 };
7094 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
7095
7096 Builder bld(ctx->program, ctx->block);
7097
7098 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
7099 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7100 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
7101 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
7102 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7103 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
7104 }
7105
7106 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
7107 Builder bld(ctx->program, ctx->block);
7108
7109 unsigned stream = nir_intrinsic_stream_id(instr);
7110 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7111 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
7112 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
7113
7114 /* get GSVS ring */
7115 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
7116
7117 unsigned num_components =
7118 ctx->program->info->gs.num_stream_output_components[stream];
7119 assert(num_components);
7120
7121 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
7122 unsigned stream_offset = 0;
7123 for (unsigned i = 0; i < stream; i++) {
7124 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
7125 stream_offset += prev_stride * ctx->program->wave_size;
7126 }
7127
7128 /* Limit on the stride field for <= GFX7. */
7129 assert(stride < (1 << 14));
7130
7131 Temp gsvs_dwords[4];
7132 for (unsigned i = 0; i < 4; i++)
7133 gsvs_dwords[i] = bld.tmp(s1);
7134 bld.pseudo(aco_opcode::p_split_vector,
7135 Definition(gsvs_dwords[0]),
7136 Definition(gsvs_dwords[1]),
7137 Definition(gsvs_dwords[2]),
7138 Definition(gsvs_dwords[3]),
7139 gsvs_ring);
7140
7141 if (stream_offset) {
7142 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
7143
7144 Temp carry = bld.tmp(s1);
7145 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
7146 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
7147 }
7148
7149 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
7150 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
7151
7152 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7153 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
7154
7155 unsigned offset = 0;
7156 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
7157 if (ctx->program->info->gs.output_streams[i] != stream)
7158 continue;
7159
7160 for (unsigned j = 0; j < 4; j++) {
7161 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
7162 continue;
7163
7164 if (ctx->outputs.mask[i] & (1 << j)) {
7165 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
7166 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
7167 if (const_offset >= 4096u) {
7168 if (vaddr_offset.isUndefined())
7169 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
7170 else
7171 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
7172 const_offset %= 4096u;
7173 }
7174
7175 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
7176 mtbuf->operands[0] = Operand(gsvs_ring);
7177 mtbuf->operands[1] = vaddr_offset;
7178 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
7179 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
7180 mtbuf->offen = !vaddr_offset.isUndefined();
7181 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
7182 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
7183 mtbuf->offset = const_offset;
7184 mtbuf->glc = true;
7185 mtbuf->slc = true;
7186 mtbuf->barrier = barrier_gs_data;
7187 mtbuf->can_reorder = true;
7188 bld.insert(std::move(mtbuf));
7189 }
7190
7191 offset += ctx->shader->info.gs.vertices_out;
7192 }
7193
7194 /* outputs for the next vertex are undefined and keeping them around can
7195 * create invalid IR with control flow */
7196 ctx->outputs.mask[i] = 0;
7197 }
7198
7199 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
7200 }
7201
7202 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
7203 {
7204 Builder bld(ctx->program, ctx->block);
7205
7206 if (cluster_size == 1) {
7207 return src;
7208 } if (op == nir_op_iand && cluster_size == 4) {
7209 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7210 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7211 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7212 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7213 } else if (op == nir_op_ior && cluster_size == 4) {
7214 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7215 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7216 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7217 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7218 //subgroupAnd(val) -> (exec & ~val) == 0
7219 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7220 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7221 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7222 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7223 //subgroupOr(val) -> (val & exec) != 0
7224 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7225 return bool_to_vector_condition(ctx, tmp);
7226 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7227 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7228 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7229 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7230 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7231 return bool_to_vector_condition(ctx, tmp);
7232 } else {
7233 //subgroupClustered{And,Or,Xor}(val, n) ->
7234 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7235 //cluster_offset = ~(n - 1) & lane_id
7236 //cluster_mask = ((1 << n) - 1)
7237 //subgroupClusteredAnd():
7238 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7239 //subgroupClusteredOr():
7240 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7241 //subgroupClusteredXor():
7242 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7243 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7244 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7245
7246 Temp tmp;
7247 if (op == nir_op_iand)
7248 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7249 else
7250 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7251
7252 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7253
7254 if (ctx->program->chip_class <= GFX7)
7255 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7256 else if (ctx->program->wave_size == 64)
7257 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7258 else
7259 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7260 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7261 if (cluster_mask != 0xffffffff)
7262 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7263
7264 Definition cmp_def = Definition();
7265 if (op == nir_op_iand) {
7266 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7267 } else if (op == nir_op_ior) {
7268 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7269 } else if (op == nir_op_ixor) {
7270 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7271 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7272 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7273 }
7274 cmp_def.setHint(vcc);
7275 return cmp_def.getTemp();
7276 }
7277 }
7278
7279 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7280 {
7281 Builder bld(ctx->program, ctx->block);
7282
7283 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7284 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7285 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7286 Temp tmp;
7287 if (op == nir_op_iand)
7288 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7289 else
7290 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7291
7292 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7293 Temp lo = lohi.def(0).getTemp();
7294 Temp hi = lohi.def(1).getTemp();
7295 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7296
7297 Definition cmp_def = Definition();
7298 if (op == nir_op_iand)
7299 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7300 else if (op == nir_op_ior)
7301 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7302 else if (op == nir_op_ixor)
7303 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7304 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7305 cmp_def.setHint(vcc);
7306 return cmp_def.getTemp();
7307 }
7308
7309 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7310 {
7311 Builder bld(ctx->program, ctx->block);
7312
7313 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7314 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7315 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7316 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7317 if (op == nir_op_iand)
7318 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7319 else if (op == nir_op_ior)
7320 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7321 else if (op == nir_op_ixor)
7322 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7323
7324 assert(false);
7325 return Temp();
7326 }
7327
7328 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7329 {
7330 Builder bld(ctx->program, ctx->block);
7331 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7332 if (src.regClass().type() == RegType::vgpr) {
7333 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7334 } else if (src.regClass() == s1) {
7335 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7336 } else if (src.regClass() == s2) {
7337 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7338 } else {
7339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7340 nir_print_instr(&instr->instr, stderr);
7341 fprintf(stderr, "\n");
7342 }
7343 }
7344
7345 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7346 {
7347 Builder bld(ctx->program, ctx->block);
7348 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7349 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7350 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7351
7352 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7353 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7354 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7355 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7356
7357 /* Build DD X/Y */
7358 if (ctx->program->chip_class >= GFX8) {
7359 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7360 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7361 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7362 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7363 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7364 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7365 } else {
7366 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7367 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7368 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7369 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7370 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7371 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7372 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7373 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7374 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7375 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7376 }
7377
7378 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7379 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7380 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7381 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7382 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7383 Temp wqm1 = bld.tmp(v1);
7384 emit_wqm(ctx, tmp1, wqm1, true);
7385 Temp wqm2 = bld.tmp(v1);
7386 emit_wqm(ctx, tmp2, wqm2, true);
7387 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7388 return;
7389 }
7390
7391 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7392 {
7393 Builder bld(ctx->program, ctx->block);
7394 switch(instr->intrinsic) {
7395 case nir_intrinsic_load_barycentric_sample:
7396 case nir_intrinsic_load_barycentric_pixel:
7397 case nir_intrinsic_load_barycentric_centroid: {
7398 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7399 Temp bary = Temp(0, s2);
7400 switch (mode) {
7401 case INTERP_MODE_SMOOTH:
7402 case INTERP_MODE_NONE:
7403 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7404 bary = get_arg(ctx, ctx->args->ac.persp_center);
7405 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7406 bary = ctx->persp_centroid;
7407 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7408 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7409 break;
7410 case INTERP_MODE_NOPERSPECTIVE:
7411 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7412 bary = get_arg(ctx, ctx->args->ac.linear_center);
7413 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7414 bary = ctx->linear_centroid;
7415 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7416 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7417 break;
7418 default:
7419 break;
7420 }
7421 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7422 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7423 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7424 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7425 Operand(p1), Operand(p2));
7426 emit_split_vector(ctx, dst, 2);
7427 break;
7428 }
7429 case nir_intrinsic_load_barycentric_model: {
7430 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7431
7432 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7433 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7434 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7435 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7436 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7437 Operand(p1), Operand(p2), Operand(p3));
7438 emit_split_vector(ctx, dst, 3);
7439 break;
7440 }
7441 case nir_intrinsic_load_barycentric_at_sample: {
7442 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7443 switch (ctx->options->key.fs.num_samples) {
7444 case 2: sample_pos_offset += 1 << 3; break;
7445 case 4: sample_pos_offset += 3 << 3; break;
7446 case 8: sample_pos_offset += 7 << 3; break;
7447 default: break;
7448 }
7449 Temp sample_pos;
7450 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7451 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7452 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7453 if (addr.type() == RegType::sgpr) {
7454 Operand offset;
7455 if (const_addr) {
7456 sample_pos_offset += const_addr->u32 << 3;
7457 offset = Operand(sample_pos_offset);
7458 } else if (ctx->options->chip_class >= GFX9) {
7459 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7460 } else {
7461 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7462 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7463 }
7464
7465 Operand off = bld.copy(bld.def(s1), Operand(offset));
7466 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7467
7468 } else if (ctx->options->chip_class >= GFX9) {
7469 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7470 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7471 } else if (ctx->options->chip_class >= GFX7) {
7472 /* addr += private_segment_buffer + sample_pos_offset */
7473 Temp tmp0 = bld.tmp(s1);
7474 Temp tmp1 = bld.tmp(s1);
7475 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7476 Definition scc_tmp = bld.def(s1, scc);
7477 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7478 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7479 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7480 Temp pck0 = bld.tmp(v1);
7481 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7482 tmp1 = as_vgpr(ctx, tmp1);
7483 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7484 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7485
7486 /* sample_pos = flat_load_dwordx2 addr */
7487 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7488 } else {
7489 assert(ctx->options->chip_class == GFX6);
7490
7491 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7492 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7493 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7494
7495 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7496 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7497
7498 sample_pos = bld.tmp(v2);
7499
7500 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7501 load->definitions[0] = Definition(sample_pos);
7502 load->operands[0] = Operand(rsrc);
7503 load->operands[1] = Operand(addr);
7504 load->operands[2] = Operand(0u);
7505 load->offset = sample_pos_offset;
7506 load->offen = 0;
7507 load->addr64 = true;
7508 load->glc = false;
7509 load->dlc = false;
7510 load->disable_wqm = false;
7511 load->barrier = barrier_none;
7512 load->can_reorder = true;
7513 ctx->block->instructions.emplace_back(std::move(load));
7514 }
7515
7516 /* sample_pos -= 0.5 */
7517 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7518 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7519 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7520 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7521 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7522
7523 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7524 break;
7525 }
7526 case nir_intrinsic_load_barycentric_at_offset: {
7527 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7528 RegClass rc = RegClass(offset.type(), 1);
7529 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7530 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7531 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7532 break;
7533 }
7534 case nir_intrinsic_load_front_face: {
7535 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7536 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7537 break;
7538 }
7539 case nir_intrinsic_load_view_index: {
7540 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7541 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7542 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7543 break;
7544 }
7545
7546 /* fallthrough */
7547 }
7548 case nir_intrinsic_load_layer_id: {
7549 unsigned idx = nir_intrinsic_base(instr);
7550 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7551 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7552 break;
7553 }
7554 case nir_intrinsic_load_frag_coord: {
7555 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7556 break;
7557 }
7558 case nir_intrinsic_load_sample_pos: {
7559 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7560 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7561 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7562 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7563 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7564 break;
7565 }
7566 case nir_intrinsic_load_tess_coord:
7567 visit_load_tess_coord(ctx, instr);
7568 break;
7569 case nir_intrinsic_load_interpolated_input:
7570 visit_load_interpolated_input(ctx, instr);
7571 break;
7572 case nir_intrinsic_store_output:
7573 visit_store_output(ctx, instr);
7574 break;
7575 case nir_intrinsic_load_input:
7576 case nir_intrinsic_load_input_vertex:
7577 visit_load_input(ctx, instr);
7578 break;
7579 case nir_intrinsic_load_output:
7580 visit_load_output(ctx, instr);
7581 break;
7582 case nir_intrinsic_load_per_vertex_input:
7583 visit_load_per_vertex_input(ctx, instr);
7584 break;
7585 case nir_intrinsic_load_per_vertex_output:
7586 visit_load_per_vertex_output(ctx, instr);
7587 break;
7588 case nir_intrinsic_store_per_vertex_output:
7589 visit_store_per_vertex_output(ctx, instr);
7590 break;
7591 case nir_intrinsic_load_ubo:
7592 visit_load_ubo(ctx, instr);
7593 break;
7594 case nir_intrinsic_load_push_constant:
7595 visit_load_push_constant(ctx, instr);
7596 break;
7597 case nir_intrinsic_load_constant:
7598 visit_load_constant(ctx, instr);
7599 break;
7600 case nir_intrinsic_vulkan_resource_index:
7601 visit_load_resource(ctx, instr);
7602 break;
7603 case nir_intrinsic_discard:
7604 visit_discard(ctx, instr);
7605 break;
7606 case nir_intrinsic_discard_if:
7607 visit_discard_if(ctx, instr);
7608 break;
7609 case nir_intrinsic_load_shared:
7610 visit_load_shared(ctx, instr);
7611 break;
7612 case nir_intrinsic_store_shared:
7613 visit_store_shared(ctx, instr);
7614 break;
7615 case nir_intrinsic_shared_atomic_add:
7616 case nir_intrinsic_shared_atomic_imin:
7617 case nir_intrinsic_shared_atomic_umin:
7618 case nir_intrinsic_shared_atomic_imax:
7619 case nir_intrinsic_shared_atomic_umax:
7620 case nir_intrinsic_shared_atomic_and:
7621 case nir_intrinsic_shared_atomic_or:
7622 case nir_intrinsic_shared_atomic_xor:
7623 case nir_intrinsic_shared_atomic_exchange:
7624 case nir_intrinsic_shared_atomic_comp_swap:
7625 visit_shared_atomic(ctx, instr);
7626 break;
7627 case nir_intrinsic_image_deref_load:
7628 visit_image_load(ctx, instr);
7629 break;
7630 case nir_intrinsic_image_deref_store:
7631 visit_image_store(ctx, instr);
7632 break;
7633 case nir_intrinsic_image_deref_atomic_add:
7634 case nir_intrinsic_image_deref_atomic_umin:
7635 case nir_intrinsic_image_deref_atomic_imin:
7636 case nir_intrinsic_image_deref_atomic_umax:
7637 case nir_intrinsic_image_deref_atomic_imax:
7638 case nir_intrinsic_image_deref_atomic_and:
7639 case nir_intrinsic_image_deref_atomic_or:
7640 case nir_intrinsic_image_deref_atomic_xor:
7641 case nir_intrinsic_image_deref_atomic_exchange:
7642 case nir_intrinsic_image_deref_atomic_comp_swap:
7643 visit_image_atomic(ctx, instr);
7644 break;
7645 case nir_intrinsic_image_deref_size:
7646 visit_image_size(ctx, instr);
7647 break;
7648 case nir_intrinsic_load_ssbo:
7649 visit_load_ssbo(ctx, instr);
7650 break;
7651 case nir_intrinsic_store_ssbo:
7652 visit_store_ssbo(ctx, instr);
7653 break;
7654 case nir_intrinsic_load_global:
7655 visit_load_global(ctx, instr);
7656 break;
7657 case nir_intrinsic_store_global:
7658 visit_store_global(ctx, instr);
7659 break;
7660 case nir_intrinsic_global_atomic_add:
7661 case nir_intrinsic_global_atomic_imin:
7662 case nir_intrinsic_global_atomic_umin:
7663 case nir_intrinsic_global_atomic_imax:
7664 case nir_intrinsic_global_atomic_umax:
7665 case nir_intrinsic_global_atomic_and:
7666 case nir_intrinsic_global_atomic_or:
7667 case nir_intrinsic_global_atomic_xor:
7668 case nir_intrinsic_global_atomic_exchange:
7669 case nir_intrinsic_global_atomic_comp_swap:
7670 visit_global_atomic(ctx, instr);
7671 break;
7672 case nir_intrinsic_ssbo_atomic_add:
7673 case nir_intrinsic_ssbo_atomic_imin:
7674 case nir_intrinsic_ssbo_atomic_umin:
7675 case nir_intrinsic_ssbo_atomic_imax:
7676 case nir_intrinsic_ssbo_atomic_umax:
7677 case nir_intrinsic_ssbo_atomic_and:
7678 case nir_intrinsic_ssbo_atomic_or:
7679 case nir_intrinsic_ssbo_atomic_xor:
7680 case nir_intrinsic_ssbo_atomic_exchange:
7681 case nir_intrinsic_ssbo_atomic_comp_swap:
7682 visit_atomic_ssbo(ctx, instr);
7683 break;
7684 case nir_intrinsic_load_scratch:
7685 visit_load_scratch(ctx, instr);
7686 break;
7687 case nir_intrinsic_store_scratch:
7688 visit_store_scratch(ctx, instr);
7689 break;
7690 case nir_intrinsic_get_buffer_size:
7691 visit_get_buffer_size(ctx, instr);
7692 break;
7693 case nir_intrinsic_control_barrier: {
7694 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7695 /* GFX6 only (thanks to a hw bug workaround):
7696 * The real barrier instruction isn’t needed, because an entire patch
7697 * always fits into a single wave.
7698 */
7699 break;
7700 }
7701
7702 if (ctx->program->workgroup_size > ctx->program->wave_size)
7703 bld.sopp(aco_opcode::s_barrier);
7704
7705 break;
7706 }
7707 case nir_intrinsic_memory_barrier_tcs_patch:
7708 case nir_intrinsic_group_memory_barrier:
7709 case nir_intrinsic_memory_barrier:
7710 case nir_intrinsic_memory_barrier_buffer:
7711 case nir_intrinsic_memory_barrier_image:
7712 case nir_intrinsic_memory_barrier_shared:
7713 emit_memory_barrier(ctx, instr);
7714 break;
7715 case nir_intrinsic_load_num_work_groups: {
7716 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7717 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7718 emit_split_vector(ctx, dst, 3);
7719 break;
7720 }
7721 case nir_intrinsic_load_local_invocation_id: {
7722 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7723 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7724 emit_split_vector(ctx, dst, 3);
7725 break;
7726 }
7727 case nir_intrinsic_load_work_group_id: {
7728 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7729 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7730 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7731 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7732 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7733 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7734 emit_split_vector(ctx, dst, 3);
7735 break;
7736 }
7737 case nir_intrinsic_load_local_invocation_index: {
7738 Temp id = emit_mbcnt(ctx, bld.def(v1));
7739
7740 /* The tg_size bits [6:11] contain the subgroup id,
7741 * we need this multiplied by the wave size, and then OR the thread id to it.
7742 */
7743 if (ctx->program->wave_size == 64) {
7744 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7745 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7746 get_arg(ctx, ctx->args->ac.tg_size));
7747 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7748 } else {
7749 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7750 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7751 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7752 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7753 }
7754 break;
7755 }
7756 case nir_intrinsic_load_subgroup_id: {
7757 if (ctx->stage == compute_cs) {
7758 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7759 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7760 } else {
7761 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7762 }
7763 break;
7764 }
7765 case nir_intrinsic_load_subgroup_invocation: {
7766 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7767 break;
7768 }
7769 case nir_intrinsic_load_num_subgroups: {
7770 if (ctx->stage == compute_cs)
7771 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7772 get_arg(ctx, ctx->args->ac.tg_size));
7773 else
7774 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7775 break;
7776 }
7777 case nir_intrinsic_ballot: {
7778 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7779 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7780 Definition tmp = bld.def(dst.regClass());
7781 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7782 if (instr->src[0].ssa->bit_size == 1) {
7783 assert(src.regClass() == bld.lm);
7784 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7785 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7786 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7787 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7788 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7789 } else {
7790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7791 nir_print_instr(&instr->instr, stderr);
7792 fprintf(stderr, "\n");
7793 }
7794 if (dst.size() != bld.lm.size()) {
7795 /* Wave32 with ballot size set to 64 */
7796 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7797 }
7798 emit_wqm(ctx, tmp.getTemp(), dst);
7799 break;
7800 }
7801 case nir_intrinsic_shuffle:
7802 case nir_intrinsic_read_invocation: {
7803 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7804 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7805 emit_uniform_subgroup(ctx, instr, src);
7806 } else {
7807 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7808 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7809 tid = bld.as_uniform(tid);
7810 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7811 if (src.regClass() == v1) {
7812 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7813 } else if (src.regClass() == v2) {
7814 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7815 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7816 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7817 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7818 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7819 emit_split_vector(ctx, dst, 2);
7820 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7821 assert(src.regClass() == bld.lm);
7822 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7823 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7824 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7825 assert(src.regClass() == bld.lm);
7826 Temp tmp;
7827 if (ctx->program->chip_class <= GFX7)
7828 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7829 else if (ctx->program->wave_size == 64)
7830 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7831 else
7832 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7833 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7834 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7835 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7836 } else {
7837 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7838 nir_print_instr(&instr->instr, stderr);
7839 fprintf(stderr, "\n");
7840 }
7841 }
7842 break;
7843 }
7844 case nir_intrinsic_load_sample_id: {
7845 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7846 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7847 break;
7848 }
7849 case nir_intrinsic_load_sample_mask_in: {
7850 visit_load_sample_mask_in(ctx, instr);
7851 break;
7852 }
7853 case nir_intrinsic_read_first_invocation: {
7854 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7855 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7856 if (src.regClass() == v1) {
7857 emit_wqm(ctx,
7858 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7859 dst);
7860 } else if (src.regClass() == v2) {
7861 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7862 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7863 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7864 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7865 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7866 emit_split_vector(ctx, dst, 2);
7867 } else if (instr->dest.ssa.bit_size == 1) {
7868 assert(src.regClass() == bld.lm);
7869 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7870 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7871 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7872 } else if (src.regClass() == s1) {
7873 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7874 } else if (src.regClass() == s2) {
7875 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7876 } else {
7877 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7878 nir_print_instr(&instr->instr, stderr);
7879 fprintf(stderr, "\n");
7880 }
7881 break;
7882 }
7883 case nir_intrinsic_vote_all: {
7884 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7885 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7886 assert(src.regClass() == bld.lm);
7887 assert(dst.regClass() == bld.lm);
7888
7889 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7890 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7891 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7892 break;
7893 }
7894 case nir_intrinsic_vote_any: {
7895 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7896 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7897 assert(src.regClass() == bld.lm);
7898 assert(dst.regClass() == bld.lm);
7899
7900 Temp tmp = bool_to_scalar_condition(ctx, src);
7901 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7902 break;
7903 }
7904 case nir_intrinsic_reduce:
7905 case nir_intrinsic_inclusive_scan:
7906 case nir_intrinsic_exclusive_scan: {
7907 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7908 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7909 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7910 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7911 nir_intrinsic_cluster_size(instr) : 0;
7912 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7913
7914 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7915 emit_uniform_subgroup(ctx, instr, src);
7916 } else if (instr->dest.ssa.bit_size == 1) {
7917 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7918 op = nir_op_iand;
7919 else if (op == nir_op_iadd)
7920 op = nir_op_ixor;
7921 else if (op == nir_op_umax || op == nir_op_imax)
7922 op = nir_op_ior;
7923 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7924
7925 switch (instr->intrinsic) {
7926 case nir_intrinsic_reduce:
7927 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7928 break;
7929 case nir_intrinsic_exclusive_scan:
7930 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7931 break;
7932 case nir_intrinsic_inclusive_scan:
7933 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7934 break;
7935 default:
7936 assert(false);
7937 }
7938 } else if (cluster_size == 1) {
7939 bld.copy(Definition(dst), src);
7940 } else {
7941 src = as_vgpr(ctx, src);
7942
7943 ReduceOp reduce_op;
7944 switch (op) {
7945 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7946 CASE(iadd)
7947 CASE(imul)
7948 CASE(fadd)
7949 CASE(fmul)
7950 CASE(imin)
7951 CASE(umin)
7952 CASE(fmin)
7953 CASE(imax)
7954 CASE(umax)
7955 CASE(fmax)
7956 CASE(iand)
7957 CASE(ior)
7958 CASE(ixor)
7959 default:
7960 unreachable("unknown reduction op");
7961 #undef CASE
7962 }
7963
7964 aco_opcode aco_op;
7965 switch (instr->intrinsic) {
7966 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7967 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7968 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7969 default:
7970 unreachable("unknown reduce intrinsic");
7971 }
7972
7973 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7974 reduce->operands[0] = Operand(src);
7975 // filled in by aco_reduce_assign.cpp, used internally as part of the
7976 // reduce sequence
7977 assert(dst.size() == 1 || dst.size() == 2);
7978 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7979 reduce->operands[2] = Operand(v1.as_linear());
7980
7981 Temp tmp_dst = bld.tmp(dst.regClass());
7982 reduce->definitions[0] = Definition(tmp_dst);
7983 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7984 reduce->definitions[2] = Definition();
7985 reduce->definitions[3] = Definition(scc, s1);
7986 reduce->definitions[4] = Definition();
7987 reduce->reduce_op = reduce_op;
7988 reduce->cluster_size = cluster_size;
7989 ctx->block->instructions.emplace_back(std::move(reduce));
7990
7991 emit_wqm(ctx, tmp_dst, dst);
7992 }
7993 break;
7994 }
7995 case nir_intrinsic_quad_broadcast: {
7996 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7997 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7998 emit_uniform_subgroup(ctx, instr, src);
7999 } else {
8000 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8001 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
8002 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
8003
8004 if (instr->dest.ssa.bit_size == 1) {
8005 assert(src.regClass() == bld.lm);
8006 assert(dst.regClass() == bld.lm);
8007 uint32_t half_mask = 0x11111111u << lane;
8008 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
8009 Temp tmp = bld.tmp(bld.lm);
8010 bld.sop1(Builder::s_wqm, Definition(tmp),
8011 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
8012 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
8013 emit_wqm(ctx, tmp, dst);
8014 } else if (instr->dest.ssa.bit_size == 32) {
8015 if (ctx->program->chip_class >= GFX8)
8016 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
8017 else
8018 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
8019 } else if (instr->dest.ssa.bit_size == 64) {
8020 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8021 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8022 if (ctx->program->chip_class >= GFX8) {
8023 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
8024 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
8025 } else {
8026 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
8027 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
8028 }
8029 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8030 emit_split_vector(ctx, dst, 2);
8031 } else {
8032 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8033 nir_print_instr(&instr->instr, stderr);
8034 fprintf(stderr, "\n");
8035 }
8036 }
8037 break;
8038 }
8039 case nir_intrinsic_quad_swap_horizontal:
8040 case nir_intrinsic_quad_swap_vertical:
8041 case nir_intrinsic_quad_swap_diagonal:
8042 case nir_intrinsic_quad_swizzle_amd: {
8043 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8044 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
8045 emit_uniform_subgroup(ctx, instr, src);
8046 break;
8047 }
8048 uint16_t dpp_ctrl = 0;
8049 switch (instr->intrinsic) {
8050 case nir_intrinsic_quad_swap_horizontal:
8051 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
8052 break;
8053 case nir_intrinsic_quad_swap_vertical:
8054 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
8055 break;
8056 case nir_intrinsic_quad_swap_diagonal:
8057 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
8058 break;
8059 case nir_intrinsic_quad_swizzle_amd:
8060 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
8061 break;
8062 default:
8063 break;
8064 }
8065 if (ctx->program->chip_class < GFX8)
8066 dpp_ctrl |= (1 << 15);
8067
8068 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8069 if (instr->dest.ssa.bit_size == 1) {
8070 assert(src.regClass() == bld.lm);
8071 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
8072 if (ctx->program->chip_class >= GFX8)
8073 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
8074 else
8075 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
8076 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
8077 emit_wqm(ctx, tmp, dst);
8078 } else if (instr->dest.ssa.bit_size == 32) {
8079 Temp tmp;
8080 if (ctx->program->chip_class >= GFX8)
8081 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
8082 else
8083 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
8084 emit_wqm(ctx, tmp, dst);
8085 } else if (instr->dest.ssa.bit_size == 64) {
8086 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8087 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8088 if (ctx->program->chip_class >= GFX8) {
8089 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
8090 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
8091 } else {
8092 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
8093 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
8094 }
8095 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8096 emit_split_vector(ctx, dst, 2);
8097 } else {
8098 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8099 nir_print_instr(&instr->instr, stderr);
8100 fprintf(stderr, "\n");
8101 }
8102 break;
8103 }
8104 case nir_intrinsic_masked_swizzle_amd: {
8105 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8106 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
8107 emit_uniform_subgroup(ctx, instr, src);
8108 break;
8109 }
8110 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8111 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
8112 if (dst.regClass() == v1) {
8113 emit_wqm(ctx,
8114 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
8115 dst);
8116 } else if (dst.regClass() == v2) {
8117 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8118 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8119 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
8120 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
8121 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8122 emit_split_vector(ctx, dst, 2);
8123 } else {
8124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8125 nir_print_instr(&instr->instr, stderr);
8126 fprintf(stderr, "\n");
8127 }
8128 break;
8129 }
8130 case nir_intrinsic_write_invocation_amd: {
8131 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
8132 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
8133 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
8134 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8135 if (dst.regClass() == v1) {
8136 /* src2 is ignored for writelane. RA assigns the same reg for dst */
8137 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
8138 } else if (dst.regClass() == v2) {
8139 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
8140 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
8141 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
8142 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
8143 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
8144 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
8145 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8146 emit_split_vector(ctx, dst, 2);
8147 } else {
8148 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8149 nir_print_instr(&instr->instr, stderr);
8150 fprintf(stderr, "\n");
8151 }
8152 break;
8153 }
8154 case nir_intrinsic_mbcnt_amd: {
8155 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8156 RegClass rc = RegClass(src.type(), 1);
8157 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
8158 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
8159 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8160 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
8161 emit_wqm(ctx, wqm_tmp, dst);
8162 break;
8163 }
8164 case nir_intrinsic_load_helper_invocation: {
8165 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8166 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
8167 ctx->block->kind |= block_kind_needs_lowering;
8168 ctx->program->needs_exact = true;
8169 break;
8170 }
8171 case nir_intrinsic_is_helper_invocation: {
8172 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8173 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
8174 ctx->block->kind |= block_kind_needs_lowering;
8175 ctx->program->needs_exact = true;
8176 break;
8177 }
8178 case nir_intrinsic_demote:
8179 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
8180
8181 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8182 ctx->cf_info.exec_potentially_empty_discard = true;
8183 ctx->block->kind |= block_kind_uses_demote;
8184 ctx->program->needs_exact = true;
8185 break;
8186 case nir_intrinsic_demote_if: {
8187 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8188 assert(src.regClass() == bld.lm);
8189 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
8190 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
8191
8192 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8193 ctx->cf_info.exec_potentially_empty_discard = true;
8194 ctx->block->kind |= block_kind_uses_demote;
8195 ctx->program->needs_exact = true;
8196 break;
8197 }
8198 case nir_intrinsic_first_invocation: {
8199 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
8200 get_ssa_temp(ctx, &instr->dest.ssa));
8201 break;
8202 }
8203 case nir_intrinsic_shader_clock:
8204 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
8205 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
8206 break;
8207 case nir_intrinsic_load_vertex_id_zero_base: {
8208 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8209 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8210 break;
8211 }
8212 case nir_intrinsic_load_first_vertex: {
8213 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8214 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8215 break;
8216 }
8217 case nir_intrinsic_load_base_instance: {
8218 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8219 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8220 break;
8221 }
8222 case nir_intrinsic_load_instance_id: {
8223 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8224 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8225 break;
8226 }
8227 case nir_intrinsic_load_draw_id: {
8228 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8229 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8230 break;
8231 }
8232 case nir_intrinsic_load_invocation_id: {
8233 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8234
8235 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8236 if (ctx->options->chip_class >= GFX10)
8237 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8238 else
8239 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8240 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8241 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8242 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8243 } else {
8244 unreachable("Unsupported stage for load_invocation_id");
8245 }
8246
8247 break;
8248 }
8249 case nir_intrinsic_load_primitive_id: {
8250 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8251
8252 switch (ctx->shader->info.stage) {
8253 case MESA_SHADER_GEOMETRY:
8254 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8255 break;
8256 case MESA_SHADER_TESS_CTRL:
8257 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8258 break;
8259 case MESA_SHADER_TESS_EVAL:
8260 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8261 break;
8262 default:
8263 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8264 }
8265
8266 break;
8267 }
8268 case nir_intrinsic_load_patch_vertices_in: {
8269 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8270 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8271
8272 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8273 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8274 break;
8275 }
8276 case nir_intrinsic_emit_vertex_with_counter: {
8277 visit_emit_vertex_with_counter(ctx, instr);
8278 break;
8279 }
8280 case nir_intrinsic_end_primitive_with_counter: {
8281 unsigned stream = nir_intrinsic_stream_id(instr);
8282 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8283 break;
8284 }
8285 case nir_intrinsic_set_vertex_count: {
8286 /* unused, the HW keeps track of this for us */
8287 break;
8288 }
8289 default:
8290 fprintf(stderr, "Unimplemented intrinsic instr: ");
8291 nir_print_instr(&instr->instr, stderr);
8292 fprintf(stderr, "\n");
8293 abort();
8294
8295 break;
8296 }
8297 }
8298
8299
8300 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8301 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8302 enum glsl_base_type *stype)
8303 {
8304 nir_deref_instr *texture_deref_instr = NULL;
8305 nir_deref_instr *sampler_deref_instr = NULL;
8306 int plane = -1;
8307
8308 for (unsigned i = 0; i < instr->num_srcs; i++) {
8309 switch (instr->src[i].src_type) {
8310 case nir_tex_src_texture_deref:
8311 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8312 break;
8313 case nir_tex_src_sampler_deref:
8314 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8315 break;
8316 case nir_tex_src_plane:
8317 plane = nir_src_as_int(instr->src[i].src);
8318 break;
8319 default:
8320 break;
8321 }
8322 }
8323
8324 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8325
8326 if (!sampler_deref_instr)
8327 sampler_deref_instr = texture_deref_instr;
8328
8329 if (plane >= 0) {
8330 assert(instr->op != nir_texop_txf_ms &&
8331 instr->op != nir_texop_samples_identical);
8332 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8333 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8334 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8335 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8336 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8337 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8338 } else {
8339 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8340 }
8341 if (samp_ptr) {
8342 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8343
8344 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8345 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8346 Builder bld(ctx->program, ctx->block);
8347
8348 /* to avoid unnecessary moves, we split and recombine sampler and image */
8349 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8350 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8351 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8352 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8353 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8354 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8355 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8356 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8357
8358 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8359 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8360 img[0], img[1], img[2], img[3],
8361 img[4], img[5], img[6], img[7]);
8362 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8363 samp[0], samp[1], samp[2], samp[3]);
8364 }
8365 }
8366 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8367 instr->op == nir_texop_samples_identical))
8368 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8369 }
8370
8371 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8372 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8373 {
8374 Builder bld(ctx->program, ctx->block);
8375
8376 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8377 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8378 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8379
8380 Operand neg_one(0xbf800000u);
8381 Operand one(0x3f800000u);
8382 Operand two(0x40000000u);
8383 Operand four(0x40800000u);
8384
8385 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8386 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8387 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8388
8389 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8390 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8391 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8392 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8393
8394 // select sc
8395 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8396 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8397 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8398 one, is_ma_y);
8399 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8400
8401 // select tc
8402 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8403 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8404 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8405
8406 // select ma
8407 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8408 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8409 deriv_z, is_ma_z);
8410 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8411 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8412 }
8413
8414 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8415 {
8416 Builder bld(ctx->program, ctx->block);
8417 Temp ma, tc, sc, id;
8418
8419 if (is_array) {
8420 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8421
8422 // see comment in ac_prepare_cube_coords()
8423 if (ctx->options->chip_class <= GFX8)
8424 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8425 }
8426
8427 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8428
8429 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8430 vop3a->operands[0] = Operand(ma);
8431 vop3a->abs[0] = true;
8432 Temp invma = bld.tmp(v1);
8433 vop3a->definitions[0] = Definition(invma);
8434 ctx->block->instructions.emplace_back(std::move(vop3a));
8435
8436 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8437 if (!is_deriv)
8438 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8439
8440 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8441 if (!is_deriv)
8442 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8443
8444 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8445
8446 if (is_deriv) {
8447 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8448 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8449
8450 for (unsigned i = 0; i < 2; i++) {
8451 // see comment in ac_prepare_cube_coords()
8452 Temp deriv_ma;
8453 Temp deriv_sc, deriv_tc;
8454 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8455 &deriv_ma, &deriv_sc, &deriv_tc);
8456
8457 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8458
8459 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8460 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8461 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8462 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8463 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8464 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8465 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8466 }
8467
8468 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8469 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8470 }
8471
8472 if (is_array)
8473 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8474 coords.resize(3);
8475 coords[0] = sc;
8476 coords[1] = tc;
8477 coords[2] = id;
8478 }
8479
8480 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8481 {
8482 if (vec->parent_instr->type != nir_instr_type_alu)
8483 return;
8484 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8485 if (vec_instr->op != nir_op_vec(vec->num_components))
8486 return;
8487
8488 for (unsigned i = 0; i < vec->num_components; i++) {
8489 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8490 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8491 }
8492 }
8493
8494 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8495 {
8496 Builder bld(ctx->program, ctx->block);
8497 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8498 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8499 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8500 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8501 std::vector<Temp> coords;
8502 std::vector<Temp> derivs;
8503 nir_const_value *sample_index_cv = NULL;
8504 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8505 enum glsl_base_type stype;
8506 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8507
8508 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8509 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8510 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8511 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8512
8513 for (unsigned i = 0; i < instr->num_srcs; i++) {
8514 switch (instr->src[i].src_type) {
8515 case nir_tex_src_coord: {
8516 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8517 for (unsigned i = 0; i < coord.size(); i++)
8518 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8519 break;
8520 }
8521 case nir_tex_src_bias:
8522 if (instr->op == nir_texop_txb) {
8523 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8524 has_bias = true;
8525 }
8526 break;
8527 case nir_tex_src_lod: {
8528 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8529
8530 if (val && val->f32 <= 0.0) {
8531 level_zero = true;
8532 } else {
8533 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8534 has_lod = true;
8535 }
8536 break;
8537 }
8538 case nir_tex_src_comparator:
8539 if (instr->is_shadow) {
8540 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8541 has_compare = true;
8542 }
8543 break;
8544 case nir_tex_src_offset:
8545 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8546 get_const_vec(instr->src[i].src.ssa, const_offset);
8547 has_offset = true;
8548 break;
8549 case nir_tex_src_ddx:
8550 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8551 has_ddx = true;
8552 break;
8553 case nir_tex_src_ddy:
8554 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8555 has_ddy = true;
8556 break;
8557 case nir_tex_src_ms_index:
8558 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8559 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8560 has_sample_index = true;
8561 break;
8562 case nir_tex_src_texture_offset:
8563 case nir_tex_src_sampler_offset:
8564 default:
8565 break;
8566 }
8567 }
8568
8569 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8570 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8571
8572 if (instr->op == nir_texop_texture_samples) {
8573 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8574
8575 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8576 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8577 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8578 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8579
8580 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8581 samples, Operand(1u), bld.scc(is_msaa));
8582 return;
8583 }
8584
8585 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8586 aco_ptr<Instruction> tmp_instr;
8587 Temp acc, pack = Temp();
8588
8589 uint32_t pack_const = 0;
8590 for (unsigned i = 0; i < offset.size(); i++) {
8591 if (!const_offset[i])
8592 continue;
8593 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8594 }
8595
8596 if (offset.type() == RegType::sgpr) {
8597 for (unsigned i = 0; i < offset.size(); i++) {
8598 if (const_offset[i])
8599 continue;
8600
8601 acc = emit_extract_vector(ctx, offset, i, s1);
8602 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8603
8604 if (i) {
8605 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8606 }
8607
8608 if (pack == Temp()) {
8609 pack = acc;
8610 } else {
8611 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8612 }
8613 }
8614
8615 if (pack_const && pack != Temp())
8616 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8617 } else {
8618 for (unsigned i = 0; i < offset.size(); i++) {
8619 if (const_offset[i])
8620 continue;
8621
8622 acc = emit_extract_vector(ctx, offset, i, v1);
8623 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8624
8625 if (i) {
8626 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8627 }
8628
8629 if (pack == Temp()) {
8630 pack = acc;
8631 } else {
8632 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8633 }
8634 }
8635
8636 if (pack_const && pack != Temp())
8637 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8638 }
8639 if (pack_const && pack == Temp())
8640 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8641 else if (pack == Temp())
8642 has_offset = false;
8643 else
8644 offset = pack;
8645 }
8646
8647 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8648 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8649
8650 /* pack derivatives */
8651 if (has_ddx || has_ddy) {
8652 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8653 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8654 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8655 derivs = {ddx, zero, ddy, zero};
8656 } else {
8657 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8658 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8659 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8660 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8661 }
8662 has_derivs = true;
8663 }
8664
8665 if (instr->coord_components > 1 &&
8666 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8667 instr->is_array &&
8668 instr->op != nir_texop_txf)
8669 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8670
8671 if (instr->coord_components > 2 &&
8672 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8673 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8674 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8675 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8676 instr->is_array &&
8677 instr->op != nir_texop_txf &&
8678 instr->op != nir_texop_txf_ms &&
8679 instr->op != nir_texop_fragment_fetch &&
8680 instr->op != nir_texop_fragment_mask_fetch)
8681 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8682
8683 if (ctx->options->chip_class == GFX9 &&
8684 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8685 instr->op != nir_texop_lod && instr->coord_components) {
8686 assert(coords.size() > 0 && coords.size() < 3);
8687
8688 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8689 Operand((uint32_t) 0) :
8690 Operand((uint32_t) 0x3f000000)));
8691 }
8692
8693 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8694
8695 if (instr->op == nir_texop_samples_identical)
8696 resource = fmask_ptr;
8697
8698 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8699 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8700 instr->op != nir_texop_txs &&
8701 instr->op != nir_texop_fragment_fetch &&
8702 instr->op != nir_texop_fragment_mask_fetch) {
8703 assert(has_sample_index);
8704 Operand op(sample_index);
8705 if (sample_index_cv)
8706 op = Operand(sample_index_cv->u32);
8707 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8708 }
8709
8710 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8711 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8712 Temp off = emit_extract_vector(ctx, offset, i, v1);
8713 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8714 }
8715 has_offset = false;
8716 }
8717
8718 /* Build tex instruction */
8719 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8720 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8721 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8722 : 0;
8723 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8724 Temp tmp_dst = dst;
8725
8726 /* gather4 selects the component by dmask and always returns vec4 */
8727 if (instr->op == nir_texop_tg4) {
8728 assert(instr->dest.ssa.num_components == 4);
8729 if (instr->is_shadow)
8730 dmask = 1;
8731 else
8732 dmask = 1 << instr->component;
8733 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8734 tmp_dst = bld.tmp(v4);
8735 } else if (instr->op == nir_texop_samples_identical) {
8736 tmp_dst = bld.tmp(v1);
8737 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8738 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8739 }
8740
8741 aco_ptr<MIMG_instruction> tex;
8742 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8743 if (!has_lod)
8744 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8745
8746 bool div_by_6 = instr->op == nir_texop_txs &&
8747 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8748 instr->is_array &&
8749 (dmask & (1 << 2));
8750 if (tmp_dst.id() == dst.id() && div_by_6)
8751 tmp_dst = bld.tmp(tmp_dst.regClass());
8752
8753 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8754 tex->operands[0] = Operand(resource);
8755 tex->operands[1] = Operand(s4); /* no sampler */
8756 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8757 if (ctx->options->chip_class == GFX9 &&
8758 instr->op == nir_texop_txs &&
8759 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8760 instr->is_array) {
8761 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8762 } else if (instr->op == nir_texop_query_levels) {
8763 tex->dmask = 1 << 3;
8764 } else {
8765 tex->dmask = dmask;
8766 }
8767 tex->da = da;
8768 tex->definitions[0] = Definition(tmp_dst);
8769 tex->dim = dim;
8770 tex->can_reorder = true;
8771 ctx->block->instructions.emplace_back(std::move(tex));
8772
8773 if (div_by_6) {
8774 /* divide 3rd value by 6 by multiplying with magic number */
8775 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8776 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8777 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8778 assert(instr->dest.ssa.num_components == 3);
8779 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8780 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8781 emit_extract_vector(ctx, tmp_dst, 0, v1),
8782 emit_extract_vector(ctx, tmp_dst, 1, v1),
8783 by_6);
8784
8785 }
8786
8787 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8788 return;
8789 }
8790
8791 Temp tg4_compare_cube_wa64 = Temp();
8792
8793 if (tg4_integer_workarounds) {
8794 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8795 tex->operands[0] = Operand(resource);
8796 tex->operands[1] = Operand(s4); /* no sampler */
8797 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8798 tex->dim = dim;
8799 tex->dmask = 0x3;
8800 tex->da = da;
8801 Temp size = bld.tmp(v2);
8802 tex->definitions[0] = Definition(size);
8803 tex->can_reorder = true;
8804 ctx->block->instructions.emplace_back(std::move(tex));
8805 emit_split_vector(ctx, size, size.size());
8806
8807 Temp half_texel[2];
8808 for (unsigned i = 0; i < 2; i++) {
8809 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8810 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8811 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8812 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8813 }
8814
8815 Temp new_coords[2] = {
8816 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8817 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8818 };
8819
8820 if (tg4_integer_cube_workaround) {
8821 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8822 Temp desc[resource.size()];
8823 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8824 Format::PSEUDO, 1, resource.size())};
8825 split->operands[0] = Operand(resource);
8826 for (unsigned i = 0; i < resource.size(); i++) {
8827 desc[i] = bld.tmp(s1);
8828 split->definitions[i] = Definition(desc[i]);
8829 }
8830 ctx->block->instructions.emplace_back(std::move(split));
8831
8832 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8833 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8834 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8835
8836 Temp nfmt;
8837 if (stype == GLSL_TYPE_UINT) {
8838 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8839 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8840 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8841 bld.scc(compare_cube_wa));
8842 } else {
8843 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8844 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8845 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8846 bld.scc(compare_cube_wa));
8847 }
8848 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8849 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8850
8851 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8852
8853 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8854 Operand((uint32_t)C_008F14_NUM_FORMAT));
8855 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8856
8857 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8858 Format::PSEUDO, resource.size(), 1)};
8859 for (unsigned i = 0; i < resource.size(); i++)
8860 vec->operands[i] = Operand(desc[i]);
8861 resource = bld.tmp(resource.regClass());
8862 vec->definitions[0] = Definition(resource);
8863 ctx->block->instructions.emplace_back(std::move(vec));
8864
8865 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8866 new_coords[0], coords[0], tg4_compare_cube_wa64);
8867 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8868 new_coords[1], coords[1], tg4_compare_cube_wa64);
8869 }
8870 coords[0] = new_coords[0];
8871 coords[1] = new_coords[1];
8872 }
8873
8874 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8875 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8876
8877 assert(coords.size() == 1);
8878 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8879 aco_opcode op;
8880 switch (last_bit) {
8881 case 1:
8882 op = aco_opcode::buffer_load_format_x; break;
8883 case 2:
8884 op = aco_opcode::buffer_load_format_xy; break;
8885 case 3:
8886 op = aco_opcode::buffer_load_format_xyz; break;
8887 case 4:
8888 op = aco_opcode::buffer_load_format_xyzw; break;
8889 default:
8890 unreachable("Tex instruction loads more than 4 components.");
8891 }
8892
8893 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8894 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8895 tmp_dst = dst;
8896 else
8897 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8898
8899 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8900 mubuf->operands[0] = Operand(resource);
8901 mubuf->operands[1] = Operand(coords[0]);
8902 mubuf->operands[2] = Operand((uint32_t) 0);
8903 mubuf->definitions[0] = Definition(tmp_dst);
8904 mubuf->idxen = true;
8905 mubuf->can_reorder = true;
8906 ctx->block->instructions.emplace_back(std::move(mubuf));
8907
8908 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8909 return;
8910 }
8911
8912 /* gather MIMG address components */
8913 std::vector<Temp> args;
8914 if (has_offset)
8915 args.emplace_back(offset);
8916 if (has_bias)
8917 args.emplace_back(bias);
8918 if (has_compare)
8919 args.emplace_back(compare);
8920 if (has_derivs)
8921 args.insert(args.end(), derivs.begin(), derivs.end());
8922
8923 args.insert(args.end(), coords.begin(), coords.end());
8924 if (has_sample_index)
8925 args.emplace_back(sample_index);
8926 if (has_lod)
8927 args.emplace_back(lod);
8928
8929 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8930 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8931 vec->definitions[0] = Definition(arg);
8932 for (unsigned i = 0; i < args.size(); i++)
8933 vec->operands[i] = Operand(args[i]);
8934 ctx->block->instructions.emplace_back(std::move(vec));
8935
8936
8937 if (instr->op == nir_texop_txf ||
8938 instr->op == nir_texop_txf_ms ||
8939 instr->op == nir_texop_samples_identical ||
8940 instr->op == nir_texop_fragment_fetch ||
8941 instr->op == nir_texop_fragment_mask_fetch) {
8942 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8943 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8944 tex->operands[0] = Operand(resource);
8945 tex->operands[1] = Operand(s4); /* no sampler */
8946 tex->operands[2] = Operand(arg);
8947 tex->dim = dim;
8948 tex->dmask = dmask;
8949 tex->unrm = true;
8950 tex->da = da;
8951 tex->definitions[0] = Definition(tmp_dst);
8952 tex->can_reorder = true;
8953 ctx->block->instructions.emplace_back(std::move(tex));
8954
8955 if (instr->op == nir_texop_samples_identical) {
8956 assert(dmask == 1 && dst.regClass() == v1);
8957 assert(dst.id() != tmp_dst.id());
8958
8959 Temp tmp = bld.tmp(bld.lm);
8960 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8961 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8962
8963 } else {
8964 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8965 }
8966 return;
8967 }
8968
8969 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8970 aco_opcode opcode = aco_opcode::image_sample;
8971 if (has_offset) { /* image_sample_*_o */
8972 if (has_compare) {
8973 opcode = aco_opcode::image_sample_c_o;
8974 if (has_derivs)
8975 opcode = aco_opcode::image_sample_c_d_o;
8976 if (has_bias)
8977 opcode = aco_opcode::image_sample_c_b_o;
8978 if (level_zero)
8979 opcode = aco_opcode::image_sample_c_lz_o;
8980 if (has_lod)
8981 opcode = aco_opcode::image_sample_c_l_o;
8982 } else {
8983 opcode = aco_opcode::image_sample_o;
8984 if (has_derivs)
8985 opcode = aco_opcode::image_sample_d_o;
8986 if (has_bias)
8987 opcode = aco_opcode::image_sample_b_o;
8988 if (level_zero)
8989 opcode = aco_opcode::image_sample_lz_o;
8990 if (has_lod)
8991 opcode = aco_opcode::image_sample_l_o;
8992 }
8993 } else { /* no offset */
8994 if (has_compare) {
8995 opcode = aco_opcode::image_sample_c;
8996 if (has_derivs)
8997 opcode = aco_opcode::image_sample_c_d;
8998 if (has_bias)
8999 opcode = aco_opcode::image_sample_c_b;
9000 if (level_zero)
9001 opcode = aco_opcode::image_sample_c_lz;
9002 if (has_lod)
9003 opcode = aco_opcode::image_sample_c_l;
9004 } else {
9005 opcode = aco_opcode::image_sample;
9006 if (has_derivs)
9007 opcode = aco_opcode::image_sample_d;
9008 if (has_bias)
9009 opcode = aco_opcode::image_sample_b;
9010 if (level_zero)
9011 opcode = aco_opcode::image_sample_lz;
9012 if (has_lod)
9013 opcode = aco_opcode::image_sample_l;
9014 }
9015 }
9016
9017 if (instr->op == nir_texop_tg4) {
9018 if (has_offset) {
9019 opcode = aco_opcode::image_gather4_lz_o;
9020 if (has_compare)
9021 opcode = aco_opcode::image_gather4_c_lz_o;
9022 } else {
9023 opcode = aco_opcode::image_gather4_lz;
9024 if (has_compare)
9025 opcode = aco_opcode::image_gather4_c_lz;
9026 }
9027 } else if (instr->op == nir_texop_lod) {
9028 opcode = aco_opcode::image_get_lod;
9029 }
9030
9031 /* we don't need the bias, sample index, compare value or offset to be
9032 * computed in WQM but if the p_create_vector copies the coordinates, then it
9033 * needs to be in WQM */
9034 if (ctx->stage == fragment_fs &&
9035 !has_derivs && !has_lod && !level_zero &&
9036 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
9037 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
9038 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
9039
9040 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
9041 tex->operands[0] = Operand(resource);
9042 tex->operands[1] = Operand(sampler);
9043 tex->operands[2] = Operand(arg);
9044 tex->dim = dim;
9045 tex->dmask = dmask;
9046 tex->da = da;
9047 tex->definitions[0] = Definition(tmp_dst);
9048 tex->can_reorder = true;
9049 ctx->block->instructions.emplace_back(std::move(tex));
9050
9051 if (tg4_integer_cube_workaround) {
9052 assert(tmp_dst.id() != dst.id());
9053 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
9054
9055 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
9056 Temp val[4];
9057 for (unsigned i = 0; i < dst.size(); i++) {
9058 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
9059 Temp cvt_val;
9060 if (stype == GLSL_TYPE_UINT)
9061 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
9062 else
9063 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
9064 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
9065 }
9066 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
9067 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
9068 val[0], val[1], val[2], val[3]);
9069 }
9070 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
9071 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
9072
9073 }
9074
9075
9076 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
9077 {
9078 Temp tmp = get_ssa_temp(ctx, ssa);
9079 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
9080 return Operand(tmp.regClass());
9081 else
9082 return Operand(tmp);
9083 }
9084
9085 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
9086 {
9087 aco_ptr<Pseudo_instruction> phi;
9088 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
9089 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
9090
9091 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
9092 logical |= ctx->block->kind & block_kind_merge;
9093 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
9094
9095 /* we want a sorted list of sources, since the predecessor list is also sorted */
9096 std::map<unsigned, nir_ssa_def*> phi_src;
9097 nir_foreach_phi_src(src, instr)
9098 phi_src[src->pred->index] = src->src.ssa;
9099
9100 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
9101 unsigned num_operands = 0;
9102 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
9103 unsigned num_defined = 0;
9104 unsigned cur_pred_idx = 0;
9105 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
9106 if (cur_pred_idx < preds.size()) {
9107 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
9108 unsigned block = ctx->cf_info.nir_to_aco[src.first];
9109 unsigned skipped = 0;
9110 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
9111 skipped++;
9112 if (cur_pred_idx + skipped < preds.size()) {
9113 for (unsigned i = 0; i < skipped; i++)
9114 operands[num_operands++] = Operand(dst.regClass());
9115 cur_pred_idx += skipped;
9116 } else {
9117 continue;
9118 }
9119 }
9120 /* Handle missing predecessors at the end. This shouldn't happen with loop
9121 * headers and we can't ignore these sources for loop header phis. */
9122 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
9123 continue;
9124 cur_pred_idx++;
9125 Operand op = get_phi_operand(ctx, src.second);
9126 operands[num_operands++] = op;
9127 num_defined += !op.isUndefined();
9128 }
9129 /* handle block_kind_continue_or_break at loop exit blocks */
9130 while (cur_pred_idx++ < preds.size())
9131 operands[num_operands++] = Operand(dst.regClass());
9132
9133 /* If the loop ends with a break, still add a linear continue edge in case
9134 * that break is divergent or continue_or_break is used. We'll either remove
9135 * this operand later in visit_loop() if it's not necessary or replace the
9136 * undef with something correct. */
9137 if (!logical && ctx->block->kind & block_kind_loop_header) {
9138 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
9139 nir_block *last = nir_loop_last_block(loop);
9140 if (last->successors[0] != instr->instr.block)
9141 operands[num_operands++] = Operand(RegClass());
9142 }
9143
9144 if (num_defined == 0) {
9145 Builder bld(ctx->program, ctx->block);
9146 if (dst.regClass() == s1) {
9147 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
9148 } else if (dst.regClass() == v1) {
9149 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
9150 } else {
9151 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9152 for (unsigned i = 0; i < dst.size(); i++)
9153 vec->operands[i] = Operand(0u);
9154 vec->definitions[0] = Definition(dst);
9155 ctx->block->instructions.emplace_back(std::move(vec));
9156 }
9157 return;
9158 }
9159
9160 /* we can use a linear phi in some cases if one src is undef */
9161 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
9162 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
9163
9164 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
9165 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
9166 assert(invert->kind & block_kind_invert);
9167
9168 unsigned then_block = invert->linear_preds[0];
9169
9170 Block* insert_block = NULL;
9171 for (unsigned i = 0; i < num_operands; i++) {
9172 Operand op = operands[i];
9173 if (op.isUndefined())
9174 continue;
9175 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
9176 phi->operands[0] = op;
9177 break;
9178 }
9179 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
9180 phi->operands[1] = Operand(dst.regClass());
9181 phi->definitions[0] = Definition(dst);
9182 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
9183 return;
9184 }
9185
9186 /* try to scalarize vector phis */
9187 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
9188 // TODO: scalarize linear phis on divergent ifs
9189 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
9190 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
9191 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
9192 Operand src = operands[i];
9193 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
9194 can_scalarize = false;
9195 }
9196 if (can_scalarize) {
9197 unsigned num_components = instr->dest.ssa.num_components;
9198 assert(dst.size() % num_components == 0);
9199 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
9200
9201 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9202 for (unsigned k = 0; k < num_components; k++) {
9203 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9204 for (unsigned i = 0; i < num_operands; i++) {
9205 Operand src = operands[i];
9206 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9207 }
9208 Temp phi_dst = {ctx->program->allocateId(), rc};
9209 phi->definitions[0] = Definition(phi_dst);
9210 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9211 new_vec[k] = phi_dst;
9212 vec->operands[k] = Operand(phi_dst);
9213 }
9214 vec->definitions[0] = Definition(dst);
9215 ctx->block->instructions.emplace_back(std::move(vec));
9216 ctx->allocated_vec.emplace(dst.id(), new_vec);
9217 return;
9218 }
9219 }
9220
9221 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9222 for (unsigned i = 0; i < num_operands; i++)
9223 phi->operands[i] = operands[i];
9224 phi->definitions[0] = Definition(dst);
9225 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9226 }
9227
9228
9229 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9230 {
9231 Temp dst = get_ssa_temp(ctx, &instr->def);
9232
9233 assert(dst.type() == RegType::sgpr);
9234
9235 if (dst.size() == 1) {
9236 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9237 } else {
9238 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9239 for (unsigned i = 0; i < dst.size(); i++)
9240 vec->operands[i] = Operand(0u);
9241 vec->definitions[0] = Definition(dst);
9242 ctx->block->instructions.emplace_back(std::move(vec));
9243 }
9244 }
9245
9246 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9247 {
9248 Builder bld(ctx->program, ctx->block);
9249 Block *logical_target;
9250 append_logical_end(ctx->block);
9251 unsigned idx = ctx->block->index;
9252
9253 switch (instr->type) {
9254 case nir_jump_break:
9255 logical_target = ctx->cf_info.parent_loop.exit;
9256 add_logical_edge(idx, logical_target);
9257 ctx->block->kind |= block_kind_break;
9258
9259 if (!ctx->cf_info.parent_if.is_divergent &&
9260 !ctx->cf_info.parent_loop.has_divergent_continue) {
9261 /* uniform break - directly jump out of the loop */
9262 ctx->block->kind |= block_kind_uniform;
9263 ctx->cf_info.has_branch = true;
9264 bld.branch(aco_opcode::p_branch);
9265 add_linear_edge(idx, logical_target);
9266 return;
9267 }
9268 ctx->cf_info.parent_loop.has_divergent_branch = true;
9269 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9270 break;
9271 case nir_jump_continue:
9272 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9273 add_logical_edge(idx, logical_target);
9274 ctx->block->kind |= block_kind_continue;
9275
9276 if (ctx->cf_info.parent_if.is_divergent) {
9277 /* for potential uniform breaks after this continue,
9278 we must ensure that they are handled correctly */
9279 ctx->cf_info.parent_loop.has_divergent_continue = true;
9280 ctx->cf_info.parent_loop.has_divergent_branch = true;
9281 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9282 } else {
9283 /* uniform continue - directly jump to the loop header */
9284 ctx->block->kind |= block_kind_uniform;
9285 ctx->cf_info.has_branch = true;
9286 bld.branch(aco_opcode::p_branch);
9287 add_linear_edge(idx, logical_target);
9288 return;
9289 }
9290 break;
9291 default:
9292 fprintf(stderr, "Unknown NIR jump instr: ");
9293 nir_print_instr(&instr->instr, stderr);
9294 fprintf(stderr, "\n");
9295 abort();
9296 }
9297
9298 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9299 ctx->cf_info.exec_potentially_empty_break = true;
9300 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9301 }
9302
9303 /* remove critical edges from linear CFG */
9304 bld.branch(aco_opcode::p_branch);
9305 Block* break_block = ctx->program->create_and_insert_block();
9306 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9307 break_block->kind |= block_kind_uniform;
9308 add_linear_edge(idx, break_block);
9309 /* the loop_header pointer might be invalidated by this point */
9310 if (instr->type == nir_jump_continue)
9311 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9312 add_linear_edge(break_block->index, logical_target);
9313 bld.reset(break_block);
9314 bld.branch(aco_opcode::p_branch);
9315
9316 Block* continue_block = ctx->program->create_and_insert_block();
9317 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9318 add_linear_edge(idx, continue_block);
9319 append_logical_start(continue_block);
9320 ctx->block = continue_block;
9321 return;
9322 }
9323
9324 void visit_block(isel_context *ctx, nir_block *block)
9325 {
9326 nir_foreach_instr(instr, block) {
9327 switch (instr->type) {
9328 case nir_instr_type_alu:
9329 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9330 break;
9331 case nir_instr_type_load_const:
9332 visit_load_const(ctx, nir_instr_as_load_const(instr));
9333 break;
9334 case nir_instr_type_intrinsic:
9335 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9336 break;
9337 case nir_instr_type_tex:
9338 visit_tex(ctx, nir_instr_as_tex(instr));
9339 break;
9340 case nir_instr_type_phi:
9341 visit_phi(ctx, nir_instr_as_phi(instr));
9342 break;
9343 case nir_instr_type_ssa_undef:
9344 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9345 break;
9346 case nir_instr_type_deref:
9347 break;
9348 case nir_instr_type_jump:
9349 visit_jump(ctx, nir_instr_as_jump(instr));
9350 break;
9351 default:
9352 fprintf(stderr, "Unknown NIR instr type: ");
9353 nir_print_instr(instr, stderr);
9354 fprintf(stderr, "\n");
9355 //abort();
9356 }
9357 }
9358
9359 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9360 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9361 }
9362
9363
9364
9365 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9366 aco_ptr<Instruction>& header_phi, Operand *vals)
9367 {
9368 vals[0] = Operand(header_phi->definitions[0].getTemp());
9369 RegClass rc = vals[0].regClass();
9370
9371 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9372
9373 unsigned next_pred = 1;
9374
9375 for (unsigned idx = first + 1; idx <= last; idx++) {
9376 Block& block = ctx->program->blocks[idx];
9377 if (block.loop_nest_depth != loop_nest_depth) {
9378 vals[idx - first] = vals[idx - 1 - first];
9379 continue;
9380 }
9381
9382 if (block.kind & block_kind_continue) {
9383 vals[idx - first] = header_phi->operands[next_pred];
9384 next_pred++;
9385 continue;
9386 }
9387
9388 bool all_same = true;
9389 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9390 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9391
9392 Operand val;
9393 if (all_same) {
9394 val = vals[block.linear_preds[0] - first];
9395 } else {
9396 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9397 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9398 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9399 phi->operands[i] = vals[block.linear_preds[i] - first];
9400 val = Operand(Temp(ctx->program->allocateId(), rc));
9401 phi->definitions[0] = Definition(val.getTemp());
9402 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9403 }
9404 vals[idx - first] = val;
9405 }
9406
9407 return vals[last - first];
9408 }
9409
9410 static void visit_loop(isel_context *ctx, nir_loop *loop)
9411 {
9412 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9413 append_logical_end(ctx->block);
9414 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9415 Builder bld(ctx->program, ctx->block);
9416 bld.branch(aco_opcode::p_branch);
9417 unsigned loop_preheader_idx = ctx->block->index;
9418
9419 Block loop_exit = Block();
9420 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9421 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9422
9423 Block* loop_header = ctx->program->create_and_insert_block();
9424 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9425 loop_header->kind |= block_kind_loop_header;
9426 add_edge(loop_preheader_idx, loop_header);
9427 ctx->block = loop_header;
9428
9429 /* emit loop body */
9430 unsigned loop_header_idx = loop_header->index;
9431 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9432 append_logical_start(ctx->block);
9433 bool unreachable = visit_cf_list(ctx, &loop->body);
9434
9435 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9436 if (!ctx->cf_info.has_branch) {
9437 append_logical_end(ctx->block);
9438 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9439 /* Discards can result in code running with an empty exec mask.
9440 * This would result in divergent breaks not ever being taken. As a
9441 * workaround, break the loop when the loop mask is empty instead of
9442 * always continuing. */
9443 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9444 unsigned block_idx = ctx->block->index;
9445
9446 /* create helper blocks to avoid critical edges */
9447 Block *break_block = ctx->program->create_and_insert_block();
9448 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9449 break_block->kind = block_kind_uniform;
9450 bld.reset(break_block);
9451 bld.branch(aco_opcode::p_branch);
9452 add_linear_edge(block_idx, break_block);
9453 add_linear_edge(break_block->index, &loop_exit);
9454
9455 Block *continue_block = ctx->program->create_and_insert_block();
9456 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9457 continue_block->kind = block_kind_uniform;
9458 bld.reset(continue_block);
9459 bld.branch(aco_opcode::p_branch);
9460 add_linear_edge(block_idx, continue_block);
9461 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9462
9463 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9464 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9465 ctx->block = &ctx->program->blocks[block_idx];
9466 } else {
9467 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9468 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9469 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9470 else
9471 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9472 }
9473
9474 bld.reset(ctx->block);
9475 bld.branch(aco_opcode::p_branch);
9476 }
9477
9478 /* Fixup phis in loop header from unreachable blocks.
9479 * has_branch/has_divergent_branch also indicates if the loop ends with a
9480 * break/continue instruction, but we don't emit those if unreachable=true */
9481 if (unreachable) {
9482 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9483 bool linear = ctx->cf_info.has_branch;
9484 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9485 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9486 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9487 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9488 /* the last operand should be the one that needs to be removed */
9489 instr->operands.pop_back();
9490 } else if (!is_phi(instr)) {
9491 break;
9492 }
9493 }
9494 }
9495
9496 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9497 * and the previous one shouldn't both happen at once because a break in the
9498 * merge block would get CSE'd */
9499 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9500 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9501 Operand vals[num_vals];
9502 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9503 if (instr->opcode == aco_opcode::p_linear_phi) {
9504 if (ctx->cf_info.has_branch)
9505 instr->operands.pop_back();
9506 else
9507 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9508 } else if (!is_phi(instr)) {
9509 break;
9510 }
9511 }
9512 }
9513
9514 ctx->cf_info.has_branch = false;
9515
9516 // TODO: if the loop has not a single exit, we must add one °°
9517 /* emit loop successor block */
9518 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9519 append_logical_start(ctx->block);
9520
9521 #if 0
9522 // TODO: check if it is beneficial to not branch on continues
9523 /* trim linear phis in loop header */
9524 for (auto&& instr : loop_entry->instructions) {
9525 if (instr->opcode == aco_opcode::p_linear_phi) {
9526 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9527 new_phi->definitions[0] = instr->definitions[0];
9528 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9529 new_phi->operands[i] = instr->operands[i];
9530 /* check that the remaining operands are all the same */
9531 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9532 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9533 instr.swap(new_phi);
9534 } else if (instr->opcode == aco_opcode::p_phi) {
9535 continue;
9536 } else {
9537 break;
9538 }
9539 }
9540 #endif
9541 }
9542
9543 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9544 {
9545 ic->cond = cond;
9546
9547 append_logical_end(ctx->block);
9548 ctx->block->kind |= block_kind_branch;
9549
9550 /* branch to linear then block */
9551 assert(cond.regClass() == ctx->program->lane_mask);
9552 aco_ptr<Pseudo_branch_instruction> branch;
9553 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9554 branch->operands[0] = Operand(cond);
9555 ctx->block->instructions.push_back(std::move(branch));
9556
9557 ic->BB_if_idx = ctx->block->index;
9558 ic->BB_invert = Block();
9559 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9560 /* Invert blocks are intentionally not marked as top level because they
9561 * are not part of the logical cfg. */
9562 ic->BB_invert.kind |= block_kind_invert;
9563 ic->BB_endif = Block();
9564 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9565 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9566
9567 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9568 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9569 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9570 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9571 ctx->cf_info.parent_if.is_divergent = true;
9572
9573 /* divergent branches use cbranch_execz */
9574 ctx->cf_info.exec_potentially_empty_discard = false;
9575 ctx->cf_info.exec_potentially_empty_break = false;
9576 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9577
9578 /** emit logical then block */
9579 Block* BB_then_logical = ctx->program->create_and_insert_block();
9580 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9581 add_edge(ic->BB_if_idx, BB_then_logical);
9582 ctx->block = BB_then_logical;
9583 append_logical_start(BB_then_logical);
9584 }
9585
9586 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9587 {
9588 Block *BB_then_logical = ctx->block;
9589 append_logical_end(BB_then_logical);
9590 /* branch from logical then block to invert block */
9591 aco_ptr<Pseudo_branch_instruction> branch;
9592 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9593 BB_then_logical->instructions.emplace_back(std::move(branch));
9594 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9595 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9596 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9597 BB_then_logical->kind |= block_kind_uniform;
9598 assert(!ctx->cf_info.has_branch);
9599 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9600 ctx->cf_info.parent_loop.has_divergent_branch = false;
9601
9602 /** emit linear then block */
9603 Block* BB_then_linear = ctx->program->create_and_insert_block();
9604 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9605 BB_then_linear->kind |= block_kind_uniform;
9606 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9607 /* branch from linear then block to invert block */
9608 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9609 BB_then_linear->instructions.emplace_back(std::move(branch));
9610 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9611
9612 /** emit invert merge block */
9613 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9614 ic->invert_idx = ctx->block->index;
9615
9616 /* branch to linear else block (skip else) */
9617 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9618 branch->operands[0] = Operand(ic->cond);
9619 ctx->block->instructions.push_back(std::move(branch));
9620
9621 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9622 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9623 ic->exec_potentially_empty_break_depth_old =
9624 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9625 /* divergent branches use cbranch_execz */
9626 ctx->cf_info.exec_potentially_empty_discard = false;
9627 ctx->cf_info.exec_potentially_empty_break = false;
9628 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9629
9630 /** emit logical else block */
9631 Block* BB_else_logical = ctx->program->create_and_insert_block();
9632 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9633 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9634 add_linear_edge(ic->invert_idx, BB_else_logical);
9635 ctx->block = BB_else_logical;
9636 append_logical_start(BB_else_logical);
9637 }
9638
9639 static void end_divergent_if(isel_context *ctx, if_context *ic)
9640 {
9641 Block *BB_else_logical = ctx->block;
9642 append_logical_end(BB_else_logical);
9643
9644 /* branch from logical else block to endif block */
9645 aco_ptr<Pseudo_branch_instruction> branch;
9646 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9647 BB_else_logical->instructions.emplace_back(std::move(branch));
9648 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9649 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9650 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9651 BB_else_logical->kind |= block_kind_uniform;
9652
9653 assert(!ctx->cf_info.has_branch);
9654 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9655
9656
9657 /** emit linear else block */
9658 Block* BB_else_linear = ctx->program->create_and_insert_block();
9659 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9660 BB_else_linear->kind |= block_kind_uniform;
9661 add_linear_edge(ic->invert_idx, BB_else_linear);
9662
9663 /* branch from linear else block to endif block */
9664 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9665 BB_else_linear->instructions.emplace_back(std::move(branch));
9666 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9667
9668
9669 /** emit endif merge block */
9670 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9671 append_logical_start(ctx->block);
9672
9673
9674 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9675 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9676 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9677 ctx->cf_info.exec_potentially_empty_break_depth =
9678 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9679 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9680 !ctx->cf_info.parent_if.is_divergent) {
9681 ctx->cf_info.exec_potentially_empty_break = false;
9682 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9683 }
9684 /* uniform control flow never has an empty exec-mask */
9685 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9686 ctx->cf_info.exec_potentially_empty_discard = false;
9687 ctx->cf_info.exec_potentially_empty_break = false;
9688 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9689 }
9690 }
9691
9692 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9693 {
9694 assert(cond.regClass() == s1);
9695
9696 append_logical_end(ctx->block);
9697 ctx->block->kind |= block_kind_uniform;
9698
9699 aco_ptr<Pseudo_branch_instruction> branch;
9700 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9701 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9702 branch->operands[0] = Operand(cond);
9703 branch->operands[0].setFixed(scc);
9704 ctx->block->instructions.emplace_back(std::move(branch));
9705
9706 ic->BB_if_idx = ctx->block->index;
9707 ic->BB_endif = Block();
9708 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9709 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9710
9711 ctx->cf_info.has_branch = false;
9712 ctx->cf_info.parent_loop.has_divergent_branch = false;
9713
9714 /** emit then block */
9715 Block* BB_then = ctx->program->create_and_insert_block();
9716 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9717 add_edge(ic->BB_if_idx, BB_then);
9718 append_logical_start(BB_then);
9719 ctx->block = BB_then;
9720 }
9721
9722 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9723 {
9724 Block *BB_then = ctx->block;
9725
9726 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9727 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9728
9729 if (!ic->uniform_has_then_branch) {
9730 append_logical_end(BB_then);
9731 /* branch from then block to endif block */
9732 aco_ptr<Pseudo_branch_instruction> branch;
9733 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9734 BB_then->instructions.emplace_back(std::move(branch));
9735 add_linear_edge(BB_then->index, &ic->BB_endif);
9736 if (!ic->then_branch_divergent)
9737 add_logical_edge(BB_then->index, &ic->BB_endif);
9738 BB_then->kind |= block_kind_uniform;
9739 }
9740
9741 ctx->cf_info.has_branch = false;
9742 ctx->cf_info.parent_loop.has_divergent_branch = false;
9743
9744 /** emit else block */
9745 Block* BB_else = ctx->program->create_and_insert_block();
9746 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9747 add_edge(ic->BB_if_idx, BB_else);
9748 append_logical_start(BB_else);
9749 ctx->block = BB_else;
9750 }
9751
9752 static void end_uniform_if(isel_context *ctx, if_context *ic)
9753 {
9754 Block *BB_else = ctx->block;
9755
9756 if (!ctx->cf_info.has_branch) {
9757 append_logical_end(BB_else);
9758 /* branch from then block to endif block */
9759 aco_ptr<Pseudo_branch_instruction> branch;
9760 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9761 BB_else->instructions.emplace_back(std::move(branch));
9762 add_linear_edge(BB_else->index, &ic->BB_endif);
9763 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9764 add_logical_edge(BB_else->index, &ic->BB_endif);
9765 BB_else->kind |= block_kind_uniform;
9766 }
9767
9768 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9769 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9770
9771 /** emit endif merge block */
9772 if (!ctx->cf_info.has_branch) {
9773 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9774 append_logical_start(ctx->block);
9775 }
9776 }
9777
9778 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9779 {
9780 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9781 Builder bld(ctx->program, ctx->block);
9782 aco_ptr<Pseudo_branch_instruction> branch;
9783 if_context ic;
9784
9785 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9786 /**
9787 * Uniform conditionals are represented in the following way*) :
9788 *
9789 * The linear and logical CFG:
9790 * BB_IF
9791 * / \
9792 * BB_THEN (logical) BB_ELSE (logical)
9793 * \ /
9794 * BB_ENDIF
9795 *
9796 * *) Exceptions may be due to break and continue statements within loops
9797 * If a break/continue happens within uniform control flow, it branches
9798 * to the loop exit/entry block. Otherwise, it branches to the next
9799 * merge block.
9800 **/
9801
9802 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9803 assert(cond.regClass() == ctx->program->lane_mask);
9804 cond = bool_to_scalar_condition(ctx, cond);
9805
9806 begin_uniform_if_then(ctx, &ic, cond);
9807 visit_cf_list(ctx, &if_stmt->then_list);
9808
9809 begin_uniform_if_else(ctx, &ic);
9810 visit_cf_list(ctx, &if_stmt->else_list);
9811
9812 end_uniform_if(ctx, &ic);
9813
9814 return !ctx->cf_info.has_branch;
9815 } else { /* non-uniform condition */
9816 /**
9817 * To maintain a logical and linear CFG without critical edges,
9818 * non-uniform conditionals are represented in the following way*) :
9819 *
9820 * The linear CFG:
9821 * BB_IF
9822 * / \
9823 * BB_THEN (logical) BB_THEN (linear)
9824 * \ /
9825 * BB_INVERT (linear)
9826 * / \
9827 * BB_ELSE (logical) BB_ELSE (linear)
9828 * \ /
9829 * BB_ENDIF
9830 *
9831 * The logical CFG:
9832 * BB_IF
9833 * / \
9834 * BB_THEN (logical) BB_ELSE (logical)
9835 * \ /
9836 * BB_ENDIF
9837 *
9838 * *) Exceptions may be due to break and continue statements within loops
9839 **/
9840
9841 begin_divergent_if_then(ctx, &ic, cond);
9842 visit_cf_list(ctx, &if_stmt->then_list);
9843
9844 begin_divergent_if_else(ctx, &ic);
9845 visit_cf_list(ctx, &if_stmt->else_list);
9846
9847 end_divergent_if(ctx, &ic);
9848
9849 return true;
9850 }
9851 }
9852
9853 static bool visit_cf_list(isel_context *ctx,
9854 struct exec_list *list)
9855 {
9856 foreach_list_typed(nir_cf_node, node, node, list) {
9857 switch (node->type) {
9858 case nir_cf_node_block:
9859 visit_block(ctx, nir_cf_node_as_block(node));
9860 break;
9861 case nir_cf_node_if:
9862 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9863 return true;
9864 break;
9865 case nir_cf_node_loop:
9866 visit_loop(ctx, nir_cf_node_as_loop(node));
9867 break;
9868 default:
9869 unreachable("unimplemented cf list type");
9870 }
9871 }
9872 return false;
9873 }
9874
9875 static void create_null_export(isel_context *ctx)
9876 {
9877 /* Some shader stages always need to have exports.
9878 * So when there is none, we need to add a null export.
9879 */
9880
9881 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9882 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9883 Builder bld(ctx->program, ctx->block);
9884 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9885 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9886 }
9887
9888 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9889 {
9890 assert(ctx->stage == vertex_vs ||
9891 ctx->stage == tess_eval_vs ||
9892 ctx->stage == gs_copy_vs ||
9893 ctx->stage == ngg_vertex_gs ||
9894 ctx->stage == ngg_tess_eval_gs);
9895
9896 int offset = (ctx->stage & sw_tes)
9897 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9898 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9899 uint64_t mask = ctx->outputs.mask[slot];
9900 if (!is_pos && !mask)
9901 return false;
9902 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9903 return false;
9904 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9905 exp->enabled_mask = mask;
9906 for (unsigned i = 0; i < 4; ++i) {
9907 if (mask & (1 << i))
9908 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9909 else
9910 exp->operands[i] = Operand(v1);
9911 }
9912 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9913 * Setting valid_mask=1 prevents it and has no other effect.
9914 */
9915 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9916 exp->done = false;
9917 exp->compressed = false;
9918 if (is_pos)
9919 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9920 else
9921 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9922 ctx->block->instructions.emplace_back(std::move(exp));
9923
9924 return true;
9925 }
9926
9927 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9928 {
9929 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9930 exp->enabled_mask = 0;
9931 for (unsigned i = 0; i < 4; ++i)
9932 exp->operands[i] = Operand(v1);
9933 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9934 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9935 exp->enabled_mask |= 0x1;
9936 }
9937 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9938 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9939 exp->enabled_mask |= 0x4;
9940 }
9941 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9942 if (ctx->options->chip_class < GFX9) {
9943 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9944 exp->enabled_mask |= 0x8;
9945 } else {
9946 Builder bld(ctx->program, ctx->block);
9947
9948 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9949 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9950 if (exp->operands[2].isTemp())
9951 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9952
9953 exp->operands[2] = Operand(out);
9954 exp->enabled_mask |= 0x4;
9955 }
9956 }
9957 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9958 exp->done = false;
9959 exp->compressed = false;
9960 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9961 ctx->block->instructions.emplace_back(std::move(exp));
9962 }
9963
9964 static void create_export_phis(isel_context *ctx)
9965 {
9966 /* Used when exports are needed, but the output temps are defined in a preceding block.
9967 * This function will set up phis in order to access the outputs in the next block.
9968 */
9969
9970 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9971 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9972 ctx->block->instructions.pop_back();
9973
9974 Builder bld(ctx->program, ctx->block);
9975
9976 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9977 uint64_t mask = ctx->outputs.mask[slot];
9978 for (unsigned i = 0; i < 4; ++i) {
9979 if (!(mask & (1 << i)))
9980 continue;
9981
9982 Temp old = ctx->outputs.temps[slot * 4 + i];
9983 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9984 ctx->outputs.temps[slot * 4 + i] = phi;
9985 }
9986 }
9987
9988 bld.insert(std::move(logical_start));
9989 }
9990
9991 static void create_vs_exports(isel_context *ctx)
9992 {
9993 assert(ctx->stage == vertex_vs ||
9994 ctx->stage == tess_eval_vs ||
9995 ctx->stage == gs_copy_vs ||
9996 ctx->stage == ngg_vertex_gs ||
9997 ctx->stage == ngg_tess_eval_gs);
9998
9999 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
10000 ? &ctx->program->info->tes.outinfo
10001 : &ctx->program->info->vs.outinfo;
10002
10003 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
10004 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10005 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
10006 }
10007
10008 if (ctx->options->key.has_multiview_view_index) {
10009 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
10010 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
10011 }
10012
10013 /* the order these position exports are created is important */
10014 int next_pos = 0;
10015 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
10016 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
10017 export_vs_psiz_layer_viewport(ctx, &next_pos);
10018 exported_pos = true;
10019 }
10020 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
10021 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
10022 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
10023 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
10024
10025 if (ctx->export_clip_dists) {
10026 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
10027 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
10028 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
10029 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
10030 }
10031
10032 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10033 if (i < VARYING_SLOT_VAR0 &&
10034 i != VARYING_SLOT_LAYER &&
10035 i != VARYING_SLOT_PRIMITIVE_ID &&
10036 i != VARYING_SLOT_VIEWPORT)
10037 continue;
10038
10039 export_vs_varying(ctx, i, false, NULL);
10040 }
10041
10042 if (!exported_pos)
10043 create_null_export(ctx);
10044 }
10045
10046 static bool export_fs_mrt_z(isel_context *ctx)
10047 {
10048 Builder bld(ctx->program, ctx->block);
10049 unsigned enabled_channels = 0;
10050 bool compr = false;
10051 Operand values[4];
10052
10053 for (unsigned i = 0; i < 4; ++i) {
10054 values[i] = Operand(v1);
10055 }
10056
10057 /* Both stencil and sample mask only need 16-bits. */
10058 if (!ctx->program->info->ps.writes_z &&
10059 (ctx->program->info->ps.writes_stencil ||
10060 ctx->program->info->ps.writes_sample_mask)) {
10061 compr = true; /* COMPR flag */
10062
10063 if (ctx->program->info->ps.writes_stencil) {
10064 /* Stencil should be in X[23:16]. */
10065 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10066 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
10067 enabled_channels |= 0x3;
10068 }
10069
10070 if (ctx->program->info->ps.writes_sample_mask) {
10071 /* SampleMask should be in Y[15:0]. */
10072 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10073 enabled_channels |= 0xc;
10074 }
10075 } else {
10076 if (ctx->program->info->ps.writes_z) {
10077 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
10078 enabled_channels |= 0x1;
10079 }
10080
10081 if (ctx->program->info->ps.writes_stencil) {
10082 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10083 enabled_channels |= 0x2;
10084 }
10085
10086 if (ctx->program->info->ps.writes_sample_mask) {
10087 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10088 enabled_channels |= 0x4;
10089 }
10090 }
10091
10092 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
10093 * writemask component.
10094 */
10095 if (ctx->options->chip_class == GFX6 &&
10096 ctx->options->family != CHIP_OLAND &&
10097 ctx->options->family != CHIP_HAINAN) {
10098 enabled_channels |= 0x1;
10099 }
10100
10101 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10102 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
10103
10104 return true;
10105 }
10106
10107 static bool export_fs_mrt_color(isel_context *ctx, int slot)
10108 {
10109 Builder bld(ctx->program, ctx->block);
10110 unsigned write_mask = ctx->outputs.mask[slot];
10111 Operand values[4];
10112
10113 for (unsigned i = 0; i < 4; ++i) {
10114 if (write_mask & (1 << i)) {
10115 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
10116 } else {
10117 values[i] = Operand(v1);
10118 }
10119 }
10120
10121 unsigned target, col_format;
10122 unsigned enabled_channels = 0;
10123 aco_opcode compr_op = (aco_opcode)0;
10124
10125 slot -= FRAG_RESULT_DATA0;
10126 target = V_008DFC_SQ_EXP_MRT + slot;
10127 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
10128
10129 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
10130 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
10131
10132 switch (col_format)
10133 {
10134 case V_028714_SPI_SHADER_ZERO:
10135 enabled_channels = 0; /* writemask */
10136 target = V_008DFC_SQ_EXP_NULL;
10137 break;
10138
10139 case V_028714_SPI_SHADER_32_R:
10140 enabled_channels = 1;
10141 break;
10142
10143 case V_028714_SPI_SHADER_32_GR:
10144 enabled_channels = 0x3;
10145 break;
10146
10147 case V_028714_SPI_SHADER_32_AR:
10148 if (ctx->options->chip_class >= GFX10) {
10149 /* Special case: on GFX10, the outputs are different for 32_AR */
10150 enabled_channels = 0x3;
10151 values[1] = values[3];
10152 values[3] = Operand(v1);
10153 } else {
10154 enabled_channels = 0x9;
10155 }
10156 break;
10157
10158 case V_028714_SPI_SHADER_FP16_ABGR:
10159 enabled_channels = 0x5;
10160 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
10161 break;
10162
10163 case V_028714_SPI_SHADER_UNORM16_ABGR:
10164 enabled_channels = 0x5;
10165 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
10166 break;
10167
10168 case V_028714_SPI_SHADER_SNORM16_ABGR:
10169 enabled_channels = 0x5;
10170 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10171 break;
10172
10173 case V_028714_SPI_SHADER_UINT16_ABGR: {
10174 enabled_channels = 0x5;
10175 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10176 if (is_int8 || is_int10) {
10177 /* clamp */
10178 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10179 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10180
10181 for (unsigned i = 0; i < 4; i++) {
10182 if ((write_mask >> i) & 1) {
10183 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10184 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10185 values[i]);
10186 }
10187 }
10188 }
10189 break;
10190 }
10191
10192 case V_028714_SPI_SHADER_SINT16_ABGR:
10193 enabled_channels = 0x5;
10194 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10195 if (is_int8 || is_int10) {
10196 /* clamp */
10197 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10198 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10199 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10200 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10201
10202 for (unsigned i = 0; i < 4; i++) {
10203 if ((write_mask >> i) & 1) {
10204 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10205 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10206 values[i]);
10207 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10208 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10209 values[i]);
10210 }
10211 }
10212 }
10213 break;
10214
10215 case V_028714_SPI_SHADER_32_ABGR:
10216 enabled_channels = 0xF;
10217 break;
10218
10219 default:
10220 break;
10221 }
10222
10223 if (target == V_008DFC_SQ_EXP_NULL)
10224 return false;
10225
10226 if ((bool) compr_op) {
10227 for (int i = 0; i < 2; i++) {
10228 /* check if at least one of the values to be compressed is enabled */
10229 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10230 if (enabled) {
10231 enabled_channels |= enabled << (i*2);
10232 values[i] = bld.vop3(compr_op, bld.def(v1),
10233 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10234 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10235 } else {
10236 values[i] = Operand(v1);
10237 }
10238 }
10239 values[2] = Operand(v1);
10240 values[3] = Operand(v1);
10241 } else {
10242 for (int i = 0; i < 4; i++)
10243 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10244 }
10245
10246 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10247 enabled_channels, target, (bool) compr_op);
10248 return true;
10249 }
10250
10251 static void create_fs_exports(isel_context *ctx)
10252 {
10253 bool exported = false;
10254
10255 /* Export depth, stencil and sample mask. */
10256 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10257 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10258 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10259 exported |= export_fs_mrt_z(ctx);
10260
10261 /* Export all color render targets. */
10262 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10263 if (ctx->outputs.mask[i])
10264 exported |= export_fs_mrt_color(ctx, i);
10265
10266 if (!exported)
10267 create_null_export(ctx);
10268 }
10269
10270 static void write_tcs_tess_factors(isel_context *ctx)
10271 {
10272 unsigned outer_comps;
10273 unsigned inner_comps;
10274
10275 switch (ctx->args->options->key.tcs.primitive_mode) {
10276 case GL_ISOLINES:
10277 outer_comps = 2;
10278 inner_comps = 0;
10279 break;
10280 case GL_TRIANGLES:
10281 outer_comps = 3;
10282 inner_comps = 1;
10283 break;
10284 case GL_QUADS:
10285 outer_comps = 4;
10286 inner_comps = 2;
10287 break;
10288 default:
10289 return;
10290 }
10291
10292 Builder bld(ctx->program, ctx->block);
10293
10294 bld.barrier(aco_opcode::p_memory_barrier_shared);
10295 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10296 bld.sopp(aco_opcode::s_barrier);
10297
10298 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10299 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10300
10301 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10302 if_context ic_invocation_id_is_zero;
10303 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10304 bld.reset(ctx->block);
10305
10306 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10307
10308 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10309 unsigned stride = inner_comps + outer_comps;
10310 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10311 Temp tf_inner_vec;
10312 Temp tf_outer_vec;
10313 Temp out[6];
10314 assert(stride <= (sizeof(out) / sizeof(Temp)));
10315
10316 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10317 // LINES reversal
10318 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10319 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10320 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10321 } else {
10322 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10323 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10324
10325 for (unsigned i = 0; i < outer_comps; ++i)
10326 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10327 for (unsigned i = 0; i < inner_comps; ++i)
10328 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10329 }
10330
10331 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10332 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10333 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10334 unsigned tf_const_offset = 0;
10335
10336 if (ctx->program->chip_class <= GFX8) {
10337 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10338 if_context ic_rel_patch_id_is_zero;
10339 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10340 bld.reset(ctx->block);
10341
10342 /* Store the dynamic HS control word. */
10343 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10344 bld.mubuf(aco_opcode::buffer_store_dword,
10345 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10346 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10347 /* disable_wqm */ false, /* glc */ true);
10348 tf_const_offset += 4;
10349
10350 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10351 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10352 bld.reset(ctx->block);
10353 }
10354
10355 assert(stride == 2 || stride == 4 || stride == 6);
10356 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10357 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10358
10359 /* Store to offchip for TES to read - only if TES reads them */
10360 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10361 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10362 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10363
10364 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10365 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10366
10367 if (likely(inner_comps)) {
10368 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10369 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10370 }
10371 }
10372
10373 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10374 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10375 }
10376
10377 static void emit_stream_output(isel_context *ctx,
10378 Temp const *so_buffers,
10379 Temp const *so_write_offset,
10380 const struct radv_stream_output *output)
10381 {
10382 unsigned num_comps = util_bitcount(output->component_mask);
10383 unsigned writemask = (1 << num_comps) - 1;
10384 unsigned loc = output->location;
10385 unsigned buf = output->buffer;
10386
10387 assert(num_comps && num_comps <= 4);
10388 if (!num_comps || num_comps > 4)
10389 return;
10390
10391 unsigned start = ffs(output->component_mask) - 1;
10392
10393 Temp out[4];
10394 bool all_undef = true;
10395 assert(ctx->stage & hw_vs);
10396 for (unsigned i = 0; i < num_comps; i++) {
10397 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10398 all_undef = all_undef && !out[i].id();
10399 }
10400 if (all_undef)
10401 return;
10402
10403 while (writemask) {
10404 int start, count;
10405 u_bit_scan_consecutive_range(&writemask, &start, &count);
10406 if (count == 3 && ctx->options->chip_class == GFX6) {
10407 /* GFX6 doesn't support storing vec3, split it. */
10408 writemask |= 1u << (start + 2);
10409 count = 2;
10410 }
10411
10412 unsigned offset = output->offset + start * 4;
10413
10414 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10415 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10416 for (int i = 0; i < count; ++i)
10417 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10418 vec->definitions[0] = Definition(write_data);
10419 ctx->block->instructions.emplace_back(std::move(vec));
10420
10421 aco_opcode opcode;
10422 switch (count) {
10423 case 1:
10424 opcode = aco_opcode::buffer_store_dword;
10425 break;
10426 case 2:
10427 opcode = aco_opcode::buffer_store_dwordx2;
10428 break;
10429 case 3:
10430 opcode = aco_opcode::buffer_store_dwordx3;
10431 break;
10432 case 4:
10433 opcode = aco_opcode::buffer_store_dwordx4;
10434 break;
10435 default:
10436 unreachable("Unsupported dword count.");
10437 }
10438
10439 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10440 store->operands[0] = Operand(so_buffers[buf]);
10441 store->operands[1] = Operand(so_write_offset[buf]);
10442 store->operands[2] = Operand((uint32_t) 0);
10443 store->operands[3] = Operand(write_data);
10444 if (offset > 4095) {
10445 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10446 Builder bld(ctx->program, ctx->block);
10447 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10448 } else {
10449 store->offset = offset;
10450 }
10451 store->offen = true;
10452 store->glc = true;
10453 store->dlc = false;
10454 store->slc = true;
10455 store->can_reorder = true;
10456 ctx->block->instructions.emplace_back(std::move(store));
10457 }
10458 }
10459
10460 static void emit_streamout(isel_context *ctx, unsigned stream)
10461 {
10462 Builder bld(ctx->program, ctx->block);
10463
10464 Temp so_buffers[4];
10465 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10466 for (unsigned i = 0; i < 4; i++) {
10467 unsigned stride = ctx->program->info->so.strides[i];
10468 if (!stride)
10469 continue;
10470
10471 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10472 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10473 }
10474
10475 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10476 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10477
10478 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10479
10480 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10481
10482 if_context ic;
10483 begin_divergent_if_then(ctx, &ic, can_emit);
10484
10485 bld.reset(ctx->block);
10486
10487 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10488
10489 Temp so_write_offset[4];
10490
10491 for (unsigned i = 0; i < 4; i++) {
10492 unsigned stride = ctx->program->info->so.strides[i];
10493 if (!stride)
10494 continue;
10495
10496 if (stride == 1) {
10497 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10498 get_arg(ctx, ctx->args->streamout_write_idx),
10499 get_arg(ctx, ctx->args->streamout_offset[i]));
10500 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10501
10502 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10503 } else {
10504 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10505 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10506 get_arg(ctx, ctx->args->streamout_offset[i]));
10507 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10508 }
10509 }
10510
10511 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10512 struct radv_stream_output *output =
10513 &ctx->program->info->so.outputs[i];
10514 if (stream != output->stream)
10515 continue;
10516
10517 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10518 }
10519
10520 begin_divergent_if_else(ctx, &ic);
10521 end_divergent_if(ctx, &ic);
10522 }
10523
10524 } /* end namespace */
10525
10526 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10527 {
10528 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10529 Builder bld(ctx->program, ctx->block);
10530 constexpr unsigned hs_idx = 1u;
10531 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10532 get_arg(ctx, ctx->args->merged_wave_info),
10533 Operand((8u << 16) | (hs_idx * 8u)));
10534 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10535
10536 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10537
10538 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10539 get_arg(ctx, ctx->args->rel_auto_id),
10540 get_arg(ctx, ctx->args->ac.instance_id),
10541 ls_has_nonzero_hs_threads);
10542 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10543 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10544 get_arg(ctx, ctx->args->rel_auto_id),
10545 ls_has_nonzero_hs_threads);
10546 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10547 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10548 get_arg(ctx, ctx->args->ac.vertex_id),
10549 ls_has_nonzero_hs_threads);
10550
10551 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10552 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10553 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10554 }
10555
10556 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10557 {
10558 /* Split all arguments except for the first (ring_offsets) and the last
10559 * (exec) so that the dead channels don't stay live throughout the program.
10560 */
10561 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10562 if (startpgm->definitions[i].regClass().size() > 1) {
10563 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10564 startpgm->definitions[i].regClass().size());
10565 }
10566 }
10567 }
10568
10569 void handle_bc_optimize(isel_context *ctx)
10570 {
10571 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10572 Builder bld(ctx->program, ctx->block);
10573 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10574 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10575 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10576 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10577 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10578 if (uses_center && uses_centroid) {
10579 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10580 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10581
10582 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10583 Temp new_coord[2];
10584 for (unsigned i = 0; i < 2; i++) {
10585 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10586 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10587 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10588 persp_centroid, persp_center, sel);
10589 }
10590 ctx->persp_centroid = bld.tmp(v2);
10591 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10592 Operand(new_coord[0]), Operand(new_coord[1]));
10593 emit_split_vector(ctx, ctx->persp_centroid, 2);
10594 }
10595
10596 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10597 Temp new_coord[2];
10598 for (unsigned i = 0; i < 2; i++) {
10599 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10600 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10601 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10602 linear_centroid, linear_center, sel);
10603 }
10604 ctx->linear_centroid = bld.tmp(v2);
10605 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10606 Operand(new_coord[0]), Operand(new_coord[1]));
10607 emit_split_vector(ctx, ctx->linear_centroid, 2);
10608 }
10609 }
10610 }
10611
10612 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10613 {
10614 Program *program = ctx->program;
10615
10616 unsigned float_controls = shader->info.float_controls_execution_mode;
10617
10618 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10619 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10620 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10621 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10622 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10623
10624 program->next_fp_mode.must_flush_denorms32 =
10625 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10626 program->next_fp_mode.must_flush_denorms16_64 =
10627 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10628 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10629
10630 program->next_fp_mode.care_about_round32 =
10631 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10632
10633 program->next_fp_mode.care_about_round16_64 =
10634 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10635 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10636
10637 /* default to preserving fp16 and fp64 denorms, since it's free */
10638 if (program->next_fp_mode.must_flush_denorms16_64)
10639 program->next_fp_mode.denorm16_64 = 0;
10640 else
10641 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10642
10643 /* preserving fp32 denorms is expensive, so only do it if asked */
10644 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10645 program->next_fp_mode.denorm32 = fp_denorm_keep;
10646 else
10647 program->next_fp_mode.denorm32 = 0;
10648
10649 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10650 program->next_fp_mode.round32 = fp_round_tz;
10651 else
10652 program->next_fp_mode.round32 = fp_round_ne;
10653
10654 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10655 program->next_fp_mode.round16_64 = fp_round_tz;
10656 else
10657 program->next_fp_mode.round16_64 = fp_round_ne;
10658
10659 ctx->block->fp_mode = program->next_fp_mode;
10660 }
10661
10662 void cleanup_cfg(Program *program)
10663 {
10664 /* create linear_succs/logical_succs */
10665 for (Block& BB : program->blocks) {
10666 for (unsigned idx : BB.linear_preds)
10667 program->blocks[idx].linear_succs.emplace_back(BB.index);
10668 for (unsigned idx : BB.logical_preds)
10669 program->blocks[idx].logical_succs.emplace_back(BB.index);
10670 }
10671 }
10672
10673 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10674 {
10675 Builder bld(ctx->program, ctx->block);
10676
10677 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10678 Temp count = i == 0
10679 ? get_arg(ctx, ctx->args->merged_wave_info)
10680 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10681 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10682
10683 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10684 Temp cond;
10685
10686 if (ctx->program->wave_size == 64) {
10687 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10688 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10689 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10690 } else {
10691 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10692 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10693 }
10694
10695 return cond;
10696 }
10697
10698 bool ngg_early_prim_export(isel_context *ctx)
10699 {
10700 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10701 return true;
10702 }
10703
10704 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10705 {
10706 Builder bld(ctx->program, ctx->block);
10707
10708 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10709 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10710
10711 /* Get the id of the current wave within the threadgroup (workgroup) */
10712 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10713 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10714
10715 /* Execute the following code only on the first wave (wave id 0),
10716 * use the SCC def to tell if the wave id is zero or not.
10717 */
10718 Temp cond = wave_id_in_tg.def(1).getTemp();
10719 if_context ic;
10720 begin_uniform_if_then(ctx, &ic, cond);
10721 begin_uniform_if_else(ctx, &ic);
10722 bld.reset(ctx->block);
10723
10724 /* Number of vertices output by VS/TES */
10725 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10726 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10727 /* Number of primitives output by VS/TES */
10728 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10729 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10730
10731 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10732 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10733 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10734
10735 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10736 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10737
10738 end_uniform_if(ctx, &ic);
10739
10740 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10741 bld.reset(ctx->block);
10742 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10743 }
10744
10745 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10746 {
10747 Builder bld(ctx->program, ctx->block);
10748
10749 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10750 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10751 }
10752
10753 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10754 Temp tmp;
10755
10756 for (unsigned i = 0; i < num_vertices; ++i) {
10757 assert(vtxindex[i].id());
10758
10759 if (i)
10760 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10761 else
10762 tmp = vtxindex[i];
10763
10764 /* The initial edge flag is always false in tess eval shaders. */
10765 if (ctx->stage == ngg_vertex_gs) {
10766 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10767 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10768 }
10769 }
10770
10771 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10772
10773 return tmp;
10774 }
10775
10776 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10777 {
10778 Builder bld(ctx->program, ctx->block);
10779 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10780
10781 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10782 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10783 false /* compressed */, true/* done */, false /* valid mask */);
10784 }
10785
10786 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10787 {
10788 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10789 * These must always come before VS exports.
10790 *
10791 * It is recommended to do these as early as possible. They can be at the beginning when
10792 * there is no SW GS and the shader doesn't write edge flags.
10793 */
10794
10795 if_context ic;
10796 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10797 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10798
10799 Builder bld(ctx->program, ctx->block);
10800 constexpr unsigned max_vertices_per_primitive = 3;
10801 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10802
10803 if (ctx->stage == ngg_vertex_gs) {
10804 /* TODO: optimize for points & lines */
10805 } else if (ctx->stage == ngg_tess_eval_gs) {
10806 if (ctx->shader->info.tess.point_mode)
10807 num_vertices_per_primitive = 1;
10808 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10809 num_vertices_per_primitive = 2;
10810 } else {
10811 unreachable("Unsupported NGG shader stage");
10812 }
10813
10814 Temp vtxindex[max_vertices_per_primitive];
10815 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10816 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10817 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10818 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10819 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10820 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10821 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10822 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10823
10824 /* Export primitive data to the index buffer. */
10825 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10826
10827 /* Export primitive ID. */
10828 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10829 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10830 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10831 Temp provoking_vtx_index = vtxindex[0];
10832 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10833
10834 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10835 }
10836
10837 begin_divergent_if_else(ctx, &ic);
10838 end_divergent_if(ctx, &ic);
10839 }
10840
10841 void ngg_emit_nogs_output(isel_context *ctx)
10842 {
10843 /* Emits NGG GS output, for stages that don't have SW GS. */
10844
10845 if_context ic;
10846 Builder bld(ctx->program, ctx->block);
10847 bool late_prim_export = !ngg_early_prim_export(ctx);
10848
10849 /* NGG streamout is currently disabled by default. */
10850 assert(!ctx->args->shader_info->so.num_outputs);
10851
10852 if (late_prim_export) {
10853 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10854 create_export_phis(ctx);
10855 /* Do what we need to do in the GS threads. */
10856 ngg_emit_nogs_gsthreads(ctx);
10857
10858 /* What comes next should be executed on ES threads. */
10859 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10860 begin_divergent_if_then(ctx, &ic, is_es_thread);
10861 bld.reset(ctx->block);
10862 }
10863
10864 /* Export VS outputs */
10865 ctx->block->kind |= block_kind_export_end;
10866 create_vs_exports(ctx);
10867
10868 /* Export primitive ID */
10869 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10870 Temp prim_id;
10871
10872 if (ctx->stage == ngg_vertex_gs) {
10873 /* Wait for GS threads to store primitive ID in LDS. */
10874 bld.barrier(aco_opcode::p_memory_barrier_shared);
10875 bld.sopp(aco_opcode::s_barrier);
10876
10877 /* Calculate LDS address where the GS threads stored the primitive ID. */
10878 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10879 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10880 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10881 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10882 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10883 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10884
10885 /* Load primitive ID from LDS. */
10886 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10887 } else if (ctx->stage == ngg_tess_eval_gs) {
10888 /* TES: Just use the patch ID as the primitive ID. */
10889 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10890 } else {
10891 unreachable("unsupported NGG shader stage.");
10892 }
10893
10894 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10895 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10896
10897 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10898 }
10899
10900 if (late_prim_export) {
10901 begin_divergent_if_else(ctx, &ic);
10902 end_divergent_if(ctx, &ic);
10903 bld.reset(ctx->block);
10904 }
10905 }
10906
10907 void select_program(Program *program,
10908 unsigned shader_count,
10909 struct nir_shader *const *shaders,
10910 ac_shader_config* config,
10911 struct radv_shader_args *args)
10912 {
10913 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10914 if_context ic_merged_wave_info;
10915 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10916
10917 for (unsigned i = 0; i < shader_count; i++) {
10918 nir_shader *nir = shaders[i];
10919 init_context(&ctx, nir);
10920
10921 setup_fp_mode(&ctx, nir);
10922
10923 if (!i) {
10924 /* needs to be after init_context() for FS */
10925 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10926 append_logical_start(ctx.block);
10927
10928 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10929 fix_ls_vgpr_init_bug(&ctx, startpgm);
10930
10931 split_arguments(&ctx, startpgm);
10932 }
10933
10934 if (ngg_no_gs) {
10935 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10936
10937 if (ngg_early_prim_export(&ctx))
10938 ngg_emit_nogs_gsthreads(&ctx);
10939 }
10940
10941 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10942 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10943 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10944 ((nir->info.stage == MESA_SHADER_VERTEX &&
10945 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10946 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10947 ctx.stage == tess_eval_geometry_gs));
10948
10949 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10950 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10951 if (check_merged_wave_info) {
10952 Temp cond = merged_wave_info_to_mask(&ctx, i);
10953 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10954 }
10955
10956 if (i) {
10957 Builder bld(ctx.program, ctx.block);
10958
10959 bld.barrier(aco_opcode::p_memory_barrier_shared);
10960 bld.sopp(aco_opcode::s_barrier);
10961
10962 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10963 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10964 }
10965 } else if (ctx.stage == geometry_gs)
10966 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10967
10968 if (ctx.stage == fragment_fs)
10969 handle_bc_optimize(&ctx);
10970
10971 visit_cf_list(&ctx, &func->body);
10972
10973 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10974 emit_streamout(&ctx, 0);
10975
10976 if (ctx.stage & hw_vs) {
10977 create_vs_exports(&ctx);
10978 ctx.block->kind |= block_kind_export_end;
10979 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10980 ngg_emit_nogs_output(&ctx);
10981 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10982 Builder bld(ctx.program, ctx.block);
10983 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10984 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10985 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10986 write_tcs_tess_factors(&ctx);
10987 }
10988
10989 if (ctx.stage == fragment_fs) {
10990 create_fs_exports(&ctx);
10991 ctx.block->kind |= block_kind_export_end;
10992 }
10993
10994 if (endif_merged_wave_info) {
10995 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10996 end_divergent_if(&ctx, &ic_merged_wave_info);
10997 }
10998
10999 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
11000 ngg_emit_nogs_output(&ctx);
11001
11002 ralloc_free(ctx.divergent_vals);
11003
11004 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
11005 /* Outputs of the previous stage are inputs to the next stage */
11006 ctx.inputs = ctx.outputs;
11007 ctx.outputs = shader_io_state();
11008 }
11009 }
11010
11011 program->config->float_mode = program->blocks[0].fp_mode.val;
11012
11013 append_logical_end(ctx.block);
11014 ctx.block->kind |= block_kind_uniform;
11015 Builder bld(ctx.program, ctx.block);
11016 if (ctx.program->wb_smem_l1_on_end)
11017 bld.smem(aco_opcode::s_dcache_wb, false);
11018 bld.sopp(aco_opcode::s_endpgm);
11019
11020 cleanup_cfg(program);
11021 }
11022
11023 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
11024 ac_shader_config* config,
11025 struct radv_shader_args *args)
11026 {
11027 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
11028
11029 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
11030 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
11031 program->next_fp_mode.must_flush_denorms32 = false;
11032 program->next_fp_mode.must_flush_denorms16_64 = false;
11033 program->next_fp_mode.care_about_round32 = false;
11034 program->next_fp_mode.care_about_round16_64 = false;
11035 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
11036 program->next_fp_mode.denorm32 = 0;
11037 program->next_fp_mode.round32 = fp_round_ne;
11038 program->next_fp_mode.round16_64 = fp_round_ne;
11039 ctx.block->fp_mode = program->next_fp_mode;
11040
11041 add_startpgm(&ctx);
11042 append_logical_start(ctx.block);
11043
11044 Builder bld(ctx.program, ctx.block);
11045
11046 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
11047
11048 Operand stream_id(0u);
11049 if (args->shader_info->so.num_outputs)
11050 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11051 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
11052
11053 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
11054
11055 std::stack<Block> endif_blocks;
11056
11057 for (unsigned stream = 0; stream < 4; stream++) {
11058 if (stream_id.isConstant() && stream != stream_id.constantValue())
11059 continue;
11060
11061 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
11062 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
11063 continue;
11064
11065 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
11066
11067 unsigned BB_if_idx = ctx.block->index;
11068 Block BB_endif = Block();
11069 if (!stream_id.isConstant()) {
11070 /* begin IF */
11071 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
11072 append_logical_end(ctx.block);
11073 ctx.block->kind |= block_kind_uniform;
11074 bld.branch(aco_opcode::p_cbranch_z, cond);
11075
11076 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
11077
11078 ctx.block = ctx.program->create_and_insert_block();
11079 add_edge(BB_if_idx, ctx.block);
11080 bld.reset(ctx.block);
11081 append_logical_start(ctx.block);
11082 }
11083
11084 unsigned offset = 0;
11085 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
11086 if (args->shader_info->gs.output_streams[i] != stream)
11087 continue;
11088
11089 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
11090 unsigned length = util_last_bit(output_usage_mask);
11091 for (unsigned j = 0; j < length; ++j) {
11092 if (!(output_usage_mask & (1 << j)))
11093 continue;
11094
11095 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
11096 Temp voffset = vtx_offset;
11097 if (const_offset >= 4096u) {
11098 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
11099 const_offset %= 4096u;
11100 }
11101
11102 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
11103 mubuf->definitions[0] = bld.def(v1);
11104 mubuf->operands[0] = Operand(gsvs_ring);
11105 mubuf->operands[1] = Operand(voffset);
11106 mubuf->operands[2] = Operand(0u);
11107 mubuf->offen = true;
11108 mubuf->offset = const_offset;
11109 mubuf->glc = true;
11110 mubuf->slc = true;
11111 mubuf->dlc = args->options->chip_class >= GFX10;
11112 mubuf->barrier = barrier_none;
11113 mubuf->can_reorder = true;
11114
11115 ctx.outputs.mask[i] |= 1 << j;
11116 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
11117
11118 bld.insert(std::move(mubuf));
11119
11120 offset++;
11121 }
11122 }
11123
11124 if (args->shader_info->so.num_outputs) {
11125 emit_streamout(&ctx, stream);
11126 bld.reset(ctx.block);
11127 }
11128
11129 if (stream == 0) {
11130 create_vs_exports(&ctx);
11131 ctx.block->kind |= block_kind_export_end;
11132 }
11133
11134 if (!stream_id.isConstant()) {
11135 append_logical_end(ctx.block);
11136
11137 /* branch from then block to endif block */
11138 bld.branch(aco_opcode::p_branch);
11139 add_edge(ctx.block->index, &BB_endif);
11140 ctx.block->kind |= block_kind_uniform;
11141
11142 /* emit else block */
11143 ctx.block = ctx.program->create_and_insert_block();
11144 add_edge(BB_if_idx, ctx.block);
11145 bld.reset(ctx.block);
11146 append_logical_start(ctx.block);
11147
11148 endif_blocks.push(std::move(BB_endif));
11149 }
11150 }
11151
11152 while (!endif_blocks.empty()) {
11153 Block BB_endif = std::move(endif_blocks.top());
11154 endif_blocks.pop();
11155
11156 Block *BB_else = ctx.block;
11157
11158 append_logical_end(BB_else);
11159 /* branch from else block to endif block */
11160 bld.branch(aco_opcode::p_branch);
11161 add_edge(BB_else->index, &BB_endif);
11162 BB_else->kind |= block_kind_uniform;
11163
11164 /** emit endif merge block */
11165 ctx.block = program->insert_block(std::move(BB_endif));
11166 bld.reset(ctx.block);
11167 append_logical_start(ctx.block);
11168 }
11169
11170 program->config->float_mode = program->blocks[0].fp_mode.val;
11171
11172 append_logical_end(ctx.block);
11173 ctx.block->kind |= block_kind_uniform;
11174 bld.sopp(aco_opcode::s_endpgm);
11175
11176 cleanup_cfg(program);
11177 }
11178 }