aco: implement nir_op_b2f16/nir_op_i2f16/nir_op_u2f16
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else if (src0.type() == RegType::vgpr &&
565 op != aco_opcode::v_madmk_f32 &&
566 op != aco_opcode::v_madak_f32 &&
567 op != aco_opcode::v_madmk_f16 &&
568 op != aco_opcode::v_madak_f16) {
569 /* If the instruction is not commutative, we emit a VOP3A instruction */
570 bld.vop2_e64(op, Definition(dst), src0, src1);
571 return;
572 } else {
573 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
574 }
575 }
576
577 if (flush_denorms && ctx->program->chip_class < GFX9) {
578 assert(dst.size() == 1);
579 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
580 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
581 } else {
582 bld.vop2(op, Definition(dst), src0, src1);
583 }
584 }
585
586 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
587 bool flush_denorms = false)
588 {
589 Temp src0 = get_alu_src(ctx, instr->src[0]);
590 Temp src1 = get_alu_src(ctx, instr->src[1]);
591 Temp src2 = get_alu_src(ctx, instr->src[2]);
592
593 /* ensure that the instruction has at most 1 sgpr operand
594 * The optimizer will inline constants for us */
595 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
596 src0 = as_vgpr(ctx, src0);
597 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
598 src1 = as_vgpr(ctx, src1);
599 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
600 src2 = as_vgpr(ctx, src2);
601
602 Builder bld(ctx->program, ctx->block);
603 if (flush_denorms && ctx->program->chip_class < GFX9) {
604 assert(dst.size() == 1);
605 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
606 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
607 } else {
608 bld.vop3(op, Definition(dst), src0, src1, src2);
609 }
610 }
611
612 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
613 {
614 Builder bld(ctx->program, ctx->block);
615 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
616 }
617
618 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
619 {
620 Temp src0 = get_alu_src(ctx, instr->src[0]);
621 Temp src1 = get_alu_src(ctx, instr->src[1]);
622 assert(src0.size() == src1.size());
623
624 aco_ptr<Instruction> vopc;
625 if (src1.type() == RegType::sgpr) {
626 if (src0.type() == RegType::vgpr) {
627 /* to swap the operands, we might also have to change the opcode */
628 switch (op) {
629 case aco_opcode::v_cmp_lt_f16:
630 op = aco_opcode::v_cmp_gt_f16;
631 break;
632 case aco_opcode::v_cmp_ge_f16:
633 op = aco_opcode::v_cmp_le_f16;
634 break;
635 case aco_opcode::v_cmp_lt_i16:
636 op = aco_opcode::v_cmp_gt_i16;
637 break;
638 case aco_opcode::v_cmp_ge_i16:
639 op = aco_opcode::v_cmp_le_i16;
640 break;
641 case aco_opcode::v_cmp_lt_u16:
642 op = aco_opcode::v_cmp_gt_u16;
643 break;
644 case aco_opcode::v_cmp_ge_u16:
645 op = aco_opcode::v_cmp_le_u16;
646 break;
647 case aco_opcode::v_cmp_lt_f32:
648 op = aco_opcode::v_cmp_gt_f32;
649 break;
650 case aco_opcode::v_cmp_ge_f32:
651 op = aco_opcode::v_cmp_le_f32;
652 break;
653 case aco_opcode::v_cmp_lt_i32:
654 op = aco_opcode::v_cmp_gt_i32;
655 break;
656 case aco_opcode::v_cmp_ge_i32:
657 op = aco_opcode::v_cmp_le_i32;
658 break;
659 case aco_opcode::v_cmp_lt_u32:
660 op = aco_opcode::v_cmp_gt_u32;
661 break;
662 case aco_opcode::v_cmp_ge_u32:
663 op = aco_opcode::v_cmp_le_u32;
664 break;
665 case aco_opcode::v_cmp_lt_f64:
666 op = aco_opcode::v_cmp_gt_f64;
667 break;
668 case aco_opcode::v_cmp_ge_f64:
669 op = aco_opcode::v_cmp_le_f64;
670 break;
671 case aco_opcode::v_cmp_lt_i64:
672 op = aco_opcode::v_cmp_gt_i64;
673 break;
674 case aco_opcode::v_cmp_ge_i64:
675 op = aco_opcode::v_cmp_le_i64;
676 break;
677 case aco_opcode::v_cmp_lt_u64:
678 op = aco_opcode::v_cmp_gt_u64;
679 break;
680 case aco_opcode::v_cmp_ge_u64:
681 op = aco_opcode::v_cmp_le_u64;
682 break;
683 default: /* eq and ne are commutative */
684 break;
685 }
686 Temp t = src0;
687 src0 = src1;
688 src1 = t;
689 } else {
690 src1 = as_vgpr(ctx, src1);
691 }
692 }
693
694 Builder bld(ctx->program, ctx->block);
695 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
696 }
697
698 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
699 {
700 Temp src0 = get_alu_src(ctx, instr->src[0]);
701 Temp src1 = get_alu_src(ctx, instr->src[1]);
702 Builder bld(ctx->program, ctx->block);
703
704 assert(dst.regClass() == bld.lm);
705 assert(src0.type() == RegType::sgpr);
706 assert(src1.type() == RegType::sgpr);
707 assert(src0.regClass() == src1.regClass());
708
709 /* Emit the SALU comparison instruction */
710 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
711 /* Turn the result into a per-lane bool */
712 bool_to_vector_condition(ctx, cmp, dst);
713 }
714
715 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
716 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
717 {
718 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
719 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
720 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
721 bool use_valu = s_op == aco_opcode::num_opcodes ||
722 divergent_vals ||
723 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
724 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
725 aco_opcode op = use_valu ? v_op : s_op;
726 assert(op != aco_opcode::num_opcodes);
727 assert(dst.regClass() == ctx->program->lane_mask);
728
729 if (use_valu)
730 emit_vopc_instruction(ctx, instr, op, dst);
731 else
732 emit_sopc_instruction(ctx, instr, op, dst);
733 }
734
735 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
736 {
737 Builder bld(ctx->program, ctx->block);
738 Temp src0 = get_alu_src(ctx, instr->src[0]);
739 Temp src1 = get_alu_src(ctx, instr->src[1]);
740
741 assert(dst.regClass() == bld.lm);
742 assert(src0.regClass() == bld.lm);
743 assert(src1.regClass() == bld.lm);
744
745 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
746 }
747
748 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
749 {
750 Builder bld(ctx->program, ctx->block);
751 Temp cond = get_alu_src(ctx, instr->src[0]);
752 Temp then = get_alu_src(ctx, instr->src[1]);
753 Temp els = get_alu_src(ctx, instr->src[2]);
754
755 assert(cond.regClass() == bld.lm);
756
757 if (dst.type() == RegType::vgpr) {
758 aco_ptr<Instruction> bcsel;
759 if (dst.regClass() == v2b) {
760 then = as_vgpr(ctx, then);
761 els = as_vgpr(ctx, els);
762
763 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), els, then, cond);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
765 } else if (dst.regClass() == v1) {
766 then = as_vgpr(ctx, then);
767 els = as_vgpr(ctx, els);
768
769 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
770 } else if (dst.regClass() == v2) {
771 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
772 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
773 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
774 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
775
776 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
777 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
778
779 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
780 } else {
781 fprintf(stderr, "Unimplemented NIR instr bit size: ");
782 nir_print_instr(&instr->instr, stderr);
783 fprintf(stderr, "\n");
784 }
785 return;
786 }
787
788 if (instr->dest.dest.ssa.bit_size == 1) {
789 assert(dst.regClass() == bld.lm);
790 assert(then.regClass() == bld.lm);
791 assert(els.regClass() == bld.lm);
792 }
793
794 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
795 if (dst.regClass() == s1 || dst.regClass() == s2) {
796 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
797 assert(dst.size() == then.size());
798 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
799 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
800 } else {
801 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
802 nir_print_instr(&instr->instr, stderr);
803 fprintf(stderr, "\n");
804 }
805 return;
806 }
807
808 /* divergent boolean bcsel
809 * this implements bcsel on bools: dst = s0 ? s1 : s2
810 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
811 assert(instr->dest.dest.ssa.bit_size == 1);
812
813 if (cond.id() != then.id())
814 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
815
816 if (cond.id() == els.id())
817 bld.sop1(Builder::s_mov, Definition(dst), then);
818 else
819 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
820 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
821 }
822
823 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
824 aco_opcode op, uint32_t undo)
825 {
826 /* multiply by 16777216 to handle denormals */
827 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
828 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
829 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
830 scaled = bld.vop1(op, bld.def(v1), scaled);
831 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
832
833 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
834
835 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
836 }
837
838 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
839 {
840 if (ctx->block->fp_mode.denorm32 == 0) {
841 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
842 return;
843 }
844
845 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
846 }
847
848 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
849 {
850 if (ctx->block->fp_mode.denorm32 == 0) {
851 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
852 return;
853 }
854
855 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
856 }
857
858 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
859 {
860 if (ctx->block->fp_mode.denorm32 == 0) {
861 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
862 return;
863 }
864
865 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
866 }
867
868 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
869 {
870 if (ctx->block->fp_mode.denorm32 == 0) {
871 bld.vop1(aco_opcode::v_log_f32, dst, val);
872 return;
873 }
874
875 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
876 }
877
878 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
879 {
880 if (ctx->options->chip_class >= GFX7)
881 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
882
883 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
884 /* TODO: create more efficient code! */
885 if (val.type() == RegType::sgpr)
886 val = as_vgpr(ctx, val);
887
888 /* Split the input value. */
889 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
890 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
891
892 /* Extract the exponent and compute the unbiased value. */
893 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
894
895 /* Extract the fractional part. */
896 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
897 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
898
899 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
900 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
901
902 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
903 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
904 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
905 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
906 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
907
908 /* Get the sign bit. */
909 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
910
911 /* Decide the operation to apply depending on the unbiased exponent. */
912 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
913 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
914 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
915 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
916 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
917 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
918
919 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
920 }
921
922 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
923 {
924 if (ctx->options->chip_class >= GFX7)
925 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
926
927 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
928 Temp src0 = as_vgpr(ctx, val);
929
930 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
931 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
932
933 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
934 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
935 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
936
937 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
938 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
939 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
940 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
941
942 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
943 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
944
945 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
946
947 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
948 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
949
950 return add->definitions[0].getTemp();
951 }
952
953 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
954 {
955 if (!instr->dest.dest.is_ssa) {
956 fprintf(stderr, "nir alu dst not in ssa: ");
957 nir_print_instr(&instr->instr, stderr);
958 fprintf(stderr, "\n");
959 abort();
960 }
961 Builder bld(ctx->program, ctx->block);
962 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
963 switch(instr->op) {
964 case nir_op_vec2:
965 case nir_op_vec3:
966 case nir_op_vec4: {
967 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
968 unsigned num = instr->dest.dest.ssa.num_components;
969 for (unsigned i = 0; i < num; ++i)
970 elems[i] = get_alu_src(ctx, instr->src[i]);
971
972 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
973 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
974 for (unsigned i = 0; i < num; ++i)
975 vec->operands[i] = Operand{elems[i]};
976 vec->definitions[0] = Definition(dst);
977 ctx->block->instructions.emplace_back(std::move(vec));
978 ctx->allocated_vec.emplace(dst.id(), elems);
979 } else {
980 // TODO: that is a bit suboptimal..
981 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
982 for (unsigned i = 0; i < num - 1; ++i)
983 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
984 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
985 for (unsigned i = 0; i < num; ++i) {
986 unsigned bit = i * instr->dest.dest.ssa.bit_size;
987 if (bit % 32 == 0) {
988 elems[bit / 32] = elems[i];
989 } else {
990 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
991 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
992 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
993 }
994 }
995 if (dst.size() == 1)
996 bld.copy(Definition(dst), elems[0]);
997 else
998 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
999 }
1000 break;
1001 }
1002 case nir_op_mov: {
1003 Temp src = get_alu_src(ctx, instr->src[0]);
1004 aco_ptr<Instruction> mov;
1005 if (dst.type() == RegType::sgpr) {
1006 if (src.type() == RegType::vgpr)
1007 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1008 else if (src.regClass() == s1)
1009 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1010 else if (src.regClass() == s2)
1011 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1012 else
1013 unreachable("wrong src register class for nir_op_imov");
1014 } else if (dst.regClass() == v1) {
1015 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1016 } else if (dst.regClass() == v2) {
1017 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1018 } else {
1019 nir_print_instr(&instr->instr, stderr);
1020 unreachable("Should have been lowered to scalar.");
1021 }
1022 break;
1023 }
1024 case nir_op_inot: {
1025 Temp src = get_alu_src(ctx, instr->src[0]);
1026 if (instr->dest.dest.ssa.bit_size == 1) {
1027 assert(src.regClass() == bld.lm);
1028 assert(dst.regClass() == bld.lm);
1029 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1030 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1031 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1032 } else if (dst.regClass() == v1) {
1033 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1034 } else if (dst.type() == RegType::sgpr) {
1035 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1036 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1037 } else {
1038 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1039 nir_print_instr(&instr->instr, stderr);
1040 fprintf(stderr, "\n");
1041 }
1042 break;
1043 }
1044 case nir_op_ineg: {
1045 Temp src = get_alu_src(ctx, instr->src[0]);
1046 if (dst.regClass() == v1) {
1047 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1048 } else if (dst.regClass() == s1) {
1049 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1050 } else if (dst.size() == 2) {
1051 Temp src0 = bld.tmp(dst.type(), 1);
1052 Temp src1 = bld.tmp(dst.type(), 1);
1053 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1054
1055 if (dst.regClass() == s2) {
1056 Temp carry = bld.tmp(s1);
1057 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1058 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1059 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1060 } else {
1061 Temp lower = bld.tmp(v1);
1062 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1063 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1064 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1065 }
1066 } else {
1067 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1068 nir_print_instr(&instr->instr, stderr);
1069 fprintf(stderr, "\n");
1070 }
1071 break;
1072 }
1073 case nir_op_iabs: {
1074 if (dst.regClass() == s1) {
1075 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1076 } else if (dst.regClass() == v1) {
1077 Temp src = get_alu_src(ctx, instr->src[0]);
1078 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1079 } else {
1080 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1081 nir_print_instr(&instr->instr, stderr);
1082 fprintf(stderr, "\n");
1083 }
1084 break;
1085 }
1086 case nir_op_isign: {
1087 Temp src = get_alu_src(ctx, instr->src[0]);
1088 if (dst.regClass() == s1) {
1089 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1090 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
1091 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
1092 } else if (dst.regClass() == s2) {
1093 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1094 Temp neqz;
1095 if (ctx->program->chip_class >= GFX8)
1096 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1097 else
1098 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1099 /* SCC gets zero-extended to 64 bit */
1100 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1101 } else if (dst.regClass() == v1) {
1102 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1103 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1104 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
1105 } else if (dst.regClass() == v2) {
1106 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1107 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1108 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1109 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1110 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1111 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1112 } else {
1113 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1114 nir_print_instr(&instr->instr, stderr);
1115 fprintf(stderr, "\n");
1116 }
1117 break;
1118 }
1119 case nir_op_imax: {
1120 if (dst.regClass() == v1) {
1121 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1122 } else if (dst.regClass() == s1) {
1123 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1124 } else {
1125 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1126 nir_print_instr(&instr->instr, stderr);
1127 fprintf(stderr, "\n");
1128 }
1129 break;
1130 }
1131 case nir_op_umax: {
1132 if (dst.regClass() == v1) {
1133 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1134 } else if (dst.regClass() == s1) {
1135 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1136 } else {
1137 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1138 nir_print_instr(&instr->instr, stderr);
1139 fprintf(stderr, "\n");
1140 }
1141 break;
1142 }
1143 case nir_op_imin: {
1144 if (dst.regClass() == v1) {
1145 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1146 } else if (dst.regClass() == s1) {
1147 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1148 } else {
1149 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1150 nir_print_instr(&instr->instr, stderr);
1151 fprintf(stderr, "\n");
1152 }
1153 break;
1154 }
1155 case nir_op_umin: {
1156 if (dst.regClass() == v1) {
1157 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1158 } else if (dst.regClass() == s1) {
1159 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1160 } else {
1161 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1162 nir_print_instr(&instr->instr, stderr);
1163 fprintf(stderr, "\n");
1164 }
1165 break;
1166 }
1167 case nir_op_ior: {
1168 if (instr->dest.dest.ssa.bit_size == 1) {
1169 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1170 } else if (dst.regClass() == v1) {
1171 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1172 } else if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1174 } else if (dst.regClass() == s2) {
1175 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1176 } else {
1177 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1178 nir_print_instr(&instr->instr, stderr);
1179 fprintf(stderr, "\n");
1180 }
1181 break;
1182 }
1183 case nir_op_iand: {
1184 if (instr->dest.dest.ssa.bit_size == 1) {
1185 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1186 } else if (dst.regClass() == v1) {
1187 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1188 } else if (dst.regClass() == s1) {
1189 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1190 } else if (dst.regClass() == s2) {
1191 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1192 } else {
1193 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1194 nir_print_instr(&instr->instr, stderr);
1195 fprintf(stderr, "\n");
1196 }
1197 break;
1198 }
1199 case nir_op_ixor: {
1200 if (instr->dest.dest.ssa.bit_size == 1) {
1201 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1202 } else if (dst.regClass() == v1) {
1203 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1204 } else if (dst.regClass() == s1) {
1205 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1206 } else if (dst.regClass() == s2) {
1207 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1208 } else {
1209 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1210 nir_print_instr(&instr->instr, stderr);
1211 fprintf(stderr, "\n");
1212 }
1213 break;
1214 }
1215 case nir_op_ushr: {
1216 if (dst.regClass() == v1) {
1217 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1218 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1219 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1220 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1221 } else if (dst.regClass() == v2) {
1222 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1223 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1224 } else if (dst.regClass() == s2) {
1225 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1226 } else if (dst.regClass() == s1) {
1227 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1228 } else {
1229 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1230 nir_print_instr(&instr->instr, stderr);
1231 fprintf(stderr, "\n");
1232 }
1233 break;
1234 }
1235 case nir_op_ishl: {
1236 if (dst.regClass() == v1) {
1237 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1238 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1239 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1240 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1241 } else if (dst.regClass() == v2) {
1242 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1243 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1244 } else if (dst.regClass() == s1) {
1245 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1246 } else if (dst.regClass() == s2) {
1247 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1248 } else {
1249 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1250 nir_print_instr(&instr->instr, stderr);
1251 fprintf(stderr, "\n");
1252 }
1253 break;
1254 }
1255 case nir_op_ishr: {
1256 if (dst.regClass() == v1) {
1257 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1258 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1259 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1260 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1261 } else if (dst.regClass() == v2) {
1262 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1263 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1264 } else if (dst.regClass() == s1) {
1265 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1266 } else if (dst.regClass() == s2) {
1267 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1268 } else {
1269 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1270 nir_print_instr(&instr->instr, stderr);
1271 fprintf(stderr, "\n");
1272 }
1273 break;
1274 }
1275 case nir_op_find_lsb: {
1276 Temp src = get_alu_src(ctx, instr->src[0]);
1277 if (src.regClass() == s1) {
1278 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1279 } else if (src.regClass() == v1) {
1280 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1281 } else if (src.regClass() == s2) {
1282 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1283 } else {
1284 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1285 nir_print_instr(&instr->instr, stderr);
1286 fprintf(stderr, "\n");
1287 }
1288 break;
1289 }
1290 case nir_op_ufind_msb:
1291 case nir_op_ifind_msb: {
1292 Temp src = get_alu_src(ctx, instr->src[0]);
1293 if (src.regClass() == s1 || src.regClass() == s2) {
1294 aco_opcode op = src.regClass() == s2 ?
1295 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1296 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1297 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1298
1299 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1300 Operand(src.size() * 32u - 1u), msb_rev);
1301 Temp msb = sub.def(0).getTemp();
1302 Temp carry = sub.def(1).getTemp();
1303
1304 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1305 } else if (src.regClass() == v1) {
1306 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1307 Temp msb_rev = bld.tmp(v1);
1308 emit_vop1_instruction(ctx, instr, op, msb_rev);
1309 Temp msb = bld.tmp(v1);
1310 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1311 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1312 } else {
1313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1314 nir_print_instr(&instr->instr, stderr);
1315 fprintf(stderr, "\n");
1316 }
1317 break;
1318 }
1319 case nir_op_bitfield_reverse: {
1320 if (dst.regClass() == s1) {
1321 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1322 } else if (dst.regClass() == v1) {
1323 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1324 } else {
1325 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1326 nir_print_instr(&instr->instr, stderr);
1327 fprintf(stderr, "\n");
1328 }
1329 break;
1330 }
1331 case nir_op_iadd: {
1332 if (dst.regClass() == s1) {
1333 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1334 break;
1335 }
1336
1337 Temp src0 = get_alu_src(ctx, instr->src[0]);
1338 Temp src1 = get_alu_src(ctx, instr->src[1]);
1339 if (dst.regClass() == v1) {
1340 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1341 break;
1342 }
1343
1344 assert(src0.size() == 2 && src1.size() == 2);
1345 Temp src00 = bld.tmp(src0.type(), 1);
1346 Temp src01 = bld.tmp(dst.type(), 1);
1347 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1348 Temp src10 = bld.tmp(src1.type(), 1);
1349 Temp src11 = bld.tmp(dst.type(), 1);
1350 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1351
1352 if (dst.regClass() == s2) {
1353 Temp carry = bld.tmp(s1);
1354 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1355 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1356 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1357 } else if (dst.regClass() == v2) {
1358 Temp dst0 = bld.tmp(v1);
1359 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1360 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1361 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1362 } else {
1363 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1364 nir_print_instr(&instr->instr, stderr);
1365 fprintf(stderr, "\n");
1366 }
1367 break;
1368 }
1369 case nir_op_uadd_sat: {
1370 Temp src0 = get_alu_src(ctx, instr->src[0]);
1371 Temp src1 = get_alu_src(ctx, instr->src[1]);
1372 if (dst.regClass() == s1) {
1373 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1374 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1375 src0, src1);
1376 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1377 } else if (dst.regClass() == v1) {
1378 if (ctx->options->chip_class >= GFX9) {
1379 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1380 add->operands[0] = Operand(src0);
1381 add->operands[1] = Operand(src1);
1382 add->definitions[0] = Definition(dst);
1383 add->clamp = 1;
1384 ctx->block->instructions.emplace_back(std::move(add));
1385 } else {
1386 if (src1.regClass() != v1)
1387 std::swap(src0, src1);
1388 assert(src1.regClass() == v1);
1389 Temp tmp = bld.tmp(v1);
1390 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1391 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1392 }
1393 } else {
1394 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1395 nir_print_instr(&instr->instr, stderr);
1396 fprintf(stderr, "\n");
1397 }
1398 break;
1399 }
1400 case nir_op_uadd_carry: {
1401 Temp src0 = get_alu_src(ctx, instr->src[0]);
1402 Temp src1 = get_alu_src(ctx, instr->src[1]);
1403 if (dst.regClass() == s1) {
1404 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1405 break;
1406 }
1407 if (dst.regClass() == v1) {
1408 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1409 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1410 break;
1411 }
1412
1413 Temp src00 = bld.tmp(src0.type(), 1);
1414 Temp src01 = bld.tmp(dst.type(), 1);
1415 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1416 Temp src10 = bld.tmp(src1.type(), 1);
1417 Temp src11 = bld.tmp(dst.type(), 1);
1418 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1419 if (dst.regClass() == s2) {
1420 Temp carry = bld.tmp(s1);
1421 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1422 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1423 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1424 } else if (dst.regClass() == v2) {
1425 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1426 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1427 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1428 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1429 } else {
1430 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1431 nir_print_instr(&instr->instr, stderr);
1432 fprintf(stderr, "\n");
1433 }
1434 break;
1435 }
1436 case nir_op_isub: {
1437 if (dst.regClass() == s1) {
1438 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1439 break;
1440 }
1441
1442 Temp src0 = get_alu_src(ctx, instr->src[0]);
1443 Temp src1 = get_alu_src(ctx, instr->src[1]);
1444 if (dst.regClass() == v1) {
1445 bld.vsub32(Definition(dst), src0, src1);
1446 break;
1447 }
1448
1449 Temp src00 = bld.tmp(src0.type(), 1);
1450 Temp src01 = bld.tmp(dst.type(), 1);
1451 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1452 Temp src10 = bld.tmp(src1.type(), 1);
1453 Temp src11 = bld.tmp(dst.type(), 1);
1454 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1455 if (dst.regClass() == s2) {
1456 Temp carry = bld.tmp(s1);
1457 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1458 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1459 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1460 } else if (dst.regClass() == v2) {
1461 Temp lower = bld.tmp(v1);
1462 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1463 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1464 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1465 } else {
1466 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1467 nir_print_instr(&instr->instr, stderr);
1468 fprintf(stderr, "\n");
1469 }
1470 break;
1471 }
1472 case nir_op_usub_borrow: {
1473 Temp src0 = get_alu_src(ctx, instr->src[0]);
1474 Temp src1 = get_alu_src(ctx, instr->src[1]);
1475 if (dst.regClass() == s1) {
1476 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1477 break;
1478 } else if (dst.regClass() == v1) {
1479 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1480 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1481 break;
1482 }
1483
1484 Temp src00 = bld.tmp(src0.type(), 1);
1485 Temp src01 = bld.tmp(dst.type(), 1);
1486 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1487 Temp src10 = bld.tmp(src1.type(), 1);
1488 Temp src11 = bld.tmp(dst.type(), 1);
1489 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1490 if (dst.regClass() == s2) {
1491 Temp borrow = bld.tmp(s1);
1492 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1493 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1494 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1495 } else if (dst.regClass() == v2) {
1496 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1497 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1498 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1499 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1500 } else {
1501 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1502 nir_print_instr(&instr->instr, stderr);
1503 fprintf(stderr, "\n");
1504 }
1505 break;
1506 }
1507 case nir_op_imul: {
1508 if (dst.regClass() == v1) {
1509 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1510 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1511 } else if (dst.regClass() == s1) {
1512 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1513 } else {
1514 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1515 nir_print_instr(&instr->instr, stderr);
1516 fprintf(stderr, "\n");
1517 }
1518 break;
1519 }
1520 case nir_op_umul_high: {
1521 if (dst.regClass() == v1) {
1522 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1523 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1524 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1525 } else if (dst.regClass() == s1) {
1526 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1527 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1528 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1529 } else {
1530 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1531 nir_print_instr(&instr->instr, stderr);
1532 fprintf(stderr, "\n");
1533 }
1534 break;
1535 }
1536 case nir_op_imul_high: {
1537 if (dst.regClass() == v1) {
1538 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1539 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1540 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1541 } else if (dst.regClass() == s1) {
1542 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1543 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1544 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1545 } else {
1546 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1547 nir_print_instr(&instr->instr, stderr);
1548 fprintf(stderr, "\n");
1549 }
1550 break;
1551 }
1552 case nir_op_fmul: {
1553 Temp src0 = get_alu_src(ctx, instr->src[0]);
1554 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1555 if (dst.regClass() == v2b) {
1556 Temp tmp = bld.tmp(v1);
1557 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, tmp, true);
1558 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1559 } else if (dst.regClass() == v1) {
1560 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1561 } else if (dst.regClass() == v2) {
1562 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1563 } else {
1564 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1565 nir_print_instr(&instr->instr, stderr);
1566 fprintf(stderr, "\n");
1567 }
1568 break;
1569 }
1570 case nir_op_fadd: {
1571 Temp src0 = get_alu_src(ctx, instr->src[0]);
1572 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1573 if (dst.regClass() == v2b) {
1574 Temp tmp = bld.tmp(v1);
1575 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, tmp, true);
1576 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1577 } else if (dst.regClass() == v1) {
1578 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1579 } else if (dst.regClass() == v2) {
1580 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1581 } else {
1582 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1583 nir_print_instr(&instr->instr, stderr);
1584 fprintf(stderr, "\n");
1585 }
1586 break;
1587 }
1588 case nir_op_fsub: {
1589 Temp src0 = get_alu_src(ctx, instr->src[0]);
1590 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1591 if (dst.regClass() == v2b) {
1592 Temp tmp = bld.tmp(v1);
1593 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1594 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, tmp, false);
1595 else
1596 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, tmp, true);
1597 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1598 } else if (dst.regClass() == v1) {
1599 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1600 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1601 else
1602 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1603 } else if (dst.regClass() == v2) {
1604 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1605 src0, src1);
1606 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1607 sub->neg[1] = true;
1608 } else {
1609 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1610 nir_print_instr(&instr->instr, stderr);
1611 fprintf(stderr, "\n");
1612 }
1613 break;
1614 }
1615 case nir_op_fmax: {
1616 Temp src0 = get_alu_src(ctx, instr->src[0]);
1617 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1618 if (dst.regClass() == v2b) {
1619 // TODO: check fp_mode.must_flush_denorms16_64
1620 Temp tmp = bld.tmp(v1);
1621 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1622 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1623 } else if (dst.regClass() == v1) {
1624 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1625 } else if (dst.regClass() == v2) {
1626 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1627 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1628 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1629 } else {
1630 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1631 }
1632 } else {
1633 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1634 nir_print_instr(&instr->instr, stderr);
1635 fprintf(stderr, "\n");
1636 }
1637 break;
1638 }
1639 case nir_op_fmin: {
1640 Temp src0 = get_alu_src(ctx, instr->src[0]);
1641 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1642 if (dst.regClass() == v2b) {
1643 // TODO: check fp_mode.must_flush_denorms16_64
1644 Temp tmp = bld.tmp(v1);
1645 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1646 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1647 } else if (dst.regClass() == v1) {
1648 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1649 } else if (dst.regClass() == v2) {
1650 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1651 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1652 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1653 } else {
1654 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1655 }
1656 } else {
1657 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1658 nir_print_instr(&instr->instr, stderr);
1659 fprintf(stderr, "\n");
1660 }
1661 break;
1662 }
1663 case nir_op_fmax3: {
1664 if (dst.regClass() == v2b) {
1665 Temp tmp = bld.tmp(v1);
1666 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, tmp, false);
1667 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1668 } else if (dst.regClass() == v1) {
1669 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1670 } else {
1671 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1672 nir_print_instr(&instr->instr, stderr);
1673 fprintf(stderr, "\n");
1674 }
1675 break;
1676 }
1677 case nir_op_fmin3: {
1678 if (dst.regClass() == v2b) {
1679 Temp tmp = bld.tmp(v1);
1680 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, tmp, false);
1681 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1682 } else if (dst.regClass() == v1) {
1683 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1684 } else {
1685 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1686 nir_print_instr(&instr->instr, stderr);
1687 fprintf(stderr, "\n");
1688 }
1689 break;
1690 }
1691 case nir_op_fmed3: {
1692 if (dst.regClass() == v2b) {
1693 Temp tmp = bld.tmp(v1);
1694 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, tmp, false);
1695 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1696 } else if (dst.regClass() == v1) {
1697 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1698 } else {
1699 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1700 nir_print_instr(&instr->instr, stderr);
1701 fprintf(stderr, "\n");
1702 }
1703 break;
1704 }
1705 case nir_op_umax3: {
1706 if (dst.size() == 1) {
1707 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1708 } else {
1709 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1710 nir_print_instr(&instr->instr, stderr);
1711 fprintf(stderr, "\n");
1712 }
1713 break;
1714 }
1715 case nir_op_umin3: {
1716 if (dst.size() == 1) {
1717 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1718 } else {
1719 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1720 nir_print_instr(&instr->instr, stderr);
1721 fprintf(stderr, "\n");
1722 }
1723 break;
1724 }
1725 case nir_op_umed3: {
1726 if (dst.size() == 1) {
1727 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1728 } else {
1729 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1730 nir_print_instr(&instr->instr, stderr);
1731 fprintf(stderr, "\n");
1732 }
1733 break;
1734 }
1735 case nir_op_imax3: {
1736 if (dst.size() == 1) {
1737 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1738 } else {
1739 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1740 nir_print_instr(&instr->instr, stderr);
1741 fprintf(stderr, "\n");
1742 }
1743 break;
1744 }
1745 case nir_op_imin3: {
1746 if (dst.size() == 1) {
1747 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1748 } else {
1749 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1750 nir_print_instr(&instr->instr, stderr);
1751 fprintf(stderr, "\n");
1752 }
1753 break;
1754 }
1755 case nir_op_imed3: {
1756 if (dst.size() == 1) {
1757 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1758 } else {
1759 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1760 nir_print_instr(&instr->instr, stderr);
1761 fprintf(stderr, "\n");
1762 }
1763 break;
1764 }
1765 case nir_op_cube_face_coord: {
1766 Temp in = get_alu_src(ctx, instr->src[0], 3);
1767 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1768 emit_extract_vector(ctx, in, 1, v1),
1769 emit_extract_vector(ctx, in, 2, v1) };
1770 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1771 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1772 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1773 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1774 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1775 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1776 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1777 break;
1778 }
1779 case nir_op_cube_face_index: {
1780 Temp in = get_alu_src(ctx, instr->src[0], 3);
1781 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1782 emit_extract_vector(ctx, in, 1, v1),
1783 emit_extract_vector(ctx, in, 2, v1) };
1784 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1785 break;
1786 }
1787 case nir_op_bcsel: {
1788 emit_bcsel(ctx, instr, dst);
1789 break;
1790 }
1791 case nir_op_frsq: {
1792 Temp src = get_alu_src(ctx, instr->src[0]);
1793 if (dst.regClass() == v2b) {
1794 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1795 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1796 } else if (dst.regClass() == v1) {
1797 emit_rsq(ctx, bld, Definition(dst), src);
1798 } else if (dst.regClass() == v2) {
1799 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1800 } else {
1801 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1802 nir_print_instr(&instr->instr, stderr);
1803 fprintf(stderr, "\n");
1804 }
1805 break;
1806 }
1807 case nir_op_fneg: {
1808 Temp src = get_alu_src(ctx, instr->src[0]);
1809 if (dst.regClass() == v2b) {
1810 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1811 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1812 } else if (dst.regClass() == v1) {
1813 if (ctx->block->fp_mode.must_flush_denorms32)
1814 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1815 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1816 } else if (dst.regClass() == v2) {
1817 if (ctx->block->fp_mode.must_flush_denorms16_64)
1818 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1819 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1820 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1821 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1822 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1823 } else {
1824 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1825 nir_print_instr(&instr->instr, stderr);
1826 fprintf(stderr, "\n");
1827 }
1828 break;
1829 }
1830 case nir_op_fabs: {
1831 Temp src = get_alu_src(ctx, instr->src[0]);
1832 if (dst.regClass() == v2b) {
1833 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1834 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1835 } else if (dst.regClass() == v1) {
1836 if (ctx->block->fp_mode.must_flush_denorms32)
1837 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1838 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1839 } else if (dst.regClass() == v2) {
1840 if (ctx->block->fp_mode.must_flush_denorms16_64)
1841 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1842 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1843 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1844 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1845 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1846 } else {
1847 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1848 nir_print_instr(&instr->instr, stderr);
1849 fprintf(stderr, "\n");
1850 }
1851 break;
1852 }
1853 case nir_op_fsat: {
1854 Temp src = get_alu_src(ctx, instr->src[0]);
1855 if (dst.regClass() == v2b) {
1856 Temp tmp = bld.vop3(aco_opcode::v_med3_f16, bld.def(v1), Operand(0u), Operand(0x3f800000u), src);
1857 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1858 } else if (dst.regClass() == v1) {
1859 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1860 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1861 // TODO: confirm that this holds under any circumstances
1862 } else if (dst.regClass() == v2) {
1863 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1864 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1865 vop3->clamp = true;
1866 } else {
1867 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1868 nir_print_instr(&instr->instr, stderr);
1869 fprintf(stderr, "\n");
1870 }
1871 break;
1872 }
1873 case nir_op_flog2: {
1874 Temp src = get_alu_src(ctx, instr->src[0]);
1875 if (dst.regClass() == v2b) {
1876 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1877 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1878 } else if (dst.regClass() == v1) {
1879 emit_log2(ctx, bld, Definition(dst), src);
1880 } else {
1881 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1882 nir_print_instr(&instr->instr, stderr);
1883 fprintf(stderr, "\n");
1884 }
1885 break;
1886 }
1887 case nir_op_frcp: {
1888 Temp src = get_alu_src(ctx, instr->src[0]);
1889 if (dst.regClass() == v2b) {
1890 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1891 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1892 } else if (dst.regClass() == v1) {
1893 emit_rcp(ctx, bld, Definition(dst), src);
1894 } else if (dst.regClass() == v2) {
1895 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_fexp2: {
1904 if (dst.regClass() == v2b) {
1905 Temp src = get_alu_src(ctx, instr->src[0]);
1906 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1907 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1908 } else if (dst.regClass() == v1) {
1909 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1910 } else {
1911 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1912 nir_print_instr(&instr->instr, stderr);
1913 fprintf(stderr, "\n");
1914 }
1915 break;
1916 }
1917 case nir_op_fsqrt: {
1918 Temp src = get_alu_src(ctx, instr->src[0]);
1919 if (dst.regClass() == v2b) {
1920 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1921 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1922 } else if (dst.regClass() == v1) {
1923 emit_sqrt(ctx, bld, Definition(dst), src);
1924 } else if (dst.regClass() == v2) {
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1926 } else {
1927 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1928 nir_print_instr(&instr->instr, stderr);
1929 fprintf(stderr, "\n");
1930 }
1931 break;
1932 }
1933 case nir_op_ffract: {
1934 if (dst.regClass() == v2b) {
1935 Temp src = get_alu_src(ctx, instr->src[0]);
1936 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1937 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1938 } else if (dst.regClass() == v1) {
1939 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1940 } else if (dst.regClass() == v2) {
1941 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1942 } else {
1943 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1944 nir_print_instr(&instr->instr, stderr);
1945 fprintf(stderr, "\n");
1946 }
1947 break;
1948 }
1949 case nir_op_ffloor: {
1950 Temp src = get_alu_src(ctx, instr->src[0]);
1951 if (dst.regClass() == v2b) {
1952 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
1953 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1954 } else if (dst.regClass() == v1) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1956 } else if (dst.regClass() == v2) {
1957 emit_floor_f64(ctx, bld, Definition(dst), src);
1958 } else {
1959 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1960 nir_print_instr(&instr->instr, stderr);
1961 fprintf(stderr, "\n");
1962 }
1963 break;
1964 }
1965 case nir_op_fceil: {
1966 Temp src0 = get_alu_src(ctx, instr->src[0]);
1967 if (dst.regClass() == v2b) {
1968 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
1969 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1970 } else if (dst.regClass() == v1) {
1971 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1972 } else if (dst.regClass() == v2) {
1973 if (ctx->options->chip_class >= GFX7) {
1974 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1975 } else {
1976 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1977 /* trunc = trunc(src0)
1978 * if (src0 > 0.0 && src0 != trunc)
1979 * trunc += 1.0
1980 */
1981 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1982 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1983 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1984 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1985 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1986 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1987 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1988 }
1989 } else {
1990 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1991 nir_print_instr(&instr->instr, stderr);
1992 fprintf(stderr, "\n");
1993 }
1994 break;
1995 }
1996 case nir_op_ftrunc: {
1997 Temp src = get_alu_src(ctx, instr->src[0]);
1998 if (dst.regClass() == v2b) {
1999 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
2000 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2001 } else if (dst.regClass() == v1) {
2002 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2003 } else if (dst.regClass() == v2) {
2004 emit_trunc_f64(ctx, bld, Definition(dst), src);
2005 } else {
2006 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2007 nir_print_instr(&instr->instr, stderr);
2008 fprintf(stderr, "\n");
2009 }
2010 break;
2011 }
2012 case nir_op_fround_even: {
2013 Temp src0 = get_alu_src(ctx, instr->src[0]);
2014 if (dst.regClass() == v2b) {
2015 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
2016 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2017 } else if (dst.regClass() == v1) {
2018 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2019 } else if (dst.regClass() == v2) {
2020 if (ctx->options->chip_class >= GFX7) {
2021 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2022 } else {
2023 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2024 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2025 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2026
2027 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2028 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2029 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2030 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2031 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2032 tmp = sub->definitions[0].getTemp();
2033
2034 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2035 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2036 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2037 Temp cond = vop3->definitions[0].getTemp();
2038
2039 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2040 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2041 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2042 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2043
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2045 }
2046 } else {
2047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2048 nir_print_instr(&instr->instr, stderr);
2049 fprintf(stderr, "\n");
2050 }
2051 break;
2052 }
2053 case nir_op_fsin:
2054 case nir_op_fcos: {
2055 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2056 aco_ptr<Instruction> norm;
2057 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2058 if (dst.regClass() == v2b) {
2059 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2060 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2061 tmp = bld.vop1(opcode, bld.def(v1), tmp);
2062 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2063 } else if (dst.regClass() == v1) {
2064 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2065
2066 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2067 if (ctx->options->chip_class < GFX9)
2068 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2069
2070 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2071 bld.vop1(opcode, Definition(dst), tmp);
2072 } else {
2073 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2074 nir_print_instr(&instr->instr, stderr);
2075 fprintf(stderr, "\n");
2076 }
2077 break;
2078 }
2079 case nir_op_ldexp: {
2080 Temp src0 = get_alu_src(ctx, instr->src[0]);
2081 Temp src1 = get_alu_src(ctx, instr->src[1]);
2082 if (dst.regClass() == v2b) {
2083 Temp tmp = bld.tmp(v1);
2084 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, tmp, false);
2085 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2086 } else if (dst.regClass() == v1) {
2087 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2088 } else if (dst.regClass() == v2) {
2089 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2090 } else {
2091 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2092 nir_print_instr(&instr->instr, stderr);
2093 fprintf(stderr, "\n");
2094 }
2095 break;
2096 }
2097 case nir_op_frexp_sig: {
2098 Temp src = get_alu_src(ctx, instr->src[0]);
2099 if (dst.regClass() == v2b) {
2100 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2101 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2102 } else if (dst.regClass() == v1) {
2103 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2104 } else if (dst.regClass() == v2) {
2105 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2106 } else {
2107 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2108 nir_print_instr(&instr->instr, stderr);
2109 fprintf(stderr, "\n");
2110 }
2111 break;
2112 }
2113 case nir_op_frexp_exp: {
2114 Temp src = get_alu_src(ctx, instr->src[0]);
2115 if (instr->src[0].src.ssa->bit_size == 16) {
2116 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2117 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), tmp, Operand(0u));
2118 } else if (instr->src[0].src.ssa->bit_size == 32) {
2119 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2120 } else if (instr->src[0].src.ssa->bit_size == 64) {
2121 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2122 } else {
2123 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2124 nir_print_instr(&instr->instr, stderr);
2125 fprintf(stderr, "\n");
2126 }
2127 break;
2128 }
2129 case nir_op_fsign: {
2130 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2131 if (dst.regClass() == v2b) {
2132 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2133 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2134 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2135 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2136 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2137 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), minus_one, src, cond);
2138 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2139 } else if (dst.regClass() == v1) {
2140 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2141 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2142 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2143 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2144 } else if (dst.regClass() == v2) {
2145 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2146 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2147 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2148
2149 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2150 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2151 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2152
2153 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2154 } else {
2155 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2156 nir_print_instr(&instr->instr, stderr);
2157 fprintf(stderr, "\n");
2158 }
2159 break;
2160 }
2161 case nir_op_f2f16:
2162 case nir_op_f2f16_rtne: {
2163 Temp src = get_alu_src(ctx, instr->src[0]);
2164 if (instr->src[0].src.ssa->bit_size == 64)
2165 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2166 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2167 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2168 break;
2169 }
2170 case nir_op_f2f16_rtz: {
2171 Temp src = get_alu_src(ctx, instr->src[0]);
2172 if (instr->src[0].src.ssa->bit_size == 64)
2173 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2174 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2175 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2176 break;
2177 }
2178 case nir_op_f2f32: {
2179 if (instr->src[0].src.ssa->bit_size == 16) {
2180 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2181 } else if (instr->src[0].src.ssa->bit_size == 64) {
2182 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2183 } else {
2184 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2185 nir_print_instr(&instr->instr, stderr);
2186 fprintf(stderr, "\n");
2187 }
2188 break;
2189 }
2190 case nir_op_f2f64: {
2191 Temp src = get_alu_src(ctx, instr->src[0]);
2192 if (instr->src[0].src.ssa->bit_size == 16)
2193 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2194 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2195 break;
2196 }
2197 case nir_op_i2f16: {
2198 assert(dst.regClass() == v2b);
2199 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_i16, bld.def(v1),
2200 get_alu_src(ctx, instr->src[0]));
2201 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2202 break;
2203 }
2204 case nir_op_i2f32: {
2205 assert(dst.size() == 1);
2206 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
2207 break;
2208 }
2209 case nir_op_i2f64: {
2210 if (instr->src[0].src.ssa->bit_size == 32) {
2211 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
2212 } else if (instr->src[0].src.ssa->bit_size == 64) {
2213 Temp src = get_alu_src(ctx, instr->src[0]);
2214 RegClass rc = RegClass(src.type(), 1);
2215 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2216 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2217 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2218 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2219 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2220 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2221
2222 } else {
2223 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2224 nir_print_instr(&instr->instr, stderr);
2225 fprintf(stderr, "\n");
2226 }
2227 break;
2228 }
2229 case nir_op_u2f16: {
2230 assert(dst.regClass() == v2b);
2231 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v1),
2232 get_alu_src(ctx, instr->src[0]));
2233 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2234 break;
2235 }
2236 case nir_op_u2f32: {
2237 assert(dst.size() == 1);
2238 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
2239 break;
2240 }
2241 case nir_op_u2f64: {
2242 if (instr->src[0].src.ssa->bit_size == 32) {
2243 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
2244 } else if (instr->src[0].src.ssa->bit_size == 64) {
2245 Temp src = get_alu_src(ctx, instr->src[0]);
2246 RegClass rc = RegClass(src.type(), 1);
2247 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2248 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2249 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2250 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2251 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2252 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2253 } else {
2254 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2255 nir_print_instr(&instr->instr, stderr);
2256 fprintf(stderr, "\n");
2257 }
2258 break;
2259 }
2260 case nir_op_f2i16: {
2261 Temp src = get_alu_src(ctx, instr->src[0]);
2262 if (instr->src[0].src.ssa->bit_size == 16)
2263 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2264 else if (instr->src[0].src.ssa->bit_size == 32)
2265 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2266 else
2267 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2268
2269 if (dst.type() == RegType::vgpr)
2270 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2271 else
2272 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2273 break;
2274 }
2275 case nir_op_f2u16: {
2276 Temp src = get_alu_src(ctx, instr->src[0]);
2277 if (instr->src[0].src.ssa->bit_size == 16)
2278 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2279 else if (instr->src[0].src.ssa->bit_size == 32)
2280 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2281 else
2282 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2283
2284 if (dst.type() == RegType::vgpr)
2285 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2286 else
2287 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2288 break;
2289 }
2290 case nir_op_f2i32: {
2291 Temp src = get_alu_src(ctx, instr->src[0]);
2292 if (instr->src[0].src.ssa->bit_size == 16) {
2293 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2294 if (dst.type() == RegType::vgpr) {
2295 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2296 } else {
2297 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2298 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2299 }
2300 } else if (instr->src[0].src.ssa->bit_size == 32) {
2301 if (dst.type() == RegType::vgpr)
2302 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2303 else
2304 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2305 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2306
2307 } else if (instr->src[0].src.ssa->bit_size == 64) {
2308 if (dst.type() == RegType::vgpr)
2309 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2310 else
2311 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2312 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2313
2314 } else {
2315 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2316 nir_print_instr(&instr->instr, stderr);
2317 fprintf(stderr, "\n");
2318 }
2319 break;
2320 }
2321 case nir_op_f2u32: {
2322 Temp src = get_alu_src(ctx, instr->src[0]);
2323 if (instr->src[0].src.ssa->bit_size == 16) {
2324 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2325 if (dst.type() == RegType::vgpr) {
2326 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2327 } else {
2328 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2329 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2330 }
2331 } else if (instr->src[0].src.ssa->bit_size == 32) {
2332 if (dst.type() == RegType::vgpr)
2333 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2334 else
2335 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2336 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2337
2338 } else if (instr->src[0].src.ssa->bit_size == 64) {
2339 if (dst.type() == RegType::vgpr)
2340 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2341 else
2342 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2343 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2344
2345 } else {
2346 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2347 nir_print_instr(&instr->instr, stderr);
2348 fprintf(stderr, "\n");
2349 }
2350 break;
2351 }
2352 case nir_op_f2i64: {
2353 Temp src = get_alu_src(ctx, instr->src[0]);
2354 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2355 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2356 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2357 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2358 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2359 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2360 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2361 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2362 Temp new_exponent = bld.tmp(v1);
2363 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2364 if (ctx->program->chip_class >= GFX8)
2365 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2366 else
2367 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2368 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2369 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2370 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2371 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2372 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2373 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2374 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2375 Temp new_lower = bld.tmp(v1);
2376 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2377 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2378 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2379
2380 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2381 if (src.type() == RegType::vgpr)
2382 src = bld.as_uniform(src);
2383 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2384 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2385 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2386 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2387 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2388 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2389 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2390 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2391 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2392 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2393 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2394 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2395 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2396 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2397 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2398 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2399 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2400 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2401 Temp borrow = bld.tmp(s1);
2402 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2403 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2405
2406 } else if (instr->src[0].src.ssa->bit_size == 64) {
2407 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2408 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2409 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2410 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2411 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2412 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2413 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2414 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2415 if (dst.type() == RegType::sgpr) {
2416 lower = bld.as_uniform(lower);
2417 upper = bld.as_uniform(upper);
2418 }
2419 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2420
2421 } else {
2422 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2423 nir_print_instr(&instr->instr, stderr);
2424 fprintf(stderr, "\n");
2425 }
2426 break;
2427 }
2428 case nir_op_f2u64: {
2429 Temp src = get_alu_src(ctx, instr->src[0]);
2430 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2431 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2432 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2433 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2434 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2435 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2436 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2437 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2438 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2439 Temp new_exponent = bld.tmp(v1);
2440 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2441 if (ctx->program->chip_class >= GFX8)
2442 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2443 else
2444 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2445 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2446 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2447 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2448 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2449 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2450 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2451 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2452
2453 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2454 if (src.type() == RegType::vgpr)
2455 src = bld.as_uniform(src);
2456 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2457 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2458 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2459 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2460 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2461 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2462 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2463 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2464 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2465 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2466 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2467 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2468 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2469 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2470 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2471 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2472 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2473 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2474
2475 } else if (instr->src[0].src.ssa->bit_size == 64) {
2476 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2477 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2478 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2479 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2480 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2481 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2482 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2483 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2484 if (dst.type() == RegType::sgpr) {
2485 lower = bld.as_uniform(lower);
2486 upper = bld.as_uniform(upper);
2487 }
2488 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2489
2490 } else {
2491 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2492 nir_print_instr(&instr->instr, stderr);
2493 fprintf(stderr, "\n");
2494 }
2495 break;
2496 }
2497 case nir_op_b2f16: {
2498 Temp src = get_alu_src(ctx, instr->src[0]);
2499 assert(src.regClass() == bld.lm);
2500
2501 if (dst.regClass() == s1) {
2502 src = bool_to_scalar_condition(ctx, src);
2503 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2504 } else if (dst.regClass() == v2b) {
2505 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2506 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2507 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2508 } else {
2509 unreachable("Wrong destination register class for nir_op_b2f16.");
2510 }
2511 break;
2512 }
2513 case nir_op_b2f32: {
2514 Temp src = get_alu_src(ctx, instr->src[0]);
2515 assert(src.regClass() == bld.lm);
2516
2517 if (dst.regClass() == s1) {
2518 src = bool_to_scalar_condition(ctx, src);
2519 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2520 } else if (dst.regClass() == v1) {
2521 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2522 } else {
2523 unreachable("Wrong destination register class for nir_op_b2f32.");
2524 }
2525 break;
2526 }
2527 case nir_op_b2f64: {
2528 Temp src = get_alu_src(ctx, instr->src[0]);
2529 assert(src.regClass() == bld.lm);
2530
2531 if (dst.regClass() == s2) {
2532 src = bool_to_scalar_condition(ctx, src);
2533 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2534 } else if (dst.regClass() == v2) {
2535 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2536 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2537 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2538 } else {
2539 unreachable("Wrong destination register class for nir_op_b2f64.");
2540 }
2541 break;
2542 }
2543 case nir_op_i2i8:
2544 case nir_op_u2u8: {
2545 Temp src = get_alu_src(ctx, instr->src[0]);
2546 /* we can actually just say dst = src */
2547 if (src.regClass() == s1)
2548 bld.copy(Definition(dst), src);
2549 else
2550 emit_extract_vector(ctx, src, 0, dst);
2551 break;
2552 }
2553 case nir_op_i2i16: {
2554 Temp src = get_alu_src(ctx, instr->src[0]);
2555 if (instr->src[0].src.ssa->bit_size == 8) {
2556 if (dst.regClass() == s1) {
2557 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2558 } else {
2559 assert(src.regClass() == v1b);
2560 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2561 sdwa->operands[0] = Operand(src);
2562 sdwa->definitions[0] = Definition(dst);
2563 sdwa->sel[0] = sdwa_sbyte;
2564 sdwa->dst_sel = sdwa_sword;
2565 ctx->block->instructions.emplace_back(std::move(sdwa));
2566 }
2567 } else {
2568 Temp src = get_alu_src(ctx, instr->src[0]);
2569 /* we can actually just say dst = src */
2570 if (src.regClass() == s1)
2571 bld.copy(Definition(dst), src);
2572 else
2573 emit_extract_vector(ctx, src, 0, dst);
2574 }
2575 break;
2576 }
2577 case nir_op_u2u16: {
2578 Temp src = get_alu_src(ctx, instr->src[0]);
2579 if (instr->src[0].src.ssa->bit_size == 8) {
2580 if (dst.regClass() == s1)
2581 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2582 else {
2583 assert(src.regClass() == v1b);
2584 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2585 sdwa->operands[0] = Operand(src);
2586 sdwa->definitions[0] = Definition(dst);
2587 sdwa->sel[0] = sdwa_ubyte;
2588 sdwa->dst_sel = sdwa_uword;
2589 ctx->block->instructions.emplace_back(std::move(sdwa));
2590 }
2591 } else {
2592 Temp src = get_alu_src(ctx, instr->src[0]);
2593 /* we can actually just say dst = src */
2594 if (src.regClass() == s1)
2595 bld.copy(Definition(dst), src);
2596 else
2597 emit_extract_vector(ctx, src, 0, dst);
2598 }
2599 break;
2600 }
2601 case nir_op_i2i32: {
2602 Temp src = get_alu_src(ctx, instr->src[0]);
2603 if (instr->src[0].src.ssa->bit_size == 8) {
2604 if (dst.regClass() == s1) {
2605 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2606 } else {
2607 assert(src.regClass() == v1b);
2608 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2609 sdwa->operands[0] = Operand(src);
2610 sdwa->definitions[0] = Definition(dst);
2611 sdwa->sel[0] = sdwa_sbyte;
2612 sdwa->dst_sel = sdwa_sdword;
2613 ctx->block->instructions.emplace_back(std::move(sdwa));
2614 }
2615 } else if (instr->src[0].src.ssa->bit_size == 16) {
2616 if (dst.regClass() == s1) {
2617 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(dst), Operand(src));
2618 } else {
2619 assert(src.regClass() == v2b);
2620 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2621 sdwa->operands[0] = Operand(src);
2622 sdwa->definitions[0] = Definition(dst);
2623 sdwa->sel[0] = sdwa_sword;
2624 sdwa->dst_sel = sdwa_udword;
2625 ctx->block->instructions.emplace_back(std::move(sdwa));
2626 }
2627 } else if (instr->src[0].src.ssa->bit_size == 64) {
2628 /* we can actually just say dst = src, as it would map the lower register */
2629 emit_extract_vector(ctx, src, 0, dst);
2630 } else {
2631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2632 nir_print_instr(&instr->instr, stderr);
2633 fprintf(stderr, "\n");
2634 }
2635 break;
2636 }
2637 case nir_op_u2u32: {
2638 Temp src = get_alu_src(ctx, instr->src[0]);
2639 if (instr->src[0].src.ssa->bit_size == 8) {
2640 if (dst.regClass() == s1)
2641 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2642 else {
2643 assert(src.regClass() == v1b);
2644 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2645 sdwa->operands[0] = Operand(src);
2646 sdwa->definitions[0] = Definition(dst);
2647 sdwa->sel[0] = sdwa_ubyte;
2648 sdwa->dst_sel = sdwa_udword;
2649 ctx->block->instructions.emplace_back(std::move(sdwa));
2650 }
2651 } else if (instr->src[0].src.ssa->bit_size == 16) {
2652 if (dst.regClass() == s1) {
2653 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2654 } else {
2655 assert(src.regClass() == v2b);
2656 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2657 sdwa->operands[0] = Operand(src);
2658 sdwa->definitions[0] = Definition(dst);
2659 sdwa->sel[0] = sdwa_uword;
2660 sdwa->dst_sel = sdwa_udword;
2661 ctx->block->instructions.emplace_back(std::move(sdwa));
2662 }
2663 } else if (instr->src[0].src.ssa->bit_size == 64) {
2664 /* we can actually just say dst = src, as it would map the lower register */
2665 emit_extract_vector(ctx, src, 0, dst);
2666 } else {
2667 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2668 nir_print_instr(&instr->instr, stderr);
2669 fprintf(stderr, "\n");
2670 }
2671 break;
2672 }
2673 case nir_op_i2i64: {
2674 Temp src = get_alu_src(ctx, instr->src[0]);
2675 if (src.regClass() == s1) {
2676 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2677 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2678 } else if (src.regClass() == v1) {
2679 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2680 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2681 } else {
2682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2683 nir_print_instr(&instr->instr, stderr);
2684 fprintf(stderr, "\n");
2685 }
2686 break;
2687 }
2688 case nir_op_u2u64: {
2689 Temp src = get_alu_src(ctx, instr->src[0]);
2690 if (instr->src[0].src.ssa->bit_size == 32) {
2691 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2692 } else {
2693 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2694 nir_print_instr(&instr->instr, stderr);
2695 fprintf(stderr, "\n");
2696 }
2697 break;
2698 }
2699 case nir_op_b2b32:
2700 case nir_op_b2i32: {
2701 Temp src = get_alu_src(ctx, instr->src[0]);
2702 assert(src.regClass() == bld.lm);
2703
2704 if (dst.regClass() == s1) {
2705 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2706 bool_to_scalar_condition(ctx, src, dst);
2707 } else if (dst.regClass() == v1) {
2708 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2709 } else {
2710 unreachable("Invalid register class for b2i32");
2711 }
2712 break;
2713 }
2714 case nir_op_b2b1:
2715 case nir_op_i2b1: {
2716 Temp src = get_alu_src(ctx, instr->src[0]);
2717 assert(dst.regClass() == bld.lm);
2718
2719 if (src.type() == RegType::vgpr) {
2720 assert(src.regClass() == v1 || src.regClass() == v2);
2721 assert(dst.regClass() == bld.lm);
2722 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2723 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2724 } else {
2725 assert(src.regClass() == s1 || src.regClass() == s2);
2726 Temp tmp;
2727 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2728 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2729 } else {
2730 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2731 bld.scc(bld.def(s1)), Operand(0u), src);
2732 }
2733 bool_to_vector_condition(ctx, tmp, dst);
2734 }
2735 break;
2736 }
2737 case nir_op_pack_64_2x32_split: {
2738 Temp src0 = get_alu_src(ctx, instr->src[0]);
2739 Temp src1 = get_alu_src(ctx, instr->src[1]);
2740
2741 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2742 break;
2743 }
2744 case nir_op_unpack_64_2x32_split_x:
2745 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2746 break;
2747 case nir_op_unpack_64_2x32_split_y:
2748 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2749 break;
2750 case nir_op_unpack_32_2x16_split_x:
2751 if (dst.type() == RegType::vgpr) {
2752 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2753 } else {
2754 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2755 }
2756 break;
2757 case nir_op_unpack_32_2x16_split_y:
2758 if (dst.type() == RegType::vgpr) {
2759 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2760 } else {
2761 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2762 }
2763 break;
2764 case nir_op_pack_32_2x16_split: {
2765 Temp src0 = get_alu_src(ctx, instr->src[0]);
2766 Temp src1 = get_alu_src(ctx, instr->src[1]);
2767 if (dst.regClass() == v1) {
2768 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2769 } else {
2770 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2771 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2772 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2773 }
2774 break;
2775 }
2776 case nir_op_pack_half_2x16: {
2777 Temp src = get_alu_src(ctx, instr->src[0], 2);
2778
2779 if (dst.regClass() == v1) {
2780 Temp src0 = bld.tmp(v1);
2781 Temp src1 = bld.tmp(v1);
2782 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2783 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2784 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2785 else
2786 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2787 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2788 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2789 } else {
2790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2791 nir_print_instr(&instr->instr, stderr);
2792 fprintf(stderr, "\n");
2793 }
2794 break;
2795 }
2796 case nir_op_unpack_half_2x16_split_x: {
2797 if (dst.regClass() == v1) {
2798 Builder bld(ctx->program, ctx->block);
2799 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2800 } else {
2801 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2802 nir_print_instr(&instr->instr, stderr);
2803 fprintf(stderr, "\n");
2804 }
2805 break;
2806 }
2807 case nir_op_unpack_half_2x16_split_y: {
2808 if (dst.regClass() == v1) {
2809 Builder bld(ctx->program, ctx->block);
2810 /* TODO: use SDWA here */
2811 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2812 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2813 } else {
2814 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2815 nir_print_instr(&instr->instr, stderr);
2816 fprintf(stderr, "\n");
2817 }
2818 break;
2819 }
2820 case nir_op_fquantize2f16: {
2821 Temp src = get_alu_src(ctx, instr->src[0]);
2822 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2823 Temp f32, cmp_res;
2824
2825 if (ctx->program->chip_class >= GFX8) {
2826 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2827 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2828 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2829 } else {
2830 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2831 * so compare the result and flush to 0 if it's smaller.
2832 */
2833 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2834 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2835 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2836 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2837 cmp_res = vop3->definitions[0].getTemp();
2838 }
2839
2840 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2841 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2842 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2843 } else {
2844 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2845 }
2846 break;
2847 }
2848 case nir_op_bfm: {
2849 Temp bits = get_alu_src(ctx, instr->src[0]);
2850 Temp offset = get_alu_src(ctx, instr->src[1]);
2851
2852 if (dst.regClass() == s1) {
2853 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2854 } else if (dst.regClass() == v1) {
2855 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2856 } else {
2857 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2858 nir_print_instr(&instr->instr, stderr);
2859 fprintf(stderr, "\n");
2860 }
2861 break;
2862 }
2863 case nir_op_bitfield_select: {
2864 /* (mask & insert) | (~mask & base) */
2865 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2866 Temp insert = get_alu_src(ctx, instr->src[1]);
2867 Temp base = get_alu_src(ctx, instr->src[2]);
2868
2869 /* dst = (insert & bitmask) | (base & ~bitmask) */
2870 if (dst.regClass() == s1) {
2871 aco_ptr<Instruction> sop2;
2872 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2873 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2874 Operand lhs;
2875 if (const_insert && const_bitmask) {
2876 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2877 } else {
2878 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2879 lhs = Operand(insert);
2880 }
2881
2882 Operand rhs;
2883 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2884 if (const_base && const_bitmask) {
2885 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2886 } else {
2887 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2888 rhs = Operand(base);
2889 }
2890
2891 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2892
2893 } else if (dst.regClass() == v1) {
2894 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2895 base = as_vgpr(ctx, base);
2896 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2897 insert = as_vgpr(ctx, insert);
2898
2899 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2900
2901 } else {
2902 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2903 nir_print_instr(&instr->instr, stderr);
2904 fprintf(stderr, "\n");
2905 }
2906 break;
2907 }
2908 case nir_op_ubfe:
2909 case nir_op_ibfe: {
2910 Temp base = get_alu_src(ctx, instr->src[0]);
2911 Temp offset = get_alu_src(ctx, instr->src[1]);
2912 Temp bits = get_alu_src(ctx, instr->src[2]);
2913
2914 if (dst.type() == RegType::sgpr) {
2915 Operand extract;
2916 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2917 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2918 if (const_offset && const_bits) {
2919 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2920 extract = Operand(const_extract);
2921 } else {
2922 Operand width;
2923 if (const_bits) {
2924 width = Operand(const_bits->u32 << 16);
2925 } else {
2926 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2927 }
2928 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2929 }
2930
2931 aco_opcode opcode;
2932 if (dst.regClass() == s1) {
2933 if (instr->op == nir_op_ubfe)
2934 opcode = aco_opcode::s_bfe_u32;
2935 else
2936 opcode = aco_opcode::s_bfe_i32;
2937 } else if (dst.regClass() == s2) {
2938 if (instr->op == nir_op_ubfe)
2939 opcode = aco_opcode::s_bfe_u64;
2940 else
2941 opcode = aco_opcode::s_bfe_i64;
2942 } else {
2943 unreachable("Unsupported BFE bit size");
2944 }
2945
2946 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2947
2948 } else {
2949 aco_opcode opcode;
2950 if (dst.regClass() == v1) {
2951 if (instr->op == nir_op_ubfe)
2952 opcode = aco_opcode::v_bfe_u32;
2953 else
2954 opcode = aco_opcode::v_bfe_i32;
2955 } else {
2956 unreachable("Unsupported BFE bit size");
2957 }
2958
2959 emit_vop3a_instruction(ctx, instr, opcode, dst);
2960 }
2961 break;
2962 }
2963 case nir_op_bit_count: {
2964 Temp src = get_alu_src(ctx, instr->src[0]);
2965 if (src.regClass() == s1) {
2966 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2967 } else if (src.regClass() == v1) {
2968 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2969 } else if (src.regClass() == v2) {
2970 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2971 emit_extract_vector(ctx, src, 1, v1),
2972 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2973 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2974 } else if (src.regClass() == s2) {
2975 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2976 } else {
2977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2978 nir_print_instr(&instr->instr, stderr);
2979 fprintf(stderr, "\n");
2980 }
2981 break;
2982 }
2983 case nir_op_flt: {
2984 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2985 break;
2986 }
2987 case nir_op_fge: {
2988 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2989 break;
2990 }
2991 case nir_op_feq: {
2992 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2993 break;
2994 }
2995 case nir_op_fne: {
2996 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2997 break;
2998 }
2999 case nir_op_ilt: {
3000 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
3001 break;
3002 }
3003 case nir_op_ige: {
3004 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
3005 break;
3006 }
3007 case nir_op_ieq: {
3008 if (instr->src[0].src.ssa->bit_size == 1)
3009 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
3010 else
3011 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
3012 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
3013 break;
3014 }
3015 case nir_op_ine: {
3016 if (instr->src[0].src.ssa->bit_size == 1)
3017 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
3018 else
3019 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
3020 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
3021 break;
3022 }
3023 case nir_op_ult: {
3024 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
3025 break;
3026 }
3027 case nir_op_uge: {
3028 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
3029 break;
3030 }
3031 case nir_op_fddx:
3032 case nir_op_fddy:
3033 case nir_op_fddx_fine:
3034 case nir_op_fddy_fine:
3035 case nir_op_fddx_coarse:
3036 case nir_op_fddy_coarse: {
3037 Temp src = get_alu_src(ctx, instr->src[0]);
3038 uint16_t dpp_ctrl1, dpp_ctrl2;
3039 if (instr->op == nir_op_fddx_fine) {
3040 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
3041 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
3042 } else if (instr->op == nir_op_fddy_fine) {
3043 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
3044 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
3045 } else {
3046 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
3047 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
3048 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
3049 else
3050 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
3051 }
3052
3053 Temp tmp;
3054 if (ctx->program->chip_class >= GFX8) {
3055 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
3056 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
3057 } else {
3058 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
3059 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
3060 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
3061 }
3062 emit_wqm(ctx, tmp, dst, true);
3063 break;
3064 }
3065 default:
3066 fprintf(stderr, "Unknown NIR ALU instr: ");
3067 nir_print_instr(&instr->instr, stderr);
3068 fprintf(stderr, "\n");
3069 }
3070 }
3071
3072 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3073 {
3074 Temp dst = get_ssa_temp(ctx, &instr->def);
3075
3076 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3077 // which get truncated the lsb if double and msb if int
3078 // for now, we only use s_mov_b64 with 64bit inline constants
3079 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3080 assert(dst.type() == RegType::sgpr);
3081
3082 Builder bld(ctx->program, ctx->block);
3083
3084 if (instr->def.bit_size == 1) {
3085 assert(dst.regClass() == bld.lm);
3086 int val = instr->value[0].b ? -1 : 0;
3087 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3088 bld.sop1(Builder::s_mov, Definition(dst), op);
3089 } else if (dst.size() == 1) {
3090 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3091 } else {
3092 assert(dst.size() != 1);
3093 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3094 if (instr->def.bit_size == 64)
3095 for (unsigned i = 0; i < dst.size(); i++)
3096 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3097 else {
3098 for (unsigned i = 0; i < dst.size(); i++)
3099 vec->operands[i] = Operand{instr->value[i].u32};
3100 }
3101 vec->definitions[0] = Definition(dst);
3102 ctx->block->instructions.emplace_back(std::move(vec));
3103 }
3104 }
3105
3106 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3107 {
3108 uint32_t new_mask = 0;
3109 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3110 if (mask & (1u << i))
3111 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3112 return new_mask;
3113 }
3114
3115 Operand load_lds_size_m0(isel_context *ctx)
3116 {
3117 /* TODO: m0 does not need to be initialized on GFX9+ */
3118 Builder bld(ctx->program, ctx->block);
3119 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3120 }
3121
3122 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3123 Temp address, unsigned base_offset, unsigned align)
3124 {
3125 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3126
3127 Builder bld(ctx->program, ctx->block);
3128
3129 Operand m = load_lds_size_m0(ctx);
3130
3131 unsigned num_components = dst.size() * 4u / elem_size_bytes;
3132 unsigned bytes_read = 0;
3133 unsigned result_size = 0;
3134 unsigned total_bytes = num_components * elem_size_bytes;
3135 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
3136 bool large_ds_read = ctx->options->chip_class >= GFX7;
3137 bool usable_read2 = ctx->options->chip_class >= GFX7;
3138
3139 while (bytes_read < total_bytes) {
3140 unsigned todo = total_bytes - bytes_read;
3141 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
3142 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
3143
3144 aco_opcode op = aco_opcode::last_opcode;
3145 bool read2 = false;
3146 if (todo >= 16 && aligned16 && large_ds_read) {
3147 op = aco_opcode::ds_read_b128;
3148 todo = 16;
3149 } else if (todo >= 16 && aligned8 && usable_read2) {
3150 op = aco_opcode::ds_read2_b64;
3151 read2 = true;
3152 todo = 16;
3153 } else if (todo >= 12 && aligned16 && large_ds_read) {
3154 op = aco_opcode::ds_read_b96;
3155 todo = 12;
3156 } else if (todo >= 8 && aligned8) {
3157 op = aco_opcode::ds_read_b64;
3158 todo = 8;
3159 } else if (todo >= 8 && usable_read2) {
3160 op = aco_opcode::ds_read2_b32;
3161 read2 = true;
3162 todo = 8;
3163 } else if (todo >= 4) {
3164 op = aco_opcode::ds_read_b32;
3165 todo = 4;
3166 } else {
3167 assert(false);
3168 }
3169 assert(todo % elem_size_bytes == 0);
3170 unsigned num_elements = todo / elem_size_bytes;
3171 unsigned offset = base_offset + bytes_read;
3172 unsigned max_offset = read2 ? 1019 : 65535;
3173
3174 Temp address_offset = address;
3175 if (offset > max_offset) {
3176 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3177 offset = bytes_read;
3178 }
3179 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
3180
3181 Temp res;
3182 if (num_components == 1 && dst.type() == RegType::vgpr)
3183 res = dst;
3184 else
3185 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
3186
3187 if (read2)
3188 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
3189 else
3190 res = bld.ds(op, Definition(res), address_offset, m, offset);
3191
3192 if (num_components == 1) {
3193 assert(todo == total_bytes);
3194 if (dst.type() == RegType::sgpr)
3195 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3196 return dst;
3197 }
3198
3199 if (dst.type() == RegType::sgpr) {
3200 Temp new_res = bld.tmp(RegType::sgpr, res.size());
3201 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
3202 res = new_res;
3203 }
3204
3205 if (num_elements == 1) {
3206 result[result_size++] = res;
3207 } else {
3208 assert(res != dst && res.size() % num_elements == 0);
3209 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
3210 split->operands[0] = Operand(res);
3211 for (unsigned i = 0; i < num_elements; i++)
3212 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
3213 ctx->block->instructions.emplace_back(std::move(split));
3214 }
3215
3216 bytes_read += todo;
3217 }
3218
3219 assert(result_size == num_components && result_size > 1);
3220 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
3221 for (unsigned i = 0; i < result_size; i++)
3222 vec->operands[i] = Operand(result[i]);
3223 vec->definitions[0] = Definition(dst);
3224 ctx->block->instructions.emplace_back(std::move(vec));
3225 ctx->allocated_vec.emplace(dst.id(), result);
3226
3227 return dst;
3228 }
3229
3230 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3231 {
3232 if (start == 0 && size == data.size())
3233 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3234
3235 unsigned size_hint = 1;
3236 auto it = ctx->allocated_vec.find(data.id());
3237 if (it != ctx->allocated_vec.end())
3238 size_hint = it->second[0].size();
3239 if (size % size_hint || start % size_hint)
3240 size_hint = 1;
3241
3242 start /= size_hint;
3243 size /= size_hint;
3244
3245 Temp elems[size];
3246 for (unsigned i = 0; i < size; i++)
3247 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3248
3249 if (size == 1)
3250 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3251
3252 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3253 for (unsigned i = 0; i < size; i++)
3254 vec->operands[i] = Operand(elems[i]);
3255 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3256 vec->definitions[0] = Definition(res);
3257 ctx->block->instructions.emplace_back(std::move(vec));
3258 return res;
3259 }
3260
3261 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3262 {
3263 Builder bld(ctx->program, ctx->block);
3264 unsigned bytes_written = 0;
3265 bool large_ds_write = ctx->options->chip_class >= GFX7;
3266 bool usable_write2 = ctx->options->chip_class >= GFX7;
3267
3268 while (bytes_written < total_size * 4) {
3269 unsigned todo = total_size * 4 - bytes_written;
3270 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3271 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3272
3273 aco_opcode op = aco_opcode::last_opcode;
3274 bool write2 = false;
3275 unsigned size = 0;
3276 if (todo >= 16 && aligned16 && large_ds_write) {
3277 op = aco_opcode::ds_write_b128;
3278 size = 4;
3279 } else if (todo >= 16 && aligned8 && usable_write2) {
3280 op = aco_opcode::ds_write2_b64;
3281 write2 = true;
3282 size = 4;
3283 } else if (todo >= 12 && aligned16 && large_ds_write) {
3284 op = aco_opcode::ds_write_b96;
3285 size = 3;
3286 } else if (todo >= 8 && aligned8) {
3287 op = aco_opcode::ds_write_b64;
3288 size = 2;
3289 } else if (todo >= 8 && usable_write2) {
3290 op = aco_opcode::ds_write2_b32;
3291 write2 = true;
3292 size = 2;
3293 } else if (todo >= 4) {
3294 op = aco_opcode::ds_write_b32;
3295 size = 1;
3296 } else {
3297 assert(false);
3298 }
3299
3300 unsigned offset = offset0 + offset1 + bytes_written;
3301 unsigned max_offset = write2 ? 1020 : 65535;
3302 Temp address_offset = address;
3303 if (offset > max_offset) {
3304 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3305 offset = offset1 + bytes_written;
3306 }
3307 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3308
3309 if (write2) {
3310 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3311 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3312 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3313 } else {
3314 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3315 bld.ds(op, address_offset, val, m, offset);
3316 }
3317
3318 bytes_written += size * 4;
3319 }
3320 }
3321
3322 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3323 Temp address, unsigned base_offset, unsigned align)
3324 {
3325 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3326 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3327
3328 Operand m = load_lds_size_m0(ctx);
3329
3330 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3331 assert(wrmask <= 0x0f);
3332 int start[2], count[2];
3333 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3334 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3335 assert(wrmask == 0);
3336
3337 /* one combined store is sufficient */
3338 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3339 Builder bld(ctx->program, ctx->block);
3340
3341 Temp address_offset = address;
3342 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3343 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3344 base_offset = 0;
3345 }
3346
3347 assert(count[0] == 1);
3348 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3349
3350 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3351 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3352 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3353 base_offset = base_offset / elem_size_bytes;
3354 bld.ds(op, address_offset, val0, val1, m,
3355 base_offset + start[0], base_offset + start[1]);
3356 return;
3357 }
3358
3359 for (unsigned i = 0; i < 2; i++) {
3360 if (count[i] == 0)
3361 continue;
3362
3363 unsigned elem_size_words = elem_size_bytes / 4;
3364 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3365 base_offset, start[i] * elem_size_bytes, align);
3366 }
3367 return;
3368 }
3369
3370 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3371 {
3372 unsigned align = 16;
3373 if (const_offset)
3374 align = std::min(align, 1u << (ffs(const_offset) - 1));
3375
3376 return align;
3377 }
3378
3379
3380 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3381 unsigned split_cnt = 0u, Temp dst = Temp())
3382 {
3383 Builder bld(ctx->program, ctx->block);
3384 unsigned dword_size = elem_size_bytes / 4;
3385
3386 if (!dst.id())
3387 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3388
3389 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3390 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3391 instr->definitions[0] = Definition(dst);
3392
3393 for (unsigned i = 0; i < cnt; ++i) {
3394 if (arr[i].id()) {
3395 assert(arr[i].size() == dword_size);
3396 allocated_vec[i] = arr[i];
3397 instr->operands[i] = Operand(arr[i]);
3398 } else {
3399 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3400 allocated_vec[i] = zero;
3401 instr->operands[i] = Operand(zero);
3402 }
3403 }
3404
3405 bld.insert(std::move(instr));
3406
3407 if (split_cnt)
3408 emit_split_vector(ctx, dst, split_cnt);
3409 else
3410 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3411
3412 return dst;
3413 }
3414
3415 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3416 {
3417 if (const_offset >= 4096) {
3418 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3419 const_offset %= 4096u;
3420
3421 if (!voffset.id())
3422 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3423 else if (unlikely(voffset.regClass() == s1))
3424 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3425 else if (likely(voffset.regClass() == v1))
3426 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3427 else
3428 unreachable("Unsupported register class of voffset");
3429 }
3430
3431 return const_offset;
3432 }
3433
3434 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3435 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3436 {
3437 assert(vdata.id());
3438 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3439 assert(vdata.size() >= 1 && vdata.size() <= 4);
3440
3441 Builder bld(ctx->program, ctx->block);
3442 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3443 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3444
3445 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3446 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3447 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3448 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3449 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3450
3451 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3452 }
3453
3454 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3455 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3456 bool allow_combining = true, bool reorder = true, bool slc = false)
3457 {
3458 Builder bld(ctx->program, ctx->block);
3459 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3460 assert(write_mask);
3461
3462 if (elem_size_bytes == 8) {
3463 elem_size_bytes = 4;
3464 write_mask = widen_mask(write_mask, 2);
3465 }
3466
3467 while (write_mask) {
3468 int start = 0;
3469 int count = 0;
3470 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3471 assert(count > 0);
3472 assert(start >= 0);
3473
3474 while (count > 0) {
3475 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3476 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3477
3478 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3479 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3480 sub_count = 2;
3481
3482 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3483 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3484
3485 count -= sub_count;
3486 start += sub_count;
3487 }
3488
3489 assert(count == 0);
3490 }
3491 }
3492
3493 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3494 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3495 {
3496 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3497 assert(size_dwords >= 1 && size_dwords <= 4);
3498
3499 Builder bld(ctx->program, ctx->block);
3500 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3501 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3502 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3503
3504 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3505 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3506 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3507 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3508 /* disable_wqm */ false, /* glc */ true,
3509 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3510
3511 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3512
3513 return vdata;
3514 }
3515
3516 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3517 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3518 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3519 {
3520 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3521 assert((num_components * elem_size_bytes / 4) == dst.size());
3522 assert(!!stride != allow_combining);
3523
3524 Builder bld(ctx->program, ctx->block);
3525 unsigned split_cnt = num_components;
3526
3527 if (elem_size_bytes == 8) {
3528 elem_size_bytes = 4;
3529 num_components *= 2;
3530 }
3531
3532 if (!stride)
3533 stride = elem_size_bytes;
3534
3535 unsigned load_size = 1;
3536 if (allow_combining) {
3537 if ((num_components % 4) == 0)
3538 load_size = 4;
3539 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3540 load_size = 3;
3541 else if ((num_components % 2) == 0)
3542 load_size = 2;
3543 }
3544
3545 unsigned num_loads = num_components / load_size;
3546 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3547
3548 for (unsigned i = 0; i < num_loads; ++i) {
3549 unsigned const_offset = i * stride * load_size + base_const_offset;
3550 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3551 }
3552
3553 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3554 }
3555
3556 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3557 {
3558 Builder bld(ctx->program, ctx->block);
3559 Temp offset = base_offset.first;
3560 unsigned const_offset = base_offset.second;
3561
3562 if (!nir_src_is_const(*off_src)) {
3563 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3564 Temp with_stride;
3565
3566 /* Calculate indirect offset with stride */
3567 if (likely(indirect_offset_arg.regClass() == v1))
3568 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3569 else if (indirect_offset_arg.regClass() == s1)
3570 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3571 else
3572 unreachable("Unsupported register class of indirect offset");
3573
3574 /* Add to the supplied base offset */
3575 if (offset.id() == 0)
3576 offset = with_stride;
3577 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3578 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3579 else if (offset.size() == 1 && with_stride.size() == 1)
3580 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3581 else
3582 unreachable("Unsupported register class of indirect offset");
3583 } else {
3584 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3585 const_offset += const_offset_arg * stride;
3586 }
3587
3588 return std::make_pair(offset, const_offset);
3589 }
3590
3591 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3592 {
3593 Builder bld(ctx->program, ctx->block);
3594 Temp offset;
3595
3596 if (off1.first.id() && off2.first.id()) {
3597 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3598 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3599 else if (off1.first.size() == 1 && off2.first.size() == 1)
3600 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3601 else
3602 unreachable("Unsupported register class of indirect offset");
3603 } else {
3604 offset = off1.first.id() ? off1.first : off2.first;
3605 }
3606
3607 return std::make_pair(offset, off1.second + off2.second);
3608 }
3609
3610 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3611 {
3612 Builder bld(ctx->program, ctx->block);
3613 unsigned const_offset = offs.second * multiplier;
3614
3615 if (!offs.first.id())
3616 return std::make_pair(offs.first, const_offset);
3617
3618 Temp offset = unlikely(offs.first.regClass() == s1)
3619 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3620 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3621
3622 return std::make_pair(offset, const_offset);
3623 }
3624
3625 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3626 {
3627 Builder bld(ctx->program, ctx->block);
3628
3629 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3630 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3631 /* component is in bytes */
3632 const_offset += nir_intrinsic_component(instr) * component_stride;
3633
3634 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3635 nir_src *off_src = nir_get_io_offset_src(instr);
3636 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3637 }
3638
3639 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3640 {
3641 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3642 }
3643
3644 Temp get_tess_rel_patch_id(isel_context *ctx)
3645 {
3646 Builder bld(ctx->program, ctx->block);
3647
3648 switch (ctx->shader->info.stage) {
3649 case MESA_SHADER_TESS_CTRL:
3650 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3651 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3652 case MESA_SHADER_TESS_EVAL:
3653 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3654 default:
3655 unreachable("Unsupported stage in get_tess_rel_patch_id");
3656 }
3657 }
3658
3659 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3660 {
3661 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3662 Builder bld(ctx->program, ctx->block);
3663
3664 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3665 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3666
3667 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3668
3669 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3670 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3671
3672 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3673 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3674 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3675
3676 return offset_mul(ctx, offs, 4u);
3677 }
3678
3679 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3680 {
3681 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3682 Builder bld(ctx->program, ctx->block);
3683
3684 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3685 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3686 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3687 uint32_t output_vertex_size = num_tcs_outputs * 16;
3688 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3689 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3690
3691 std::pair<Temp, unsigned> offs = instr
3692 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3693 : std::make_pair(Temp(), 0u);
3694
3695 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3696 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3697
3698 if (per_vertex) {
3699 assert(instr);
3700
3701 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3702 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3703
3704 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3705 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3706 } else {
3707 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3708 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3709 }
3710
3711 return offs;
3712 }
3713
3714 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3715 {
3716 Builder bld(ctx->program, ctx->block);
3717
3718 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3719 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3720
3721 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3722
3723 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3724 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3725 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3726
3727 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3728 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3729
3730 return offs;
3731 }
3732
3733 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3734 {
3735 Builder bld(ctx->program, ctx->block);
3736
3737 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3738 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3739 : ctx->args->options->key.tes.tcs_num_outputs;
3740
3741 unsigned output_vertex_size = num_tcs_outputs * 16;
3742 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3743 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3744 unsigned attr_stride = ctx->tcs_num_patches;
3745
3746 std::pair<Temp, unsigned> offs = instr
3747 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3748 : std::make_pair(Temp(), 0u);
3749
3750 if (const_base_offset)
3751 offs.second += const_base_offset * attr_stride;
3752
3753 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3754 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3755 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3756
3757 return offs;
3758 }
3759
3760 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3761 {
3762 unsigned off = nir_intrinsic_base(instr) * 4u;
3763 nir_src *off_src = nir_get_io_offset_src(instr);
3764
3765 if (!nir_src_is_const(*off_src)) {
3766 *indirect = true;
3767 return false;
3768 }
3769
3770 *indirect = false;
3771 off += nir_src_as_uint(*off_src) * 16u;
3772
3773 while (mask) {
3774 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3775 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3776 return true;
3777 }
3778
3779 return false;
3780 }
3781
3782 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3783 {
3784 unsigned write_mask = nir_intrinsic_write_mask(instr);
3785 unsigned component = nir_intrinsic_component(instr);
3786 unsigned idx = nir_intrinsic_base(instr) + component;
3787
3788 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3789 if (off_instr->type != nir_instr_type_load_const)
3790 return false;
3791
3792 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3793 idx += nir_src_as_uint(instr->src[1]) * 4u;
3794
3795 if (instr->src[0].ssa->bit_size == 64)
3796 write_mask = widen_mask(write_mask, 2);
3797
3798 for (unsigned i = 0; i < 8; ++i) {
3799 if (write_mask & (1 << i)) {
3800 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3801 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3802 }
3803 idx++;
3804 }
3805
3806 return true;
3807 }
3808
3809 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
3810 {
3811 /* Only TCS per-vertex inputs are supported by this function.
3812 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
3813 */
3814 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
3815 return false;
3816
3817 nir_src *off_src = nir_get_io_offset_src(instr);
3818 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3819 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
3820 bool can_use_temps = nir_src_is_const(*off_src) &&
3821 vertex_index_instr->type == nir_instr_type_intrinsic &&
3822 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
3823
3824 if (!can_use_temps)
3825 return false;
3826
3827 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
3828 Temp *src = &ctx->inputs.temps[idx];
3829 Temp vec = create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u);
3830 assert(vec.size() == dst.size());
3831
3832 Builder bld(ctx->program, ctx->block);
3833 bld.copy(Definition(dst), vec);
3834 return true;
3835 }
3836
3837 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3838 {
3839 Builder bld(ctx->program, ctx->block);
3840
3841 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3842 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3843 unsigned write_mask = nir_intrinsic_write_mask(instr);
3844 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3845
3846 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
3847 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
3848 bool indirect_write;
3849 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
3850 if (temp_only_input && !indirect_write)
3851 return;
3852 }
3853
3854 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3855 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3856 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3857 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3858 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3859 } else {
3860 Temp lds_base;
3861
3862 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3863 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3864 unsigned itemsize = ctx->stage == vertex_geometry_gs
3865 ? ctx->program->info->vs.es_info.esgs_itemsize
3866 : ctx->program->info->tes.es_info.esgs_itemsize;
3867 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3868 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3869 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3870 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3871 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3872 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3873 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3874 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3875 */
3876 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3877 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3878 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3879 } else {
3880 unreachable("Invalid LS or ES stage");
3881 }
3882
3883 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3884 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3885 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3886 }
3887 }
3888
3889 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3890 {
3891 unsigned off = nir_intrinsic_base(instr) * 4u;
3892 return off != ctx->tcs_tess_lvl_out_loc &&
3893 off != ctx->tcs_tess_lvl_in_loc;
3894 }
3895
3896 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3897 {
3898 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3899 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3900 return false;
3901
3902 uint64_t mask = per_vertex
3903 ? ctx->shader->info.outputs_read
3904 : ctx->shader->info.patch_outputs_read;
3905 bool indirect_write;
3906 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3907 return indirect_write || output_read;
3908 }
3909
3910 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3911 {
3912 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3913 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3914
3915 Builder bld(ctx->program, ctx->block);
3916
3917 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3918 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3919 unsigned write_mask = nir_intrinsic_write_mask(instr);
3920
3921 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3922 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3923 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3924 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3925
3926 if (write_to_vmem) {
3927 std::pair<Temp, unsigned> vmem_offs = per_vertex
3928 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3929 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3930
3931 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3932 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3933 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3934 }
3935
3936 if (write_to_lds) {
3937 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3938 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3939 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3940 }
3941 }
3942
3943 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3944 {
3945 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3946 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3947
3948 Builder bld(ctx->program, ctx->block);
3949
3950 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3951 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3952 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3953 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3954
3955 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3956 }
3957
3958 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3959 {
3960 if (ctx->stage == vertex_vs ||
3961 ctx->stage == tess_eval_vs ||
3962 ctx->stage == fragment_fs ||
3963 ctx->stage == ngg_vertex_gs ||
3964 ctx->stage == ngg_tess_eval_gs ||
3965 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3966 bool stored_to_temps = store_output_to_temps(ctx, instr);
3967 if (!stored_to_temps) {
3968 fprintf(stderr, "Unimplemented output offset instruction:\n");
3969 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3970 fprintf(stderr, "\n");
3971 abort();
3972 }
3973 } else if (ctx->stage == vertex_es ||
3974 ctx->stage == vertex_ls ||
3975 ctx->stage == tess_eval_es ||
3976 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3977 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3978 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3979 visit_store_ls_or_es_output(ctx, instr);
3980 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3981 visit_store_tcs_output(ctx, instr, false);
3982 } else {
3983 unreachable("Shader stage not implemented");
3984 }
3985 }
3986
3987 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3988 {
3989 visit_load_tcs_output(ctx, instr, false);
3990 }
3991
3992 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3993 {
3994 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3995 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3996
3997 Builder bld(ctx->program, ctx->block);
3998 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3999 if (ctx->program->has_16bank_lds)
4000 interp_p1.instr->operands[0].setLateKill(true);
4001 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
4002 }
4003
4004 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4005 {
4006 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4007 for (unsigned i = 0; i < num_components; i++)
4008 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4009 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4010 assert(num_components == 4);
4011 Builder bld(ctx->program, ctx->block);
4012 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4013 }
4014
4015 for (Operand& op : vec->operands)
4016 op = op.isUndefined() ? Operand(0u) : op;
4017
4018 vec->definitions[0] = Definition(dst);
4019 ctx->block->instructions.emplace_back(std::move(vec));
4020 emit_split_vector(ctx, dst, num_components);
4021 return;
4022 }
4023
4024 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4025 {
4026 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4027 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4028 unsigned idx = nir_intrinsic_base(instr);
4029 unsigned component = nir_intrinsic_component(instr);
4030 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4031
4032 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4033 if (offset) {
4034 assert(offset->u32 == 0);
4035 } else {
4036 /* the lower 15bit of the prim_mask contain the offset into LDS
4037 * while the upper bits contain the number of prims */
4038 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4039 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4040 Builder bld(ctx->program, ctx->block);
4041 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4042 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4043 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4044 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4045 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4046 }
4047
4048 if (instr->dest.ssa.num_components == 1) {
4049 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4050 } else {
4051 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4052 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4053 {
4054 Temp tmp = {ctx->program->allocateId(), v1};
4055 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4056 vec->operands[i] = Operand(tmp);
4057 }
4058 vec->definitions[0] = Definition(dst);
4059 ctx->block->instructions.emplace_back(std::move(vec));
4060 }
4061 }
4062
4063 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4064 unsigned offset, unsigned stride, unsigned channels)
4065 {
4066 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4067 if (vtx_info->chan_byte_size != 4 && channels == 3)
4068 return false;
4069 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4070 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4071 }
4072
4073 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4074 unsigned offset, unsigned stride, unsigned *channels)
4075 {
4076 if (!vtx_info->chan_byte_size) {
4077 *channels = vtx_info->num_channels;
4078 return vtx_info->chan_format;
4079 }
4080
4081 unsigned num_channels = *channels;
4082 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4083 unsigned new_channels = num_channels + 1;
4084 /* first, assume more loads is worse and try using a larger data format */
4085 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4086 new_channels++;
4087 /* don't make the attribute potentially out-of-bounds */
4088 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4089 new_channels = 5;
4090 }
4091
4092 if (new_channels == 5) {
4093 /* then try decreasing load size (at the cost of more loads) */
4094 new_channels = *channels;
4095 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4096 new_channels--;
4097 }
4098
4099 if (new_channels < *channels)
4100 *channels = new_channels;
4101 num_channels = new_channels;
4102 }
4103
4104 switch (vtx_info->chan_format) {
4105 case V_008F0C_BUF_DATA_FORMAT_8:
4106 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4107 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4108 case V_008F0C_BUF_DATA_FORMAT_16:
4109 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4110 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4111 case V_008F0C_BUF_DATA_FORMAT_32:
4112 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4113 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4114 }
4115 unreachable("shouldn't reach here");
4116 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4117 }
4118
4119 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4120 * so we may need to fix it up. */
4121 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4122 {
4123 Builder bld(ctx->program, ctx->block);
4124
4125 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4126 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4127
4128 /* For the integer-like cases, do a natural sign extension.
4129 *
4130 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4131 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4132 * exponent.
4133 */
4134 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4135 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4136
4137 /* Convert back to the right type. */
4138 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4139 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4140 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4141 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4142 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4143 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4144 }
4145
4146 return alpha;
4147 }
4148
4149 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4150 {
4151 Builder bld(ctx->program, ctx->block);
4152 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4153 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4154
4155 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4156 if (off_instr->type != nir_instr_type_load_const) {
4157 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4158 nir_print_instr(off_instr, stderr);
4159 fprintf(stderr, "\n");
4160 }
4161 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4162
4163 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4164
4165 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4166 unsigned component = nir_intrinsic_component(instr);
4167 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4168 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4169 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4170 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4171
4172 unsigned dfmt = attrib_format & 0xf;
4173 unsigned nfmt = (attrib_format >> 4) & 0x7;
4174 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4175
4176 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4177 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4178 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4179 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4180 if (post_shuffle)
4181 num_channels = MAX2(num_channels, 3);
4182
4183 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4184 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4185
4186 Temp index;
4187 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4188 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4189 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4190 if (divisor) {
4191 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4192 if (divisor != 1) {
4193 Temp divided = bld.tmp(v1);
4194 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4195 index = bld.vadd32(bld.def(v1), start_instance, divided);
4196 } else {
4197 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4198 }
4199 } else {
4200 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4201 }
4202 } else {
4203 index = bld.vadd32(bld.def(v1),
4204 get_arg(ctx, ctx->args->ac.base_vertex),
4205 get_arg(ctx, ctx->args->ac.vertex_id));
4206 }
4207
4208 Temp channels[num_channels];
4209 unsigned channel_start = 0;
4210 bool direct_fetch = false;
4211
4212 /* skip unused channels at the start */
4213 if (vtx_info->chan_byte_size && !post_shuffle) {
4214 channel_start = ffs(mask) - 1;
4215 for (unsigned i = 0; i < channel_start; i++)
4216 channels[i] = Temp(0, s1);
4217 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4218 num_channels = 3 - (ffs(mask) - 1);
4219 }
4220
4221 /* load channels */
4222 while (channel_start < num_channels) {
4223 unsigned fetch_size = num_channels - channel_start;
4224 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4225 bool expanded = false;
4226
4227 /* use MUBUF when possible to avoid possible alignment issues */
4228 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4229 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4230 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4231 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4232 vtx_info->chan_byte_size == 4;
4233 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4234 if (!use_mubuf) {
4235 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4236 } else {
4237 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4238 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4239 fetch_size = 4;
4240 expanded = true;
4241 }
4242 }
4243
4244 Temp fetch_index = index;
4245 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4246 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4247 fetch_offset = fetch_offset % attrib_stride;
4248 }
4249
4250 Operand soffset(0u);
4251 if (fetch_offset >= 4096) {
4252 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4253 fetch_offset %= 4096;
4254 }
4255
4256 aco_opcode opcode;
4257 switch (fetch_size) {
4258 case 1:
4259 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4260 break;
4261 case 2:
4262 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4263 break;
4264 case 3:
4265 assert(ctx->options->chip_class >= GFX7 ||
4266 (!use_mubuf && ctx->options->chip_class == GFX6));
4267 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4268 break;
4269 case 4:
4270 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4271 break;
4272 default:
4273 unreachable("Unimplemented load_input vector size");
4274 }
4275
4276 Temp fetch_dst;
4277 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4278 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4279 num_channels <= 3)) {
4280 direct_fetch = true;
4281 fetch_dst = dst;
4282 } else {
4283 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4284 }
4285
4286 if (use_mubuf) {
4287 Instruction *mubuf = bld.mubuf(opcode,
4288 Definition(fetch_dst), list, fetch_index, soffset,
4289 fetch_offset, false, true).instr;
4290 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4291 } else {
4292 Instruction *mtbuf = bld.mtbuf(opcode,
4293 Definition(fetch_dst), list, fetch_index, soffset,
4294 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4295 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4296 }
4297
4298 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4299
4300 if (fetch_size == 1) {
4301 channels[channel_start] = fetch_dst;
4302 } else {
4303 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4304 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4305 }
4306
4307 channel_start += fetch_size;
4308 }
4309
4310 if (!direct_fetch) {
4311 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4312 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4313
4314 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4315 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4316 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4317
4318 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4319 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4320 unsigned num_temp = 0;
4321 for (unsigned i = 0; i < dst.size(); i++) {
4322 unsigned idx = i + component;
4323 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4324 Temp channel = channels[swizzle[idx]];
4325 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4326 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4327 vec->operands[i] = Operand(channel);
4328
4329 num_temp++;
4330 elems[i] = channel;
4331 } else if (is_float && idx == 3) {
4332 vec->operands[i] = Operand(0x3f800000u);
4333 } else if (!is_float && idx == 3) {
4334 vec->operands[i] = Operand(1u);
4335 } else {
4336 vec->operands[i] = Operand(0u);
4337 }
4338 }
4339 vec->definitions[0] = Definition(dst);
4340 ctx->block->instructions.emplace_back(std::move(vec));
4341 emit_split_vector(ctx, dst, dst.size());
4342
4343 if (num_temp == dst.size())
4344 ctx->allocated_vec.emplace(dst.id(), elems);
4345 }
4346 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4347 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4348 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4349 if (off_instr->type != nir_instr_type_load_const ||
4350 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4351 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4352 nir_print_instr(off_instr, stderr);
4353 fprintf(stderr, "\n");
4354 }
4355
4356 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4357 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4358 if (offset) {
4359 assert(offset->u32 == 0);
4360 } else {
4361 /* the lower 15bit of the prim_mask contain the offset into LDS
4362 * while the upper bits contain the number of prims */
4363 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4364 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4365 Builder bld(ctx->program, ctx->block);
4366 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4367 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4368 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4369 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4370 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4371 }
4372
4373 unsigned idx = nir_intrinsic_base(instr);
4374 unsigned component = nir_intrinsic_component(instr);
4375 unsigned vertex_id = 2; /* P0 */
4376
4377 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4378 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4379 switch (src0->u32) {
4380 case 0:
4381 vertex_id = 2; /* P0 */
4382 break;
4383 case 1:
4384 vertex_id = 0; /* P10 */
4385 break;
4386 case 2:
4387 vertex_id = 1; /* P20 */
4388 break;
4389 default:
4390 unreachable("invalid vertex index");
4391 }
4392 }
4393
4394 if (dst.size() == 1) {
4395 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4396 } else {
4397 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4398 for (unsigned i = 0; i < dst.size(); i++)
4399 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4400 vec->definitions[0] = Definition(dst);
4401 bld.insert(std::move(vec));
4402 }
4403
4404 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4405 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4406 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4407 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4408 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4409
4410 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4411 } else {
4412 unreachable("Shader stage not implemented");
4413 }
4414 }
4415
4416 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4417 {
4418 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4419
4420 Builder bld(ctx->program, ctx->block);
4421 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4422 Temp vertex_offset;
4423
4424 if (!nir_src_is_const(*vertex_src)) {
4425 /* better code could be created, but this case probably doesn't happen
4426 * much in practice */
4427 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4428 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4429 Temp elem;
4430
4431 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4432 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4433 if (i % 2u)
4434 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4435 } else {
4436 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4437 }
4438
4439 if (vertex_offset.id()) {
4440 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4441 Operand(i), indirect_vertex);
4442 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4443 } else {
4444 vertex_offset = elem;
4445 }
4446 }
4447
4448 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4449 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4450 } else {
4451 unsigned vertex = nir_src_as_uint(*vertex_src);
4452 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4453 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4454 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4455 Operand((vertex % 2u) * 16u), Operand(16u));
4456 else
4457 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4458 }
4459
4460 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4461 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4462 return offset_mul(ctx, offs, 4u);
4463 }
4464
4465 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4466 {
4467 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4468
4469 Builder bld(ctx->program, ctx->block);
4470 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4471 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4472
4473 if (ctx->stage == geometry_gs) {
4474 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4475 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4476 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4477 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4478 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4479 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4480 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4481 } else {
4482 unreachable("Unsupported GS stage.");
4483 }
4484 }
4485
4486 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4487 {
4488 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4489
4490 Builder bld(ctx->program, ctx->block);
4491 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4492
4493 if (load_input_from_temps(ctx, instr, dst))
4494 return;
4495
4496 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4497 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4498 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4499
4500 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4501 }
4502
4503 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4504 {
4505 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4506
4507 Builder bld(ctx->program, ctx->block);
4508
4509 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4510 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4511 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4512
4513 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4514 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4515
4516 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4517 }
4518
4519 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4520 {
4521 switch (ctx->shader->info.stage) {
4522 case MESA_SHADER_GEOMETRY:
4523 visit_load_gs_per_vertex_input(ctx, instr);
4524 break;
4525 case MESA_SHADER_TESS_CTRL:
4526 visit_load_tcs_per_vertex_input(ctx, instr);
4527 break;
4528 case MESA_SHADER_TESS_EVAL:
4529 visit_load_tes_per_vertex_input(ctx, instr);
4530 break;
4531 default:
4532 unreachable("Unimplemented shader stage");
4533 }
4534 }
4535
4536 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4537 {
4538 visit_load_tcs_output(ctx, instr, true);
4539 }
4540
4541 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4542 {
4543 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4544 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4545
4546 visit_store_tcs_output(ctx, instr, true);
4547 }
4548
4549 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4550 {
4551 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4552
4553 Builder bld(ctx->program, ctx->block);
4554 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4555
4556 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4557 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4558 Operand tes_w(0u);
4559
4560 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4561 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4562 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4563 tes_w = Operand(tmp);
4564 }
4565
4566 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4567 emit_split_vector(ctx, tess_coord, 3);
4568 }
4569
4570 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4571 {
4572 if (ctx->program->info->need_indirect_descriptor_sets) {
4573 Builder bld(ctx->program, ctx->block);
4574 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4575 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4576 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4577 }
4578
4579 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4580 }
4581
4582
4583 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4584 {
4585 Builder bld(ctx->program, ctx->block);
4586 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4587 if (!ctx->divergent_vals[instr->dest.ssa.index])
4588 index = bld.as_uniform(index);
4589 unsigned desc_set = nir_intrinsic_desc_set(instr);
4590 unsigned binding = nir_intrinsic_binding(instr);
4591
4592 Temp desc_ptr;
4593 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4594 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4595 unsigned offset = layout->binding[binding].offset;
4596 unsigned stride;
4597 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4598 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4599 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4600 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4601 offset = pipeline_layout->push_constant_size + 16 * idx;
4602 stride = 16;
4603 } else {
4604 desc_ptr = load_desc_ptr(ctx, desc_set);
4605 stride = layout->binding[binding].size;
4606 }
4607
4608 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4609 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4610 if (stride != 1) {
4611 if (nir_const_index) {
4612 const_index = const_index * stride;
4613 } else if (index.type() == RegType::vgpr) {
4614 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4615 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4616 } else {
4617 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4618 }
4619 }
4620 if (offset) {
4621 if (nir_const_index) {
4622 const_index = const_index + offset;
4623 } else if (index.type() == RegType::vgpr) {
4624 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4625 } else {
4626 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4627 }
4628 }
4629
4630 if (nir_const_index && const_index == 0) {
4631 index = desc_ptr;
4632 } else if (index.type() == RegType::vgpr) {
4633 index = bld.vadd32(bld.def(v1),
4634 nir_const_index ? Operand(const_index) : Operand(index),
4635 Operand(desc_ptr));
4636 } else {
4637 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4638 nir_const_index ? Operand(const_index) : Operand(index),
4639 Operand(desc_ptr));
4640 }
4641
4642 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4643 }
4644
4645 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4646 Temp dst, Temp rsrc, Temp offset, int byte_align,
4647 bool glc=false, bool readonly=true)
4648 {
4649 Builder bld(ctx->program, ctx->block);
4650 bool dlc = glc && ctx->options->chip_class >= GFX10;
4651 unsigned num_bytes = num_components * component_size;
4652
4653 aco_opcode op;
4654 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4655 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4656 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4657 unsigned const_offset = 0;
4658
4659 /* for small bit sizes add buffer for unaligned loads */
4660 if (byte_align) {
4661 if (num_bytes > 2)
4662 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4663 else
4664 byte_align = 0;
4665 }
4666
4667 Temp lower = Temp();
4668 if (num_bytes > 16) {
4669 assert(num_components == 3 || num_components == 4);
4670 op = aco_opcode::buffer_load_dwordx4;
4671 lower = bld.tmp(v4);
4672 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4673 mubuf->definitions[0] = Definition(lower);
4674 mubuf->operands[0] = Operand(rsrc);
4675 mubuf->operands[1] = vaddr;
4676 mubuf->operands[2] = soffset;
4677 mubuf->offen = (offset.type() == RegType::vgpr);
4678 mubuf->glc = glc;
4679 mubuf->dlc = dlc;
4680 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4681 mubuf->can_reorder = readonly;
4682 bld.insert(std::move(mubuf));
4683 emit_split_vector(ctx, lower, 2);
4684 num_bytes -= 16;
4685 const_offset = 16;
4686 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4687 /* GFX6 doesn't support loading vec3, expand to vec4. */
4688 num_bytes = 16;
4689 }
4690
4691 switch (num_bytes) {
4692 case 1:
4693 op = aco_opcode::buffer_load_ubyte;
4694 break;
4695 case 2:
4696 op = aco_opcode::buffer_load_ushort;
4697 break;
4698 case 3:
4699 case 4:
4700 op = aco_opcode::buffer_load_dword;
4701 break;
4702 case 5:
4703 case 6:
4704 case 7:
4705 case 8:
4706 op = aco_opcode::buffer_load_dwordx2;
4707 break;
4708 case 10:
4709 case 12:
4710 assert(ctx->options->chip_class > GFX6);
4711 op = aco_opcode::buffer_load_dwordx3;
4712 break;
4713 case 16:
4714 op = aco_opcode::buffer_load_dwordx4;
4715 break;
4716 default:
4717 unreachable("Load SSBO not implemented for this size.");
4718 }
4719 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4720 mubuf->operands[0] = Operand(rsrc);
4721 mubuf->operands[1] = vaddr;
4722 mubuf->operands[2] = soffset;
4723 mubuf->offen = (offset.type() == RegType::vgpr);
4724 mubuf->glc = glc;
4725 mubuf->dlc = dlc;
4726 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4727 mubuf->can_reorder = readonly;
4728 mubuf->offset = const_offset;
4729 aco_ptr<Instruction> instr = std::move(mubuf);
4730
4731 if (component_size < 4) {
4732 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4733 instr->definitions[0] = Definition(vec);
4734 bld.insert(std::move(instr));
4735
4736 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4737 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4738 Temp tmp[3] = {vec, vec, vec};
4739
4740 if (vec.size() == 3) {
4741 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4742 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4743 } else if (vec.size() == 2) {
4744 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4745 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4746 }
4747 for (unsigned i = 0; i < dst.size(); i++)
4748 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4749
4750 vec = tmp[0];
4751 if (dst.size() == 2)
4752 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4753
4754 byte_align = 0;
4755 }
4756
4757 if (dst.type() == RegType::vgpr && num_components == 1) {
4758 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4759 } else {
4760 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4761 }
4762
4763 return;
4764
4765 } else if (dst.size() > 4) {
4766 assert(lower != Temp());
4767 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4768 instr->definitions[0] = Definition(upper);
4769 bld.insert(std::move(instr));
4770 if (dst.size() == 8)
4771 emit_split_vector(ctx, upper, 2);
4772 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4773 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4774 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4775 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4776 if (dst.size() == 8)
4777 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4778 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4779 Temp vec = bld.tmp(v4);
4780 instr->definitions[0] = Definition(vec);
4781 bld.insert(std::move(instr));
4782 emit_split_vector(ctx, vec, 4);
4783
4784 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4785 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4786 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4787 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4788 }
4789
4790 if (dst.type() == RegType::sgpr) {
4791 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4792 instr->definitions[0] = Definition(vec);
4793 bld.insert(std::move(instr));
4794 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4795 } else {
4796 instr->definitions[0] = Definition(dst);
4797 bld.insert(std::move(instr));
4798 emit_split_vector(ctx, dst, num_components);
4799 }
4800 } else {
4801 /* for small bit sizes add buffer for unaligned loads */
4802 if (byte_align)
4803 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4804
4805 switch (num_bytes) {
4806 case 1:
4807 case 2:
4808 case 3:
4809 case 4:
4810 op = aco_opcode::s_buffer_load_dword;
4811 break;
4812 case 5:
4813 case 6:
4814 case 7:
4815 case 8:
4816 op = aco_opcode::s_buffer_load_dwordx2;
4817 break;
4818 case 10:
4819 case 12:
4820 case 16:
4821 op = aco_opcode::s_buffer_load_dwordx4;
4822 break;
4823 case 24:
4824 case 32:
4825 op = aco_opcode::s_buffer_load_dwordx8;
4826 break;
4827 default:
4828 unreachable("Load SSBO not implemented for this size.");
4829 }
4830 offset = bld.as_uniform(offset);
4831 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4832 load->operands[0] = Operand(rsrc);
4833 load->operands[1] = Operand(offset);
4834 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4835 load->definitions[0] = Definition(dst);
4836 load->glc = glc;
4837 load->dlc = dlc;
4838 load->barrier = readonly ? barrier_none : barrier_buffer;
4839 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4840 assert(ctx->options->chip_class >= GFX8 || !glc);
4841
4842 /* adjust misaligned small bit size loads */
4843 if (byte_align) {
4844 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
4845 load->definitions[0] = Definition(vec);
4846 bld.insert(std::move(load));
4847 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
4848 byte_align_scalar(ctx, vec, byte_offset, dst);
4849
4850 /* trim vector */
4851 } else if (dst.size() == 3) {
4852 Temp vec = bld.tmp(s4);
4853 load->definitions[0] = Definition(vec);
4854 bld.insert(std::move(load));
4855 emit_split_vector(ctx, vec, 4);
4856
4857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4858 emit_extract_vector(ctx, vec, 0, s1),
4859 emit_extract_vector(ctx, vec, 1, s1),
4860 emit_extract_vector(ctx, vec, 2, s1));
4861 } else if (dst.size() == 6) {
4862 Temp vec = bld.tmp(s8);
4863 load->definitions[0] = Definition(vec);
4864 bld.insert(std::move(load));
4865 emit_split_vector(ctx, vec, 4);
4866
4867 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4868 emit_extract_vector(ctx, vec, 0, s2),
4869 emit_extract_vector(ctx, vec, 1, s2),
4870 emit_extract_vector(ctx, vec, 2, s2));
4871 } else {
4872 bld.insert(std::move(load));
4873 }
4874 emit_split_vector(ctx, dst, num_components);
4875 }
4876 }
4877
4878 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4879 {
4880 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4881 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4882
4883 Builder bld(ctx->program, ctx->block);
4884
4885 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4886 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4887 unsigned binding = nir_intrinsic_binding(idx_instr);
4888 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4889
4890 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4891 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4892 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4893 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4894 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4895 if (ctx->options->chip_class >= GFX10) {
4896 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4897 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4898 S_008F0C_RESOURCE_LEVEL(1);
4899 } else {
4900 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4901 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4902 }
4903 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4904 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4905 Operand(0xFFFFFFFFu),
4906 Operand(desc_type));
4907 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4908 rsrc, upper_dwords);
4909 } else {
4910 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4911 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4912 }
4913 unsigned size = instr->dest.ssa.bit_size / 8;
4914 int byte_align = 0;
4915 if (size < 4) {
4916 unsigned align_mul = nir_intrinsic_align_mul(instr);
4917 unsigned align_offset = nir_intrinsic_align_offset(instr);
4918 byte_align = align_mul % 4 == 0 ? align_offset : -1;
4919 }
4920 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
4921 }
4922
4923 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4924 {
4925 Builder bld(ctx->program, ctx->block);
4926 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4927 unsigned offset = nir_intrinsic_base(instr);
4928 unsigned count = instr->dest.ssa.num_components;
4929 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4930
4931 if (index_cv && instr->dest.ssa.bit_size == 32) {
4932 unsigned start = (offset + index_cv->u32) / 4u;
4933 start -= ctx->args->ac.base_inline_push_consts;
4934 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4935 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4936 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4937 for (unsigned i = 0; i < count; ++i) {
4938 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4939 vec->operands[i] = Operand{elems[i]};
4940 }
4941 vec->definitions[0] = Definition(dst);
4942 ctx->block->instructions.emplace_back(std::move(vec));
4943 ctx->allocated_vec.emplace(dst.id(), elems);
4944 return;
4945 }
4946 }
4947
4948 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4949 if (offset != 0) // TODO check if index != 0 as well
4950 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4951 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4952 Temp vec = dst;
4953 bool trim = false;
4954 bool aligned = true;
4955
4956 if (instr->dest.ssa.bit_size == 8) {
4957 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4958 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
4959 if (!aligned)
4960 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
4961 } else if (instr->dest.ssa.bit_size == 16) {
4962 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4963 if (!aligned)
4964 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
4965 }
4966
4967 aco_opcode op;
4968
4969 switch (vec.size()) {
4970 case 1:
4971 op = aco_opcode::s_load_dword;
4972 break;
4973 case 2:
4974 op = aco_opcode::s_load_dwordx2;
4975 break;
4976 case 3:
4977 vec = bld.tmp(s4);
4978 trim = true;
4979 case 4:
4980 op = aco_opcode::s_load_dwordx4;
4981 break;
4982 case 6:
4983 vec = bld.tmp(s8);
4984 trim = true;
4985 case 8:
4986 op = aco_opcode::s_load_dwordx8;
4987 break;
4988 default:
4989 unreachable("unimplemented or forbidden load_push_constant.");
4990 }
4991
4992 bld.smem(op, Definition(vec), ptr, index);
4993
4994 if (!aligned) {
4995 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
4996 byte_align_scalar(ctx, vec, byte_offset, dst);
4997 return;
4998 }
4999
5000 if (trim) {
5001 emit_split_vector(ctx, vec, 4);
5002 RegClass rc = dst.size() == 3 ? s1 : s2;
5003 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5004 emit_extract_vector(ctx, vec, 0, rc),
5005 emit_extract_vector(ctx, vec, 1, rc),
5006 emit_extract_vector(ctx, vec, 2, rc));
5007
5008 }
5009 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5010 }
5011
5012 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5013 {
5014 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5015
5016 Builder bld(ctx->program, ctx->block);
5017
5018 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5019 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5020 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5021 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5022 if (ctx->options->chip_class >= GFX10) {
5023 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5024 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5025 S_008F0C_RESOURCE_LEVEL(1);
5026 } else {
5027 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5028 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5029 }
5030
5031 unsigned base = nir_intrinsic_base(instr);
5032 unsigned range = nir_intrinsic_range(instr);
5033
5034 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5035 if (base && offset.type() == RegType::sgpr)
5036 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5037 else if (base && offset.type() == RegType::vgpr)
5038 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5039
5040 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5041 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5042 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5043 Operand(desc_type));
5044 unsigned size = instr->dest.ssa.bit_size / 8;
5045 // TODO: get alignment information for subdword constants
5046 unsigned byte_align = size < 4 ? -1 : 0;
5047 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
5048 }
5049
5050 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5051 {
5052 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5053 ctx->cf_info.exec_potentially_empty_discard = true;
5054
5055 ctx->program->needs_exact = true;
5056
5057 // TODO: optimize uniform conditions
5058 Builder bld(ctx->program, ctx->block);
5059 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5060 assert(src.regClass() == bld.lm);
5061 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5062 bld.pseudo(aco_opcode::p_discard_if, src);
5063 ctx->block->kind |= block_kind_uses_discard_if;
5064 return;
5065 }
5066
5067 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5068 {
5069 Builder bld(ctx->program, ctx->block);
5070
5071 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5072 ctx->cf_info.exec_potentially_empty_discard = true;
5073
5074 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5075 ctx->cf_info.parent_loop.has_divergent_continue;
5076
5077 if (ctx->block->loop_nest_depth &&
5078 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5079 /* we handle discards the same way as jump instructions */
5080 append_logical_end(ctx->block);
5081
5082 /* in loops, discard behaves like break */
5083 Block *linear_target = ctx->cf_info.parent_loop.exit;
5084 ctx->block->kind |= block_kind_discard;
5085
5086 if (!divergent) {
5087 /* uniform discard - loop ends here */
5088 assert(nir_instr_is_last(&instr->instr));
5089 ctx->block->kind |= block_kind_uniform;
5090 ctx->cf_info.has_branch = true;
5091 bld.branch(aco_opcode::p_branch);
5092 add_linear_edge(ctx->block->index, linear_target);
5093 return;
5094 }
5095
5096 /* we add a break right behind the discard() instructions */
5097 ctx->block->kind |= block_kind_break;
5098 unsigned idx = ctx->block->index;
5099
5100 ctx->cf_info.parent_loop.has_divergent_branch = true;
5101 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5102
5103 /* remove critical edges from linear CFG */
5104 bld.branch(aco_opcode::p_branch);
5105 Block* break_block = ctx->program->create_and_insert_block();
5106 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5107 break_block->kind |= block_kind_uniform;
5108 add_linear_edge(idx, break_block);
5109 add_linear_edge(break_block->index, linear_target);
5110 bld.reset(break_block);
5111 bld.branch(aco_opcode::p_branch);
5112
5113 Block* continue_block = ctx->program->create_and_insert_block();
5114 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5115 add_linear_edge(idx, continue_block);
5116 append_logical_start(continue_block);
5117 ctx->block = continue_block;
5118
5119 return;
5120 }
5121
5122 /* it can currently happen that NIR doesn't remove the unreachable code */
5123 if (!nir_instr_is_last(&instr->instr)) {
5124 ctx->program->needs_exact = true;
5125 /* save exec somewhere temporarily so that it doesn't get
5126 * overwritten before the discard from outer exec masks */
5127 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5128 bld.pseudo(aco_opcode::p_discard_if, cond);
5129 ctx->block->kind |= block_kind_uses_discard_if;
5130 return;
5131 }
5132
5133 /* This condition is incorrect for uniformly branched discards in a loop
5134 * predicated by a divergent condition, but the above code catches that case
5135 * and the discard would end up turning into a discard_if.
5136 * For example:
5137 * if (divergent) {
5138 * while (...) {
5139 * if (uniform) {
5140 * discard;
5141 * }
5142 * }
5143 * }
5144 */
5145 if (!ctx->cf_info.parent_if.is_divergent) {
5146 /* program just ends here */
5147 ctx->block->kind |= block_kind_uniform;
5148 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5149 0 /* enabled mask */, 9 /* dest */,
5150 false /* compressed */, true/* done */, true /* valid mask */);
5151 bld.sopp(aco_opcode::s_endpgm);
5152 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5153 } else {
5154 ctx->block->kind |= block_kind_discard;
5155 /* branch and linear edge is added by visit_if() */
5156 }
5157 }
5158
5159 enum aco_descriptor_type {
5160 ACO_DESC_IMAGE,
5161 ACO_DESC_FMASK,
5162 ACO_DESC_SAMPLER,
5163 ACO_DESC_BUFFER,
5164 ACO_DESC_PLANE_0,
5165 ACO_DESC_PLANE_1,
5166 ACO_DESC_PLANE_2,
5167 };
5168
5169 static bool
5170 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5171 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5172 return false;
5173 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5174 return dim == ac_image_cube ||
5175 dim == ac_image_1darray ||
5176 dim == ac_image_2darray ||
5177 dim == ac_image_2darraymsaa;
5178 }
5179
5180 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5181 enum aco_descriptor_type desc_type,
5182 const nir_tex_instr *tex_instr, bool image, bool write)
5183 {
5184 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5185 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5186 if (it != ctx->tex_desc.end())
5187 return it->second;
5188 */
5189 Temp index = Temp();
5190 bool index_set = false;
5191 unsigned constant_index = 0;
5192 unsigned descriptor_set;
5193 unsigned base_index;
5194 Builder bld(ctx->program, ctx->block);
5195
5196 if (!deref_instr) {
5197 assert(tex_instr && !image);
5198 descriptor_set = 0;
5199 base_index = tex_instr->sampler_index;
5200 } else {
5201 while(deref_instr->deref_type != nir_deref_type_var) {
5202 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5203 if (!array_size)
5204 array_size = 1;
5205
5206 assert(deref_instr->deref_type == nir_deref_type_array);
5207 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5208 if (const_value) {
5209 constant_index += array_size * const_value->u32;
5210 } else {
5211 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5212 if (indirect.type() == RegType::vgpr)
5213 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5214
5215 if (array_size != 1)
5216 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5217
5218 if (!index_set) {
5219 index = indirect;
5220 index_set = true;
5221 } else {
5222 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5223 }
5224 }
5225
5226 deref_instr = nir_src_as_deref(deref_instr->parent);
5227 }
5228 descriptor_set = deref_instr->var->data.descriptor_set;
5229 base_index = deref_instr->var->data.binding;
5230 }
5231
5232 Temp list = load_desc_ptr(ctx, descriptor_set);
5233 list = convert_pointer_to_64_bit(ctx, list);
5234
5235 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5236 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5237 unsigned offset = binding->offset;
5238 unsigned stride = binding->size;
5239 aco_opcode opcode;
5240 RegClass type;
5241
5242 assert(base_index < layout->binding_count);
5243
5244 switch (desc_type) {
5245 case ACO_DESC_IMAGE:
5246 type = s8;
5247 opcode = aco_opcode::s_load_dwordx8;
5248 break;
5249 case ACO_DESC_FMASK:
5250 type = s8;
5251 opcode = aco_opcode::s_load_dwordx8;
5252 offset += 32;
5253 break;
5254 case ACO_DESC_SAMPLER:
5255 type = s4;
5256 opcode = aco_opcode::s_load_dwordx4;
5257 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5258 offset += radv_combined_image_descriptor_sampler_offset(binding);
5259 break;
5260 case ACO_DESC_BUFFER:
5261 type = s4;
5262 opcode = aco_opcode::s_load_dwordx4;
5263 break;
5264 case ACO_DESC_PLANE_0:
5265 case ACO_DESC_PLANE_1:
5266 type = s8;
5267 opcode = aco_opcode::s_load_dwordx8;
5268 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5269 break;
5270 case ACO_DESC_PLANE_2:
5271 type = s4;
5272 opcode = aco_opcode::s_load_dwordx4;
5273 offset += 64;
5274 break;
5275 default:
5276 unreachable("invalid desc_type\n");
5277 }
5278
5279 offset += constant_index * stride;
5280
5281 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5282 (!index_set || binding->immutable_samplers_equal)) {
5283 if (binding->immutable_samplers_equal)
5284 constant_index = 0;
5285
5286 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5287 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5288 Operand(samplers[constant_index * 4 + 0]),
5289 Operand(samplers[constant_index * 4 + 1]),
5290 Operand(samplers[constant_index * 4 + 2]),
5291 Operand(samplers[constant_index * 4 + 3]));
5292 }
5293
5294 Operand off;
5295 if (!index_set) {
5296 off = bld.copy(bld.def(s1), Operand(offset));
5297 } else {
5298 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5299 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5300 }
5301
5302 Temp res = bld.smem(opcode, bld.def(type), list, off);
5303
5304 if (desc_type == ACO_DESC_PLANE_2) {
5305 Temp components[8];
5306 for (unsigned i = 0; i < 8; i++)
5307 components[i] = bld.tmp(s1);
5308 bld.pseudo(aco_opcode::p_split_vector,
5309 Definition(components[0]),
5310 Definition(components[1]),
5311 Definition(components[2]),
5312 Definition(components[3]),
5313 res);
5314
5315 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5316 bld.pseudo(aco_opcode::p_split_vector,
5317 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5318 Definition(components[4]),
5319 Definition(components[5]),
5320 Definition(components[6]),
5321 Definition(components[7]),
5322 desc2);
5323
5324 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5325 components[0], components[1], components[2], components[3],
5326 components[4], components[5], components[6], components[7]);
5327 }
5328
5329 return res;
5330 }
5331
5332 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5333 {
5334 switch (dim) {
5335 case GLSL_SAMPLER_DIM_BUF:
5336 return 1;
5337 case GLSL_SAMPLER_DIM_1D:
5338 return array ? 2 : 1;
5339 case GLSL_SAMPLER_DIM_2D:
5340 return array ? 3 : 2;
5341 case GLSL_SAMPLER_DIM_MS:
5342 return array ? 4 : 3;
5343 case GLSL_SAMPLER_DIM_3D:
5344 case GLSL_SAMPLER_DIM_CUBE:
5345 return 3;
5346 case GLSL_SAMPLER_DIM_RECT:
5347 case GLSL_SAMPLER_DIM_SUBPASS:
5348 return 2;
5349 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5350 return 3;
5351 default:
5352 break;
5353 }
5354 return 0;
5355 }
5356
5357
5358 /* Adjust the sample index according to FMASK.
5359 *
5360 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5361 * which is the identity mapping. Each nibble says which physical sample
5362 * should be fetched to get that sample.
5363 *
5364 * For example, 0x11111100 means there are only 2 samples stored and
5365 * the second sample covers 3/4 of the pixel. When reading samples 0
5366 * and 1, return physical sample 0 (determined by the first two 0s
5367 * in FMASK), otherwise return physical sample 1.
5368 *
5369 * The sample index should be adjusted as follows:
5370 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5371 */
5372 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5373 {
5374 Builder bld(ctx->program, ctx->block);
5375 Temp fmask = bld.tmp(v1);
5376 unsigned dim = ctx->options->chip_class >= GFX10
5377 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5378 : 0;
5379
5380 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5381 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5382 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5383 load->operands[0] = Operand(fmask_desc_ptr);
5384 load->operands[1] = Operand(s4); /* no sampler */
5385 load->operands[2] = Operand(coord);
5386 load->definitions[0] = Definition(fmask);
5387 load->glc = false;
5388 load->dlc = false;
5389 load->dmask = 0x1;
5390 load->unrm = true;
5391 load->da = da;
5392 load->dim = dim;
5393 load->can_reorder = true; /* fmask images shouldn't be modified */
5394 ctx->block->instructions.emplace_back(std::move(load));
5395
5396 Operand sample_index4;
5397 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5398 sample_index4 = Operand(sample_index.constantValue() << 2);
5399 } else if (sample_index.regClass() == s1) {
5400 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5401 } else {
5402 assert(sample_index.regClass() == v1);
5403 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5404 }
5405
5406 Temp final_sample;
5407 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5408 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5409 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5410 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5411 else
5412 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5413
5414 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5415 * resource descriptor is 0 (invalid),
5416 */
5417 Temp compare = bld.tmp(bld.lm);
5418 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5419 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5420
5421 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5422
5423 /* Replace the MSAA sample index. */
5424 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5425 }
5426
5427 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5428 {
5429
5430 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5431 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5432 bool is_array = glsl_sampler_type_is_array(type);
5433 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5434 assert(!add_frag_pos && "Input attachments should be lowered.");
5435 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5436 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5437 int count = image_type_to_components_count(dim, is_array);
5438 std::vector<Temp> coords(count);
5439 Builder bld(ctx->program, ctx->block);
5440
5441 if (is_ms) {
5442 count--;
5443 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5444 /* get sample index */
5445 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5446 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5447 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5448 std::vector<Temp> fmask_load_address;
5449 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5450 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5451
5452 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5453 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5454 } else {
5455 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5456 }
5457 }
5458
5459 if (gfx9_1d) {
5460 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5461 coords.resize(coords.size() + 1);
5462 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5463 if (is_array)
5464 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5465 } else {
5466 for (int i = 0; i < count; i++)
5467 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5468 }
5469
5470 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5471 instr->intrinsic == nir_intrinsic_image_deref_store) {
5472 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5473 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5474
5475 if (!level_zero)
5476 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5477 }
5478
5479 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5480 for (unsigned i = 0; i < coords.size(); i++)
5481 vec->operands[i] = Operand(coords[i]);
5482 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5483 vec->definitions[0] = Definition(res);
5484 ctx->block->instructions.emplace_back(std::move(vec));
5485 return res;
5486 }
5487
5488
5489 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5490 {
5491 Builder bld(ctx->program, ctx->block);
5492 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5493 const struct glsl_type *type = glsl_without_array(var->type);
5494 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5495 bool is_array = glsl_sampler_type_is_array(type);
5496 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5497
5498 if (dim == GLSL_SAMPLER_DIM_BUF) {
5499 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5500 unsigned num_channels = util_last_bit(mask);
5501 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5502 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5503
5504 aco_opcode opcode;
5505 switch (num_channels) {
5506 case 1:
5507 opcode = aco_opcode::buffer_load_format_x;
5508 break;
5509 case 2:
5510 opcode = aco_opcode::buffer_load_format_xy;
5511 break;
5512 case 3:
5513 opcode = aco_opcode::buffer_load_format_xyz;
5514 break;
5515 case 4:
5516 opcode = aco_opcode::buffer_load_format_xyzw;
5517 break;
5518 default:
5519 unreachable(">4 channel buffer image load");
5520 }
5521 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5522 load->operands[0] = Operand(rsrc);
5523 load->operands[1] = Operand(vindex);
5524 load->operands[2] = Operand((uint32_t) 0);
5525 Temp tmp;
5526 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5527 tmp = dst;
5528 else
5529 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5530 load->definitions[0] = Definition(tmp);
5531 load->idxen = true;
5532 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5533 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5534 load->barrier = barrier_image;
5535 ctx->block->instructions.emplace_back(std::move(load));
5536
5537 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5538 return;
5539 }
5540
5541 Temp coords = get_image_coords(ctx, instr, type);
5542 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5543
5544 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5545 unsigned num_components = util_bitcount(dmask);
5546 Temp tmp;
5547 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5548 tmp = dst;
5549 else
5550 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5551
5552 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5553 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5554
5555 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5556 load->operands[0] = Operand(resource);
5557 load->operands[1] = Operand(s4); /* no sampler */
5558 load->operands[2] = Operand(coords);
5559 load->definitions[0] = Definition(tmp);
5560 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5561 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5562 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5563 load->dmask = dmask;
5564 load->unrm = true;
5565 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5566 load->barrier = barrier_image;
5567 ctx->block->instructions.emplace_back(std::move(load));
5568
5569 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5570 return;
5571 }
5572
5573 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5574 {
5575 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5576 const struct glsl_type *type = glsl_without_array(var->type);
5577 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5578 bool is_array = glsl_sampler_type_is_array(type);
5579 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5580
5581 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5582
5583 if (dim == GLSL_SAMPLER_DIM_BUF) {
5584 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5585 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5586 aco_opcode opcode;
5587 switch (data.size()) {
5588 case 1:
5589 opcode = aco_opcode::buffer_store_format_x;
5590 break;
5591 case 2:
5592 opcode = aco_opcode::buffer_store_format_xy;
5593 break;
5594 case 3:
5595 opcode = aco_opcode::buffer_store_format_xyz;
5596 break;
5597 case 4:
5598 opcode = aco_opcode::buffer_store_format_xyzw;
5599 break;
5600 default:
5601 unreachable(">4 channel buffer image store");
5602 }
5603 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5604 store->operands[0] = Operand(rsrc);
5605 store->operands[1] = Operand(vindex);
5606 store->operands[2] = Operand((uint32_t) 0);
5607 store->operands[3] = Operand(data);
5608 store->idxen = true;
5609 store->glc = glc;
5610 store->dlc = false;
5611 store->disable_wqm = true;
5612 store->barrier = barrier_image;
5613 ctx->program->needs_exact = true;
5614 ctx->block->instructions.emplace_back(std::move(store));
5615 return;
5616 }
5617
5618 assert(data.type() == RegType::vgpr);
5619 Temp coords = get_image_coords(ctx, instr, type);
5620 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5621
5622 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5623 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5624
5625 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5626 store->operands[0] = Operand(resource);
5627 store->operands[1] = Operand(data);
5628 store->operands[2] = Operand(coords);
5629 store->glc = glc;
5630 store->dlc = false;
5631 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5632 store->dmask = (1 << data.size()) - 1;
5633 store->unrm = true;
5634 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5635 store->disable_wqm = true;
5636 store->barrier = barrier_image;
5637 ctx->program->needs_exact = true;
5638 ctx->block->instructions.emplace_back(std::move(store));
5639 return;
5640 }
5641
5642 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5643 {
5644 /* return the previous value if dest is ever used */
5645 bool return_previous = false;
5646 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5647 return_previous = true;
5648 break;
5649 }
5650 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5651 return_previous = true;
5652 break;
5653 }
5654
5655 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5656 const struct glsl_type *type = glsl_without_array(var->type);
5657 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5658 bool is_array = glsl_sampler_type_is_array(type);
5659 Builder bld(ctx->program, ctx->block);
5660
5661 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5662 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5663
5664 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5665 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5666
5667 aco_opcode buf_op, image_op;
5668 switch (instr->intrinsic) {
5669 case nir_intrinsic_image_deref_atomic_add:
5670 buf_op = aco_opcode::buffer_atomic_add;
5671 image_op = aco_opcode::image_atomic_add;
5672 break;
5673 case nir_intrinsic_image_deref_atomic_umin:
5674 buf_op = aco_opcode::buffer_atomic_umin;
5675 image_op = aco_opcode::image_atomic_umin;
5676 break;
5677 case nir_intrinsic_image_deref_atomic_imin:
5678 buf_op = aco_opcode::buffer_atomic_smin;
5679 image_op = aco_opcode::image_atomic_smin;
5680 break;
5681 case nir_intrinsic_image_deref_atomic_umax:
5682 buf_op = aco_opcode::buffer_atomic_umax;
5683 image_op = aco_opcode::image_atomic_umax;
5684 break;
5685 case nir_intrinsic_image_deref_atomic_imax:
5686 buf_op = aco_opcode::buffer_atomic_smax;
5687 image_op = aco_opcode::image_atomic_smax;
5688 break;
5689 case nir_intrinsic_image_deref_atomic_and:
5690 buf_op = aco_opcode::buffer_atomic_and;
5691 image_op = aco_opcode::image_atomic_and;
5692 break;
5693 case nir_intrinsic_image_deref_atomic_or:
5694 buf_op = aco_opcode::buffer_atomic_or;
5695 image_op = aco_opcode::image_atomic_or;
5696 break;
5697 case nir_intrinsic_image_deref_atomic_xor:
5698 buf_op = aco_opcode::buffer_atomic_xor;
5699 image_op = aco_opcode::image_atomic_xor;
5700 break;
5701 case nir_intrinsic_image_deref_atomic_exchange:
5702 buf_op = aco_opcode::buffer_atomic_swap;
5703 image_op = aco_opcode::image_atomic_swap;
5704 break;
5705 case nir_intrinsic_image_deref_atomic_comp_swap:
5706 buf_op = aco_opcode::buffer_atomic_cmpswap;
5707 image_op = aco_opcode::image_atomic_cmpswap;
5708 break;
5709 default:
5710 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5711 }
5712
5713 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5714
5715 if (dim == GLSL_SAMPLER_DIM_BUF) {
5716 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5717 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5718 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5719 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5720 mubuf->operands[0] = Operand(resource);
5721 mubuf->operands[1] = Operand(vindex);
5722 mubuf->operands[2] = Operand((uint32_t)0);
5723 mubuf->operands[3] = Operand(data);
5724 if (return_previous)
5725 mubuf->definitions[0] = Definition(dst);
5726 mubuf->offset = 0;
5727 mubuf->idxen = true;
5728 mubuf->glc = return_previous;
5729 mubuf->dlc = false; /* Not needed for atomics */
5730 mubuf->disable_wqm = true;
5731 mubuf->barrier = barrier_image;
5732 ctx->program->needs_exact = true;
5733 ctx->block->instructions.emplace_back(std::move(mubuf));
5734 return;
5735 }
5736
5737 Temp coords = get_image_coords(ctx, instr, type);
5738 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5739 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5740 mimg->operands[0] = Operand(resource);
5741 mimg->operands[1] = Operand(data);
5742 mimg->operands[2] = Operand(coords);
5743 if (return_previous)
5744 mimg->definitions[0] = Definition(dst);
5745 mimg->glc = return_previous;
5746 mimg->dlc = false; /* Not needed for atomics */
5747 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5748 mimg->dmask = (1 << data.size()) - 1;
5749 mimg->unrm = true;
5750 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5751 mimg->disable_wqm = true;
5752 mimg->barrier = barrier_image;
5753 ctx->program->needs_exact = true;
5754 ctx->block->instructions.emplace_back(std::move(mimg));
5755 return;
5756 }
5757
5758 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5759 {
5760 if (in_elements && ctx->options->chip_class == GFX8) {
5761 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5762 Builder bld(ctx->program, ctx->block);
5763
5764 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5765
5766 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5767 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5768
5769 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5770 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5771
5772 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5773 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5774
5775 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5776 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5777 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5778 if (dst.type() == RegType::vgpr)
5779 bld.copy(Definition(dst), shr_dst);
5780
5781 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5782 } else {
5783 emit_extract_vector(ctx, desc, 2, dst);
5784 }
5785 }
5786
5787 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5788 {
5789 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5790 const struct glsl_type *type = glsl_without_array(var->type);
5791 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5792 bool is_array = glsl_sampler_type_is_array(type);
5793 Builder bld(ctx->program, ctx->block);
5794
5795 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5796 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5797 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5798 }
5799
5800 /* LOD */
5801 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5802
5803 /* Resource */
5804 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5805
5806 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5807
5808 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5809 mimg->operands[0] = Operand(resource);
5810 mimg->operands[1] = Operand(s4); /* no sampler */
5811 mimg->operands[2] = Operand(lod);
5812 uint8_t& dmask = mimg->dmask;
5813 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5814 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5815 mimg->da = glsl_sampler_type_is_array(type);
5816 mimg->can_reorder = true;
5817 Definition& def = mimg->definitions[0];
5818 ctx->block->instructions.emplace_back(std::move(mimg));
5819
5820 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5821 glsl_sampler_type_is_array(type)) {
5822
5823 assert(instr->dest.ssa.num_components == 3);
5824 Temp tmp = {ctx->program->allocateId(), v3};
5825 def = Definition(tmp);
5826 emit_split_vector(ctx, tmp, 3);
5827
5828 /* divide 3rd value by 6 by multiplying with magic number */
5829 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5830 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5831
5832 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5833 emit_extract_vector(ctx, tmp, 0, v1),
5834 emit_extract_vector(ctx, tmp, 1, v1),
5835 by_6);
5836
5837 } else if (ctx->options->chip_class == GFX9 &&
5838 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5839 glsl_sampler_type_is_array(type)) {
5840 assert(instr->dest.ssa.num_components == 2);
5841 def = Definition(dst);
5842 dmask = 0x5;
5843 } else {
5844 def = Definition(dst);
5845 }
5846
5847 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5848 }
5849
5850 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5851 {
5852 Builder bld(ctx->program, ctx->block);
5853 unsigned num_components = instr->num_components;
5854
5855 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5856 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5857 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5858
5859 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5860 unsigned size = instr->dest.ssa.bit_size / 8;
5861 int byte_align = 0;
5862 if (size < 4) {
5863 unsigned align_mul = nir_intrinsic_align_mul(instr);
5864 unsigned align_offset = nir_intrinsic_align_offset(instr);
5865 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5866 }
5867 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
5868 }
5869
5870 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5871 {
5872 Builder bld(ctx->program, ctx->block);
5873 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5874 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5875 unsigned writemask = nir_intrinsic_write_mask(instr);
5876 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5877
5878 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5879 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5880
5881 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5882 ctx->options->chip_class >= GFX8 &&
5883 elem_size_bytes >= 4;
5884 if (smem)
5885 offset = bld.as_uniform(offset);
5886 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5887
5888 while (writemask) {
5889 int start, count;
5890 u_bit_scan_consecutive_range(&writemask, &start, &count);
5891 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5892 /* GFX6 doesn't support storing vec3, split it. */
5893 writemask |= 1u << (start + 2);
5894 count = 2;
5895 }
5896 int num_bytes = count * elem_size_bytes;
5897
5898 /* dword or larger stores have to be dword-aligned */
5899 if (elem_size_bytes < 4 && num_bytes > 2) {
5900 // TODO: improve alignment check of sub-dword stores
5901 unsigned count_new = 2 / elem_size_bytes;
5902 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
5903 count = count_new;
5904 num_bytes = 2;
5905 }
5906
5907 if (num_bytes > 16) {
5908 assert(elem_size_bytes == 8);
5909 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5910 count = 2;
5911 num_bytes = 16;
5912 }
5913
5914 Temp write_data;
5915 if (elem_size_bytes < 4) {
5916 if (data.type() == RegType::sgpr) {
5917 data = as_vgpr(ctx, data);
5918 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
5919 }
5920 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
5921 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5922 for (int i = 0; i < count; i++)
5923 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
5924 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
5925 vec->definitions[0] = Definition(write_data);
5926 bld.insert(std::move(vec));
5927 } else if (count != instr->num_components) {
5928 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5929 for (int i = 0; i < count; i++) {
5930 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5931 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5932 }
5933 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5934 vec->definitions[0] = Definition(write_data);
5935 ctx->block->instructions.emplace_back(std::move(vec));
5936 } else if (!smem && data.type() != RegType::vgpr) {
5937 assert(num_bytes % 4 == 0);
5938 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5939 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5940 assert(num_bytes % 4 == 0);
5941 write_data = bld.as_uniform(data);
5942 } else {
5943 write_data = data;
5944 }
5945
5946 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
5947 switch (num_bytes) {
5948 case 1:
5949 vmem_op = aco_opcode::buffer_store_byte;
5950 break;
5951 case 2:
5952 vmem_op = aco_opcode::buffer_store_short;
5953 break;
5954 case 4:
5955 vmem_op = aco_opcode::buffer_store_dword;
5956 smem_op = aco_opcode::s_buffer_store_dword;
5957 break;
5958 case 8:
5959 vmem_op = aco_opcode::buffer_store_dwordx2;
5960 smem_op = aco_opcode::s_buffer_store_dwordx2;
5961 break;
5962 case 12:
5963 vmem_op = aco_opcode::buffer_store_dwordx3;
5964 assert(!smem && ctx->options->chip_class > GFX6);
5965 break;
5966 case 16:
5967 vmem_op = aco_opcode::buffer_store_dwordx4;
5968 smem_op = aco_opcode::s_buffer_store_dwordx4;
5969 break;
5970 default:
5971 unreachable("Store SSBO not implemented for this size.");
5972 }
5973 if (ctx->stage == fragment_fs)
5974 smem_op = aco_opcode::p_fs_buffer_store_smem;
5975
5976 if (smem) {
5977 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5978 store->operands[0] = Operand(rsrc);
5979 if (start) {
5980 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5981 offset, Operand(start * elem_size_bytes));
5982 store->operands[1] = Operand(off);
5983 } else {
5984 store->operands[1] = Operand(offset);
5985 }
5986 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5987 store->operands[1].setFixed(m0);
5988 store->operands[2] = Operand(write_data);
5989 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5990 store->dlc = false;
5991 store->disable_wqm = true;
5992 store->barrier = barrier_buffer;
5993 ctx->block->instructions.emplace_back(std::move(store));
5994 ctx->program->wb_smem_l1_on_end = true;
5995 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5996 ctx->block->kind |= block_kind_needs_lowering;
5997 ctx->program->needs_exact = true;
5998 }
5999 } else {
6000 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
6001 store->operands[0] = Operand(rsrc);
6002 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6003 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6004 store->operands[3] = Operand(write_data);
6005 store->offset = start * elem_size_bytes;
6006 store->offen = (offset.type() == RegType::vgpr);
6007 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6008 store->dlc = false;
6009 store->disable_wqm = true;
6010 store->barrier = barrier_buffer;
6011 ctx->program->needs_exact = true;
6012 ctx->block->instructions.emplace_back(std::move(store));
6013 }
6014 }
6015 }
6016
6017 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6018 {
6019 /* return the previous value if dest is ever used */
6020 bool return_previous = false;
6021 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6022 return_previous = true;
6023 break;
6024 }
6025 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6026 return_previous = true;
6027 break;
6028 }
6029
6030 Builder bld(ctx->program, ctx->block);
6031 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6032
6033 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6034 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6035 get_ssa_temp(ctx, instr->src[3].ssa), data);
6036
6037 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6038 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6039 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6040
6041 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6042
6043 aco_opcode op32, op64;
6044 switch (instr->intrinsic) {
6045 case nir_intrinsic_ssbo_atomic_add:
6046 op32 = aco_opcode::buffer_atomic_add;
6047 op64 = aco_opcode::buffer_atomic_add_x2;
6048 break;
6049 case nir_intrinsic_ssbo_atomic_imin:
6050 op32 = aco_opcode::buffer_atomic_smin;
6051 op64 = aco_opcode::buffer_atomic_smin_x2;
6052 break;
6053 case nir_intrinsic_ssbo_atomic_umin:
6054 op32 = aco_opcode::buffer_atomic_umin;
6055 op64 = aco_opcode::buffer_atomic_umin_x2;
6056 break;
6057 case nir_intrinsic_ssbo_atomic_imax:
6058 op32 = aco_opcode::buffer_atomic_smax;
6059 op64 = aco_opcode::buffer_atomic_smax_x2;
6060 break;
6061 case nir_intrinsic_ssbo_atomic_umax:
6062 op32 = aco_opcode::buffer_atomic_umax;
6063 op64 = aco_opcode::buffer_atomic_umax_x2;
6064 break;
6065 case nir_intrinsic_ssbo_atomic_and:
6066 op32 = aco_opcode::buffer_atomic_and;
6067 op64 = aco_opcode::buffer_atomic_and_x2;
6068 break;
6069 case nir_intrinsic_ssbo_atomic_or:
6070 op32 = aco_opcode::buffer_atomic_or;
6071 op64 = aco_opcode::buffer_atomic_or_x2;
6072 break;
6073 case nir_intrinsic_ssbo_atomic_xor:
6074 op32 = aco_opcode::buffer_atomic_xor;
6075 op64 = aco_opcode::buffer_atomic_xor_x2;
6076 break;
6077 case nir_intrinsic_ssbo_atomic_exchange:
6078 op32 = aco_opcode::buffer_atomic_swap;
6079 op64 = aco_opcode::buffer_atomic_swap_x2;
6080 break;
6081 case nir_intrinsic_ssbo_atomic_comp_swap:
6082 op32 = aco_opcode::buffer_atomic_cmpswap;
6083 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6084 break;
6085 default:
6086 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6087 }
6088 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6089 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6090 mubuf->operands[0] = Operand(rsrc);
6091 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6092 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6093 mubuf->operands[3] = Operand(data);
6094 if (return_previous)
6095 mubuf->definitions[0] = Definition(dst);
6096 mubuf->offset = 0;
6097 mubuf->offen = (offset.type() == RegType::vgpr);
6098 mubuf->glc = return_previous;
6099 mubuf->dlc = false; /* Not needed for atomics */
6100 mubuf->disable_wqm = true;
6101 mubuf->barrier = barrier_buffer;
6102 ctx->program->needs_exact = true;
6103 ctx->block->instructions.emplace_back(std::move(mubuf));
6104 }
6105
6106 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6107
6108 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6109 Builder bld(ctx->program, ctx->block);
6110 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6111 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6112 }
6113
6114 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
6115 {
6116 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6117 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6118
6119 if (addr.type() == RegType::vgpr)
6120 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
6121 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
6122 }
6123
6124 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6125 {
6126 Builder bld(ctx->program, ctx->block);
6127 unsigned num_components = instr->num_components;
6128 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
6129
6130 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6131 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6132
6133 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6134 bool dlc = glc && ctx->options->chip_class >= GFX10;
6135 aco_opcode op;
6136 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
6137 bool global = ctx->options->chip_class >= GFX9;
6138
6139 if (ctx->options->chip_class >= GFX7) {
6140 aco_opcode op;
6141 switch (num_bytes) {
6142 case 4:
6143 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
6144 break;
6145 case 8:
6146 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
6147 break;
6148 case 12:
6149 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
6150 break;
6151 case 16:
6152 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
6153 break;
6154 default:
6155 unreachable("load_global not implemented for this size.");
6156 }
6157
6158 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
6159 flat->operands[0] = Operand(addr);
6160 flat->operands[1] = Operand(s1);
6161 flat->glc = glc;
6162 flat->dlc = dlc;
6163 flat->barrier = barrier_buffer;
6164
6165 if (dst.type() == RegType::sgpr) {
6166 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6167 flat->definitions[0] = Definition(vec);
6168 ctx->block->instructions.emplace_back(std::move(flat));
6169 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6170 } else {
6171 flat->definitions[0] = Definition(dst);
6172 ctx->block->instructions.emplace_back(std::move(flat));
6173 }
6174 emit_split_vector(ctx, dst, num_components);
6175 } else {
6176 assert(ctx->options->chip_class == GFX6);
6177
6178 /* GFX6 doesn't support loading vec3, expand to vec4. */
6179 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6180
6181 aco_opcode op;
6182 switch (num_bytes) {
6183 case 4:
6184 op = aco_opcode::buffer_load_dword;
6185 break;
6186 case 8:
6187 op = aco_opcode::buffer_load_dwordx2;
6188 break;
6189 case 16:
6190 op = aco_opcode::buffer_load_dwordx4;
6191 break;
6192 default:
6193 unreachable("load_global not implemented for this size.");
6194 }
6195
6196 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6197
6198 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6199 mubuf->operands[0] = Operand(rsrc);
6200 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6201 mubuf->operands[2] = Operand(0u);
6202 mubuf->glc = glc;
6203 mubuf->dlc = false;
6204 mubuf->offset = 0;
6205 mubuf->addr64 = addr.type() == RegType::vgpr;
6206 mubuf->disable_wqm = false;
6207 mubuf->barrier = barrier_buffer;
6208 aco_ptr<Instruction> instr = std::move(mubuf);
6209
6210 /* expand vector */
6211 if (dst.size() == 3) {
6212 Temp vec = bld.tmp(v4);
6213 instr->definitions[0] = Definition(vec);
6214 bld.insert(std::move(instr));
6215 emit_split_vector(ctx, vec, 4);
6216
6217 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6218 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6219 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6220 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6221 }
6222
6223 if (dst.type() == RegType::sgpr) {
6224 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6225 instr->definitions[0] = Definition(vec);
6226 bld.insert(std::move(instr));
6227 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6228 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6229 } else {
6230 instr->definitions[0] = Definition(dst);
6231 bld.insert(std::move(instr));
6232 emit_split_vector(ctx, dst, num_components);
6233 }
6234 }
6235 } else {
6236 switch (num_bytes) {
6237 case 4:
6238 op = aco_opcode::s_load_dword;
6239 break;
6240 case 8:
6241 op = aco_opcode::s_load_dwordx2;
6242 break;
6243 case 12:
6244 case 16:
6245 op = aco_opcode::s_load_dwordx4;
6246 break;
6247 default:
6248 unreachable("load_global not implemented for this size.");
6249 }
6250 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6251 load->operands[0] = Operand(addr);
6252 load->operands[1] = Operand(0u);
6253 load->definitions[0] = Definition(dst);
6254 load->glc = glc;
6255 load->dlc = dlc;
6256 load->barrier = barrier_buffer;
6257 assert(ctx->options->chip_class >= GFX8 || !glc);
6258
6259 if (dst.size() == 3) {
6260 /* trim vector */
6261 Temp vec = bld.tmp(s4);
6262 load->definitions[0] = Definition(vec);
6263 ctx->block->instructions.emplace_back(std::move(load));
6264 emit_split_vector(ctx, vec, 4);
6265
6266 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6267 emit_extract_vector(ctx, vec, 0, s1),
6268 emit_extract_vector(ctx, vec, 1, s1),
6269 emit_extract_vector(ctx, vec, 2, s1));
6270 } else {
6271 ctx->block->instructions.emplace_back(std::move(load));
6272 }
6273 }
6274 }
6275
6276 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6277 {
6278 Builder bld(ctx->program, ctx->block);
6279 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6280
6281 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6282 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6283
6284 if (ctx->options->chip_class >= GFX7)
6285 addr = as_vgpr(ctx, addr);
6286
6287 unsigned writemask = nir_intrinsic_write_mask(instr);
6288 while (writemask) {
6289 int start, count;
6290 u_bit_scan_consecutive_range(&writemask, &start, &count);
6291 if (count == 3 && ctx->options->chip_class == GFX6) {
6292 /* GFX6 doesn't support storing vec3, split it. */
6293 writemask |= 1u << (start + 2);
6294 count = 2;
6295 }
6296 unsigned num_bytes = count * elem_size_bytes;
6297
6298 Temp write_data = data;
6299 if (count != instr->num_components) {
6300 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6301 for (int i = 0; i < count; i++)
6302 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6303 write_data = bld.tmp(RegType::vgpr, count);
6304 vec->definitions[0] = Definition(write_data);
6305 ctx->block->instructions.emplace_back(std::move(vec));
6306 }
6307
6308 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6309 unsigned offset = start * elem_size_bytes;
6310
6311 if (ctx->options->chip_class >= GFX7) {
6312 if (offset > 0 && ctx->options->chip_class < GFX9) {
6313 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6314 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6315 Temp carry = bld.tmp(bld.lm);
6316 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6317
6318 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6319 Operand(offset), addr0);
6320 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6321 Operand(0u), addr1,
6322 carry).def(1).setHint(vcc);
6323
6324 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6325
6326 offset = 0;
6327 }
6328
6329 bool global = ctx->options->chip_class >= GFX9;
6330 aco_opcode op;
6331 switch (num_bytes) {
6332 case 4:
6333 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6334 break;
6335 case 8:
6336 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6337 break;
6338 case 12:
6339 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6340 break;
6341 case 16:
6342 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6343 break;
6344 default:
6345 unreachable("store_global not implemented for this size.");
6346 }
6347
6348 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6349 flat->operands[0] = Operand(addr);
6350 flat->operands[1] = Operand(s1);
6351 flat->operands[2] = Operand(data);
6352 flat->glc = glc;
6353 flat->dlc = false;
6354 flat->offset = offset;
6355 flat->disable_wqm = true;
6356 flat->barrier = barrier_buffer;
6357 ctx->program->needs_exact = true;
6358 ctx->block->instructions.emplace_back(std::move(flat));
6359 } else {
6360 assert(ctx->options->chip_class == GFX6);
6361
6362 aco_opcode op;
6363 switch (num_bytes) {
6364 case 4:
6365 op = aco_opcode::buffer_store_dword;
6366 break;
6367 case 8:
6368 op = aco_opcode::buffer_store_dwordx2;
6369 break;
6370 case 16:
6371 op = aco_opcode::buffer_store_dwordx4;
6372 break;
6373 default:
6374 unreachable("store_global not implemented for this size.");
6375 }
6376
6377 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6378
6379 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6380 mubuf->operands[0] = Operand(rsrc);
6381 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6382 mubuf->operands[2] = Operand(0u);
6383 mubuf->operands[3] = Operand(write_data);
6384 mubuf->glc = glc;
6385 mubuf->dlc = false;
6386 mubuf->offset = offset;
6387 mubuf->addr64 = addr.type() == RegType::vgpr;
6388 mubuf->disable_wqm = true;
6389 mubuf->barrier = barrier_buffer;
6390 ctx->program->needs_exact = true;
6391 ctx->block->instructions.emplace_back(std::move(mubuf));
6392 }
6393 }
6394 }
6395
6396 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6397 {
6398 /* return the previous value if dest is ever used */
6399 bool return_previous = false;
6400 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6401 return_previous = true;
6402 break;
6403 }
6404 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6405 return_previous = true;
6406 break;
6407 }
6408
6409 Builder bld(ctx->program, ctx->block);
6410 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6411 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6412
6413 if (ctx->options->chip_class >= GFX7)
6414 addr = as_vgpr(ctx, addr);
6415
6416 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6417 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6418 get_ssa_temp(ctx, instr->src[2].ssa), data);
6419
6420 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6421
6422 aco_opcode op32, op64;
6423
6424 if (ctx->options->chip_class >= GFX7) {
6425 bool global = ctx->options->chip_class >= GFX9;
6426 switch (instr->intrinsic) {
6427 case nir_intrinsic_global_atomic_add:
6428 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6429 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6430 break;
6431 case nir_intrinsic_global_atomic_imin:
6432 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6433 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6434 break;
6435 case nir_intrinsic_global_atomic_umin:
6436 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6437 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6438 break;
6439 case nir_intrinsic_global_atomic_imax:
6440 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6441 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6442 break;
6443 case nir_intrinsic_global_atomic_umax:
6444 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6445 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6446 break;
6447 case nir_intrinsic_global_atomic_and:
6448 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6449 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6450 break;
6451 case nir_intrinsic_global_atomic_or:
6452 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6453 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6454 break;
6455 case nir_intrinsic_global_atomic_xor:
6456 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6457 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6458 break;
6459 case nir_intrinsic_global_atomic_exchange:
6460 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6461 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6462 break;
6463 case nir_intrinsic_global_atomic_comp_swap:
6464 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6465 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6466 break;
6467 default:
6468 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6469 }
6470
6471 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6472 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6473 flat->operands[0] = Operand(addr);
6474 flat->operands[1] = Operand(s1);
6475 flat->operands[2] = Operand(data);
6476 if (return_previous)
6477 flat->definitions[0] = Definition(dst);
6478 flat->glc = return_previous;
6479 flat->dlc = false; /* Not needed for atomics */
6480 flat->offset = 0;
6481 flat->disable_wqm = true;
6482 flat->barrier = barrier_buffer;
6483 ctx->program->needs_exact = true;
6484 ctx->block->instructions.emplace_back(std::move(flat));
6485 } else {
6486 assert(ctx->options->chip_class == GFX6);
6487
6488 switch (instr->intrinsic) {
6489 case nir_intrinsic_global_atomic_add:
6490 op32 = aco_opcode::buffer_atomic_add;
6491 op64 = aco_opcode::buffer_atomic_add_x2;
6492 break;
6493 case nir_intrinsic_global_atomic_imin:
6494 op32 = aco_opcode::buffer_atomic_smin;
6495 op64 = aco_opcode::buffer_atomic_smin_x2;
6496 break;
6497 case nir_intrinsic_global_atomic_umin:
6498 op32 = aco_opcode::buffer_atomic_umin;
6499 op64 = aco_opcode::buffer_atomic_umin_x2;
6500 break;
6501 case nir_intrinsic_global_atomic_imax:
6502 op32 = aco_opcode::buffer_atomic_smax;
6503 op64 = aco_opcode::buffer_atomic_smax_x2;
6504 break;
6505 case nir_intrinsic_global_atomic_umax:
6506 op32 = aco_opcode::buffer_atomic_umax;
6507 op64 = aco_opcode::buffer_atomic_umax_x2;
6508 break;
6509 case nir_intrinsic_global_atomic_and:
6510 op32 = aco_opcode::buffer_atomic_and;
6511 op64 = aco_opcode::buffer_atomic_and_x2;
6512 break;
6513 case nir_intrinsic_global_atomic_or:
6514 op32 = aco_opcode::buffer_atomic_or;
6515 op64 = aco_opcode::buffer_atomic_or_x2;
6516 break;
6517 case nir_intrinsic_global_atomic_xor:
6518 op32 = aco_opcode::buffer_atomic_xor;
6519 op64 = aco_opcode::buffer_atomic_xor_x2;
6520 break;
6521 case nir_intrinsic_global_atomic_exchange:
6522 op32 = aco_opcode::buffer_atomic_swap;
6523 op64 = aco_opcode::buffer_atomic_swap_x2;
6524 break;
6525 case nir_intrinsic_global_atomic_comp_swap:
6526 op32 = aco_opcode::buffer_atomic_cmpswap;
6527 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6528 break;
6529 default:
6530 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6531 }
6532
6533 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6534
6535 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6536
6537 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6538 mubuf->operands[0] = Operand(rsrc);
6539 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6540 mubuf->operands[2] = Operand(0u);
6541 mubuf->operands[3] = Operand(data);
6542 if (return_previous)
6543 mubuf->definitions[0] = Definition(dst);
6544 mubuf->glc = return_previous;
6545 mubuf->dlc = false;
6546 mubuf->offset = 0;
6547 mubuf->addr64 = addr.type() == RegType::vgpr;
6548 mubuf->disable_wqm = true;
6549 mubuf->barrier = barrier_buffer;
6550 ctx->program->needs_exact = true;
6551 ctx->block->instructions.emplace_back(std::move(mubuf));
6552 }
6553 }
6554
6555 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6556 Builder bld(ctx->program, ctx->block);
6557 switch(instr->intrinsic) {
6558 case nir_intrinsic_group_memory_barrier:
6559 case nir_intrinsic_memory_barrier:
6560 bld.barrier(aco_opcode::p_memory_barrier_common);
6561 break;
6562 case nir_intrinsic_memory_barrier_buffer:
6563 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6564 break;
6565 case nir_intrinsic_memory_barrier_image:
6566 bld.barrier(aco_opcode::p_memory_barrier_image);
6567 break;
6568 case nir_intrinsic_memory_barrier_tcs_patch:
6569 case nir_intrinsic_memory_barrier_shared:
6570 bld.barrier(aco_opcode::p_memory_barrier_shared);
6571 break;
6572 default:
6573 unreachable("Unimplemented memory barrier intrinsic");
6574 break;
6575 }
6576 }
6577
6578 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6579 {
6580 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6581 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6582 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6583 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6584 Builder bld(ctx->program, ctx->block);
6585
6586 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6587 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6588 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6589 }
6590
6591 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6592 {
6593 unsigned writemask = nir_intrinsic_write_mask(instr);
6594 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6595 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6596 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6597 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6598
6599 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6600 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6601 }
6602
6603 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6604 {
6605 unsigned offset = nir_intrinsic_base(instr);
6606 Operand m = load_lds_size_m0(ctx);
6607 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6608 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6609
6610 unsigned num_operands = 3;
6611 aco_opcode op32, op64, op32_rtn, op64_rtn;
6612 switch(instr->intrinsic) {
6613 case nir_intrinsic_shared_atomic_add:
6614 op32 = aco_opcode::ds_add_u32;
6615 op64 = aco_opcode::ds_add_u64;
6616 op32_rtn = aco_opcode::ds_add_rtn_u32;
6617 op64_rtn = aco_opcode::ds_add_rtn_u64;
6618 break;
6619 case nir_intrinsic_shared_atomic_imin:
6620 op32 = aco_opcode::ds_min_i32;
6621 op64 = aco_opcode::ds_min_i64;
6622 op32_rtn = aco_opcode::ds_min_rtn_i32;
6623 op64_rtn = aco_opcode::ds_min_rtn_i64;
6624 break;
6625 case nir_intrinsic_shared_atomic_umin:
6626 op32 = aco_opcode::ds_min_u32;
6627 op64 = aco_opcode::ds_min_u64;
6628 op32_rtn = aco_opcode::ds_min_rtn_u32;
6629 op64_rtn = aco_opcode::ds_min_rtn_u64;
6630 break;
6631 case nir_intrinsic_shared_atomic_imax:
6632 op32 = aco_opcode::ds_max_i32;
6633 op64 = aco_opcode::ds_max_i64;
6634 op32_rtn = aco_opcode::ds_max_rtn_i32;
6635 op64_rtn = aco_opcode::ds_max_rtn_i64;
6636 break;
6637 case nir_intrinsic_shared_atomic_umax:
6638 op32 = aco_opcode::ds_max_u32;
6639 op64 = aco_opcode::ds_max_u64;
6640 op32_rtn = aco_opcode::ds_max_rtn_u32;
6641 op64_rtn = aco_opcode::ds_max_rtn_u64;
6642 break;
6643 case nir_intrinsic_shared_atomic_and:
6644 op32 = aco_opcode::ds_and_b32;
6645 op64 = aco_opcode::ds_and_b64;
6646 op32_rtn = aco_opcode::ds_and_rtn_b32;
6647 op64_rtn = aco_opcode::ds_and_rtn_b64;
6648 break;
6649 case nir_intrinsic_shared_atomic_or:
6650 op32 = aco_opcode::ds_or_b32;
6651 op64 = aco_opcode::ds_or_b64;
6652 op32_rtn = aco_opcode::ds_or_rtn_b32;
6653 op64_rtn = aco_opcode::ds_or_rtn_b64;
6654 break;
6655 case nir_intrinsic_shared_atomic_xor:
6656 op32 = aco_opcode::ds_xor_b32;
6657 op64 = aco_opcode::ds_xor_b64;
6658 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6659 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6660 break;
6661 case nir_intrinsic_shared_atomic_exchange:
6662 op32 = aco_opcode::ds_write_b32;
6663 op64 = aco_opcode::ds_write_b64;
6664 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6665 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6666 break;
6667 case nir_intrinsic_shared_atomic_comp_swap:
6668 op32 = aco_opcode::ds_cmpst_b32;
6669 op64 = aco_opcode::ds_cmpst_b64;
6670 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6671 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6672 num_operands = 4;
6673 break;
6674 default:
6675 unreachable("Unhandled shared atomic intrinsic");
6676 }
6677
6678 /* return the previous value if dest is ever used */
6679 bool return_previous = false;
6680 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6681 return_previous = true;
6682 break;
6683 }
6684 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6685 return_previous = true;
6686 break;
6687 }
6688
6689 aco_opcode op;
6690 if (data.size() == 1) {
6691 assert(instr->dest.ssa.bit_size == 32);
6692 op = return_previous ? op32_rtn : op32;
6693 } else {
6694 assert(instr->dest.ssa.bit_size == 64);
6695 op = return_previous ? op64_rtn : op64;
6696 }
6697
6698 if (offset > 65535) {
6699 Builder bld(ctx->program, ctx->block);
6700 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6701 offset = 0;
6702 }
6703
6704 aco_ptr<DS_instruction> ds;
6705 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6706 ds->operands[0] = Operand(address);
6707 ds->operands[1] = Operand(data);
6708 if (num_operands == 4)
6709 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6710 ds->operands[num_operands - 1] = m;
6711 ds->offset0 = offset;
6712 if (return_previous)
6713 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6714 ctx->block->instructions.emplace_back(std::move(ds));
6715 }
6716
6717 Temp get_scratch_resource(isel_context *ctx)
6718 {
6719 Builder bld(ctx->program, ctx->block);
6720 Temp scratch_addr = ctx->program->private_segment_buffer;
6721 if (ctx->stage != compute_cs)
6722 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6723
6724 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6725 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6726
6727 if (ctx->program->chip_class >= GFX10) {
6728 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6729 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6730 S_008F0C_RESOURCE_LEVEL(1);
6731 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6732 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6733 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6734 }
6735
6736 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6737 if (ctx->program->chip_class <= GFX8)
6738 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6739
6740 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6741 }
6742
6743 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6744 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6745 Builder bld(ctx->program, ctx->block);
6746 Temp rsrc = get_scratch_resource(ctx);
6747 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6748 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6749
6750 aco_opcode op;
6751 switch (dst.size()) {
6752 case 1:
6753 op = aco_opcode::buffer_load_dword;
6754 break;
6755 case 2:
6756 op = aco_opcode::buffer_load_dwordx2;
6757 break;
6758 case 3:
6759 op = aco_opcode::buffer_load_dwordx3;
6760 break;
6761 case 4:
6762 op = aco_opcode::buffer_load_dwordx4;
6763 break;
6764 case 6:
6765 case 8: {
6766 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6767 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6768 bld.def(v4), rsrc, offset,
6769 ctx->program->scratch_offset, 0, true);
6770 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6771 aco_opcode::buffer_load_dwordx4,
6772 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6773 rsrc, offset, ctx->program->scratch_offset, 16, true);
6774 emit_split_vector(ctx, lower, 2);
6775 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6776 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6777 if (dst.size() == 8) {
6778 emit_split_vector(ctx, upper, 2);
6779 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6780 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6781 } else {
6782 elems[2] = upper;
6783 }
6784
6785 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6786 Format::PSEUDO, dst.size() / 2, 1)};
6787 for (unsigned i = 0; i < dst.size() / 2; i++)
6788 vec->operands[i] = Operand(elems[i]);
6789 vec->definitions[0] = Definition(dst);
6790 bld.insert(std::move(vec));
6791 ctx->allocated_vec.emplace(dst.id(), elems);
6792 return;
6793 }
6794 default:
6795 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6796 }
6797
6798 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6799 emit_split_vector(ctx, dst, instr->num_components);
6800 }
6801
6802 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6803 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6804 Builder bld(ctx->program, ctx->block);
6805 Temp rsrc = get_scratch_resource(ctx);
6806 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6807 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6808
6809 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6810 unsigned writemask = nir_intrinsic_write_mask(instr);
6811
6812 while (writemask) {
6813 int start, count;
6814 u_bit_scan_consecutive_range(&writemask, &start, &count);
6815 int num_bytes = count * elem_size_bytes;
6816
6817 if (num_bytes > 16) {
6818 assert(elem_size_bytes == 8);
6819 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6820 count = 2;
6821 num_bytes = 16;
6822 }
6823
6824 // TODO: check alignment of sub-dword stores
6825 // TODO: split 3 bytes. there is no store instruction for that
6826
6827 Temp write_data;
6828 if (count != instr->num_components) {
6829 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6830 for (int i = 0; i < count; i++) {
6831 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6832 vec->operands[i] = Operand(elem);
6833 }
6834 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6835 vec->definitions[0] = Definition(write_data);
6836 ctx->block->instructions.emplace_back(std::move(vec));
6837 } else {
6838 write_data = data;
6839 }
6840
6841 aco_opcode op;
6842 switch (num_bytes) {
6843 case 4:
6844 op = aco_opcode::buffer_store_dword;
6845 break;
6846 case 8:
6847 op = aco_opcode::buffer_store_dwordx2;
6848 break;
6849 case 12:
6850 op = aco_opcode::buffer_store_dwordx3;
6851 break;
6852 case 16:
6853 op = aco_opcode::buffer_store_dwordx4;
6854 break;
6855 default:
6856 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6857 }
6858
6859 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6860 }
6861 }
6862
6863 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6864 uint8_t log2_ps_iter_samples;
6865 if (ctx->program->info->ps.force_persample) {
6866 log2_ps_iter_samples =
6867 util_logbase2(ctx->options->key.fs.num_samples);
6868 } else {
6869 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6870 }
6871
6872 /* The bit pattern matches that used by fixed function fragment
6873 * processing. */
6874 static const unsigned ps_iter_masks[] = {
6875 0xffff, /* not used */
6876 0x5555,
6877 0x1111,
6878 0x0101,
6879 0x0001,
6880 };
6881 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6882
6883 Builder bld(ctx->program, ctx->block);
6884
6885 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6886 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6887 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6888 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6889 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6890 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6891 }
6892
6893 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6894 Builder bld(ctx->program, ctx->block);
6895
6896 unsigned stream = nir_intrinsic_stream_id(instr);
6897 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6898 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6899 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6900
6901 /* get GSVS ring */
6902 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6903
6904 unsigned num_components =
6905 ctx->program->info->gs.num_stream_output_components[stream];
6906 assert(num_components);
6907
6908 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6909 unsigned stream_offset = 0;
6910 for (unsigned i = 0; i < stream; i++) {
6911 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6912 stream_offset += prev_stride * ctx->program->wave_size;
6913 }
6914
6915 /* Limit on the stride field for <= GFX7. */
6916 assert(stride < (1 << 14));
6917
6918 Temp gsvs_dwords[4];
6919 for (unsigned i = 0; i < 4; i++)
6920 gsvs_dwords[i] = bld.tmp(s1);
6921 bld.pseudo(aco_opcode::p_split_vector,
6922 Definition(gsvs_dwords[0]),
6923 Definition(gsvs_dwords[1]),
6924 Definition(gsvs_dwords[2]),
6925 Definition(gsvs_dwords[3]),
6926 gsvs_ring);
6927
6928 if (stream_offset) {
6929 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6930
6931 Temp carry = bld.tmp(s1);
6932 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6933 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6934 }
6935
6936 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6937 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6938
6939 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6940 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6941
6942 unsigned offset = 0;
6943 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6944 if (ctx->program->info->gs.output_streams[i] != stream)
6945 continue;
6946
6947 for (unsigned j = 0; j < 4; j++) {
6948 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6949 continue;
6950
6951 if (ctx->outputs.mask[i] & (1 << j)) {
6952 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6953 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6954 if (const_offset >= 4096u) {
6955 if (vaddr_offset.isUndefined())
6956 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6957 else
6958 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6959 const_offset %= 4096u;
6960 }
6961
6962 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6963 mtbuf->operands[0] = Operand(gsvs_ring);
6964 mtbuf->operands[1] = vaddr_offset;
6965 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6966 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6967 mtbuf->offen = !vaddr_offset.isUndefined();
6968 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6969 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6970 mtbuf->offset = const_offset;
6971 mtbuf->glc = true;
6972 mtbuf->slc = true;
6973 mtbuf->barrier = barrier_gs_data;
6974 mtbuf->can_reorder = true;
6975 bld.insert(std::move(mtbuf));
6976 }
6977
6978 offset += ctx->shader->info.gs.vertices_out;
6979 }
6980
6981 /* outputs for the next vertex are undefined and keeping them around can
6982 * create invalid IR with control flow */
6983 ctx->outputs.mask[i] = 0;
6984 }
6985
6986 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6987 }
6988
6989 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6990 {
6991 Builder bld(ctx->program, ctx->block);
6992
6993 if (cluster_size == 1) {
6994 return src;
6995 } if (op == nir_op_iand && cluster_size == 4) {
6996 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6997 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6998 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6999 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7000 } else if (op == nir_op_ior && cluster_size == 4) {
7001 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7002 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7003 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7004 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7005 //subgroupAnd(val) -> (exec & ~val) == 0
7006 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7007 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7008 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7009 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7010 //subgroupOr(val) -> (val & exec) != 0
7011 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7012 return bool_to_vector_condition(ctx, tmp);
7013 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7014 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7015 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7016 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7017 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7018 return bool_to_vector_condition(ctx, tmp);
7019 } else {
7020 //subgroupClustered{And,Or,Xor}(val, n) ->
7021 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7022 //cluster_offset = ~(n - 1) & lane_id
7023 //cluster_mask = ((1 << n) - 1)
7024 //subgroupClusteredAnd():
7025 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7026 //subgroupClusteredOr():
7027 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7028 //subgroupClusteredXor():
7029 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7030 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7031 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7032
7033 Temp tmp;
7034 if (op == nir_op_iand)
7035 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7036 else
7037 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7038
7039 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7040
7041 if (ctx->program->chip_class <= GFX7)
7042 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7043 else if (ctx->program->wave_size == 64)
7044 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7045 else
7046 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7047 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7048 if (cluster_mask != 0xffffffff)
7049 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7050
7051 Definition cmp_def = Definition();
7052 if (op == nir_op_iand) {
7053 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7054 } else if (op == nir_op_ior) {
7055 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7056 } else if (op == nir_op_ixor) {
7057 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7058 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7059 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7060 }
7061 cmp_def.setHint(vcc);
7062 return cmp_def.getTemp();
7063 }
7064 }
7065
7066 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7067 {
7068 Builder bld(ctx->program, ctx->block);
7069
7070 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7071 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7072 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7073 Temp tmp;
7074 if (op == nir_op_iand)
7075 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7076 else
7077 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7078
7079 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7080 Temp lo = lohi.def(0).getTemp();
7081 Temp hi = lohi.def(1).getTemp();
7082 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7083
7084 Definition cmp_def = Definition();
7085 if (op == nir_op_iand)
7086 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7087 else if (op == nir_op_ior)
7088 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7089 else if (op == nir_op_ixor)
7090 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7091 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7092 cmp_def.setHint(vcc);
7093 return cmp_def.getTemp();
7094 }
7095
7096 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7097 {
7098 Builder bld(ctx->program, ctx->block);
7099
7100 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7101 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7102 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7103 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7104 if (op == nir_op_iand)
7105 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7106 else if (op == nir_op_ior)
7107 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7108 else if (op == nir_op_ixor)
7109 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7110
7111 assert(false);
7112 return Temp();
7113 }
7114
7115 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7116 {
7117 Builder bld(ctx->program, ctx->block);
7118 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7119 if (src.regClass().type() == RegType::vgpr) {
7120 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7121 } else if (src.regClass() == s1) {
7122 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7123 } else if (src.regClass() == s2) {
7124 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7125 } else {
7126 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7127 nir_print_instr(&instr->instr, stderr);
7128 fprintf(stderr, "\n");
7129 }
7130 }
7131
7132 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7133 {
7134 Builder bld(ctx->program, ctx->block);
7135 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7136 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7137 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7138
7139 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7140 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7141 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7142 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7143
7144 /* Build DD X/Y */
7145 if (ctx->program->chip_class >= GFX8) {
7146 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7147 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7148 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7149 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7150 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7151 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7152 } else {
7153 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7154 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7155 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7156 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7157 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7158 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7159 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7160 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7161 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7162 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7163 }
7164
7165 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7166 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7167 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7168 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7169 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7170 Temp wqm1 = bld.tmp(v1);
7171 emit_wqm(ctx, tmp1, wqm1, true);
7172 Temp wqm2 = bld.tmp(v1);
7173 emit_wqm(ctx, tmp2, wqm2, true);
7174 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7175 return;
7176 }
7177
7178 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7179 {
7180 Builder bld(ctx->program, ctx->block);
7181 switch(instr->intrinsic) {
7182 case nir_intrinsic_load_barycentric_sample:
7183 case nir_intrinsic_load_barycentric_pixel:
7184 case nir_intrinsic_load_barycentric_centroid: {
7185 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7186 Temp bary = Temp(0, s2);
7187 switch (mode) {
7188 case INTERP_MODE_SMOOTH:
7189 case INTERP_MODE_NONE:
7190 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7191 bary = get_arg(ctx, ctx->args->ac.persp_center);
7192 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7193 bary = ctx->persp_centroid;
7194 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7195 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7196 break;
7197 case INTERP_MODE_NOPERSPECTIVE:
7198 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7199 bary = get_arg(ctx, ctx->args->ac.linear_center);
7200 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7201 bary = ctx->linear_centroid;
7202 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7203 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7204 break;
7205 default:
7206 break;
7207 }
7208 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7209 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7210 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7211 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7212 Operand(p1), Operand(p2));
7213 emit_split_vector(ctx, dst, 2);
7214 break;
7215 }
7216 case nir_intrinsic_load_barycentric_model: {
7217 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7218
7219 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7220 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7221 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7222 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7223 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7224 Operand(p1), Operand(p2), Operand(p3));
7225 emit_split_vector(ctx, dst, 3);
7226 break;
7227 }
7228 case nir_intrinsic_load_barycentric_at_sample: {
7229 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7230 switch (ctx->options->key.fs.num_samples) {
7231 case 2: sample_pos_offset += 1 << 3; break;
7232 case 4: sample_pos_offset += 3 << 3; break;
7233 case 8: sample_pos_offset += 7 << 3; break;
7234 default: break;
7235 }
7236 Temp sample_pos;
7237 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7238 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7239 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7240 if (addr.type() == RegType::sgpr) {
7241 Operand offset;
7242 if (const_addr) {
7243 sample_pos_offset += const_addr->u32 << 3;
7244 offset = Operand(sample_pos_offset);
7245 } else if (ctx->options->chip_class >= GFX9) {
7246 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7247 } else {
7248 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7249 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7250 }
7251
7252 Operand off = bld.copy(bld.def(s1), Operand(offset));
7253 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7254
7255 } else if (ctx->options->chip_class >= GFX9) {
7256 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7257 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7258 } else if (ctx->options->chip_class >= GFX7) {
7259 /* addr += private_segment_buffer + sample_pos_offset */
7260 Temp tmp0 = bld.tmp(s1);
7261 Temp tmp1 = bld.tmp(s1);
7262 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7263 Definition scc_tmp = bld.def(s1, scc);
7264 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7265 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7266 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7267 Temp pck0 = bld.tmp(v1);
7268 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7269 tmp1 = as_vgpr(ctx, tmp1);
7270 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7271 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7272
7273 /* sample_pos = flat_load_dwordx2 addr */
7274 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7275 } else {
7276 assert(ctx->options->chip_class == GFX6);
7277
7278 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7279 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7280 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7281
7282 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7283 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7284
7285 sample_pos = bld.tmp(v2);
7286
7287 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7288 load->definitions[0] = Definition(sample_pos);
7289 load->operands[0] = Operand(rsrc);
7290 load->operands[1] = Operand(addr);
7291 load->operands[2] = Operand(0u);
7292 load->offset = sample_pos_offset;
7293 load->offen = 0;
7294 load->addr64 = true;
7295 load->glc = false;
7296 load->dlc = false;
7297 load->disable_wqm = false;
7298 load->barrier = barrier_none;
7299 load->can_reorder = true;
7300 ctx->block->instructions.emplace_back(std::move(load));
7301 }
7302
7303 /* sample_pos -= 0.5 */
7304 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7305 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7306 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7307 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7308 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7309
7310 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7311 break;
7312 }
7313 case nir_intrinsic_load_barycentric_at_offset: {
7314 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7315 RegClass rc = RegClass(offset.type(), 1);
7316 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7317 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7318 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7319 break;
7320 }
7321 case nir_intrinsic_load_front_face: {
7322 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7323 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7324 break;
7325 }
7326 case nir_intrinsic_load_view_index: {
7327 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7328 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7329 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7330 break;
7331 }
7332
7333 /* fallthrough */
7334 }
7335 case nir_intrinsic_load_layer_id: {
7336 unsigned idx = nir_intrinsic_base(instr);
7337 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7338 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7339 break;
7340 }
7341 case nir_intrinsic_load_frag_coord: {
7342 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7343 break;
7344 }
7345 case nir_intrinsic_load_sample_pos: {
7346 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7347 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7348 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7349 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7350 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7351 break;
7352 }
7353 case nir_intrinsic_load_tess_coord:
7354 visit_load_tess_coord(ctx, instr);
7355 break;
7356 case nir_intrinsic_load_interpolated_input:
7357 visit_load_interpolated_input(ctx, instr);
7358 break;
7359 case nir_intrinsic_store_output:
7360 visit_store_output(ctx, instr);
7361 break;
7362 case nir_intrinsic_load_input:
7363 case nir_intrinsic_load_input_vertex:
7364 visit_load_input(ctx, instr);
7365 break;
7366 case nir_intrinsic_load_output:
7367 visit_load_output(ctx, instr);
7368 break;
7369 case nir_intrinsic_load_per_vertex_input:
7370 visit_load_per_vertex_input(ctx, instr);
7371 break;
7372 case nir_intrinsic_load_per_vertex_output:
7373 visit_load_per_vertex_output(ctx, instr);
7374 break;
7375 case nir_intrinsic_store_per_vertex_output:
7376 visit_store_per_vertex_output(ctx, instr);
7377 break;
7378 case nir_intrinsic_load_ubo:
7379 visit_load_ubo(ctx, instr);
7380 break;
7381 case nir_intrinsic_load_push_constant:
7382 visit_load_push_constant(ctx, instr);
7383 break;
7384 case nir_intrinsic_load_constant:
7385 visit_load_constant(ctx, instr);
7386 break;
7387 case nir_intrinsic_vulkan_resource_index:
7388 visit_load_resource(ctx, instr);
7389 break;
7390 case nir_intrinsic_discard:
7391 visit_discard(ctx, instr);
7392 break;
7393 case nir_intrinsic_discard_if:
7394 visit_discard_if(ctx, instr);
7395 break;
7396 case nir_intrinsic_load_shared:
7397 visit_load_shared(ctx, instr);
7398 break;
7399 case nir_intrinsic_store_shared:
7400 visit_store_shared(ctx, instr);
7401 break;
7402 case nir_intrinsic_shared_atomic_add:
7403 case nir_intrinsic_shared_atomic_imin:
7404 case nir_intrinsic_shared_atomic_umin:
7405 case nir_intrinsic_shared_atomic_imax:
7406 case nir_intrinsic_shared_atomic_umax:
7407 case nir_intrinsic_shared_atomic_and:
7408 case nir_intrinsic_shared_atomic_or:
7409 case nir_intrinsic_shared_atomic_xor:
7410 case nir_intrinsic_shared_atomic_exchange:
7411 case nir_intrinsic_shared_atomic_comp_swap:
7412 visit_shared_atomic(ctx, instr);
7413 break;
7414 case nir_intrinsic_image_deref_load:
7415 visit_image_load(ctx, instr);
7416 break;
7417 case nir_intrinsic_image_deref_store:
7418 visit_image_store(ctx, instr);
7419 break;
7420 case nir_intrinsic_image_deref_atomic_add:
7421 case nir_intrinsic_image_deref_atomic_umin:
7422 case nir_intrinsic_image_deref_atomic_imin:
7423 case nir_intrinsic_image_deref_atomic_umax:
7424 case nir_intrinsic_image_deref_atomic_imax:
7425 case nir_intrinsic_image_deref_atomic_and:
7426 case nir_intrinsic_image_deref_atomic_or:
7427 case nir_intrinsic_image_deref_atomic_xor:
7428 case nir_intrinsic_image_deref_atomic_exchange:
7429 case nir_intrinsic_image_deref_atomic_comp_swap:
7430 visit_image_atomic(ctx, instr);
7431 break;
7432 case nir_intrinsic_image_deref_size:
7433 visit_image_size(ctx, instr);
7434 break;
7435 case nir_intrinsic_load_ssbo:
7436 visit_load_ssbo(ctx, instr);
7437 break;
7438 case nir_intrinsic_store_ssbo:
7439 visit_store_ssbo(ctx, instr);
7440 break;
7441 case nir_intrinsic_load_global:
7442 visit_load_global(ctx, instr);
7443 break;
7444 case nir_intrinsic_store_global:
7445 visit_store_global(ctx, instr);
7446 break;
7447 case nir_intrinsic_global_atomic_add:
7448 case nir_intrinsic_global_atomic_imin:
7449 case nir_intrinsic_global_atomic_umin:
7450 case nir_intrinsic_global_atomic_imax:
7451 case nir_intrinsic_global_atomic_umax:
7452 case nir_intrinsic_global_atomic_and:
7453 case nir_intrinsic_global_atomic_or:
7454 case nir_intrinsic_global_atomic_xor:
7455 case nir_intrinsic_global_atomic_exchange:
7456 case nir_intrinsic_global_atomic_comp_swap:
7457 visit_global_atomic(ctx, instr);
7458 break;
7459 case nir_intrinsic_ssbo_atomic_add:
7460 case nir_intrinsic_ssbo_atomic_imin:
7461 case nir_intrinsic_ssbo_atomic_umin:
7462 case nir_intrinsic_ssbo_atomic_imax:
7463 case nir_intrinsic_ssbo_atomic_umax:
7464 case nir_intrinsic_ssbo_atomic_and:
7465 case nir_intrinsic_ssbo_atomic_or:
7466 case nir_intrinsic_ssbo_atomic_xor:
7467 case nir_intrinsic_ssbo_atomic_exchange:
7468 case nir_intrinsic_ssbo_atomic_comp_swap:
7469 visit_atomic_ssbo(ctx, instr);
7470 break;
7471 case nir_intrinsic_load_scratch:
7472 visit_load_scratch(ctx, instr);
7473 break;
7474 case nir_intrinsic_store_scratch:
7475 visit_store_scratch(ctx, instr);
7476 break;
7477 case nir_intrinsic_get_buffer_size:
7478 visit_get_buffer_size(ctx, instr);
7479 break;
7480 case nir_intrinsic_control_barrier: {
7481 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7482 /* GFX6 only (thanks to a hw bug workaround):
7483 * The real barrier instruction isn’t needed, because an entire patch
7484 * always fits into a single wave.
7485 */
7486 break;
7487 }
7488
7489 if (ctx->program->workgroup_size > ctx->program->wave_size)
7490 bld.sopp(aco_opcode::s_barrier);
7491
7492 break;
7493 }
7494 case nir_intrinsic_memory_barrier_tcs_patch:
7495 case nir_intrinsic_group_memory_barrier:
7496 case nir_intrinsic_memory_barrier:
7497 case nir_intrinsic_memory_barrier_buffer:
7498 case nir_intrinsic_memory_barrier_image:
7499 case nir_intrinsic_memory_barrier_shared:
7500 emit_memory_barrier(ctx, instr);
7501 break;
7502 case nir_intrinsic_load_num_work_groups: {
7503 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7504 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7505 emit_split_vector(ctx, dst, 3);
7506 break;
7507 }
7508 case nir_intrinsic_load_local_invocation_id: {
7509 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7510 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7511 emit_split_vector(ctx, dst, 3);
7512 break;
7513 }
7514 case nir_intrinsic_load_work_group_id: {
7515 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7516 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7517 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7518 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7519 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7520 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7521 emit_split_vector(ctx, dst, 3);
7522 break;
7523 }
7524 case nir_intrinsic_load_local_invocation_index: {
7525 Temp id = emit_mbcnt(ctx, bld.def(v1));
7526
7527 /* The tg_size bits [6:11] contain the subgroup id,
7528 * we need this multiplied by the wave size, and then OR the thread id to it.
7529 */
7530 if (ctx->program->wave_size == 64) {
7531 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7532 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7533 get_arg(ctx, ctx->args->ac.tg_size));
7534 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7535 } else {
7536 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7537 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7538 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7539 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7540 }
7541 break;
7542 }
7543 case nir_intrinsic_load_subgroup_id: {
7544 if (ctx->stage == compute_cs) {
7545 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7546 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7547 } else {
7548 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7549 }
7550 break;
7551 }
7552 case nir_intrinsic_load_subgroup_invocation: {
7553 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7554 break;
7555 }
7556 case nir_intrinsic_load_num_subgroups: {
7557 if (ctx->stage == compute_cs)
7558 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7559 get_arg(ctx, ctx->args->ac.tg_size));
7560 else
7561 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7562 break;
7563 }
7564 case nir_intrinsic_ballot: {
7565 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7566 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7567 Definition tmp = bld.def(dst.regClass());
7568 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7569 if (instr->src[0].ssa->bit_size == 1) {
7570 assert(src.regClass() == bld.lm);
7571 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7572 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7573 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7574 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7575 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7576 } else {
7577 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7578 nir_print_instr(&instr->instr, stderr);
7579 fprintf(stderr, "\n");
7580 }
7581 if (dst.size() != bld.lm.size()) {
7582 /* Wave32 with ballot size set to 64 */
7583 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7584 }
7585 emit_wqm(ctx, tmp.getTemp(), dst);
7586 break;
7587 }
7588 case nir_intrinsic_shuffle:
7589 case nir_intrinsic_read_invocation: {
7590 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7591 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7592 emit_uniform_subgroup(ctx, instr, src);
7593 } else {
7594 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7595 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7596 tid = bld.as_uniform(tid);
7597 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7598 if (src.regClass() == v1) {
7599 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7600 } else if (src.regClass() == v2) {
7601 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7602 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7603 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7604 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7605 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7606 emit_split_vector(ctx, dst, 2);
7607 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7608 assert(src.regClass() == bld.lm);
7609 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7610 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7611 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7612 assert(src.regClass() == bld.lm);
7613 Temp tmp;
7614 if (ctx->program->chip_class <= GFX7)
7615 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7616 else if (ctx->program->wave_size == 64)
7617 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7618 else
7619 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7620 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7621 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7622 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7623 } else {
7624 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7625 nir_print_instr(&instr->instr, stderr);
7626 fprintf(stderr, "\n");
7627 }
7628 }
7629 break;
7630 }
7631 case nir_intrinsic_load_sample_id: {
7632 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7633 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7634 break;
7635 }
7636 case nir_intrinsic_load_sample_mask_in: {
7637 visit_load_sample_mask_in(ctx, instr);
7638 break;
7639 }
7640 case nir_intrinsic_read_first_invocation: {
7641 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7642 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7643 if (src.regClass() == v1) {
7644 emit_wqm(ctx,
7645 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7646 dst);
7647 } else if (src.regClass() == v2) {
7648 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7649 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7650 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7651 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7652 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7653 emit_split_vector(ctx, dst, 2);
7654 } else if (instr->dest.ssa.bit_size == 1) {
7655 assert(src.regClass() == bld.lm);
7656 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7657 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7658 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7659 } else if (src.regClass() == s1) {
7660 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7661 } else if (src.regClass() == s2) {
7662 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7663 } else {
7664 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7665 nir_print_instr(&instr->instr, stderr);
7666 fprintf(stderr, "\n");
7667 }
7668 break;
7669 }
7670 case nir_intrinsic_vote_all: {
7671 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7672 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7673 assert(src.regClass() == bld.lm);
7674 assert(dst.regClass() == bld.lm);
7675
7676 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7677 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7678 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7679 break;
7680 }
7681 case nir_intrinsic_vote_any: {
7682 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7683 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7684 assert(src.regClass() == bld.lm);
7685 assert(dst.regClass() == bld.lm);
7686
7687 Temp tmp = bool_to_scalar_condition(ctx, src);
7688 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7689 break;
7690 }
7691 case nir_intrinsic_reduce:
7692 case nir_intrinsic_inclusive_scan:
7693 case nir_intrinsic_exclusive_scan: {
7694 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7695 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7696 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7697 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7698 nir_intrinsic_cluster_size(instr) : 0;
7699 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7700
7701 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7702 emit_uniform_subgroup(ctx, instr, src);
7703 } else if (instr->dest.ssa.bit_size == 1) {
7704 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7705 op = nir_op_iand;
7706 else if (op == nir_op_iadd)
7707 op = nir_op_ixor;
7708 else if (op == nir_op_umax || op == nir_op_imax)
7709 op = nir_op_ior;
7710 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7711
7712 switch (instr->intrinsic) {
7713 case nir_intrinsic_reduce:
7714 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7715 break;
7716 case nir_intrinsic_exclusive_scan:
7717 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7718 break;
7719 case nir_intrinsic_inclusive_scan:
7720 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7721 break;
7722 default:
7723 assert(false);
7724 }
7725 } else if (cluster_size == 1) {
7726 bld.copy(Definition(dst), src);
7727 } else {
7728 src = as_vgpr(ctx, src);
7729
7730 ReduceOp reduce_op;
7731 switch (op) {
7732 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7733 CASE(iadd)
7734 CASE(imul)
7735 CASE(fadd)
7736 CASE(fmul)
7737 CASE(imin)
7738 CASE(umin)
7739 CASE(fmin)
7740 CASE(imax)
7741 CASE(umax)
7742 CASE(fmax)
7743 CASE(iand)
7744 CASE(ior)
7745 CASE(ixor)
7746 default:
7747 unreachable("unknown reduction op");
7748 #undef CASE
7749 }
7750
7751 aco_opcode aco_op;
7752 switch (instr->intrinsic) {
7753 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7754 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7755 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7756 default:
7757 unreachable("unknown reduce intrinsic");
7758 }
7759
7760 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7761 reduce->operands[0] = Operand(src);
7762 // filled in by aco_reduce_assign.cpp, used internally as part of the
7763 // reduce sequence
7764 assert(dst.size() == 1 || dst.size() == 2);
7765 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7766 reduce->operands[2] = Operand(v1.as_linear());
7767
7768 Temp tmp_dst = bld.tmp(dst.regClass());
7769 reduce->definitions[0] = Definition(tmp_dst);
7770 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7771 reduce->definitions[2] = Definition();
7772 reduce->definitions[3] = Definition(scc, s1);
7773 reduce->definitions[4] = Definition();
7774 reduce->reduce_op = reduce_op;
7775 reduce->cluster_size = cluster_size;
7776 ctx->block->instructions.emplace_back(std::move(reduce));
7777
7778 emit_wqm(ctx, tmp_dst, dst);
7779 }
7780 break;
7781 }
7782 case nir_intrinsic_quad_broadcast: {
7783 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7784 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7785 emit_uniform_subgroup(ctx, instr, src);
7786 } else {
7787 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7788 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7789 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7790
7791 if (instr->dest.ssa.bit_size == 1) {
7792 assert(src.regClass() == bld.lm);
7793 assert(dst.regClass() == bld.lm);
7794 uint32_t half_mask = 0x11111111u << lane;
7795 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7796 Temp tmp = bld.tmp(bld.lm);
7797 bld.sop1(Builder::s_wqm, Definition(tmp),
7798 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7799 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7800 emit_wqm(ctx, tmp, dst);
7801 } else if (instr->dest.ssa.bit_size == 32) {
7802 if (ctx->program->chip_class >= GFX8)
7803 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7804 else
7805 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7806 } else if (instr->dest.ssa.bit_size == 64) {
7807 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7808 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7809 if (ctx->program->chip_class >= GFX8) {
7810 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7811 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7812 } else {
7813 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7814 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7815 }
7816 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7817 emit_split_vector(ctx, dst, 2);
7818 } else {
7819 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7820 nir_print_instr(&instr->instr, stderr);
7821 fprintf(stderr, "\n");
7822 }
7823 }
7824 break;
7825 }
7826 case nir_intrinsic_quad_swap_horizontal:
7827 case nir_intrinsic_quad_swap_vertical:
7828 case nir_intrinsic_quad_swap_diagonal:
7829 case nir_intrinsic_quad_swizzle_amd: {
7830 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7831 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7832 emit_uniform_subgroup(ctx, instr, src);
7833 break;
7834 }
7835 uint16_t dpp_ctrl = 0;
7836 switch (instr->intrinsic) {
7837 case nir_intrinsic_quad_swap_horizontal:
7838 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7839 break;
7840 case nir_intrinsic_quad_swap_vertical:
7841 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7842 break;
7843 case nir_intrinsic_quad_swap_diagonal:
7844 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7845 break;
7846 case nir_intrinsic_quad_swizzle_amd:
7847 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7848 break;
7849 default:
7850 break;
7851 }
7852 if (ctx->program->chip_class < GFX8)
7853 dpp_ctrl |= (1 << 15);
7854
7855 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7856 if (instr->dest.ssa.bit_size == 1) {
7857 assert(src.regClass() == bld.lm);
7858 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7859 if (ctx->program->chip_class >= GFX8)
7860 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7861 else
7862 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7863 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7864 emit_wqm(ctx, tmp, dst);
7865 } else if (instr->dest.ssa.bit_size == 32) {
7866 Temp tmp;
7867 if (ctx->program->chip_class >= GFX8)
7868 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7869 else
7870 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7871 emit_wqm(ctx, tmp, dst);
7872 } else if (instr->dest.ssa.bit_size == 64) {
7873 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7874 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7875 if (ctx->program->chip_class >= GFX8) {
7876 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7877 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7878 } else {
7879 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7880 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7881 }
7882 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7883 emit_split_vector(ctx, dst, 2);
7884 } else {
7885 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7886 nir_print_instr(&instr->instr, stderr);
7887 fprintf(stderr, "\n");
7888 }
7889 break;
7890 }
7891 case nir_intrinsic_masked_swizzle_amd: {
7892 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7893 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7894 emit_uniform_subgroup(ctx, instr, src);
7895 break;
7896 }
7897 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7898 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7899 if (dst.regClass() == v1) {
7900 emit_wqm(ctx,
7901 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7902 dst);
7903 } else if (dst.regClass() == v2) {
7904 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7905 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7906 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7907 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7908 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7909 emit_split_vector(ctx, dst, 2);
7910 } else {
7911 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7912 nir_print_instr(&instr->instr, stderr);
7913 fprintf(stderr, "\n");
7914 }
7915 break;
7916 }
7917 case nir_intrinsic_write_invocation_amd: {
7918 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7919 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7920 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7921 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7922 if (dst.regClass() == v1) {
7923 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7924 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7925 } else if (dst.regClass() == v2) {
7926 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7927 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7928 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7929 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7930 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7931 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7932 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7933 emit_split_vector(ctx, dst, 2);
7934 } else {
7935 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7936 nir_print_instr(&instr->instr, stderr);
7937 fprintf(stderr, "\n");
7938 }
7939 break;
7940 }
7941 case nir_intrinsic_mbcnt_amd: {
7942 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7943 RegClass rc = RegClass(src.type(), 1);
7944 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7945 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7946 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7947 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7948 emit_wqm(ctx, wqm_tmp, dst);
7949 break;
7950 }
7951 case nir_intrinsic_load_helper_invocation: {
7952 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7953 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7954 ctx->block->kind |= block_kind_needs_lowering;
7955 ctx->program->needs_exact = true;
7956 break;
7957 }
7958 case nir_intrinsic_is_helper_invocation: {
7959 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7960 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7961 ctx->block->kind |= block_kind_needs_lowering;
7962 ctx->program->needs_exact = true;
7963 break;
7964 }
7965 case nir_intrinsic_demote:
7966 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7967
7968 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7969 ctx->cf_info.exec_potentially_empty_discard = true;
7970 ctx->block->kind |= block_kind_uses_demote;
7971 ctx->program->needs_exact = true;
7972 break;
7973 case nir_intrinsic_demote_if: {
7974 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7975 assert(src.regClass() == bld.lm);
7976 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7977 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7978
7979 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7980 ctx->cf_info.exec_potentially_empty_discard = true;
7981 ctx->block->kind |= block_kind_uses_demote;
7982 ctx->program->needs_exact = true;
7983 break;
7984 }
7985 case nir_intrinsic_first_invocation: {
7986 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7987 get_ssa_temp(ctx, &instr->dest.ssa));
7988 break;
7989 }
7990 case nir_intrinsic_shader_clock:
7991 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7992 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7993 break;
7994 case nir_intrinsic_load_vertex_id_zero_base: {
7995 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7996 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7997 break;
7998 }
7999 case nir_intrinsic_load_first_vertex: {
8000 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8001 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8002 break;
8003 }
8004 case nir_intrinsic_load_base_instance: {
8005 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8006 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8007 break;
8008 }
8009 case nir_intrinsic_load_instance_id: {
8010 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8011 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8012 break;
8013 }
8014 case nir_intrinsic_load_draw_id: {
8015 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8016 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8017 break;
8018 }
8019 case nir_intrinsic_load_invocation_id: {
8020 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8021
8022 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8023 if (ctx->options->chip_class >= GFX10)
8024 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8025 else
8026 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8027 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8028 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8029 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8030 } else {
8031 unreachable("Unsupported stage for load_invocation_id");
8032 }
8033
8034 break;
8035 }
8036 case nir_intrinsic_load_primitive_id: {
8037 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8038
8039 switch (ctx->shader->info.stage) {
8040 case MESA_SHADER_GEOMETRY:
8041 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8042 break;
8043 case MESA_SHADER_TESS_CTRL:
8044 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8045 break;
8046 case MESA_SHADER_TESS_EVAL:
8047 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8048 break;
8049 default:
8050 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8051 }
8052
8053 break;
8054 }
8055 case nir_intrinsic_load_patch_vertices_in: {
8056 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8057 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8058
8059 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8060 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8061 break;
8062 }
8063 case nir_intrinsic_emit_vertex_with_counter: {
8064 visit_emit_vertex_with_counter(ctx, instr);
8065 break;
8066 }
8067 case nir_intrinsic_end_primitive_with_counter: {
8068 unsigned stream = nir_intrinsic_stream_id(instr);
8069 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8070 break;
8071 }
8072 case nir_intrinsic_set_vertex_count: {
8073 /* unused, the HW keeps track of this for us */
8074 break;
8075 }
8076 default:
8077 fprintf(stderr, "Unimplemented intrinsic instr: ");
8078 nir_print_instr(&instr->instr, stderr);
8079 fprintf(stderr, "\n");
8080 abort();
8081
8082 break;
8083 }
8084 }
8085
8086
8087 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8088 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8089 enum glsl_base_type *stype)
8090 {
8091 nir_deref_instr *texture_deref_instr = NULL;
8092 nir_deref_instr *sampler_deref_instr = NULL;
8093 int plane = -1;
8094
8095 for (unsigned i = 0; i < instr->num_srcs; i++) {
8096 switch (instr->src[i].src_type) {
8097 case nir_tex_src_texture_deref:
8098 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8099 break;
8100 case nir_tex_src_sampler_deref:
8101 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8102 break;
8103 case nir_tex_src_plane:
8104 plane = nir_src_as_int(instr->src[i].src);
8105 break;
8106 default:
8107 break;
8108 }
8109 }
8110
8111 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8112
8113 if (!sampler_deref_instr)
8114 sampler_deref_instr = texture_deref_instr;
8115
8116 if (plane >= 0) {
8117 assert(instr->op != nir_texop_txf_ms &&
8118 instr->op != nir_texop_samples_identical);
8119 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8120 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8121 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8122 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8123 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8124 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8125 } else {
8126 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8127 }
8128 if (samp_ptr) {
8129 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8130
8131 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8132 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8133 Builder bld(ctx->program, ctx->block);
8134
8135 /* to avoid unnecessary moves, we split and recombine sampler and image */
8136 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8137 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8138 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8139 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8140 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8141 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8142 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8143 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8144
8145 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8146 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8147 img[0], img[1], img[2], img[3],
8148 img[4], img[5], img[6], img[7]);
8149 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8150 samp[0], samp[1], samp[2], samp[3]);
8151 }
8152 }
8153 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8154 instr->op == nir_texop_samples_identical))
8155 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8156 }
8157
8158 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8159 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8160 {
8161 Builder bld(ctx->program, ctx->block);
8162
8163 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8164 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8165 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8166
8167 Operand neg_one(0xbf800000u);
8168 Operand one(0x3f800000u);
8169 Operand two(0x40000000u);
8170 Operand four(0x40800000u);
8171
8172 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8173 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8174 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8175
8176 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8177 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8178 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8179 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8180
8181 // select sc
8182 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8183 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8184 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8185 one, is_ma_y);
8186 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8187
8188 // select tc
8189 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8190 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8191 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8192
8193 // select ma
8194 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8195 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8196 deriv_z, is_ma_z);
8197 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8198 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8199 }
8200
8201 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8202 {
8203 Builder bld(ctx->program, ctx->block);
8204 Temp ma, tc, sc, id;
8205
8206 if (is_array) {
8207 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8208
8209 // see comment in ac_prepare_cube_coords()
8210 if (ctx->options->chip_class <= GFX8)
8211 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8212 }
8213
8214 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8215
8216 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8217 vop3a->operands[0] = Operand(ma);
8218 vop3a->abs[0] = true;
8219 Temp invma = bld.tmp(v1);
8220 vop3a->definitions[0] = Definition(invma);
8221 ctx->block->instructions.emplace_back(std::move(vop3a));
8222
8223 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8224 if (!is_deriv)
8225 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8226
8227 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8228 if (!is_deriv)
8229 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8230
8231 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8232
8233 if (is_deriv) {
8234 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8235 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8236
8237 for (unsigned i = 0; i < 2; i++) {
8238 // see comment in ac_prepare_cube_coords()
8239 Temp deriv_ma;
8240 Temp deriv_sc, deriv_tc;
8241 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8242 &deriv_ma, &deriv_sc, &deriv_tc);
8243
8244 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8245
8246 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8247 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8248 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8249 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8250 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8251 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8252 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8253 }
8254
8255 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8256 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8257 }
8258
8259 if (is_array)
8260 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8261 coords.resize(3);
8262 coords[0] = sc;
8263 coords[1] = tc;
8264 coords[2] = id;
8265 }
8266
8267 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8268 {
8269 if (vec->parent_instr->type != nir_instr_type_alu)
8270 return;
8271 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8272 if (vec_instr->op != nir_op_vec(vec->num_components))
8273 return;
8274
8275 for (unsigned i = 0; i < vec->num_components; i++) {
8276 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8277 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8278 }
8279 }
8280
8281 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8282 {
8283 Builder bld(ctx->program, ctx->block);
8284 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8285 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8286 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8287 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8288 std::vector<Temp> coords;
8289 std::vector<Temp> derivs;
8290 nir_const_value *sample_index_cv = NULL;
8291 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8292 enum glsl_base_type stype;
8293 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8294
8295 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8296 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8297 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8298 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8299
8300 for (unsigned i = 0; i < instr->num_srcs; i++) {
8301 switch (instr->src[i].src_type) {
8302 case nir_tex_src_coord: {
8303 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8304 for (unsigned i = 0; i < coord.size(); i++)
8305 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8306 break;
8307 }
8308 case nir_tex_src_bias:
8309 if (instr->op == nir_texop_txb) {
8310 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8311 has_bias = true;
8312 }
8313 break;
8314 case nir_tex_src_lod: {
8315 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8316
8317 if (val && val->f32 <= 0.0) {
8318 level_zero = true;
8319 } else {
8320 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8321 has_lod = true;
8322 }
8323 break;
8324 }
8325 case nir_tex_src_comparator:
8326 if (instr->is_shadow) {
8327 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8328 has_compare = true;
8329 }
8330 break;
8331 case nir_tex_src_offset:
8332 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8333 get_const_vec(instr->src[i].src.ssa, const_offset);
8334 has_offset = true;
8335 break;
8336 case nir_tex_src_ddx:
8337 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8338 has_ddx = true;
8339 break;
8340 case nir_tex_src_ddy:
8341 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8342 has_ddy = true;
8343 break;
8344 case nir_tex_src_ms_index:
8345 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8346 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8347 has_sample_index = true;
8348 break;
8349 case nir_tex_src_texture_offset:
8350 case nir_tex_src_sampler_offset:
8351 default:
8352 break;
8353 }
8354 }
8355
8356 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8357 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8358
8359 if (instr->op == nir_texop_texture_samples) {
8360 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8361
8362 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8363 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8364 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8365 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8366
8367 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8368 samples, Operand(1u), bld.scc(is_msaa));
8369 return;
8370 }
8371
8372 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8373 aco_ptr<Instruction> tmp_instr;
8374 Temp acc, pack = Temp();
8375
8376 uint32_t pack_const = 0;
8377 for (unsigned i = 0; i < offset.size(); i++) {
8378 if (!const_offset[i])
8379 continue;
8380 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8381 }
8382
8383 if (offset.type() == RegType::sgpr) {
8384 for (unsigned i = 0; i < offset.size(); i++) {
8385 if (const_offset[i])
8386 continue;
8387
8388 acc = emit_extract_vector(ctx, offset, i, s1);
8389 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8390
8391 if (i) {
8392 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8393 }
8394
8395 if (pack == Temp()) {
8396 pack = acc;
8397 } else {
8398 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8399 }
8400 }
8401
8402 if (pack_const && pack != Temp())
8403 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8404 } else {
8405 for (unsigned i = 0; i < offset.size(); i++) {
8406 if (const_offset[i])
8407 continue;
8408
8409 acc = emit_extract_vector(ctx, offset, i, v1);
8410 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8411
8412 if (i) {
8413 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8414 }
8415
8416 if (pack == Temp()) {
8417 pack = acc;
8418 } else {
8419 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8420 }
8421 }
8422
8423 if (pack_const && pack != Temp())
8424 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8425 }
8426 if (pack_const && pack == Temp())
8427 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8428 else if (pack == Temp())
8429 has_offset = false;
8430 else
8431 offset = pack;
8432 }
8433
8434 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8435 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8436
8437 /* pack derivatives */
8438 if (has_ddx || has_ddy) {
8439 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8440 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8441 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8442 derivs = {ddy, zero, ddy, zero};
8443 } else {
8444 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8445 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8446 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8447 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8448 }
8449 has_derivs = true;
8450 }
8451
8452 if (instr->coord_components > 1 &&
8453 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8454 instr->is_array &&
8455 instr->op != nir_texop_txf)
8456 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8457
8458 if (instr->coord_components > 2 &&
8459 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8460 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8461 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8462 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8463 instr->is_array &&
8464 instr->op != nir_texop_txf &&
8465 instr->op != nir_texop_txf_ms &&
8466 instr->op != nir_texop_fragment_fetch &&
8467 instr->op != nir_texop_fragment_mask_fetch)
8468 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8469
8470 if (ctx->options->chip_class == GFX9 &&
8471 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8472 instr->op != nir_texop_lod && instr->coord_components) {
8473 assert(coords.size() > 0 && coords.size() < 3);
8474
8475 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8476 Operand((uint32_t) 0) :
8477 Operand((uint32_t) 0x3f000000)));
8478 }
8479
8480 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8481
8482 if (instr->op == nir_texop_samples_identical)
8483 resource = fmask_ptr;
8484
8485 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8486 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8487 instr->op != nir_texop_txs &&
8488 instr->op != nir_texop_fragment_fetch &&
8489 instr->op != nir_texop_fragment_mask_fetch) {
8490 assert(has_sample_index);
8491 Operand op(sample_index);
8492 if (sample_index_cv)
8493 op = Operand(sample_index_cv->u32);
8494 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8495 }
8496
8497 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8498 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8499 Temp off = emit_extract_vector(ctx, offset, i, v1);
8500 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8501 }
8502 has_offset = false;
8503 }
8504
8505 /* Build tex instruction */
8506 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8507 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8508 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8509 : 0;
8510 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8511 Temp tmp_dst = dst;
8512
8513 /* gather4 selects the component by dmask and always returns vec4 */
8514 if (instr->op == nir_texop_tg4) {
8515 assert(instr->dest.ssa.num_components == 4);
8516 if (instr->is_shadow)
8517 dmask = 1;
8518 else
8519 dmask = 1 << instr->component;
8520 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8521 tmp_dst = bld.tmp(v4);
8522 } else if (instr->op == nir_texop_samples_identical) {
8523 tmp_dst = bld.tmp(v1);
8524 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8525 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8526 }
8527
8528 aco_ptr<MIMG_instruction> tex;
8529 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8530 if (!has_lod)
8531 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8532
8533 bool div_by_6 = instr->op == nir_texop_txs &&
8534 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8535 instr->is_array &&
8536 (dmask & (1 << 2));
8537 if (tmp_dst.id() == dst.id() && div_by_6)
8538 tmp_dst = bld.tmp(tmp_dst.regClass());
8539
8540 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8541 tex->operands[0] = Operand(resource);
8542 tex->operands[1] = Operand(s4); /* no sampler */
8543 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8544 if (ctx->options->chip_class == GFX9 &&
8545 instr->op == nir_texop_txs &&
8546 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8547 instr->is_array) {
8548 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8549 } else if (instr->op == nir_texop_query_levels) {
8550 tex->dmask = 1 << 3;
8551 } else {
8552 tex->dmask = dmask;
8553 }
8554 tex->da = da;
8555 tex->definitions[0] = Definition(tmp_dst);
8556 tex->dim = dim;
8557 tex->can_reorder = true;
8558 ctx->block->instructions.emplace_back(std::move(tex));
8559
8560 if (div_by_6) {
8561 /* divide 3rd value by 6 by multiplying with magic number */
8562 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8563 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8564 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8565 assert(instr->dest.ssa.num_components == 3);
8566 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8567 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8568 emit_extract_vector(ctx, tmp_dst, 0, v1),
8569 emit_extract_vector(ctx, tmp_dst, 1, v1),
8570 by_6);
8571
8572 }
8573
8574 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8575 return;
8576 }
8577
8578 Temp tg4_compare_cube_wa64 = Temp();
8579
8580 if (tg4_integer_workarounds) {
8581 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8582 tex->operands[0] = Operand(resource);
8583 tex->operands[1] = Operand(s4); /* no sampler */
8584 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8585 tex->dim = dim;
8586 tex->dmask = 0x3;
8587 tex->da = da;
8588 Temp size = bld.tmp(v2);
8589 tex->definitions[0] = Definition(size);
8590 tex->can_reorder = true;
8591 ctx->block->instructions.emplace_back(std::move(tex));
8592 emit_split_vector(ctx, size, size.size());
8593
8594 Temp half_texel[2];
8595 for (unsigned i = 0; i < 2; i++) {
8596 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8597 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8598 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8599 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8600 }
8601
8602 Temp new_coords[2] = {
8603 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8604 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8605 };
8606
8607 if (tg4_integer_cube_workaround) {
8608 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8609 Temp desc[resource.size()];
8610 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8611 Format::PSEUDO, 1, resource.size())};
8612 split->operands[0] = Operand(resource);
8613 for (unsigned i = 0; i < resource.size(); i++) {
8614 desc[i] = bld.tmp(s1);
8615 split->definitions[i] = Definition(desc[i]);
8616 }
8617 ctx->block->instructions.emplace_back(std::move(split));
8618
8619 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8620 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8621 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8622
8623 Temp nfmt;
8624 if (stype == GLSL_TYPE_UINT) {
8625 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8626 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8627 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8628 bld.scc(compare_cube_wa));
8629 } else {
8630 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8631 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8632 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8633 bld.scc(compare_cube_wa));
8634 }
8635 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8636 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8637
8638 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8639
8640 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8641 Operand((uint32_t)C_008F14_NUM_FORMAT));
8642 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8643
8644 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8645 Format::PSEUDO, resource.size(), 1)};
8646 for (unsigned i = 0; i < resource.size(); i++)
8647 vec->operands[i] = Operand(desc[i]);
8648 resource = bld.tmp(resource.regClass());
8649 vec->definitions[0] = Definition(resource);
8650 ctx->block->instructions.emplace_back(std::move(vec));
8651
8652 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8653 new_coords[0], coords[0], tg4_compare_cube_wa64);
8654 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8655 new_coords[1], coords[1], tg4_compare_cube_wa64);
8656 }
8657 coords[0] = new_coords[0];
8658 coords[1] = new_coords[1];
8659 }
8660
8661 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8662 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8663
8664 assert(coords.size() == 1);
8665 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8666 aco_opcode op;
8667 switch (last_bit) {
8668 case 1:
8669 op = aco_opcode::buffer_load_format_x; break;
8670 case 2:
8671 op = aco_opcode::buffer_load_format_xy; break;
8672 case 3:
8673 op = aco_opcode::buffer_load_format_xyz; break;
8674 case 4:
8675 op = aco_opcode::buffer_load_format_xyzw; break;
8676 default:
8677 unreachable("Tex instruction loads more than 4 components.");
8678 }
8679
8680 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8681 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8682 tmp_dst = dst;
8683 else
8684 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8685
8686 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8687 mubuf->operands[0] = Operand(resource);
8688 mubuf->operands[1] = Operand(coords[0]);
8689 mubuf->operands[2] = Operand((uint32_t) 0);
8690 mubuf->definitions[0] = Definition(tmp_dst);
8691 mubuf->idxen = true;
8692 mubuf->can_reorder = true;
8693 ctx->block->instructions.emplace_back(std::move(mubuf));
8694
8695 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8696 return;
8697 }
8698
8699 /* gather MIMG address components */
8700 std::vector<Temp> args;
8701 if (has_offset)
8702 args.emplace_back(offset);
8703 if (has_bias)
8704 args.emplace_back(bias);
8705 if (has_compare)
8706 args.emplace_back(compare);
8707 if (has_derivs)
8708 args.insert(args.end(), derivs.begin(), derivs.end());
8709
8710 args.insert(args.end(), coords.begin(), coords.end());
8711 if (has_sample_index)
8712 args.emplace_back(sample_index);
8713 if (has_lod)
8714 args.emplace_back(lod);
8715
8716 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8717 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8718 vec->definitions[0] = Definition(arg);
8719 for (unsigned i = 0; i < args.size(); i++)
8720 vec->operands[i] = Operand(args[i]);
8721 ctx->block->instructions.emplace_back(std::move(vec));
8722
8723
8724 if (instr->op == nir_texop_txf ||
8725 instr->op == nir_texop_txf_ms ||
8726 instr->op == nir_texop_samples_identical ||
8727 instr->op == nir_texop_fragment_fetch ||
8728 instr->op == nir_texop_fragment_mask_fetch) {
8729 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8730 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8731 tex->operands[0] = Operand(resource);
8732 tex->operands[1] = Operand(s4); /* no sampler */
8733 tex->operands[2] = Operand(arg);
8734 tex->dim = dim;
8735 tex->dmask = dmask;
8736 tex->unrm = true;
8737 tex->da = da;
8738 tex->definitions[0] = Definition(tmp_dst);
8739 tex->can_reorder = true;
8740 ctx->block->instructions.emplace_back(std::move(tex));
8741
8742 if (instr->op == nir_texop_samples_identical) {
8743 assert(dmask == 1 && dst.regClass() == v1);
8744 assert(dst.id() != tmp_dst.id());
8745
8746 Temp tmp = bld.tmp(bld.lm);
8747 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8748 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8749
8750 } else {
8751 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8752 }
8753 return;
8754 }
8755
8756 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8757 aco_opcode opcode = aco_opcode::image_sample;
8758 if (has_offset) { /* image_sample_*_o */
8759 if (has_compare) {
8760 opcode = aco_opcode::image_sample_c_o;
8761 if (has_derivs)
8762 opcode = aco_opcode::image_sample_c_d_o;
8763 if (has_bias)
8764 opcode = aco_opcode::image_sample_c_b_o;
8765 if (level_zero)
8766 opcode = aco_opcode::image_sample_c_lz_o;
8767 if (has_lod)
8768 opcode = aco_opcode::image_sample_c_l_o;
8769 } else {
8770 opcode = aco_opcode::image_sample_o;
8771 if (has_derivs)
8772 opcode = aco_opcode::image_sample_d_o;
8773 if (has_bias)
8774 opcode = aco_opcode::image_sample_b_o;
8775 if (level_zero)
8776 opcode = aco_opcode::image_sample_lz_o;
8777 if (has_lod)
8778 opcode = aco_opcode::image_sample_l_o;
8779 }
8780 } else { /* no offset */
8781 if (has_compare) {
8782 opcode = aco_opcode::image_sample_c;
8783 if (has_derivs)
8784 opcode = aco_opcode::image_sample_c_d;
8785 if (has_bias)
8786 opcode = aco_opcode::image_sample_c_b;
8787 if (level_zero)
8788 opcode = aco_opcode::image_sample_c_lz;
8789 if (has_lod)
8790 opcode = aco_opcode::image_sample_c_l;
8791 } else {
8792 opcode = aco_opcode::image_sample;
8793 if (has_derivs)
8794 opcode = aco_opcode::image_sample_d;
8795 if (has_bias)
8796 opcode = aco_opcode::image_sample_b;
8797 if (level_zero)
8798 opcode = aco_opcode::image_sample_lz;
8799 if (has_lod)
8800 opcode = aco_opcode::image_sample_l;
8801 }
8802 }
8803
8804 if (instr->op == nir_texop_tg4) {
8805 if (has_offset) {
8806 opcode = aco_opcode::image_gather4_lz_o;
8807 if (has_compare)
8808 opcode = aco_opcode::image_gather4_c_lz_o;
8809 } else {
8810 opcode = aco_opcode::image_gather4_lz;
8811 if (has_compare)
8812 opcode = aco_opcode::image_gather4_c_lz;
8813 }
8814 } else if (instr->op == nir_texop_lod) {
8815 opcode = aco_opcode::image_get_lod;
8816 }
8817
8818 /* we don't need the bias, sample index, compare value or offset to be
8819 * computed in WQM but if the p_create_vector copies the coordinates, then it
8820 * needs to be in WQM */
8821 if (ctx->stage == fragment_fs &&
8822 !has_derivs && !has_lod && !level_zero &&
8823 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8824 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8825 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8826
8827 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8828 tex->operands[0] = Operand(resource);
8829 tex->operands[1] = Operand(sampler);
8830 tex->operands[2] = Operand(arg);
8831 tex->dim = dim;
8832 tex->dmask = dmask;
8833 tex->da = da;
8834 tex->definitions[0] = Definition(tmp_dst);
8835 tex->can_reorder = true;
8836 ctx->block->instructions.emplace_back(std::move(tex));
8837
8838 if (tg4_integer_cube_workaround) {
8839 assert(tmp_dst.id() != dst.id());
8840 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8841
8842 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8843 Temp val[4];
8844 for (unsigned i = 0; i < dst.size(); i++) {
8845 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8846 Temp cvt_val;
8847 if (stype == GLSL_TYPE_UINT)
8848 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8849 else
8850 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8851 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8852 }
8853 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8854 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8855 val[0], val[1], val[2], val[3]);
8856 }
8857 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8858 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8859
8860 }
8861
8862
8863 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8864 {
8865 Temp tmp = get_ssa_temp(ctx, ssa);
8866 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8867 return Operand(tmp.regClass());
8868 else
8869 return Operand(tmp);
8870 }
8871
8872 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8873 {
8874 aco_ptr<Pseudo_instruction> phi;
8875 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8876 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8877
8878 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8879 logical |= ctx->block->kind & block_kind_merge;
8880 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8881
8882 /* we want a sorted list of sources, since the predecessor list is also sorted */
8883 std::map<unsigned, nir_ssa_def*> phi_src;
8884 nir_foreach_phi_src(src, instr)
8885 phi_src[src->pred->index] = src->src.ssa;
8886
8887 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8888 unsigned num_operands = 0;
8889 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8890 unsigned num_defined = 0;
8891 unsigned cur_pred_idx = 0;
8892 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8893 if (cur_pred_idx < preds.size()) {
8894 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8895 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8896 unsigned skipped = 0;
8897 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8898 skipped++;
8899 if (cur_pred_idx + skipped < preds.size()) {
8900 for (unsigned i = 0; i < skipped; i++)
8901 operands[num_operands++] = Operand(dst.regClass());
8902 cur_pred_idx += skipped;
8903 } else {
8904 continue;
8905 }
8906 }
8907 /* Handle missing predecessors at the end. This shouldn't happen with loop
8908 * headers and we can't ignore these sources for loop header phis. */
8909 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8910 continue;
8911 cur_pred_idx++;
8912 Operand op = get_phi_operand(ctx, src.second);
8913 operands[num_operands++] = op;
8914 num_defined += !op.isUndefined();
8915 }
8916 /* handle block_kind_continue_or_break at loop exit blocks */
8917 while (cur_pred_idx++ < preds.size())
8918 operands[num_operands++] = Operand(dst.regClass());
8919
8920 /* If the loop ends with a break, still add a linear continue edge in case
8921 * that break is divergent or continue_or_break is used. We'll either remove
8922 * this operand later in visit_loop() if it's not necessary or replace the
8923 * undef with something correct. */
8924 if (!logical && ctx->block->kind & block_kind_loop_header) {
8925 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8926 nir_block *last = nir_loop_last_block(loop);
8927 if (last->successors[0] != instr->instr.block)
8928 operands[num_operands++] = Operand(RegClass());
8929 }
8930
8931 if (num_defined == 0) {
8932 Builder bld(ctx->program, ctx->block);
8933 if (dst.regClass() == s1) {
8934 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8935 } else if (dst.regClass() == v1) {
8936 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8937 } else {
8938 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8939 for (unsigned i = 0; i < dst.size(); i++)
8940 vec->operands[i] = Operand(0u);
8941 vec->definitions[0] = Definition(dst);
8942 ctx->block->instructions.emplace_back(std::move(vec));
8943 }
8944 return;
8945 }
8946
8947 /* we can use a linear phi in some cases if one src is undef */
8948 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8949 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8950
8951 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8952 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8953 assert(invert->kind & block_kind_invert);
8954
8955 unsigned then_block = invert->linear_preds[0];
8956
8957 Block* insert_block = NULL;
8958 for (unsigned i = 0; i < num_operands; i++) {
8959 Operand op = operands[i];
8960 if (op.isUndefined())
8961 continue;
8962 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8963 phi->operands[0] = op;
8964 break;
8965 }
8966 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8967 phi->operands[1] = Operand(dst.regClass());
8968 phi->definitions[0] = Definition(dst);
8969 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8970 return;
8971 }
8972
8973 /* try to scalarize vector phis */
8974 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8975 // TODO: scalarize linear phis on divergent ifs
8976 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8977 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8978 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8979 Operand src = operands[i];
8980 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8981 can_scalarize = false;
8982 }
8983 if (can_scalarize) {
8984 unsigned num_components = instr->dest.ssa.num_components;
8985 assert(dst.size() % num_components == 0);
8986 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8987
8988 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8989 for (unsigned k = 0; k < num_components; k++) {
8990 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8991 for (unsigned i = 0; i < num_operands; i++) {
8992 Operand src = operands[i];
8993 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8994 }
8995 Temp phi_dst = {ctx->program->allocateId(), rc};
8996 phi->definitions[0] = Definition(phi_dst);
8997 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8998 new_vec[k] = phi_dst;
8999 vec->operands[k] = Operand(phi_dst);
9000 }
9001 vec->definitions[0] = Definition(dst);
9002 ctx->block->instructions.emplace_back(std::move(vec));
9003 ctx->allocated_vec.emplace(dst.id(), new_vec);
9004 return;
9005 }
9006 }
9007
9008 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9009 for (unsigned i = 0; i < num_operands; i++)
9010 phi->operands[i] = operands[i];
9011 phi->definitions[0] = Definition(dst);
9012 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9013 }
9014
9015
9016 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9017 {
9018 Temp dst = get_ssa_temp(ctx, &instr->def);
9019
9020 assert(dst.type() == RegType::sgpr);
9021
9022 if (dst.size() == 1) {
9023 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9024 } else {
9025 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9026 for (unsigned i = 0; i < dst.size(); i++)
9027 vec->operands[i] = Operand(0u);
9028 vec->definitions[0] = Definition(dst);
9029 ctx->block->instructions.emplace_back(std::move(vec));
9030 }
9031 }
9032
9033 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9034 {
9035 Builder bld(ctx->program, ctx->block);
9036 Block *logical_target;
9037 append_logical_end(ctx->block);
9038 unsigned idx = ctx->block->index;
9039
9040 switch (instr->type) {
9041 case nir_jump_break:
9042 logical_target = ctx->cf_info.parent_loop.exit;
9043 add_logical_edge(idx, logical_target);
9044 ctx->block->kind |= block_kind_break;
9045
9046 if (!ctx->cf_info.parent_if.is_divergent &&
9047 !ctx->cf_info.parent_loop.has_divergent_continue) {
9048 /* uniform break - directly jump out of the loop */
9049 ctx->block->kind |= block_kind_uniform;
9050 ctx->cf_info.has_branch = true;
9051 bld.branch(aco_opcode::p_branch);
9052 add_linear_edge(idx, logical_target);
9053 return;
9054 }
9055 ctx->cf_info.parent_loop.has_divergent_branch = true;
9056 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9057 break;
9058 case nir_jump_continue:
9059 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9060 add_logical_edge(idx, logical_target);
9061 ctx->block->kind |= block_kind_continue;
9062
9063 if (ctx->cf_info.parent_if.is_divergent) {
9064 /* for potential uniform breaks after this continue,
9065 we must ensure that they are handled correctly */
9066 ctx->cf_info.parent_loop.has_divergent_continue = true;
9067 ctx->cf_info.parent_loop.has_divergent_branch = true;
9068 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9069 } else {
9070 /* uniform continue - directly jump to the loop header */
9071 ctx->block->kind |= block_kind_uniform;
9072 ctx->cf_info.has_branch = true;
9073 bld.branch(aco_opcode::p_branch);
9074 add_linear_edge(idx, logical_target);
9075 return;
9076 }
9077 break;
9078 default:
9079 fprintf(stderr, "Unknown NIR jump instr: ");
9080 nir_print_instr(&instr->instr, stderr);
9081 fprintf(stderr, "\n");
9082 abort();
9083 }
9084
9085 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9086 ctx->cf_info.exec_potentially_empty_break = true;
9087 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9088 }
9089
9090 /* remove critical edges from linear CFG */
9091 bld.branch(aco_opcode::p_branch);
9092 Block* break_block = ctx->program->create_and_insert_block();
9093 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9094 break_block->kind |= block_kind_uniform;
9095 add_linear_edge(idx, break_block);
9096 /* the loop_header pointer might be invalidated by this point */
9097 if (instr->type == nir_jump_continue)
9098 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9099 add_linear_edge(break_block->index, logical_target);
9100 bld.reset(break_block);
9101 bld.branch(aco_opcode::p_branch);
9102
9103 Block* continue_block = ctx->program->create_and_insert_block();
9104 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9105 add_linear_edge(idx, continue_block);
9106 append_logical_start(continue_block);
9107 ctx->block = continue_block;
9108 return;
9109 }
9110
9111 void visit_block(isel_context *ctx, nir_block *block)
9112 {
9113 nir_foreach_instr(instr, block) {
9114 switch (instr->type) {
9115 case nir_instr_type_alu:
9116 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9117 break;
9118 case nir_instr_type_load_const:
9119 visit_load_const(ctx, nir_instr_as_load_const(instr));
9120 break;
9121 case nir_instr_type_intrinsic:
9122 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9123 break;
9124 case nir_instr_type_tex:
9125 visit_tex(ctx, nir_instr_as_tex(instr));
9126 break;
9127 case nir_instr_type_phi:
9128 visit_phi(ctx, nir_instr_as_phi(instr));
9129 break;
9130 case nir_instr_type_ssa_undef:
9131 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9132 break;
9133 case nir_instr_type_deref:
9134 break;
9135 case nir_instr_type_jump:
9136 visit_jump(ctx, nir_instr_as_jump(instr));
9137 break;
9138 default:
9139 fprintf(stderr, "Unknown NIR instr type: ");
9140 nir_print_instr(instr, stderr);
9141 fprintf(stderr, "\n");
9142 //abort();
9143 }
9144 }
9145
9146 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9147 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9148 }
9149
9150
9151
9152 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9153 aco_ptr<Instruction>& header_phi, Operand *vals)
9154 {
9155 vals[0] = Operand(header_phi->definitions[0].getTemp());
9156 RegClass rc = vals[0].regClass();
9157
9158 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9159
9160 unsigned next_pred = 1;
9161
9162 for (unsigned idx = first + 1; idx <= last; idx++) {
9163 Block& block = ctx->program->blocks[idx];
9164 if (block.loop_nest_depth != loop_nest_depth) {
9165 vals[idx - first] = vals[idx - 1 - first];
9166 continue;
9167 }
9168
9169 if (block.kind & block_kind_continue) {
9170 vals[idx - first] = header_phi->operands[next_pred];
9171 next_pred++;
9172 continue;
9173 }
9174
9175 bool all_same = true;
9176 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9177 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9178
9179 Operand val;
9180 if (all_same) {
9181 val = vals[block.linear_preds[0] - first];
9182 } else {
9183 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9184 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9185 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9186 phi->operands[i] = vals[block.linear_preds[i] - first];
9187 val = Operand(Temp(ctx->program->allocateId(), rc));
9188 phi->definitions[0] = Definition(val.getTemp());
9189 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9190 }
9191 vals[idx - first] = val;
9192 }
9193
9194 return vals[last - first];
9195 }
9196
9197 static void visit_loop(isel_context *ctx, nir_loop *loop)
9198 {
9199 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9200 append_logical_end(ctx->block);
9201 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9202 Builder bld(ctx->program, ctx->block);
9203 bld.branch(aco_opcode::p_branch);
9204 unsigned loop_preheader_idx = ctx->block->index;
9205
9206 Block loop_exit = Block();
9207 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9208 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9209
9210 Block* loop_header = ctx->program->create_and_insert_block();
9211 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9212 loop_header->kind |= block_kind_loop_header;
9213 add_edge(loop_preheader_idx, loop_header);
9214 ctx->block = loop_header;
9215
9216 /* emit loop body */
9217 unsigned loop_header_idx = loop_header->index;
9218 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9219 append_logical_start(ctx->block);
9220 bool unreachable = visit_cf_list(ctx, &loop->body);
9221
9222 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9223 if (!ctx->cf_info.has_branch) {
9224 append_logical_end(ctx->block);
9225 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9226 /* Discards can result in code running with an empty exec mask.
9227 * This would result in divergent breaks not ever being taken. As a
9228 * workaround, break the loop when the loop mask is empty instead of
9229 * always continuing. */
9230 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9231 unsigned block_idx = ctx->block->index;
9232
9233 /* create helper blocks to avoid critical edges */
9234 Block *break_block = ctx->program->create_and_insert_block();
9235 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9236 break_block->kind = block_kind_uniform;
9237 bld.reset(break_block);
9238 bld.branch(aco_opcode::p_branch);
9239 add_linear_edge(block_idx, break_block);
9240 add_linear_edge(break_block->index, &loop_exit);
9241
9242 Block *continue_block = ctx->program->create_and_insert_block();
9243 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9244 continue_block->kind = block_kind_uniform;
9245 bld.reset(continue_block);
9246 bld.branch(aco_opcode::p_branch);
9247 add_linear_edge(block_idx, continue_block);
9248 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9249
9250 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9251 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9252 ctx->block = &ctx->program->blocks[block_idx];
9253 } else {
9254 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9255 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9256 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9257 else
9258 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9259 }
9260
9261 bld.reset(ctx->block);
9262 bld.branch(aco_opcode::p_branch);
9263 }
9264
9265 /* Fixup phis in loop header from unreachable blocks.
9266 * has_branch/has_divergent_branch also indicates if the loop ends with a
9267 * break/continue instruction, but we don't emit those if unreachable=true */
9268 if (unreachable) {
9269 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9270 bool linear = ctx->cf_info.has_branch;
9271 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9272 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9273 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9274 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9275 /* the last operand should be the one that needs to be removed */
9276 instr->operands.pop_back();
9277 } else if (!is_phi(instr)) {
9278 break;
9279 }
9280 }
9281 }
9282
9283 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9284 * and the previous one shouldn't both happen at once because a break in the
9285 * merge block would get CSE'd */
9286 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9287 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9288 Operand vals[num_vals];
9289 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9290 if (instr->opcode == aco_opcode::p_linear_phi) {
9291 if (ctx->cf_info.has_branch)
9292 instr->operands.pop_back();
9293 else
9294 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9295 } else if (!is_phi(instr)) {
9296 break;
9297 }
9298 }
9299 }
9300
9301 ctx->cf_info.has_branch = false;
9302
9303 // TODO: if the loop has not a single exit, we must add one °°
9304 /* emit loop successor block */
9305 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9306 append_logical_start(ctx->block);
9307
9308 #if 0
9309 // TODO: check if it is beneficial to not branch on continues
9310 /* trim linear phis in loop header */
9311 for (auto&& instr : loop_entry->instructions) {
9312 if (instr->opcode == aco_opcode::p_linear_phi) {
9313 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9314 new_phi->definitions[0] = instr->definitions[0];
9315 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9316 new_phi->operands[i] = instr->operands[i];
9317 /* check that the remaining operands are all the same */
9318 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9319 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9320 instr.swap(new_phi);
9321 } else if (instr->opcode == aco_opcode::p_phi) {
9322 continue;
9323 } else {
9324 break;
9325 }
9326 }
9327 #endif
9328 }
9329
9330 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9331 {
9332 ic->cond = cond;
9333
9334 append_logical_end(ctx->block);
9335 ctx->block->kind |= block_kind_branch;
9336
9337 /* branch to linear then block */
9338 assert(cond.regClass() == ctx->program->lane_mask);
9339 aco_ptr<Pseudo_branch_instruction> branch;
9340 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9341 branch->operands[0] = Operand(cond);
9342 ctx->block->instructions.push_back(std::move(branch));
9343
9344 ic->BB_if_idx = ctx->block->index;
9345 ic->BB_invert = Block();
9346 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9347 /* Invert blocks are intentionally not marked as top level because they
9348 * are not part of the logical cfg. */
9349 ic->BB_invert.kind |= block_kind_invert;
9350 ic->BB_endif = Block();
9351 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9352 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9353
9354 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9355 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9356 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9357 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9358 ctx->cf_info.parent_if.is_divergent = true;
9359
9360 /* divergent branches use cbranch_execz */
9361 ctx->cf_info.exec_potentially_empty_discard = false;
9362 ctx->cf_info.exec_potentially_empty_break = false;
9363 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9364
9365 /** emit logical then block */
9366 Block* BB_then_logical = ctx->program->create_and_insert_block();
9367 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9368 add_edge(ic->BB_if_idx, BB_then_logical);
9369 ctx->block = BB_then_logical;
9370 append_logical_start(BB_then_logical);
9371 }
9372
9373 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9374 {
9375 Block *BB_then_logical = ctx->block;
9376 append_logical_end(BB_then_logical);
9377 /* branch from logical then block to invert block */
9378 aco_ptr<Pseudo_branch_instruction> branch;
9379 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9380 BB_then_logical->instructions.emplace_back(std::move(branch));
9381 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9382 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9383 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9384 BB_then_logical->kind |= block_kind_uniform;
9385 assert(!ctx->cf_info.has_branch);
9386 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9387 ctx->cf_info.parent_loop.has_divergent_branch = false;
9388
9389 /** emit linear then block */
9390 Block* BB_then_linear = ctx->program->create_and_insert_block();
9391 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9392 BB_then_linear->kind |= block_kind_uniform;
9393 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9394 /* branch from linear then block to invert block */
9395 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9396 BB_then_linear->instructions.emplace_back(std::move(branch));
9397 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9398
9399 /** emit invert merge block */
9400 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9401 ic->invert_idx = ctx->block->index;
9402
9403 /* branch to linear else block (skip else) */
9404 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9405 branch->operands[0] = Operand(ic->cond);
9406 ctx->block->instructions.push_back(std::move(branch));
9407
9408 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9409 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9410 ic->exec_potentially_empty_break_depth_old =
9411 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9412 /* divergent branches use cbranch_execz */
9413 ctx->cf_info.exec_potentially_empty_discard = false;
9414 ctx->cf_info.exec_potentially_empty_break = false;
9415 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9416
9417 /** emit logical else block */
9418 Block* BB_else_logical = ctx->program->create_and_insert_block();
9419 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9420 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9421 add_linear_edge(ic->invert_idx, BB_else_logical);
9422 ctx->block = BB_else_logical;
9423 append_logical_start(BB_else_logical);
9424 }
9425
9426 static void end_divergent_if(isel_context *ctx, if_context *ic)
9427 {
9428 Block *BB_else_logical = ctx->block;
9429 append_logical_end(BB_else_logical);
9430
9431 /* branch from logical else block to endif block */
9432 aco_ptr<Pseudo_branch_instruction> branch;
9433 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9434 BB_else_logical->instructions.emplace_back(std::move(branch));
9435 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9436 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9437 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9438 BB_else_logical->kind |= block_kind_uniform;
9439
9440 assert(!ctx->cf_info.has_branch);
9441 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9442
9443
9444 /** emit linear else block */
9445 Block* BB_else_linear = ctx->program->create_and_insert_block();
9446 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9447 BB_else_linear->kind |= block_kind_uniform;
9448 add_linear_edge(ic->invert_idx, BB_else_linear);
9449
9450 /* branch from linear else block to endif block */
9451 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9452 BB_else_linear->instructions.emplace_back(std::move(branch));
9453 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9454
9455
9456 /** emit endif merge block */
9457 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9458 append_logical_start(ctx->block);
9459
9460
9461 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9462 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9463 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9464 ctx->cf_info.exec_potentially_empty_break_depth =
9465 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9466 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9467 !ctx->cf_info.parent_if.is_divergent) {
9468 ctx->cf_info.exec_potentially_empty_break = false;
9469 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9470 }
9471 /* uniform control flow never has an empty exec-mask */
9472 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9473 ctx->cf_info.exec_potentially_empty_discard = false;
9474 ctx->cf_info.exec_potentially_empty_break = false;
9475 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9476 }
9477 }
9478
9479 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9480 {
9481 assert(cond.regClass() == s1);
9482
9483 append_logical_end(ctx->block);
9484 ctx->block->kind |= block_kind_uniform;
9485
9486 aco_ptr<Pseudo_branch_instruction> branch;
9487 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9488 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9489 branch->operands[0] = Operand(cond);
9490 branch->operands[0].setFixed(scc);
9491 ctx->block->instructions.emplace_back(std::move(branch));
9492
9493 ic->BB_if_idx = ctx->block->index;
9494 ic->BB_endif = Block();
9495 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9496 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9497
9498 ctx->cf_info.has_branch = false;
9499 ctx->cf_info.parent_loop.has_divergent_branch = false;
9500
9501 /** emit then block */
9502 Block* BB_then = ctx->program->create_and_insert_block();
9503 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9504 add_edge(ic->BB_if_idx, BB_then);
9505 append_logical_start(BB_then);
9506 ctx->block = BB_then;
9507 }
9508
9509 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9510 {
9511 Block *BB_then = ctx->block;
9512
9513 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9514 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9515
9516 if (!ic->uniform_has_then_branch) {
9517 append_logical_end(BB_then);
9518 /* branch from then block to endif block */
9519 aco_ptr<Pseudo_branch_instruction> branch;
9520 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9521 BB_then->instructions.emplace_back(std::move(branch));
9522 add_linear_edge(BB_then->index, &ic->BB_endif);
9523 if (!ic->then_branch_divergent)
9524 add_logical_edge(BB_then->index, &ic->BB_endif);
9525 BB_then->kind |= block_kind_uniform;
9526 }
9527
9528 ctx->cf_info.has_branch = false;
9529 ctx->cf_info.parent_loop.has_divergent_branch = false;
9530
9531 /** emit else block */
9532 Block* BB_else = ctx->program->create_and_insert_block();
9533 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9534 add_edge(ic->BB_if_idx, BB_else);
9535 append_logical_start(BB_else);
9536 ctx->block = BB_else;
9537 }
9538
9539 static void end_uniform_if(isel_context *ctx, if_context *ic)
9540 {
9541 Block *BB_else = ctx->block;
9542
9543 if (!ctx->cf_info.has_branch) {
9544 append_logical_end(BB_else);
9545 /* branch from then block to endif block */
9546 aco_ptr<Pseudo_branch_instruction> branch;
9547 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9548 BB_else->instructions.emplace_back(std::move(branch));
9549 add_linear_edge(BB_else->index, &ic->BB_endif);
9550 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9551 add_logical_edge(BB_else->index, &ic->BB_endif);
9552 BB_else->kind |= block_kind_uniform;
9553 }
9554
9555 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9556 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9557
9558 /** emit endif merge block */
9559 if (!ctx->cf_info.has_branch) {
9560 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9561 append_logical_start(ctx->block);
9562 }
9563 }
9564
9565 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9566 {
9567 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9568 Builder bld(ctx->program, ctx->block);
9569 aco_ptr<Pseudo_branch_instruction> branch;
9570 if_context ic;
9571
9572 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9573 /**
9574 * Uniform conditionals are represented in the following way*) :
9575 *
9576 * The linear and logical CFG:
9577 * BB_IF
9578 * / \
9579 * BB_THEN (logical) BB_ELSE (logical)
9580 * \ /
9581 * BB_ENDIF
9582 *
9583 * *) Exceptions may be due to break and continue statements within loops
9584 * If a break/continue happens within uniform control flow, it branches
9585 * to the loop exit/entry block. Otherwise, it branches to the next
9586 * merge block.
9587 **/
9588
9589 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9590 assert(cond.regClass() == ctx->program->lane_mask);
9591 cond = bool_to_scalar_condition(ctx, cond);
9592
9593 begin_uniform_if_then(ctx, &ic, cond);
9594 visit_cf_list(ctx, &if_stmt->then_list);
9595
9596 begin_uniform_if_else(ctx, &ic);
9597 visit_cf_list(ctx, &if_stmt->else_list);
9598
9599 end_uniform_if(ctx, &ic);
9600
9601 return !ctx->cf_info.has_branch;
9602 } else { /* non-uniform condition */
9603 /**
9604 * To maintain a logical and linear CFG without critical edges,
9605 * non-uniform conditionals are represented in the following way*) :
9606 *
9607 * The linear CFG:
9608 * BB_IF
9609 * / \
9610 * BB_THEN (logical) BB_THEN (linear)
9611 * \ /
9612 * BB_INVERT (linear)
9613 * / \
9614 * BB_ELSE (logical) BB_ELSE (linear)
9615 * \ /
9616 * BB_ENDIF
9617 *
9618 * The logical CFG:
9619 * BB_IF
9620 * / \
9621 * BB_THEN (logical) BB_ELSE (logical)
9622 * \ /
9623 * BB_ENDIF
9624 *
9625 * *) Exceptions may be due to break and continue statements within loops
9626 **/
9627
9628 begin_divergent_if_then(ctx, &ic, cond);
9629 visit_cf_list(ctx, &if_stmt->then_list);
9630
9631 begin_divergent_if_else(ctx, &ic);
9632 visit_cf_list(ctx, &if_stmt->else_list);
9633
9634 end_divergent_if(ctx, &ic);
9635
9636 return true;
9637 }
9638 }
9639
9640 static bool visit_cf_list(isel_context *ctx,
9641 struct exec_list *list)
9642 {
9643 foreach_list_typed(nir_cf_node, node, node, list) {
9644 switch (node->type) {
9645 case nir_cf_node_block:
9646 visit_block(ctx, nir_cf_node_as_block(node));
9647 break;
9648 case nir_cf_node_if:
9649 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9650 return true;
9651 break;
9652 case nir_cf_node_loop:
9653 visit_loop(ctx, nir_cf_node_as_loop(node));
9654 break;
9655 default:
9656 unreachable("unimplemented cf list type");
9657 }
9658 }
9659 return false;
9660 }
9661
9662 static void create_null_export(isel_context *ctx)
9663 {
9664 /* Some shader stages always need to have exports.
9665 * So when there is none, we need to add a null export.
9666 */
9667
9668 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9669 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9670 Builder bld(ctx->program, ctx->block);
9671 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9672 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9673 }
9674
9675 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9676 {
9677 assert(ctx->stage == vertex_vs ||
9678 ctx->stage == tess_eval_vs ||
9679 ctx->stage == gs_copy_vs ||
9680 ctx->stage == ngg_vertex_gs ||
9681 ctx->stage == ngg_tess_eval_gs);
9682
9683 int offset = (ctx->stage & sw_tes)
9684 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9685 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9686 uint64_t mask = ctx->outputs.mask[slot];
9687 if (!is_pos && !mask)
9688 return false;
9689 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9690 return false;
9691 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9692 exp->enabled_mask = mask;
9693 for (unsigned i = 0; i < 4; ++i) {
9694 if (mask & (1 << i))
9695 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9696 else
9697 exp->operands[i] = Operand(v1);
9698 }
9699 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9700 * Setting valid_mask=1 prevents it and has no other effect.
9701 */
9702 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9703 exp->done = false;
9704 exp->compressed = false;
9705 if (is_pos)
9706 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9707 else
9708 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9709 ctx->block->instructions.emplace_back(std::move(exp));
9710
9711 return true;
9712 }
9713
9714 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9715 {
9716 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9717 exp->enabled_mask = 0;
9718 for (unsigned i = 0; i < 4; ++i)
9719 exp->operands[i] = Operand(v1);
9720 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9721 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9722 exp->enabled_mask |= 0x1;
9723 }
9724 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9725 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9726 exp->enabled_mask |= 0x4;
9727 }
9728 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9729 if (ctx->options->chip_class < GFX9) {
9730 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9731 exp->enabled_mask |= 0x8;
9732 } else {
9733 Builder bld(ctx->program, ctx->block);
9734
9735 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9736 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9737 if (exp->operands[2].isTemp())
9738 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9739
9740 exp->operands[2] = Operand(out);
9741 exp->enabled_mask |= 0x4;
9742 }
9743 }
9744 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9745 exp->done = false;
9746 exp->compressed = false;
9747 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9748 ctx->block->instructions.emplace_back(std::move(exp));
9749 }
9750
9751 static void create_export_phis(isel_context *ctx)
9752 {
9753 /* Used when exports are needed, but the output temps are defined in a preceding block.
9754 * This function will set up phis in order to access the outputs in the next block.
9755 */
9756
9757 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9758 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9759 ctx->block->instructions.pop_back();
9760
9761 Builder bld(ctx->program, ctx->block);
9762
9763 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9764 uint64_t mask = ctx->outputs.mask[slot];
9765 for (unsigned i = 0; i < 4; ++i) {
9766 if (!(mask & (1 << i)))
9767 continue;
9768
9769 Temp old = ctx->outputs.temps[slot * 4 + i];
9770 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9771 ctx->outputs.temps[slot * 4 + i] = phi;
9772 }
9773 }
9774
9775 bld.insert(std::move(logical_start));
9776 }
9777
9778 static void create_vs_exports(isel_context *ctx)
9779 {
9780 assert(ctx->stage == vertex_vs ||
9781 ctx->stage == tess_eval_vs ||
9782 ctx->stage == gs_copy_vs ||
9783 ctx->stage == ngg_vertex_gs ||
9784 ctx->stage == ngg_tess_eval_gs);
9785
9786 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9787 ? &ctx->program->info->tes.outinfo
9788 : &ctx->program->info->vs.outinfo;
9789
9790 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9791 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9792 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9793 }
9794
9795 if (ctx->options->key.has_multiview_view_index) {
9796 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9797 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9798 }
9799
9800 /* the order these position exports are created is important */
9801 int next_pos = 0;
9802 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9803 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9804 export_vs_psiz_layer_viewport(ctx, &next_pos);
9805 exported_pos = true;
9806 }
9807 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9808 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9809 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9810 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9811
9812 if (ctx->export_clip_dists) {
9813 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9814 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9815 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9816 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9817 }
9818
9819 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9820 if (i < VARYING_SLOT_VAR0 &&
9821 i != VARYING_SLOT_LAYER &&
9822 i != VARYING_SLOT_PRIMITIVE_ID)
9823 continue;
9824
9825 export_vs_varying(ctx, i, false, NULL);
9826 }
9827
9828 if (!exported_pos)
9829 create_null_export(ctx);
9830 }
9831
9832 static bool export_fs_mrt_z(isel_context *ctx)
9833 {
9834 Builder bld(ctx->program, ctx->block);
9835 unsigned enabled_channels = 0;
9836 bool compr = false;
9837 Operand values[4];
9838
9839 for (unsigned i = 0; i < 4; ++i) {
9840 values[i] = Operand(v1);
9841 }
9842
9843 /* Both stencil and sample mask only need 16-bits. */
9844 if (!ctx->program->info->ps.writes_z &&
9845 (ctx->program->info->ps.writes_stencil ||
9846 ctx->program->info->ps.writes_sample_mask)) {
9847 compr = true; /* COMPR flag */
9848
9849 if (ctx->program->info->ps.writes_stencil) {
9850 /* Stencil should be in X[23:16]. */
9851 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9852 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9853 enabled_channels |= 0x3;
9854 }
9855
9856 if (ctx->program->info->ps.writes_sample_mask) {
9857 /* SampleMask should be in Y[15:0]. */
9858 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9859 enabled_channels |= 0xc;
9860 }
9861 } else {
9862 if (ctx->program->info->ps.writes_z) {
9863 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9864 enabled_channels |= 0x1;
9865 }
9866
9867 if (ctx->program->info->ps.writes_stencil) {
9868 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9869 enabled_channels |= 0x2;
9870 }
9871
9872 if (ctx->program->info->ps.writes_sample_mask) {
9873 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9874 enabled_channels |= 0x4;
9875 }
9876 }
9877
9878 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9879 * writemask component.
9880 */
9881 if (ctx->options->chip_class == GFX6 &&
9882 ctx->options->family != CHIP_OLAND &&
9883 ctx->options->family != CHIP_HAINAN) {
9884 enabled_channels |= 0x1;
9885 }
9886
9887 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9888 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9889
9890 return true;
9891 }
9892
9893 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9894 {
9895 Builder bld(ctx->program, ctx->block);
9896 unsigned write_mask = ctx->outputs.mask[slot];
9897 Operand values[4];
9898
9899 for (unsigned i = 0; i < 4; ++i) {
9900 if (write_mask & (1 << i)) {
9901 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9902 } else {
9903 values[i] = Operand(v1);
9904 }
9905 }
9906
9907 unsigned target, col_format;
9908 unsigned enabled_channels = 0;
9909 aco_opcode compr_op = (aco_opcode)0;
9910
9911 slot -= FRAG_RESULT_DATA0;
9912 target = V_008DFC_SQ_EXP_MRT + slot;
9913 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9914
9915 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9916 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9917
9918 switch (col_format)
9919 {
9920 case V_028714_SPI_SHADER_ZERO:
9921 enabled_channels = 0; /* writemask */
9922 target = V_008DFC_SQ_EXP_NULL;
9923 break;
9924
9925 case V_028714_SPI_SHADER_32_R:
9926 enabled_channels = 1;
9927 break;
9928
9929 case V_028714_SPI_SHADER_32_GR:
9930 enabled_channels = 0x3;
9931 break;
9932
9933 case V_028714_SPI_SHADER_32_AR:
9934 if (ctx->options->chip_class >= GFX10) {
9935 /* Special case: on GFX10, the outputs are different for 32_AR */
9936 enabled_channels = 0x3;
9937 values[1] = values[3];
9938 values[3] = Operand(v1);
9939 } else {
9940 enabled_channels = 0x9;
9941 }
9942 break;
9943
9944 case V_028714_SPI_SHADER_FP16_ABGR:
9945 enabled_channels = 0x5;
9946 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9947 break;
9948
9949 case V_028714_SPI_SHADER_UNORM16_ABGR:
9950 enabled_channels = 0x5;
9951 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9952 break;
9953
9954 case V_028714_SPI_SHADER_SNORM16_ABGR:
9955 enabled_channels = 0x5;
9956 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9957 break;
9958
9959 case V_028714_SPI_SHADER_UINT16_ABGR: {
9960 enabled_channels = 0x5;
9961 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9962 if (is_int8 || is_int10) {
9963 /* clamp */
9964 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9965 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9966
9967 for (unsigned i = 0; i < 4; i++) {
9968 if ((write_mask >> i) & 1) {
9969 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9970 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9971 values[i]);
9972 }
9973 }
9974 }
9975 break;
9976 }
9977
9978 case V_028714_SPI_SHADER_SINT16_ABGR:
9979 enabled_channels = 0x5;
9980 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9981 if (is_int8 || is_int10) {
9982 /* clamp */
9983 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9984 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9985 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9986 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9987
9988 for (unsigned i = 0; i < 4; i++) {
9989 if ((write_mask >> i) & 1) {
9990 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9991 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9992 values[i]);
9993 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9994 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9995 values[i]);
9996 }
9997 }
9998 }
9999 break;
10000
10001 case V_028714_SPI_SHADER_32_ABGR:
10002 enabled_channels = 0xF;
10003 break;
10004
10005 default:
10006 break;
10007 }
10008
10009 if (target == V_008DFC_SQ_EXP_NULL)
10010 return false;
10011
10012 if ((bool) compr_op) {
10013 for (int i = 0; i < 2; i++) {
10014 /* check if at least one of the values to be compressed is enabled */
10015 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10016 if (enabled) {
10017 enabled_channels |= enabled << (i*2);
10018 values[i] = bld.vop3(compr_op, bld.def(v1),
10019 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10020 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10021 } else {
10022 values[i] = Operand(v1);
10023 }
10024 }
10025 values[2] = Operand(v1);
10026 values[3] = Operand(v1);
10027 } else {
10028 for (int i = 0; i < 4; i++)
10029 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10030 }
10031
10032 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10033 enabled_channels, target, (bool) compr_op);
10034 return true;
10035 }
10036
10037 static void create_fs_exports(isel_context *ctx)
10038 {
10039 bool exported = false;
10040
10041 /* Export depth, stencil and sample mask. */
10042 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10043 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10044 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10045 exported |= export_fs_mrt_z(ctx);
10046
10047 /* Export all color render targets. */
10048 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10049 if (ctx->outputs.mask[i])
10050 exported |= export_fs_mrt_color(ctx, i);
10051
10052 if (!exported)
10053 create_null_export(ctx);
10054 }
10055
10056 static void write_tcs_tess_factors(isel_context *ctx)
10057 {
10058 unsigned outer_comps;
10059 unsigned inner_comps;
10060
10061 switch (ctx->args->options->key.tcs.primitive_mode) {
10062 case GL_ISOLINES:
10063 outer_comps = 2;
10064 inner_comps = 0;
10065 break;
10066 case GL_TRIANGLES:
10067 outer_comps = 3;
10068 inner_comps = 1;
10069 break;
10070 case GL_QUADS:
10071 outer_comps = 4;
10072 inner_comps = 2;
10073 break;
10074 default:
10075 return;
10076 }
10077
10078 Builder bld(ctx->program, ctx->block);
10079
10080 bld.barrier(aco_opcode::p_memory_barrier_shared);
10081 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10082 bld.sopp(aco_opcode::s_barrier);
10083
10084 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10085 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10086
10087 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10088 if_context ic_invocation_id_is_zero;
10089 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10090 bld.reset(ctx->block);
10091
10092 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10093
10094 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10095 unsigned stride = inner_comps + outer_comps;
10096 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10097 Temp tf_inner_vec;
10098 Temp tf_outer_vec;
10099 Temp out[6];
10100 assert(stride <= (sizeof(out) / sizeof(Temp)));
10101
10102 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10103 // LINES reversal
10104 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10105 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10106 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10107 } else {
10108 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10109 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10110
10111 for (unsigned i = 0; i < outer_comps; ++i)
10112 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10113 for (unsigned i = 0; i < inner_comps; ++i)
10114 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10115 }
10116
10117 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10118 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10119 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
10120 unsigned tf_const_offset = 0;
10121
10122 if (ctx->program->chip_class <= GFX8) {
10123 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10124 if_context ic_rel_patch_id_is_zero;
10125 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10126 bld.reset(ctx->block);
10127
10128 /* Store the dynamic HS control word. */
10129 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10130 bld.mubuf(aco_opcode::buffer_store_dword,
10131 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10132 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10133 /* disable_wqm */ false, /* glc */ true);
10134 tf_const_offset += 4;
10135
10136 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10137 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10138 bld.reset(ctx->block);
10139 }
10140
10141 assert(stride == 2 || stride == 4 || stride == 6);
10142 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10143 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10144
10145 /* Store to offchip for TES to read - only if TES reads them */
10146 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10147 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10148 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10149
10150 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10151 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10152
10153 if (likely(inner_comps)) {
10154 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10155 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10156 }
10157 }
10158
10159 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10160 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10161 }
10162
10163 static void emit_stream_output(isel_context *ctx,
10164 Temp const *so_buffers,
10165 Temp const *so_write_offset,
10166 const struct radv_stream_output *output)
10167 {
10168 unsigned num_comps = util_bitcount(output->component_mask);
10169 unsigned writemask = (1 << num_comps) - 1;
10170 unsigned loc = output->location;
10171 unsigned buf = output->buffer;
10172
10173 assert(num_comps && num_comps <= 4);
10174 if (!num_comps || num_comps > 4)
10175 return;
10176
10177 unsigned start = ffs(output->component_mask) - 1;
10178
10179 Temp out[4];
10180 bool all_undef = true;
10181 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
10182 for (unsigned i = 0; i < num_comps; i++) {
10183 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10184 all_undef = all_undef && !out[i].id();
10185 }
10186 if (all_undef)
10187 return;
10188
10189 while (writemask) {
10190 int start, count;
10191 u_bit_scan_consecutive_range(&writemask, &start, &count);
10192 if (count == 3 && ctx->options->chip_class == GFX6) {
10193 /* GFX6 doesn't support storing vec3, split it. */
10194 writemask |= 1u << (start + 2);
10195 count = 2;
10196 }
10197
10198 unsigned offset = output->offset + start * 4;
10199
10200 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10201 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10202 for (int i = 0; i < count; ++i)
10203 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10204 vec->definitions[0] = Definition(write_data);
10205 ctx->block->instructions.emplace_back(std::move(vec));
10206
10207 aco_opcode opcode;
10208 switch (count) {
10209 case 1:
10210 opcode = aco_opcode::buffer_store_dword;
10211 break;
10212 case 2:
10213 opcode = aco_opcode::buffer_store_dwordx2;
10214 break;
10215 case 3:
10216 opcode = aco_opcode::buffer_store_dwordx3;
10217 break;
10218 case 4:
10219 opcode = aco_opcode::buffer_store_dwordx4;
10220 break;
10221 default:
10222 unreachable("Unsupported dword count.");
10223 }
10224
10225 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10226 store->operands[0] = Operand(so_buffers[buf]);
10227 store->operands[1] = Operand(so_write_offset[buf]);
10228 store->operands[2] = Operand((uint32_t) 0);
10229 store->operands[3] = Operand(write_data);
10230 if (offset > 4095) {
10231 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10232 Builder bld(ctx->program, ctx->block);
10233 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10234 } else {
10235 store->offset = offset;
10236 }
10237 store->offen = true;
10238 store->glc = true;
10239 store->dlc = false;
10240 store->slc = true;
10241 store->can_reorder = true;
10242 ctx->block->instructions.emplace_back(std::move(store));
10243 }
10244 }
10245
10246 static void emit_streamout(isel_context *ctx, unsigned stream)
10247 {
10248 Builder bld(ctx->program, ctx->block);
10249
10250 Temp so_buffers[4];
10251 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10252 for (unsigned i = 0; i < 4; i++) {
10253 unsigned stride = ctx->program->info->so.strides[i];
10254 if (!stride)
10255 continue;
10256
10257 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10258 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10259 }
10260
10261 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10262 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10263
10264 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10265
10266 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10267
10268 if_context ic;
10269 begin_divergent_if_then(ctx, &ic, can_emit);
10270
10271 bld.reset(ctx->block);
10272
10273 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10274
10275 Temp so_write_offset[4];
10276
10277 for (unsigned i = 0; i < 4; i++) {
10278 unsigned stride = ctx->program->info->so.strides[i];
10279 if (!stride)
10280 continue;
10281
10282 if (stride == 1) {
10283 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10284 get_arg(ctx, ctx->args->streamout_write_idx),
10285 get_arg(ctx, ctx->args->streamout_offset[i]));
10286 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10287
10288 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10289 } else {
10290 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10291 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10292 get_arg(ctx, ctx->args->streamout_offset[i]));
10293 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10294 }
10295 }
10296
10297 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10298 struct radv_stream_output *output =
10299 &ctx->program->info->so.outputs[i];
10300 if (stream != output->stream)
10301 continue;
10302
10303 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10304 }
10305
10306 begin_divergent_if_else(ctx, &ic);
10307 end_divergent_if(ctx, &ic);
10308 }
10309
10310 } /* end namespace */
10311
10312 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10313 {
10314 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10315 Builder bld(ctx->program, ctx->block);
10316 constexpr unsigned hs_idx = 1u;
10317 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10318 get_arg(ctx, ctx->args->merged_wave_info),
10319 Operand((8u << 16) | (hs_idx * 8u)));
10320 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10321
10322 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10323
10324 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10325 get_arg(ctx, ctx->args->rel_auto_id),
10326 get_arg(ctx, ctx->args->ac.instance_id),
10327 ls_has_nonzero_hs_threads);
10328 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10329 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10330 get_arg(ctx, ctx->args->rel_auto_id),
10331 ls_has_nonzero_hs_threads);
10332 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10333 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10334 get_arg(ctx, ctx->args->ac.vertex_id),
10335 ls_has_nonzero_hs_threads);
10336
10337 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10338 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10339 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10340 }
10341
10342 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10343 {
10344 /* Split all arguments except for the first (ring_offsets) and the last
10345 * (exec) so that the dead channels don't stay live throughout the program.
10346 */
10347 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10348 if (startpgm->definitions[i].regClass().size() > 1) {
10349 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10350 startpgm->definitions[i].regClass().size());
10351 }
10352 }
10353 }
10354
10355 void handle_bc_optimize(isel_context *ctx)
10356 {
10357 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10358 Builder bld(ctx->program, ctx->block);
10359 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10360 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10361 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10362 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10363 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10364 if (uses_center && uses_centroid) {
10365 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10366 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10367
10368 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10369 Temp new_coord[2];
10370 for (unsigned i = 0; i < 2; i++) {
10371 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10372 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10373 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10374 persp_centroid, persp_center, sel);
10375 }
10376 ctx->persp_centroid = bld.tmp(v2);
10377 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10378 Operand(new_coord[0]), Operand(new_coord[1]));
10379 emit_split_vector(ctx, ctx->persp_centroid, 2);
10380 }
10381
10382 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10383 Temp new_coord[2];
10384 for (unsigned i = 0; i < 2; i++) {
10385 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10386 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10387 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10388 linear_centroid, linear_center, sel);
10389 }
10390 ctx->linear_centroid = bld.tmp(v2);
10391 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10392 Operand(new_coord[0]), Operand(new_coord[1]));
10393 emit_split_vector(ctx, ctx->linear_centroid, 2);
10394 }
10395 }
10396 }
10397
10398 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10399 {
10400 Program *program = ctx->program;
10401
10402 unsigned float_controls = shader->info.float_controls_execution_mode;
10403
10404 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10405 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10406 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10407 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10408 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10409
10410 program->next_fp_mode.must_flush_denorms32 =
10411 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10412 program->next_fp_mode.must_flush_denorms16_64 =
10413 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10414 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10415
10416 program->next_fp_mode.care_about_round32 =
10417 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10418
10419 program->next_fp_mode.care_about_round16_64 =
10420 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10421 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10422
10423 /* default to preserving fp16 and fp64 denorms, since it's free */
10424 if (program->next_fp_mode.must_flush_denorms16_64)
10425 program->next_fp_mode.denorm16_64 = 0;
10426 else
10427 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10428
10429 /* preserving fp32 denorms is expensive, so only do it if asked */
10430 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10431 program->next_fp_mode.denorm32 = fp_denorm_keep;
10432 else
10433 program->next_fp_mode.denorm32 = 0;
10434
10435 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10436 program->next_fp_mode.round32 = fp_round_tz;
10437 else
10438 program->next_fp_mode.round32 = fp_round_ne;
10439
10440 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10441 program->next_fp_mode.round16_64 = fp_round_tz;
10442 else
10443 program->next_fp_mode.round16_64 = fp_round_ne;
10444
10445 ctx->block->fp_mode = program->next_fp_mode;
10446 }
10447
10448 void cleanup_cfg(Program *program)
10449 {
10450 /* create linear_succs/logical_succs */
10451 for (Block& BB : program->blocks) {
10452 for (unsigned idx : BB.linear_preds)
10453 program->blocks[idx].linear_succs.emplace_back(BB.index);
10454 for (unsigned idx : BB.logical_preds)
10455 program->blocks[idx].logical_succs.emplace_back(BB.index);
10456 }
10457 }
10458
10459 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10460 {
10461 Builder bld(ctx->program, ctx->block);
10462
10463 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10464 Temp count = i == 0
10465 ? get_arg(ctx, ctx->args->merged_wave_info)
10466 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10467 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10468
10469 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10470 Temp cond;
10471
10472 if (ctx->program->wave_size == 64) {
10473 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10474 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10475 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10476 } else {
10477 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10478 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10479 }
10480
10481 return cond;
10482 }
10483
10484 bool ngg_early_prim_export(isel_context *ctx)
10485 {
10486 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10487 return true;
10488 }
10489
10490 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10491 {
10492 Builder bld(ctx->program, ctx->block);
10493
10494 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10495 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10496
10497 /* Get the id of the current wave within the threadgroup (workgroup) */
10498 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10499 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10500
10501 /* Execute the following code only on the first wave (wave id 0),
10502 * use the SCC def to tell if the wave id is zero or not.
10503 */
10504 Temp cond = wave_id_in_tg.def(1).getTemp();
10505 if_context ic;
10506 begin_uniform_if_then(ctx, &ic, cond);
10507 begin_uniform_if_else(ctx, &ic);
10508 bld.reset(ctx->block);
10509
10510 /* Number of vertices output by VS/TES */
10511 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10512 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10513 /* Number of primitives output by VS/TES */
10514 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10515 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10516
10517 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10518 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10519 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10520
10521 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10522 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10523
10524 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10525 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10526
10527 end_uniform_if(ctx, &ic);
10528 }
10529
10530 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10531 {
10532 Builder bld(ctx->program, ctx->block);
10533
10534 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10535 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10536 }
10537
10538 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10539 Temp tmp;
10540
10541 for (unsigned i = 0; i < num_vertices; ++i) {
10542 assert(vtxindex[i].id());
10543
10544 if (i)
10545 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10546 else
10547 tmp = vtxindex[i];
10548
10549 /* The initial edge flag is always false in tess eval shaders. */
10550 if (ctx->stage == ngg_vertex_gs) {
10551 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10552 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10553 }
10554 }
10555
10556 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10557
10558 return tmp;
10559 }
10560
10561 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10562 {
10563 Builder bld(ctx->program, ctx->block);
10564 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10565
10566 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10567 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10568 false /* compressed */, true/* done */, false /* valid mask */);
10569 }
10570
10571 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10572 {
10573 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10574 * These must always come before VS exports.
10575 *
10576 * It is recommended to do these as early as possible. They can be at the beginning when
10577 * there is no SW GS and the shader doesn't write edge flags.
10578 */
10579
10580 if_context ic;
10581 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10582 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10583
10584 Builder bld(ctx->program, ctx->block);
10585 constexpr unsigned max_vertices_per_primitive = 3;
10586 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10587
10588 if (ctx->stage == ngg_vertex_gs) {
10589 /* TODO: optimize for points & lines */
10590 } else if (ctx->stage == ngg_tess_eval_gs) {
10591 if (ctx->shader->info.tess.point_mode)
10592 num_vertices_per_primitive = 1;
10593 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10594 num_vertices_per_primitive = 2;
10595 } else {
10596 unreachable("Unsupported NGG shader stage");
10597 }
10598
10599 Temp vtxindex[max_vertices_per_primitive];
10600 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10601 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10602 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10603 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10604 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10605 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10606 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10607 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10608
10609 /* Export primitive data to the index buffer. */
10610 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10611
10612 /* Export primitive ID. */
10613 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10614 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10615 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10616 Temp provoking_vtx_index = vtxindex[0];
10617 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10618
10619 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10620 }
10621
10622 begin_divergent_if_else(ctx, &ic);
10623 end_divergent_if(ctx, &ic);
10624 }
10625
10626 void ngg_emit_nogs_output(isel_context *ctx)
10627 {
10628 /* Emits NGG GS output, for stages that don't have SW GS. */
10629
10630 if_context ic;
10631 Builder bld(ctx->program, ctx->block);
10632 bool late_prim_export = !ngg_early_prim_export(ctx);
10633
10634 /* NGG streamout is currently disabled by default. */
10635 assert(!ctx->args->shader_info->so.num_outputs);
10636
10637 if (late_prim_export) {
10638 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10639 create_export_phis(ctx);
10640 /* Do what we need to do in the GS threads. */
10641 ngg_emit_nogs_gsthreads(ctx);
10642
10643 /* What comes next should be executed on ES threads. */
10644 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10645 begin_divergent_if_then(ctx, &ic, is_es_thread);
10646 bld.reset(ctx->block);
10647 }
10648
10649 /* Export VS outputs */
10650 ctx->block->kind |= block_kind_export_end;
10651 create_vs_exports(ctx);
10652
10653 /* Export primitive ID */
10654 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10655 Temp prim_id;
10656
10657 if (ctx->stage == ngg_vertex_gs) {
10658 /* Wait for GS threads to store primitive ID in LDS. */
10659 bld.barrier(aco_opcode::p_memory_barrier_shared);
10660 bld.sopp(aco_opcode::s_barrier);
10661
10662 /* Calculate LDS address where the GS threads stored the primitive ID. */
10663 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10664 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10665 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10666 Temp wave_id_mul = bld.v_mul_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10667 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10668 Temp addr = bld.v_mul_imm(bld.def(v1), thread_id_in_tg, 4u);
10669
10670 /* Load primitive ID from LDS. */
10671 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10672 } else if (ctx->stage == ngg_tess_eval_gs) {
10673 /* TES: Just use the patch ID as the primitive ID. */
10674 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10675 } else {
10676 unreachable("unsupported NGG shader stage.");
10677 }
10678
10679 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10680 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10681
10682 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10683 }
10684
10685 if (late_prim_export) {
10686 begin_divergent_if_else(ctx, &ic);
10687 end_divergent_if(ctx, &ic);
10688 bld.reset(ctx->block);
10689 }
10690 }
10691
10692 void select_program(Program *program,
10693 unsigned shader_count,
10694 struct nir_shader *const *shaders,
10695 ac_shader_config* config,
10696 struct radv_shader_args *args)
10697 {
10698 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10699 if_context ic_merged_wave_info;
10700 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10701
10702 for (unsigned i = 0; i < shader_count; i++) {
10703 nir_shader *nir = shaders[i];
10704 init_context(&ctx, nir);
10705
10706 setup_fp_mode(&ctx, nir);
10707
10708 if (!i) {
10709 /* needs to be after init_context() for FS */
10710 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10711 append_logical_start(ctx.block);
10712
10713 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10714 fix_ls_vgpr_init_bug(&ctx, startpgm);
10715
10716 split_arguments(&ctx, startpgm);
10717 }
10718
10719 if (ngg_no_gs) {
10720 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10721
10722 if (ngg_early_prim_export(&ctx))
10723 ngg_emit_nogs_gsthreads(&ctx);
10724 }
10725
10726 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10727 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10728 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10729 ((nir->info.stage == MESA_SHADER_VERTEX &&
10730 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10731 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10732 ctx.stage == tess_eval_geometry_gs));
10733
10734 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10735 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10736 if (check_merged_wave_info) {
10737 Temp cond = merged_wave_info_to_mask(&ctx, i);
10738 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10739 }
10740
10741 if (i) {
10742 Builder bld(ctx.program, ctx.block);
10743
10744 bld.barrier(aco_opcode::p_memory_barrier_shared);
10745 bld.sopp(aco_opcode::s_barrier);
10746
10747 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10748 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10749 }
10750 } else if (ctx.stage == geometry_gs)
10751 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10752
10753 if (ctx.stage == fragment_fs)
10754 handle_bc_optimize(&ctx);
10755
10756 visit_cf_list(&ctx, &func->body);
10757
10758 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10759 emit_streamout(&ctx, 0);
10760
10761 if (ctx.stage & hw_vs) {
10762 create_vs_exports(&ctx);
10763 ctx.block->kind |= block_kind_export_end;
10764 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10765 ngg_emit_nogs_output(&ctx);
10766 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10767 Builder bld(ctx.program, ctx.block);
10768 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10769 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10770 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10771 write_tcs_tess_factors(&ctx);
10772 }
10773
10774 if (ctx.stage == fragment_fs) {
10775 create_fs_exports(&ctx);
10776 ctx.block->kind |= block_kind_export_end;
10777 }
10778
10779 if (endif_merged_wave_info) {
10780 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10781 end_divergent_if(&ctx, &ic_merged_wave_info);
10782 }
10783
10784 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10785 ngg_emit_nogs_output(&ctx);
10786
10787 ralloc_free(ctx.divergent_vals);
10788
10789 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10790 /* Outputs of the previous stage are inputs to the next stage */
10791 ctx.inputs = ctx.outputs;
10792 ctx.outputs = shader_io_state();
10793 }
10794 }
10795
10796 program->config->float_mode = program->blocks[0].fp_mode.val;
10797
10798 append_logical_end(ctx.block);
10799 ctx.block->kind |= block_kind_uniform;
10800 Builder bld(ctx.program, ctx.block);
10801 if (ctx.program->wb_smem_l1_on_end)
10802 bld.smem(aco_opcode::s_dcache_wb, false);
10803 bld.sopp(aco_opcode::s_endpgm);
10804
10805 cleanup_cfg(program);
10806 }
10807
10808 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10809 ac_shader_config* config,
10810 struct radv_shader_args *args)
10811 {
10812 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10813
10814 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10815 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10816 program->next_fp_mode.must_flush_denorms32 = false;
10817 program->next_fp_mode.must_flush_denorms16_64 = false;
10818 program->next_fp_mode.care_about_round32 = false;
10819 program->next_fp_mode.care_about_round16_64 = false;
10820 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10821 program->next_fp_mode.denorm32 = 0;
10822 program->next_fp_mode.round32 = fp_round_ne;
10823 program->next_fp_mode.round16_64 = fp_round_ne;
10824 ctx.block->fp_mode = program->next_fp_mode;
10825
10826 add_startpgm(&ctx);
10827 append_logical_start(ctx.block);
10828
10829 Builder bld(ctx.program, ctx.block);
10830
10831 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10832
10833 Operand stream_id(0u);
10834 if (args->shader_info->so.num_outputs)
10835 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10836 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10837
10838 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10839
10840 std::stack<Block> endif_blocks;
10841
10842 for (unsigned stream = 0; stream < 4; stream++) {
10843 if (stream_id.isConstant() && stream != stream_id.constantValue())
10844 continue;
10845
10846 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10847 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10848 continue;
10849
10850 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10851
10852 unsigned BB_if_idx = ctx.block->index;
10853 Block BB_endif = Block();
10854 if (!stream_id.isConstant()) {
10855 /* begin IF */
10856 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10857 append_logical_end(ctx.block);
10858 ctx.block->kind |= block_kind_uniform;
10859 bld.branch(aco_opcode::p_cbranch_z, cond);
10860
10861 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10862
10863 ctx.block = ctx.program->create_and_insert_block();
10864 add_edge(BB_if_idx, ctx.block);
10865 bld.reset(ctx.block);
10866 append_logical_start(ctx.block);
10867 }
10868
10869 unsigned offset = 0;
10870 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10871 if (args->shader_info->gs.output_streams[i] != stream)
10872 continue;
10873
10874 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10875 unsigned length = util_last_bit(output_usage_mask);
10876 for (unsigned j = 0; j < length; ++j) {
10877 if (!(output_usage_mask & (1 << j)))
10878 continue;
10879
10880 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10881 Temp voffset = vtx_offset;
10882 if (const_offset >= 4096u) {
10883 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10884 const_offset %= 4096u;
10885 }
10886
10887 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10888 mubuf->definitions[0] = bld.def(v1);
10889 mubuf->operands[0] = Operand(gsvs_ring);
10890 mubuf->operands[1] = Operand(voffset);
10891 mubuf->operands[2] = Operand(0u);
10892 mubuf->offen = true;
10893 mubuf->offset = const_offset;
10894 mubuf->glc = true;
10895 mubuf->slc = true;
10896 mubuf->dlc = args->options->chip_class >= GFX10;
10897 mubuf->barrier = barrier_none;
10898 mubuf->can_reorder = true;
10899
10900 ctx.outputs.mask[i] |= 1 << j;
10901 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10902
10903 bld.insert(std::move(mubuf));
10904
10905 offset++;
10906 }
10907 }
10908
10909 if (args->shader_info->so.num_outputs) {
10910 emit_streamout(&ctx, stream);
10911 bld.reset(ctx.block);
10912 }
10913
10914 if (stream == 0) {
10915 create_vs_exports(&ctx);
10916 ctx.block->kind |= block_kind_export_end;
10917 }
10918
10919 if (!stream_id.isConstant()) {
10920 append_logical_end(ctx.block);
10921
10922 /* branch from then block to endif block */
10923 bld.branch(aco_opcode::p_branch);
10924 add_edge(ctx.block->index, &BB_endif);
10925 ctx.block->kind |= block_kind_uniform;
10926
10927 /* emit else block */
10928 ctx.block = ctx.program->create_and_insert_block();
10929 add_edge(BB_if_idx, ctx.block);
10930 bld.reset(ctx.block);
10931 append_logical_start(ctx.block);
10932
10933 endif_blocks.push(std::move(BB_endif));
10934 }
10935 }
10936
10937 while (!endif_blocks.empty()) {
10938 Block BB_endif = std::move(endif_blocks.top());
10939 endif_blocks.pop();
10940
10941 Block *BB_else = ctx.block;
10942
10943 append_logical_end(BB_else);
10944 /* branch from else block to endif block */
10945 bld.branch(aco_opcode::p_branch);
10946 add_edge(BB_else->index, &BB_endif);
10947 BB_else->kind |= block_kind_uniform;
10948
10949 /** emit endif merge block */
10950 ctx.block = program->insert_block(std::move(BB_endif));
10951 bld.reset(ctx.block);
10952 append_logical_start(ctx.block);
10953 }
10954
10955 program->config->float_mode = program->blocks[0].fp_mode.val;
10956
10957 append_logical_end(ctx.block);
10958 ctx.block->kind |= block_kind_uniform;
10959 bld.sopp(aco_opcode::s_endpgm);
10960
10961 cleanup_cfg(program);
10962 }
10963 }