aco: don't split store data if it was already split into more elements
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else if (ctx->program->chip_class <= GFX7) {
140 Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 } else {
143 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo);
144 return thread_id_hi;
145 }
146 }
147
148 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
149 {
150 Builder bld(ctx->program, ctx->block);
151
152 if (!dst.id())
153 dst = bld.tmp(src.regClass());
154
155 assert(src.size() == dst.size());
156
157 if (ctx->stage != fragment_fs) {
158 if (!dst.id())
159 return src;
160
161 bld.copy(Definition(dst), src);
162 return dst;
163 }
164
165 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
166 ctx->program->needs_wqm |= program_needs_wqm;
167 return dst;
168 }
169
170 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
171 {
172 if (index.regClass() == s1)
173 return bld.readlane(bld.def(s1), data, index);
174
175 if (ctx->options->chip_class <= GFX7) {
176 /* GFX6-7: there is no bpermute instruction */
177 Operand index_op(index);
178 Operand input_data(data);
179 index_op.setLateKill(true);
180 input_data.setLateKill(true);
181
182 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
183 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
184 /* GFX10 wave64 mode: emulate full-wave bpermute */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
192 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
193 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
194 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
195 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
196 Operand input_data(data);
197
198 index_x4.setLateKill(true);
199 input_data.setLateKill(true);
200 same_half.setLateKill(true);
201
202 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
203 } else {
204 /* GFX8-9 or GFX10 wave32: bpermute works normally */
205 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
206 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
207 }
208 }
209
210 static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
211 {
212 if (ctx->options->chip_class >= GFX8) {
213 unsigned and_mask = mask & 0x1f;
214 unsigned or_mask = (mask >> 5) & 0x1f;
215 unsigned xor_mask = (mask >> 10) & 0x1f;
216
217 uint16_t dpp_ctrl = 0xffff;
218
219 // TODO: we could use DPP8 for some swizzles
220 if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
221 unsigned res[4] = {0, 1, 2, 3};
222 for (unsigned i = 0; i < 4; i++)
223 res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
224 dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
225 } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
226 dpp_ctrl = dpp_row_rr(8);
227 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
228 dpp_ctrl = dpp_row_mirror;
229 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
230 dpp_ctrl = dpp_row_half_mirror;
231 }
232
233 if (dpp_ctrl != 0xffff)
234 return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
235 }
236
237 return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
238 }
239
240 Temp as_vgpr(isel_context *ctx, Temp val)
241 {
242 if (val.type() == RegType::sgpr) {
243 Builder bld(ctx->program, ctx->block);
244 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
245 }
246 assert(val.type() == RegType::vgpr);
247 return val;
248 }
249
250 //assumes a != 0xffffffff
251 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
252 {
253 assert(b != 0);
254 Builder bld(ctx->program, ctx->block);
255
256 if (util_is_power_of_two_or_zero(b)) {
257 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
258 return;
259 }
260
261 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
262
263 assert(info.multiplier <= 0xffffffff);
264
265 bool pre_shift = info.pre_shift != 0;
266 bool increment = info.increment != 0;
267 bool multiply = true;
268 bool post_shift = info.post_shift != 0;
269
270 if (!pre_shift && !increment && !multiply && !post_shift) {
271 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
272 return;
273 }
274
275 Temp pre_shift_dst = a;
276 if (pre_shift) {
277 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
278 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
279 }
280
281 Temp increment_dst = pre_shift_dst;
282 if (increment) {
283 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
284 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
285 }
286
287 Temp multiply_dst = increment_dst;
288 if (multiply) {
289 multiply_dst = post_shift ? bld.tmp(v1) : dst;
290 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
291 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
292 }
293
294 if (post_shift) {
295 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
296 }
297 }
298
299 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
300 {
301 Builder bld(ctx->program, ctx->block);
302 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
303 }
304
305
306 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
307 {
308 /* no need to extract the whole vector */
309 if (src.regClass() == dst_rc) {
310 assert(idx == 0);
311 return src;
312 }
313
314 assert(src.bytes() > (idx * dst_rc.bytes()));
315 Builder bld(ctx->program, ctx->block);
316 auto it = ctx->allocated_vec.find(src.id());
317 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
318 if (it->second[idx].regClass() == dst_rc) {
319 return it->second[idx];
320 } else {
321 assert(!dst_rc.is_subdword());
322 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
323 return bld.copy(bld.def(dst_rc), it->second[idx]);
324 }
325 }
326
327 if (dst_rc.is_subdword())
328 src = as_vgpr(ctx, src);
329
330 if (src.bytes() == dst_rc.bytes()) {
331 assert(idx == 0);
332 return bld.copy(bld.def(dst_rc), src);
333 } else {
334 Temp dst = bld.tmp(dst_rc);
335 emit_extract_vector(ctx, src, idx, dst);
336 return dst;
337 }
338 }
339
340 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
341 {
342 if (num_components == 1)
343 return;
344 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
345 return;
346 RegClass rc;
347 if (num_components > vec_src.size()) {
348 if (vec_src.type() == RegType::sgpr) {
349 /* should still help get_alu_src() */
350 emit_split_vector(ctx, vec_src, vec_src.size());
351 return;
352 }
353 /* sub-dword split */
354 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
355 } else {
356 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
357 }
358 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
359 split->operands[0] = Operand(vec_src);
360 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
361 for (unsigned i = 0; i < num_components; i++) {
362 elems[i] = {ctx->program->allocateId(), rc};
363 split->definitions[i] = Definition(elems[i]);
364 }
365 ctx->block->instructions.emplace_back(std::move(split));
366 ctx->allocated_vec.emplace(vec_src.id(), elems);
367 }
368
369 /* This vector expansion uses a mask to determine which elements in the new vector
370 * come from the original vector. The other elements are undefined. */
371 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
372 {
373 emit_split_vector(ctx, vec_src, util_bitcount(mask));
374
375 if (vec_src == dst)
376 return;
377
378 Builder bld(ctx->program, ctx->block);
379 if (num_components == 1) {
380 if (dst.type() == RegType::sgpr)
381 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
382 else
383 bld.copy(Definition(dst), vec_src);
384 return;
385 }
386
387 unsigned component_size = dst.size() / num_components;
388 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
389
390 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
391 vec->definitions[0] = Definition(dst);
392 unsigned k = 0;
393 for (unsigned i = 0; i < num_components; i++) {
394 if (mask & (1 << i)) {
395 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
396 if (dst.type() == RegType::sgpr)
397 src = bld.as_uniform(src);
398 vec->operands[i] = Operand(src);
399 } else {
400 vec->operands[i] = Operand(0u);
401 }
402 elems[i] = vec->operands[i].getTemp();
403 }
404 ctx->block->instructions.emplace_back(std::move(vec));
405 ctx->allocated_vec.emplace(dst.id(), elems);
406 }
407
408 /* adjust misaligned small bit size loads */
409 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
410 {
411 Builder bld(ctx->program, ctx->block);
412 Operand shift;
413 Temp select = Temp();
414 if (offset.isConstant()) {
415 assert(offset.constantValue() && offset.constantValue() < 4);
416 shift = Operand(offset.constantValue() * 8);
417 } else {
418 /* bit_offset = 8 * (offset & 0x3) */
419 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
420 select = bld.tmp(s1);
421 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
422 }
423
424 if (vec.size() == 1) {
425 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
426 } else if (vec.size() == 2) {
427 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
428 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
429 if (tmp == dst)
430 emit_split_vector(ctx, dst, 2);
431 else
432 emit_extract_vector(ctx, tmp, 0, dst);
433 } else if (vec.size() == 4) {
434 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
435 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
436 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
437 if (select != Temp())
438 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
439 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
440 Temp mid = bld.tmp(s1);
441 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
442 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
443 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
444 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
445 emit_split_vector(ctx, dst, 2);
446 }
447 }
448
449 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
450 {
451 Builder bld(ctx->program, ctx->block);
452 if (offset.isTemp()) {
453 Temp tmp[4] = {vec, vec, vec, vec};
454
455 if (vec.size() == 4) {
456 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
457 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
458 } else if (vec.size() == 3) {
459 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
460 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
461 } else if (vec.size() == 2) {
462 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
463 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
464 }
465 for (unsigned i = 0; i < dst.size(); i++)
466 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
467
468 vec = tmp[0];
469 if (dst.size() == 2)
470 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
471
472 offset = Operand(0u);
473 }
474
475 unsigned num_components = vec.bytes() / component_size;
476 if (vec.regClass() == dst.regClass()) {
477 assert(offset.constantValue() == 0);
478 bld.copy(Definition(dst), vec);
479 emit_split_vector(ctx, dst, num_components);
480 return;
481 }
482
483 emit_split_vector(ctx, vec, num_components);
484 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
485 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
486
487 assert(offset.constantValue() % component_size == 0);
488 unsigned skip = offset.constantValue() / component_size;
489 for (unsigned i = skip; i < num_components; i++)
490 elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
491
492 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
493 if (dst.type() == RegType::vgpr) {
494 num_components = dst.bytes() / component_size;
495 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
496 for (unsigned i = 0; i < num_components; i++)
497 create_vec->operands[i] = Operand(elems[i]);
498 create_vec->definitions[0] = Definition(dst);
499 bld.insert(std::move(create_vec));
500
501 /* if dst is sgpr - split the src, but move the original to sgpr. */
502 } else if (skip) {
503 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
504 byte_align_scalar(ctx, vec, offset, dst);
505 } else {
506 assert(dst.size() == vec.size());
507 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
508 }
509
510 ctx->allocated_vec.emplace(dst.id(), elems);
511 }
512
513 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
514 {
515 Builder bld(ctx->program, ctx->block);
516 if (!dst.id())
517 dst = bld.tmp(bld.lm);
518
519 assert(val.regClass() == s1);
520 assert(dst.regClass() == bld.lm);
521
522 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
523 }
524
525 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
526 {
527 Builder bld(ctx->program, ctx->block);
528 if (!dst.id())
529 dst = bld.tmp(s1);
530
531 assert(val.regClass() == bld.lm);
532 assert(dst.regClass() == s1);
533
534 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
535 Temp tmp = bld.tmp(s1);
536 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
537 return emit_wqm(ctx, tmp, dst);
538 }
539
540 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
541 {
542 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
543 return get_ssa_temp(ctx, src.src.ssa);
544
545 if (src.src.ssa->num_components == size) {
546 bool identity_swizzle = true;
547 for (unsigned i = 0; identity_swizzle && i < size; i++) {
548 if (src.swizzle[i] != i)
549 identity_swizzle = false;
550 }
551 if (identity_swizzle)
552 return get_ssa_temp(ctx, src.src.ssa);
553 }
554
555 Temp vec = get_ssa_temp(ctx, src.src.ssa);
556 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
557 assert(elem_size > 0);
558 assert(vec.bytes() % elem_size == 0);
559
560 if (elem_size < 4 && vec.type() == RegType::sgpr) {
561 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
562 assert(size == 1);
563 unsigned swizzle = src.swizzle[0];
564 if (vec.size() > 1) {
565 assert(src.src.ssa->bit_size == 16);
566 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
567 swizzle = swizzle & 1;
568 }
569 if (swizzle == 0)
570 return vec;
571
572 Temp dst{ctx->program->allocateId(), s1};
573 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 2)};
574 bfe->operands[0] = Operand(vec);
575 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
576 bfe->definitions[0] = Definition(dst);
577 bfe->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
578 ctx->block->instructions.emplace_back(std::move(bfe));
579 return dst;
580 }
581
582 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
583 if (size == 1) {
584 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
585 } else {
586 assert(size <= 4);
587 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
588 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
589 for (unsigned i = 0; i < size; ++i) {
590 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
591 vec_instr->operands[i] = Operand{elems[i]};
592 }
593 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
594 vec_instr->definitions[0] = Definition(dst);
595 ctx->block->instructions.emplace_back(std::move(vec_instr));
596 ctx->allocated_vec.emplace(dst.id(), elems);
597 return dst;
598 }
599 }
600
601 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
602 {
603 if (ptr.size() == 2)
604 return ptr;
605 Builder bld(ctx->program, ctx->block);
606 if (ptr.type() == RegType::vgpr)
607 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
608 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
609 ptr, Operand((unsigned)ctx->options->address32_hi));
610 }
611
612 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
613 {
614 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
615 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
616 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
617 sop2->definitions[0] = Definition(dst);
618 if (instr->no_unsigned_wrap)
619 sop2->definitions[0].setNUW(true);
620 if (writes_scc)
621 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
622 ctx->block->instructions.emplace_back(std::move(sop2));
623 }
624
625 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
626 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
627 {
628 Builder bld(ctx->program, ctx->block);
629 bld.is_precise = instr->exact;
630
631 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
632 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
633 if (src1.type() == RegType::sgpr) {
634 if (commutative && src0.type() == RegType::vgpr) {
635 Temp t = src0;
636 src0 = src1;
637 src1 = t;
638 } else {
639 src1 = as_vgpr(ctx, src1);
640 }
641 }
642
643 if (flush_denorms && ctx->program->chip_class < GFX9) {
644 assert(dst.size() == 1);
645 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
646 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
647 } else {
648 bld.vop2(op, Definition(dst), src0, src1);
649 }
650 }
651
652 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
653 aco_opcode op, Temp dst)
654 {
655 Builder bld(ctx->program, ctx->block);
656 bld.is_precise = instr->exact;
657
658 Temp src0 = get_alu_src(ctx, instr->src[0]);
659 Temp src1 = get_alu_src(ctx, instr->src[1]);
660
661 if (src1.type() == RegType::sgpr) {
662 assert(src0.type() == RegType::vgpr);
663 std::swap(src0, src1);
664 }
665
666 Temp src00 = bld.tmp(src0.type(), 1);
667 Temp src01 = bld.tmp(src0.type(), 1);
668 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
669 Temp src10 = bld.tmp(v1);
670 Temp src11 = bld.tmp(v1);
671 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
672 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
673 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
674 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
675 }
676
677 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
678 bool flush_denorms = false)
679 {
680 Temp src0 = get_alu_src(ctx, instr->src[0]);
681 Temp src1 = get_alu_src(ctx, instr->src[1]);
682 Temp src2 = get_alu_src(ctx, instr->src[2]);
683
684 /* ensure that the instruction has at most 1 sgpr operand
685 * The optimizer will inline constants for us */
686 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
687 src0 = as_vgpr(ctx, src0);
688 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
689 src1 = as_vgpr(ctx, src1);
690 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
691 src2 = as_vgpr(ctx, src2);
692
693 Builder bld(ctx->program, ctx->block);
694 bld.is_precise = instr->exact;
695 if (flush_denorms && ctx->program->chip_class < GFX9) {
696 assert(dst.size() == 1);
697 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
698 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
699 } else {
700 bld.vop3(op, Definition(dst), src0, src1, src2);
701 }
702 }
703
704 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
705 {
706 Builder bld(ctx->program, ctx->block);
707 bld.is_precise = instr->exact;
708 if (dst.type() == RegType::sgpr)
709 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
710 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
711 else
712 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
713 }
714
715 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
716 {
717 Temp src0 = get_alu_src(ctx, instr->src[0]);
718 Temp src1 = get_alu_src(ctx, instr->src[1]);
719 assert(src0.size() == src1.size());
720
721 aco_ptr<Instruction> vopc;
722 if (src1.type() == RegType::sgpr) {
723 if (src0.type() == RegType::vgpr) {
724 /* to swap the operands, we might also have to change the opcode */
725 switch (op) {
726 case aco_opcode::v_cmp_lt_f16:
727 op = aco_opcode::v_cmp_gt_f16;
728 break;
729 case aco_opcode::v_cmp_ge_f16:
730 op = aco_opcode::v_cmp_le_f16;
731 break;
732 case aco_opcode::v_cmp_lt_i16:
733 op = aco_opcode::v_cmp_gt_i16;
734 break;
735 case aco_opcode::v_cmp_ge_i16:
736 op = aco_opcode::v_cmp_le_i16;
737 break;
738 case aco_opcode::v_cmp_lt_u16:
739 op = aco_opcode::v_cmp_gt_u16;
740 break;
741 case aco_opcode::v_cmp_ge_u16:
742 op = aco_opcode::v_cmp_le_u16;
743 break;
744 case aco_opcode::v_cmp_lt_f32:
745 op = aco_opcode::v_cmp_gt_f32;
746 break;
747 case aco_opcode::v_cmp_ge_f32:
748 op = aco_opcode::v_cmp_le_f32;
749 break;
750 case aco_opcode::v_cmp_lt_i32:
751 op = aco_opcode::v_cmp_gt_i32;
752 break;
753 case aco_opcode::v_cmp_ge_i32:
754 op = aco_opcode::v_cmp_le_i32;
755 break;
756 case aco_opcode::v_cmp_lt_u32:
757 op = aco_opcode::v_cmp_gt_u32;
758 break;
759 case aco_opcode::v_cmp_ge_u32:
760 op = aco_opcode::v_cmp_le_u32;
761 break;
762 case aco_opcode::v_cmp_lt_f64:
763 op = aco_opcode::v_cmp_gt_f64;
764 break;
765 case aco_opcode::v_cmp_ge_f64:
766 op = aco_opcode::v_cmp_le_f64;
767 break;
768 case aco_opcode::v_cmp_lt_i64:
769 op = aco_opcode::v_cmp_gt_i64;
770 break;
771 case aco_opcode::v_cmp_ge_i64:
772 op = aco_opcode::v_cmp_le_i64;
773 break;
774 case aco_opcode::v_cmp_lt_u64:
775 op = aco_opcode::v_cmp_gt_u64;
776 break;
777 case aco_opcode::v_cmp_ge_u64:
778 op = aco_opcode::v_cmp_le_u64;
779 break;
780 default: /* eq and ne are commutative */
781 break;
782 }
783 Temp t = src0;
784 src0 = src1;
785 src1 = t;
786 } else {
787 src1 = as_vgpr(ctx, src1);
788 }
789 }
790
791 Builder bld(ctx->program, ctx->block);
792 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
793 }
794
795 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
796 {
797 Temp src0 = get_alu_src(ctx, instr->src[0]);
798 Temp src1 = get_alu_src(ctx, instr->src[1]);
799 Builder bld(ctx->program, ctx->block);
800
801 assert(dst.regClass() == bld.lm);
802 assert(src0.type() == RegType::sgpr);
803 assert(src1.type() == RegType::sgpr);
804 assert(src0.regClass() == src1.regClass());
805
806 /* Emit the SALU comparison instruction */
807 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
808 /* Turn the result into a per-lane bool */
809 bool_to_vector_condition(ctx, cmp, dst);
810 }
811
812 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
813 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
814 {
815 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
816 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
817 bool use_valu = s_op == aco_opcode::num_opcodes ||
818 nir_dest_is_divergent(instr->dest.dest) ||
819 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
820 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
821 aco_opcode op = use_valu ? v_op : s_op;
822 assert(op != aco_opcode::num_opcodes);
823 assert(dst.regClass() == ctx->program->lane_mask);
824
825 if (use_valu)
826 emit_vopc_instruction(ctx, instr, op, dst);
827 else
828 emit_sopc_instruction(ctx, instr, op, dst);
829 }
830
831 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
832 {
833 Builder bld(ctx->program, ctx->block);
834 Temp src0 = get_alu_src(ctx, instr->src[0]);
835 Temp src1 = get_alu_src(ctx, instr->src[1]);
836
837 assert(dst.regClass() == bld.lm);
838 assert(src0.regClass() == bld.lm);
839 assert(src1.regClass() == bld.lm);
840
841 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
842 }
843
844 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
845 {
846 Builder bld(ctx->program, ctx->block);
847 Temp cond = get_alu_src(ctx, instr->src[0]);
848 Temp then = get_alu_src(ctx, instr->src[1]);
849 Temp els = get_alu_src(ctx, instr->src[2]);
850
851 assert(cond.regClass() == bld.lm);
852
853 if (dst.type() == RegType::vgpr) {
854 aco_ptr<Instruction> bcsel;
855 if (dst.size() == 1) {
856 then = as_vgpr(ctx, then);
857 els = as_vgpr(ctx, els);
858
859 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
860 } else if (dst.size() == 2) {
861 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
862 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
863 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
864 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
865
866 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
867 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
868
869 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
870 } else {
871 fprintf(stderr, "Unimplemented NIR instr bit size: ");
872 nir_print_instr(&instr->instr, stderr);
873 fprintf(stderr, "\n");
874 }
875 return;
876 }
877
878 if (instr->dest.dest.ssa.bit_size == 1) {
879 assert(dst.regClass() == bld.lm);
880 assert(then.regClass() == bld.lm);
881 assert(els.regClass() == bld.lm);
882 }
883
884 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
885 if (dst.regClass() == s1 || dst.regClass() == s2) {
886 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
887 assert(dst.size() == then.size());
888 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
889 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
890 } else {
891 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
892 nir_print_instr(&instr->instr, stderr);
893 fprintf(stderr, "\n");
894 }
895 return;
896 }
897
898 /* divergent boolean bcsel
899 * this implements bcsel on bools: dst = s0 ? s1 : s2
900 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
901 assert(instr->dest.dest.ssa.bit_size == 1);
902
903 if (cond.id() != then.id())
904 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
905
906 if (cond.id() == els.id())
907 bld.sop1(Builder::s_mov, Definition(dst), then);
908 else
909 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
910 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
911 }
912
913 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
914 aco_opcode op, uint32_t undo)
915 {
916 /* multiply by 16777216 to handle denormals */
917 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
918 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
919 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
920 scaled = bld.vop1(op, bld.def(v1), scaled);
921 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
922
923 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
924
925 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
926 }
927
928 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
929 {
930 if (ctx->block->fp_mode.denorm32 == 0) {
931 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
932 return;
933 }
934
935 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
936 }
937
938 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
939 {
940 if (ctx->block->fp_mode.denorm32 == 0) {
941 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
942 return;
943 }
944
945 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
946 }
947
948 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
949 {
950 if (ctx->block->fp_mode.denorm32 == 0) {
951 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
952 return;
953 }
954
955 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
956 }
957
958 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
959 {
960 if (ctx->block->fp_mode.denorm32 == 0) {
961 bld.vop1(aco_opcode::v_log_f32, dst, val);
962 return;
963 }
964
965 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
966 }
967
968 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
969 {
970 if (ctx->options->chip_class >= GFX7)
971 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
972
973 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
974 /* TODO: create more efficient code! */
975 if (val.type() == RegType::sgpr)
976 val = as_vgpr(ctx, val);
977
978 /* Split the input value. */
979 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
980 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
981
982 /* Extract the exponent and compute the unbiased value. */
983 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
984 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
985
986 /* Extract the fractional part. */
987 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
988 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
989
990 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
991 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
992
993 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
994 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
995 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
996 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
997 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
998
999 /* Get the sign bit. */
1000 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
1001
1002 /* Decide the operation to apply depending on the unbiased exponent. */
1003 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
1004 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
1005 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
1006 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
1007 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
1008 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
1009
1010 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
1011 }
1012
1013 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1014 {
1015 if (ctx->options->chip_class >= GFX7)
1016 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
1017
1018 /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
1019 * lowered at NIR level for precision reasons). */
1020 Temp src0 = as_vgpr(ctx, val);
1021
1022 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
1023 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
1024
1025 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
1026 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
1027 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
1028
1029 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
1030 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
1031 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
1032 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
1033
1034 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
1035 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
1036
1037 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1038
1039 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1040 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1041
1042 return add->definitions[0].getTemp();
1043 }
1044
1045 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
1046 if (!dst.id()) {
1047 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
1048 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
1049 else
1050 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
1051 }
1052
1053 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
1054 return bld.copy(Definition(dst), src);
1055 else if (dst.bytes() < src.bytes())
1056 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
1057
1058 Temp tmp = dst;
1059 if (dst_bits == 64)
1060 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
1061
1062 if (tmp == src) {
1063 } else if (src.regClass() == s1) {
1064 if (is_signed)
1065 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
1066 else
1067 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
1068 } else if (ctx->options->chip_class >= GFX8) {
1069 assert(src_bits != 8 || src.regClass() == v1b);
1070 assert(src_bits != 16 || src.regClass() == v2b);
1071 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
1072 sdwa->operands[0] = Operand(src);
1073 sdwa->definitions[0] = Definition(tmp);
1074 if (is_signed)
1075 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
1076 else
1077 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
1078 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
1079 bld.insert(std::move(sdwa));
1080 } else {
1081 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
1082 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
1083 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
1084 }
1085
1086 if (dst_bits == 64) {
1087 if (is_signed && dst.regClass() == s2) {
1088 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
1089 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1090 } else if (is_signed && dst.regClass() == v2) {
1091 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
1092 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1093 } else {
1094 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
1095 }
1096 }
1097
1098 return dst;
1099 }
1100
1101 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1102 {
1103 if (!instr->dest.dest.is_ssa) {
1104 fprintf(stderr, "nir alu dst not in ssa: ");
1105 nir_print_instr(&instr->instr, stderr);
1106 fprintf(stderr, "\n");
1107 abort();
1108 }
1109 Builder bld(ctx->program, ctx->block);
1110 bld.is_precise = instr->exact;
1111 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1112 switch(instr->op) {
1113 case nir_op_vec2:
1114 case nir_op_vec3:
1115 case nir_op_vec4: {
1116 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1117 unsigned num = instr->dest.dest.ssa.num_components;
1118 for (unsigned i = 0; i < num; ++i)
1119 elems[i] = get_alu_src(ctx, instr->src[i]);
1120
1121 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1122 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1123 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1124 for (unsigned i = 0; i < num; ++i) {
1125 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1126 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1127 else
1128 vec->operands[i] = Operand{elems[i]};
1129 }
1130 vec->definitions[0] = Definition(dst);
1131 ctx->block->instructions.emplace_back(std::move(vec));
1132 ctx->allocated_vec.emplace(dst.id(), elems);
1133 } else {
1134 // TODO: that is a bit suboptimal..
1135 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1136 for (unsigned i = 0; i < num - 1; ++i)
1137 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1138 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1139 for (unsigned i = 0; i < num; ++i) {
1140 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1141 if (bit % 32 == 0) {
1142 elems[bit / 32] = elems[i];
1143 } else {
1144 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1145 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1146 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1147 }
1148 }
1149 if (dst.size() == 1)
1150 bld.copy(Definition(dst), elems[0]);
1151 else
1152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1153 }
1154 break;
1155 }
1156 case nir_op_mov: {
1157 Temp src = get_alu_src(ctx, instr->src[0]);
1158 aco_ptr<Instruction> mov;
1159 if (dst.type() == RegType::sgpr) {
1160 if (src.type() == RegType::vgpr)
1161 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1162 else if (src.regClass() == s1)
1163 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1164 else if (src.regClass() == s2)
1165 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1166 else
1167 unreachable("wrong src register class for nir_op_imov");
1168 } else {
1169 if (dst.regClass() == v1)
1170 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1171 else if (dst.regClass() == v1b ||
1172 dst.regClass() == v2b ||
1173 dst.regClass() == v2)
1174 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1175 else
1176 unreachable("wrong src register class for nir_op_imov");
1177 }
1178 break;
1179 }
1180 case nir_op_inot: {
1181 Temp src = get_alu_src(ctx, instr->src[0]);
1182 if (instr->dest.dest.ssa.bit_size == 1) {
1183 assert(src.regClass() == bld.lm);
1184 assert(dst.regClass() == bld.lm);
1185 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1186 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1187 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1188 } else if (dst.regClass() == v1) {
1189 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1190 } else if (dst.regClass() == v2) {
1191 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1192 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1193 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1194 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1195 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1196 } else if (dst.type() == RegType::sgpr) {
1197 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1198 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1199 } else {
1200 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1201 nir_print_instr(&instr->instr, stderr);
1202 fprintf(stderr, "\n");
1203 }
1204 break;
1205 }
1206 case nir_op_ineg: {
1207 Temp src = get_alu_src(ctx, instr->src[0]);
1208 if (dst.regClass() == v1) {
1209 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1210 } else if (dst.regClass() == s1) {
1211 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1212 } else if (dst.size() == 2) {
1213 Temp src0 = bld.tmp(dst.type(), 1);
1214 Temp src1 = bld.tmp(dst.type(), 1);
1215 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1216
1217 if (dst.regClass() == s2) {
1218 Temp carry = bld.tmp(s1);
1219 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1220 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1221 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1222 } else {
1223 Temp lower = bld.tmp(v1);
1224 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1225 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1227 }
1228 } else {
1229 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1230 nir_print_instr(&instr->instr, stderr);
1231 fprintf(stderr, "\n");
1232 }
1233 break;
1234 }
1235 case nir_op_iabs: {
1236 if (dst.regClass() == s1) {
1237 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1238 } else if (dst.regClass() == v1) {
1239 Temp src = get_alu_src(ctx, instr->src[0]);
1240 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1241 } else {
1242 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1243 nir_print_instr(&instr->instr, stderr);
1244 fprintf(stderr, "\n");
1245 }
1246 break;
1247 }
1248 case nir_op_isign: {
1249 Temp src = get_alu_src(ctx, instr->src[0]);
1250 if (dst.regClass() == s1) {
1251 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1252 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1253 } else if (dst.regClass() == s2) {
1254 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1255 Temp neqz;
1256 if (ctx->program->chip_class >= GFX8)
1257 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1258 else
1259 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1260 /* SCC gets zero-extended to 64 bit */
1261 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1262 } else if (dst.regClass() == v1) {
1263 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1264 } else if (dst.regClass() == v2) {
1265 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1266 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1267 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1268 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1269 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1270 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1271 } else {
1272 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1273 nir_print_instr(&instr->instr, stderr);
1274 fprintf(stderr, "\n");
1275 }
1276 break;
1277 }
1278 case nir_op_imax: {
1279 if (dst.regClass() == v1) {
1280 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1281 } else if (dst.regClass() == s1) {
1282 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1283 } else {
1284 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1285 nir_print_instr(&instr->instr, stderr);
1286 fprintf(stderr, "\n");
1287 }
1288 break;
1289 }
1290 case nir_op_umax: {
1291 if (dst.regClass() == v1) {
1292 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1293 } else if (dst.regClass() == s1) {
1294 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1295 } else {
1296 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1297 nir_print_instr(&instr->instr, stderr);
1298 fprintf(stderr, "\n");
1299 }
1300 break;
1301 }
1302 case nir_op_imin: {
1303 if (dst.regClass() == v1) {
1304 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1305 } else if (dst.regClass() == s1) {
1306 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1307 } else {
1308 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1309 nir_print_instr(&instr->instr, stderr);
1310 fprintf(stderr, "\n");
1311 }
1312 break;
1313 }
1314 case nir_op_umin: {
1315 if (dst.regClass() == v1) {
1316 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1317 } else if (dst.regClass() == s1) {
1318 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1319 } else {
1320 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1321 nir_print_instr(&instr->instr, stderr);
1322 fprintf(stderr, "\n");
1323 }
1324 break;
1325 }
1326 case nir_op_ior: {
1327 if (instr->dest.dest.ssa.bit_size == 1) {
1328 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1329 } else if (dst.regClass() == v1) {
1330 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1331 } else if (dst.regClass() == v2) {
1332 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1333 } else if (dst.regClass() == s1) {
1334 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1335 } else if (dst.regClass() == s2) {
1336 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1337 } else {
1338 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1339 nir_print_instr(&instr->instr, stderr);
1340 fprintf(stderr, "\n");
1341 }
1342 break;
1343 }
1344 case nir_op_iand: {
1345 if (instr->dest.dest.ssa.bit_size == 1) {
1346 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1347 } else if (dst.regClass() == v1) {
1348 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1349 } else if (dst.regClass() == v2) {
1350 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1353 } else if (dst.regClass() == s2) {
1354 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1355 } else {
1356 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1357 nir_print_instr(&instr->instr, stderr);
1358 fprintf(stderr, "\n");
1359 }
1360 break;
1361 }
1362 case nir_op_ixor: {
1363 if (instr->dest.dest.ssa.bit_size == 1) {
1364 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1365 } else if (dst.regClass() == v1) {
1366 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1367 } else if (dst.regClass() == v2) {
1368 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1369 } else if (dst.regClass() == s1) {
1370 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1371 } else if (dst.regClass() == s2) {
1372 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1373 } else {
1374 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1375 nir_print_instr(&instr->instr, stderr);
1376 fprintf(stderr, "\n");
1377 }
1378 break;
1379 }
1380 case nir_op_ushr: {
1381 if (dst.regClass() == v1) {
1382 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1383 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1384 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1385 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1386 } else if (dst.regClass() == v2) {
1387 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1388 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1389 } else if (dst.regClass() == s2) {
1390 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1391 } else if (dst.regClass() == s1) {
1392 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1393 } else {
1394 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1395 nir_print_instr(&instr->instr, stderr);
1396 fprintf(stderr, "\n");
1397 }
1398 break;
1399 }
1400 case nir_op_ishl: {
1401 if (dst.regClass() == v1) {
1402 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1403 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1404 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1405 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1406 } else if (dst.regClass() == v2) {
1407 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1408 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1409 } else if (dst.regClass() == s1) {
1410 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1411 } else if (dst.regClass() == s2) {
1412 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1413 } else {
1414 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1415 nir_print_instr(&instr->instr, stderr);
1416 fprintf(stderr, "\n");
1417 }
1418 break;
1419 }
1420 case nir_op_ishr: {
1421 if (dst.regClass() == v1) {
1422 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1423 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1424 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1425 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1426 } else if (dst.regClass() == v2) {
1427 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1429 } else if (dst.regClass() == s1) {
1430 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1431 } else if (dst.regClass() == s2) {
1432 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1433 } else {
1434 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1435 nir_print_instr(&instr->instr, stderr);
1436 fprintf(stderr, "\n");
1437 }
1438 break;
1439 }
1440 case nir_op_find_lsb: {
1441 Temp src = get_alu_src(ctx, instr->src[0]);
1442 if (src.regClass() == s1) {
1443 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1444 } else if (src.regClass() == v1) {
1445 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1446 } else if (src.regClass() == s2) {
1447 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1448 } else {
1449 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1450 nir_print_instr(&instr->instr, stderr);
1451 fprintf(stderr, "\n");
1452 }
1453 break;
1454 }
1455 case nir_op_ufind_msb:
1456 case nir_op_ifind_msb: {
1457 Temp src = get_alu_src(ctx, instr->src[0]);
1458 if (src.regClass() == s1 || src.regClass() == s2) {
1459 aco_opcode op = src.regClass() == s2 ?
1460 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1461 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1462 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1463
1464 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1465 Operand(src.size() * 32u - 1u), msb_rev);
1466 Temp msb = sub.def(0).getTemp();
1467 Temp carry = sub.def(1).getTemp();
1468
1469 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1470 } else if (src.regClass() == v1) {
1471 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1472 Temp msb_rev = bld.tmp(v1);
1473 emit_vop1_instruction(ctx, instr, op, msb_rev);
1474 Temp msb = bld.tmp(v1);
1475 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1476 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1477 } else {
1478 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1479 nir_print_instr(&instr->instr, stderr);
1480 fprintf(stderr, "\n");
1481 }
1482 break;
1483 }
1484 case nir_op_bitfield_reverse: {
1485 if (dst.regClass() == s1) {
1486 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1487 } else if (dst.regClass() == v1) {
1488 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1489 } else {
1490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1491 nir_print_instr(&instr->instr, stderr);
1492 fprintf(stderr, "\n");
1493 }
1494 break;
1495 }
1496 case nir_op_iadd: {
1497 if (dst.regClass() == s1) {
1498 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1499 break;
1500 }
1501
1502 Temp src0 = get_alu_src(ctx, instr->src[0]);
1503 Temp src1 = get_alu_src(ctx, instr->src[1]);
1504 if (dst.regClass() == v1) {
1505 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1506 break;
1507 }
1508
1509 assert(src0.size() == 2 && src1.size() == 2);
1510 Temp src00 = bld.tmp(src0.type(), 1);
1511 Temp src01 = bld.tmp(dst.type(), 1);
1512 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1513 Temp src10 = bld.tmp(src1.type(), 1);
1514 Temp src11 = bld.tmp(dst.type(), 1);
1515 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1516
1517 if (dst.regClass() == s2) {
1518 Temp carry = bld.tmp(s1);
1519 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1520 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1521 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1522 } else if (dst.regClass() == v2) {
1523 Temp dst0 = bld.tmp(v1);
1524 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1525 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1526 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1527 } else {
1528 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1529 nir_print_instr(&instr->instr, stderr);
1530 fprintf(stderr, "\n");
1531 }
1532 break;
1533 }
1534 case nir_op_uadd_sat: {
1535 Temp src0 = get_alu_src(ctx, instr->src[0]);
1536 Temp src1 = get_alu_src(ctx, instr->src[1]);
1537 if (dst.regClass() == s1) {
1538 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1539 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1540 src0, src1);
1541 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1542 } else if (dst.regClass() == v1) {
1543 if (ctx->options->chip_class >= GFX9) {
1544 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1545 add->operands[0] = Operand(src0);
1546 add->operands[1] = Operand(src1);
1547 add->definitions[0] = Definition(dst);
1548 add->clamp = 1;
1549 ctx->block->instructions.emplace_back(std::move(add));
1550 } else {
1551 if (src1.regClass() != v1)
1552 std::swap(src0, src1);
1553 assert(src1.regClass() == v1);
1554 Temp tmp = bld.tmp(v1);
1555 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1556 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1557 }
1558 } else {
1559 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1560 nir_print_instr(&instr->instr, stderr);
1561 fprintf(stderr, "\n");
1562 }
1563 break;
1564 }
1565 case nir_op_uadd_carry: {
1566 Temp src0 = get_alu_src(ctx, instr->src[0]);
1567 Temp src1 = get_alu_src(ctx, instr->src[1]);
1568 if (dst.regClass() == s1) {
1569 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1570 break;
1571 }
1572 if (dst.regClass() == v1) {
1573 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1574 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1575 break;
1576 }
1577
1578 Temp src00 = bld.tmp(src0.type(), 1);
1579 Temp src01 = bld.tmp(dst.type(), 1);
1580 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1581 Temp src10 = bld.tmp(src1.type(), 1);
1582 Temp src11 = bld.tmp(dst.type(), 1);
1583 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1584 if (dst.regClass() == s2) {
1585 Temp carry = bld.tmp(s1);
1586 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1587 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1589 } else if (dst.regClass() == v2) {
1590 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1591 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1592 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1593 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1594 } else {
1595 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1596 nir_print_instr(&instr->instr, stderr);
1597 fprintf(stderr, "\n");
1598 }
1599 break;
1600 }
1601 case nir_op_isub: {
1602 if (dst.regClass() == s1) {
1603 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1604 break;
1605 }
1606
1607 Temp src0 = get_alu_src(ctx, instr->src[0]);
1608 Temp src1 = get_alu_src(ctx, instr->src[1]);
1609 if (dst.regClass() == v1) {
1610 bld.vsub32(Definition(dst), src0, src1);
1611 break;
1612 }
1613
1614 Temp src00 = bld.tmp(src0.type(), 1);
1615 Temp src01 = bld.tmp(dst.type(), 1);
1616 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1617 Temp src10 = bld.tmp(src1.type(), 1);
1618 Temp src11 = bld.tmp(dst.type(), 1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1620 if (dst.regClass() == s2) {
1621 Temp carry = bld.tmp(s1);
1622 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1623 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1624 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1625 } else if (dst.regClass() == v2) {
1626 Temp lower = bld.tmp(v1);
1627 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1628 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1629 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1630 } else {
1631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1632 nir_print_instr(&instr->instr, stderr);
1633 fprintf(stderr, "\n");
1634 }
1635 break;
1636 }
1637 case nir_op_usub_borrow: {
1638 Temp src0 = get_alu_src(ctx, instr->src[0]);
1639 Temp src1 = get_alu_src(ctx, instr->src[1]);
1640 if (dst.regClass() == s1) {
1641 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1642 break;
1643 } else if (dst.regClass() == v1) {
1644 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1645 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1646 break;
1647 }
1648
1649 Temp src00 = bld.tmp(src0.type(), 1);
1650 Temp src01 = bld.tmp(dst.type(), 1);
1651 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1652 Temp src10 = bld.tmp(src1.type(), 1);
1653 Temp src11 = bld.tmp(dst.type(), 1);
1654 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1655 if (dst.regClass() == s2) {
1656 Temp borrow = bld.tmp(s1);
1657 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1658 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1659 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1660 } else if (dst.regClass() == v2) {
1661 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1662 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1663 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1664 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1665 } else {
1666 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1667 nir_print_instr(&instr->instr, stderr);
1668 fprintf(stderr, "\n");
1669 }
1670 break;
1671 }
1672 case nir_op_imul: {
1673 if (dst.regClass() == v1) {
1674 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1675 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1676 } else if (dst.regClass() == s1) {
1677 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1678 } else {
1679 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1680 nir_print_instr(&instr->instr, stderr);
1681 fprintf(stderr, "\n");
1682 }
1683 break;
1684 }
1685 case nir_op_umul_high: {
1686 if (dst.regClass() == v1) {
1687 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1688 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1689 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1690 } else if (dst.regClass() == s1) {
1691 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1692 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1693 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1694 } else {
1695 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1696 nir_print_instr(&instr->instr, stderr);
1697 fprintf(stderr, "\n");
1698 }
1699 break;
1700 }
1701 case nir_op_imul_high: {
1702 if (dst.regClass() == v1) {
1703 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1704 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1705 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1706 } else if (dst.regClass() == s1) {
1707 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1708 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1709 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1710 } else {
1711 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1712 nir_print_instr(&instr->instr, stderr);
1713 fprintf(stderr, "\n");
1714 }
1715 break;
1716 }
1717 case nir_op_fmul: {
1718 Temp src0 = get_alu_src(ctx, instr->src[0]);
1719 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1720 if (dst.regClass() == v2b) {
1721 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1722 } else if (dst.regClass() == v1) {
1723 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1724 } else if (dst.regClass() == v2) {
1725 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1726 } else {
1727 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1728 nir_print_instr(&instr->instr, stderr);
1729 fprintf(stderr, "\n");
1730 }
1731 break;
1732 }
1733 case nir_op_fadd: {
1734 Temp src0 = get_alu_src(ctx, instr->src[0]);
1735 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1736 if (dst.regClass() == v2b) {
1737 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1738 } else if (dst.regClass() == v1) {
1739 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1740 } else if (dst.regClass() == v2) {
1741 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1742 } else {
1743 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1744 nir_print_instr(&instr->instr, stderr);
1745 fprintf(stderr, "\n");
1746 }
1747 break;
1748 }
1749 case nir_op_fsub: {
1750 Temp src0 = get_alu_src(ctx, instr->src[0]);
1751 Temp src1 = get_alu_src(ctx, instr->src[1]);
1752 if (dst.regClass() == v2b) {
1753 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1754 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1755 else
1756 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1757 } else if (dst.regClass() == v1) {
1758 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1759 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1760 else
1761 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1762 } else if (dst.regClass() == v2) {
1763 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1764 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1765 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1766 sub->neg[1] = true;
1767 } else {
1768 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1769 nir_print_instr(&instr->instr, stderr);
1770 fprintf(stderr, "\n");
1771 }
1772 break;
1773 }
1774 case nir_op_fmax: {
1775 Temp src0 = get_alu_src(ctx, instr->src[0]);
1776 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1777 if (dst.regClass() == v2b) {
1778 // TODO: check fp_mode.must_flush_denorms16_64
1779 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1780 } else if (dst.regClass() == v1) {
1781 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1782 } else if (dst.regClass() == v2) {
1783 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1784 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1785 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1786 } else {
1787 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1788 }
1789 } else {
1790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1791 nir_print_instr(&instr->instr, stderr);
1792 fprintf(stderr, "\n");
1793 }
1794 break;
1795 }
1796 case nir_op_fmin: {
1797 Temp src0 = get_alu_src(ctx, instr->src[0]);
1798 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1799 if (dst.regClass() == v2b) {
1800 // TODO: check fp_mode.must_flush_denorms16_64
1801 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1802 } else if (dst.regClass() == v1) {
1803 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1804 } else if (dst.regClass() == v2) {
1805 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1806 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1807 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1808 } else {
1809 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1810 }
1811 } else {
1812 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1813 nir_print_instr(&instr->instr, stderr);
1814 fprintf(stderr, "\n");
1815 }
1816 break;
1817 }
1818 case nir_op_fmax3: {
1819 if (dst.regClass() == v2b) {
1820 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, dst, false);
1821 } else if (dst.regClass() == v1) {
1822 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1823 } else {
1824 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1825 nir_print_instr(&instr->instr, stderr);
1826 fprintf(stderr, "\n");
1827 }
1828 break;
1829 }
1830 case nir_op_fmin3: {
1831 if (dst.regClass() == v2b) {
1832 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, dst, false);
1833 } else if (dst.regClass() == v1) {
1834 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1835 } else {
1836 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1837 nir_print_instr(&instr->instr, stderr);
1838 fprintf(stderr, "\n");
1839 }
1840 break;
1841 }
1842 case nir_op_fmed3: {
1843 if (dst.regClass() == v2b) {
1844 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, dst, false);
1845 } else if (dst.regClass() == v1) {
1846 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1847 } else {
1848 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1849 nir_print_instr(&instr->instr, stderr);
1850 fprintf(stderr, "\n");
1851 }
1852 break;
1853 }
1854 case nir_op_umax3: {
1855 if (dst.size() == 1) {
1856 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1857 } else {
1858 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1859 nir_print_instr(&instr->instr, stderr);
1860 fprintf(stderr, "\n");
1861 }
1862 break;
1863 }
1864 case nir_op_umin3: {
1865 if (dst.size() == 1) {
1866 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1867 } else {
1868 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1869 nir_print_instr(&instr->instr, stderr);
1870 fprintf(stderr, "\n");
1871 }
1872 break;
1873 }
1874 case nir_op_umed3: {
1875 if (dst.size() == 1) {
1876 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1877 } else {
1878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1879 nir_print_instr(&instr->instr, stderr);
1880 fprintf(stderr, "\n");
1881 }
1882 break;
1883 }
1884 case nir_op_imax3: {
1885 if (dst.size() == 1) {
1886 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1887 } else {
1888 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1889 nir_print_instr(&instr->instr, stderr);
1890 fprintf(stderr, "\n");
1891 }
1892 break;
1893 }
1894 case nir_op_imin3: {
1895 if (dst.size() == 1) {
1896 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1897 } else {
1898 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1899 nir_print_instr(&instr->instr, stderr);
1900 fprintf(stderr, "\n");
1901 }
1902 break;
1903 }
1904 case nir_op_imed3: {
1905 if (dst.size() == 1) {
1906 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1907 } else {
1908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1909 nir_print_instr(&instr->instr, stderr);
1910 fprintf(stderr, "\n");
1911 }
1912 break;
1913 }
1914 case nir_op_cube_face_coord: {
1915 Temp in = get_alu_src(ctx, instr->src[0], 3);
1916 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1917 emit_extract_vector(ctx, in, 1, v1),
1918 emit_extract_vector(ctx, in, 2, v1) };
1919 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1920 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1921 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1922 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1923 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1924 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1925 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1926 break;
1927 }
1928 case nir_op_cube_face_index: {
1929 Temp in = get_alu_src(ctx, instr->src[0], 3);
1930 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1931 emit_extract_vector(ctx, in, 1, v1),
1932 emit_extract_vector(ctx, in, 2, v1) };
1933 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1934 break;
1935 }
1936 case nir_op_bcsel: {
1937 emit_bcsel(ctx, instr, dst);
1938 break;
1939 }
1940 case nir_op_frsq: {
1941 Temp src = get_alu_src(ctx, instr->src[0]);
1942 if (dst.regClass() == v2b) {
1943 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1944 } else if (dst.regClass() == v1) {
1945 emit_rsq(ctx, bld, Definition(dst), src);
1946 } else if (dst.regClass() == v2) {
1947 /* Lowered at NIR level for precision reasons. */
1948 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1949 } else {
1950 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1951 nir_print_instr(&instr->instr, stderr);
1952 fprintf(stderr, "\n");
1953 }
1954 break;
1955 }
1956 case nir_op_fneg: {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 if (dst.regClass() == v2b) {
1959 if (ctx->block->fp_mode.must_flush_denorms16_64)
1960 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1961 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1962 } else if (dst.regClass() == v1) {
1963 if (ctx->block->fp_mode.must_flush_denorms32)
1964 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1965 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1966 } else if (dst.regClass() == v2) {
1967 if (ctx->block->fp_mode.must_flush_denorms16_64)
1968 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1969 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1970 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1971 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1972 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1973 } else {
1974 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1975 nir_print_instr(&instr->instr, stderr);
1976 fprintf(stderr, "\n");
1977 }
1978 break;
1979 }
1980 case nir_op_fabs: {
1981 Temp src = get_alu_src(ctx, instr->src[0]);
1982 if (dst.regClass() == v2b) {
1983 if (ctx->block->fp_mode.must_flush_denorms16_64)
1984 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1985 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1986 } else if (dst.regClass() == v1) {
1987 if (ctx->block->fp_mode.must_flush_denorms32)
1988 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1989 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1990 } else if (dst.regClass() == v2) {
1991 if (ctx->block->fp_mode.must_flush_denorms16_64)
1992 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1993 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1994 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1995 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1996 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1997 } else {
1998 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1999 nir_print_instr(&instr->instr, stderr);
2000 fprintf(stderr, "\n");
2001 }
2002 break;
2003 }
2004 case nir_op_fsat: {
2005 Temp src = get_alu_src(ctx, instr->src[0]);
2006 if (dst.regClass() == v2b) {
2007 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
2008 } else if (dst.regClass() == v1) {
2009 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2010 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
2011 // TODO: confirm that this holds under any circumstances
2012 } else if (dst.regClass() == v2) {
2013 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
2014 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
2015 vop3->clamp = true;
2016 } else {
2017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2018 nir_print_instr(&instr->instr, stderr);
2019 fprintf(stderr, "\n");
2020 }
2021 break;
2022 }
2023 case nir_op_flog2: {
2024 Temp src = get_alu_src(ctx, instr->src[0]);
2025 if (dst.regClass() == v2b) {
2026 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
2027 } else if (dst.regClass() == v1) {
2028 emit_log2(ctx, bld, Definition(dst), src);
2029 } else {
2030 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2031 nir_print_instr(&instr->instr, stderr);
2032 fprintf(stderr, "\n");
2033 }
2034 break;
2035 }
2036 case nir_op_frcp: {
2037 Temp src = get_alu_src(ctx, instr->src[0]);
2038 if (dst.regClass() == v2b) {
2039 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
2040 } else if (dst.regClass() == v1) {
2041 emit_rcp(ctx, bld, Definition(dst), src);
2042 } else if (dst.regClass() == v2) {
2043 /* Lowered at NIR level for precision reasons. */
2044 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
2045 } else {
2046 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2047 nir_print_instr(&instr->instr, stderr);
2048 fprintf(stderr, "\n");
2049 }
2050 break;
2051 }
2052 case nir_op_fexp2: {
2053 if (dst.regClass() == v2b) {
2054 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
2055 } else if (dst.regClass() == v1) {
2056 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
2057 } else {
2058 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2059 nir_print_instr(&instr->instr, stderr);
2060 fprintf(stderr, "\n");
2061 }
2062 break;
2063 }
2064 case nir_op_fsqrt: {
2065 Temp src = get_alu_src(ctx, instr->src[0]);
2066 if (dst.regClass() == v2b) {
2067 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
2068 } else if (dst.regClass() == v1) {
2069 emit_sqrt(ctx, bld, Definition(dst), src);
2070 } else if (dst.regClass() == v2) {
2071 /* Lowered at NIR level for precision reasons. */
2072 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
2073 } else {
2074 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2075 nir_print_instr(&instr->instr, stderr);
2076 fprintf(stderr, "\n");
2077 }
2078 break;
2079 }
2080 case nir_op_ffract: {
2081 if (dst.regClass() == v2b) {
2082 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
2083 } else if (dst.regClass() == v1) {
2084 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
2085 } else if (dst.regClass() == v2) {
2086 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_ffloor: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (dst.regClass() == v2b) {
2097 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
2098 } else if (dst.regClass() == v1) {
2099 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
2100 } else if (dst.regClass() == v2) {
2101 emit_floor_f64(ctx, bld, Definition(dst), src);
2102 } else {
2103 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2104 nir_print_instr(&instr->instr, stderr);
2105 fprintf(stderr, "\n");
2106 }
2107 break;
2108 }
2109 case nir_op_fceil: {
2110 Temp src0 = get_alu_src(ctx, instr->src[0]);
2111 if (dst.regClass() == v2b) {
2112 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
2113 } else if (dst.regClass() == v1) {
2114 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2115 } else if (dst.regClass() == v2) {
2116 if (ctx->options->chip_class >= GFX7) {
2117 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2118 } else {
2119 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2120 /* trunc = trunc(src0)
2121 * if (src0 > 0.0 && src0 != trunc)
2122 * trunc += 1.0
2123 */
2124 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2125 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2126 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2127 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2128 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2129 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2130 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2131 }
2132 } else {
2133 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2134 nir_print_instr(&instr->instr, stderr);
2135 fprintf(stderr, "\n");
2136 }
2137 break;
2138 }
2139 case nir_op_ftrunc: {
2140 Temp src = get_alu_src(ctx, instr->src[0]);
2141 if (dst.regClass() == v2b) {
2142 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2143 } else if (dst.regClass() == v1) {
2144 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2145 } else if (dst.regClass() == v2) {
2146 emit_trunc_f64(ctx, bld, Definition(dst), src);
2147 } else {
2148 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2149 nir_print_instr(&instr->instr, stderr);
2150 fprintf(stderr, "\n");
2151 }
2152 break;
2153 }
2154 case nir_op_fround_even: {
2155 Temp src0 = get_alu_src(ctx, instr->src[0]);
2156 if (dst.regClass() == v2b) {
2157 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2158 } else if (dst.regClass() == v1) {
2159 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2160 } else if (dst.regClass() == v2) {
2161 if (ctx->options->chip_class >= GFX7) {
2162 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2163 } else {
2164 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2165 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2166 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2167
2168 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2169 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2170 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2171 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2172 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2173 tmp = sub->definitions[0].getTemp();
2174
2175 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2176 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2177 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2178 Temp cond = vop3->definitions[0].getTemp();
2179
2180 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2181 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2182 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2183 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2184
2185 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2186 }
2187 } else {
2188 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2189 nir_print_instr(&instr->instr, stderr);
2190 fprintf(stderr, "\n");
2191 }
2192 break;
2193 }
2194 case nir_op_fsin:
2195 case nir_op_fcos: {
2196 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2197 aco_ptr<Instruction> norm;
2198 if (dst.regClass() == v2b) {
2199 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2200 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2201 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2202 bld.vop1(opcode, Definition(dst), tmp);
2203 } else if (dst.regClass() == v1) {
2204 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2205 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2206
2207 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2208 if (ctx->options->chip_class < GFX9)
2209 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2210
2211 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2212 bld.vop1(opcode, Definition(dst), tmp);
2213 } else {
2214 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2215 nir_print_instr(&instr->instr, stderr);
2216 fprintf(stderr, "\n");
2217 }
2218 break;
2219 }
2220 case nir_op_ldexp: {
2221 Temp src0 = get_alu_src(ctx, instr->src[0]);
2222 Temp src1 = get_alu_src(ctx, instr->src[1]);
2223 if (dst.regClass() == v2b) {
2224 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2225 } else if (dst.regClass() == v1) {
2226 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2227 } else if (dst.regClass() == v2) {
2228 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2229 } else {
2230 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2231 nir_print_instr(&instr->instr, stderr);
2232 fprintf(stderr, "\n");
2233 }
2234 break;
2235 }
2236 case nir_op_frexp_sig: {
2237 Temp src = get_alu_src(ctx, instr->src[0]);
2238 if (dst.regClass() == v2b) {
2239 bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
2240 } else if (dst.regClass() == v1) {
2241 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2242 } else if (dst.regClass() == v2) {
2243 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2244 } else {
2245 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2246 nir_print_instr(&instr->instr, stderr);
2247 fprintf(stderr, "\n");
2248 }
2249 break;
2250 }
2251 case nir_op_frexp_exp: {
2252 Temp src = get_alu_src(ctx, instr->src[0]);
2253 if (instr->src[0].src.ssa->bit_size == 16) {
2254 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2255 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2256 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2257 } else if (instr->src[0].src.ssa->bit_size == 32) {
2258 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2259 } else if (instr->src[0].src.ssa->bit_size == 64) {
2260 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2261 } else {
2262 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2263 nir_print_instr(&instr->instr, stderr);
2264 fprintf(stderr, "\n");
2265 }
2266 break;
2267 }
2268 case nir_op_fsign: {
2269 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2270 if (dst.regClass() == v2b) {
2271 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2272 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2273 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2274 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2275 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2276 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
2277 } else if (dst.regClass() == v1) {
2278 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2279 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2280 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2281 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2282 } else if (dst.regClass() == v2) {
2283 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2284 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2285 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2286
2287 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2288 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2289 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2290
2291 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2292 } else {
2293 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2294 nir_print_instr(&instr->instr, stderr);
2295 fprintf(stderr, "\n");
2296 }
2297 break;
2298 }
2299 case nir_op_f2f16:
2300 case nir_op_f2f16_rtne: {
2301 Temp src = get_alu_src(ctx, instr->src[0]);
2302 if (instr->src[0].src.ssa->bit_size == 64)
2303 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2304 if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
2305 /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
2306 * keep value numbering and the scheduler simpler.
2307 */
2308 bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
2309 else
2310 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2311 break;
2312 }
2313 case nir_op_f2f16_rtz: {
2314 Temp src = get_alu_src(ctx, instr->src[0]);
2315 if (instr->src[0].src.ssa->bit_size == 64)
2316 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2317 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
2318 break;
2319 }
2320 case nir_op_f2f32: {
2321 if (instr->src[0].src.ssa->bit_size == 16) {
2322 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2323 } else if (instr->src[0].src.ssa->bit_size == 64) {
2324 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2325 } else {
2326 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2327 nir_print_instr(&instr->instr, stderr);
2328 fprintf(stderr, "\n");
2329 }
2330 break;
2331 }
2332 case nir_op_f2f64: {
2333 Temp src = get_alu_src(ctx, instr->src[0]);
2334 if (instr->src[0].src.ssa->bit_size == 16)
2335 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2336 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2337 break;
2338 }
2339 case nir_op_i2f16: {
2340 assert(dst.regClass() == v2b);
2341 Temp src = get_alu_src(ctx, instr->src[0]);
2342 if (instr->src[0].src.ssa->bit_size == 8)
2343 src = convert_int(ctx, bld, src, 8, 16, true);
2344 else if (instr->src[0].src.ssa->bit_size == 64)
2345 src = convert_int(ctx, bld, src, 64, 32, false);
2346 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2347 break;
2348 }
2349 case nir_op_i2f32: {
2350 assert(dst.size() == 1);
2351 Temp src = get_alu_src(ctx, instr->src[0]);
2352 if (instr->src[0].src.ssa->bit_size <= 16)
2353 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2354 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2355 break;
2356 }
2357 case nir_op_i2f64: {
2358 if (instr->src[0].src.ssa->bit_size <= 32) {
2359 Temp src = get_alu_src(ctx, instr->src[0]);
2360 if (instr->src[0].src.ssa->bit_size <= 16)
2361 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2362 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2363 } else if (instr->src[0].src.ssa->bit_size == 64) {
2364 Temp src = get_alu_src(ctx, instr->src[0]);
2365 RegClass rc = RegClass(src.type(), 1);
2366 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2367 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2368 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2369 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2370 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2371 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2372
2373 } else {
2374 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2375 nir_print_instr(&instr->instr, stderr);
2376 fprintf(stderr, "\n");
2377 }
2378 break;
2379 }
2380 case nir_op_u2f16: {
2381 assert(dst.regClass() == v2b);
2382 Temp src = get_alu_src(ctx, instr->src[0]);
2383 if (instr->src[0].src.ssa->bit_size == 8)
2384 src = convert_int(ctx, bld, src, 8, 16, false);
2385 else if (instr->src[0].src.ssa->bit_size == 64)
2386 src = convert_int(ctx, bld, src, 64, 32, false);
2387 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2388 break;
2389 }
2390 case nir_op_u2f32: {
2391 assert(dst.size() == 1);
2392 Temp src = get_alu_src(ctx, instr->src[0]);
2393 if (instr->src[0].src.ssa->bit_size == 8) {
2394 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2395 } else {
2396 if (instr->src[0].src.ssa->bit_size == 16)
2397 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2398 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2399 }
2400 break;
2401 }
2402 case nir_op_u2f64: {
2403 if (instr->src[0].src.ssa->bit_size <= 32) {
2404 Temp src = get_alu_src(ctx, instr->src[0]);
2405 if (instr->src[0].src.ssa->bit_size <= 16)
2406 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2407 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2408 } else if (instr->src[0].src.ssa->bit_size == 64) {
2409 Temp src = get_alu_src(ctx, instr->src[0]);
2410 RegClass rc = RegClass(src.type(), 1);
2411 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2412 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2413 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2414 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2415 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2416 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2417 } else {
2418 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2419 nir_print_instr(&instr->instr, stderr);
2420 fprintf(stderr, "\n");
2421 }
2422 break;
2423 }
2424 case nir_op_f2i8:
2425 case nir_op_f2i16: {
2426 if (instr->src[0].src.ssa->bit_size == 16)
2427 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2428 else if (instr->src[0].src.ssa->bit_size == 32)
2429 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2430 else
2431 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2432 break;
2433 }
2434 case nir_op_f2u8:
2435 case nir_op_f2u16: {
2436 if (instr->src[0].src.ssa->bit_size == 16)
2437 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2438 else if (instr->src[0].src.ssa->bit_size == 32)
2439 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2440 else
2441 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2442 break;
2443 }
2444 case nir_op_f2i32: {
2445 Temp src = get_alu_src(ctx, instr->src[0]);
2446 if (instr->src[0].src.ssa->bit_size == 16) {
2447 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2448 if (dst.type() == RegType::vgpr) {
2449 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2450 } else {
2451 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2452 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2453 }
2454 } else if (instr->src[0].src.ssa->bit_size == 32) {
2455 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2456 } else if (instr->src[0].src.ssa->bit_size == 64) {
2457 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2458 } else {
2459 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2460 nir_print_instr(&instr->instr, stderr);
2461 fprintf(stderr, "\n");
2462 }
2463 break;
2464 }
2465 case nir_op_f2u32: {
2466 Temp src = get_alu_src(ctx, instr->src[0]);
2467 if (instr->src[0].src.ssa->bit_size == 16) {
2468 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2469 if (dst.type() == RegType::vgpr) {
2470 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2471 } else {
2472 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2473 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2474 }
2475 } else if (instr->src[0].src.ssa->bit_size == 32) {
2476 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2477 } else if (instr->src[0].src.ssa->bit_size == 64) {
2478 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2479 } else {
2480 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2481 nir_print_instr(&instr->instr, stderr);
2482 fprintf(stderr, "\n");
2483 }
2484 break;
2485 }
2486 case nir_op_f2i64: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (instr->src[0].src.ssa->bit_size == 16)
2489 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2490
2491 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2492 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2493 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2494 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2495 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2496 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2497 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2498 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2499 Temp new_exponent = bld.tmp(v1);
2500 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2501 if (ctx->program->chip_class >= GFX8)
2502 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2503 else
2504 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2505 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2506 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2507 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2508 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2509 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2510 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2511 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2512 Temp new_lower = bld.tmp(v1);
2513 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2514 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2515 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2516
2517 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2518 if (src.type() == RegType::vgpr)
2519 src = bld.as_uniform(src);
2520 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2521 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2522 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2523 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2524 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2525 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2526 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2527 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2528 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2529 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2530 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2531 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2532 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2533 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2534 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2535 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2536 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2537 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2538 Temp borrow = bld.tmp(s1);
2539 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2540 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2541 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2542
2543 } else if (instr->src[0].src.ssa->bit_size == 64) {
2544 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2545 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2546 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2547 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2548 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2549 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2550 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2551 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2552 if (dst.type() == RegType::sgpr) {
2553 lower = bld.as_uniform(lower);
2554 upper = bld.as_uniform(upper);
2555 }
2556 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2557
2558 } else {
2559 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2560 nir_print_instr(&instr->instr, stderr);
2561 fprintf(stderr, "\n");
2562 }
2563 break;
2564 }
2565 case nir_op_f2u64: {
2566 Temp src = get_alu_src(ctx, instr->src[0]);
2567 if (instr->src[0].src.ssa->bit_size == 16)
2568 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2569
2570 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2571 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2572 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2573 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2574 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2575 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2576 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2577 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2578 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2579 Temp new_exponent = bld.tmp(v1);
2580 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2581 if (ctx->program->chip_class >= GFX8)
2582 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2583 else
2584 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2585 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2586 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2587 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2588 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2589 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2590 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2591 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2592
2593 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2594 if (src.type() == RegType::vgpr)
2595 src = bld.as_uniform(src);
2596 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2597 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2598 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2599 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2600 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2601 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2602 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2603 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2604 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2605 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2606 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2607 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2608 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2609 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2610 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2611 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2612 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2613 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2614
2615 } else if (instr->src[0].src.ssa->bit_size == 64) {
2616 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2617 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2618 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2619 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2620 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2621 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2622 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2623 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2624 if (dst.type() == RegType::sgpr) {
2625 lower = bld.as_uniform(lower);
2626 upper = bld.as_uniform(upper);
2627 }
2628 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2629
2630 } else {
2631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2632 nir_print_instr(&instr->instr, stderr);
2633 fprintf(stderr, "\n");
2634 }
2635 break;
2636 }
2637 case nir_op_b2f16: {
2638 Temp src = get_alu_src(ctx, instr->src[0]);
2639 assert(src.regClass() == bld.lm);
2640
2641 if (dst.regClass() == s1) {
2642 src = bool_to_scalar_condition(ctx, src);
2643 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2644 } else if (dst.regClass() == v2b) {
2645 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2646 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2647 } else {
2648 unreachable("Wrong destination register class for nir_op_b2f16.");
2649 }
2650 break;
2651 }
2652 case nir_op_b2f32: {
2653 Temp src = get_alu_src(ctx, instr->src[0]);
2654 assert(src.regClass() == bld.lm);
2655
2656 if (dst.regClass() == s1) {
2657 src = bool_to_scalar_condition(ctx, src);
2658 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2659 } else if (dst.regClass() == v1) {
2660 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2661 } else {
2662 unreachable("Wrong destination register class for nir_op_b2f32.");
2663 }
2664 break;
2665 }
2666 case nir_op_b2f64: {
2667 Temp src = get_alu_src(ctx, instr->src[0]);
2668 assert(src.regClass() == bld.lm);
2669
2670 if (dst.regClass() == s2) {
2671 src = bool_to_scalar_condition(ctx, src);
2672 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2673 } else if (dst.regClass() == v2) {
2674 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2675 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2676 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2677 } else {
2678 unreachable("Wrong destination register class for nir_op_b2f64.");
2679 }
2680 break;
2681 }
2682 case nir_op_i2i8:
2683 case nir_op_i2i16:
2684 case nir_op_i2i32:
2685 case nir_op_i2i64: {
2686 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2687 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2688 break;
2689 }
2690 case nir_op_u2u8:
2691 case nir_op_u2u16:
2692 case nir_op_u2u32:
2693 case nir_op_u2u64: {
2694 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2695 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2696 break;
2697 }
2698 case nir_op_b2b32:
2699 case nir_op_b2i8:
2700 case nir_op_b2i16:
2701 case nir_op_b2i32:
2702 case nir_op_b2i64: {
2703 Temp src = get_alu_src(ctx, instr->src[0]);
2704 assert(src.regClass() == bld.lm);
2705
2706 Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst;
2707 if (tmp.regClass() == s1) {
2708 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2709 bool_to_scalar_condition(ctx, src, tmp);
2710 } else if (tmp.type() == RegType::vgpr) {
2711 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src);
2712 } else {
2713 unreachable("Invalid register class for b2i32");
2714 }
2715
2716 if (tmp != dst)
2717 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
2718 break;
2719 }
2720 case nir_op_b2b1:
2721 case nir_op_i2b1: {
2722 Temp src = get_alu_src(ctx, instr->src[0]);
2723 assert(dst.regClass() == bld.lm);
2724
2725 if (src.type() == RegType::vgpr) {
2726 assert(src.regClass() == v1 || src.regClass() == v2);
2727 assert(dst.regClass() == bld.lm);
2728 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2729 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2730 } else {
2731 assert(src.regClass() == s1 || src.regClass() == s2);
2732 Temp tmp;
2733 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2734 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2735 } else {
2736 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2737 bld.scc(bld.def(s1)), Operand(0u), src);
2738 }
2739 bool_to_vector_condition(ctx, tmp, dst);
2740 }
2741 break;
2742 }
2743 case nir_op_pack_64_2x32_split: {
2744 Temp src0 = get_alu_src(ctx, instr->src[0]);
2745 Temp src1 = get_alu_src(ctx, instr->src[1]);
2746
2747 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2748 break;
2749 }
2750 case nir_op_unpack_64_2x32_split_x:
2751 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2752 break;
2753 case nir_op_unpack_64_2x32_split_y:
2754 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2755 break;
2756 case nir_op_unpack_32_2x16_split_x:
2757 if (dst.type() == RegType::vgpr) {
2758 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2759 } else {
2760 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2761 }
2762 break;
2763 case nir_op_unpack_32_2x16_split_y:
2764 if (dst.type() == RegType::vgpr) {
2765 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2766 } else {
2767 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2768 }
2769 break;
2770 case nir_op_pack_32_2x16_split: {
2771 Temp src0 = get_alu_src(ctx, instr->src[0]);
2772 Temp src1 = get_alu_src(ctx, instr->src[1]);
2773 if (dst.regClass() == v1) {
2774 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2775 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2776 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2777 } else {
2778 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2779 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2780 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2781 }
2782 break;
2783 }
2784 case nir_op_pack_half_2x16: {
2785 Temp src = get_alu_src(ctx, instr->src[0], 2);
2786
2787 if (dst.regClass() == v1) {
2788 Temp src0 = bld.tmp(v1);
2789 Temp src1 = bld.tmp(v1);
2790 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2791 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2792 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2793 else
2794 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2795 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2796 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2797 } else {
2798 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2799 nir_print_instr(&instr->instr, stderr);
2800 fprintf(stderr, "\n");
2801 }
2802 break;
2803 }
2804 case nir_op_unpack_half_2x16_split_x: {
2805 if (dst.regClass() == v1) {
2806 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2807 } else {
2808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2809 nir_print_instr(&instr->instr, stderr);
2810 fprintf(stderr, "\n");
2811 }
2812 break;
2813 }
2814 case nir_op_unpack_half_2x16_split_y: {
2815 if (dst.regClass() == v1) {
2816 /* TODO: use SDWA here */
2817 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2818 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2819 } else {
2820 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2821 nir_print_instr(&instr->instr, stderr);
2822 fprintf(stderr, "\n");
2823 }
2824 break;
2825 }
2826 case nir_op_fquantize2f16: {
2827 Temp src = get_alu_src(ctx, instr->src[0]);
2828 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2829 Temp f32, cmp_res;
2830
2831 if (ctx->program->chip_class >= GFX8) {
2832 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2833 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2834 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2835 } else {
2836 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2837 * so compare the result and flush to 0 if it's smaller.
2838 */
2839 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2840 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2841 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2842 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2843 cmp_res = vop3->definitions[0].getTemp();
2844 }
2845
2846 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2847 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2848 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2849 } else {
2850 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2851 }
2852 break;
2853 }
2854 case nir_op_bfm: {
2855 Temp bits = get_alu_src(ctx, instr->src[0]);
2856 Temp offset = get_alu_src(ctx, instr->src[1]);
2857
2858 if (dst.regClass() == s1) {
2859 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2860 } else if (dst.regClass() == v1) {
2861 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2862 } else {
2863 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2864 nir_print_instr(&instr->instr, stderr);
2865 fprintf(stderr, "\n");
2866 }
2867 break;
2868 }
2869 case nir_op_bitfield_select: {
2870 /* (mask & insert) | (~mask & base) */
2871 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2872 Temp insert = get_alu_src(ctx, instr->src[1]);
2873 Temp base = get_alu_src(ctx, instr->src[2]);
2874
2875 /* dst = (insert & bitmask) | (base & ~bitmask) */
2876 if (dst.regClass() == s1) {
2877 aco_ptr<Instruction> sop2;
2878 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2879 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2880 Operand lhs;
2881 if (const_insert && const_bitmask) {
2882 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2883 } else {
2884 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2885 lhs = Operand(insert);
2886 }
2887
2888 Operand rhs;
2889 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2890 if (const_base && const_bitmask) {
2891 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2892 } else {
2893 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2894 rhs = Operand(base);
2895 }
2896
2897 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2898
2899 } else if (dst.regClass() == v1) {
2900 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2901 base = as_vgpr(ctx, base);
2902 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2903 insert = as_vgpr(ctx, insert);
2904
2905 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2906
2907 } else {
2908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2909 nir_print_instr(&instr->instr, stderr);
2910 fprintf(stderr, "\n");
2911 }
2912 break;
2913 }
2914 case nir_op_ubfe:
2915 case nir_op_ibfe: {
2916 Temp base = get_alu_src(ctx, instr->src[0]);
2917 Temp offset = get_alu_src(ctx, instr->src[1]);
2918 Temp bits = get_alu_src(ctx, instr->src[2]);
2919
2920 if (dst.type() == RegType::sgpr) {
2921 Operand extract;
2922 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2923 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2924 if (const_offset && const_bits) {
2925 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2926 extract = Operand(const_extract);
2927 } else {
2928 Operand width;
2929 if (const_bits) {
2930 width = Operand(const_bits->u32 << 16);
2931 } else {
2932 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2933 }
2934 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2935 }
2936
2937 aco_opcode opcode;
2938 if (dst.regClass() == s1) {
2939 if (instr->op == nir_op_ubfe)
2940 opcode = aco_opcode::s_bfe_u32;
2941 else
2942 opcode = aco_opcode::s_bfe_i32;
2943 } else if (dst.regClass() == s2) {
2944 if (instr->op == nir_op_ubfe)
2945 opcode = aco_opcode::s_bfe_u64;
2946 else
2947 opcode = aco_opcode::s_bfe_i64;
2948 } else {
2949 unreachable("Unsupported BFE bit size");
2950 }
2951
2952 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2953
2954 } else {
2955 aco_opcode opcode;
2956 if (dst.regClass() == v1) {
2957 if (instr->op == nir_op_ubfe)
2958 opcode = aco_opcode::v_bfe_u32;
2959 else
2960 opcode = aco_opcode::v_bfe_i32;
2961 } else {
2962 unreachable("Unsupported BFE bit size");
2963 }
2964
2965 emit_vop3a_instruction(ctx, instr, opcode, dst);
2966 }
2967 break;
2968 }
2969 case nir_op_bit_count: {
2970 Temp src = get_alu_src(ctx, instr->src[0]);
2971 if (src.regClass() == s1) {
2972 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2973 } else if (src.regClass() == v1) {
2974 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2975 } else if (src.regClass() == v2) {
2976 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2977 emit_extract_vector(ctx, src, 1, v1),
2978 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2979 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2980 } else if (src.regClass() == s2) {
2981 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2982 } else {
2983 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2984 nir_print_instr(&instr->instr, stderr);
2985 fprintf(stderr, "\n");
2986 }
2987 break;
2988 }
2989 case nir_op_flt: {
2990 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2991 break;
2992 }
2993 case nir_op_fge: {
2994 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2995 break;
2996 }
2997 case nir_op_feq: {
2998 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2999 break;
3000 }
3001 case nir_op_fne: {
3002 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
3003 break;
3004 }
3005 case nir_op_ilt: {
3006 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
3007 break;
3008 }
3009 case nir_op_ige: {
3010 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
3011 break;
3012 }
3013 case nir_op_ieq: {
3014 if (instr->src[0].src.ssa->bit_size == 1)
3015 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
3016 else
3017 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
3018 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
3019 break;
3020 }
3021 case nir_op_ine: {
3022 if (instr->src[0].src.ssa->bit_size == 1)
3023 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
3024 else
3025 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
3026 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
3027 break;
3028 }
3029 case nir_op_ult: {
3030 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
3031 break;
3032 }
3033 case nir_op_uge: {
3034 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
3035 break;
3036 }
3037 case nir_op_fddx:
3038 case nir_op_fddy:
3039 case nir_op_fddx_fine:
3040 case nir_op_fddy_fine:
3041 case nir_op_fddx_coarse:
3042 case nir_op_fddy_coarse: {
3043 Temp src = get_alu_src(ctx, instr->src[0]);
3044 uint16_t dpp_ctrl1, dpp_ctrl2;
3045 if (instr->op == nir_op_fddx_fine) {
3046 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
3047 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
3048 } else if (instr->op == nir_op_fddy_fine) {
3049 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
3050 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
3051 } else {
3052 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
3053 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
3054 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
3055 else
3056 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
3057 }
3058
3059 Temp tmp;
3060 if (ctx->program->chip_class >= GFX8) {
3061 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
3062 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
3063 } else {
3064 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
3065 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
3066 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
3067 }
3068 emit_wqm(ctx, tmp, dst, true);
3069 break;
3070 }
3071 default:
3072 fprintf(stderr, "Unknown NIR ALU instr: ");
3073 nir_print_instr(&instr->instr, stderr);
3074 fprintf(stderr, "\n");
3075 }
3076 }
3077
3078 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3079 {
3080 Temp dst = get_ssa_temp(ctx, &instr->def);
3081
3082 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3083 // which get truncated the lsb if double and msb if int
3084 // for now, we only use s_mov_b64 with 64bit inline constants
3085 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3086 assert(dst.type() == RegType::sgpr);
3087
3088 Builder bld(ctx->program, ctx->block);
3089
3090 if (instr->def.bit_size == 1) {
3091 assert(dst.regClass() == bld.lm);
3092 int val = instr->value[0].b ? -1 : 0;
3093 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3094 bld.sop1(Builder::s_mov, Definition(dst), op);
3095 } else if (instr->def.bit_size == 8) {
3096 /* ensure that the value is correctly represented in the low byte of the register */
3097 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3098 } else if (instr->def.bit_size == 16) {
3099 /* ensure that the value is correctly represented in the low half of the register */
3100 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3101 } else if (dst.size() == 1) {
3102 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3103 } else {
3104 assert(dst.size() != 1);
3105 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3106 if (instr->def.bit_size == 64)
3107 for (unsigned i = 0; i < dst.size(); i++)
3108 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3109 else {
3110 for (unsigned i = 0; i < dst.size(); i++)
3111 vec->operands[i] = Operand{instr->value[i].u32};
3112 }
3113 vec->definitions[0] = Definition(dst);
3114 ctx->block->instructions.emplace_back(std::move(vec));
3115 }
3116 }
3117
3118 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3119 {
3120 uint32_t new_mask = 0;
3121 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3122 if (mask & (1u << i))
3123 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3124 return new_mask;
3125 }
3126
3127 struct LoadEmitInfo {
3128 Operand offset;
3129 Temp dst;
3130 unsigned num_components;
3131 unsigned component_size;
3132 Temp resource = Temp(0, s1);
3133 unsigned component_stride = 0;
3134 unsigned const_offset = 0;
3135 unsigned align_mul = 0;
3136 unsigned align_offset = 0;
3137
3138 bool glc = false;
3139 unsigned swizzle_component_size = 0;
3140 barrier_interaction barrier = barrier_none;
3141 bool can_reorder = true;
3142 Temp soffset = Temp(0, s1);
3143 };
3144
3145 using LoadCallback = Temp(*)(
3146 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3147 unsigned align, unsigned const_offset, Temp dst_hint);
3148
3149 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3150 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3151 {
3152 unsigned load_size = info->num_components * info->component_size;
3153 unsigned component_size = info->component_size;
3154
3155 unsigned num_vals = 0;
3156 Temp vals[info->dst.bytes()];
3157
3158 unsigned const_offset = info->const_offset;
3159
3160 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3161 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3162
3163 unsigned bytes_read = 0;
3164 while (bytes_read < load_size) {
3165 unsigned bytes_needed = load_size - bytes_read;
3166
3167 /* add buffer for unaligned loads */
3168 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3169
3170 if (byte_align) {
3171 if ((bytes_needed > 2 ||
3172 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
3173 !supports_8bit_16bit_loads) && byte_align_loads) {
3174 if (info->component_stride) {
3175 assert(supports_8bit_16bit_loads && "unimplemented");
3176 bytes_needed = 2;
3177 byte_align = 0;
3178 } else {
3179 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3180 bytes_needed = align(bytes_needed, 4);
3181 }
3182 } else {
3183 byte_align = 0;
3184 }
3185 }
3186
3187 if (info->swizzle_component_size)
3188 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3189 if (info->component_stride)
3190 bytes_needed = MIN2(bytes_needed, info->component_size);
3191
3192 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3193
3194 /* reduce constant offset */
3195 Operand offset = info->offset;
3196 unsigned reduced_const_offset = const_offset;
3197 bool remove_const_offset_completely = need_to_align_offset;
3198 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3199 unsigned to_add = const_offset;
3200 if (remove_const_offset_completely) {
3201 reduced_const_offset = 0;
3202 } else {
3203 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3204 reduced_const_offset %= max_const_offset_plus_one;
3205 }
3206 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3207 if (offset.isConstant()) {
3208 offset = Operand(offset.constantValue() + to_add);
3209 } else if (offset_tmp.regClass() == s1) {
3210 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3211 offset_tmp, Operand(to_add));
3212 } else if (offset_tmp.regClass() == v1) {
3213 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3214 } else {
3215 Temp lo = bld.tmp(offset_tmp.type(), 1);
3216 Temp hi = bld.tmp(offset_tmp.type(), 1);
3217 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3218
3219 if (offset_tmp.regClass() == s2) {
3220 Temp carry = bld.tmp(s1);
3221 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3222 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3223 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3224 } else {
3225 Temp new_lo = bld.tmp(v1);
3226 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3227 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3228 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3229 }
3230 }
3231 }
3232
3233 /* align offset down if needed */
3234 Operand aligned_offset = offset;
3235 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3236 if (need_to_align_offset) {
3237 align = 4;
3238 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3239 if (offset.isConstant()) {
3240 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3241 } else if (offset_tmp.regClass() == s1) {
3242 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3243 } else if (offset_tmp.regClass() == s2) {
3244 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3245 } else if (offset_tmp.regClass() == v1) {
3246 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3247 } else if (offset_tmp.regClass() == v2) {
3248 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3249 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3250 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3251 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3252 }
3253 }
3254 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3255 bld.copy(bld.def(s1), aligned_offset);
3256
3257 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3258 reduced_const_offset, byte_align ? Temp() : info->dst);
3259
3260 /* the callback wrote directly to dst */
3261 if (val == info->dst) {
3262 assert(num_vals == 0);
3263 emit_split_vector(ctx, info->dst, info->num_components);
3264 return;
3265 }
3266
3267 /* shift result right if needed */
3268 if (info->component_size < 4 && byte_align_loads) {
3269 Operand align((uint32_t)byte_align);
3270 if (byte_align == -1) {
3271 if (offset.isConstant())
3272 align = Operand(offset.constantValue() % 4u);
3273 else if (offset.size() == 2)
3274 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3275 else
3276 align = offset;
3277 }
3278
3279 assert(val.bytes() >= load_size && "unimplemented");
3280 if (val.type() == RegType::sgpr)
3281 byte_align_scalar(ctx, val, align, info->dst);
3282 else
3283 byte_align_vector(ctx, val, align, info->dst, component_size);
3284 return;
3285 }
3286
3287 /* add result to list and advance */
3288 if (info->component_stride) {
3289 assert(val.bytes() == info->component_size && "unimplemented");
3290 const_offset += info->component_stride;
3291 align_offset = (align_offset + info->component_stride) % align_mul;
3292 } else {
3293 const_offset += val.bytes();
3294 align_offset = (align_offset + val.bytes()) % align_mul;
3295 }
3296 bytes_read += val.bytes();
3297 vals[num_vals++] = val;
3298 }
3299
3300 /* create array of components */
3301 unsigned components_split = 0;
3302 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3303 bool has_vgprs = false;
3304 for (unsigned i = 0; i < num_vals;) {
3305 Temp tmp[num_vals];
3306 unsigned num_tmps = 0;
3307 unsigned tmp_size = 0;
3308 RegType reg_type = RegType::sgpr;
3309 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3310 if (vals[i].type() == RegType::vgpr)
3311 reg_type = RegType::vgpr;
3312 tmp_size += vals[i].bytes();
3313 tmp[num_tmps++] = vals[i++];
3314 }
3315 if (num_tmps > 1) {
3316 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3317 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3318 for (unsigned i = 0; i < num_tmps; i++)
3319 vec->operands[i] = Operand(tmp[i]);
3320 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3321 vec->definitions[0] = Definition(tmp[0]);
3322 bld.insert(std::move(vec));
3323 }
3324
3325 if (tmp[0].bytes() % component_size) {
3326 /* trim tmp[0] */
3327 assert(i == num_vals);
3328 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3329 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3330 }
3331
3332 RegClass elem_rc = RegClass::get(reg_type, component_size);
3333
3334 unsigned start = components_split;
3335
3336 if (tmp_size == elem_rc.bytes()) {
3337 allocated_vec[components_split++] = tmp[0];
3338 } else {
3339 assert(tmp_size % elem_rc.bytes() == 0);
3340 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3341 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3342 for (unsigned i = 0; i < split->definitions.size(); i++) {
3343 Temp component = bld.tmp(elem_rc);
3344 allocated_vec[components_split++] = component;
3345 split->definitions[i] = Definition(component);
3346 }
3347 split->operands[0] = Operand(tmp[0]);
3348 bld.insert(std::move(split));
3349 }
3350
3351 /* try to p_as_uniform early so we can create more optimizable code and
3352 * also update allocated_vec */
3353 for (unsigned j = start; j < components_split; j++) {
3354 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3355 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3356 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3357 }
3358 }
3359
3360 /* concatenate components and p_as_uniform() result if needed */
3361 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3362 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3363
3364 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3365
3366 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3367 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3368 for (unsigned i = 0; i < info->num_components; i++)
3369 vec->operands[i] = Operand(allocated_vec[i]);
3370 if (padding_bytes)
3371 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3372 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3373 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3374 vec->definitions[0] = Definition(tmp);
3375 bld.insert(std::move(vec));
3376 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3377 } else {
3378 vec->definitions[0] = Definition(info->dst);
3379 bld.insert(std::move(vec));
3380 }
3381 }
3382
3383 Operand load_lds_size_m0(Builder& bld)
3384 {
3385 /* TODO: m0 does not need to be initialized on GFX9+ */
3386 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3387 }
3388
3389 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3390 Temp offset, unsigned bytes_needed,
3391 unsigned align, unsigned const_offset,
3392 Temp dst_hint)
3393 {
3394 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3395
3396 Operand m = load_lds_size_m0(bld);
3397
3398 bool large_ds_read = bld.program->chip_class >= GFX7;
3399 bool usable_read2 = bld.program->chip_class >= GFX7;
3400
3401 bool read2 = false;
3402 unsigned size = 0;
3403 aco_opcode op;
3404 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3405 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3406 size = 16;
3407 op = aco_opcode::ds_read_b128;
3408 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3409 size = 16;
3410 read2 = true;
3411 op = aco_opcode::ds_read2_b64;
3412 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3413 size = 12;
3414 op = aco_opcode::ds_read_b96;
3415 } else if (bytes_needed >= 8 && align % 8 == 0) {
3416 size = 8;
3417 op = aco_opcode::ds_read_b64;
3418 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3419 size = 8;
3420 read2 = true;
3421 op = aco_opcode::ds_read2_b32;
3422 } else if (bytes_needed >= 4 && align % 4 == 0) {
3423 size = 4;
3424 op = aco_opcode::ds_read_b32;
3425 } else if (bytes_needed >= 2 && align % 2 == 0) {
3426 size = 2;
3427 op = aco_opcode::ds_read_u16;
3428 } else {
3429 size = 1;
3430 op = aco_opcode::ds_read_u8;
3431 }
3432
3433 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3434 if (const_offset >= max_offset_plus_one) {
3435 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3436 const_offset %= max_offset_plus_one;
3437 }
3438
3439 if (read2)
3440 const_offset /= (size / 2u);
3441
3442 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3443 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3444 if (read2)
3445 bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3446 else
3447 bld.ds(op, Definition(val), offset, m, const_offset);
3448
3449 if (size < 4)
3450 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3451
3452 return val;
3453 }
3454
3455 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3456
3457 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3458 Temp offset, unsigned bytes_needed,
3459 unsigned align, unsigned const_offset,
3460 Temp dst_hint)
3461 {
3462 unsigned size = 0;
3463 aco_opcode op;
3464 if (bytes_needed <= 4) {
3465 size = 1;
3466 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3467 } else if (bytes_needed <= 8) {
3468 size = 2;
3469 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3470 } else if (bytes_needed <= 16) {
3471 size = 4;
3472 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3473 } else if (bytes_needed <= 32) {
3474 size = 8;
3475 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3476 } else {
3477 size = 16;
3478 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3479 }
3480 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3481 if (info->resource.id()) {
3482 load->operands[0] = Operand(info->resource);
3483 load->operands[1] = Operand(offset);
3484 } else {
3485 load->operands[0] = Operand(offset);
3486 load->operands[1] = Operand(0u);
3487 }
3488 RegClass rc(RegType::sgpr, size);
3489 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3490 load->definitions[0] = Definition(val);
3491 load->glc = info->glc;
3492 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3493 load->barrier = info->barrier;
3494 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3495 bld.insert(std::move(load));
3496 return val;
3497 }
3498
3499 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3500
3501 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3502 Temp offset, unsigned bytes_needed,
3503 unsigned align_, unsigned const_offset,
3504 Temp dst_hint)
3505 {
3506 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3507 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3508
3509 if (info->soffset.id()) {
3510 if (soffset.isTemp())
3511 vaddr = bld.copy(bld.def(v1), soffset);
3512 soffset = Operand(info->soffset);
3513 }
3514
3515 unsigned bytes_size = 0;
3516 aco_opcode op;
3517 if (bytes_needed == 1 || align_ % 2) {
3518 bytes_size = 1;
3519 op = aco_opcode::buffer_load_ubyte;
3520 } else if (bytes_needed == 2 || align_ % 4) {
3521 bytes_size = 2;
3522 op = aco_opcode::buffer_load_ushort;
3523 } else if (bytes_needed <= 4) {
3524 bytes_size = 4;
3525 op = aco_opcode::buffer_load_dword;
3526 } else if (bytes_needed <= 8) {
3527 bytes_size = 8;
3528 op = aco_opcode::buffer_load_dwordx2;
3529 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3530 bytes_size = 12;
3531 op = aco_opcode::buffer_load_dwordx3;
3532 } else {
3533 bytes_size = 16;
3534 op = aco_opcode::buffer_load_dwordx4;
3535 }
3536 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3537 mubuf->operands[0] = Operand(info->resource);
3538 mubuf->operands[1] = vaddr;
3539 mubuf->operands[2] = soffset;
3540 mubuf->offen = (offset.type() == RegType::vgpr);
3541 mubuf->glc = info->glc;
3542 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3543 mubuf->barrier = info->barrier;
3544 mubuf->can_reorder = info->can_reorder;
3545 mubuf->offset = const_offset;
3546 mubuf->swizzled = info->swizzle_component_size != 0;
3547 RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
3548 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3549 mubuf->definitions[0] = Definition(val);
3550 bld.insert(std::move(mubuf));
3551
3552 return val;
3553 }
3554
3555 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3556 static auto emit_scratch_load = emit_load<mubuf_load_callback, false, true, 4096>;
3557
3558 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3559 {
3560 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3561 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3562
3563 if (addr.type() == RegType::vgpr)
3564 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3565 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3566 }
3567
3568 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3569 Temp offset, unsigned bytes_needed,
3570 unsigned align_, unsigned const_offset,
3571 Temp dst_hint)
3572 {
3573 unsigned bytes_size = 0;
3574 bool mubuf = bld.program->chip_class == GFX6;
3575 bool global = bld.program->chip_class >= GFX9;
3576 aco_opcode op;
3577 if (bytes_needed == 1) {
3578 bytes_size = 1;
3579 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3580 } else if (bytes_needed == 2) {
3581 bytes_size = 2;
3582 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3583 } else if (bytes_needed <= 4) {
3584 bytes_size = 4;
3585 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3586 } else if (bytes_needed <= 8) {
3587 bytes_size = 8;
3588 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3589 } else if (bytes_needed <= 12 && !mubuf) {
3590 bytes_size = 12;
3591 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3592 } else {
3593 bytes_size = 16;
3594 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3595 }
3596 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3597 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3598 if (mubuf) {
3599 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3600 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3601 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3602 mubuf->operands[2] = Operand(0u);
3603 mubuf->glc = info->glc;
3604 mubuf->dlc = false;
3605 mubuf->offset = 0;
3606 mubuf->addr64 = offset.type() == RegType::vgpr;
3607 mubuf->disable_wqm = false;
3608 mubuf->barrier = info->barrier;
3609 mubuf->definitions[0] = Definition(val);
3610 bld.insert(std::move(mubuf));
3611 } else {
3612 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3613
3614 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3615 flat->operands[0] = Operand(offset);
3616 flat->operands[1] = Operand(s1);
3617 flat->glc = info->glc;
3618 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3619 flat->barrier = info->barrier;
3620 flat->offset = 0u;
3621 flat->definitions[0] = Definition(val);
3622 bld.insert(std::move(flat));
3623 }
3624
3625 return val;
3626 }
3627
3628 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3629
3630 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3631 Temp address, unsigned base_offset, unsigned align)
3632 {
3633 assert(util_is_power_of_two_nonzero(align));
3634
3635 Builder bld(ctx->program, ctx->block);
3636
3637 unsigned num_components = dst.bytes() / elem_size_bytes;
3638 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3639 info.align_mul = align;
3640 info.align_offset = 0;
3641 info.barrier = barrier_shared;
3642 info.can_reorder = false;
3643 info.const_offset = base_offset;
3644 emit_lds_load(ctx, bld, &info);
3645
3646 return dst;
3647 }
3648
3649 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3650 {
3651 if (!count)
3652 return;
3653
3654 Builder bld(ctx->program, ctx->block);
3655
3656 ASSERTED bool is_subdword = false;
3657 for (unsigned i = 0; i < count; i++)
3658 is_subdword |= offsets[i] % 4;
3659 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3660 assert(!is_subdword || dst_type == RegType::vgpr);
3661
3662 /* count == 1 fast path */
3663 if (count == 1) {
3664 if (dst_type == RegType::sgpr)
3665 dst[0] = bld.as_uniform(src);
3666 else
3667 dst[0] = as_vgpr(ctx, src);
3668 return;
3669 }
3670
3671 for (unsigned i = 0; i < count - 1; i++)
3672 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3673 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3674
3675 if (is_subdword && src.type() == RegType::sgpr) {
3676 src = as_vgpr(ctx, src);
3677 } else {
3678 /* use allocated_vec if possible */
3679 auto it = ctx->allocated_vec.find(src.id());
3680 if (it != ctx->allocated_vec.end()) {
3681 if (!it->second[0].id())
3682 goto split;
3683 unsigned elem_size = it->second[0].bytes();
3684 assert(src.bytes() % elem_size == 0);
3685
3686 for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
3687 if (!it->second[i].id())
3688 goto split;
3689 }
3690
3691 for (unsigned i = 0; i < count; i++) {
3692 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3693 goto split;
3694 }
3695
3696 for (unsigned i = 0; i < count; i++) {
3697 unsigned start_idx = offsets[i] / elem_size;
3698 unsigned op_count = dst[i].bytes() / elem_size;
3699 if (op_count == 1) {
3700 if (dst_type == RegType::sgpr)
3701 dst[i] = bld.as_uniform(it->second[start_idx]);
3702 else
3703 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3704 continue;
3705 }
3706
3707 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3708 for (unsigned j = 0; j < op_count; j++) {
3709 Temp tmp = it->second[start_idx + j];
3710 if (dst_type == RegType::sgpr)
3711 tmp = bld.as_uniform(tmp);
3712 vec->operands[j] = Operand(tmp);
3713 }
3714 vec->definitions[0] = Definition(dst[i]);
3715 bld.insert(std::move(vec));
3716 }
3717 return;
3718 }
3719 }
3720
3721 split:
3722
3723 if (dst_type == RegType::sgpr)
3724 src = bld.as_uniform(src);
3725
3726 /* just split it */
3727 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3728 split->operands[0] = Operand(src);
3729 for (unsigned i = 0; i < count; i++)
3730 split->definitions[i] = Definition(dst[i]);
3731 bld.insert(std::move(split));
3732 }
3733
3734 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3735 int *start, int *count)
3736 {
3737 unsigned start_elem = ffs(todo_mask) - 1;
3738 bool skip = !(mask & (1 << start_elem));
3739 if (skip)
3740 mask = ~mask & todo_mask;
3741
3742 mask &= todo_mask;
3743
3744 u_bit_scan_consecutive_range(&mask, start, count);
3745
3746 return !skip;
3747 }
3748
3749 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3750 {
3751 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3752 }
3753
3754 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3755 Temp address, unsigned base_offset, unsigned align)
3756 {
3757 assert(util_is_power_of_two_nonzero(align));
3758 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3759
3760 Builder bld(ctx->program, ctx->block);
3761 bool large_ds_write = ctx->options->chip_class >= GFX7;
3762 bool usable_write2 = ctx->options->chip_class >= GFX7;
3763
3764 unsigned write_count = 0;
3765 Temp write_datas[32];
3766 unsigned offsets[32];
3767 aco_opcode opcodes[32];
3768
3769 wrmask = widen_mask(wrmask, elem_size_bytes);
3770
3771 uint32_t todo = u_bit_consecutive(0, data.bytes());
3772 while (todo) {
3773 int offset, bytes;
3774 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3775 offsets[write_count] = offset;
3776 opcodes[write_count] = aco_opcode::num_opcodes;
3777 write_count++;
3778 advance_write_mask(&todo, offset, bytes);
3779 continue;
3780 }
3781
3782 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3783 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3784 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3785 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3786
3787 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3788 aco_opcode op = aco_opcode::num_opcodes;
3789 if (bytes >= 16 && aligned16 && large_ds_write) {
3790 op = aco_opcode::ds_write_b128;
3791 bytes = 16;
3792 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3793 op = aco_opcode::ds_write_b96;
3794 bytes = 12;
3795 } else if (bytes >= 8 && aligned8) {
3796 op = aco_opcode::ds_write_b64;
3797 bytes = 8;
3798 } else if (bytes >= 4 && aligned4) {
3799 op = aco_opcode::ds_write_b32;
3800 bytes = 4;
3801 } else if (bytes >= 2 && aligned2) {
3802 op = aco_opcode::ds_write_b16;
3803 bytes = 2;
3804 } else if (bytes >= 1) {
3805 op = aco_opcode::ds_write_b8;
3806 bytes = 1;
3807 } else {
3808 assert(false);
3809 }
3810
3811 offsets[write_count] = offset;
3812 opcodes[write_count] = op;
3813 write_count++;
3814 advance_write_mask(&todo, offset, bytes);
3815 }
3816
3817 Operand m = load_lds_size_m0(bld);
3818
3819 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3820
3821 for (unsigned i = 0; i < write_count; i++) {
3822 aco_opcode op = opcodes[i];
3823 if (op == aco_opcode::num_opcodes)
3824 continue;
3825
3826 Temp data = write_datas[i];
3827
3828 unsigned second = write_count;
3829 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3830 for (second = i + 1; second < write_count; second++) {
3831 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3832 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3833 opcodes[second] = aco_opcode::num_opcodes;
3834 break;
3835 }
3836 }
3837 }
3838
3839 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3840 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3841
3842 unsigned inline_offset = base_offset + offsets[i];
3843 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3844 Temp address_offset = address;
3845 if (inline_offset > max_offset) {
3846 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3847 inline_offset = offsets[i];
3848 }
3849 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3850
3851 if (write2) {
3852 Temp second_data = write_datas[second];
3853 inline_offset /= data.bytes();
3854 bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3855 } else {
3856 bld.ds(op, address_offset, data, m, inline_offset);
3857 }
3858 }
3859 }
3860
3861 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3862 {
3863 unsigned align = 16;
3864 if (const_offset)
3865 align = std::min(align, 1u << (ffs(const_offset) - 1));
3866
3867 return align;
3868 }
3869
3870
3871 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3872 {
3873 switch (bytes) {
3874 case 1:
3875 assert(!smem);
3876 return aco_opcode::buffer_store_byte;
3877 case 2:
3878 assert(!smem);
3879 return aco_opcode::buffer_store_short;
3880 case 4:
3881 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3882 case 8:
3883 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3884 case 12:
3885 assert(!smem);
3886 return aco_opcode::buffer_store_dwordx3;
3887 case 16:
3888 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3889 }
3890 unreachable("Unexpected store size");
3891 return aco_opcode::num_opcodes;
3892 }
3893
3894 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3895 Temp data, unsigned writemask, int swizzle_element_size,
3896 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3897 {
3898 unsigned write_count_with_skips = 0;
3899 bool skips[16];
3900
3901 /* determine how to split the data */
3902 unsigned todo = u_bit_consecutive(0, data.bytes());
3903 while (todo) {
3904 int offset, bytes;
3905 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3906 offsets[write_count_with_skips] = offset;
3907 if (skips[write_count_with_skips]) {
3908 advance_write_mask(&todo, offset, bytes);
3909 write_count_with_skips++;
3910 continue;
3911 }
3912
3913 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3914 * larger than swizzle_element_size */
3915 bytes = MIN2(bytes, swizzle_element_size);
3916 if (bytes % 4)
3917 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3918
3919 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3920 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3921 bytes = 8;
3922
3923 /* dword or larger stores have to be dword-aligned */
3924 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3925 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3926 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3927 if (!dword_aligned)
3928 bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3929
3930 advance_write_mask(&todo, offset, bytes);
3931 write_count_with_skips++;
3932 }
3933
3934 /* actually split data */
3935 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3936
3937 /* remove skips */
3938 for (unsigned i = 0; i < write_count_with_skips; i++) {
3939 if (skips[i])
3940 continue;
3941 write_datas[*write_count] = write_datas[i];
3942 offsets[*write_count] = offsets[i];
3943 (*write_count)++;
3944 }
3945 }
3946
3947 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3948 unsigned split_cnt = 0u, Temp dst = Temp())
3949 {
3950 Builder bld(ctx->program, ctx->block);
3951 unsigned dword_size = elem_size_bytes / 4;
3952
3953 if (!dst.id())
3954 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3955
3956 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3957 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3958 instr->definitions[0] = Definition(dst);
3959
3960 for (unsigned i = 0; i < cnt; ++i) {
3961 if (arr[i].id()) {
3962 assert(arr[i].size() == dword_size);
3963 allocated_vec[i] = arr[i];
3964 instr->operands[i] = Operand(arr[i]);
3965 } else {
3966 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3967 allocated_vec[i] = zero;
3968 instr->operands[i] = Operand(zero);
3969 }
3970 }
3971
3972 bld.insert(std::move(instr));
3973
3974 if (split_cnt)
3975 emit_split_vector(ctx, dst, split_cnt);
3976 else
3977 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3978
3979 return dst;
3980 }
3981
3982 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3983 {
3984 if (const_offset >= 4096) {
3985 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3986 const_offset %= 4096u;
3987
3988 if (!voffset.id())
3989 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3990 else if (unlikely(voffset.regClass() == s1))
3991 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3992 else if (likely(voffset.regClass() == v1))
3993 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3994 else
3995 unreachable("Unsupported register class of voffset");
3996 }
3997
3998 return const_offset;
3999 }
4000
4001 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
4002 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false,
4003 bool swizzled = false)
4004 {
4005 assert(vdata.id());
4006 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
4007 assert(vdata.size() >= 1 && vdata.size() <= 4);
4008
4009 Builder bld(ctx->program, ctx->block);
4010 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
4011 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
4012
4013 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
4014 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
4015 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
4016 /* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled,
4017 /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true,
4018 /* dlc*/ false, /* slc */ slc);
4019
4020 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
4021 }
4022
4023 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
4024 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
4025 bool allow_combining = true, bool reorder = true, bool slc = false)
4026 {
4027 Builder bld(ctx->program, ctx->block);
4028 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
4029 assert(write_mask);
4030 write_mask = widen_mask(write_mask, elem_size_bytes);
4031
4032 unsigned write_count = 0;
4033 Temp write_datas[32];
4034 unsigned offsets[32];
4035 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
4036 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
4037
4038 for (unsigned i = 0; i < write_count; i++) {
4039 unsigned const_offset = offsets[i] + base_const_offset;
4040 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, reorder, slc, !allow_combining);
4041 }
4042 }
4043
4044 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
4045 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
4046 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
4047 {
4048 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
4049 assert((num_components * elem_size_bytes) == dst.bytes());
4050 assert(!!stride != allow_combining);
4051
4052 Builder bld(ctx->program, ctx->block);
4053
4054 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
4055 info.component_stride = allow_combining ? 0 : stride;
4056 info.glc = true;
4057 info.swizzle_component_size = allow_combining ? 0 : 4;
4058 info.align_mul = MIN2(elem_size_bytes, 4);
4059 info.align_offset = 0;
4060 info.soffset = soffset;
4061 info.const_offset = base_const_offset;
4062 emit_mubuf_load(ctx, bld, &info);
4063 }
4064
4065 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
4066 {
4067 Builder bld(ctx->program, ctx->block);
4068 Temp offset = base_offset.first;
4069 unsigned const_offset = base_offset.second;
4070
4071 if (!nir_src_is_const(*off_src)) {
4072 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
4073 Temp with_stride;
4074
4075 /* Calculate indirect offset with stride */
4076 if (likely(indirect_offset_arg.regClass() == v1))
4077 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
4078 else if (indirect_offset_arg.regClass() == s1)
4079 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
4080 else
4081 unreachable("Unsupported register class of indirect offset");
4082
4083 /* Add to the supplied base offset */
4084 if (offset.id() == 0)
4085 offset = with_stride;
4086 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
4087 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
4088 else if (offset.size() == 1 && with_stride.size() == 1)
4089 offset = bld.vadd32(bld.def(v1), with_stride, offset);
4090 else
4091 unreachable("Unsupported register class of indirect offset");
4092 } else {
4093 unsigned const_offset_arg = nir_src_as_uint(*off_src);
4094 const_offset += const_offset_arg * stride;
4095 }
4096
4097 return std::make_pair(offset, const_offset);
4098 }
4099
4100 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
4101 {
4102 Builder bld(ctx->program, ctx->block);
4103 Temp offset;
4104
4105 if (off1.first.id() && off2.first.id()) {
4106 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
4107 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
4108 else if (off1.first.size() == 1 && off2.first.size() == 1)
4109 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
4110 else
4111 unreachable("Unsupported register class of indirect offset");
4112 } else {
4113 offset = off1.first.id() ? off1.first : off2.first;
4114 }
4115
4116 return std::make_pair(offset, off1.second + off2.second);
4117 }
4118
4119 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
4120 {
4121 Builder bld(ctx->program, ctx->block);
4122 unsigned const_offset = offs.second * multiplier;
4123
4124 if (!offs.first.id())
4125 return std::make_pair(offs.first, const_offset);
4126
4127 Temp offset = unlikely(offs.first.regClass() == s1)
4128 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
4129 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
4130
4131 return std::make_pair(offset, const_offset);
4132 }
4133
4134 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
4135 {
4136 Builder bld(ctx->program, ctx->block);
4137
4138 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
4139 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
4140 /* component is in bytes */
4141 const_offset += nir_intrinsic_component(instr) * component_stride;
4142
4143 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
4144 nir_src *off_src = nir_get_io_offset_src(instr);
4145 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
4146 }
4147
4148 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
4149 {
4150 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
4151 }
4152
4153 Temp get_tess_rel_patch_id(isel_context *ctx)
4154 {
4155 Builder bld(ctx->program, ctx->block);
4156
4157 switch (ctx->shader->info.stage) {
4158 case MESA_SHADER_TESS_CTRL:
4159 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
4160 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
4161 case MESA_SHADER_TESS_EVAL:
4162 return get_arg(ctx, ctx->args->tes_rel_patch_id);
4163 default:
4164 unreachable("Unsupported stage in get_tess_rel_patch_id");
4165 }
4166 }
4167
4168 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4169 {
4170 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4171 Builder bld(ctx->program, ctx->block);
4172
4173 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4174 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4175
4176 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4177
4178 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4179 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4180
4181 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4182 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4183 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4184
4185 return offset_mul(ctx, offs, 4u);
4186 }
4187
4188 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4189 {
4190 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4191 Builder bld(ctx->program, ctx->block);
4192
4193 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4194 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4195 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4196 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4197
4198 std::pair<Temp, unsigned> offs = instr
4199 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4200 : std::make_pair(Temp(), 0u);
4201
4202 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4203 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4204
4205 if (per_vertex) {
4206 assert(instr);
4207
4208 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4209 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4210
4211 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4212 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4213 } else {
4214 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4215 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4216 }
4217
4218 return offs;
4219 }
4220
4221 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4222 {
4223 Builder bld(ctx->program, ctx->block);
4224
4225 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4226 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4227
4228 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4229
4230 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4231 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4232 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4233
4234 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4235 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4236
4237 return offs;
4238 }
4239
4240 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4241 {
4242 Builder bld(ctx->program, ctx->block);
4243
4244 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4245 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4246 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4247 unsigned attr_stride = ctx->tcs_num_patches;
4248
4249 std::pair<Temp, unsigned> offs = instr
4250 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4251 : std::make_pair(Temp(), 0u);
4252
4253 if (const_base_offset)
4254 offs.second += const_base_offset * attr_stride;
4255
4256 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4257 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4258 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4259
4260 return offs;
4261 }
4262
4263 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4264 {
4265 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4266
4267 if (mask == 0)
4268 return false;
4269
4270 unsigned drv_loc = nir_intrinsic_base(instr);
4271 nir_src *off_src = nir_get_io_offset_src(instr);
4272
4273 if (!nir_src_is_const(*off_src)) {
4274 *indirect = true;
4275 return false;
4276 }
4277
4278 *indirect = false;
4279 uint64_t slot = per_vertex
4280 ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
4281 : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
4282 return (((uint64_t) 1) << slot) & mask;
4283 }
4284
4285 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4286 {
4287 unsigned write_mask = nir_intrinsic_write_mask(instr);
4288 unsigned component = nir_intrinsic_component(instr);
4289 unsigned idx = nir_intrinsic_base(instr) + component;
4290
4291 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4292 if (off_instr->type != nir_instr_type_load_const)
4293 return false;
4294
4295 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4296 idx += nir_src_as_uint(instr->src[1]) * 4u;
4297
4298 if (instr->src[0].ssa->bit_size == 64)
4299 write_mask = widen_mask(write_mask, 2);
4300
4301 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4302
4303 for (unsigned i = 0; i < 8; ++i) {
4304 if (write_mask & (1 << i)) {
4305 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4306 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4307 }
4308 idx++;
4309 }
4310
4311 return true;
4312 }
4313
4314 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4315 {
4316 /* Only TCS per-vertex inputs are supported by this function.
4317 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4318 */
4319 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4320 return false;
4321
4322 nir_src *off_src = nir_get_io_offset_src(instr);
4323 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4324 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4325 bool can_use_temps = nir_src_is_const(*off_src) &&
4326 vertex_index_instr->type == nir_instr_type_intrinsic &&
4327 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4328
4329 if (!can_use_temps)
4330 return false;
4331
4332 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4333 Temp *src = &ctx->inputs.temps[idx];
4334 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4335
4336 return true;
4337 }
4338
4339 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4340 {
4341 Builder bld(ctx->program, ctx->block);
4342
4343 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4344 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4345 bool indirect_write;
4346 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4347 if (temp_only_input && !indirect_write)
4348 return;
4349 }
4350
4351 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4352 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4353 unsigned write_mask = nir_intrinsic_write_mask(instr);
4354 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4355
4356 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4357 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4358 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4359 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4360 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
4361 } else {
4362 Temp lds_base;
4363
4364 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4365 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4366 unsigned itemsize = ctx->stage == vertex_geometry_gs
4367 ? ctx->program->info->vs.es_info.esgs_itemsize
4368 : ctx->program->info->tes.es_info.esgs_itemsize;
4369 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4370 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4371 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4372 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4373 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4374 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4375 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4376 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4377 */
4378 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4379 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4380 } else {
4381 unreachable("Invalid LS or ES stage");
4382 }
4383
4384 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4385 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4386 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4387 }
4388 }
4389
4390 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4391 {
4392 if (per_vertex)
4393 return false;
4394
4395 unsigned off = nir_intrinsic_base(instr) * 4u;
4396 return off == ctx->tcs_tess_lvl_out_loc ||
4397 off == ctx->tcs_tess_lvl_in_loc;
4398
4399 }
4400
4401 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4402 {
4403 uint64_t mask = per_vertex
4404 ? ctx->program->info->tcs.tes_inputs_read
4405 : ctx->program->info->tcs.tes_patch_inputs_read;
4406
4407 bool indirect_write = false;
4408 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4409 return indirect_write || output_read_by_tes;
4410 }
4411
4412 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4413 {
4414 uint64_t mask = per_vertex
4415 ? ctx->shader->info.outputs_read
4416 : ctx->shader->info.patch_outputs_read;
4417
4418 bool indirect_write = false;
4419 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4420 return indirect_write || output_read;
4421 }
4422
4423 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4424 {
4425 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4426 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4427
4428 Builder bld(ctx->program, ctx->block);
4429
4430 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4431 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4432 unsigned write_mask = nir_intrinsic_write_mask(instr);
4433
4434 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4435 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4436 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4437
4438 if (write_to_vmem) {
4439 std::pair<Temp, unsigned> vmem_offs = per_vertex
4440 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4441 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4442
4443 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4444 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4445 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
4446 }
4447
4448 if (write_to_lds) {
4449 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4450 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4451 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4452 }
4453 }
4454
4455 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4456 {
4457 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4458 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4459
4460 Builder bld(ctx->program, ctx->block);
4461
4462 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4463 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4464 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4465 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4466
4467 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4468 }
4469
4470 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4471 {
4472 if (ctx->stage == vertex_vs ||
4473 ctx->stage == tess_eval_vs ||
4474 ctx->stage == fragment_fs ||
4475 ctx->stage == ngg_vertex_gs ||
4476 ctx->stage == ngg_tess_eval_gs ||
4477 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4478 bool stored_to_temps = store_output_to_temps(ctx, instr);
4479 if (!stored_to_temps) {
4480 fprintf(stderr, "Unimplemented output offset instruction:\n");
4481 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
4482 fprintf(stderr, "\n");
4483 abort();
4484 }
4485 } else if (ctx->stage == vertex_es ||
4486 ctx->stage == vertex_ls ||
4487 ctx->stage == tess_eval_es ||
4488 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4489 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4490 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4491 visit_store_ls_or_es_output(ctx, instr);
4492 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4493 visit_store_tcs_output(ctx, instr, false);
4494 } else {
4495 unreachable("Shader stage not implemented");
4496 }
4497 }
4498
4499 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4500 {
4501 visit_load_tcs_output(ctx, instr, false);
4502 }
4503
4504 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4505 {
4506 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4507 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4508
4509 Builder bld(ctx->program, ctx->block);
4510
4511 if (dst.regClass() == v2b) {
4512 if (ctx->program->has_16bank_lds) {
4513 assert(ctx->options->chip_class <= GFX8);
4514 Builder::Result interp_p1 =
4515 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4516 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4517 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4518 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4519 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4520 bld.m0(prim_mask), interp_p1, idx, component);
4521 } else {
4522 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4523
4524 if (ctx->options->chip_class == GFX8)
4525 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4526
4527 Builder::Result interp_p1 =
4528 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4529 coord1, bld.m0(prim_mask), idx, component);
4530 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4531 interp_p1, idx, component);
4532 }
4533 } else {
4534 Builder::Result interp_p1 =
4535 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4536 bld.m0(prim_mask), idx, component);
4537
4538 if (ctx->program->has_16bank_lds)
4539 interp_p1.instr->operands[0].setLateKill(true);
4540
4541 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4542 bld.m0(prim_mask), interp_p1, idx, component);
4543 }
4544 }
4545
4546 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4547 {
4548 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4549 for (unsigned i = 0; i < num_components; i++)
4550 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4551 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4552 assert(num_components == 4);
4553 Builder bld(ctx->program, ctx->block);
4554 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4555 }
4556
4557 for (Operand& op : vec->operands)
4558 op = op.isUndefined() ? Operand(0u) : op;
4559
4560 vec->definitions[0] = Definition(dst);
4561 ctx->block->instructions.emplace_back(std::move(vec));
4562 emit_split_vector(ctx, dst, num_components);
4563 return;
4564 }
4565
4566 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4567 {
4568 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4569 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4570 unsigned idx = nir_intrinsic_base(instr);
4571 unsigned component = nir_intrinsic_component(instr);
4572 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4573
4574 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4575 if (offset) {
4576 assert(offset->u32 == 0);
4577 } else {
4578 /* the lower 15bit of the prim_mask contain the offset into LDS
4579 * while the upper bits contain the number of prims */
4580 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4581 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4582 Builder bld(ctx->program, ctx->block);
4583 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4584 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4585 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4586 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4587 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4588 }
4589
4590 if (instr->dest.ssa.num_components == 1) {
4591 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4592 } else {
4593 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4594 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4595 {
4596 Temp tmp = {ctx->program->allocateId(), v1};
4597 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4598 vec->operands[i] = Operand(tmp);
4599 }
4600 vec->definitions[0] = Definition(dst);
4601 ctx->block->instructions.emplace_back(std::move(vec));
4602 }
4603 }
4604
4605 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4606 unsigned offset, unsigned stride, unsigned channels)
4607 {
4608 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4609 if (vtx_info->chan_byte_size != 4 && channels == 3)
4610 return false;
4611 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4612 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4613 }
4614
4615 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4616 unsigned offset, unsigned stride, unsigned *channels)
4617 {
4618 if (!vtx_info->chan_byte_size) {
4619 *channels = vtx_info->num_channels;
4620 return vtx_info->chan_format;
4621 }
4622
4623 unsigned num_channels = *channels;
4624 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4625 unsigned new_channels = num_channels + 1;
4626 /* first, assume more loads is worse and try using a larger data format */
4627 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4628 new_channels++;
4629 /* don't make the attribute potentially out-of-bounds */
4630 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4631 new_channels = 5;
4632 }
4633
4634 if (new_channels == 5) {
4635 /* then try decreasing load size (at the cost of more loads) */
4636 new_channels = *channels;
4637 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4638 new_channels--;
4639 }
4640
4641 if (new_channels < *channels)
4642 *channels = new_channels;
4643 num_channels = new_channels;
4644 }
4645
4646 switch (vtx_info->chan_format) {
4647 case V_008F0C_BUF_DATA_FORMAT_8:
4648 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4649 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4650 case V_008F0C_BUF_DATA_FORMAT_16:
4651 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4652 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4653 case V_008F0C_BUF_DATA_FORMAT_32:
4654 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4655 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4656 }
4657 unreachable("shouldn't reach here");
4658 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4659 }
4660
4661 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4662 * so we may need to fix it up. */
4663 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4664 {
4665 Builder bld(ctx->program, ctx->block);
4666
4667 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4668 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4669
4670 /* For the integer-like cases, do a natural sign extension.
4671 *
4672 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4673 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4674 * exponent.
4675 */
4676 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4677 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4678
4679 /* Convert back to the right type. */
4680 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4681 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4682 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4683 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4684 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4685 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4686 }
4687
4688 return alpha;
4689 }
4690
4691 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4692 {
4693 Builder bld(ctx->program, ctx->block);
4694 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4695 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4696
4697 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4698 if (off_instr->type != nir_instr_type_load_const) {
4699 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4700 nir_print_instr(off_instr, stderr);
4701 fprintf(stderr, "\n");
4702 }
4703 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4704
4705 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4706
4707 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4708 unsigned component = nir_intrinsic_component(instr);
4709 unsigned bitsize = instr->dest.ssa.bit_size;
4710 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4711 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4712 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4713 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4714
4715 unsigned dfmt = attrib_format & 0xf;
4716 unsigned nfmt = (attrib_format >> 4) & 0x7;
4717 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4718
4719 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4720 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4721 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4722 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4723 if (post_shuffle)
4724 num_channels = MAX2(num_channels, 3);
4725
4726 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4727 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4728
4729 Temp index;
4730 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4731 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4732 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4733 if (divisor) {
4734 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4735 if (divisor != 1) {
4736 Temp divided = bld.tmp(v1);
4737 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4738 index = bld.vadd32(bld.def(v1), start_instance, divided);
4739 } else {
4740 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4741 }
4742 } else {
4743 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4744 }
4745 } else {
4746 index = bld.vadd32(bld.def(v1),
4747 get_arg(ctx, ctx->args->ac.base_vertex),
4748 get_arg(ctx, ctx->args->ac.vertex_id));
4749 }
4750
4751 Temp channels[num_channels];
4752 unsigned channel_start = 0;
4753 bool direct_fetch = false;
4754
4755 /* skip unused channels at the start */
4756 if (vtx_info->chan_byte_size && !post_shuffle) {
4757 channel_start = ffs(mask) - 1;
4758 for (unsigned i = 0; i < channel_start; i++)
4759 channels[i] = Temp(0, s1);
4760 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4761 num_channels = 3 - (ffs(mask) - 1);
4762 }
4763
4764 /* load channels */
4765 while (channel_start < num_channels) {
4766 unsigned fetch_component = num_channels - channel_start;
4767 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4768 bool expanded = false;
4769
4770 /* use MUBUF when possible to avoid possible alignment issues */
4771 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4772 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4773 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4774 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4775 vtx_info->chan_byte_size == 4;
4776 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4777 if (!use_mubuf) {
4778 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4779 } else {
4780 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4781 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4782 fetch_component = 4;
4783 expanded = true;
4784 }
4785 }
4786
4787 unsigned fetch_bytes = fetch_component * bitsize / 8;
4788
4789 Temp fetch_index = index;
4790 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4791 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4792 fetch_offset = fetch_offset % attrib_stride;
4793 }
4794
4795 Operand soffset(0u);
4796 if (fetch_offset >= 4096) {
4797 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4798 fetch_offset %= 4096;
4799 }
4800
4801 aco_opcode opcode;
4802 switch (fetch_bytes) {
4803 case 2:
4804 assert(!use_mubuf && bitsize == 16);
4805 opcode = aco_opcode::tbuffer_load_format_d16_x;
4806 break;
4807 case 4:
4808 if (bitsize == 16) {
4809 assert(!use_mubuf);
4810 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4811 } else {
4812 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4813 }
4814 break;
4815 case 6:
4816 assert(!use_mubuf && bitsize == 16);
4817 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4818 break;
4819 case 8:
4820 if (bitsize == 16) {
4821 assert(!use_mubuf);
4822 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4823 } else {
4824 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4825 }
4826 break;
4827 case 12:
4828 assert(ctx->options->chip_class >= GFX7 ||
4829 (!use_mubuf && ctx->options->chip_class == GFX6));
4830 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4831 break;
4832 case 16:
4833 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4834 break;
4835 default:
4836 unreachable("Unimplemented load_input vector size");
4837 }
4838
4839 Temp fetch_dst;
4840 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4841 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4842 num_channels <= 3)) {
4843 direct_fetch = true;
4844 fetch_dst = dst;
4845 } else {
4846 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4847 }
4848
4849 if (use_mubuf) {
4850 Instruction *mubuf = bld.mubuf(opcode,
4851 Definition(fetch_dst), list, fetch_index, soffset,
4852 fetch_offset, false, false, true).instr;
4853 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4854 } else {
4855 Instruction *mtbuf = bld.mtbuf(opcode,
4856 Definition(fetch_dst), list, fetch_index, soffset,
4857 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4858 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4859 }
4860
4861 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4862
4863 if (fetch_component == 1) {
4864 channels[channel_start] = fetch_dst;
4865 } else {
4866 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4867 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4868 bitsize == 16 ? v2b : v1);
4869 }
4870
4871 channel_start += fetch_component;
4872 }
4873
4874 if (!direct_fetch) {
4875 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4876 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4877
4878 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4879 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4880 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4881
4882 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4883 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4884 unsigned num_temp = 0;
4885 for (unsigned i = 0; i < dst.size(); i++) {
4886 unsigned idx = i + component;
4887 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4888 Temp channel = channels[swizzle[idx]];
4889 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4890 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4891 vec->operands[i] = Operand(channel);
4892
4893 num_temp++;
4894 elems[i] = channel;
4895 } else if (is_float && idx == 3) {
4896 vec->operands[i] = Operand(0x3f800000u);
4897 } else if (!is_float && idx == 3) {
4898 vec->operands[i] = Operand(1u);
4899 } else {
4900 vec->operands[i] = Operand(0u);
4901 }
4902 }
4903 vec->definitions[0] = Definition(dst);
4904 ctx->block->instructions.emplace_back(std::move(vec));
4905 emit_split_vector(ctx, dst, dst.size());
4906
4907 if (num_temp == dst.size())
4908 ctx->allocated_vec.emplace(dst.id(), elems);
4909 }
4910 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4911 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4912 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4913 if (off_instr->type != nir_instr_type_load_const ||
4914 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4915 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4916 nir_print_instr(off_instr, stderr);
4917 fprintf(stderr, "\n");
4918 }
4919
4920 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4921 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4922 if (offset) {
4923 assert(offset->u32 == 0);
4924 } else {
4925 /* the lower 15bit of the prim_mask contain the offset into LDS
4926 * while the upper bits contain the number of prims */
4927 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4928 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4929 Builder bld(ctx->program, ctx->block);
4930 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4931 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4932 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4933 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4934 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4935 }
4936
4937 unsigned idx = nir_intrinsic_base(instr);
4938 unsigned component = nir_intrinsic_component(instr);
4939 unsigned vertex_id = 2; /* P0 */
4940
4941 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4942 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4943 switch (src0->u32) {
4944 case 0:
4945 vertex_id = 2; /* P0 */
4946 break;
4947 case 1:
4948 vertex_id = 0; /* P10 */
4949 break;
4950 case 2:
4951 vertex_id = 1; /* P20 */
4952 break;
4953 default:
4954 unreachable("invalid vertex index");
4955 }
4956 }
4957
4958 if (dst.size() == 1) {
4959 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4960 } else {
4961 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4962 for (unsigned i = 0; i < dst.size(); i++)
4963 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4964 vec->definitions[0] = Definition(dst);
4965 bld.insert(std::move(vec));
4966 }
4967
4968 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4969 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4970 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4971 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4972 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4973
4974 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4975 } else {
4976 unreachable("Shader stage not implemented");
4977 }
4978 }
4979
4980 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4981 {
4982 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4983
4984 Builder bld(ctx->program, ctx->block);
4985 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4986 Temp vertex_offset;
4987
4988 if (!nir_src_is_const(*vertex_src)) {
4989 /* better code could be created, but this case probably doesn't happen
4990 * much in practice */
4991 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4992 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4993 Temp elem;
4994
4995 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4996 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4997 if (i % 2u)
4998 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4999 } else {
5000 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
5001 }
5002
5003 if (vertex_offset.id()) {
5004 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
5005 Operand(i), indirect_vertex);
5006 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
5007 } else {
5008 vertex_offset = elem;
5009 }
5010 }
5011
5012 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
5013 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
5014 } else {
5015 unsigned vertex = nir_src_as_uint(*vertex_src);
5016 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
5017 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5018 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
5019 Operand((vertex % 2u) * 16u), Operand(16u));
5020 else
5021 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
5022 }
5023
5024 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
5025 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
5026 return offset_mul(ctx, offs, 4u);
5027 }
5028
5029 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5030 {
5031 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
5032
5033 Builder bld(ctx->program, ctx->block);
5034 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5035 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5036
5037 if (ctx->stage == geometry_gs) {
5038 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
5039 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
5040 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
5041 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
5042 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
5043 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
5044 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
5045 } else {
5046 unreachable("Unsupported GS stage.");
5047 }
5048 }
5049
5050 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5051 {
5052 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5053
5054 Builder bld(ctx->program, ctx->block);
5055 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5056
5057 if (load_input_from_temps(ctx, instr, dst))
5058 return;
5059
5060 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
5061 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5062 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
5063
5064 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
5065 }
5066
5067 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5068 {
5069 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5070
5071 Builder bld(ctx->program, ctx->block);
5072
5073 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
5074 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
5075 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5076
5077 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5078 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
5079
5080 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
5081 }
5082
5083 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5084 {
5085 switch (ctx->shader->info.stage) {
5086 case MESA_SHADER_GEOMETRY:
5087 visit_load_gs_per_vertex_input(ctx, instr);
5088 break;
5089 case MESA_SHADER_TESS_CTRL:
5090 visit_load_tcs_per_vertex_input(ctx, instr);
5091 break;
5092 case MESA_SHADER_TESS_EVAL:
5093 visit_load_tes_per_vertex_input(ctx, instr);
5094 break;
5095 default:
5096 unreachable("Unimplemented shader stage");
5097 }
5098 }
5099
5100 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5101 {
5102 visit_load_tcs_output(ctx, instr, true);
5103 }
5104
5105 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5106 {
5107 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
5108 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5109
5110 visit_store_tcs_output(ctx, instr, true);
5111 }
5112
5113 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
5114 {
5115 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5116
5117 Builder bld(ctx->program, ctx->block);
5118 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5119
5120 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
5121 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
5122 Operand tes_w(0u);
5123
5124 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
5125 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
5126 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
5127 tes_w = Operand(tmp);
5128 }
5129
5130 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
5131 emit_split_vector(ctx, tess_coord, 3);
5132 }
5133
5134 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
5135 {
5136 if (ctx->program->info->need_indirect_descriptor_sets) {
5137 Builder bld(ctx->program, ctx->block);
5138 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
5139 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
5140 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
5141 }
5142
5143 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
5144 }
5145
5146
5147 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
5148 {
5149 Builder bld(ctx->program, ctx->block);
5150 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
5151 if (!nir_dest_is_divergent(instr->dest))
5152 index = bld.as_uniform(index);
5153 unsigned desc_set = nir_intrinsic_desc_set(instr);
5154 unsigned binding = nir_intrinsic_binding(instr);
5155
5156 Temp desc_ptr;
5157 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
5158 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
5159 unsigned offset = layout->binding[binding].offset;
5160 unsigned stride;
5161 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
5162 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
5163 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
5164 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
5165 offset = pipeline_layout->push_constant_size + 16 * idx;
5166 stride = 16;
5167 } else {
5168 desc_ptr = load_desc_ptr(ctx, desc_set);
5169 stride = layout->binding[binding].size;
5170 }
5171
5172 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
5173 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
5174 if (stride != 1) {
5175 if (nir_const_index) {
5176 const_index = const_index * stride;
5177 } else if (index.type() == RegType::vgpr) {
5178 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
5179 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
5180 } else {
5181 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5182 }
5183 }
5184 if (offset) {
5185 if (nir_const_index) {
5186 const_index = const_index + offset;
5187 } else if (index.type() == RegType::vgpr) {
5188 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5189 } else {
5190 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5191 }
5192 }
5193
5194 if (nir_const_index && const_index == 0) {
5195 index = desc_ptr;
5196 } else if (index.type() == RegType::vgpr) {
5197 index = bld.vadd32(bld.def(v1),
5198 nir_const_index ? Operand(const_index) : Operand(index),
5199 Operand(desc_ptr));
5200 } else {
5201 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5202 nir_const_index ? Operand(const_index) : Operand(index),
5203 Operand(desc_ptr));
5204 }
5205
5206 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5207 }
5208
5209 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5210 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5211 bool glc=false, bool readonly=true, bool allow_smem=true)
5212 {
5213 Builder bld(ctx->program, ctx->block);
5214
5215 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5216 if (use_smem)
5217 offset = bld.as_uniform(offset);
5218
5219 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5220 info.glc = glc;
5221 info.barrier = readonly ? barrier_none : barrier_buffer;
5222 info.can_reorder = readonly;
5223 info.align_mul = align_mul;
5224 info.align_offset = align_offset;
5225 if (use_smem)
5226 emit_smem_load(ctx, bld, &info);
5227 else
5228 emit_mubuf_load(ctx, bld, &info);
5229 }
5230
5231 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5232 {
5233 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5234 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5235
5236 Builder bld(ctx->program, ctx->block);
5237
5238 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5239 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5240 unsigned binding = nir_intrinsic_binding(idx_instr);
5241 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5242
5243 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5244 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5245 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5246 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5247 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5248 if (ctx->options->chip_class >= GFX10) {
5249 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5250 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5251 S_008F0C_RESOURCE_LEVEL(1);
5252 } else {
5253 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5254 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5255 }
5256 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5257 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5258 Operand(0xFFFFFFFFu),
5259 Operand(desc_type));
5260 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5261 rsrc, upper_dwords);
5262 } else {
5263 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5264 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5265 }
5266 unsigned size = instr->dest.ssa.bit_size / 8;
5267 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5268 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5269 }
5270
5271 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5272 {
5273 Builder bld(ctx->program, ctx->block);
5274 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5275 unsigned offset = nir_intrinsic_base(instr);
5276 unsigned count = instr->dest.ssa.num_components;
5277 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5278
5279 if (index_cv && instr->dest.ssa.bit_size == 32) {
5280 unsigned start = (offset + index_cv->u32) / 4u;
5281 start -= ctx->args->ac.base_inline_push_consts;
5282 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5283 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5284 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5285 for (unsigned i = 0; i < count; ++i) {
5286 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5287 vec->operands[i] = Operand{elems[i]};
5288 }
5289 vec->definitions[0] = Definition(dst);
5290 ctx->block->instructions.emplace_back(std::move(vec));
5291 ctx->allocated_vec.emplace(dst.id(), elems);
5292 return;
5293 }
5294 }
5295
5296 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5297 if (offset != 0) // TODO check if index != 0 as well
5298 index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5299 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5300 Temp vec = dst;
5301 bool trim = false;
5302 bool aligned = true;
5303
5304 if (instr->dest.ssa.bit_size == 8) {
5305 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5306 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5307 if (!aligned)
5308 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5309 } else if (instr->dest.ssa.bit_size == 16) {
5310 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5311 if (!aligned)
5312 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5313 }
5314
5315 aco_opcode op;
5316
5317 switch (vec.size()) {
5318 case 1:
5319 op = aco_opcode::s_load_dword;
5320 break;
5321 case 2:
5322 op = aco_opcode::s_load_dwordx2;
5323 break;
5324 case 3:
5325 vec = bld.tmp(s4);
5326 trim = true;
5327 case 4:
5328 op = aco_opcode::s_load_dwordx4;
5329 break;
5330 case 6:
5331 vec = bld.tmp(s8);
5332 trim = true;
5333 case 8:
5334 op = aco_opcode::s_load_dwordx8;
5335 break;
5336 default:
5337 unreachable("unimplemented or forbidden load_push_constant.");
5338 }
5339
5340 static_cast<SMEM_instruction*>(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true;
5341
5342 if (!aligned) {
5343 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5344 byte_align_scalar(ctx, vec, byte_offset, dst);
5345 return;
5346 }
5347
5348 if (trim) {
5349 emit_split_vector(ctx, vec, 4);
5350 RegClass rc = dst.size() == 3 ? s1 : s2;
5351 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5352 emit_extract_vector(ctx, vec, 0, rc),
5353 emit_extract_vector(ctx, vec, 1, rc),
5354 emit_extract_vector(ctx, vec, 2, rc));
5355
5356 }
5357 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5358 }
5359
5360 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5361 {
5362 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5363
5364 Builder bld(ctx->program, ctx->block);
5365
5366 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5367 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5368 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5369 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5370 if (ctx->options->chip_class >= GFX10) {
5371 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5372 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5373 S_008F0C_RESOURCE_LEVEL(1);
5374 } else {
5375 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5376 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5377 }
5378
5379 unsigned base = nir_intrinsic_base(instr);
5380 unsigned range = nir_intrinsic_range(instr);
5381
5382 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5383 if (base && offset.type() == RegType::sgpr)
5384 offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5385 else if (base && offset.type() == RegType::vgpr)
5386 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5387
5388 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5389 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5390 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5391 Operand(desc_type));
5392 unsigned size = instr->dest.ssa.bit_size / 8;
5393 // TODO: get alignment information for subdword constants
5394 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5395 }
5396
5397 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5398 {
5399 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5400 ctx->cf_info.exec_potentially_empty_discard = true;
5401
5402 ctx->program->needs_exact = true;
5403
5404 // TODO: optimize uniform conditions
5405 Builder bld(ctx->program, ctx->block);
5406 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5407 assert(src.regClass() == bld.lm);
5408 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5409 bld.pseudo(aco_opcode::p_discard_if, src);
5410 ctx->block->kind |= block_kind_uses_discard_if;
5411 return;
5412 }
5413
5414 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5415 {
5416 Builder bld(ctx->program, ctx->block);
5417
5418 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5419 ctx->cf_info.exec_potentially_empty_discard = true;
5420
5421 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5422 ctx->cf_info.parent_loop.has_divergent_continue;
5423
5424 if (ctx->block->loop_nest_depth &&
5425 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5426 /* we handle discards the same way as jump instructions */
5427 append_logical_end(ctx->block);
5428
5429 /* in loops, discard behaves like break */
5430 Block *linear_target = ctx->cf_info.parent_loop.exit;
5431 ctx->block->kind |= block_kind_discard;
5432
5433 if (!divergent) {
5434 /* uniform discard - loop ends here */
5435 assert(nir_instr_is_last(&instr->instr));
5436 ctx->block->kind |= block_kind_uniform;
5437 ctx->cf_info.has_branch = true;
5438 bld.branch(aco_opcode::p_branch);
5439 add_linear_edge(ctx->block->index, linear_target);
5440 return;
5441 }
5442
5443 /* we add a break right behind the discard() instructions */
5444 ctx->block->kind |= block_kind_break;
5445 unsigned idx = ctx->block->index;
5446
5447 ctx->cf_info.parent_loop.has_divergent_branch = true;
5448 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5449
5450 /* remove critical edges from linear CFG */
5451 bld.branch(aco_opcode::p_branch);
5452 Block* break_block = ctx->program->create_and_insert_block();
5453 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5454 break_block->kind |= block_kind_uniform;
5455 add_linear_edge(idx, break_block);
5456 add_linear_edge(break_block->index, linear_target);
5457 bld.reset(break_block);
5458 bld.branch(aco_opcode::p_branch);
5459
5460 Block* continue_block = ctx->program->create_and_insert_block();
5461 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5462 add_linear_edge(idx, continue_block);
5463 append_logical_start(continue_block);
5464 ctx->block = continue_block;
5465
5466 return;
5467 }
5468
5469 /* it can currently happen that NIR doesn't remove the unreachable code */
5470 if (!nir_instr_is_last(&instr->instr)) {
5471 ctx->program->needs_exact = true;
5472 /* save exec somewhere temporarily so that it doesn't get
5473 * overwritten before the discard from outer exec masks */
5474 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5475 bld.pseudo(aco_opcode::p_discard_if, cond);
5476 ctx->block->kind |= block_kind_uses_discard_if;
5477 return;
5478 }
5479
5480 /* This condition is incorrect for uniformly branched discards in a loop
5481 * predicated by a divergent condition, but the above code catches that case
5482 * and the discard would end up turning into a discard_if.
5483 * For example:
5484 * if (divergent) {
5485 * while (...) {
5486 * if (uniform) {
5487 * discard;
5488 * }
5489 * }
5490 * }
5491 */
5492 if (!ctx->cf_info.parent_if.is_divergent) {
5493 /* program just ends here */
5494 ctx->block->kind |= block_kind_uniform;
5495 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5496 0 /* enabled mask */, 9 /* dest */,
5497 false /* compressed */, true/* done */, true /* valid mask */);
5498 bld.sopp(aco_opcode::s_endpgm);
5499 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5500 } else {
5501 ctx->block->kind |= block_kind_discard;
5502 /* branch and linear edge is added by visit_if() */
5503 }
5504 }
5505
5506 enum aco_descriptor_type {
5507 ACO_DESC_IMAGE,
5508 ACO_DESC_FMASK,
5509 ACO_DESC_SAMPLER,
5510 ACO_DESC_BUFFER,
5511 ACO_DESC_PLANE_0,
5512 ACO_DESC_PLANE_1,
5513 ACO_DESC_PLANE_2,
5514 };
5515
5516 static bool
5517 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5518 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5519 return false;
5520 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5521 return dim == ac_image_cube ||
5522 dim == ac_image_1darray ||
5523 dim == ac_image_2darray ||
5524 dim == ac_image_2darraymsaa;
5525 }
5526
5527 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5528 enum aco_descriptor_type desc_type,
5529 const nir_tex_instr *tex_instr, bool image, bool write)
5530 {
5531 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5532 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5533 if (it != ctx->tex_desc.end())
5534 return it->second;
5535 */
5536 Temp index = Temp();
5537 bool index_set = false;
5538 unsigned constant_index = 0;
5539 unsigned descriptor_set;
5540 unsigned base_index;
5541 Builder bld(ctx->program, ctx->block);
5542
5543 if (!deref_instr) {
5544 assert(tex_instr && !image);
5545 descriptor_set = 0;
5546 base_index = tex_instr->sampler_index;
5547 } else {
5548 while(deref_instr->deref_type != nir_deref_type_var) {
5549 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5550 if (!array_size)
5551 array_size = 1;
5552
5553 assert(deref_instr->deref_type == nir_deref_type_array);
5554 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5555 if (const_value) {
5556 constant_index += array_size * const_value->u32;
5557 } else {
5558 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5559 if (indirect.type() == RegType::vgpr)
5560 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5561
5562 if (array_size != 1)
5563 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5564
5565 if (!index_set) {
5566 index = indirect;
5567 index_set = true;
5568 } else {
5569 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5570 }
5571 }
5572
5573 deref_instr = nir_src_as_deref(deref_instr->parent);
5574 }
5575 descriptor_set = deref_instr->var->data.descriptor_set;
5576 base_index = deref_instr->var->data.binding;
5577 }
5578
5579 Temp list = load_desc_ptr(ctx, descriptor_set);
5580 list = convert_pointer_to_64_bit(ctx, list);
5581
5582 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5583 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5584 unsigned offset = binding->offset;
5585 unsigned stride = binding->size;
5586 aco_opcode opcode;
5587 RegClass type;
5588
5589 assert(base_index < layout->binding_count);
5590
5591 switch (desc_type) {
5592 case ACO_DESC_IMAGE:
5593 type = s8;
5594 opcode = aco_opcode::s_load_dwordx8;
5595 break;
5596 case ACO_DESC_FMASK:
5597 type = s8;
5598 opcode = aco_opcode::s_load_dwordx8;
5599 offset += 32;
5600 break;
5601 case ACO_DESC_SAMPLER:
5602 type = s4;
5603 opcode = aco_opcode::s_load_dwordx4;
5604 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5605 offset += radv_combined_image_descriptor_sampler_offset(binding);
5606 break;
5607 case ACO_DESC_BUFFER:
5608 type = s4;
5609 opcode = aco_opcode::s_load_dwordx4;
5610 break;
5611 case ACO_DESC_PLANE_0:
5612 case ACO_DESC_PLANE_1:
5613 type = s8;
5614 opcode = aco_opcode::s_load_dwordx8;
5615 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5616 break;
5617 case ACO_DESC_PLANE_2:
5618 type = s4;
5619 opcode = aco_opcode::s_load_dwordx4;
5620 offset += 64;
5621 break;
5622 default:
5623 unreachable("invalid desc_type\n");
5624 }
5625
5626 offset += constant_index * stride;
5627
5628 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5629 (!index_set || binding->immutable_samplers_equal)) {
5630 if (binding->immutable_samplers_equal)
5631 constant_index = 0;
5632
5633 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5634 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5635 Operand(samplers[constant_index * 4 + 0]),
5636 Operand(samplers[constant_index * 4 + 1]),
5637 Operand(samplers[constant_index * 4 + 2]),
5638 Operand(samplers[constant_index * 4 + 3]));
5639 }
5640
5641 Operand off;
5642 if (!index_set) {
5643 off = bld.copy(bld.def(s1), Operand(offset));
5644 } else {
5645 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5646 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5647 }
5648
5649 Temp res = bld.smem(opcode, bld.def(type), list, off);
5650
5651 if (desc_type == ACO_DESC_PLANE_2) {
5652 Temp components[8];
5653 for (unsigned i = 0; i < 8; i++)
5654 components[i] = bld.tmp(s1);
5655 bld.pseudo(aco_opcode::p_split_vector,
5656 Definition(components[0]),
5657 Definition(components[1]),
5658 Definition(components[2]),
5659 Definition(components[3]),
5660 res);
5661
5662 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5663 bld.pseudo(aco_opcode::p_split_vector,
5664 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5665 Definition(components[4]),
5666 Definition(components[5]),
5667 Definition(components[6]),
5668 Definition(components[7]),
5669 desc2);
5670
5671 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5672 components[0], components[1], components[2], components[3],
5673 components[4], components[5], components[6], components[7]);
5674 }
5675
5676 return res;
5677 }
5678
5679 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5680 {
5681 switch (dim) {
5682 case GLSL_SAMPLER_DIM_BUF:
5683 return 1;
5684 case GLSL_SAMPLER_DIM_1D:
5685 return array ? 2 : 1;
5686 case GLSL_SAMPLER_DIM_2D:
5687 return array ? 3 : 2;
5688 case GLSL_SAMPLER_DIM_MS:
5689 return array ? 4 : 3;
5690 case GLSL_SAMPLER_DIM_3D:
5691 case GLSL_SAMPLER_DIM_CUBE:
5692 return 3;
5693 case GLSL_SAMPLER_DIM_RECT:
5694 case GLSL_SAMPLER_DIM_SUBPASS:
5695 return 2;
5696 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5697 return 3;
5698 default:
5699 break;
5700 }
5701 return 0;
5702 }
5703
5704
5705 /* Adjust the sample index according to FMASK.
5706 *
5707 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5708 * which is the identity mapping. Each nibble says which physical sample
5709 * should be fetched to get that sample.
5710 *
5711 * For example, 0x11111100 means there are only 2 samples stored and
5712 * the second sample covers 3/4 of the pixel. When reading samples 0
5713 * and 1, return physical sample 0 (determined by the first two 0s
5714 * in FMASK), otherwise return physical sample 1.
5715 *
5716 * The sample index should be adjusted as follows:
5717 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5718 */
5719 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5720 {
5721 Builder bld(ctx->program, ctx->block);
5722 Temp fmask = bld.tmp(v1);
5723 unsigned dim = ctx->options->chip_class >= GFX10
5724 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5725 : 0;
5726
5727 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5728 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5729 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5730 load->operands[0] = Operand(fmask_desc_ptr);
5731 load->operands[1] = Operand(s4); /* no sampler */
5732 load->operands[2] = Operand(coord);
5733 load->definitions[0] = Definition(fmask);
5734 load->glc = false;
5735 load->dlc = false;
5736 load->dmask = 0x1;
5737 load->unrm = true;
5738 load->da = da;
5739 load->dim = dim;
5740 load->can_reorder = true; /* fmask images shouldn't be modified */
5741 ctx->block->instructions.emplace_back(std::move(load));
5742
5743 Operand sample_index4;
5744 if (sample_index.isConstant()) {
5745 if (sample_index.constantValue() < 16) {
5746 sample_index4 = Operand(sample_index.constantValue() << 2);
5747 } else {
5748 sample_index4 = Operand(0u);
5749 }
5750 } else if (sample_index.regClass() == s1) {
5751 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5752 } else {
5753 assert(sample_index.regClass() == v1);
5754 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5755 }
5756
5757 Temp final_sample;
5758 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5759 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5760 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5761 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5762 else
5763 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5764
5765 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5766 * resource descriptor is 0 (invalid),
5767 */
5768 Temp compare = bld.tmp(bld.lm);
5769 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5770 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5771
5772 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5773
5774 /* Replace the MSAA sample index. */
5775 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5776 }
5777
5778 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5779 {
5780
5781 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5782 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5783 bool is_array = glsl_sampler_type_is_array(type);
5784 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5785 assert(!add_frag_pos && "Input attachments should be lowered.");
5786 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5787 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5788 int count = image_type_to_components_count(dim, is_array);
5789 std::vector<Temp> coords(count);
5790 Builder bld(ctx->program, ctx->block);
5791
5792 if (is_ms) {
5793 count--;
5794 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5795 /* get sample index */
5796 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5797 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5798 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5799 std::vector<Temp> fmask_load_address;
5800 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5801 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5802
5803 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5804 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5805 } else {
5806 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5807 }
5808 }
5809
5810 if (gfx9_1d) {
5811 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5812 coords.resize(coords.size() + 1);
5813 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5814 if (is_array)
5815 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5816 } else {
5817 for (int i = 0; i < count; i++)
5818 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5819 }
5820
5821 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5822 instr->intrinsic == nir_intrinsic_image_deref_store) {
5823 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5824 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5825
5826 if (!level_zero)
5827 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5828 }
5829
5830 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5831 for (unsigned i = 0; i < coords.size(); i++)
5832 vec->operands[i] = Operand(coords[i]);
5833 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5834 vec->definitions[0] = Definition(res);
5835 ctx->block->instructions.emplace_back(std::move(vec));
5836 return res;
5837 }
5838
5839
5840 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5841 {
5842 Builder bld(ctx->program, ctx->block);
5843 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5844 const struct glsl_type *type = glsl_without_array(var->type);
5845 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5846 bool is_array = glsl_sampler_type_is_array(type);
5847 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5848
5849 if (dim == GLSL_SAMPLER_DIM_BUF) {
5850 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5851 unsigned num_channels = util_last_bit(mask);
5852 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5853 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5854
5855 aco_opcode opcode;
5856 switch (num_channels) {
5857 case 1:
5858 opcode = aco_opcode::buffer_load_format_x;
5859 break;
5860 case 2:
5861 opcode = aco_opcode::buffer_load_format_xy;
5862 break;
5863 case 3:
5864 opcode = aco_opcode::buffer_load_format_xyz;
5865 break;
5866 case 4:
5867 opcode = aco_opcode::buffer_load_format_xyzw;
5868 break;
5869 default:
5870 unreachable(">4 channel buffer image load");
5871 }
5872 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5873 load->operands[0] = Operand(rsrc);
5874 load->operands[1] = Operand(vindex);
5875 load->operands[2] = Operand((uint32_t) 0);
5876 Temp tmp;
5877 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5878 tmp = dst;
5879 else
5880 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5881 load->definitions[0] = Definition(tmp);
5882 load->idxen = true;
5883 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5884 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5885 load->barrier = barrier_image;
5886 ctx->block->instructions.emplace_back(std::move(load));
5887
5888 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5889 return;
5890 }
5891
5892 Temp coords = get_image_coords(ctx, instr, type);
5893 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5894
5895 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5896 unsigned num_components = util_bitcount(dmask);
5897 Temp tmp;
5898 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5899 tmp = dst;
5900 else
5901 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5902
5903 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5904 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5905
5906 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5907 load->operands[0] = Operand(resource);
5908 load->operands[1] = Operand(s4); /* no sampler */
5909 load->operands[2] = Operand(coords);
5910 load->definitions[0] = Definition(tmp);
5911 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5912 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5913 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5914 load->dmask = dmask;
5915 load->unrm = true;
5916 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5917 load->barrier = barrier_image;
5918 ctx->block->instructions.emplace_back(std::move(load));
5919
5920 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5921 return;
5922 }
5923
5924 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5925 {
5926 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5927 const struct glsl_type *type = glsl_without_array(var->type);
5928 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5929 bool is_array = glsl_sampler_type_is_array(type);
5930 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5931
5932 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5933
5934 if (dim == GLSL_SAMPLER_DIM_BUF) {
5935 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5936 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5937 aco_opcode opcode;
5938 switch (data.size()) {
5939 case 1:
5940 opcode = aco_opcode::buffer_store_format_x;
5941 break;
5942 case 2:
5943 opcode = aco_opcode::buffer_store_format_xy;
5944 break;
5945 case 3:
5946 opcode = aco_opcode::buffer_store_format_xyz;
5947 break;
5948 case 4:
5949 opcode = aco_opcode::buffer_store_format_xyzw;
5950 break;
5951 default:
5952 unreachable(">4 channel buffer image store");
5953 }
5954 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5955 store->operands[0] = Operand(rsrc);
5956 store->operands[1] = Operand(vindex);
5957 store->operands[2] = Operand((uint32_t) 0);
5958 store->operands[3] = Operand(data);
5959 store->idxen = true;
5960 store->glc = glc;
5961 store->dlc = false;
5962 store->disable_wqm = true;
5963 store->barrier = barrier_image;
5964 ctx->program->needs_exact = true;
5965 ctx->block->instructions.emplace_back(std::move(store));
5966 return;
5967 }
5968
5969 assert(data.type() == RegType::vgpr);
5970 Temp coords = get_image_coords(ctx, instr, type);
5971 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5972
5973 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5974 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5975
5976 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5977 store->operands[0] = Operand(resource);
5978 store->operands[1] = Operand(data);
5979 store->operands[2] = Operand(coords);
5980 store->glc = glc;
5981 store->dlc = false;
5982 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5983 store->dmask = (1 << data.size()) - 1;
5984 store->unrm = true;
5985 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5986 store->disable_wqm = true;
5987 store->barrier = barrier_image;
5988 ctx->program->needs_exact = true;
5989 ctx->block->instructions.emplace_back(std::move(store));
5990 return;
5991 }
5992
5993 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5994 {
5995 /* return the previous value if dest is ever used */
5996 bool return_previous = false;
5997 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5998 return_previous = true;
5999 break;
6000 }
6001 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6002 return_previous = true;
6003 break;
6004 }
6005
6006 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6007 const struct glsl_type *type = glsl_without_array(var->type);
6008 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6009 bool is_array = glsl_sampler_type_is_array(type);
6010 Builder bld(ctx->program, ctx->block);
6011
6012 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
6013 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
6014
6015 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
6016 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
6017
6018 aco_opcode buf_op, image_op;
6019 switch (instr->intrinsic) {
6020 case nir_intrinsic_image_deref_atomic_add:
6021 buf_op = aco_opcode::buffer_atomic_add;
6022 image_op = aco_opcode::image_atomic_add;
6023 break;
6024 case nir_intrinsic_image_deref_atomic_umin:
6025 buf_op = aco_opcode::buffer_atomic_umin;
6026 image_op = aco_opcode::image_atomic_umin;
6027 break;
6028 case nir_intrinsic_image_deref_atomic_imin:
6029 buf_op = aco_opcode::buffer_atomic_smin;
6030 image_op = aco_opcode::image_atomic_smin;
6031 break;
6032 case nir_intrinsic_image_deref_atomic_umax:
6033 buf_op = aco_opcode::buffer_atomic_umax;
6034 image_op = aco_opcode::image_atomic_umax;
6035 break;
6036 case nir_intrinsic_image_deref_atomic_imax:
6037 buf_op = aco_opcode::buffer_atomic_smax;
6038 image_op = aco_opcode::image_atomic_smax;
6039 break;
6040 case nir_intrinsic_image_deref_atomic_and:
6041 buf_op = aco_opcode::buffer_atomic_and;
6042 image_op = aco_opcode::image_atomic_and;
6043 break;
6044 case nir_intrinsic_image_deref_atomic_or:
6045 buf_op = aco_opcode::buffer_atomic_or;
6046 image_op = aco_opcode::image_atomic_or;
6047 break;
6048 case nir_intrinsic_image_deref_atomic_xor:
6049 buf_op = aco_opcode::buffer_atomic_xor;
6050 image_op = aco_opcode::image_atomic_xor;
6051 break;
6052 case nir_intrinsic_image_deref_atomic_exchange:
6053 buf_op = aco_opcode::buffer_atomic_swap;
6054 image_op = aco_opcode::image_atomic_swap;
6055 break;
6056 case nir_intrinsic_image_deref_atomic_comp_swap:
6057 buf_op = aco_opcode::buffer_atomic_cmpswap;
6058 image_op = aco_opcode::image_atomic_cmpswap;
6059 break;
6060 default:
6061 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
6062 }
6063
6064 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6065
6066 if (dim == GLSL_SAMPLER_DIM_BUF) {
6067 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
6068 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
6069 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
6070 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6071 mubuf->operands[0] = Operand(resource);
6072 mubuf->operands[1] = Operand(vindex);
6073 mubuf->operands[2] = Operand((uint32_t)0);
6074 mubuf->operands[3] = Operand(data);
6075 if (return_previous)
6076 mubuf->definitions[0] = Definition(dst);
6077 mubuf->offset = 0;
6078 mubuf->idxen = true;
6079 mubuf->glc = return_previous;
6080 mubuf->dlc = false; /* Not needed for atomics */
6081 mubuf->disable_wqm = true;
6082 mubuf->barrier = barrier_image;
6083 ctx->program->needs_exact = true;
6084 ctx->block->instructions.emplace_back(std::move(mubuf));
6085 return;
6086 }
6087
6088 Temp coords = get_image_coords(ctx, instr, type);
6089 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
6090 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
6091 mimg->operands[0] = Operand(resource);
6092 mimg->operands[1] = Operand(data);
6093 mimg->operands[2] = Operand(coords);
6094 if (return_previous)
6095 mimg->definitions[0] = Definition(dst);
6096 mimg->glc = return_previous;
6097 mimg->dlc = false; /* Not needed for atomics */
6098 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6099 mimg->dmask = (1 << data.size()) - 1;
6100 mimg->unrm = true;
6101 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6102 mimg->disable_wqm = true;
6103 mimg->barrier = barrier_image;
6104 ctx->program->needs_exact = true;
6105 ctx->block->instructions.emplace_back(std::move(mimg));
6106 return;
6107 }
6108
6109 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
6110 {
6111 if (in_elements && ctx->options->chip_class == GFX8) {
6112 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
6113 Builder bld(ctx->program, ctx->block);
6114
6115 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6116
6117 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6118 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
6119
6120 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6121 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6122
6123 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6124 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6125
6126 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6127 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6128 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6129 if (dst.type() == RegType::vgpr)
6130 bld.copy(Definition(dst), shr_dst);
6131
6132 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6133 } else {
6134 emit_extract_vector(ctx, desc, 2, dst);
6135 }
6136 }
6137
6138 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6139 {
6140 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6141 const struct glsl_type *type = glsl_without_array(var->type);
6142 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6143 bool is_array = glsl_sampler_type_is_array(type);
6144 Builder bld(ctx->program, ctx->block);
6145
6146 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6147 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6148 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6149 }
6150
6151 /* LOD */
6152 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6153
6154 /* Resource */
6155 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6156
6157 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6158
6159 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6160 mimg->operands[0] = Operand(resource);
6161 mimg->operands[1] = Operand(s4); /* no sampler */
6162 mimg->operands[2] = Operand(lod);
6163 uint8_t& dmask = mimg->dmask;
6164 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6165 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6166 mimg->da = glsl_sampler_type_is_array(type);
6167 mimg->can_reorder = true;
6168 Definition& def = mimg->definitions[0];
6169 ctx->block->instructions.emplace_back(std::move(mimg));
6170
6171 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6172 glsl_sampler_type_is_array(type)) {
6173
6174 assert(instr->dest.ssa.num_components == 3);
6175 Temp tmp = {ctx->program->allocateId(), v3};
6176 def = Definition(tmp);
6177 emit_split_vector(ctx, tmp, 3);
6178
6179 /* divide 3rd value by 6 by multiplying with magic number */
6180 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6181 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6182
6183 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6184 emit_extract_vector(ctx, tmp, 0, v1),
6185 emit_extract_vector(ctx, tmp, 1, v1),
6186 by_6);
6187
6188 } else if (ctx->options->chip_class == GFX9 &&
6189 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6190 glsl_sampler_type_is_array(type)) {
6191 assert(instr->dest.ssa.num_components == 2);
6192 def = Definition(dst);
6193 dmask = 0x5;
6194 } else {
6195 def = Definition(dst);
6196 }
6197
6198 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6199 }
6200
6201 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6202 {
6203 Builder bld(ctx->program, ctx->block);
6204 unsigned num_components = instr->num_components;
6205
6206 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6207 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6208 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6209
6210 unsigned access = nir_intrinsic_access(instr);
6211 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6212 unsigned size = instr->dest.ssa.bit_size / 8;
6213
6214 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6215 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6216 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6217 */
6218 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6219 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6220
6221 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6222 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, false, allow_smem);
6223 }
6224
6225 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6226 {
6227 Builder bld(ctx->program, ctx->block);
6228 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6229 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6230 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6231 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6232
6233 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6234 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6235
6236 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6237 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6238 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6239 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6240 */
6241 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6242
6243 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6244 ctx->options->chip_class >= GFX8 &&
6245 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6246 allow_smem;
6247 if (smem)
6248 offset = bld.as_uniform(offset);
6249 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6250
6251 unsigned write_count = 0;
6252 Temp write_datas[32];
6253 unsigned offsets[32];
6254 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6255 data, writemask, 16, &write_count, write_datas, offsets);
6256
6257 for (unsigned i = 0; i < write_count; i++) {
6258 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6259 if (smem && ctx->stage == fragment_fs)
6260 op = aco_opcode::p_fs_buffer_store_smem;
6261
6262 if (smem) {
6263 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6264 store->operands[0] = Operand(rsrc);
6265 if (offsets[i]) {
6266 Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6267 offset, Operand(offsets[i]));
6268 store->operands[1] = Operand(off);
6269 } else {
6270 store->operands[1] = Operand(offset);
6271 }
6272 if (op != aco_opcode::p_fs_buffer_store_smem)
6273 store->operands[1].setFixed(m0);
6274 store->operands[2] = Operand(write_datas[i]);
6275 store->glc = glc;
6276 store->dlc = false;
6277 store->disable_wqm = true;
6278 store->barrier = barrier_buffer;
6279 ctx->block->instructions.emplace_back(std::move(store));
6280 ctx->program->wb_smem_l1_on_end = true;
6281 if (op == aco_opcode::p_fs_buffer_store_smem) {
6282 ctx->block->kind |= block_kind_needs_lowering;
6283 ctx->program->needs_exact = true;
6284 }
6285 } else {
6286 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6287 store->operands[0] = Operand(rsrc);
6288 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6289 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6290 store->operands[3] = Operand(write_datas[i]);
6291 store->offset = offsets[i];
6292 store->offen = (offset.type() == RegType::vgpr);
6293 store->glc = glc;
6294 store->dlc = false;
6295 store->disable_wqm = true;
6296 store->barrier = barrier_buffer;
6297 ctx->program->needs_exact = true;
6298 ctx->block->instructions.emplace_back(std::move(store));
6299 }
6300 }
6301 }
6302
6303 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6304 {
6305 /* return the previous value if dest is ever used */
6306 bool return_previous = false;
6307 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6308 return_previous = true;
6309 break;
6310 }
6311 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6312 return_previous = true;
6313 break;
6314 }
6315
6316 Builder bld(ctx->program, ctx->block);
6317 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6318
6319 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6320 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6321 get_ssa_temp(ctx, instr->src[3].ssa), data);
6322
6323 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6324 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6325 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6326
6327 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6328
6329 aco_opcode op32, op64;
6330 switch (instr->intrinsic) {
6331 case nir_intrinsic_ssbo_atomic_add:
6332 op32 = aco_opcode::buffer_atomic_add;
6333 op64 = aco_opcode::buffer_atomic_add_x2;
6334 break;
6335 case nir_intrinsic_ssbo_atomic_imin:
6336 op32 = aco_opcode::buffer_atomic_smin;
6337 op64 = aco_opcode::buffer_atomic_smin_x2;
6338 break;
6339 case nir_intrinsic_ssbo_atomic_umin:
6340 op32 = aco_opcode::buffer_atomic_umin;
6341 op64 = aco_opcode::buffer_atomic_umin_x2;
6342 break;
6343 case nir_intrinsic_ssbo_atomic_imax:
6344 op32 = aco_opcode::buffer_atomic_smax;
6345 op64 = aco_opcode::buffer_atomic_smax_x2;
6346 break;
6347 case nir_intrinsic_ssbo_atomic_umax:
6348 op32 = aco_opcode::buffer_atomic_umax;
6349 op64 = aco_opcode::buffer_atomic_umax_x2;
6350 break;
6351 case nir_intrinsic_ssbo_atomic_and:
6352 op32 = aco_opcode::buffer_atomic_and;
6353 op64 = aco_opcode::buffer_atomic_and_x2;
6354 break;
6355 case nir_intrinsic_ssbo_atomic_or:
6356 op32 = aco_opcode::buffer_atomic_or;
6357 op64 = aco_opcode::buffer_atomic_or_x2;
6358 break;
6359 case nir_intrinsic_ssbo_atomic_xor:
6360 op32 = aco_opcode::buffer_atomic_xor;
6361 op64 = aco_opcode::buffer_atomic_xor_x2;
6362 break;
6363 case nir_intrinsic_ssbo_atomic_exchange:
6364 op32 = aco_opcode::buffer_atomic_swap;
6365 op64 = aco_opcode::buffer_atomic_swap_x2;
6366 break;
6367 case nir_intrinsic_ssbo_atomic_comp_swap:
6368 op32 = aco_opcode::buffer_atomic_cmpswap;
6369 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6370 break;
6371 default:
6372 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6373 }
6374 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6375 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6376 mubuf->operands[0] = Operand(rsrc);
6377 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6378 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6379 mubuf->operands[3] = Operand(data);
6380 if (return_previous)
6381 mubuf->definitions[0] = Definition(dst);
6382 mubuf->offset = 0;
6383 mubuf->offen = (offset.type() == RegType::vgpr);
6384 mubuf->glc = return_previous;
6385 mubuf->dlc = false; /* Not needed for atomics */
6386 mubuf->disable_wqm = true;
6387 mubuf->barrier = barrier_buffer;
6388 ctx->program->needs_exact = true;
6389 ctx->block->instructions.emplace_back(std::move(mubuf));
6390 }
6391
6392 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6393
6394 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6395 Builder bld(ctx->program, ctx->block);
6396 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6397 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6398 }
6399
6400 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6401 {
6402 Builder bld(ctx->program, ctx->block);
6403 unsigned num_components = instr->num_components;
6404 unsigned component_size = instr->dest.ssa.bit_size / 8;
6405
6406 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6407 get_ssa_temp(ctx, &instr->dest.ssa),
6408 num_components, component_size};
6409 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6410 info.align_mul = nir_intrinsic_align_mul(instr);
6411 info.align_offset = nir_intrinsic_align_offset(instr);
6412 info.barrier = barrier_buffer;
6413 info.can_reorder = false;
6414 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6415 * it's safe to use SMEM */
6416 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6417 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6418 emit_global_load(ctx, bld, &info);
6419 } else {
6420 info.offset = Operand(bld.as_uniform(info.offset));
6421 emit_smem_load(ctx, bld, &info);
6422 }
6423 }
6424
6425 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6426 {
6427 Builder bld(ctx->program, ctx->block);
6428 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6429 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6430
6431 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6432 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6433 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6434
6435 if (ctx->options->chip_class >= GFX7)
6436 addr = as_vgpr(ctx, addr);
6437
6438 unsigned write_count = 0;
6439 Temp write_datas[32];
6440 unsigned offsets[32];
6441 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6442 16, &write_count, write_datas, offsets);
6443
6444 for (unsigned i = 0; i < write_count; i++) {
6445 if (ctx->options->chip_class >= GFX7) {
6446 unsigned offset = offsets[i];
6447 Temp store_addr = addr;
6448 if (offset > 0 && ctx->options->chip_class < GFX9) {
6449 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6450 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6451 Temp carry = bld.tmp(bld.lm);
6452 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6453
6454 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6455 Operand(offset), addr0);
6456 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6457 Operand(0u), addr1,
6458 carry).def(1).setHint(vcc);
6459
6460 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6461
6462 offset = 0;
6463 }
6464
6465 bool global = ctx->options->chip_class >= GFX9;
6466 aco_opcode op;
6467 switch (write_datas[i].bytes()) {
6468 case 1:
6469 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6470 break;
6471 case 2:
6472 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6473 break;
6474 case 4:
6475 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6476 break;
6477 case 8:
6478 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6479 break;
6480 case 12:
6481 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6482 break;
6483 case 16:
6484 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6485 break;
6486 default:
6487 unreachable("store_global not implemented for this size.");
6488 }
6489
6490 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6491 flat->operands[0] = Operand(store_addr);
6492 flat->operands[1] = Operand(s1);
6493 flat->operands[2] = Operand(write_datas[i]);
6494 flat->glc = glc;
6495 flat->dlc = false;
6496 flat->offset = offset;
6497 flat->disable_wqm = true;
6498 flat->barrier = barrier_buffer;
6499 ctx->program->needs_exact = true;
6500 ctx->block->instructions.emplace_back(std::move(flat));
6501 } else {
6502 assert(ctx->options->chip_class == GFX6);
6503
6504 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6505
6506 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6507
6508 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6509 mubuf->operands[0] = Operand(rsrc);
6510 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6511 mubuf->operands[2] = Operand(0u);
6512 mubuf->operands[3] = Operand(write_datas[i]);
6513 mubuf->glc = glc;
6514 mubuf->dlc = false;
6515 mubuf->offset = offsets[i];
6516 mubuf->addr64 = addr.type() == RegType::vgpr;
6517 mubuf->disable_wqm = true;
6518 mubuf->barrier = barrier_buffer;
6519 ctx->program->needs_exact = true;
6520 ctx->block->instructions.emplace_back(std::move(mubuf));
6521 }
6522 }
6523 }
6524
6525 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6526 {
6527 /* return the previous value if dest is ever used */
6528 bool return_previous = false;
6529 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6530 return_previous = true;
6531 break;
6532 }
6533 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6534 return_previous = true;
6535 break;
6536 }
6537
6538 Builder bld(ctx->program, ctx->block);
6539 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6540 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6541
6542 if (ctx->options->chip_class >= GFX7)
6543 addr = as_vgpr(ctx, addr);
6544
6545 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6546 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6547 get_ssa_temp(ctx, instr->src[2].ssa), data);
6548
6549 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6550
6551 aco_opcode op32, op64;
6552
6553 if (ctx->options->chip_class >= GFX7) {
6554 bool global = ctx->options->chip_class >= GFX9;
6555 switch (instr->intrinsic) {
6556 case nir_intrinsic_global_atomic_add:
6557 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6558 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6559 break;
6560 case nir_intrinsic_global_atomic_imin:
6561 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6562 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6563 break;
6564 case nir_intrinsic_global_atomic_umin:
6565 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6566 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6567 break;
6568 case nir_intrinsic_global_atomic_imax:
6569 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6570 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6571 break;
6572 case nir_intrinsic_global_atomic_umax:
6573 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6574 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6575 break;
6576 case nir_intrinsic_global_atomic_and:
6577 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6578 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6579 break;
6580 case nir_intrinsic_global_atomic_or:
6581 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6582 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6583 break;
6584 case nir_intrinsic_global_atomic_xor:
6585 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6586 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6587 break;
6588 case nir_intrinsic_global_atomic_exchange:
6589 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6590 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6591 break;
6592 case nir_intrinsic_global_atomic_comp_swap:
6593 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6594 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6595 break;
6596 default:
6597 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6598 }
6599
6600 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6601 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6602 flat->operands[0] = Operand(addr);
6603 flat->operands[1] = Operand(s1);
6604 flat->operands[2] = Operand(data);
6605 if (return_previous)
6606 flat->definitions[0] = Definition(dst);
6607 flat->glc = return_previous;
6608 flat->dlc = false; /* Not needed for atomics */
6609 flat->offset = 0;
6610 flat->disable_wqm = true;
6611 flat->barrier = barrier_buffer;
6612 ctx->program->needs_exact = true;
6613 ctx->block->instructions.emplace_back(std::move(flat));
6614 } else {
6615 assert(ctx->options->chip_class == GFX6);
6616
6617 switch (instr->intrinsic) {
6618 case nir_intrinsic_global_atomic_add:
6619 op32 = aco_opcode::buffer_atomic_add;
6620 op64 = aco_opcode::buffer_atomic_add_x2;
6621 break;
6622 case nir_intrinsic_global_atomic_imin:
6623 op32 = aco_opcode::buffer_atomic_smin;
6624 op64 = aco_opcode::buffer_atomic_smin_x2;
6625 break;
6626 case nir_intrinsic_global_atomic_umin:
6627 op32 = aco_opcode::buffer_atomic_umin;
6628 op64 = aco_opcode::buffer_atomic_umin_x2;
6629 break;
6630 case nir_intrinsic_global_atomic_imax:
6631 op32 = aco_opcode::buffer_atomic_smax;
6632 op64 = aco_opcode::buffer_atomic_smax_x2;
6633 break;
6634 case nir_intrinsic_global_atomic_umax:
6635 op32 = aco_opcode::buffer_atomic_umax;
6636 op64 = aco_opcode::buffer_atomic_umax_x2;
6637 break;
6638 case nir_intrinsic_global_atomic_and:
6639 op32 = aco_opcode::buffer_atomic_and;
6640 op64 = aco_opcode::buffer_atomic_and_x2;
6641 break;
6642 case nir_intrinsic_global_atomic_or:
6643 op32 = aco_opcode::buffer_atomic_or;
6644 op64 = aco_opcode::buffer_atomic_or_x2;
6645 break;
6646 case nir_intrinsic_global_atomic_xor:
6647 op32 = aco_opcode::buffer_atomic_xor;
6648 op64 = aco_opcode::buffer_atomic_xor_x2;
6649 break;
6650 case nir_intrinsic_global_atomic_exchange:
6651 op32 = aco_opcode::buffer_atomic_swap;
6652 op64 = aco_opcode::buffer_atomic_swap_x2;
6653 break;
6654 case nir_intrinsic_global_atomic_comp_swap:
6655 op32 = aco_opcode::buffer_atomic_cmpswap;
6656 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6657 break;
6658 default:
6659 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6660 }
6661
6662 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6663
6664 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6665
6666 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6667 mubuf->operands[0] = Operand(rsrc);
6668 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6669 mubuf->operands[2] = Operand(0u);
6670 mubuf->operands[3] = Operand(data);
6671 if (return_previous)
6672 mubuf->definitions[0] = Definition(dst);
6673 mubuf->glc = return_previous;
6674 mubuf->dlc = false;
6675 mubuf->offset = 0;
6676 mubuf->addr64 = addr.type() == RegType::vgpr;
6677 mubuf->disable_wqm = true;
6678 mubuf->barrier = barrier_buffer;
6679 ctx->program->needs_exact = true;
6680 ctx->block->instructions.emplace_back(std::move(mubuf));
6681 }
6682 }
6683
6684 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6685 Builder bld(ctx->program, ctx->block);
6686 switch(instr->intrinsic) {
6687 case nir_intrinsic_group_memory_barrier:
6688 case nir_intrinsic_memory_barrier:
6689 bld.barrier(aco_opcode::p_memory_barrier_common);
6690 break;
6691 case nir_intrinsic_memory_barrier_buffer:
6692 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6693 break;
6694 case nir_intrinsic_memory_barrier_image:
6695 bld.barrier(aco_opcode::p_memory_barrier_image);
6696 break;
6697 case nir_intrinsic_memory_barrier_tcs_patch:
6698 case nir_intrinsic_memory_barrier_shared:
6699 bld.barrier(aco_opcode::p_memory_barrier_shared);
6700 break;
6701 default:
6702 unreachable("Unimplemented memory barrier intrinsic");
6703 break;
6704 }
6705 }
6706
6707 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6708 {
6709 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6710 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6711 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6712 Builder bld(ctx->program, ctx->block);
6713
6714 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6715 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6716 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6717 }
6718
6719 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6720 {
6721 unsigned writemask = nir_intrinsic_write_mask(instr);
6722 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6723 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6724 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6725
6726 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6727 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6728 }
6729
6730 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6731 {
6732 unsigned offset = nir_intrinsic_base(instr);
6733 Builder bld(ctx->program, ctx->block);
6734 Operand m = load_lds_size_m0(bld);
6735 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6736 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6737
6738 unsigned num_operands = 3;
6739 aco_opcode op32, op64, op32_rtn, op64_rtn;
6740 switch(instr->intrinsic) {
6741 case nir_intrinsic_shared_atomic_add:
6742 op32 = aco_opcode::ds_add_u32;
6743 op64 = aco_opcode::ds_add_u64;
6744 op32_rtn = aco_opcode::ds_add_rtn_u32;
6745 op64_rtn = aco_opcode::ds_add_rtn_u64;
6746 break;
6747 case nir_intrinsic_shared_atomic_imin:
6748 op32 = aco_opcode::ds_min_i32;
6749 op64 = aco_opcode::ds_min_i64;
6750 op32_rtn = aco_opcode::ds_min_rtn_i32;
6751 op64_rtn = aco_opcode::ds_min_rtn_i64;
6752 break;
6753 case nir_intrinsic_shared_atomic_umin:
6754 op32 = aco_opcode::ds_min_u32;
6755 op64 = aco_opcode::ds_min_u64;
6756 op32_rtn = aco_opcode::ds_min_rtn_u32;
6757 op64_rtn = aco_opcode::ds_min_rtn_u64;
6758 break;
6759 case nir_intrinsic_shared_atomic_imax:
6760 op32 = aco_opcode::ds_max_i32;
6761 op64 = aco_opcode::ds_max_i64;
6762 op32_rtn = aco_opcode::ds_max_rtn_i32;
6763 op64_rtn = aco_opcode::ds_max_rtn_i64;
6764 break;
6765 case nir_intrinsic_shared_atomic_umax:
6766 op32 = aco_opcode::ds_max_u32;
6767 op64 = aco_opcode::ds_max_u64;
6768 op32_rtn = aco_opcode::ds_max_rtn_u32;
6769 op64_rtn = aco_opcode::ds_max_rtn_u64;
6770 break;
6771 case nir_intrinsic_shared_atomic_and:
6772 op32 = aco_opcode::ds_and_b32;
6773 op64 = aco_opcode::ds_and_b64;
6774 op32_rtn = aco_opcode::ds_and_rtn_b32;
6775 op64_rtn = aco_opcode::ds_and_rtn_b64;
6776 break;
6777 case nir_intrinsic_shared_atomic_or:
6778 op32 = aco_opcode::ds_or_b32;
6779 op64 = aco_opcode::ds_or_b64;
6780 op32_rtn = aco_opcode::ds_or_rtn_b32;
6781 op64_rtn = aco_opcode::ds_or_rtn_b64;
6782 break;
6783 case nir_intrinsic_shared_atomic_xor:
6784 op32 = aco_opcode::ds_xor_b32;
6785 op64 = aco_opcode::ds_xor_b64;
6786 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6787 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6788 break;
6789 case nir_intrinsic_shared_atomic_exchange:
6790 op32 = aco_opcode::ds_write_b32;
6791 op64 = aco_opcode::ds_write_b64;
6792 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6793 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6794 break;
6795 case nir_intrinsic_shared_atomic_comp_swap:
6796 op32 = aco_opcode::ds_cmpst_b32;
6797 op64 = aco_opcode::ds_cmpst_b64;
6798 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6799 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6800 num_operands = 4;
6801 break;
6802 case nir_intrinsic_shared_atomic_fadd:
6803 op32 = aco_opcode::ds_add_f32;
6804 op32_rtn = aco_opcode::ds_add_rtn_f32;
6805 op64 = aco_opcode::num_opcodes;
6806 op64_rtn = aco_opcode::num_opcodes;
6807 break;
6808 default:
6809 unreachable("Unhandled shared atomic intrinsic");
6810 }
6811
6812 /* return the previous value if dest is ever used */
6813 bool return_previous = false;
6814 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6815 return_previous = true;
6816 break;
6817 }
6818 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6819 return_previous = true;
6820 break;
6821 }
6822
6823 aco_opcode op;
6824 if (data.size() == 1) {
6825 assert(instr->dest.ssa.bit_size == 32);
6826 op = return_previous ? op32_rtn : op32;
6827 } else {
6828 assert(instr->dest.ssa.bit_size == 64);
6829 op = return_previous ? op64_rtn : op64;
6830 }
6831
6832 if (offset > 65535) {
6833 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6834 offset = 0;
6835 }
6836
6837 aco_ptr<DS_instruction> ds;
6838 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6839 ds->operands[0] = Operand(address);
6840 ds->operands[1] = Operand(data);
6841 if (num_operands == 4)
6842 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6843 ds->operands[num_operands - 1] = m;
6844 ds->offset0 = offset;
6845 if (return_previous)
6846 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6847 ctx->block->instructions.emplace_back(std::move(ds));
6848 }
6849
6850 Temp get_scratch_resource(isel_context *ctx)
6851 {
6852 Builder bld(ctx->program, ctx->block);
6853 Temp scratch_addr = ctx->program->private_segment_buffer;
6854 if (ctx->stage != compute_cs)
6855 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6856
6857 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6858 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
6859
6860 if (ctx->program->chip_class >= GFX10) {
6861 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6862 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6863 S_008F0C_RESOURCE_LEVEL(1);
6864 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6865 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6866 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6867 }
6868
6869 /* older generations need element size = 4 bytes. element size removed in GFX9 */
6870 if (ctx->program->chip_class <= GFX8)
6871 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
6872
6873 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6874 }
6875
6876 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6877 Builder bld(ctx->program, ctx->block);
6878 Temp rsrc = get_scratch_resource(ctx);
6879 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6880 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6881
6882 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6883 instr->dest.ssa.bit_size / 8u, rsrc};
6884 info.align_mul = nir_intrinsic_align_mul(instr);
6885 info.align_offset = nir_intrinsic_align_offset(instr);
6886 info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0;
6887 info.can_reorder = false;
6888 info.soffset = ctx->program->scratch_offset;
6889 emit_scratch_load(ctx, bld, &info);
6890 }
6891
6892 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6893 Builder bld(ctx->program, ctx->block);
6894 Temp rsrc = get_scratch_resource(ctx);
6895 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6896 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6897
6898 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6899 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6900
6901 unsigned write_count = 0;
6902 Temp write_datas[32];
6903 unsigned offsets[32];
6904 unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16;
6905 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6906 swizzle_component_size, &write_count, write_datas, offsets);
6907
6908 for (unsigned i = 0; i < write_count; i++) {
6909 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6910 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true);
6911 }
6912 }
6913
6914 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6915 uint8_t log2_ps_iter_samples;
6916 if (ctx->program->info->ps.force_persample) {
6917 log2_ps_iter_samples =
6918 util_logbase2(ctx->options->key.fs.num_samples);
6919 } else {
6920 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6921 }
6922
6923 /* The bit pattern matches that used by fixed function fragment
6924 * processing. */
6925 static const unsigned ps_iter_masks[] = {
6926 0xffff, /* not used */
6927 0x5555,
6928 0x1111,
6929 0x0101,
6930 0x0001,
6931 };
6932 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6933
6934 Builder bld(ctx->program, ctx->block);
6935
6936 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6937 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6938 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6939 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6940 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6941 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6942 }
6943
6944 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6945 Builder bld(ctx->program, ctx->block);
6946
6947 unsigned stream = nir_intrinsic_stream_id(instr);
6948 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6949 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6950 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6951
6952 /* get GSVS ring */
6953 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6954
6955 unsigned num_components =
6956 ctx->program->info->gs.num_stream_output_components[stream];
6957 assert(num_components);
6958
6959 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6960 unsigned stream_offset = 0;
6961 for (unsigned i = 0; i < stream; i++) {
6962 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6963 stream_offset += prev_stride * ctx->program->wave_size;
6964 }
6965
6966 /* Limit on the stride field for <= GFX7. */
6967 assert(stride < (1 << 14));
6968
6969 Temp gsvs_dwords[4];
6970 for (unsigned i = 0; i < 4; i++)
6971 gsvs_dwords[i] = bld.tmp(s1);
6972 bld.pseudo(aco_opcode::p_split_vector,
6973 Definition(gsvs_dwords[0]),
6974 Definition(gsvs_dwords[1]),
6975 Definition(gsvs_dwords[2]),
6976 Definition(gsvs_dwords[3]),
6977 gsvs_ring);
6978
6979 if (stream_offset) {
6980 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6981
6982 Temp carry = bld.tmp(s1);
6983 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6984 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6985 }
6986
6987 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6988 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6989
6990 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6991 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6992
6993 unsigned offset = 0;
6994 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6995 if (ctx->program->info->gs.output_streams[i] != stream)
6996 continue;
6997
6998 for (unsigned j = 0; j < 4; j++) {
6999 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
7000 continue;
7001
7002 if (ctx->outputs.mask[i] & (1 << j)) {
7003 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
7004 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
7005 if (const_offset >= 4096u) {
7006 if (vaddr_offset.isUndefined())
7007 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
7008 else
7009 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
7010 const_offset %= 4096u;
7011 }
7012
7013 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
7014 mtbuf->operands[0] = Operand(gsvs_ring);
7015 mtbuf->operands[1] = vaddr_offset;
7016 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
7017 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
7018 mtbuf->offen = !vaddr_offset.isUndefined();
7019 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
7020 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
7021 mtbuf->offset = const_offset;
7022 mtbuf->glc = true;
7023 mtbuf->slc = true;
7024 mtbuf->barrier = barrier_gs_data;
7025 mtbuf->can_reorder = true;
7026 bld.insert(std::move(mtbuf));
7027 }
7028
7029 offset += ctx->shader->info.gs.vertices_out;
7030 }
7031
7032 /* outputs for the next vertex are undefined and keeping them around can
7033 * create invalid IR with control flow */
7034 ctx->outputs.mask[i] = 0;
7035 }
7036
7037 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
7038 }
7039
7040 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
7041 {
7042 Builder bld(ctx->program, ctx->block);
7043
7044 if (cluster_size == 1) {
7045 return src;
7046 } if (op == nir_op_iand && cluster_size == 4) {
7047 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7048 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7049 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7050 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7051 } else if (op == nir_op_ior && cluster_size == 4) {
7052 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7053 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7054 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7055 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7056 //subgroupAnd(val) -> (exec & ~val) == 0
7057 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7058 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7059 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7060 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7061 //subgroupOr(val) -> (val & exec) != 0
7062 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7063 return bool_to_vector_condition(ctx, tmp);
7064 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7065 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7066 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7067 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7068 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7069 return bool_to_vector_condition(ctx, tmp);
7070 } else {
7071 //subgroupClustered{And,Or,Xor}(val, n) ->
7072 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7073 //cluster_offset = ~(n - 1) & lane_id
7074 //cluster_mask = ((1 << n) - 1)
7075 //subgroupClusteredAnd():
7076 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7077 //subgroupClusteredOr():
7078 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7079 //subgroupClusteredXor():
7080 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7081 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7082 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7083
7084 Temp tmp;
7085 if (op == nir_op_iand)
7086 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7087 else
7088 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7089
7090 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7091
7092 if (ctx->program->chip_class <= GFX7)
7093 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7094 else if (ctx->program->wave_size == 64)
7095 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7096 else
7097 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7098 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7099 if (cluster_mask != 0xffffffff)
7100 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7101
7102 Definition cmp_def = Definition();
7103 if (op == nir_op_iand) {
7104 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7105 } else if (op == nir_op_ior) {
7106 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7107 } else if (op == nir_op_ixor) {
7108 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7109 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7110 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7111 }
7112 cmp_def.setHint(vcc);
7113 return cmp_def.getTemp();
7114 }
7115 }
7116
7117 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7118 {
7119 Builder bld(ctx->program, ctx->block);
7120
7121 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7122 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7123 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7124 Temp tmp;
7125 if (op == nir_op_iand)
7126 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7127 else
7128 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7129
7130 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7131 Temp lo = lohi.def(0).getTemp();
7132 Temp hi = lohi.def(1).getTemp();
7133 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7134
7135 Definition cmp_def = Definition();
7136 if (op == nir_op_iand)
7137 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7138 else if (op == nir_op_ior)
7139 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7140 else if (op == nir_op_ixor)
7141 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7142 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7143 cmp_def.setHint(vcc);
7144 return cmp_def.getTemp();
7145 }
7146
7147 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7148 {
7149 Builder bld(ctx->program, ctx->block);
7150
7151 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7152 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7153 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7154 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7155 if (op == nir_op_iand)
7156 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7157 else if (op == nir_op_ior)
7158 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7159 else if (op == nir_op_ixor)
7160 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7161
7162 assert(false);
7163 return Temp();
7164 }
7165
7166 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7167 {
7168 Builder bld(ctx->program, ctx->block);
7169 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7170 if (src.regClass().type() == RegType::vgpr) {
7171 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7172 } else if (src.regClass() == s1) {
7173 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7174 } else if (src.regClass() == s2) {
7175 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7176 } else {
7177 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7178 nir_print_instr(&instr->instr, stderr);
7179 fprintf(stderr, "\n");
7180 }
7181 }
7182
7183 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7184 {
7185 Builder bld(ctx->program, ctx->block);
7186 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7187 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7188 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7189
7190 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7191 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7192 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7193 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7194
7195 /* Build DD X/Y */
7196 if (ctx->program->chip_class >= GFX8) {
7197 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7198 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7199 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7200 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7201 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7202 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7203 } else {
7204 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7205 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7206 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7207 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7208 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7209 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7210 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7211 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7212 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7213 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7214 }
7215
7216 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7217 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7218 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7219 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7220 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7221 Temp wqm1 = bld.tmp(v1);
7222 emit_wqm(ctx, tmp1, wqm1, true);
7223 Temp wqm2 = bld.tmp(v1);
7224 emit_wqm(ctx, tmp2, wqm2, true);
7225 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7226 return;
7227 }
7228
7229 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7230 {
7231 Builder bld(ctx->program, ctx->block);
7232 switch(instr->intrinsic) {
7233 case nir_intrinsic_load_barycentric_sample:
7234 case nir_intrinsic_load_barycentric_pixel:
7235 case nir_intrinsic_load_barycentric_centroid: {
7236 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7237 Temp bary = Temp(0, s2);
7238 switch (mode) {
7239 case INTERP_MODE_SMOOTH:
7240 case INTERP_MODE_NONE:
7241 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7242 bary = get_arg(ctx, ctx->args->ac.persp_center);
7243 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7244 bary = ctx->persp_centroid;
7245 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7246 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7247 break;
7248 case INTERP_MODE_NOPERSPECTIVE:
7249 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7250 bary = get_arg(ctx, ctx->args->ac.linear_center);
7251 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7252 bary = ctx->linear_centroid;
7253 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7254 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7255 break;
7256 default:
7257 break;
7258 }
7259 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7260 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7261 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7262 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7263 Operand(p1), Operand(p2));
7264 emit_split_vector(ctx, dst, 2);
7265 break;
7266 }
7267 case nir_intrinsic_load_barycentric_model: {
7268 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7269
7270 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7271 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7272 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7273 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7274 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7275 Operand(p1), Operand(p2), Operand(p3));
7276 emit_split_vector(ctx, dst, 3);
7277 break;
7278 }
7279 case nir_intrinsic_load_barycentric_at_sample: {
7280 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7281 switch (ctx->options->key.fs.num_samples) {
7282 case 2: sample_pos_offset += 1 << 3; break;
7283 case 4: sample_pos_offset += 3 << 3; break;
7284 case 8: sample_pos_offset += 7 << 3; break;
7285 default: break;
7286 }
7287 Temp sample_pos;
7288 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7289 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7290 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7291 //TODO: bounds checking?
7292 if (addr.type() == RegType::sgpr) {
7293 Operand offset;
7294 if (const_addr) {
7295 sample_pos_offset += const_addr->u32 << 3;
7296 offset = Operand(sample_pos_offset);
7297 } else if (ctx->options->chip_class >= GFX9) {
7298 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7299 } else {
7300 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7301 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7302 }
7303
7304 Operand off = bld.copy(bld.def(s1), Operand(offset));
7305 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7306
7307 } else if (ctx->options->chip_class >= GFX9) {
7308 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7309 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7310 } else if (ctx->options->chip_class >= GFX7) {
7311 /* addr += private_segment_buffer + sample_pos_offset */
7312 Temp tmp0 = bld.tmp(s1);
7313 Temp tmp1 = bld.tmp(s1);
7314 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7315 Definition scc_tmp = bld.def(s1, scc);
7316 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7317 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7318 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7319 Temp pck0 = bld.tmp(v1);
7320 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7321 tmp1 = as_vgpr(ctx, tmp1);
7322 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7323 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7324
7325 /* sample_pos = flat_load_dwordx2 addr */
7326 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7327 } else {
7328 assert(ctx->options->chip_class == GFX6);
7329
7330 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7331 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7332 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7333
7334 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7335 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7336
7337 sample_pos = bld.tmp(v2);
7338
7339 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7340 load->definitions[0] = Definition(sample_pos);
7341 load->operands[0] = Operand(rsrc);
7342 load->operands[1] = Operand(addr);
7343 load->operands[2] = Operand(0u);
7344 load->offset = sample_pos_offset;
7345 load->offen = 0;
7346 load->addr64 = true;
7347 load->glc = false;
7348 load->dlc = false;
7349 load->disable_wqm = false;
7350 load->barrier = barrier_none;
7351 load->can_reorder = true;
7352 ctx->block->instructions.emplace_back(std::move(load));
7353 }
7354
7355 /* sample_pos -= 0.5 */
7356 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7357 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7358 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7359 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7360 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7361
7362 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7363 break;
7364 }
7365 case nir_intrinsic_load_barycentric_at_offset: {
7366 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7367 RegClass rc = RegClass(offset.type(), 1);
7368 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7369 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7370 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7371 break;
7372 }
7373 case nir_intrinsic_load_front_face: {
7374 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7375 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7376 break;
7377 }
7378 case nir_intrinsic_load_view_index: {
7379 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7380 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7381 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7382 break;
7383 }
7384
7385 /* fallthrough */
7386 }
7387 case nir_intrinsic_load_layer_id: {
7388 unsigned idx = nir_intrinsic_base(instr);
7389 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7390 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7391 break;
7392 }
7393 case nir_intrinsic_load_frag_coord: {
7394 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7395 break;
7396 }
7397 case nir_intrinsic_load_sample_pos: {
7398 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7399 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7400 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7401 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7402 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7403 break;
7404 }
7405 case nir_intrinsic_load_tess_coord:
7406 visit_load_tess_coord(ctx, instr);
7407 break;
7408 case nir_intrinsic_load_interpolated_input:
7409 visit_load_interpolated_input(ctx, instr);
7410 break;
7411 case nir_intrinsic_store_output:
7412 visit_store_output(ctx, instr);
7413 break;
7414 case nir_intrinsic_load_input:
7415 case nir_intrinsic_load_input_vertex:
7416 visit_load_input(ctx, instr);
7417 break;
7418 case nir_intrinsic_load_output:
7419 visit_load_output(ctx, instr);
7420 break;
7421 case nir_intrinsic_load_per_vertex_input:
7422 visit_load_per_vertex_input(ctx, instr);
7423 break;
7424 case nir_intrinsic_load_per_vertex_output:
7425 visit_load_per_vertex_output(ctx, instr);
7426 break;
7427 case nir_intrinsic_store_per_vertex_output:
7428 visit_store_per_vertex_output(ctx, instr);
7429 break;
7430 case nir_intrinsic_load_ubo:
7431 visit_load_ubo(ctx, instr);
7432 break;
7433 case nir_intrinsic_load_push_constant:
7434 visit_load_push_constant(ctx, instr);
7435 break;
7436 case nir_intrinsic_load_constant:
7437 visit_load_constant(ctx, instr);
7438 break;
7439 case nir_intrinsic_vulkan_resource_index:
7440 visit_load_resource(ctx, instr);
7441 break;
7442 case nir_intrinsic_discard:
7443 visit_discard(ctx, instr);
7444 break;
7445 case nir_intrinsic_discard_if:
7446 visit_discard_if(ctx, instr);
7447 break;
7448 case nir_intrinsic_load_shared:
7449 visit_load_shared(ctx, instr);
7450 break;
7451 case nir_intrinsic_store_shared:
7452 visit_store_shared(ctx, instr);
7453 break;
7454 case nir_intrinsic_shared_atomic_add:
7455 case nir_intrinsic_shared_atomic_imin:
7456 case nir_intrinsic_shared_atomic_umin:
7457 case nir_intrinsic_shared_atomic_imax:
7458 case nir_intrinsic_shared_atomic_umax:
7459 case nir_intrinsic_shared_atomic_and:
7460 case nir_intrinsic_shared_atomic_or:
7461 case nir_intrinsic_shared_atomic_xor:
7462 case nir_intrinsic_shared_atomic_exchange:
7463 case nir_intrinsic_shared_atomic_comp_swap:
7464 case nir_intrinsic_shared_atomic_fadd:
7465 visit_shared_atomic(ctx, instr);
7466 break;
7467 case nir_intrinsic_image_deref_load:
7468 visit_image_load(ctx, instr);
7469 break;
7470 case nir_intrinsic_image_deref_store:
7471 visit_image_store(ctx, instr);
7472 break;
7473 case nir_intrinsic_image_deref_atomic_add:
7474 case nir_intrinsic_image_deref_atomic_umin:
7475 case nir_intrinsic_image_deref_atomic_imin:
7476 case nir_intrinsic_image_deref_atomic_umax:
7477 case nir_intrinsic_image_deref_atomic_imax:
7478 case nir_intrinsic_image_deref_atomic_and:
7479 case nir_intrinsic_image_deref_atomic_or:
7480 case nir_intrinsic_image_deref_atomic_xor:
7481 case nir_intrinsic_image_deref_atomic_exchange:
7482 case nir_intrinsic_image_deref_atomic_comp_swap:
7483 visit_image_atomic(ctx, instr);
7484 break;
7485 case nir_intrinsic_image_deref_size:
7486 visit_image_size(ctx, instr);
7487 break;
7488 case nir_intrinsic_load_ssbo:
7489 visit_load_ssbo(ctx, instr);
7490 break;
7491 case nir_intrinsic_store_ssbo:
7492 visit_store_ssbo(ctx, instr);
7493 break;
7494 case nir_intrinsic_load_global:
7495 visit_load_global(ctx, instr);
7496 break;
7497 case nir_intrinsic_store_global:
7498 visit_store_global(ctx, instr);
7499 break;
7500 case nir_intrinsic_global_atomic_add:
7501 case nir_intrinsic_global_atomic_imin:
7502 case nir_intrinsic_global_atomic_umin:
7503 case nir_intrinsic_global_atomic_imax:
7504 case nir_intrinsic_global_atomic_umax:
7505 case nir_intrinsic_global_atomic_and:
7506 case nir_intrinsic_global_atomic_or:
7507 case nir_intrinsic_global_atomic_xor:
7508 case nir_intrinsic_global_atomic_exchange:
7509 case nir_intrinsic_global_atomic_comp_swap:
7510 visit_global_atomic(ctx, instr);
7511 break;
7512 case nir_intrinsic_ssbo_atomic_add:
7513 case nir_intrinsic_ssbo_atomic_imin:
7514 case nir_intrinsic_ssbo_atomic_umin:
7515 case nir_intrinsic_ssbo_atomic_imax:
7516 case nir_intrinsic_ssbo_atomic_umax:
7517 case nir_intrinsic_ssbo_atomic_and:
7518 case nir_intrinsic_ssbo_atomic_or:
7519 case nir_intrinsic_ssbo_atomic_xor:
7520 case nir_intrinsic_ssbo_atomic_exchange:
7521 case nir_intrinsic_ssbo_atomic_comp_swap:
7522 visit_atomic_ssbo(ctx, instr);
7523 break;
7524 case nir_intrinsic_load_scratch:
7525 visit_load_scratch(ctx, instr);
7526 break;
7527 case nir_intrinsic_store_scratch:
7528 visit_store_scratch(ctx, instr);
7529 break;
7530 case nir_intrinsic_get_buffer_size:
7531 visit_get_buffer_size(ctx, instr);
7532 break;
7533 case nir_intrinsic_control_barrier: {
7534 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7535 /* GFX6 only (thanks to a hw bug workaround):
7536 * The real barrier instruction isn’t needed, because an entire patch
7537 * always fits into a single wave.
7538 */
7539 break;
7540 }
7541
7542 if (ctx->program->workgroup_size > ctx->program->wave_size)
7543 bld.sopp(aco_opcode::s_barrier);
7544
7545 break;
7546 }
7547 case nir_intrinsic_memory_barrier_tcs_patch:
7548 case nir_intrinsic_group_memory_barrier:
7549 case nir_intrinsic_memory_barrier:
7550 case nir_intrinsic_memory_barrier_buffer:
7551 case nir_intrinsic_memory_barrier_image:
7552 case nir_intrinsic_memory_barrier_shared:
7553 emit_memory_barrier(ctx, instr);
7554 break;
7555 case nir_intrinsic_load_num_work_groups: {
7556 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7557 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7558 emit_split_vector(ctx, dst, 3);
7559 break;
7560 }
7561 case nir_intrinsic_load_local_invocation_id: {
7562 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7563 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7564 emit_split_vector(ctx, dst, 3);
7565 break;
7566 }
7567 case nir_intrinsic_load_work_group_id: {
7568 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7569 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7570 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7571 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7572 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7573 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7574 emit_split_vector(ctx, dst, 3);
7575 break;
7576 }
7577 case nir_intrinsic_load_local_invocation_index: {
7578 Temp id = emit_mbcnt(ctx, bld.def(v1));
7579
7580 /* The tg_size bits [6:11] contain the subgroup id,
7581 * we need this multiplied by the wave size, and then OR the thread id to it.
7582 */
7583 if (ctx->program->wave_size == 64) {
7584 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7585 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7586 get_arg(ctx, ctx->args->ac.tg_size));
7587 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7588 } else {
7589 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7590 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7591 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7592 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7593 }
7594 break;
7595 }
7596 case nir_intrinsic_load_subgroup_id: {
7597 if (ctx->stage == compute_cs) {
7598 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7599 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7600 } else {
7601 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7602 }
7603 break;
7604 }
7605 case nir_intrinsic_load_subgroup_invocation: {
7606 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7607 break;
7608 }
7609 case nir_intrinsic_load_num_subgroups: {
7610 if (ctx->stage == compute_cs)
7611 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7612 get_arg(ctx, ctx->args->ac.tg_size));
7613 else
7614 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7615 break;
7616 }
7617 case nir_intrinsic_ballot: {
7618 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7619 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7620 Definition tmp = bld.def(dst.regClass());
7621 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7622 if (instr->src[0].ssa->bit_size == 1) {
7623 assert(src.regClass() == bld.lm);
7624 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7625 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7626 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7627 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7628 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7629 } else {
7630 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7631 nir_print_instr(&instr->instr, stderr);
7632 fprintf(stderr, "\n");
7633 }
7634 if (dst.size() != bld.lm.size()) {
7635 /* Wave32 with ballot size set to 64 */
7636 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7637 }
7638 emit_wqm(ctx, tmp.getTemp(), dst);
7639 break;
7640 }
7641 case nir_intrinsic_shuffle:
7642 case nir_intrinsic_read_invocation: {
7643 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7644 if (!nir_src_is_divergent(instr->src[0])) {
7645 emit_uniform_subgroup(ctx, instr, src);
7646 } else {
7647 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7648 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7649 tid = bld.as_uniform(tid);
7650 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7651 if (src.regClass() == v1b || src.regClass() == v2b) {
7652 Temp tmp = bld.tmp(v1);
7653 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7654 if (dst.type() == RegType::vgpr)
7655 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7656 else
7657 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7658 } else if (src.regClass() == v1) {
7659 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7660 } else if (src.regClass() == v2) {
7661 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7662 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7663 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7664 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7665 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7666 emit_split_vector(ctx, dst, 2);
7667 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7668 assert(src.regClass() == bld.lm);
7669 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7670 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7671 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7672 assert(src.regClass() == bld.lm);
7673 Temp tmp;
7674 if (ctx->program->chip_class <= GFX7)
7675 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7676 else if (ctx->program->wave_size == 64)
7677 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7678 else
7679 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7680 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7681 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7682 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7683 } else {
7684 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7685 nir_print_instr(&instr->instr, stderr);
7686 fprintf(stderr, "\n");
7687 }
7688 }
7689 break;
7690 }
7691 case nir_intrinsic_load_sample_id: {
7692 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7693 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7694 break;
7695 }
7696 case nir_intrinsic_load_sample_mask_in: {
7697 visit_load_sample_mask_in(ctx, instr);
7698 break;
7699 }
7700 case nir_intrinsic_read_first_invocation: {
7701 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7702 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7703 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7704 emit_wqm(ctx,
7705 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7706 dst);
7707 } else if (src.regClass() == v2) {
7708 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7709 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7710 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7711 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7712 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7713 emit_split_vector(ctx, dst, 2);
7714 } else if (instr->dest.ssa.bit_size == 1) {
7715 assert(src.regClass() == bld.lm);
7716 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7717 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7718 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7719 } else if (src.regClass() == s1) {
7720 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7721 } else if (src.regClass() == s2) {
7722 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7723 } else {
7724 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7725 nir_print_instr(&instr->instr, stderr);
7726 fprintf(stderr, "\n");
7727 }
7728 break;
7729 }
7730 case nir_intrinsic_vote_all: {
7731 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7732 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7733 assert(src.regClass() == bld.lm);
7734 assert(dst.regClass() == bld.lm);
7735
7736 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7737 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7738 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7739 break;
7740 }
7741 case nir_intrinsic_vote_any: {
7742 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7743 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7744 assert(src.regClass() == bld.lm);
7745 assert(dst.regClass() == bld.lm);
7746
7747 Temp tmp = bool_to_scalar_condition(ctx, src);
7748 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7749 break;
7750 }
7751 case nir_intrinsic_reduce:
7752 case nir_intrinsic_inclusive_scan:
7753 case nir_intrinsic_exclusive_scan: {
7754 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7755 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7756 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7757 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7758 nir_intrinsic_cluster_size(instr) : 0;
7759 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7760
7761 if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
7762 emit_uniform_subgroup(ctx, instr, src);
7763 } else if (instr->dest.ssa.bit_size == 1) {
7764 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7765 op = nir_op_iand;
7766 else if (op == nir_op_iadd)
7767 op = nir_op_ixor;
7768 else if (op == nir_op_umax || op == nir_op_imax)
7769 op = nir_op_ior;
7770 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7771
7772 switch (instr->intrinsic) {
7773 case nir_intrinsic_reduce:
7774 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7775 break;
7776 case nir_intrinsic_exclusive_scan:
7777 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7778 break;
7779 case nir_intrinsic_inclusive_scan:
7780 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7781 break;
7782 default:
7783 assert(false);
7784 }
7785 } else if (cluster_size == 1) {
7786 bld.copy(Definition(dst), src);
7787 } else {
7788 unsigned bit_size = instr->src[0].ssa->bit_size;
7789
7790 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
7791
7792 ReduceOp reduce_op;
7793 switch (op) {
7794 #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
7795 #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
7796 CASEI(iadd)
7797 CASEI(imul)
7798 CASEI(imin)
7799 CASEI(umin)
7800 CASEI(imax)
7801 CASEI(umax)
7802 CASEI(iand)
7803 CASEI(ior)
7804 CASEI(ixor)
7805 CASEF(fadd)
7806 CASEF(fmul)
7807 CASEF(fmin)
7808 CASEF(fmax)
7809 default:
7810 unreachable("unknown reduction op");
7811 #undef CASEI
7812 #undef CASEF
7813 }
7814
7815 aco_opcode aco_op;
7816 switch (instr->intrinsic) {
7817 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7818 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7819 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7820 default:
7821 unreachable("unknown reduce intrinsic");
7822 }
7823
7824 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7825 reduce->operands[0] = Operand(src);
7826 // filled in by aco_reduce_assign.cpp, used internally as part of the
7827 // reduce sequence
7828 assert(dst.size() == 1 || dst.size() == 2);
7829 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7830 reduce->operands[2] = Operand(v1.as_linear());
7831
7832 Temp tmp_dst = bld.tmp(dst.regClass());
7833 reduce->definitions[0] = Definition(tmp_dst);
7834 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7835 reduce->definitions[2] = Definition();
7836 reduce->definitions[3] = Definition(scc, s1);
7837 reduce->definitions[4] = Definition();
7838 reduce->reduce_op = reduce_op;
7839 reduce->cluster_size = cluster_size;
7840 ctx->block->instructions.emplace_back(std::move(reduce));
7841
7842 emit_wqm(ctx, tmp_dst, dst);
7843 }
7844 break;
7845 }
7846 case nir_intrinsic_quad_broadcast: {
7847 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7848 if (!nir_dest_is_divergent(instr->dest)) {
7849 emit_uniform_subgroup(ctx, instr, src);
7850 } else {
7851 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7852 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7853 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7854
7855 if (instr->dest.ssa.bit_size == 1) {
7856 assert(src.regClass() == bld.lm);
7857 assert(dst.regClass() == bld.lm);
7858 uint32_t half_mask = 0x11111111u << lane;
7859 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7860 Temp tmp = bld.tmp(bld.lm);
7861 bld.sop1(Builder::s_wqm, Definition(tmp),
7862 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7863 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7864 emit_wqm(ctx, tmp, dst);
7865 } else if (instr->dest.ssa.bit_size == 8) {
7866 Temp tmp = bld.tmp(v1);
7867 if (ctx->program->chip_class >= GFX8)
7868 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7869 else
7870 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7871 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7872 } else if (instr->dest.ssa.bit_size == 16) {
7873 Temp tmp = bld.tmp(v1);
7874 if (ctx->program->chip_class >= GFX8)
7875 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7876 else
7877 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7878 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7879 } else if (instr->dest.ssa.bit_size == 32) {
7880 if (ctx->program->chip_class >= GFX8)
7881 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7882 else
7883 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7884 } else if (instr->dest.ssa.bit_size == 64) {
7885 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7886 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7887 if (ctx->program->chip_class >= GFX8) {
7888 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7889 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7890 } else {
7891 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7892 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7893 }
7894 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7895 emit_split_vector(ctx, dst, 2);
7896 } else {
7897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7898 nir_print_instr(&instr->instr, stderr);
7899 fprintf(stderr, "\n");
7900 }
7901 }
7902 break;
7903 }
7904 case nir_intrinsic_quad_swap_horizontal:
7905 case nir_intrinsic_quad_swap_vertical:
7906 case nir_intrinsic_quad_swap_diagonal:
7907 case nir_intrinsic_quad_swizzle_amd: {
7908 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7909 if (!nir_dest_is_divergent(instr->dest)) {
7910 emit_uniform_subgroup(ctx, instr, src);
7911 break;
7912 }
7913 uint16_t dpp_ctrl = 0;
7914 switch (instr->intrinsic) {
7915 case nir_intrinsic_quad_swap_horizontal:
7916 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7917 break;
7918 case nir_intrinsic_quad_swap_vertical:
7919 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7920 break;
7921 case nir_intrinsic_quad_swap_diagonal:
7922 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7923 break;
7924 case nir_intrinsic_quad_swizzle_amd:
7925 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7926 break;
7927 default:
7928 break;
7929 }
7930 if (ctx->program->chip_class < GFX8)
7931 dpp_ctrl |= (1 << 15);
7932
7933 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7934 if (instr->dest.ssa.bit_size == 1) {
7935 assert(src.regClass() == bld.lm);
7936 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7937 if (ctx->program->chip_class >= GFX8)
7938 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7939 else
7940 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7941 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7942 emit_wqm(ctx, tmp, dst);
7943 } else if (instr->dest.ssa.bit_size == 8) {
7944 Temp tmp = bld.tmp(v1);
7945 if (ctx->program->chip_class >= GFX8)
7946 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7947 else
7948 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7949 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7950 } else if (instr->dest.ssa.bit_size == 16) {
7951 Temp tmp = bld.tmp(v1);
7952 if (ctx->program->chip_class >= GFX8)
7953 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7954 else
7955 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7956 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7957 } else if (instr->dest.ssa.bit_size == 32) {
7958 Temp tmp;
7959 if (ctx->program->chip_class >= GFX8)
7960 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7961 else
7962 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7963 emit_wqm(ctx, tmp, dst);
7964 } else if (instr->dest.ssa.bit_size == 64) {
7965 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7966 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7967 if (ctx->program->chip_class >= GFX8) {
7968 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7969 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7970 } else {
7971 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7972 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7973 }
7974 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7975 emit_split_vector(ctx, dst, 2);
7976 } else {
7977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7978 nir_print_instr(&instr->instr, stderr);
7979 fprintf(stderr, "\n");
7980 }
7981 break;
7982 }
7983 case nir_intrinsic_masked_swizzle_amd: {
7984 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7985 if (!nir_dest_is_divergent(instr->dest)) {
7986 emit_uniform_subgroup(ctx, instr, src);
7987 break;
7988 }
7989 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7990 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7991 if (instr->dest.ssa.bit_size == 1) {
7992 assert(src.regClass() == bld.lm);
7993 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7994 src = emit_masked_swizzle(ctx, bld, src, mask);
7995 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7996 emit_wqm(ctx, tmp, dst);
7997 } else if (dst.regClass() == v1b) {
7998 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
7999 emit_extract_vector(ctx, tmp, 0, dst);
8000 } else if (dst.regClass() == v2b) {
8001 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
8002 emit_extract_vector(ctx, tmp, 0, dst);
8003 } else if (dst.regClass() == v1) {
8004 emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
8005 } else if (dst.regClass() == v2) {
8006 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8007 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8008 lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
8009 hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
8010 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8011 emit_split_vector(ctx, dst, 2);
8012 } else {
8013 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8014 nir_print_instr(&instr->instr, stderr);
8015 fprintf(stderr, "\n");
8016 }
8017 break;
8018 }
8019 case nir_intrinsic_write_invocation_amd: {
8020 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
8021 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
8022 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
8023 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8024 if (dst.regClass() == v1) {
8025 /* src2 is ignored for writelane. RA assigns the same reg for dst */
8026 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
8027 } else if (dst.regClass() == v2) {
8028 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
8029 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
8030 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
8031 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
8032 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
8033 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
8034 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8035 emit_split_vector(ctx, dst, 2);
8036 } else {
8037 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8038 nir_print_instr(&instr->instr, stderr);
8039 fprintf(stderr, "\n");
8040 }
8041 break;
8042 }
8043 case nir_intrinsic_mbcnt_amd: {
8044 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8045 RegClass rc = RegClass(src.type(), 1);
8046 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
8047 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
8048 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8049 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
8050 emit_wqm(ctx, wqm_tmp, dst);
8051 break;
8052 }
8053 case nir_intrinsic_load_helper_invocation: {
8054 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8055 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
8056 ctx->block->kind |= block_kind_needs_lowering;
8057 ctx->program->needs_exact = true;
8058 break;
8059 }
8060 case nir_intrinsic_is_helper_invocation: {
8061 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8062 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
8063 ctx->block->kind |= block_kind_needs_lowering;
8064 ctx->program->needs_exact = true;
8065 break;
8066 }
8067 case nir_intrinsic_demote:
8068 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
8069
8070 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8071 ctx->cf_info.exec_potentially_empty_discard = true;
8072 ctx->block->kind |= block_kind_uses_demote;
8073 ctx->program->needs_exact = true;
8074 break;
8075 case nir_intrinsic_demote_if: {
8076 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8077 assert(src.regClass() == bld.lm);
8078 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
8079 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
8080
8081 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8082 ctx->cf_info.exec_potentially_empty_discard = true;
8083 ctx->block->kind |= block_kind_uses_demote;
8084 ctx->program->needs_exact = true;
8085 break;
8086 }
8087 case nir_intrinsic_first_invocation: {
8088 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
8089 get_ssa_temp(ctx, &instr->dest.ssa));
8090 break;
8091 }
8092 case nir_intrinsic_shader_clock: {
8093 aco_opcode opcode =
8094 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
8095 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
8096 bld.smem(opcode, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
8097 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
8098 break;
8099 }
8100 case nir_intrinsic_load_vertex_id_zero_base: {
8101 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8102 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8103 break;
8104 }
8105 case nir_intrinsic_load_first_vertex: {
8106 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8107 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8108 break;
8109 }
8110 case nir_intrinsic_load_base_instance: {
8111 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8112 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8113 break;
8114 }
8115 case nir_intrinsic_load_instance_id: {
8116 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8117 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8118 break;
8119 }
8120 case nir_intrinsic_load_draw_id: {
8121 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8122 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8123 break;
8124 }
8125 case nir_intrinsic_load_invocation_id: {
8126 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8127
8128 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8129 if (ctx->options->chip_class >= GFX10)
8130 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8131 else
8132 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8133 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8134 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8135 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8136 } else {
8137 unreachable("Unsupported stage for load_invocation_id");
8138 }
8139
8140 break;
8141 }
8142 case nir_intrinsic_load_primitive_id: {
8143 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8144
8145 switch (ctx->shader->info.stage) {
8146 case MESA_SHADER_GEOMETRY:
8147 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8148 break;
8149 case MESA_SHADER_TESS_CTRL:
8150 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8151 break;
8152 case MESA_SHADER_TESS_EVAL:
8153 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8154 break;
8155 default:
8156 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8157 }
8158
8159 break;
8160 }
8161 case nir_intrinsic_load_patch_vertices_in: {
8162 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8163 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8164
8165 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8166 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8167 break;
8168 }
8169 case nir_intrinsic_emit_vertex_with_counter: {
8170 visit_emit_vertex_with_counter(ctx, instr);
8171 break;
8172 }
8173 case nir_intrinsic_end_primitive_with_counter: {
8174 unsigned stream = nir_intrinsic_stream_id(instr);
8175 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8176 break;
8177 }
8178 case nir_intrinsic_set_vertex_count: {
8179 /* unused, the HW keeps track of this for us */
8180 break;
8181 }
8182 default:
8183 fprintf(stderr, "Unimplemented intrinsic instr: ");
8184 nir_print_instr(&instr->instr, stderr);
8185 fprintf(stderr, "\n");
8186 abort();
8187
8188 break;
8189 }
8190 }
8191
8192
8193 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8194 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8195 enum glsl_base_type *stype)
8196 {
8197 nir_deref_instr *texture_deref_instr = NULL;
8198 nir_deref_instr *sampler_deref_instr = NULL;
8199 int plane = -1;
8200
8201 for (unsigned i = 0; i < instr->num_srcs; i++) {
8202 switch (instr->src[i].src_type) {
8203 case nir_tex_src_texture_deref:
8204 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8205 break;
8206 case nir_tex_src_sampler_deref:
8207 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8208 break;
8209 case nir_tex_src_plane:
8210 plane = nir_src_as_int(instr->src[i].src);
8211 break;
8212 default:
8213 break;
8214 }
8215 }
8216
8217 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8218
8219 if (!sampler_deref_instr)
8220 sampler_deref_instr = texture_deref_instr;
8221
8222 if (plane >= 0) {
8223 assert(instr->op != nir_texop_txf_ms &&
8224 instr->op != nir_texop_samples_identical);
8225 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8226 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8227 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8228 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8229 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8230 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8231 } else {
8232 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8233 }
8234 if (samp_ptr) {
8235 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8236
8237 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8238 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8239 Builder bld(ctx->program, ctx->block);
8240
8241 /* to avoid unnecessary moves, we split and recombine sampler and image */
8242 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8243 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8244 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8245 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8246 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8247 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8248 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8249 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8250
8251 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8252 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8253 img[0], img[1], img[2], img[3],
8254 img[4], img[5], img[6], img[7]);
8255 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8256 samp[0], samp[1], samp[2], samp[3]);
8257 }
8258 }
8259 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8260 instr->op == nir_texop_samples_identical))
8261 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8262 }
8263
8264 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8265 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8266 {
8267 Builder bld(ctx->program, ctx->block);
8268
8269 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8270 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8271 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8272
8273 Operand neg_one(0xbf800000u);
8274 Operand one(0x3f800000u);
8275 Operand two(0x40000000u);
8276 Operand four(0x40800000u);
8277
8278 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8279 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8280 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8281
8282 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8283 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8284 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8285 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8286
8287 // select sc
8288 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8289 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8290 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8291 one, is_ma_y);
8292 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8293
8294 // select tc
8295 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8296 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8297 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8298
8299 // select ma
8300 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8301 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8302 deriv_z, is_ma_z);
8303 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8304 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8305 }
8306
8307 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8308 {
8309 Builder bld(ctx->program, ctx->block);
8310 Temp ma, tc, sc, id;
8311
8312 if (is_array) {
8313 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8314
8315 // see comment in ac_prepare_cube_coords()
8316 if (ctx->options->chip_class <= GFX8)
8317 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8318 }
8319
8320 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8321
8322 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8323 vop3a->operands[0] = Operand(ma);
8324 vop3a->abs[0] = true;
8325 Temp invma = bld.tmp(v1);
8326 vop3a->definitions[0] = Definition(invma);
8327 ctx->block->instructions.emplace_back(std::move(vop3a));
8328
8329 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8330 if (!is_deriv)
8331 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8332
8333 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8334 if (!is_deriv)
8335 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8336
8337 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8338
8339 if (is_deriv) {
8340 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8341 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8342
8343 for (unsigned i = 0; i < 2; i++) {
8344 // see comment in ac_prepare_cube_coords()
8345 Temp deriv_ma;
8346 Temp deriv_sc, deriv_tc;
8347 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8348 &deriv_ma, &deriv_sc, &deriv_tc);
8349
8350 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8351
8352 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8353 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8354 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8355 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8356 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8357 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8358 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8359 }
8360
8361 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8362 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8363 }
8364
8365 if (is_array)
8366 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8367 coords.resize(3);
8368 coords[0] = sc;
8369 coords[1] = tc;
8370 coords[2] = id;
8371 }
8372
8373 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8374 {
8375 if (vec->parent_instr->type != nir_instr_type_alu)
8376 return;
8377 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8378 if (vec_instr->op != nir_op_vec(vec->num_components))
8379 return;
8380
8381 for (unsigned i = 0; i < vec->num_components; i++) {
8382 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8383 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8384 }
8385 }
8386
8387 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8388 {
8389 Builder bld(ctx->program, ctx->block);
8390 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8391 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8392 has_clamped_lod = false;
8393 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8394 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8395 clamped_lod = Temp();
8396 std::vector<Temp> coords;
8397 std::vector<Temp> derivs;
8398 nir_const_value *sample_index_cv = NULL;
8399 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8400 enum glsl_base_type stype;
8401 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8402
8403 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8404 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8405 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8406 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8407
8408 for (unsigned i = 0; i < instr->num_srcs; i++) {
8409 switch (instr->src[i].src_type) {
8410 case nir_tex_src_coord: {
8411 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8412 for (unsigned i = 0; i < coord.size(); i++)
8413 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8414 break;
8415 }
8416 case nir_tex_src_bias:
8417 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8418 has_bias = true;
8419 break;
8420 case nir_tex_src_lod: {
8421 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8422
8423 if (val && val->f32 <= 0.0) {
8424 level_zero = true;
8425 } else {
8426 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8427 has_lod = true;
8428 }
8429 break;
8430 }
8431 case nir_tex_src_min_lod:
8432 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8433 has_clamped_lod = true;
8434 break;
8435 case nir_tex_src_comparator:
8436 if (instr->is_shadow) {
8437 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8438 has_compare = true;
8439 }
8440 break;
8441 case nir_tex_src_offset:
8442 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8443 get_const_vec(instr->src[i].src.ssa, const_offset);
8444 has_offset = true;
8445 break;
8446 case nir_tex_src_ddx:
8447 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8448 has_ddx = true;
8449 break;
8450 case nir_tex_src_ddy:
8451 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8452 has_ddy = true;
8453 break;
8454 case nir_tex_src_ms_index:
8455 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8456 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8457 has_sample_index = true;
8458 break;
8459 case nir_tex_src_texture_offset:
8460 case nir_tex_src_sampler_offset:
8461 default:
8462 break;
8463 }
8464 }
8465
8466 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8467 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8468
8469 if (instr->op == nir_texop_texture_samples) {
8470 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8471
8472 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8473 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8474 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8475
8476 Operand default_sample = Operand(1u);
8477 if (ctx->options->robust_buffer_access) {
8478 /* Extract the second dword of the descriptor, if it's
8479 * all zero, then it's a null descriptor.
8480 */
8481 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8482 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8483 default_sample = Operand(is_non_null_descriptor);
8484 }
8485
8486 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8487 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8488 samples, default_sample, bld.scc(is_msaa));
8489 return;
8490 }
8491
8492 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8493 aco_ptr<Instruction> tmp_instr;
8494 Temp acc, pack = Temp();
8495
8496 uint32_t pack_const = 0;
8497 for (unsigned i = 0; i < offset.size(); i++) {
8498 if (!const_offset[i])
8499 continue;
8500 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8501 }
8502
8503 if (offset.type() == RegType::sgpr) {
8504 for (unsigned i = 0; i < offset.size(); i++) {
8505 if (const_offset[i])
8506 continue;
8507
8508 acc = emit_extract_vector(ctx, offset, i, s1);
8509 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8510
8511 if (i) {
8512 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8513 }
8514
8515 if (pack == Temp()) {
8516 pack = acc;
8517 } else {
8518 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8519 }
8520 }
8521
8522 if (pack_const && pack != Temp())
8523 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8524 } else {
8525 for (unsigned i = 0; i < offset.size(); i++) {
8526 if (const_offset[i])
8527 continue;
8528
8529 acc = emit_extract_vector(ctx, offset, i, v1);
8530 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8531
8532 if (i) {
8533 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8534 }
8535
8536 if (pack == Temp()) {
8537 pack = acc;
8538 } else {
8539 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8540 }
8541 }
8542
8543 if (pack_const && pack != Temp())
8544 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8545 }
8546 if (pack_const && pack == Temp())
8547 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8548 else if (pack == Temp())
8549 has_offset = false;
8550 else
8551 offset = pack;
8552 }
8553
8554 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8555 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8556
8557 /* pack derivatives */
8558 if (has_ddx || has_ddy) {
8559 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8560 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8561 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8562 derivs = {ddx, zero, ddy, zero};
8563 } else {
8564 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8565 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8566 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8567 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8568 }
8569 has_derivs = true;
8570 }
8571
8572 if (instr->coord_components > 1 &&
8573 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8574 instr->is_array &&
8575 instr->op != nir_texop_txf)
8576 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8577
8578 if (instr->coord_components > 2 &&
8579 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8580 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8581 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8582 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8583 instr->is_array &&
8584 instr->op != nir_texop_txf &&
8585 instr->op != nir_texop_txf_ms &&
8586 instr->op != nir_texop_fragment_fetch &&
8587 instr->op != nir_texop_fragment_mask_fetch)
8588 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8589
8590 if (ctx->options->chip_class == GFX9 &&
8591 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8592 instr->op != nir_texop_lod && instr->coord_components) {
8593 assert(coords.size() > 0 && coords.size() < 3);
8594
8595 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8596 Operand((uint32_t) 0) :
8597 Operand((uint32_t) 0x3f000000)));
8598 }
8599
8600 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8601
8602 if (instr->op == nir_texop_samples_identical)
8603 resource = fmask_ptr;
8604
8605 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8606 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8607 instr->op != nir_texop_txs &&
8608 instr->op != nir_texop_fragment_fetch &&
8609 instr->op != nir_texop_fragment_mask_fetch) {
8610 assert(has_sample_index);
8611 Operand op(sample_index);
8612 if (sample_index_cv)
8613 op = Operand(sample_index_cv->u32);
8614 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8615 }
8616
8617 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8618 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8619 Temp off = emit_extract_vector(ctx, offset, i, v1);
8620 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8621 }
8622 has_offset = false;
8623 }
8624
8625 /* Build tex instruction */
8626 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8627 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8628 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8629 : 0;
8630 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8631 Temp tmp_dst = dst;
8632
8633 /* gather4 selects the component by dmask and always returns vec4 */
8634 if (instr->op == nir_texop_tg4) {
8635 assert(instr->dest.ssa.num_components == 4);
8636 if (instr->is_shadow)
8637 dmask = 1;
8638 else
8639 dmask = 1 << instr->component;
8640 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8641 tmp_dst = bld.tmp(v4);
8642 } else if (instr->op == nir_texop_samples_identical) {
8643 tmp_dst = bld.tmp(v1);
8644 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8645 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8646 }
8647
8648 aco_ptr<MIMG_instruction> tex;
8649 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8650 if (!has_lod)
8651 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8652
8653 bool div_by_6 = instr->op == nir_texop_txs &&
8654 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8655 instr->is_array &&
8656 (dmask & (1 << 2));
8657 if (tmp_dst.id() == dst.id() && div_by_6)
8658 tmp_dst = bld.tmp(tmp_dst.regClass());
8659
8660 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8661 tex->operands[0] = Operand(resource);
8662 tex->operands[1] = Operand(s4); /* no sampler */
8663 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8664 if (ctx->options->chip_class == GFX9 &&
8665 instr->op == nir_texop_txs &&
8666 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8667 instr->is_array) {
8668 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8669 } else if (instr->op == nir_texop_query_levels) {
8670 tex->dmask = 1 << 3;
8671 } else {
8672 tex->dmask = dmask;
8673 }
8674 tex->da = da;
8675 tex->definitions[0] = Definition(tmp_dst);
8676 tex->dim = dim;
8677 tex->can_reorder = true;
8678 ctx->block->instructions.emplace_back(std::move(tex));
8679
8680 if (div_by_6) {
8681 /* divide 3rd value by 6 by multiplying with magic number */
8682 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8683 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8684 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8685 assert(instr->dest.ssa.num_components == 3);
8686 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8687 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8688 emit_extract_vector(ctx, tmp_dst, 0, v1),
8689 emit_extract_vector(ctx, tmp_dst, 1, v1),
8690 by_6);
8691
8692 }
8693
8694 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8695 return;
8696 }
8697
8698 Temp tg4_compare_cube_wa64 = Temp();
8699
8700 if (tg4_integer_workarounds) {
8701 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8702 tex->operands[0] = Operand(resource);
8703 tex->operands[1] = Operand(s4); /* no sampler */
8704 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8705 tex->dim = dim;
8706 tex->dmask = 0x3;
8707 tex->da = da;
8708 Temp size = bld.tmp(v2);
8709 tex->definitions[0] = Definition(size);
8710 tex->can_reorder = true;
8711 ctx->block->instructions.emplace_back(std::move(tex));
8712 emit_split_vector(ctx, size, size.size());
8713
8714 Temp half_texel[2];
8715 for (unsigned i = 0; i < 2; i++) {
8716 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8717 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8718 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8719 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8720 }
8721
8722 Temp new_coords[2] = {
8723 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8724 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8725 };
8726
8727 if (tg4_integer_cube_workaround) {
8728 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8729 Temp desc[resource.size()];
8730 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8731 Format::PSEUDO, 1, resource.size())};
8732 split->operands[0] = Operand(resource);
8733 for (unsigned i = 0; i < resource.size(); i++) {
8734 desc[i] = bld.tmp(s1);
8735 split->definitions[i] = Definition(desc[i]);
8736 }
8737 ctx->block->instructions.emplace_back(std::move(split));
8738
8739 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8740 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8741 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8742
8743 Temp nfmt;
8744 if (stype == GLSL_TYPE_UINT) {
8745 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8746 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8747 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8748 bld.scc(compare_cube_wa));
8749 } else {
8750 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8751 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8752 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8753 bld.scc(compare_cube_wa));
8754 }
8755 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8756 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8757
8758 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8759
8760 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8761 Operand((uint32_t)C_008F14_NUM_FORMAT));
8762 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8763
8764 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8765 Format::PSEUDO, resource.size(), 1)};
8766 for (unsigned i = 0; i < resource.size(); i++)
8767 vec->operands[i] = Operand(desc[i]);
8768 resource = bld.tmp(resource.regClass());
8769 vec->definitions[0] = Definition(resource);
8770 ctx->block->instructions.emplace_back(std::move(vec));
8771
8772 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8773 new_coords[0], coords[0], tg4_compare_cube_wa64);
8774 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8775 new_coords[1], coords[1], tg4_compare_cube_wa64);
8776 }
8777 coords[0] = new_coords[0];
8778 coords[1] = new_coords[1];
8779 }
8780
8781 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8782 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8783
8784 assert(coords.size() == 1);
8785 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8786 aco_opcode op;
8787 switch (last_bit) {
8788 case 1:
8789 op = aco_opcode::buffer_load_format_x; break;
8790 case 2:
8791 op = aco_opcode::buffer_load_format_xy; break;
8792 case 3:
8793 op = aco_opcode::buffer_load_format_xyz; break;
8794 case 4:
8795 op = aco_opcode::buffer_load_format_xyzw; break;
8796 default:
8797 unreachable("Tex instruction loads more than 4 components.");
8798 }
8799
8800 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8801 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8802 tmp_dst = dst;
8803 else
8804 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8805
8806 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8807 mubuf->operands[0] = Operand(resource);
8808 mubuf->operands[1] = Operand(coords[0]);
8809 mubuf->operands[2] = Operand((uint32_t) 0);
8810 mubuf->definitions[0] = Definition(tmp_dst);
8811 mubuf->idxen = true;
8812 mubuf->can_reorder = true;
8813 ctx->block->instructions.emplace_back(std::move(mubuf));
8814
8815 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8816 return;
8817 }
8818
8819 /* gather MIMG address components */
8820 std::vector<Temp> args;
8821 if (has_offset)
8822 args.emplace_back(offset);
8823 if (has_bias)
8824 args.emplace_back(bias);
8825 if (has_compare)
8826 args.emplace_back(compare);
8827 if (has_derivs)
8828 args.insert(args.end(), derivs.begin(), derivs.end());
8829
8830 args.insert(args.end(), coords.begin(), coords.end());
8831 if (has_sample_index)
8832 args.emplace_back(sample_index);
8833 if (has_lod)
8834 args.emplace_back(lod);
8835 if (has_clamped_lod)
8836 args.emplace_back(clamped_lod);
8837
8838 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8839 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8840 vec->definitions[0] = Definition(arg);
8841 for (unsigned i = 0; i < args.size(); i++)
8842 vec->operands[i] = Operand(args[i]);
8843 ctx->block->instructions.emplace_back(std::move(vec));
8844
8845
8846 if (instr->op == nir_texop_txf ||
8847 instr->op == nir_texop_txf_ms ||
8848 instr->op == nir_texop_samples_identical ||
8849 instr->op == nir_texop_fragment_fetch ||
8850 instr->op == nir_texop_fragment_mask_fetch) {
8851 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8852 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8853 tex->operands[0] = Operand(resource);
8854 tex->operands[1] = Operand(s4); /* no sampler */
8855 tex->operands[2] = Operand(arg);
8856 tex->dim = dim;
8857 tex->dmask = dmask;
8858 tex->unrm = true;
8859 tex->da = da;
8860 tex->definitions[0] = Definition(tmp_dst);
8861 tex->can_reorder = true;
8862 ctx->block->instructions.emplace_back(std::move(tex));
8863
8864 if (instr->op == nir_texop_samples_identical) {
8865 assert(dmask == 1 && dst.regClass() == v1);
8866 assert(dst.id() != tmp_dst.id());
8867
8868 Temp tmp = bld.tmp(bld.lm);
8869 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8870 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8871
8872 } else {
8873 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8874 }
8875 return;
8876 }
8877
8878 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8879 aco_opcode opcode = aco_opcode::image_sample;
8880 if (has_offset) { /* image_sample_*_o */
8881 if (has_clamped_lod) {
8882 if (has_compare) {
8883 opcode = aco_opcode::image_sample_c_cl_o;
8884 if (has_derivs)
8885 opcode = aco_opcode::image_sample_c_d_cl_o;
8886 if (has_bias)
8887 opcode = aco_opcode::image_sample_c_b_cl_o;
8888 } else {
8889 opcode = aco_opcode::image_sample_cl_o;
8890 if (has_derivs)
8891 opcode = aco_opcode::image_sample_d_cl_o;
8892 if (has_bias)
8893 opcode = aco_opcode::image_sample_b_cl_o;
8894 }
8895 } else if (has_compare) {
8896 opcode = aco_opcode::image_sample_c_o;
8897 if (has_derivs)
8898 opcode = aco_opcode::image_sample_c_d_o;
8899 if (has_bias)
8900 opcode = aco_opcode::image_sample_c_b_o;
8901 if (level_zero)
8902 opcode = aco_opcode::image_sample_c_lz_o;
8903 if (has_lod)
8904 opcode = aco_opcode::image_sample_c_l_o;
8905 } else {
8906 opcode = aco_opcode::image_sample_o;
8907 if (has_derivs)
8908 opcode = aco_opcode::image_sample_d_o;
8909 if (has_bias)
8910 opcode = aco_opcode::image_sample_b_o;
8911 if (level_zero)
8912 opcode = aco_opcode::image_sample_lz_o;
8913 if (has_lod)
8914 opcode = aco_opcode::image_sample_l_o;
8915 }
8916 } else if (has_clamped_lod) { /* image_sample_*_cl */
8917 if (has_compare) {
8918 opcode = aco_opcode::image_sample_c_cl;
8919 if (has_derivs)
8920 opcode = aco_opcode::image_sample_c_d_cl;
8921 if (has_bias)
8922 opcode = aco_opcode::image_sample_c_b_cl;
8923 } else {
8924 opcode = aco_opcode::image_sample_cl;
8925 if (has_derivs)
8926 opcode = aco_opcode::image_sample_d_cl;
8927 if (has_bias)
8928 opcode = aco_opcode::image_sample_b_cl;
8929 }
8930 } else { /* no offset */
8931 if (has_compare) {
8932 opcode = aco_opcode::image_sample_c;
8933 if (has_derivs)
8934 opcode = aco_opcode::image_sample_c_d;
8935 if (has_bias)
8936 opcode = aco_opcode::image_sample_c_b;
8937 if (level_zero)
8938 opcode = aco_opcode::image_sample_c_lz;
8939 if (has_lod)
8940 opcode = aco_opcode::image_sample_c_l;
8941 } else {
8942 opcode = aco_opcode::image_sample;
8943 if (has_derivs)
8944 opcode = aco_opcode::image_sample_d;
8945 if (has_bias)
8946 opcode = aco_opcode::image_sample_b;
8947 if (level_zero)
8948 opcode = aco_opcode::image_sample_lz;
8949 if (has_lod)
8950 opcode = aco_opcode::image_sample_l;
8951 }
8952 }
8953
8954 if (instr->op == nir_texop_tg4) {
8955 if (has_offset) { /* image_gather4_*_o */
8956 if (has_compare) {
8957 opcode = aco_opcode::image_gather4_c_lz_o;
8958 if (has_lod)
8959 opcode = aco_opcode::image_gather4_c_l_o;
8960 if (has_bias)
8961 opcode = aco_opcode::image_gather4_c_b_o;
8962 } else {
8963 opcode = aco_opcode::image_gather4_lz_o;
8964 if (has_lod)
8965 opcode = aco_opcode::image_gather4_l_o;
8966 if (has_bias)
8967 opcode = aco_opcode::image_gather4_b_o;
8968 }
8969 } else {
8970 if (has_compare) {
8971 opcode = aco_opcode::image_gather4_c_lz;
8972 if (has_lod)
8973 opcode = aco_opcode::image_gather4_c_l;
8974 if (has_bias)
8975 opcode = aco_opcode::image_gather4_c_b;
8976 } else {
8977 opcode = aco_opcode::image_gather4_lz;
8978 if (has_lod)
8979 opcode = aco_opcode::image_gather4_l;
8980 if (has_bias)
8981 opcode = aco_opcode::image_gather4_b;
8982 }
8983 }
8984 } else if (instr->op == nir_texop_lod) {
8985 opcode = aco_opcode::image_get_lod;
8986 }
8987
8988 /* we don't need the bias, sample index, compare value or offset to be
8989 * computed in WQM but if the p_create_vector copies the coordinates, then it
8990 * needs to be in WQM */
8991 if (ctx->stage == fragment_fs &&
8992 !has_derivs && !has_lod && !level_zero &&
8993 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8994 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8995 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8996
8997 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8998 tex->operands[0] = Operand(resource);
8999 tex->operands[1] = Operand(sampler);
9000 tex->operands[2] = Operand(arg);
9001 tex->dim = dim;
9002 tex->dmask = dmask;
9003 tex->da = da;
9004 tex->definitions[0] = Definition(tmp_dst);
9005 tex->can_reorder = true;
9006 ctx->block->instructions.emplace_back(std::move(tex));
9007
9008 if (tg4_integer_cube_workaround) {
9009 assert(tmp_dst.id() != dst.id());
9010 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
9011
9012 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
9013 Temp val[4];
9014 for (unsigned i = 0; i < dst.size(); i++) {
9015 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
9016 Temp cvt_val;
9017 if (stype == GLSL_TYPE_UINT)
9018 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
9019 else
9020 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
9021 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
9022 }
9023 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
9024 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
9025 val[0], val[1], val[2], val[3]);
9026 }
9027 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
9028 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
9029
9030 }
9031
9032
9033 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
9034 {
9035 Temp tmp = get_ssa_temp(ctx, ssa);
9036 if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
9037 return Operand(rc);
9038 } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
9039 if (ctx->program->wave_size == 64)
9040 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
9041 else
9042 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
9043 } else {
9044 return Operand(tmp);
9045 }
9046 }
9047
9048 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
9049 {
9050 aco_ptr<Pseudo_instruction> phi;
9051 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
9052 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
9053
9054 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
9055 logical |= ctx->block->kind & block_kind_merge;
9056 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
9057
9058 /* we want a sorted list of sources, since the predecessor list is also sorted */
9059 std::map<unsigned, nir_ssa_def*> phi_src;
9060 nir_foreach_phi_src(src, instr)
9061 phi_src[src->pred->index] = src->src.ssa;
9062
9063 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
9064 unsigned num_operands = 0;
9065 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
9066 unsigned num_defined = 0;
9067 unsigned cur_pred_idx = 0;
9068 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
9069 if (cur_pred_idx < preds.size()) {
9070 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
9071 unsigned block = ctx->cf_info.nir_to_aco[src.first];
9072 unsigned skipped = 0;
9073 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
9074 skipped++;
9075 if (cur_pred_idx + skipped < preds.size()) {
9076 for (unsigned i = 0; i < skipped; i++)
9077 operands[num_operands++] = Operand(dst.regClass());
9078 cur_pred_idx += skipped;
9079 } else {
9080 continue;
9081 }
9082 }
9083 /* Handle missing predecessors at the end. This shouldn't happen with loop
9084 * headers and we can't ignore these sources for loop header phis. */
9085 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
9086 continue;
9087 cur_pred_idx++;
9088 Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
9089 operands[num_operands++] = op;
9090 num_defined += !op.isUndefined();
9091 }
9092 /* handle block_kind_continue_or_break at loop exit blocks */
9093 while (cur_pred_idx++ < preds.size())
9094 operands[num_operands++] = Operand(dst.regClass());
9095
9096 /* If the loop ends with a break, still add a linear continue edge in case
9097 * that break is divergent or continue_or_break is used. We'll either remove
9098 * this operand later in visit_loop() if it's not necessary or replace the
9099 * undef with something correct. */
9100 if (!logical && ctx->block->kind & block_kind_loop_header) {
9101 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
9102 nir_block *last = nir_loop_last_block(loop);
9103 if (last->successors[0] != instr->instr.block)
9104 operands[num_operands++] = Operand(RegClass());
9105 }
9106
9107 if (num_defined == 0) {
9108 Builder bld(ctx->program, ctx->block);
9109 if (dst.regClass() == s1) {
9110 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
9111 } else if (dst.regClass() == v1) {
9112 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
9113 } else {
9114 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9115 for (unsigned i = 0; i < dst.size(); i++)
9116 vec->operands[i] = Operand(0u);
9117 vec->definitions[0] = Definition(dst);
9118 ctx->block->instructions.emplace_back(std::move(vec));
9119 }
9120 return;
9121 }
9122
9123 /* we can use a linear phi in some cases if one src is undef */
9124 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
9125 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
9126
9127 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
9128 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
9129 assert(invert->kind & block_kind_invert);
9130
9131 unsigned then_block = invert->linear_preds[0];
9132
9133 Block* insert_block = NULL;
9134 for (unsigned i = 0; i < num_operands; i++) {
9135 Operand op = operands[i];
9136 if (op.isUndefined())
9137 continue;
9138 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
9139 phi->operands[0] = op;
9140 break;
9141 }
9142 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
9143 phi->operands[1] = Operand(dst.regClass());
9144 phi->definitions[0] = Definition(dst);
9145 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
9146 return;
9147 }
9148
9149 /* try to scalarize vector phis */
9150 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
9151 // TODO: scalarize linear phis on divergent ifs
9152 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
9153 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
9154 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
9155 Operand src = operands[i];
9156 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
9157 can_scalarize = false;
9158 }
9159 if (can_scalarize) {
9160 unsigned num_components = instr->dest.ssa.num_components;
9161 assert(dst.size() % num_components == 0);
9162 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
9163
9164 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9165 for (unsigned k = 0; k < num_components; k++) {
9166 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9167 for (unsigned i = 0; i < num_operands; i++) {
9168 Operand src = operands[i];
9169 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9170 }
9171 Temp phi_dst = {ctx->program->allocateId(), rc};
9172 phi->definitions[0] = Definition(phi_dst);
9173 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9174 new_vec[k] = phi_dst;
9175 vec->operands[k] = Operand(phi_dst);
9176 }
9177 vec->definitions[0] = Definition(dst);
9178 ctx->block->instructions.emplace_back(std::move(vec));
9179 ctx->allocated_vec.emplace(dst.id(), new_vec);
9180 return;
9181 }
9182 }
9183
9184 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9185 for (unsigned i = 0; i < num_operands; i++)
9186 phi->operands[i] = operands[i];
9187 phi->definitions[0] = Definition(dst);
9188 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9189 }
9190
9191
9192 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9193 {
9194 Temp dst = get_ssa_temp(ctx, &instr->def);
9195
9196 assert(dst.type() == RegType::sgpr);
9197
9198 if (dst.size() == 1) {
9199 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9200 } else {
9201 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9202 for (unsigned i = 0; i < dst.size(); i++)
9203 vec->operands[i] = Operand(0u);
9204 vec->definitions[0] = Definition(dst);
9205 ctx->block->instructions.emplace_back(std::move(vec));
9206 }
9207 }
9208
9209 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9210 {
9211 Builder bld(ctx->program, ctx->block);
9212 Block *logical_target;
9213 append_logical_end(ctx->block);
9214 unsigned idx = ctx->block->index;
9215
9216 switch (instr->type) {
9217 case nir_jump_break:
9218 logical_target = ctx->cf_info.parent_loop.exit;
9219 add_logical_edge(idx, logical_target);
9220 ctx->block->kind |= block_kind_break;
9221
9222 if (!ctx->cf_info.parent_if.is_divergent &&
9223 !ctx->cf_info.parent_loop.has_divergent_continue) {
9224 /* uniform break - directly jump out of the loop */
9225 ctx->block->kind |= block_kind_uniform;
9226 ctx->cf_info.has_branch = true;
9227 bld.branch(aco_opcode::p_branch);
9228 add_linear_edge(idx, logical_target);
9229 return;
9230 }
9231 ctx->cf_info.parent_loop.has_divergent_branch = true;
9232 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9233 break;
9234 case nir_jump_continue:
9235 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9236 add_logical_edge(idx, logical_target);
9237 ctx->block->kind |= block_kind_continue;
9238
9239 if (ctx->cf_info.parent_if.is_divergent) {
9240 /* for potential uniform breaks after this continue,
9241 we must ensure that they are handled correctly */
9242 ctx->cf_info.parent_loop.has_divergent_continue = true;
9243 ctx->cf_info.parent_loop.has_divergent_branch = true;
9244 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9245 } else {
9246 /* uniform continue - directly jump to the loop header */
9247 ctx->block->kind |= block_kind_uniform;
9248 ctx->cf_info.has_branch = true;
9249 bld.branch(aco_opcode::p_branch);
9250 add_linear_edge(idx, logical_target);
9251 return;
9252 }
9253 break;
9254 default:
9255 fprintf(stderr, "Unknown NIR jump instr: ");
9256 nir_print_instr(&instr->instr, stderr);
9257 fprintf(stderr, "\n");
9258 abort();
9259 }
9260
9261 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9262 ctx->cf_info.exec_potentially_empty_break = true;
9263 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9264 }
9265
9266 /* remove critical edges from linear CFG */
9267 bld.branch(aco_opcode::p_branch);
9268 Block* break_block = ctx->program->create_and_insert_block();
9269 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9270 break_block->kind |= block_kind_uniform;
9271 add_linear_edge(idx, break_block);
9272 /* the loop_header pointer might be invalidated by this point */
9273 if (instr->type == nir_jump_continue)
9274 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9275 add_linear_edge(break_block->index, logical_target);
9276 bld.reset(break_block);
9277 bld.branch(aco_opcode::p_branch);
9278
9279 Block* continue_block = ctx->program->create_and_insert_block();
9280 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9281 add_linear_edge(idx, continue_block);
9282 append_logical_start(continue_block);
9283 ctx->block = continue_block;
9284 return;
9285 }
9286
9287 void visit_block(isel_context *ctx, nir_block *block)
9288 {
9289 nir_foreach_instr(instr, block) {
9290 switch (instr->type) {
9291 case nir_instr_type_alu:
9292 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9293 break;
9294 case nir_instr_type_load_const:
9295 visit_load_const(ctx, nir_instr_as_load_const(instr));
9296 break;
9297 case nir_instr_type_intrinsic:
9298 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9299 break;
9300 case nir_instr_type_tex:
9301 visit_tex(ctx, nir_instr_as_tex(instr));
9302 break;
9303 case nir_instr_type_phi:
9304 visit_phi(ctx, nir_instr_as_phi(instr));
9305 break;
9306 case nir_instr_type_ssa_undef:
9307 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9308 break;
9309 case nir_instr_type_deref:
9310 break;
9311 case nir_instr_type_jump:
9312 visit_jump(ctx, nir_instr_as_jump(instr));
9313 break;
9314 default:
9315 fprintf(stderr, "Unknown NIR instr type: ");
9316 nir_print_instr(instr, stderr);
9317 fprintf(stderr, "\n");
9318 //abort();
9319 }
9320 }
9321
9322 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9323 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9324 }
9325
9326
9327
9328 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9329 aco_ptr<Instruction>& header_phi, Operand *vals)
9330 {
9331 vals[0] = Operand(header_phi->definitions[0].getTemp());
9332 RegClass rc = vals[0].regClass();
9333
9334 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9335
9336 unsigned next_pred = 1;
9337
9338 for (unsigned idx = first + 1; idx <= last; idx++) {
9339 Block& block = ctx->program->blocks[idx];
9340 if (block.loop_nest_depth != loop_nest_depth) {
9341 vals[idx - first] = vals[idx - 1 - first];
9342 continue;
9343 }
9344
9345 if (block.kind & block_kind_continue) {
9346 vals[idx - first] = header_phi->operands[next_pred];
9347 next_pred++;
9348 continue;
9349 }
9350
9351 bool all_same = true;
9352 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9353 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9354
9355 Operand val;
9356 if (all_same) {
9357 val = vals[block.linear_preds[0] - first];
9358 } else {
9359 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9360 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9361 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9362 phi->operands[i] = vals[block.linear_preds[i] - first];
9363 val = Operand(Temp(ctx->program->allocateId(), rc));
9364 phi->definitions[0] = Definition(val.getTemp());
9365 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9366 }
9367 vals[idx - first] = val;
9368 }
9369
9370 return vals[last - first];
9371 }
9372
9373 static void visit_loop(isel_context *ctx, nir_loop *loop)
9374 {
9375 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9376 append_logical_end(ctx->block);
9377 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9378 Builder bld(ctx->program, ctx->block);
9379 bld.branch(aco_opcode::p_branch);
9380 unsigned loop_preheader_idx = ctx->block->index;
9381
9382 Block loop_exit = Block();
9383 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9384 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9385
9386 Block* loop_header = ctx->program->create_and_insert_block();
9387 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9388 loop_header->kind |= block_kind_loop_header;
9389 add_edge(loop_preheader_idx, loop_header);
9390 ctx->block = loop_header;
9391
9392 /* emit loop body */
9393 unsigned loop_header_idx = loop_header->index;
9394 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9395 append_logical_start(ctx->block);
9396 bool unreachable = visit_cf_list(ctx, &loop->body);
9397
9398 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9399 if (!ctx->cf_info.has_branch) {
9400 append_logical_end(ctx->block);
9401 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9402 /* Discards can result in code running with an empty exec mask.
9403 * This would result in divergent breaks not ever being taken. As a
9404 * workaround, break the loop when the loop mask is empty instead of
9405 * always continuing. */
9406 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9407 unsigned block_idx = ctx->block->index;
9408
9409 /* create helper blocks to avoid critical edges */
9410 Block *break_block = ctx->program->create_and_insert_block();
9411 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9412 break_block->kind = block_kind_uniform;
9413 bld.reset(break_block);
9414 bld.branch(aco_opcode::p_branch);
9415 add_linear_edge(block_idx, break_block);
9416 add_linear_edge(break_block->index, &loop_exit);
9417
9418 Block *continue_block = ctx->program->create_and_insert_block();
9419 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9420 continue_block->kind = block_kind_uniform;
9421 bld.reset(continue_block);
9422 bld.branch(aco_opcode::p_branch);
9423 add_linear_edge(block_idx, continue_block);
9424 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9425
9426 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9427 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9428 ctx->block = &ctx->program->blocks[block_idx];
9429 } else {
9430 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9431 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9432 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9433 else
9434 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9435 }
9436
9437 bld.reset(ctx->block);
9438 bld.branch(aco_opcode::p_branch);
9439 }
9440
9441 /* Fixup phis in loop header from unreachable blocks.
9442 * has_branch/has_divergent_branch also indicates if the loop ends with a
9443 * break/continue instruction, but we don't emit those if unreachable=true */
9444 if (unreachable) {
9445 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9446 bool linear = ctx->cf_info.has_branch;
9447 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9448 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9449 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9450 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9451 /* the last operand should be the one that needs to be removed */
9452 instr->operands.pop_back();
9453 } else if (!is_phi(instr)) {
9454 break;
9455 }
9456 }
9457 }
9458
9459 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9460 * and the previous one shouldn't both happen at once because a break in the
9461 * merge block would get CSE'd */
9462 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9463 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9464 Operand vals[num_vals];
9465 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9466 if (instr->opcode == aco_opcode::p_linear_phi) {
9467 if (ctx->cf_info.has_branch)
9468 instr->operands.pop_back();
9469 else
9470 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9471 } else if (!is_phi(instr)) {
9472 break;
9473 }
9474 }
9475 }
9476
9477 ctx->cf_info.has_branch = false;
9478
9479 // TODO: if the loop has not a single exit, we must add one °°
9480 /* emit loop successor block */
9481 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9482 append_logical_start(ctx->block);
9483
9484 #if 0
9485 // TODO: check if it is beneficial to not branch on continues
9486 /* trim linear phis in loop header */
9487 for (auto&& instr : loop_entry->instructions) {
9488 if (instr->opcode == aco_opcode::p_linear_phi) {
9489 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9490 new_phi->definitions[0] = instr->definitions[0];
9491 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9492 new_phi->operands[i] = instr->operands[i];
9493 /* check that the remaining operands are all the same */
9494 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9495 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9496 instr.swap(new_phi);
9497 } else if (instr->opcode == aco_opcode::p_phi) {
9498 continue;
9499 } else {
9500 break;
9501 }
9502 }
9503 #endif
9504 }
9505
9506 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9507 {
9508 ic->cond = cond;
9509
9510 append_logical_end(ctx->block);
9511 ctx->block->kind |= block_kind_branch;
9512
9513 /* branch to linear then block */
9514 assert(cond.regClass() == ctx->program->lane_mask);
9515 aco_ptr<Pseudo_branch_instruction> branch;
9516 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9517 branch->operands[0] = Operand(cond);
9518 ctx->block->instructions.push_back(std::move(branch));
9519
9520 ic->BB_if_idx = ctx->block->index;
9521 ic->BB_invert = Block();
9522 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9523 /* Invert blocks are intentionally not marked as top level because they
9524 * are not part of the logical cfg. */
9525 ic->BB_invert.kind |= block_kind_invert;
9526 ic->BB_endif = Block();
9527 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9528 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9529
9530 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9531 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9532 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9533 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9534 ctx->cf_info.parent_if.is_divergent = true;
9535
9536 /* divergent branches use cbranch_execz */
9537 ctx->cf_info.exec_potentially_empty_discard = false;
9538 ctx->cf_info.exec_potentially_empty_break = false;
9539 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9540
9541 /** emit logical then block */
9542 Block* BB_then_logical = ctx->program->create_and_insert_block();
9543 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9544 add_edge(ic->BB_if_idx, BB_then_logical);
9545 ctx->block = BB_then_logical;
9546 append_logical_start(BB_then_logical);
9547 }
9548
9549 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9550 {
9551 Block *BB_then_logical = ctx->block;
9552 append_logical_end(BB_then_logical);
9553 /* branch from logical then block to invert block */
9554 aco_ptr<Pseudo_branch_instruction> branch;
9555 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9556 BB_then_logical->instructions.emplace_back(std::move(branch));
9557 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9558 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9559 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9560 BB_then_logical->kind |= block_kind_uniform;
9561 assert(!ctx->cf_info.has_branch);
9562 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9563 ctx->cf_info.parent_loop.has_divergent_branch = false;
9564
9565 /** emit linear then block */
9566 Block* BB_then_linear = ctx->program->create_and_insert_block();
9567 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9568 BB_then_linear->kind |= block_kind_uniform;
9569 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9570 /* branch from linear then block to invert block */
9571 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9572 BB_then_linear->instructions.emplace_back(std::move(branch));
9573 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9574
9575 /** emit invert merge block */
9576 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9577 ic->invert_idx = ctx->block->index;
9578
9579 /* branch to linear else block (skip else) */
9580 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9581 branch->operands[0] = Operand(ic->cond);
9582 ctx->block->instructions.push_back(std::move(branch));
9583
9584 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9585 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9586 ic->exec_potentially_empty_break_depth_old =
9587 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9588 /* divergent branches use cbranch_execz */
9589 ctx->cf_info.exec_potentially_empty_discard = false;
9590 ctx->cf_info.exec_potentially_empty_break = false;
9591 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9592
9593 /** emit logical else block */
9594 Block* BB_else_logical = ctx->program->create_and_insert_block();
9595 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9596 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9597 add_linear_edge(ic->invert_idx, BB_else_logical);
9598 ctx->block = BB_else_logical;
9599 append_logical_start(BB_else_logical);
9600 }
9601
9602 static void end_divergent_if(isel_context *ctx, if_context *ic)
9603 {
9604 Block *BB_else_logical = ctx->block;
9605 append_logical_end(BB_else_logical);
9606
9607 /* branch from logical else block to endif block */
9608 aco_ptr<Pseudo_branch_instruction> branch;
9609 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9610 BB_else_logical->instructions.emplace_back(std::move(branch));
9611 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9612 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9613 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9614 BB_else_logical->kind |= block_kind_uniform;
9615
9616 assert(!ctx->cf_info.has_branch);
9617 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9618
9619
9620 /** emit linear else block */
9621 Block* BB_else_linear = ctx->program->create_and_insert_block();
9622 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9623 BB_else_linear->kind |= block_kind_uniform;
9624 add_linear_edge(ic->invert_idx, BB_else_linear);
9625
9626 /* branch from linear else block to endif block */
9627 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9628 BB_else_linear->instructions.emplace_back(std::move(branch));
9629 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9630
9631
9632 /** emit endif merge block */
9633 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9634 append_logical_start(ctx->block);
9635
9636
9637 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9638 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9639 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9640 ctx->cf_info.exec_potentially_empty_break_depth =
9641 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9642 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9643 !ctx->cf_info.parent_if.is_divergent) {
9644 ctx->cf_info.exec_potentially_empty_break = false;
9645 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9646 }
9647 /* uniform control flow never has an empty exec-mask */
9648 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9649 ctx->cf_info.exec_potentially_empty_discard = false;
9650 ctx->cf_info.exec_potentially_empty_break = false;
9651 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9652 }
9653 }
9654
9655 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9656 {
9657 assert(cond.regClass() == s1);
9658
9659 append_logical_end(ctx->block);
9660 ctx->block->kind |= block_kind_uniform;
9661
9662 aco_ptr<Pseudo_branch_instruction> branch;
9663 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9664 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9665 branch->operands[0] = Operand(cond);
9666 branch->operands[0].setFixed(scc);
9667 ctx->block->instructions.emplace_back(std::move(branch));
9668
9669 ic->BB_if_idx = ctx->block->index;
9670 ic->BB_endif = Block();
9671 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9672 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9673
9674 ctx->cf_info.has_branch = false;
9675 ctx->cf_info.parent_loop.has_divergent_branch = false;
9676
9677 /** emit then block */
9678 Block* BB_then = ctx->program->create_and_insert_block();
9679 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9680 add_edge(ic->BB_if_idx, BB_then);
9681 append_logical_start(BB_then);
9682 ctx->block = BB_then;
9683 }
9684
9685 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9686 {
9687 Block *BB_then = ctx->block;
9688
9689 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9690 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9691
9692 if (!ic->uniform_has_then_branch) {
9693 append_logical_end(BB_then);
9694 /* branch from then block to endif block */
9695 aco_ptr<Pseudo_branch_instruction> branch;
9696 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9697 BB_then->instructions.emplace_back(std::move(branch));
9698 add_linear_edge(BB_then->index, &ic->BB_endif);
9699 if (!ic->then_branch_divergent)
9700 add_logical_edge(BB_then->index, &ic->BB_endif);
9701 BB_then->kind |= block_kind_uniform;
9702 }
9703
9704 ctx->cf_info.has_branch = false;
9705 ctx->cf_info.parent_loop.has_divergent_branch = false;
9706
9707 /** emit else block */
9708 Block* BB_else = ctx->program->create_and_insert_block();
9709 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9710 add_edge(ic->BB_if_idx, BB_else);
9711 append_logical_start(BB_else);
9712 ctx->block = BB_else;
9713 }
9714
9715 static void end_uniform_if(isel_context *ctx, if_context *ic)
9716 {
9717 Block *BB_else = ctx->block;
9718
9719 if (!ctx->cf_info.has_branch) {
9720 append_logical_end(BB_else);
9721 /* branch from then block to endif block */
9722 aco_ptr<Pseudo_branch_instruction> branch;
9723 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9724 BB_else->instructions.emplace_back(std::move(branch));
9725 add_linear_edge(BB_else->index, &ic->BB_endif);
9726 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9727 add_logical_edge(BB_else->index, &ic->BB_endif);
9728 BB_else->kind |= block_kind_uniform;
9729 }
9730
9731 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9732 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9733
9734 /** emit endif merge block */
9735 if (!ctx->cf_info.has_branch) {
9736 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9737 append_logical_start(ctx->block);
9738 }
9739 }
9740
9741 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9742 {
9743 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9744 Builder bld(ctx->program, ctx->block);
9745 aco_ptr<Pseudo_branch_instruction> branch;
9746 if_context ic;
9747
9748 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
9749 /**
9750 * Uniform conditionals are represented in the following way*) :
9751 *
9752 * The linear and logical CFG:
9753 * BB_IF
9754 * / \
9755 * BB_THEN (logical) BB_ELSE (logical)
9756 * \ /
9757 * BB_ENDIF
9758 *
9759 * *) Exceptions may be due to break and continue statements within loops
9760 * If a break/continue happens within uniform control flow, it branches
9761 * to the loop exit/entry block. Otherwise, it branches to the next
9762 * merge block.
9763 **/
9764
9765 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9766 assert(cond.regClass() == ctx->program->lane_mask);
9767 cond = bool_to_scalar_condition(ctx, cond);
9768
9769 begin_uniform_if_then(ctx, &ic, cond);
9770 visit_cf_list(ctx, &if_stmt->then_list);
9771
9772 begin_uniform_if_else(ctx, &ic);
9773 visit_cf_list(ctx, &if_stmt->else_list);
9774
9775 end_uniform_if(ctx, &ic);
9776 } else { /* non-uniform condition */
9777 /**
9778 * To maintain a logical and linear CFG without critical edges,
9779 * non-uniform conditionals are represented in the following way*) :
9780 *
9781 * The linear CFG:
9782 * BB_IF
9783 * / \
9784 * BB_THEN (logical) BB_THEN (linear)
9785 * \ /
9786 * BB_INVERT (linear)
9787 * / \
9788 * BB_ELSE (logical) BB_ELSE (linear)
9789 * \ /
9790 * BB_ENDIF
9791 *
9792 * The logical CFG:
9793 * BB_IF
9794 * / \
9795 * BB_THEN (logical) BB_ELSE (logical)
9796 * \ /
9797 * BB_ENDIF
9798 *
9799 * *) Exceptions may be due to break and continue statements within loops
9800 **/
9801
9802 begin_divergent_if_then(ctx, &ic, cond);
9803 visit_cf_list(ctx, &if_stmt->then_list);
9804
9805 begin_divergent_if_else(ctx, &ic);
9806 visit_cf_list(ctx, &if_stmt->else_list);
9807
9808 end_divergent_if(ctx, &ic);
9809 }
9810
9811 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9812 }
9813
9814 static bool visit_cf_list(isel_context *ctx,
9815 struct exec_list *list)
9816 {
9817 foreach_list_typed(nir_cf_node, node, node, list) {
9818 switch (node->type) {
9819 case nir_cf_node_block:
9820 visit_block(ctx, nir_cf_node_as_block(node));
9821 break;
9822 case nir_cf_node_if:
9823 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9824 return true;
9825 break;
9826 case nir_cf_node_loop:
9827 visit_loop(ctx, nir_cf_node_as_loop(node));
9828 break;
9829 default:
9830 unreachable("unimplemented cf list type");
9831 }
9832 }
9833 return false;
9834 }
9835
9836 static void create_null_export(isel_context *ctx)
9837 {
9838 /* Some shader stages always need to have exports.
9839 * So when there is none, we need to add a null export.
9840 */
9841
9842 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9843 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9844 Builder bld(ctx->program, ctx->block);
9845 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9846 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9847 }
9848
9849 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9850 {
9851 assert(ctx->stage == vertex_vs ||
9852 ctx->stage == tess_eval_vs ||
9853 ctx->stage == gs_copy_vs ||
9854 ctx->stage == ngg_vertex_gs ||
9855 ctx->stage == ngg_tess_eval_gs);
9856
9857 int offset = (ctx->stage & sw_tes)
9858 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9859 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9860 uint64_t mask = ctx->outputs.mask[slot];
9861 if (!is_pos && !mask)
9862 return false;
9863 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9864 return false;
9865 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9866 exp->enabled_mask = mask;
9867 for (unsigned i = 0; i < 4; ++i) {
9868 if (mask & (1 << i))
9869 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9870 else
9871 exp->operands[i] = Operand(v1);
9872 }
9873 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9874 * Setting valid_mask=1 prevents it and has no other effect.
9875 */
9876 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9877 exp->done = false;
9878 exp->compressed = false;
9879 if (is_pos)
9880 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9881 else
9882 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9883 ctx->block->instructions.emplace_back(std::move(exp));
9884
9885 return true;
9886 }
9887
9888 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9889 {
9890 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9891 exp->enabled_mask = 0;
9892 for (unsigned i = 0; i < 4; ++i)
9893 exp->operands[i] = Operand(v1);
9894 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9895 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9896 exp->enabled_mask |= 0x1;
9897 }
9898 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9899 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9900 exp->enabled_mask |= 0x4;
9901 }
9902 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9903 if (ctx->options->chip_class < GFX9) {
9904 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9905 exp->enabled_mask |= 0x8;
9906 } else {
9907 Builder bld(ctx->program, ctx->block);
9908
9909 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9910 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9911 if (exp->operands[2].isTemp())
9912 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9913
9914 exp->operands[2] = Operand(out);
9915 exp->enabled_mask |= 0x4;
9916 }
9917 }
9918 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9919 exp->done = false;
9920 exp->compressed = false;
9921 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9922 ctx->block->instructions.emplace_back(std::move(exp));
9923 }
9924
9925 static void create_export_phis(isel_context *ctx)
9926 {
9927 /* Used when exports are needed, but the output temps are defined in a preceding block.
9928 * This function will set up phis in order to access the outputs in the next block.
9929 */
9930
9931 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9932 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9933 ctx->block->instructions.pop_back();
9934
9935 Builder bld(ctx->program, ctx->block);
9936
9937 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9938 uint64_t mask = ctx->outputs.mask[slot];
9939 for (unsigned i = 0; i < 4; ++i) {
9940 if (!(mask & (1 << i)))
9941 continue;
9942
9943 Temp old = ctx->outputs.temps[slot * 4 + i];
9944 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9945 ctx->outputs.temps[slot * 4 + i] = phi;
9946 }
9947 }
9948
9949 bld.insert(std::move(logical_start));
9950 }
9951
9952 static void create_vs_exports(isel_context *ctx)
9953 {
9954 assert(ctx->stage == vertex_vs ||
9955 ctx->stage == tess_eval_vs ||
9956 ctx->stage == gs_copy_vs ||
9957 ctx->stage == ngg_vertex_gs ||
9958 ctx->stage == ngg_tess_eval_gs);
9959
9960 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9961 ? &ctx->program->info->tes.outinfo
9962 : &ctx->program->info->vs.outinfo;
9963
9964 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9965 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9966 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9967 }
9968
9969 if (ctx->options->key.has_multiview_view_index) {
9970 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9971 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9972 }
9973
9974 /* the order these position exports are created is important */
9975 int next_pos = 0;
9976 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9977 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9978 export_vs_psiz_layer_viewport(ctx, &next_pos);
9979 exported_pos = true;
9980 }
9981 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9982 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9983 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9984 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9985
9986 if (ctx->export_clip_dists) {
9987 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9988 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9989 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9990 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9991 }
9992
9993 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9994 if (i < VARYING_SLOT_VAR0 &&
9995 i != VARYING_SLOT_LAYER &&
9996 i != VARYING_SLOT_PRIMITIVE_ID &&
9997 i != VARYING_SLOT_VIEWPORT)
9998 continue;
9999
10000 export_vs_varying(ctx, i, false, NULL);
10001 }
10002
10003 if (!exported_pos)
10004 create_null_export(ctx);
10005 }
10006
10007 static bool export_fs_mrt_z(isel_context *ctx)
10008 {
10009 Builder bld(ctx->program, ctx->block);
10010 unsigned enabled_channels = 0;
10011 bool compr = false;
10012 Operand values[4];
10013
10014 for (unsigned i = 0; i < 4; ++i) {
10015 values[i] = Operand(v1);
10016 }
10017
10018 /* Both stencil and sample mask only need 16-bits. */
10019 if (!ctx->program->info->ps.writes_z &&
10020 (ctx->program->info->ps.writes_stencil ||
10021 ctx->program->info->ps.writes_sample_mask)) {
10022 compr = true; /* COMPR flag */
10023
10024 if (ctx->program->info->ps.writes_stencil) {
10025 /* Stencil should be in X[23:16]. */
10026 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10027 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
10028 enabled_channels |= 0x3;
10029 }
10030
10031 if (ctx->program->info->ps.writes_sample_mask) {
10032 /* SampleMask should be in Y[15:0]. */
10033 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10034 enabled_channels |= 0xc;
10035 }
10036 } else {
10037 if (ctx->program->info->ps.writes_z) {
10038 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
10039 enabled_channels |= 0x1;
10040 }
10041
10042 if (ctx->program->info->ps.writes_stencil) {
10043 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10044 enabled_channels |= 0x2;
10045 }
10046
10047 if (ctx->program->info->ps.writes_sample_mask) {
10048 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10049 enabled_channels |= 0x4;
10050 }
10051 }
10052
10053 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
10054 * writemask component.
10055 */
10056 if (ctx->options->chip_class == GFX6 &&
10057 ctx->options->family != CHIP_OLAND &&
10058 ctx->options->family != CHIP_HAINAN) {
10059 enabled_channels |= 0x1;
10060 }
10061
10062 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10063 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
10064
10065 return true;
10066 }
10067
10068 static bool export_fs_mrt_color(isel_context *ctx, int slot)
10069 {
10070 Builder bld(ctx->program, ctx->block);
10071 unsigned write_mask = ctx->outputs.mask[slot];
10072 Operand values[4];
10073
10074 for (unsigned i = 0; i < 4; ++i) {
10075 if (write_mask & (1 << i)) {
10076 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
10077 } else {
10078 values[i] = Operand(v1);
10079 }
10080 }
10081
10082 unsigned target, col_format;
10083 unsigned enabled_channels = 0;
10084 aco_opcode compr_op = (aco_opcode)0;
10085
10086 slot -= FRAG_RESULT_DATA0;
10087 target = V_008DFC_SQ_EXP_MRT + slot;
10088 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
10089
10090 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
10091 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
10092 bool is_16bit = values[0].regClass() == v2b;
10093
10094 switch (col_format)
10095 {
10096 case V_028714_SPI_SHADER_ZERO:
10097 enabled_channels = 0; /* writemask */
10098 target = V_008DFC_SQ_EXP_NULL;
10099 break;
10100
10101 case V_028714_SPI_SHADER_32_R:
10102 enabled_channels = 1;
10103 break;
10104
10105 case V_028714_SPI_SHADER_32_GR:
10106 enabled_channels = 0x3;
10107 break;
10108
10109 case V_028714_SPI_SHADER_32_AR:
10110 if (ctx->options->chip_class >= GFX10) {
10111 /* Special case: on GFX10, the outputs are different for 32_AR */
10112 enabled_channels = 0x3;
10113 values[1] = values[3];
10114 values[3] = Operand(v1);
10115 } else {
10116 enabled_channels = 0x9;
10117 }
10118 break;
10119
10120 case V_028714_SPI_SHADER_FP16_ABGR:
10121 enabled_channels = 0x5;
10122 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
10123 if (is_16bit) {
10124 if (ctx->options->chip_class >= GFX9) {
10125 /* Pack the FP16 values together instead of converting them to
10126 * FP32 and back to FP16.
10127 * TODO: use p_create_vector and let the compiler optimizes.
10128 */
10129 compr_op = aco_opcode::v_pack_b32_f16;
10130 } else {
10131 for (unsigned i = 0; i < 4; i++) {
10132 if ((write_mask >> i) & 1)
10133 values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
10134 }
10135 }
10136 }
10137 break;
10138
10139 case V_028714_SPI_SHADER_UNORM16_ABGR:
10140 enabled_channels = 0x5;
10141 if (is_16bit && ctx->options->chip_class >= GFX9) {
10142 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
10143 } else {
10144 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
10145 }
10146 break;
10147
10148 case V_028714_SPI_SHADER_SNORM16_ABGR:
10149 enabled_channels = 0x5;
10150 if (is_16bit && ctx->options->chip_class >= GFX9) {
10151 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
10152 } else {
10153 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10154 }
10155 break;
10156
10157 case V_028714_SPI_SHADER_UINT16_ABGR: {
10158 enabled_channels = 0x5;
10159 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10160 if (is_int8 || is_int10) {
10161 /* clamp */
10162 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10163 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10164
10165 for (unsigned i = 0; i < 4; i++) {
10166 if ((write_mask >> i) & 1) {
10167 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10168 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10169 values[i]);
10170 }
10171 }
10172 } else if (is_16bit) {
10173 for (unsigned i = 0; i < 4; i++) {
10174 if ((write_mask >> i) & 1) {
10175 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10176 values[i] = Operand(tmp);
10177 }
10178 }
10179 }
10180 break;
10181 }
10182
10183 case V_028714_SPI_SHADER_SINT16_ABGR:
10184 enabled_channels = 0x5;
10185 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10186 if (is_int8 || is_int10) {
10187 /* clamp */
10188 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10189 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10190 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10191 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10192
10193 for (unsigned i = 0; i < 4; i++) {
10194 if ((write_mask >> i) & 1) {
10195 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10196 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10197 values[i]);
10198 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10199 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10200 values[i]);
10201 }
10202 }
10203 } else if (is_16bit) {
10204 for (unsigned i = 0; i < 4; i++) {
10205 if ((write_mask >> i) & 1) {
10206 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10207 values[i] = Operand(tmp);
10208 }
10209 }
10210 }
10211 break;
10212
10213 case V_028714_SPI_SHADER_32_ABGR:
10214 enabled_channels = 0xF;
10215 break;
10216
10217 default:
10218 break;
10219 }
10220
10221 if (target == V_008DFC_SQ_EXP_NULL)
10222 return false;
10223
10224 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10225 if (ctx->options->enable_mrt_output_nan_fixup &&
10226 !is_16bit &&
10227 (col_format == V_028714_SPI_SHADER_32_R ||
10228 col_format == V_028714_SPI_SHADER_32_GR ||
10229 col_format == V_028714_SPI_SHADER_32_AR ||
10230 col_format == V_028714_SPI_SHADER_32_ABGR ||
10231 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10232 for (int i = 0; i < 4; i++) {
10233 if (!(write_mask & (1 << i)))
10234 continue;
10235
10236 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10237 bld.hint_vcc(bld.def(bld.lm)), values[i],
10238 bld.copy(bld.def(v1), Operand(3u)));
10239 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10240 bld.copy(bld.def(v1), Operand(0u)), isnan);
10241 }
10242 }
10243
10244 if ((bool) compr_op) {
10245 for (int i = 0; i < 2; i++) {
10246 /* check if at least one of the values to be compressed is enabled */
10247 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10248 if (enabled) {
10249 enabled_channels |= enabled << (i*2);
10250 values[i] = bld.vop3(compr_op, bld.def(v1),
10251 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10252 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10253 } else {
10254 values[i] = Operand(v1);
10255 }
10256 }
10257 values[2] = Operand(v1);
10258 values[3] = Operand(v1);
10259 } else {
10260 for (int i = 0; i < 4; i++)
10261 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10262 }
10263
10264 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10265 enabled_channels, target, (bool) compr_op);
10266 return true;
10267 }
10268
10269 static void create_fs_exports(isel_context *ctx)
10270 {
10271 bool exported = false;
10272
10273 /* Export depth, stencil and sample mask. */
10274 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10275 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10276 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10277 exported |= export_fs_mrt_z(ctx);
10278
10279 /* Export all color render targets. */
10280 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10281 if (ctx->outputs.mask[i])
10282 exported |= export_fs_mrt_color(ctx, i);
10283
10284 if (!exported)
10285 create_null_export(ctx);
10286 }
10287
10288 static void write_tcs_tess_factors(isel_context *ctx)
10289 {
10290 unsigned outer_comps;
10291 unsigned inner_comps;
10292
10293 switch (ctx->args->options->key.tcs.primitive_mode) {
10294 case GL_ISOLINES:
10295 outer_comps = 2;
10296 inner_comps = 0;
10297 break;
10298 case GL_TRIANGLES:
10299 outer_comps = 3;
10300 inner_comps = 1;
10301 break;
10302 case GL_QUADS:
10303 outer_comps = 4;
10304 inner_comps = 2;
10305 break;
10306 default:
10307 return;
10308 }
10309
10310 Builder bld(ctx->program, ctx->block);
10311
10312 bld.barrier(aco_opcode::p_memory_barrier_shared);
10313 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10314 bld.sopp(aco_opcode::s_barrier);
10315
10316 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10317 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10318
10319 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10320 if_context ic_invocation_id_is_zero;
10321 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10322 bld.reset(ctx->block);
10323
10324 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10325
10326 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10327 unsigned stride = inner_comps + outer_comps;
10328 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10329 Temp tf_inner_vec;
10330 Temp tf_outer_vec;
10331 Temp out[6];
10332 assert(stride <= (sizeof(out) / sizeof(Temp)));
10333
10334 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10335 // LINES reversal
10336 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10337 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10338 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10339 } else {
10340 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10341 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10342
10343 for (unsigned i = 0; i < outer_comps; ++i)
10344 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10345 for (unsigned i = 0; i < inner_comps; ++i)
10346 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10347 }
10348
10349 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10350 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10351 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10352 unsigned tf_const_offset = 0;
10353
10354 if (ctx->program->chip_class <= GFX8) {
10355 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10356 if_context ic_rel_patch_id_is_zero;
10357 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10358 bld.reset(ctx->block);
10359
10360 /* Store the dynamic HS control word. */
10361 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10362 bld.mubuf(aco_opcode::buffer_store_dword,
10363 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10364 /* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false,
10365 /* addr64 */ false, /* disable_wqm */ false, /* glc */ true);
10366 tf_const_offset += 4;
10367
10368 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10369 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10370 bld.reset(ctx->block);
10371 }
10372
10373 assert(stride == 2 || stride == 4 || stride == 6);
10374 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10375 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10376
10377 /* Store to offchip for TES to read - only if TES reads them */
10378 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10379 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10380 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10381
10382 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10383 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10384
10385 if (likely(inner_comps)) {
10386 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10387 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10388 }
10389 }
10390
10391 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10392 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10393 }
10394
10395 static void emit_stream_output(isel_context *ctx,
10396 Temp const *so_buffers,
10397 Temp const *so_write_offset,
10398 const struct radv_stream_output *output)
10399 {
10400 unsigned num_comps = util_bitcount(output->component_mask);
10401 unsigned writemask = (1 << num_comps) - 1;
10402 unsigned loc = output->location;
10403 unsigned buf = output->buffer;
10404
10405 assert(num_comps && num_comps <= 4);
10406 if (!num_comps || num_comps > 4)
10407 return;
10408
10409 unsigned start = ffs(output->component_mask) - 1;
10410
10411 Temp out[4];
10412 bool all_undef = true;
10413 assert(ctx->stage & hw_vs);
10414 for (unsigned i = 0; i < num_comps; i++) {
10415 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10416 all_undef = all_undef && !out[i].id();
10417 }
10418 if (all_undef)
10419 return;
10420
10421 while (writemask) {
10422 int start, count;
10423 u_bit_scan_consecutive_range(&writemask, &start, &count);
10424 if (count == 3 && ctx->options->chip_class == GFX6) {
10425 /* GFX6 doesn't support storing vec3, split it. */
10426 writemask |= 1u << (start + 2);
10427 count = 2;
10428 }
10429
10430 unsigned offset = output->offset + start * 4;
10431
10432 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10433 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10434 for (int i = 0; i < count; ++i)
10435 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10436 vec->definitions[0] = Definition(write_data);
10437 ctx->block->instructions.emplace_back(std::move(vec));
10438
10439 aco_opcode opcode;
10440 switch (count) {
10441 case 1:
10442 opcode = aco_opcode::buffer_store_dword;
10443 break;
10444 case 2:
10445 opcode = aco_opcode::buffer_store_dwordx2;
10446 break;
10447 case 3:
10448 opcode = aco_opcode::buffer_store_dwordx3;
10449 break;
10450 case 4:
10451 opcode = aco_opcode::buffer_store_dwordx4;
10452 break;
10453 default:
10454 unreachable("Unsupported dword count.");
10455 }
10456
10457 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10458 store->operands[0] = Operand(so_buffers[buf]);
10459 store->operands[1] = Operand(so_write_offset[buf]);
10460 store->operands[2] = Operand((uint32_t) 0);
10461 store->operands[3] = Operand(write_data);
10462 if (offset > 4095) {
10463 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10464 Builder bld(ctx->program, ctx->block);
10465 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10466 } else {
10467 store->offset = offset;
10468 }
10469 store->offen = true;
10470 store->glc = true;
10471 store->dlc = false;
10472 store->slc = true;
10473 store->can_reorder = true;
10474 ctx->block->instructions.emplace_back(std::move(store));
10475 }
10476 }
10477
10478 static void emit_streamout(isel_context *ctx, unsigned stream)
10479 {
10480 Builder bld(ctx->program, ctx->block);
10481
10482 Temp so_buffers[4];
10483 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10484 for (unsigned i = 0; i < 4; i++) {
10485 unsigned stride = ctx->program->info->so.strides[i];
10486 if (!stride)
10487 continue;
10488
10489 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10490 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10491 }
10492
10493 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10494 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10495
10496 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10497
10498 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10499
10500 if_context ic;
10501 begin_divergent_if_then(ctx, &ic, can_emit);
10502
10503 bld.reset(ctx->block);
10504
10505 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10506
10507 Temp so_write_offset[4];
10508
10509 for (unsigned i = 0; i < 4; i++) {
10510 unsigned stride = ctx->program->info->so.strides[i];
10511 if (!stride)
10512 continue;
10513
10514 if (stride == 1) {
10515 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10516 get_arg(ctx, ctx->args->streamout_write_idx),
10517 get_arg(ctx, ctx->args->streamout_offset[i]));
10518 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10519
10520 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10521 } else {
10522 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10523 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10524 get_arg(ctx, ctx->args->streamout_offset[i]));
10525 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10526 }
10527 }
10528
10529 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10530 struct radv_stream_output *output =
10531 &ctx->program->info->so.outputs[i];
10532 if (stream != output->stream)
10533 continue;
10534
10535 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10536 }
10537
10538 begin_divergent_if_else(ctx, &ic);
10539 end_divergent_if(ctx, &ic);
10540 }
10541
10542 } /* end namespace */
10543
10544 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10545 {
10546 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10547 Builder bld(ctx->program, ctx->block);
10548 constexpr unsigned hs_idx = 1u;
10549 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10550 get_arg(ctx, ctx->args->merged_wave_info),
10551 Operand((8u << 16) | (hs_idx * 8u)));
10552 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10553
10554 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10555
10556 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10557 get_arg(ctx, ctx->args->rel_auto_id),
10558 get_arg(ctx, ctx->args->ac.instance_id),
10559 ls_has_nonzero_hs_threads);
10560 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10561 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10562 get_arg(ctx, ctx->args->rel_auto_id),
10563 ls_has_nonzero_hs_threads);
10564 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10565 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10566 get_arg(ctx, ctx->args->ac.vertex_id),
10567 ls_has_nonzero_hs_threads);
10568
10569 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10570 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10571 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10572 }
10573
10574 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10575 {
10576 /* Split all arguments except for the first (ring_offsets) and the last
10577 * (exec) so that the dead channels don't stay live throughout the program.
10578 */
10579 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10580 if (startpgm->definitions[i].regClass().size() > 1) {
10581 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10582 startpgm->definitions[i].regClass().size());
10583 }
10584 }
10585 }
10586
10587 void handle_bc_optimize(isel_context *ctx)
10588 {
10589 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10590 Builder bld(ctx->program, ctx->block);
10591 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10592 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10593 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10594 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10595 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10596 if (uses_center && uses_centroid) {
10597 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10598 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10599
10600 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10601 Temp new_coord[2];
10602 for (unsigned i = 0; i < 2; i++) {
10603 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10604 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10605 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10606 persp_centroid, persp_center, sel);
10607 }
10608 ctx->persp_centroid = bld.tmp(v2);
10609 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10610 Operand(new_coord[0]), Operand(new_coord[1]));
10611 emit_split_vector(ctx, ctx->persp_centroid, 2);
10612 }
10613
10614 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10615 Temp new_coord[2];
10616 for (unsigned i = 0; i < 2; i++) {
10617 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10618 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10619 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10620 linear_centroid, linear_center, sel);
10621 }
10622 ctx->linear_centroid = bld.tmp(v2);
10623 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10624 Operand(new_coord[0]), Operand(new_coord[1]));
10625 emit_split_vector(ctx, ctx->linear_centroid, 2);
10626 }
10627 }
10628 }
10629
10630 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10631 {
10632 Program *program = ctx->program;
10633
10634 unsigned float_controls = shader->info.float_controls_execution_mode;
10635
10636 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10637 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10638 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10639 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10640 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10641
10642 program->next_fp_mode.must_flush_denorms32 =
10643 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10644 program->next_fp_mode.must_flush_denorms16_64 =
10645 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10646 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10647
10648 program->next_fp_mode.care_about_round32 =
10649 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10650
10651 program->next_fp_mode.care_about_round16_64 =
10652 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10653 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10654
10655 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
10656 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
10657 if (program->next_fp_mode.must_flush_denorms16_64)
10658 program->next_fp_mode.denorm16_64 = 0;
10659 else
10660 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10661
10662 /* preserving fp32 denorms is expensive, so only do it if asked */
10663 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10664 program->next_fp_mode.denorm32 = fp_denorm_keep;
10665 else
10666 program->next_fp_mode.denorm32 = 0;
10667
10668 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10669 program->next_fp_mode.round32 = fp_round_tz;
10670 else
10671 program->next_fp_mode.round32 = fp_round_ne;
10672
10673 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10674 program->next_fp_mode.round16_64 = fp_round_tz;
10675 else
10676 program->next_fp_mode.round16_64 = fp_round_ne;
10677
10678 ctx->block->fp_mode = program->next_fp_mode;
10679 }
10680
10681 void cleanup_cfg(Program *program)
10682 {
10683 /* create linear_succs/logical_succs */
10684 for (Block& BB : program->blocks) {
10685 for (unsigned idx : BB.linear_preds)
10686 program->blocks[idx].linear_succs.emplace_back(BB.index);
10687 for (unsigned idx : BB.logical_preds)
10688 program->blocks[idx].logical_succs.emplace_back(BB.index);
10689 }
10690 }
10691
10692 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10693 {
10694 Builder bld(ctx->program, ctx->block);
10695
10696 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10697 Temp count = i == 0
10698 ? get_arg(ctx, ctx->args->merged_wave_info)
10699 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10700 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10701
10702 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10703 Temp cond;
10704
10705 if (ctx->program->wave_size == 64) {
10706 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10707 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10708 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10709 } else {
10710 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10711 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10712 }
10713
10714 return cond;
10715 }
10716
10717 bool ngg_early_prim_export(isel_context *ctx)
10718 {
10719 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10720 return true;
10721 }
10722
10723 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10724 {
10725 Builder bld(ctx->program, ctx->block);
10726
10727 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10728 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10729
10730 /* Get the id of the current wave within the threadgroup (workgroup) */
10731 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10732 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10733
10734 /* Execute the following code only on the first wave (wave id 0),
10735 * use the SCC def to tell if the wave id is zero or not.
10736 */
10737 Temp cond = wave_id_in_tg.def(1).getTemp();
10738 if_context ic;
10739 begin_uniform_if_then(ctx, &ic, cond);
10740 begin_uniform_if_else(ctx, &ic);
10741 bld.reset(ctx->block);
10742
10743 /* Number of vertices output by VS/TES */
10744 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10745 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10746 /* Number of primitives output by VS/TES */
10747 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10748 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10749
10750 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10751 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10752 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10753
10754 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10755 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10756
10757 end_uniform_if(ctx, &ic);
10758
10759 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10760 bld.reset(ctx->block);
10761 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10762 }
10763
10764 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10765 {
10766 Builder bld(ctx->program, ctx->block);
10767
10768 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10769 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10770 }
10771
10772 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10773 Temp tmp;
10774
10775 for (unsigned i = 0; i < num_vertices; ++i) {
10776 assert(vtxindex[i].id());
10777
10778 if (i)
10779 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10780 else
10781 tmp = vtxindex[i];
10782
10783 /* The initial edge flag is always false in tess eval shaders. */
10784 if (ctx->stage == ngg_vertex_gs) {
10785 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10786 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10787 }
10788 }
10789
10790 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10791
10792 return tmp;
10793 }
10794
10795 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10796 {
10797 Builder bld(ctx->program, ctx->block);
10798 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10799
10800 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10801 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10802 false /* compressed */, true/* done */, false /* valid mask */);
10803 }
10804
10805 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10806 {
10807 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10808 * These must always come before VS exports.
10809 *
10810 * It is recommended to do these as early as possible. They can be at the beginning when
10811 * there is no SW GS and the shader doesn't write edge flags.
10812 */
10813
10814 if_context ic;
10815 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10816 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10817
10818 Builder bld(ctx->program, ctx->block);
10819 constexpr unsigned max_vertices_per_primitive = 3;
10820 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10821
10822 if (ctx->stage == ngg_vertex_gs) {
10823 /* TODO: optimize for points & lines */
10824 } else if (ctx->stage == ngg_tess_eval_gs) {
10825 if (ctx->shader->info.tess.point_mode)
10826 num_vertices_per_primitive = 1;
10827 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10828 num_vertices_per_primitive = 2;
10829 } else {
10830 unreachable("Unsupported NGG shader stage");
10831 }
10832
10833 Temp vtxindex[max_vertices_per_primitive];
10834 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10835 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10836 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10837 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10838 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10839 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10840 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10841 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10842
10843 /* Export primitive data to the index buffer. */
10844 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10845
10846 /* Export primitive ID. */
10847 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10848 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10849 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10850 Temp provoking_vtx_index = vtxindex[0];
10851 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10852
10853 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10854 }
10855
10856 begin_divergent_if_else(ctx, &ic);
10857 end_divergent_if(ctx, &ic);
10858 }
10859
10860 void ngg_emit_nogs_output(isel_context *ctx)
10861 {
10862 /* Emits NGG GS output, for stages that don't have SW GS. */
10863
10864 if_context ic;
10865 Builder bld(ctx->program, ctx->block);
10866 bool late_prim_export = !ngg_early_prim_export(ctx);
10867
10868 /* NGG streamout is currently disabled by default. */
10869 assert(!ctx->args->shader_info->so.num_outputs);
10870
10871 if (late_prim_export) {
10872 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10873 create_export_phis(ctx);
10874 /* Do what we need to do in the GS threads. */
10875 ngg_emit_nogs_gsthreads(ctx);
10876
10877 /* What comes next should be executed on ES threads. */
10878 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10879 begin_divergent_if_then(ctx, &ic, is_es_thread);
10880 bld.reset(ctx->block);
10881 }
10882
10883 /* Export VS outputs */
10884 ctx->block->kind |= block_kind_export_end;
10885 create_vs_exports(ctx);
10886
10887 /* Export primitive ID */
10888 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10889 Temp prim_id;
10890
10891 if (ctx->stage == ngg_vertex_gs) {
10892 /* Wait for GS threads to store primitive ID in LDS. */
10893 bld.barrier(aco_opcode::p_memory_barrier_shared);
10894 bld.sopp(aco_opcode::s_barrier);
10895
10896 /* Calculate LDS address where the GS threads stored the primitive ID. */
10897 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10898 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10899 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10900 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10901 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10902 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10903
10904 /* Load primitive ID from LDS. */
10905 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10906 } else if (ctx->stage == ngg_tess_eval_gs) {
10907 /* TES: Just use the patch ID as the primitive ID. */
10908 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10909 } else {
10910 unreachable("unsupported NGG shader stage.");
10911 }
10912
10913 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10914 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10915
10916 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10917 }
10918
10919 if (late_prim_export) {
10920 begin_divergent_if_else(ctx, &ic);
10921 end_divergent_if(ctx, &ic);
10922 bld.reset(ctx->block);
10923 }
10924 }
10925
10926 void select_program(Program *program,
10927 unsigned shader_count,
10928 struct nir_shader *const *shaders,
10929 ac_shader_config* config,
10930 struct radv_shader_args *args)
10931 {
10932 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10933 if_context ic_merged_wave_info;
10934 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10935
10936 for (unsigned i = 0; i < shader_count; i++) {
10937 nir_shader *nir = shaders[i];
10938 init_context(&ctx, nir);
10939
10940 setup_fp_mode(&ctx, nir);
10941
10942 if (!i) {
10943 /* needs to be after init_context() for FS */
10944 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10945 append_logical_start(ctx.block);
10946
10947 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10948 fix_ls_vgpr_init_bug(&ctx, startpgm);
10949
10950 split_arguments(&ctx, startpgm);
10951 }
10952
10953 if (ngg_no_gs) {
10954 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10955
10956 if (ngg_early_prim_export(&ctx))
10957 ngg_emit_nogs_gsthreads(&ctx);
10958 }
10959
10960 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10961 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10962 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10963 ((nir->info.stage == MESA_SHADER_VERTEX &&
10964 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10965 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10966 ctx.stage == tess_eval_geometry_gs));
10967
10968 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10969 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10970 if (check_merged_wave_info) {
10971 Temp cond = merged_wave_info_to_mask(&ctx, i);
10972 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10973 }
10974
10975 if (i) {
10976 Builder bld(ctx.program, ctx.block);
10977
10978 bld.barrier(aco_opcode::p_memory_barrier_shared);
10979 bld.sopp(aco_opcode::s_barrier);
10980
10981 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10982 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10983 }
10984 } else if (ctx.stage == geometry_gs)
10985 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10986
10987 if (ctx.stage == fragment_fs)
10988 handle_bc_optimize(&ctx);
10989
10990 visit_cf_list(&ctx, &func->body);
10991
10992 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10993 emit_streamout(&ctx, 0);
10994
10995 if (ctx.stage & hw_vs) {
10996 create_vs_exports(&ctx);
10997 ctx.block->kind |= block_kind_export_end;
10998 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10999 ngg_emit_nogs_output(&ctx);
11000 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
11001 Builder bld(ctx.program, ctx.block);
11002 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
11003 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
11004 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
11005 write_tcs_tess_factors(&ctx);
11006 }
11007
11008 if (ctx.stage == fragment_fs) {
11009 create_fs_exports(&ctx);
11010 ctx.block->kind |= block_kind_export_end;
11011 }
11012
11013 if (endif_merged_wave_info) {
11014 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
11015 end_divergent_if(&ctx, &ic_merged_wave_info);
11016 }
11017
11018 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
11019 ngg_emit_nogs_output(&ctx);
11020
11021 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
11022 /* Outputs of the previous stage are inputs to the next stage */
11023 ctx.inputs = ctx.outputs;
11024 ctx.outputs = shader_io_state();
11025 }
11026 }
11027
11028 program->config->float_mode = program->blocks[0].fp_mode.val;
11029
11030 append_logical_end(ctx.block);
11031 ctx.block->kind |= block_kind_uniform;
11032 Builder bld(ctx.program, ctx.block);
11033 if (ctx.program->wb_smem_l1_on_end)
11034 bld.smem(aco_opcode::s_dcache_wb, false);
11035 bld.sopp(aco_opcode::s_endpgm);
11036
11037 cleanup_cfg(program);
11038 }
11039
11040 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
11041 ac_shader_config* config,
11042 struct radv_shader_args *args)
11043 {
11044 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
11045
11046 ctx.block->fp_mode = program->next_fp_mode;
11047
11048 add_startpgm(&ctx);
11049 append_logical_start(ctx.block);
11050
11051 Builder bld(ctx.program, ctx.block);
11052
11053 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
11054
11055 Operand stream_id(0u);
11056 if (args->shader_info->so.num_outputs)
11057 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11058 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
11059
11060 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
11061
11062 std::stack<Block> endif_blocks;
11063
11064 for (unsigned stream = 0; stream < 4; stream++) {
11065 if (stream_id.isConstant() && stream != stream_id.constantValue())
11066 continue;
11067
11068 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
11069 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
11070 continue;
11071
11072 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
11073
11074 unsigned BB_if_idx = ctx.block->index;
11075 Block BB_endif = Block();
11076 if (!stream_id.isConstant()) {
11077 /* begin IF */
11078 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
11079 append_logical_end(ctx.block);
11080 ctx.block->kind |= block_kind_uniform;
11081 bld.branch(aco_opcode::p_cbranch_z, cond);
11082
11083 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
11084
11085 ctx.block = ctx.program->create_and_insert_block();
11086 add_edge(BB_if_idx, ctx.block);
11087 bld.reset(ctx.block);
11088 append_logical_start(ctx.block);
11089 }
11090
11091 unsigned offset = 0;
11092 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
11093 if (args->shader_info->gs.output_streams[i] != stream)
11094 continue;
11095
11096 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
11097 unsigned length = util_last_bit(output_usage_mask);
11098 for (unsigned j = 0; j < length; ++j) {
11099 if (!(output_usage_mask & (1 << j)))
11100 continue;
11101
11102 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
11103 Temp voffset = vtx_offset;
11104 if (const_offset >= 4096u) {
11105 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
11106 const_offset %= 4096u;
11107 }
11108
11109 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
11110 mubuf->definitions[0] = bld.def(v1);
11111 mubuf->operands[0] = Operand(gsvs_ring);
11112 mubuf->operands[1] = Operand(voffset);
11113 mubuf->operands[2] = Operand(0u);
11114 mubuf->offen = true;
11115 mubuf->offset = const_offset;
11116 mubuf->glc = true;
11117 mubuf->slc = true;
11118 mubuf->dlc = args->options->chip_class >= GFX10;
11119 mubuf->barrier = barrier_none;
11120 mubuf->can_reorder = true;
11121
11122 ctx.outputs.mask[i] |= 1 << j;
11123 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
11124
11125 bld.insert(std::move(mubuf));
11126
11127 offset++;
11128 }
11129 }
11130
11131 if (args->shader_info->so.num_outputs) {
11132 emit_streamout(&ctx, stream);
11133 bld.reset(ctx.block);
11134 }
11135
11136 if (stream == 0) {
11137 create_vs_exports(&ctx);
11138 ctx.block->kind |= block_kind_export_end;
11139 }
11140
11141 if (!stream_id.isConstant()) {
11142 append_logical_end(ctx.block);
11143
11144 /* branch from then block to endif block */
11145 bld.branch(aco_opcode::p_branch);
11146 add_edge(ctx.block->index, &BB_endif);
11147 ctx.block->kind |= block_kind_uniform;
11148
11149 /* emit else block */
11150 ctx.block = ctx.program->create_and_insert_block();
11151 add_edge(BB_if_idx, ctx.block);
11152 bld.reset(ctx.block);
11153 append_logical_start(ctx.block);
11154
11155 endif_blocks.push(std::move(BB_endif));
11156 }
11157 }
11158
11159 while (!endif_blocks.empty()) {
11160 Block BB_endif = std::move(endif_blocks.top());
11161 endif_blocks.pop();
11162
11163 Block *BB_else = ctx.block;
11164
11165 append_logical_end(BB_else);
11166 /* branch from else block to endif block */
11167 bld.branch(aco_opcode::p_branch);
11168 add_edge(BB_else->index, &BB_endif);
11169 BB_else->kind |= block_kind_uniform;
11170
11171 /** emit endif merge block */
11172 ctx.block = program->insert_block(std::move(BB_endif));
11173 bld.reset(ctx.block);
11174 append_logical_start(ctx.block);
11175 }
11176
11177 program->config->float_mode = program->blocks[0].fp_mode.val;
11178
11179 append_logical_end(ctx.block);
11180 ctx.block->kind |= block_kind_uniform;
11181 bld.sopp(aco_opcode::s_endpgm);
11182
11183 cleanup_cfg(program);
11184 }
11185 }