aco: remove isel for GLSL-style barriers
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else if (ctx->program->chip_class <= GFX7) {
140 Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 } else {
143 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo);
144 return thread_id_hi;
145 }
146 }
147
148 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
149 {
150 Builder bld(ctx->program, ctx->block);
151
152 if (!dst.id())
153 dst = bld.tmp(src.regClass());
154
155 assert(src.size() == dst.size());
156
157 if (ctx->stage != fragment_fs) {
158 if (!dst.id())
159 return src;
160
161 bld.copy(Definition(dst), src);
162 return dst;
163 }
164
165 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
166 ctx->program->needs_wqm |= program_needs_wqm;
167 return dst;
168 }
169
170 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
171 {
172 if (index.regClass() == s1)
173 return bld.readlane(bld.def(s1), data, index);
174
175 if (ctx->options->chip_class <= GFX7) {
176 /* GFX6-7: there is no bpermute instruction */
177 Operand index_op(index);
178 Operand input_data(data);
179 index_op.setLateKill(true);
180 input_data.setLateKill(true);
181
182 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
183 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
184 /* GFX10 wave64 mode: emulate full-wave bpermute */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
192 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
193 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
194 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
195 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
196 Operand input_data(data);
197
198 index_x4.setLateKill(true);
199 input_data.setLateKill(true);
200 same_half.setLateKill(true);
201
202 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
203 } else {
204 /* GFX8-9 or GFX10 wave32: bpermute works normally */
205 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
206 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
207 }
208 }
209
210 static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
211 {
212 if (ctx->options->chip_class >= GFX8) {
213 unsigned and_mask = mask & 0x1f;
214 unsigned or_mask = (mask >> 5) & 0x1f;
215 unsigned xor_mask = (mask >> 10) & 0x1f;
216
217 uint16_t dpp_ctrl = 0xffff;
218
219 // TODO: we could use DPP8 for some swizzles
220 if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
221 unsigned res[4] = {0, 1, 2, 3};
222 for (unsigned i = 0; i < 4; i++)
223 res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
224 dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
225 } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
226 dpp_ctrl = dpp_row_rr(8);
227 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
228 dpp_ctrl = dpp_row_mirror;
229 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
230 dpp_ctrl = dpp_row_half_mirror;
231 }
232
233 if (dpp_ctrl != 0xffff)
234 return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
235 }
236
237 return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
238 }
239
240 Temp as_vgpr(isel_context *ctx, Temp val)
241 {
242 if (val.type() == RegType::sgpr) {
243 Builder bld(ctx->program, ctx->block);
244 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
245 }
246 assert(val.type() == RegType::vgpr);
247 return val;
248 }
249
250 //assumes a != 0xffffffff
251 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
252 {
253 assert(b != 0);
254 Builder bld(ctx->program, ctx->block);
255
256 if (util_is_power_of_two_or_zero(b)) {
257 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
258 return;
259 }
260
261 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
262
263 assert(info.multiplier <= 0xffffffff);
264
265 bool pre_shift = info.pre_shift != 0;
266 bool increment = info.increment != 0;
267 bool multiply = true;
268 bool post_shift = info.post_shift != 0;
269
270 if (!pre_shift && !increment && !multiply && !post_shift) {
271 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
272 return;
273 }
274
275 Temp pre_shift_dst = a;
276 if (pre_shift) {
277 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
278 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
279 }
280
281 Temp increment_dst = pre_shift_dst;
282 if (increment) {
283 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
284 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
285 }
286
287 Temp multiply_dst = increment_dst;
288 if (multiply) {
289 multiply_dst = post_shift ? bld.tmp(v1) : dst;
290 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
291 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
292 }
293
294 if (post_shift) {
295 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
296 }
297 }
298
299 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
300 {
301 Builder bld(ctx->program, ctx->block);
302 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
303 }
304
305
306 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
307 {
308 /* no need to extract the whole vector */
309 if (src.regClass() == dst_rc) {
310 assert(idx == 0);
311 return src;
312 }
313
314 assert(src.bytes() > (idx * dst_rc.bytes()));
315 Builder bld(ctx->program, ctx->block);
316 auto it = ctx->allocated_vec.find(src.id());
317 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
318 if (it->second[idx].regClass() == dst_rc) {
319 return it->second[idx];
320 } else {
321 assert(!dst_rc.is_subdword());
322 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
323 return bld.copy(bld.def(dst_rc), it->second[idx]);
324 }
325 }
326
327 if (dst_rc.is_subdword())
328 src = as_vgpr(ctx, src);
329
330 if (src.bytes() == dst_rc.bytes()) {
331 assert(idx == 0);
332 return bld.copy(bld.def(dst_rc), src);
333 } else {
334 Temp dst = bld.tmp(dst_rc);
335 emit_extract_vector(ctx, src, idx, dst);
336 return dst;
337 }
338 }
339
340 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
341 {
342 if (num_components == 1)
343 return;
344 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
345 return;
346 RegClass rc;
347 if (num_components > vec_src.size()) {
348 if (vec_src.type() == RegType::sgpr) {
349 /* should still help get_alu_src() */
350 emit_split_vector(ctx, vec_src, vec_src.size());
351 return;
352 }
353 /* sub-dword split */
354 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
355 } else {
356 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
357 }
358 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
359 split->operands[0] = Operand(vec_src);
360 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
361 for (unsigned i = 0; i < num_components; i++) {
362 elems[i] = {ctx->program->allocateId(), rc};
363 split->definitions[i] = Definition(elems[i]);
364 }
365 ctx->block->instructions.emplace_back(std::move(split));
366 ctx->allocated_vec.emplace(vec_src.id(), elems);
367 }
368
369 /* This vector expansion uses a mask to determine which elements in the new vector
370 * come from the original vector. The other elements are undefined. */
371 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
372 {
373 emit_split_vector(ctx, vec_src, util_bitcount(mask));
374
375 if (vec_src == dst)
376 return;
377
378 Builder bld(ctx->program, ctx->block);
379 if (num_components == 1) {
380 if (dst.type() == RegType::sgpr)
381 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
382 else
383 bld.copy(Definition(dst), vec_src);
384 return;
385 }
386
387 unsigned component_size = dst.size() / num_components;
388 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
389
390 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
391 vec->definitions[0] = Definition(dst);
392 unsigned k = 0;
393 for (unsigned i = 0; i < num_components; i++) {
394 if (mask & (1 << i)) {
395 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
396 if (dst.type() == RegType::sgpr)
397 src = bld.as_uniform(src);
398 vec->operands[i] = Operand(src);
399 } else {
400 vec->operands[i] = Operand(0u);
401 }
402 elems[i] = vec->operands[i].getTemp();
403 }
404 ctx->block->instructions.emplace_back(std::move(vec));
405 ctx->allocated_vec.emplace(dst.id(), elems);
406 }
407
408 /* adjust misaligned small bit size loads */
409 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
410 {
411 Builder bld(ctx->program, ctx->block);
412 Operand shift;
413 Temp select = Temp();
414 if (offset.isConstant()) {
415 assert(offset.constantValue() && offset.constantValue() < 4);
416 shift = Operand(offset.constantValue() * 8);
417 } else {
418 /* bit_offset = 8 * (offset & 0x3) */
419 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
420 select = bld.tmp(s1);
421 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
422 }
423
424 if (vec.size() == 1) {
425 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
426 } else if (vec.size() == 2) {
427 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
428 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
429 if (tmp == dst)
430 emit_split_vector(ctx, dst, 2);
431 else
432 emit_extract_vector(ctx, tmp, 0, dst);
433 } else if (vec.size() == 4) {
434 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
435 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
436 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
437 if (select != Temp())
438 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
439 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
440 Temp mid = bld.tmp(s1);
441 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
442 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
443 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
444 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
445 emit_split_vector(ctx, dst, 2);
446 }
447 }
448
449 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
450 {
451 Builder bld(ctx->program, ctx->block);
452 if (offset.isTemp()) {
453 Temp tmp[4] = {vec, vec, vec, vec};
454
455 if (vec.size() == 4) {
456 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
457 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
458 } else if (vec.size() == 3) {
459 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
460 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
461 } else if (vec.size() == 2) {
462 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
463 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
464 }
465 for (unsigned i = 0; i < dst.size(); i++)
466 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
467
468 vec = tmp[0];
469 if (dst.size() == 2)
470 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
471
472 offset = Operand(0u);
473 }
474
475 unsigned num_components = vec.bytes() / component_size;
476 if (vec.regClass() == dst.regClass()) {
477 assert(offset.constantValue() == 0);
478 bld.copy(Definition(dst), vec);
479 emit_split_vector(ctx, dst, num_components);
480 return;
481 }
482
483 emit_split_vector(ctx, vec, num_components);
484 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
485 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
486
487 assert(offset.constantValue() % component_size == 0);
488 unsigned skip = offset.constantValue() / component_size;
489 for (unsigned i = skip; i < num_components; i++)
490 elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
491
492 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
493 if (dst.type() == RegType::vgpr) {
494 num_components = dst.bytes() / component_size;
495 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
496 for (unsigned i = 0; i < num_components; i++)
497 create_vec->operands[i] = Operand(elems[i]);
498 create_vec->definitions[0] = Definition(dst);
499 bld.insert(std::move(create_vec));
500
501 /* if dst is sgpr - split the src, but move the original to sgpr. */
502 } else if (skip) {
503 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
504 byte_align_scalar(ctx, vec, offset, dst);
505 } else {
506 assert(dst.size() == vec.size());
507 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
508 }
509
510 ctx->allocated_vec.emplace(dst.id(), elems);
511 }
512
513 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
514 {
515 Builder bld(ctx->program, ctx->block);
516 if (!dst.id())
517 dst = bld.tmp(bld.lm);
518
519 assert(val.regClass() == s1);
520 assert(dst.regClass() == bld.lm);
521
522 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
523 }
524
525 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
526 {
527 Builder bld(ctx->program, ctx->block);
528 if (!dst.id())
529 dst = bld.tmp(s1);
530
531 assert(val.regClass() == bld.lm);
532 assert(dst.regClass() == s1);
533
534 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
535 Temp tmp = bld.tmp(s1);
536 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
537 return emit_wqm(ctx, tmp, dst);
538 }
539
540 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
541 {
542 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
543 return get_ssa_temp(ctx, src.src.ssa);
544
545 if (src.src.ssa->num_components == size) {
546 bool identity_swizzle = true;
547 for (unsigned i = 0; identity_swizzle && i < size; i++) {
548 if (src.swizzle[i] != i)
549 identity_swizzle = false;
550 }
551 if (identity_swizzle)
552 return get_ssa_temp(ctx, src.src.ssa);
553 }
554
555 Temp vec = get_ssa_temp(ctx, src.src.ssa);
556 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
557 assert(elem_size > 0);
558 assert(vec.bytes() % elem_size == 0);
559
560 if (elem_size < 4 && vec.type() == RegType::sgpr) {
561 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
562 assert(size == 1);
563 unsigned swizzle = src.swizzle[0];
564 if (vec.size() > 1) {
565 assert(src.src.ssa->bit_size == 16);
566 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
567 swizzle = swizzle & 1;
568 }
569 if (swizzle == 0)
570 return vec;
571
572 Temp dst{ctx->program->allocateId(), s1};
573 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 2)};
574 bfe->operands[0] = Operand(vec);
575 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
576 bfe->definitions[0] = Definition(dst);
577 bfe->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
578 ctx->block->instructions.emplace_back(std::move(bfe));
579 return dst;
580 }
581
582 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
583 if (size == 1) {
584 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
585 } else {
586 assert(size <= 4);
587 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
588 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
589 for (unsigned i = 0; i < size; ++i) {
590 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
591 vec_instr->operands[i] = Operand{elems[i]};
592 }
593 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
594 vec_instr->definitions[0] = Definition(dst);
595 ctx->block->instructions.emplace_back(std::move(vec_instr));
596 ctx->allocated_vec.emplace(dst.id(), elems);
597 return dst;
598 }
599 }
600
601 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
602 {
603 if (ptr.size() == 2)
604 return ptr;
605 Builder bld(ctx->program, ctx->block);
606 if (ptr.type() == RegType::vgpr)
607 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
608 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
609 ptr, Operand((unsigned)ctx->options->address32_hi));
610 }
611
612 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
613 {
614 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
615 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
616 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
617 sop2->definitions[0] = Definition(dst);
618 if (instr->no_unsigned_wrap)
619 sop2->definitions[0].setNUW(true);
620 if (writes_scc)
621 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
622 ctx->block->instructions.emplace_back(std::move(sop2));
623 }
624
625 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
626 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
627 {
628 Builder bld(ctx->program, ctx->block);
629 bld.is_precise = instr->exact;
630
631 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
632 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
633 if (src1.type() == RegType::sgpr) {
634 if (commutative && src0.type() == RegType::vgpr) {
635 Temp t = src0;
636 src0 = src1;
637 src1 = t;
638 } else {
639 src1 = as_vgpr(ctx, src1);
640 }
641 }
642
643 if (flush_denorms && ctx->program->chip_class < GFX9) {
644 assert(dst.size() == 1);
645 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
646 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
647 } else {
648 bld.vop2(op, Definition(dst), src0, src1);
649 }
650 }
651
652 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
653 aco_opcode op, Temp dst)
654 {
655 Builder bld(ctx->program, ctx->block);
656 bld.is_precise = instr->exact;
657
658 Temp src0 = get_alu_src(ctx, instr->src[0]);
659 Temp src1 = get_alu_src(ctx, instr->src[1]);
660
661 if (src1.type() == RegType::sgpr) {
662 assert(src0.type() == RegType::vgpr);
663 std::swap(src0, src1);
664 }
665
666 Temp src00 = bld.tmp(src0.type(), 1);
667 Temp src01 = bld.tmp(src0.type(), 1);
668 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
669 Temp src10 = bld.tmp(v1);
670 Temp src11 = bld.tmp(v1);
671 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
672 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
673 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
674 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
675 }
676
677 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
678 bool flush_denorms = false)
679 {
680 Temp src0 = get_alu_src(ctx, instr->src[0]);
681 Temp src1 = get_alu_src(ctx, instr->src[1]);
682 Temp src2 = get_alu_src(ctx, instr->src[2]);
683
684 /* ensure that the instruction has at most 1 sgpr operand
685 * The optimizer will inline constants for us */
686 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
687 src0 = as_vgpr(ctx, src0);
688 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
689 src1 = as_vgpr(ctx, src1);
690 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
691 src2 = as_vgpr(ctx, src2);
692
693 Builder bld(ctx->program, ctx->block);
694 bld.is_precise = instr->exact;
695 if (flush_denorms && ctx->program->chip_class < GFX9) {
696 assert(dst.size() == 1);
697 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
698 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
699 } else {
700 bld.vop3(op, Definition(dst), src0, src1, src2);
701 }
702 }
703
704 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
705 {
706 Builder bld(ctx->program, ctx->block);
707 bld.is_precise = instr->exact;
708 if (dst.type() == RegType::sgpr)
709 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
710 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
711 else
712 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
713 }
714
715 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
716 {
717 Temp src0 = get_alu_src(ctx, instr->src[0]);
718 Temp src1 = get_alu_src(ctx, instr->src[1]);
719 assert(src0.size() == src1.size());
720
721 aco_ptr<Instruction> vopc;
722 if (src1.type() == RegType::sgpr) {
723 if (src0.type() == RegType::vgpr) {
724 /* to swap the operands, we might also have to change the opcode */
725 switch (op) {
726 case aco_opcode::v_cmp_lt_f16:
727 op = aco_opcode::v_cmp_gt_f16;
728 break;
729 case aco_opcode::v_cmp_ge_f16:
730 op = aco_opcode::v_cmp_le_f16;
731 break;
732 case aco_opcode::v_cmp_lt_i16:
733 op = aco_opcode::v_cmp_gt_i16;
734 break;
735 case aco_opcode::v_cmp_ge_i16:
736 op = aco_opcode::v_cmp_le_i16;
737 break;
738 case aco_opcode::v_cmp_lt_u16:
739 op = aco_opcode::v_cmp_gt_u16;
740 break;
741 case aco_opcode::v_cmp_ge_u16:
742 op = aco_opcode::v_cmp_le_u16;
743 break;
744 case aco_opcode::v_cmp_lt_f32:
745 op = aco_opcode::v_cmp_gt_f32;
746 break;
747 case aco_opcode::v_cmp_ge_f32:
748 op = aco_opcode::v_cmp_le_f32;
749 break;
750 case aco_opcode::v_cmp_lt_i32:
751 op = aco_opcode::v_cmp_gt_i32;
752 break;
753 case aco_opcode::v_cmp_ge_i32:
754 op = aco_opcode::v_cmp_le_i32;
755 break;
756 case aco_opcode::v_cmp_lt_u32:
757 op = aco_opcode::v_cmp_gt_u32;
758 break;
759 case aco_opcode::v_cmp_ge_u32:
760 op = aco_opcode::v_cmp_le_u32;
761 break;
762 case aco_opcode::v_cmp_lt_f64:
763 op = aco_opcode::v_cmp_gt_f64;
764 break;
765 case aco_opcode::v_cmp_ge_f64:
766 op = aco_opcode::v_cmp_le_f64;
767 break;
768 case aco_opcode::v_cmp_lt_i64:
769 op = aco_opcode::v_cmp_gt_i64;
770 break;
771 case aco_opcode::v_cmp_ge_i64:
772 op = aco_opcode::v_cmp_le_i64;
773 break;
774 case aco_opcode::v_cmp_lt_u64:
775 op = aco_opcode::v_cmp_gt_u64;
776 break;
777 case aco_opcode::v_cmp_ge_u64:
778 op = aco_opcode::v_cmp_le_u64;
779 break;
780 default: /* eq and ne are commutative */
781 break;
782 }
783 Temp t = src0;
784 src0 = src1;
785 src1 = t;
786 } else {
787 src1 = as_vgpr(ctx, src1);
788 }
789 }
790
791 Builder bld(ctx->program, ctx->block);
792 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
793 }
794
795 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
796 {
797 Temp src0 = get_alu_src(ctx, instr->src[0]);
798 Temp src1 = get_alu_src(ctx, instr->src[1]);
799 Builder bld(ctx->program, ctx->block);
800
801 assert(dst.regClass() == bld.lm);
802 assert(src0.type() == RegType::sgpr);
803 assert(src1.type() == RegType::sgpr);
804 assert(src0.regClass() == src1.regClass());
805
806 /* Emit the SALU comparison instruction */
807 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
808 /* Turn the result into a per-lane bool */
809 bool_to_vector_condition(ctx, cmp, dst);
810 }
811
812 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
813 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
814 {
815 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
816 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
817 bool use_valu = s_op == aco_opcode::num_opcodes ||
818 nir_dest_is_divergent(instr->dest.dest) ||
819 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
820 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
821 aco_opcode op = use_valu ? v_op : s_op;
822 assert(op != aco_opcode::num_opcodes);
823 assert(dst.regClass() == ctx->program->lane_mask);
824
825 if (use_valu)
826 emit_vopc_instruction(ctx, instr, op, dst);
827 else
828 emit_sopc_instruction(ctx, instr, op, dst);
829 }
830
831 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
832 {
833 Builder bld(ctx->program, ctx->block);
834 Temp src0 = get_alu_src(ctx, instr->src[0]);
835 Temp src1 = get_alu_src(ctx, instr->src[1]);
836
837 assert(dst.regClass() == bld.lm);
838 assert(src0.regClass() == bld.lm);
839 assert(src1.regClass() == bld.lm);
840
841 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
842 }
843
844 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
845 {
846 Builder bld(ctx->program, ctx->block);
847 Temp cond = get_alu_src(ctx, instr->src[0]);
848 Temp then = get_alu_src(ctx, instr->src[1]);
849 Temp els = get_alu_src(ctx, instr->src[2]);
850
851 assert(cond.regClass() == bld.lm);
852
853 if (dst.type() == RegType::vgpr) {
854 aco_ptr<Instruction> bcsel;
855 if (dst.size() == 1) {
856 then = as_vgpr(ctx, then);
857 els = as_vgpr(ctx, els);
858
859 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
860 } else if (dst.size() == 2) {
861 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
862 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
863 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
864 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
865
866 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
867 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
868
869 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
870 } else {
871 fprintf(stderr, "Unimplemented NIR instr bit size: ");
872 nir_print_instr(&instr->instr, stderr);
873 fprintf(stderr, "\n");
874 }
875 return;
876 }
877
878 if (instr->dest.dest.ssa.bit_size == 1) {
879 assert(dst.regClass() == bld.lm);
880 assert(then.regClass() == bld.lm);
881 assert(els.regClass() == bld.lm);
882 }
883
884 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
885 if (dst.regClass() == s1 || dst.regClass() == s2) {
886 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
887 assert(dst.size() == then.size());
888 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
889 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
890 } else {
891 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
892 nir_print_instr(&instr->instr, stderr);
893 fprintf(stderr, "\n");
894 }
895 return;
896 }
897
898 /* divergent boolean bcsel
899 * this implements bcsel on bools: dst = s0 ? s1 : s2
900 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
901 assert(instr->dest.dest.ssa.bit_size == 1);
902
903 if (cond.id() != then.id())
904 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
905
906 if (cond.id() == els.id())
907 bld.sop1(Builder::s_mov, Definition(dst), then);
908 else
909 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
910 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
911 }
912
913 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
914 aco_opcode op, uint32_t undo)
915 {
916 /* multiply by 16777216 to handle denormals */
917 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
918 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
919 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
920 scaled = bld.vop1(op, bld.def(v1), scaled);
921 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
922
923 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
924
925 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
926 }
927
928 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
929 {
930 if (ctx->block->fp_mode.denorm32 == 0) {
931 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
932 return;
933 }
934
935 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
936 }
937
938 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
939 {
940 if (ctx->block->fp_mode.denorm32 == 0) {
941 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
942 return;
943 }
944
945 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
946 }
947
948 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
949 {
950 if (ctx->block->fp_mode.denorm32 == 0) {
951 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
952 return;
953 }
954
955 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
956 }
957
958 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
959 {
960 if (ctx->block->fp_mode.denorm32 == 0) {
961 bld.vop1(aco_opcode::v_log_f32, dst, val);
962 return;
963 }
964
965 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
966 }
967
968 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
969 {
970 if (ctx->options->chip_class >= GFX7)
971 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
972
973 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
974 /* TODO: create more efficient code! */
975 if (val.type() == RegType::sgpr)
976 val = as_vgpr(ctx, val);
977
978 /* Split the input value. */
979 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
980 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
981
982 /* Extract the exponent and compute the unbiased value. */
983 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
984 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
985
986 /* Extract the fractional part. */
987 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
988 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
989
990 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
991 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
992
993 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
994 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
995 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
996 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
997 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
998
999 /* Get the sign bit. */
1000 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
1001
1002 /* Decide the operation to apply depending on the unbiased exponent. */
1003 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
1004 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
1005 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
1006 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
1007 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
1008 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
1009
1010 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
1011 }
1012
1013 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1014 {
1015 if (ctx->options->chip_class >= GFX7)
1016 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
1017
1018 /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
1019 * lowered at NIR level for precision reasons). */
1020 Temp src0 = as_vgpr(ctx, val);
1021
1022 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
1023 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
1024
1025 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
1026 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
1027 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
1028
1029 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
1030 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
1031 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
1032 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
1033
1034 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
1035 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
1036
1037 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1038
1039 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1040 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1041
1042 return add->definitions[0].getTemp();
1043 }
1044
1045 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
1046 if (!dst.id()) {
1047 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
1048 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
1049 else
1050 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
1051 }
1052
1053 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
1054 return bld.copy(Definition(dst), src);
1055 else if (dst.bytes() < src.bytes())
1056 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
1057
1058 Temp tmp = dst;
1059 if (dst_bits == 64)
1060 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
1061
1062 if (tmp == src) {
1063 } else if (src.regClass() == s1) {
1064 if (is_signed)
1065 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
1066 else
1067 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
1068 } else if (ctx->options->chip_class >= GFX8) {
1069 assert(src_bits != 8 || src.regClass() == v1b);
1070 assert(src_bits != 16 || src.regClass() == v2b);
1071 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
1072 sdwa->operands[0] = Operand(src);
1073 sdwa->definitions[0] = Definition(tmp);
1074 if (is_signed)
1075 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
1076 else
1077 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
1078 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
1079 bld.insert(std::move(sdwa));
1080 } else {
1081 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
1082 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
1083 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
1084 }
1085
1086 if (dst_bits == 64) {
1087 if (is_signed && dst.regClass() == s2) {
1088 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
1089 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1090 } else if (is_signed && dst.regClass() == v2) {
1091 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
1092 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1093 } else {
1094 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
1095 }
1096 }
1097
1098 return dst;
1099 }
1100
1101 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1102 {
1103 if (!instr->dest.dest.is_ssa) {
1104 fprintf(stderr, "nir alu dst not in ssa: ");
1105 nir_print_instr(&instr->instr, stderr);
1106 fprintf(stderr, "\n");
1107 abort();
1108 }
1109 Builder bld(ctx->program, ctx->block);
1110 bld.is_precise = instr->exact;
1111 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1112 switch(instr->op) {
1113 case nir_op_vec2:
1114 case nir_op_vec3:
1115 case nir_op_vec4: {
1116 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1117 unsigned num = instr->dest.dest.ssa.num_components;
1118 for (unsigned i = 0; i < num; ++i)
1119 elems[i] = get_alu_src(ctx, instr->src[i]);
1120
1121 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1122 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1123 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1124 for (unsigned i = 0; i < num; ++i) {
1125 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1126 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1127 else
1128 vec->operands[i] = Operand{elems[i]};
1129 }
1130 vec->definitions[0] = Definition(dst);
1131 ctx->block->instructions.emplace_back(std::move(vec));
1132 ctx->allocated_vec.emplace(dst.id(), elems);
1133 } else {
1134 // TODO: that is a bit suboptimal..
1135 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1136 for (unsigned i = 0; i < num - 1; ++i)
1137 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1138 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1139 for (unsigned i = 0; i < num; ++i) {
1140 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1141 if (bit % 32 == 0) {
1142 elems[bit / 32] = elems[i];
1143 } else {
1144 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1145 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1146 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1147 }
1148 }
1149 if (dst.size() == 1)
1150 bld.copy(Definition(dst), elems[0]);
1151 else
1152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1153 }
1154 break;
1155 }
1156 case nir_op_mov: {
1157 Temp src = get_alu_src(ctx, instr->src[0]);
1158 aco_ptr<Instruction> mov;
1159 if (dst.type() == RegType::sgpr) {
1160 if (src.type() == RegType::vgpr)
1161 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1162 else if (src.regClass() == s1)
1163 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1164 else if (src.regClass() == s2)
1165 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1166 else
1167 unreachable("wrong src register class for nir_op_imov");
1168 } else {
1169 if (dst.regClass() == v1)
1170 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1171 else if (dst.regClass() == v1b ||
1172 dst.regClass() == v2b ||
1173 dst.regClass() == v2)
1174 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1175 else
1176 unreachable("wrong src register class for nir_op_imov");
1177 }
1178 break;
1179 }
1180 case nir_op_inot: {
1181 Temp src = get_alu_src(ctx, instr->src[0]);
1182 if (instr->dest.dest.ssa.bit_size == 1) {
1183 assert(src.regClass() == bld.lm);
1184 assert(dst.regClass() == bld.lm);
1185 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1186 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1187 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1188 } else if (dst.regClass() == v1) {
1189 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1190 } else if (dst.regClass() == v2) {
1191 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1192 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1193 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1194 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1195 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1196 } else if (dst.type() == RegType::sgpr) {
1197 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1198 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1199 } else {
1200 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1201 nir_print_instr(&instr->instr, stderr);
1202 fprintf(stderr, "\n");
1203 }
1204 break;
1205 }
1206 case nir_op_ineg: {
1207 Temp src = get_alu_src(ctx, instr->src[0]);
1208 if (dst.regClass() == v1) {
1209 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1210 } else if (dst.regClass() == s1) {
1211 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1212 } else if (dst.size() == 2) {
1213 Temp src0 = bld.tmp(dst.type(), 1);
1214 Temp src1 = bld.tmp(dst.type(), 1);
1215 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1216
1217 if (dst.regClass() == s2) {
1218 Temp carry = bld.tmp(s1);
1219 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1220 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1221 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1222 } else {
1223 Temp lower = bld.tmp(v1);
1224 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1225 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1227 }
1228 } else {
1229 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1230 nir_print_instr(&instr->instr, stderr);
1231 fprintf(stderr, "\n");
1232 }
1233 break;
1234 }
1235 case nir_op_iabs: {
1236 if (dst.regClass() == s1) {
1237 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1238 } else if (dst.regClass() == v1) {
1239 Temp src = get_alu_src(ctx, instr->src[0]);
1240 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1241 } else {
1242 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1243 nir_print_instr(&instr->instr, stderr);
1244 fprintf(stderr, "\n");
1245 }
1246 break;
1247 }
1248 case nir_op_isign: {
1249 Temp src = get_alu_src(ctx, instr->src[0]);
1250 if (dst.regClass() == s1) {
1251 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1252 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1253 } else if (dst.regClass() == s2) {
1254 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1255 Temp neqz;
1256 if (ctx->program->chip_class >= GFX8)
1257 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1258 else
1259 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1260 /* SCC gets zero-extended to 64 bit */
1261 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1262 } else if (dst.regClass() == v1) {
1263 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1264 } else if (dst.regClass() == v2) {
1265 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1266 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1267 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1268 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1269 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1270 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1271 } else {
1272 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1273 nir_print_instr(&instr->instr, stderr);
1274 fprintf(stderr, "\n");
1275 }
1276 break;
1277 }
1278 case nir_op_imax: {
1279 if (dst.regClass() == v1) {
1280 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1281 } else if (dst.regClass() == s1) {
1282 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1283 } else {
1284 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1285 nir_print_instr(&instr->instr, stderr);
1286 fprintf(stderr, "\n");
1287 }
1288 break;
1289 }
1290 case nir_op_umax: {
1291 if (dst.regClass() == v1) {
1292 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1293 } else if (dst.regClass() == s1) {
1294 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1295 } else {
1296 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1297 nir_print_instr(&instr->instr, stderr);
1298 fprintf(stderr, "\n");
1299 }
1300 break;
1301 }
1302 case nir_op_imin: {
1303 if (dst.regClass() == v1) {
1304 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1305 } else if (dst.regClass() == s1) {
1306 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1307 } else {
1308 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1309 nir_print_instr(&instr->instr, stderr);
1310 fprintf(stderr, "\n");
1311 }
1312 break;
1313 }
1314 case nir_op_umin: {
1315 if (dst.regClass() == v1) {
1316 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1317 } else if (dst.regClass() == s1) {
1318 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1319 } else {
1320 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1321 nir_print_instr(&instr->instr, stderr);
1322 fprintf(stderr, "\n");
1323 }
1324 break;
1325 }
1326 case nir_op_ior: {
1327 if (instr->dest.dest.ssa.bit_size == 1) {
1328 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1329 } else if (dst.regClass() == v1) {
1330 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1331 } else if (dst.regClass() == v2) {
1332 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1333 } else if (dst.regClass() == s1) {
1334 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1335 } else if (dst.regClass() == s2) {
1336 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1337 } else {
1338 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1339 nir_print_instr(&instr->instr, stderr);
1340 fprintf(stderr, "\n");
1341 }
1342 break;
1343 }
1344 case nir_op_iand: {
1345 if (instr->dest.dest.ssa.bit_size == 1) {
1346 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1347 } else if (dst.regClass() == v1) {
1348 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1349 } else if (dst.regClass() == v2) {
1350 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1353 } else if (dst.regClass() == s2) {
1354 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1355 } else {
1356 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1357 nir_print_instr(&instr->instr, stderr);
1358 fprintf(stderr, "\n");
1359 }
1360 break;
1361 }
1362 case nir_op_ixor: {
1363 if (instr->dest.dest.ssa.bit_size == 1) {
1364 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1365 } else if (dst.regClass() == v1) {
1366 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1367 } else if (dst.regClass() == v2) {
1368 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1369 } else if (dst.regClass() == s1) {
1370 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1371 } else if (dst.regClass() == s2) {
1372 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1373 } else {
1374 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1375 nir_print_instr(&instr->instr, stderr);
1376 fprintf(stderr, "\n");
1377 }
1378 break;
1379 }
1380 case nir_op_ushr: {
1381 if (dst.regClass() == v1) {
1382 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1383 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1384 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1385 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1386 } else if (dst.regClass() == v2) {
1387 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1388 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1389 } else if (dst.regClass() == s2) {
1390 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1391 } else if (dst.regClass() == s1) {
1392 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1393 } else {
1394 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1395 nir_print_instr(&instr->instr, stderr);
1396 fprintf(stderr, "\n");
1397 }
1398 break;
1399 }
1400 case nir_op_ishl: {
1401 if (dst.regClass() == v1) {
1402 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1403 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1404 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1405 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1406 } else if (dst.regClass() == v2) {
1407 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1408 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1409 } else if (dst.regClass() == s1) {
1410 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1411 } else if (dst.regClass() == s2) {
1412 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1413 } else {
1414 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1415 nir_print_instr(&instr->instr, stderr);
1416 fprintf(stderr, "\n");
1417 }
1418 break;
1419 }
1420 case nir_op_ishr: {
1421 if (dst.regClass() == v1) {
1422 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1423 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1424 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1425 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1426 } else if (dst.regClass() == v2) {
1427 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1429 } else if (dst.regClass() == s1) {
1430 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1431 } else if (dst.regClass() == s2) {
1432 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1433 } else {
1434 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1435 nir_print_instr(&instr->instr, stderr);
1436 fprintf(stderr, "\n");
1437 }
1438 break;
1439 }
1440 case nir_op_find_lsb: {
1441 Temp src = get_alu_src(ctx, instr->src[0]);
1442 if (src.regClass() == s1) {
1443 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1444 } else if (src.regClass() == v1) {
1445 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1446 } else if (src.regClass() == s2) {
1447 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1448 } else {
1449 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1450 nir_print_instr(&instr->instr, stderr);
1451 fprintf(stderr, "\n");
1452 }
1453 break;
1454 }
1455 case nir_op_ufind_msb:
1456 case nir_op_ifind_msb: {
1457 Temp src = get_alu_src(ctx, instr->src[0]);
1458 if (src.regClass() == s1 || src.regClass() == s2) {
1459 aco_opcode op = src.regClass() == s2 ?
1460 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1461 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1462 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1463
1464 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1465 Operand(src.size() * 32u - 1u), msb_rev);
1466 Temp msb = sub.def(0).getTemp();
1467 Temp carry = sub.def(1).getTemp();
1468
1469 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1470 } else if (src.regClass() == v1) {
1471 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1472 Temp msb_rev = bld.tmp(v1);
1473 emit_vop1_instruction(ctx, instr, op, msb_rev);
1474 Temp msb = bld.tmp(v1);
1475 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1476 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1477 } else {
1478 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1479 nir_print_instr(&instr->instr, stderr);
1480 fprintf(stderr, "\n");
1481 }
1482 break;
1483 }
1484 case nir_op_bitfield_reverse: {
1485 if (dst.regClass() == s1) {
1486 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1487 } else if (dst.regClass() == v1) {
1488 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1489 } else {
1490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1491 nir_print_instr(&instr->instr, stderr);
1492 fprintf(stderr, "\n");
1493 }
1494 break;
1495 }
1496 case nir_op_iadd: {
1497 if (dst.regClass() == s1) {
1498 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1499 break;
1500 }
1501
1502 Temp src0 = get_alu_src(ctx, instr->src[0]);
1503 Temp src1 = get_alu_src(ctx, instr->src[1]);
1504 if (dst.regClass() == v1) {
1505 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1506 break;
1507 }
1508
1509 assert(src0.size() == 2 && src1.size() == 2);
1510 Temp src00 = bld.tmp(src0.type(), 1);
1511 Temp src01 = bld.tmp(dst.type(), 1);
1512 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1513 Temp src10 = bld.tmp(src1.type(), 1);
1514 Temp src11 = bld.tmp(dst.type(), 1);
1515 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1516
1517 if (dst.regClass() == s2) {
1518 Temp carry = bld.tmp(s1);
1519 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1520 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1521 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1522 } else if (dst.regClass() == v2) {
1523 Temp dst0 = bld.tmp(v1);
1524 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1525 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1526 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1527 } else {
1528 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1529 nir_print_instr(&instr->instr, stderr);
1530 fprintf(stderr, "\n");
1531 }
1532 break;
1533 }
1534 case nir_op_uadd_sat: {
1535 Temp src0 = get_alu_src(ctx, instr->src[0]);
1536 Temp src1 = get_alu_src(ctx, instr->src[1]);
1537 if (dst.regClass() == s1) {
1538 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1539 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1540 src0, src1);
1541 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1542 } else if (dst.regClass() == v1) {
1543 if (ctx->options->chip_class >= GFX9) {
1544 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1545 add->operands[0] = Operand(src0);
1546 add->operands[1] = Operand(src1);
1547 add->definitions[0] = Definition(dst);
1548 add->clamp = 1;
1549 ctx->block->instructions.emplace_back(std::move(add));
1550 } else {
1551 if (src1.regClass() != v1)
1552 std::swap(src0, src1);
1553 assert(src1.regClass() == v1);
1554 Temp tmp = bld.tmp(v1);
1555 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1556 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1557 }
1558 } else {
1559 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1560 nir_print_instr(&instr->instr, stderr);
1561 fprintf(stderr, "\n");
1562 }
1563 break;
1564 }
1565 case nir_op_uadd_carry: {
1566 Temp src0 = get_alu_src(ctx, instr->src[0]);
1567 Temp src1 = get_alu_src(ctx, instr->src[1]);
1568 if (dst.regClass() == s1) {
1569 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1570 break;
1571 }
1572 if (dst.regClass() == v1) {
1573 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1574 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1575 break;
1576 }
1577
1578 Temp src00 = bld.tmp(src0.type(), 1);
1579 Temp src01 = bld.tmp(dst.type(), 1);
1580 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1581 Temp src10 = bld.tmp(src1.type(), 1);
1582 Temp src11 = bld.tmp(dst.type(), 1);
1583 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1584 if (dst.regClass() == s2) {
1585 Temp carry = bld.tmp(s1);
1586 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1587 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1589 } else if (dst.regClass() == v2) {
1590 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1591 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1592 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1593 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1594 } else {
1595 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1596 nir_print_instr(&instr->instr, stderr);
1597 fprintf(stderr, "\n");
1598 }
1599 break;
1600 }
1601 case nir_op_isub: {
1602 if (dst.regClass() == s1) {
1603 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1604 break;
1605 }
1606
1607 Temp src0 = get_alu_src(ctx, instr->src[0]);
1608 Temp src1 = get_alu_src(ctx, instr->src[1]);
1609 if (dst.regClass() == v1) {
1610 bld.vsub32(Definition(dst), src0, src1);
1611 break;
1612 }
1613
1614 Temp src00 = bld.tmp(src0.type(), 1);
1615 Temp src01 = bld.tmp(dst.type(), 1);
1616 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1617 Temp src10 = bld.tmp(src1.type(), 1);
1618 Temp src11 = bld.tmp(dst.type(), 1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1620 if (dst.regClass() == s2) {
1621 Temp carry = bld.tmp(s1);
1622 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1623 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1624 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1625 } else if (dst.regClass() == v2) {
1626 Temp lower = bld.tmp(v1);
1627 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1628 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1629 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1630 } else {
1631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1632 nir_print_instr(&instr->instr, stderr);
1633 fprintf(stderr, "\n");
1634 }
1635 break;
1636 }
1637 case nir_op_usub_borrow: {
1638 Temp src0 = get_alu_src(ctx, instr->src[0]);
1639 Temp src1 = get_alu_src(ctx, instr->src[1]);
1640 if (dst.regClass() == s1) {
1641 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1642 break;
1643 } else if (dst.regClass() == v1) {
1644 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1645 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1646 break;
1647 }
1648
1649 Temp src00 = bld.tmp(src0.type(), 1);
1650 Temp src01 = bld.tmp(dst.type(), 1);
1651 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1652 Temp src10 = bld.tmp(src1.type(), 1);
1653 Temp src11 = bld.tmp(dst.type(), 1);
1654 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1655 if (dst.regClass() == s2) {
1656 Temp borrow = bld.tmp(s1);
1657 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1658 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1659 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1660 } else if (dst.regClass() == v2) {
1661 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1662 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1663 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1664 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1665 } else {
1666 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1667 nir_print_instr(&instr->instr, stderr);
1668 fprintf(stderr, "\n");
1669 }
1670 break;
1671 }
1672 case nir_op_imul: {
1673 if (dst.regClass() == v1) {
1674 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1675 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1676 } else if (dst.regClass() == s1) {
1677 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1678 } else {
1679 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1680 nir_print_instr(&instr->instr, stderr);
1681 fprintf(stderr, "\n");
1682 }
1683 break;
1684 }
1685 case nir_op_umul_high: {
1686 if (dst.regClass() == v1) {
1687 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1688 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1689 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1690 } else if (dst.regClass() == s1) {
1691 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1692 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1693 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1694 } else {
1695 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1696 nir_print_instr(&instr->instr, stderr);
1697 fprintf(stderr, "\n");
1698 }
1699 break;
1700 }
1701 case nir_op_imul_high: {
1702 if (dst.regClass() == v1) {
1703 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1704 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1705 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1706 } else if (dst.regClass() == s1) {
1707 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1708 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1709 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1710 } else {
1711 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1712 nir_print_instr(&instr->instr, stderr);
1713 fprintf(stderr, "\n");
1714 }
1715 break;
1716 }
1717 case nir_op_fmul: {
1718 Temp src0 = get_alu_src(ctx, instr->src[0]);
1719 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1720 if (dst.regClass() == v2b) {
1721 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1722 } else if (dst.regClass() == v1) {
1723 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1724 } else if (dst.regClass() == v2) {
1725 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1726 } else {
1727 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1728 nir_print_instr(&instr->instr, stderr);
1729 fprintf(stderr, "\n");
1730 }
1731 break;
1732 }
1733 case nir_op_fadd: {
1734 Temp src0 = get_alu_src(ctx, instr->src[0]);
1735 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1736 if (dst.regClass() == v2b) {
1737 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1738 } else if (dst.regClass() == v1) {
1739 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1740 } else if (dst.regClass() == v2) {
1741 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1742 } else {
1743 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1744 nir_print_instr(&instr->instr, stderr);
1745 fprintf(stderr, "\n");
1746 }
1747 break;
1748 }
1749 case nir_op_fsub: {
1750 Temp src0 = get_alu_src(ctx, instr->src[0]);
1751 Temp src1 = get_alu_src(ctx, instr->src[1]);
1752 if (dst.regClass() == v2b) {
1753 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1754 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1755 else
1756 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1757 } else if (dst.regClass() == v1) {
1758 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1759 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1760 else
1761 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1762 } else if (dst.regClass() == v2) {
1763 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1764 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1765 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1766 sub->neg[1] = true;
1767 } else {
1768 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1769 nir_print_instr(&instr->instr, stderr);
1770 fprintf(stderr, "\n");
1771 }
1772 break;
1773 }
1774 case nir_op_fmax: {
1775 Temp src0 = get_alu_src(ctx, instr->src[0]);
1776 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1777 if (dst.regClass() == v2b) {
1778 // TODO: check fp_mode.must_flush_denorms16_64
1779 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1780 } else if (dst.regClass() == v1) {
1781 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1782 } else if (dst.regClass() == v2) {
1783 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1784 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1785 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1786 } else {
1787 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1788 }
1789 } else {
1790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1791 nir_print_instr(&instr->instr, stderr);
1792 fprintf(stderr, "\n");
1793 }
1794 break;
1795 }
1796 case nir_op_fmin: {
1797 Temp src0 = get_alu_src(ctx, instr->src[0]);
1798 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1799 if (dst.regClass() == v2b) {
1800 // TODO: check fp_mode.must_flush_denorms16_64
1801 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1802 } else if (dst.regClass() == v1) {
1803 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1804 } else if (dst.regClass() == v2) {
1805 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1806 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1807 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1808 } else {
1809 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1810 }
1811 } else {
1812 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1813 nir_print_instr(&instr->instr, stderr);
1814 fprintf(stderr, "\n");
1815 }
1816 break;
1817 }
1818 case nir_op_fmax3: {
1819 if (dst.regClass() == v2b) {
1820 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, dst, false);
1821 } else if (dst.regClass() == v1) {
1822 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1823 } else {
1824 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1825 nir_print_instr(&instr->instr, stderr);
1826 fprintf(stderr, "\n");
1827 }
1828 break;
1829 }
1830 case nir_op_fmin3: {
1831 if (dst.regClass() == v2b) {
1832 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, dst, false);
1833 } else if (dst.regClass() == v1) {
1834 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1835 } else {
1836 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1837 nir_print_instr(&instr->instr, stderr);
1838 fprintf(stderr, "\n");
1839 }
1840 break;
1841 }
1842 case nir_op_fmed3: {
1843 if (dst.regClass() == v2b) {
1844 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, dst, false);
1845 } else if (dst.regClass() == v1) {
1846 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1847 } else {
1848 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1849 nir_print_instr(&instr->instr, stderr);
1850 fprintf(stderr, "\n");
1851 }
1852 break;
1853 }
1854 case nir_op_umax3: {
1855 if (dst.size() == 1) {
1856 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1857 } else {
1858 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1859 nir_print_instr(&instr->instr, stderr);
1860 fprintf(stderr, "\n");
1861 }
1862 break;
1863 }
1864 case nir_op_umin3: {
1865 if (dst.size() == 1) {
1866 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1867 } else {
1868 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1869 nir_print_instr(&instr->instr, stderr);
1870 fprintf(stderr, "\n");
1871 }
1872 break;
1873 }
1874 case nir_op_umed3: {
1875 if (dst.size() == 1) {
1876 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1877 } else {
1878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1879 nir_print_instr(&instr->instr, stderr);
1880 fprintf(stderr, "\n");
1881 }
1882 break;
1883 }
1884 case nir_op_imax3: {
1885 if (dst.size() == 1) {
1886 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1887 } else {
1888 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1889 nir_print_instr(&instr->instr, stderr);
1890 fprintf(stderr, "\n");
1891 }
1892 break;
1893 }
1894 case nir_op_imin3: {
1895 if (dst.size() == 1) {
1896 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1897 } else {
1898 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1899 nir_print_instr(&instr->instr, stderr);
1900 fprintf(stderr, "\n");
1901 }
1902 break;
1903 }
1904 case nir_op_imed3: {
1905 if (dst.size() == 1) {
1906 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1907 } else {
1908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1909 nir_print_instr(&instr->instr, stderr);
1910 fprintf(stderr, "\n");
1911 }
1912 break;
1913 }
1914 case nir_op_cube_face_coord: {
1915 Temp in = get_alu_src(ctx, instr->src[0], 3);
1916 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1917 emit_extract_vector(ctx, in, 1, v1),
1918 emit_extract_vector(ctx, in, 2, v1) };
1919 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1920 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1921 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1922 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1923 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1924 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1925 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1926 break;
1927 }
1928 case nir_op_cube_face_index: {
1929 Temp in = get_alu_src(ctx, instr->src[0], 3);
1930 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1931 emit_extract_vector(ctx, in, 1, v1),
1932 emit_extract_vector(ctx, in, 2, v1) };
1933 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1934 break;
1935 }
1936 case nir_op_bcsel: {
1937 emit_bcsel(ctx, instr, dst);
1938 break;
1939 }
1940 case nir_op_frsq: {
1941 Temp src = get_alu_src(ctx, instr->src[0]);
1942 if (dst.regClass() == v2b) {
1943 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1944 } else if (dst.regClass() == v1) {
1945 emit_rsq(ctx, bld, Definition(dst), src);
1946 } else if (dst.regClass() == v2) {
1947 /* Lowered at NIR level for precision reasons. */
1948 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1949 } else {
1950 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1951 nir_print_instr(&instr->instr, stderr);
1952 fprintf(stderr, "\n");
1953 }
1954 break;
1955 }
1956 case nir_op_fneg: {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 if (dst.regClass() == v2b) {
1959 if (ctx->block->fp_mode.must_flush_denorms16_64)
1960 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1961 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1962 } else if (dst.regClass() == v1) {
1963 if (ctx->block->fp_mode.must_flush_denorms32)
1964 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1965 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1966 } else if (dst.regClass() == v2) {
1967 if (ctx->block->fp_mode.must_flush_denorms16_64)
1968 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1969 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1970 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1971 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1972 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1973 } else {
1974 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1975 nir_print_instr(&instr->instr, stderr);
1976 fprintf(stderr, "\n");
1977 }
1978 break;
1979 }
1980 case nir_op_fabs: {
1981 Temp src = get_alu_src(ctx, instr->src[0]);
1982 if (dst.regClass() == v2b) {
1983 if (ctx->block->fp_mode.must_flush_denorms16_64)
1984 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1985 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1986 } else if (dst.regClass() == v1) {
1987 if (ctx->block->fp_mode.must_flush_denorms32)
1988 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1989 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1990 } else if (dst.regClass() == v2) {
1991 if (ctx->block->fp_mode.must_flush_denorms16_64)
1992 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1993 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1994 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1995 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1996 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1997 } else {
1998 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1999 nir_print_instr(&instr->instr, stderr);
2000 fprintf(stderr, "\n");
2001 }
2002 break;
2003 }
2004 case nir_op_fsat: {
2005 Temp src = get_alu_src(ctx, instr->src[0]);
2006 if (dst.regClass() == v2b) {
2007 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
2008 } else if (dst.regClass() == v1) {
2009 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2010 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
2011 // TODO: confirm that this holds under any circumstances
2012 } else if (dst.regClass() == v2) {
2013 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
2014 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
2015 vop3->clamp = true;
2016 } else {
2017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2018 nir_print_instr(&instr->instr, stderr);
2019 fprintf(stderr, "\n");
2020 }
2021 break;
2022 }
2023 case nir_op_flog2: {
2024 Temp src = get_alu_src(ctx, instr->src[0]);
2025 if (dst.regClass() == v2b) {
2026 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
2027 } else if (dst.regClass() == v1) {
2028 emit_log2(ctx, bld, Definition(dst), src);
2029 } else {
2030 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2031 nir_print_instr(&instr->instr, stderr);
2032 fprintf(stderr, "\n");
2033 }
2034 break;
2035 }
2036 case nir_op_frcp: {
2037 Temp src = get_alu_src(ctx, instr->src[0]);
2038 if (dst.regClass() == v2b) {
2039 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
2040 } else if (dst.regClass() == v1) {
2041 emit_rcp(ctx, bld, Definition(dst), src);
2042 } else if (dst.regClass() == v2) {
2043 /* Lowered at NIR level for precision reasons. */
2044 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
2045 } else {
2046 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2047 nir_print_instr(&instr->instr, stderr);
2048 fprintf(stderr, "\n");
2049 }
2050 break;
2051 }
2052 case nir_op_fexp2: {
2053 if (dst.regClass() == v2b) {
2054 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
2055 } else if (dst.regClass() == v1) {
2056 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
2057 } else {
2058 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2059 nir_print_instr(&instr->instr, stderr);
2060 fprintf(stderr, "\n");
2061 }
2062 break;
2063 }
2064 case nir_op_fsqrt: {
2065 Temp src = get_alu_src(ctx, instr->src[0]);
2066 if (dst.regClass() == v2b) {
2067 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
2068 } else if (dst.regClass() == v1) {
2069 emit_sqrt(ctx, bld, Definition(dst), src);
2070 } else if (dst.regClass() == v2) {
2071 /* Lowered at NIR level for precision reasons. */
2072 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
2073 } else {
2074 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2075 nir_print_instr(&instr->instr, stderr);
2076 fprintf(stderr, "\n");
2077 }
2078 break;
2079 }
2080 case nir_op_ffract: {
2081 if (dst.regClass() == v2b) {
2082 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
2083 } else if (dst.regClass() == v1) {
2084 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
2085 } else if (dst.regClass() == v2) {
2086 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_ffloor: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (dst.regClass() == v2b) {
2097 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
2098 } else if (dst.regClass() == v1) {
2099 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
2100 } else if (dst.regClass() == v2) {
2101 emit_floor_f64(ctx, bld, Definition(dst), src);
2102 } else {
2103 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2104 nir_print_instr(&instr->instr, stderr);
2105 fprintf(stderr, "\n");
2106 }
2107 break;
2108 }
2109 case nir_op_fceil: {
2110 Temp src0 = get_alu_src(ctx, instr->src[0]);
2111 if (dst.regClass() == v2b) {
2112 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
2113 } else if (dst.regClass() == v1) {
2114 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2115 } else if (dst.regClass() == v2) {
2116 if (ctx->options->chip_class >= GFX7) {
2117 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2118 } else {
2119 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2120 /* trunc = trunc(src0)
2121 * if (src0 > 0.0 && src0 != trunc)
2122 * trunc += 1.0
2123 */
2124 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2125 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2126 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2127 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2128 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2129 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2130 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2131 }
2132 } else {
2133 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2134 nir_print_instr(&instr->instr, stderr);
2135 fprintf(stderr, "\n");
2136 }
2137 break;
2138 }
2139 case nir_op_ftrunc: {
2140 Temp src = get_alu_src(ctx, instr->src[0]);
2141 if (dst.regClass() == v2b) {
2142 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2143 } else if (dst.regClass() == v1) {
2144 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2145 } else if (dst.regClass() == v2) {
2146 emit_trunc_f64(ctx, bld, Definition(dst), src);
2147 } else {
2148 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2149 nir_print_instr(&instr->instr, stderr);
2150 fprintf(stderr, "\n");
2151 }
2152 break;
2153 }
2154 case nir_op_fround_even: {
2155 Temp src0 = get_alu_src(ctx, instr->src[0]);
2156 if (dst.regClass() == v2b) {
2157 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2158 } else if (dst.regClass() == v1) {
2159 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2160 } else if (dst.regClass() == v2) {
2161 if (ctx->options->chip_class >= GFX7) {
2162 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2163 } else {
2164 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2165 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2166 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2167
2168 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2169 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2170 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2171 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2172 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2173 tmp = sub->definitions[0].getTemp();
2174
2175 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2176 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2177 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2178 Temp cond = vop3->definitions[0].getTemp();
2179
2180 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2181 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2182 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2183 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2184
2185 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2186 }
2187 } else {
2188 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2189 nir_print_instr(&instr->instr, stderr);
2190 fprintf(stderr, "\n");
2191 }
2192 break;
2193 }
2194 case nir_op_fsin:
2195 case nir_op_fcos: {
2196 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2197 aco_ptr<Instruction> norm;
2198 if (dst.regClass() == v2b) {
2199 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2200 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2201 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2202 bld.vop1(opcode, Definition(dst), tmp);
2203 } else if (dst.regClass() == v1) {
2204 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2205 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2206
2207 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2208 if (ctx->options->chip_class < GFX9)
2209 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2210
2211 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2212 bld.vop1(opcode, Definition(dst), tmp);
2213 } else {
2214 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2215 nir_print_instr(&instr->instr, stderr);
2216 fprintf(stderr, "\n");
2217 }
2218 break;
2219 }
2220 case nir_op_ldexp: {
2221 Temp src0 = get_alu_src(ctx, instr->src[0]);
2222 Temp src1 = get_alu_src(ctx, instr->src[1]);
2223 if (dst.regClass() == v2b) {
2224 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2225 } else if (dst.regClass() == v1) {
2226 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2227 } else if (dst.regClass() == v2) {
2228 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2229 } else {
2230 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2231 nir_print_instr(&instr->instr, stderr);
2232 fprintf(stderr, "\n");
2233 }
2234 break;
2235 }
2236 case nir_op_frexp_sig: {
2237 Temp src = get_alu_src(ctx, instr->src[0]);
2238 if (dst.regClass() == v2b) {
2239 bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
2240 } else if (dst.regClass() == v1) {
2241 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2242 } else if (dst.regClass() == v2) {
2243 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2244 } else {
2245 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2246 nir_print_instr(&instr->instr, stderr);
2247 fprintf(stderr, "\n");
2248 }
2249 break;
2250 }
2251 case nir_op_frexp_exp: {
2252 Temp src = get_alu_src(ctx, instr->src[0]);
2253 if (instr->src[0].src.ssa->bit_size == 16) {
2254 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2255 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2256 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2257 } else if (instr->src[0].src.ssa->bit_size == 32) {
2258 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2259 } else if (instr->src[0].src.ssa->bit_size == 64) {
2260 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2261 } else {
2262 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2263 nir_print_instr(&instr->instr, stderr);
2264 fprintf(stderr, "\n");
2265 }
2266 break;
2267 }
2268 case nir_op_fsign: {
2269 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2270 if (dst.regClass() == v2b) {
2271 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2272 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2273 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2274 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2275 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2276 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
2277 } else if (dst.regClass() == v1) {
2278 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2279 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2280 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2281 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2282 } else if (dst.regClass() == v2) {
2283 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2284 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2285 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2286
2287 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2288 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2289 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2290
2291 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2292 } else {
2293 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2294 nir_print_instr(&instr->instr, stderr);
2295 fprintf(stderr, "\n");
2296 }
2297 break;
2298 }
2299 case nir_op_f2f16:
2300 case nir_op_f2f16_rtne: {
2301 Temp src = get_alu_src(ctx, instr->src[0]);
2302 if (instr->src[0].src.ssa->bit_size == 64)
2303 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2304 if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
2305 /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
2306 * keep value numbering and the scheduler simpler.
2307 */
2308 bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
2309 else
2310 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2311 break;
2312 }
2313 case nir_op_f2f16_rtz: {
2314 Temp src = get_alu_src(ctx, instr->src[0]);
2315 if (instr->src[0].src.ssa->bit_size == 64)
2316 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2317 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
2318 break;
2319 }
2320 case nir_op_f2f32: {
2321 if (instr->src[0].src.ssa->bit_size == 16) {
2322 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2323 } else if (instr->src[0].src.ssa->bit_size == 64) {
2324 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2325 } else {
2326 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2327 nir_print_instr(&instr->instr, stderr);
2328 fprintf(stderr, "\n");
2329 }
2330 break;
2331 }
2332 case nir_op_f2f64: {
2333 Temp src = get_alu_src(ctx, instr->src[0]);
2334 if (instr->src[0].src.ssa->bit_size == 16)
2335 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2336 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2337 break;
2338 }
2339 case nir_op_i2f16: {
2340 assert(dst.regClass() == v2b);
2341 Temp src = get_alu_src(ctx, instr->src[0]);
2342 if (instr->src[0].src.ssa->bit_size == 8)
2343 src = convert_int(ctx, bld, src, 8, 16, true);
2344 else if (instr->src[0].src.ssa->bit_size == 64)
2345 src = convert_int(ctx, bld, src, 64, 32, false);
2346 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2347 break;
2348 }
2349 case nir_op_i2f32: {
2350 assert(dst.size() == 1);
2351 Temp src = get_alu_src(ctx, instr->src[0]);
2352 if (instr->src[0].src.ssa->bit_size <= 16)
2353 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2354 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2355 break;
2356 }
2357 case nir_op_i2f64: {
2358 if (instr->src[0].src.ssa->bit_size <= 32) {
2359 Temp src = get_alu_src(ctx, instr->src[0]);
2360 if (instr->src[0].src.ssa->bit_size <= 16)
2361 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2362 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2363 } else if (instr->src[0].src.ssa->bit_size == 64) {
2364 Temp src = get_alu_src(ctx, instr->src[0]);
2365 RegClass rc = RegClass(src.type(), 1);
2366 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2367 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2368 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2369 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2370 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2371 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2372
2373 } else {
2374 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2375 nir_print_instr(&instr->instr, stderr);
2376 fprintf(stderr, "\n");
2377 }
2378 break;
2379 }
2380 case nir_op_u2f16: {
2381 assert(dst.regClass() == v2b);
2382 Temp src = get_alu_src(ctx, instr->src[0]);
2383 if (instr->src[0].src.ssa->bit_size == 8)
2384 src = convert_int(ctx, bld, src, 8, 16, false);
2385 else if (instr->src[0].src.ssa->bit_size == 64)
2386 src = convert_int(ctx, bld, src, 64, 32, false);
2387 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2388 break;
2389 }
2390 case nir_op_u2f32: {
2391 assert(dst.size() == 1);
2392 Temp src = get_alu_src(ctx, instr->src[0]);
2393 if (instr->src[0].src.ssa->bit_size == 8) {
2394 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2395 } else {
2396 if (instr->src[0].src.ssa->bit_size == 16)
2397 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2398 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2399 }
2400 break;
2401 }
2402 case nir_op_u2f64: {
2403 if (instr->src[0].src.ssa->bit_size <= 32) {
2404 Temp src = get_alu_src(ctx, instr->src[0]);
2405 if (instr->src[0].src.ssa->bit_size <= 16)
2406 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2407 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2408 } else if (instr->src[0].src.ssa->bit_size == 64) {
2409 Temp src = get_alu_src(ctx, instr->src[0]);
2410 RegClass rc = RegClass(src.type(), 1);
2411 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2412 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2413 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2414 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2415 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2416 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2417 } else {
2418 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2419 nir_print_instr(&instr->instr, stderr);
2420 fprintf(stderr, "\n");
2421 }
2422 break;
2423 }
2424 case nir_op_f2i8:
2425 case nir_op_f2i16: {
2426 if (instr->src[0].src.ssa->bit_size == 16)
2427 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2428 else if (instr->src[0].src.ssa->bit_size == 32)
2429 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2430 else
2431 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2432 break;
2433 }
2434 case nir_op_f2u8:
2435 case nir_op_f2u16: {
2436 if (instr->src[0].src.ssa->bit_size == 16)
2437 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2438 else if (instr->src[0].src.ssa->bit_size == 32)
2439 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2440 else
2441 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2442 break;
2443 }
2444 case nir_op_f2i32: {
2445 Temp src = get_alu_src(ctx, instr->src[0]);
2446 if (instr->src[0].src.ssa->bit_size == 16) {
2447 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2448 if (dst.type() == RegType::vgpr) {
2449 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2450 } else {
2451 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2452 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2453 }
2454 } else if (instr->src[0].src.ssa->bit_size == 32) {
2455 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2456 } else if (instr->src[0].src.ssa->bit_size == 64) {
2457 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2458 } else {
2459 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2460 nir_print_instr(&instr->instr, stderr);
2461 fprintf(stderr, "\n");
2462 }
2463 break;
2464 }
2465 case nir_op_f2u32: {
2466 Temp src = get_alu_src(ctx, instr->src[0]);
2467 if (instr->src[0].src.ssa->bit_size == 16) {
2468 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2469 if (dst.type() == RegType::vgpr) {
2470 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2471 } else {
2472 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2473 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2474 }
2475 } else if (instr->src[0].src.ssa->bit_size == 32) {
2476 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2477 } else if (instr->src[0].src.ssa->bit_size == 64) {
2478 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2479 } else {
2480 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2481 nir_print_instr(&instr->instr, stderr);
2482 fprintf(stderr, "\n");
2483 }
2484 break;
2485 }
2486 case nir_op_f2i64: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (instr->src[0].src.ssa->bit_size == 16)
2489 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2490
2491 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2492 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2493 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2494 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2495 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2496 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2497 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2498 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2499 Temp new_exponent = bld.tmp(v1);
2500 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2501 if (ctx->program->chip_class >= GFX8)
2502 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2503 else
2504 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2505 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2506 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2507 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2508 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2509 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2510 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2511 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2512 Temp new_lower = bld.tmp(v1);
2513 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2514 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2515 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2516
2517 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2518 if (src.type() == RegType::vgpr)
2519 src = bld.as_uniform(src);
2520 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2521 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2522 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2523 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2524 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2525 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2526 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2527 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2528 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2529 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2530 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2531 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2532 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2533 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2534 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2535 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2536 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2537 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2538 Temp borrow = bld.tmp(s1);
2539 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2540 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2541 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2542
2543 } else if (instr->src[0].src.ssa->bit_size == 64) {
2544 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2545 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2546 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2547 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2548 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2549 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2550 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2551 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2552 if (dst.type() == RegType::sgpr) {
2553 lower = bld.as_uniform(lower);
2554 upper = bld.as_uniform(upper);
2555 }
2556 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2557
2558 } else {
2559 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2560 nir_print_instr(&instr->instr, stderr);
2561 fprintf(stderr, "\n");
2562 }
2563 break;
2564 }
2565 case nir_op_f2u64: {
2566 Temp src = get_alu_src(ctx, instr->src[0]);
2567 if (instr->src[0].src.ssa->bit_size == 16)
2568 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2569
2570 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2571 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2572 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2573 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2574 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2575 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2576 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2577 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2578 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2579 Temp new_exponent = bld.tmp(v1);
2580 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2581 if (ctx->program->chip_class >= GFX8)
2582 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2583 else
2584 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2585 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2586 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2587 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2588 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2589 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2590 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2591 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2592
2593 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2594 if (src.type() == RegType::vgpr)
2595 src = bld.as_uniform(src);
2596 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2597 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2598 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2599 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2600 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2601 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2602 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2603 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2604 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2605 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2606 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2607 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2608 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2609 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2610 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2611 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2612 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2613 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2614
2615 } else if (instr->src[0].src.ssa->bit_size == 64) {
2616 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2617 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2618 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2619 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2620 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2621 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2622 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2623 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2624 if (dst.type() == RegType::sgpr) {
2625 lower = bld.as_uniform(lower);
2626 upper = bld.as_uniform(upper);
2627 }
2628 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2629
2630 } else {
2631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2632 nir_print_instr(&instr->instr, stderr);
2633 fprintf(stderr, "\n");
2634 }
2635 break;
2636 }
2637 case nir_op_b2f16: {
2638 Temp src = get_alu_src(ctx, instr->src[0]);
2639 assert(src.regClass() == bld.lm);
2640
2641 if (dst.regClass() == s1) {
2642 src = bool_to_scalar_condition(ctx, src);
2643 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2644 } else if (dst.regClass() == v2b) {
2645 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2646 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2647 } else {
2648 unreachable("Wrong destination register class for nir_op_b2f16.");
2649 }
2650 break;
2651 }
2652 case nir_op_b2f32: {
2653 Temp src = get_alu_src(ctx, instr->src[0]);
2654 assert(src.regClass() == bld.lm);
2655
2656 if (dst.regClass() == s1) {
2657 src = bool_to_scalar_condition(ctx, src);
2658 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2659 } else if (dst.regClass() == v1) {
2660 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2661 } else {
2662 unreachable("Wrong destination register class for nir_op_b2f32.");
2663 }
2664 break;
2665 }
2666 case nir_op_b2f64: {
2667 Temp src = get_alu_src(ctx, instr->src[0]);
2668 assert(src.regClass() == bld.lm);
2669
2670 if (dst.regClass() == s2) {
2671 src = bool_to_scalar_condition(ctx, src);
2672 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2673 } else if (dst.regClass() == v2) {
2674 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2675 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2676 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2677 } else {
2678 unreachable("Wrong destination register class for nir_op_b2f64.");
2679 }
2680 break;
2681 }
2682 case nir_op_i2i8:
2683 case nir_op_i2i16:
2684 case nir_op_i2i32:
2685 case nir_op_i2i64: {
2686 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2687 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2688 break;
2689 }
2690 case nir_op_u2u8:
2691 case nir_op_u2u16:
2692 case nir_op_u2u32:
2693 case nir_op_u2u64: {
2694 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2695 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2696 break;
2697 }
2698 case nir_op_b2b32:
2699 case nir_op_b2i8:
2700 case nir_op_b2i16:
2701 case nir_op_b2i32:
2702 case nir_op_b2i64: {
2703 Temp src = get_alu_src(ctx, instr->src[0]);
2704 assert(src.regClass() == bld.lm);
2705
2706 Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst;
2707 if (tmp.regClass() == s1) {
2708 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2709 bool_to_scalar_condition(ctx, src, tmp);
2710 } else if (tmp.type() == RegType::vgpr) {
2711 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src);
2712 } else {
2713 unreachable("Invalid register class for b2i32");
2714 }
2715
2716 if (tmp != dst)
2717 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
2718 break;
2719 }
2720 case nir_op_b2b1:
2721 case nir_op_i2b1: {
2722 Temp src = get_alu_src(ctx, instr->src[0]);
2723 assert(dst.regClass() == bld.lm);
2724
2725 if (src.type() == RegType::vgpr) {
2726 assert(src.regClass() == v1 || src.regClass() == v2);
2727 assert(dst.regClass() == bld.lm);
2728 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2729 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2730 } else {
2731 assert(src.regClass() == s1 || src.regClass() == s2);
2732 Temp tmp;
2733 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2734 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2735 } else {
2736 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2737 bld.scc(bld.def(s1)), Operand(0u), src);
2738 }
2739 bool_to_vector_condition(ctx, tmp, dst);
2740 }
2741 break;
2742 }
2743 case nir_op_pack_64_2x32_split: {
2744 Temp src0 = get_alu_src(ctx, instr->src[0]);
2745 Temp src1 = get_alu_src(ctx, instr->src[1]);
2746
2747 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2748 break;
2749 }
2750 case nir_op_unpack_64_2x32_split_x:
2751 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2752 break;
2753 case nir_op_unpack_64_2x32_split_y:
2754 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2755 break;
2756 case nir_op_unpack_32_2x16_split_x:
2757 if (dst.type() == RegType::vgpr) {
2758 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2759 } else {
2760 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2761 }
2762 break;
2763 case nir_op_unpack_32_2x16_split_y:
2764 if (dst.type() == RegType::vgpr) {
2765 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2766 } else {
2767 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2768 }
2769 break;
2770 case nir_op_pack_32_2x16_split: {
2771 Temp src0 = get_alu_src(ctx, instr->src[0]);
2772 Temp src1 = get_alu_src(ctx, instr->src[1]);
2773 if (dst.regClass() == v1) {
2774 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2775 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2776 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2777 } else {
2778 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2779 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2780 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2781 }
2782 break;
2783 }
2784 case nir_op_pack_half_2x16: {
2785 Temp src = get_alu_src(ctx, instr->src[0], 2);
2786
2787 if (dst.regClass() == v1) {
2788 Temp src0 = bld.tmp(v1);
2789 Temp src1 = bld.tmp(v1);
2790 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2791 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2792 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2793 else
2794 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2795 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2796 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2797 } else {
2798 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2799 nir_print_instr(&instr->instr, stderr);
2800 fprintf(stderr, "\n");
2801 }
2802 break;
2803 }
2804 case nir_op_unpack_half_2x16_split_x: {
2805 if (dst.regClass() == v1) {
2806 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2807 } else {
2808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2809 nir_print_instr(&instr->instr, stderr);
2810 fprintf(stderr, "\n");
2811 }
2812 break;
2813 }
2814 case nir_op_unpack_half_2x16_split_y: {
2815 if (dst.regClass() == v1) {
2816 /* TODO: use SDWA here */
2817 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2818 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2819 } else {
2820 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2821 nir_print_instr(&instr->instr, stderr);
2822 fprintf(stderr, "\n");
2823 }
2824 break;
2825 }
2826 case nir_op_fquantize2f16: {
2827 Temp src = get_alu_src(ctx, instr->src[0]);
2828 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2829 Temp f32, cmp_res;
2830
2831 if (ctx->program->chip_class >= GFX8) {
2832 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2833 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2834 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2835 } else {
2836 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2837 * so compare the result and flush to 0 if it's smaller.
2838 */
2839 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2840 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2841 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2842 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2843 cmp_res = vop3->definitions[0].getTemp();
2844 }
2845
2846 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2847 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2848 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2849 } else {
2850 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2851 }
2852 break;
2853 }
2854 case nir_op_bfm: {
2855 Temp bits = get_alu_src(ctx, instr->src[0]);
2856 Temp offset = get_alu_src(ctx, instr->src[1]);
2857
2858 if (dst.regClass() == s1) {
2859 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2860 } else if (dst.regClass() == v1) {
2861 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2862 } else {
2863 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2864 nir_print_instr(&instr->instr, stderr);
2865 fprintf(stderr, "\n");
2866 }
2867 break;
2868 }
2869 case nir_op_bitfield_select: {
2870 /* (mask & insert) | (~mask & base) */
2871 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2872 Temp insert = get_alu_src(ctx, instr->src[1]);
2873 Temp base = get_alu_src(ctx, instr->src[2]);
2874
2875 /* dst = (insert & bitmask) | (base & ~bitmask) */
2876 if (dst.regClass() == s1) {
2877 aco_ptr<Instruction> sop2;
2878 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2879 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2880 Operand lhs;
2881 if (const_insert && const_bitmask) {
2882 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2883 } else {
2884 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2885 lhs = Operand(insert);
2886 }
2887
2888 Operand rhs;
2889 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2890 if (const_base && const_bitmask) {
2891 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2892 } else {
2893 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2894 rhs = Operand(base);
2895 }
2896
2897 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2898
2899 } else if (dst.regClass() == v1) {
2900 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2901 base = as_vgpr(ctx, base);
2902 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2903 insert = as_vgpr(ctx, insert);
2904
2905 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2906
2907 } else {
2908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2909 nir_print_instr(&instr->instr, stderr);
2910 fprintf(stderr, "\n");
2911 }
2912 break;
2913 }
2914 case nir_op_ubfe:
2915 case nir_op_ibfe: {
2916 Temp base = get_alu_src(ctx, instr->src[0]);
2917 Temp offset = get_alu_src(ctx, instr->src[1]);
2918 Temp bits = get_alu_src(ctx, instr->src[2]);
2919
2920 if (dst.type() == RegType::sgpr) {
2921 Operand extract;
2922 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2923 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2924 if (const_offset && const_bits) {
2925 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2926 extract = Operand(const_extract);
2927 } else {
2928 Operand width;
2929 if (const_bits) {
2930 width = Operand(const_bits->u32 << 16);
2931 } else {
2932 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2933 }
2934 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2935 }
2936
2937 aco_opcode opcode;
2938 if (dst.regClass() == s1) {
2939 if (instr->op == nir_op_ubfe)
2940 opcode = aco_opcode::s_bfe_u32;
2941 else
2942 opcode = aco_opcode::s_bfe_i32;
2943 } else if (dst.regClass() == s2) {
2944 if (instr->op == nir_op_ubfe)
2945 opcode = aco_opcode::s_bfe_u64;
2946 else
2947 opcode = aco_opcode::s_bfe_i64;
2948 } else {
2949 unreachable("Unsupported BFE bit size");
2950 }
2951
2952 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2953
2954 } else {
2955 aco_opcode opcode;
2956 if (dst.regClass() == v1) {
2957 if (instr->op == nir_op_ubfe)
2958 opcode = aco_opcode::v_bfe_u32;
2959 else
2960 opcode = aco_opcode::v_bfe_i32;
2961 } else {
2962 unreachable("Unsupported BFE bit size");
2963 }
2964
2965 emit_vop3a_instruction(ctx, instr, opcode, dst);
2966 }
2967 break;
2968 }
2969 case nir_op_bit_count: {
2970 Temp src = get_alu_src(ctx, instr->src[0]);
2971 if (src.regClass() == s1) {
2972 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2973 } else if (src.regClass() == v1) {
2974 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2975 } else if (src.regClass() == v2) {
2976 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2977 emit_extract_vector(ctx, src, 1, v1),
2978 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2979 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2980 } else if (src.regClass() == s2) {
2981 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2982 } else {
2983 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2984 nir_print_instr(&instr->instr, stderr);
2985 fprintf(stderr, "\n");
2986 }
2987 break;
2988 }
2989 case nir_op_flt: {
2990 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2991 break;
2992 }
2993 case nir_op_fge: {
2994 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2995 break;
2996 }
2997 case nir_op_feq: {
2998 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2999 break;
3000 }
3001 case nir_op_fne: {
3002 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
3003 break;
3004 }
3005 case nir_op_ilt: {
3006 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
3007 break;
3008 }
3009 case nir_op_ige: {
3010 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
3011 break;
3012 }
3013 case nir_op_ieq: {
3014 if (instr->src[0].src.ssa->bit_size == 1)
3015 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
3016 else
3017 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
3018 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
3019 break;
3020 }
3021 case nir_op_ine: {
3022 if (instr->src[0].src.ssa->bit_size == 1)
3023 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
3024 else
3025 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
3026 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
3027 break;
3028 }
3029 case nir_op_ult: {
3030 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
3031 break;
3032 }
3033 case nir_op_uge: {
3034 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
3035 break;
3036 }
3037 case nir_op_fddx:
3038 case nir_op_fddy:
3039 case nir_op_fddx_fine:
3040 case nir_op_fddy_fine:
3041 case nir_op_fddx_coarse:
3042 case nir_op_fddy_coarse: {
3043 Temp src = get_alu_src(ctx, instr->src[0]);
3044 uint16_t dpp_ctrl1, dpp_ctrl2;
3045 if (instr->op == nir_op_fddx_fine) {
3046 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
3047 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
3048 } else if (instr->op == nir_op_fddy_fine) {
3049 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
3050 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
3051 } else {
3052 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
3053 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
3054 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
3055 else
3056 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
3057 }
3058
3059 Temp tmp;
3060 if (ctx->program->chip_class >= GFX8) {
3061 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
3062 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
3063 } else {
3064 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
3065 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
3066 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
3067 }
3068 emit_wqm(ctx, tmp, dst, true);
3069 break;
3070 }
3071 default:
3072 fprintf(stderr, "Unknown NIR ALU instr: ");
3073 nir_print_instr(&instr->instr, stderr);
3074 fprintf(stderr, "\n");
3075 }
3076 }
3077
3078 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3079 {
3080 Temp dst = get_ssa_temp(ctx, &instr->def);
3081
3082 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3083 // which get truncated the lsb if double and msb if int
3084 // for now, we only use s_mov_b64 with 64bit inline constants
3085 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3086 assert(dst.type() == RegType::sgpr);
3087
3088 Builder bld(ctx->program, ctx->block);
3089
3090 if (instr->def.bit_size == 1) {
3091 assert(dst.regClass() == bld.lm);
3092 int val = instr->value[0].b ? -1 : 0;
3093 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3094 bld.sop1(Builder::s_mov, Definition(dst), op);
3095 } else if (instr->def.bit_size == 8) {
3096 /* ensure that the value is correctly represented in the low byte of the register */
3097 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3098 } else if (instr->def.bit_size == 16) {
3099 /* ensure that the value is correctly represented in the low half of the register */
3100 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3101 } else if (dst.size() == 1) {
3102 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3103 } else {
3104 assert(dst.size() != 1);
3105 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3106 if (instr->def.bit_size == 64)
3107 for (unsigned i = 0; i < dst.size(); i++)
3108 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3109 else {
3110 for (unsigned i = 0; i < dst.size(); i++)
3111 vec->operands[i] = Operand{instr->value[i].u32};
3112 }
3113 vec->definitions[0] = Definition(dst);
3114 ctx->block->instructions.emplace_back(std::move(vec));
3115 }
3116 }
3117
3118 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3119 {
3120 uint32_t new_mask = 0;
3121 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3122 if (mask & (1u << i))
3123 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3124 return new_mask;
3125 }
3126
3127 struct LoadEmitInfo {
3128 Operand offset;
3129 Temp dst;
3130 unsigned num_components;
3131 unsigned component_size;
3132 Temp resource = Temp(0, s1);
3133 unsigned component_stride = 0;
3134 unsigned const_offset = 0;
3135 unsigned align_mul = 0;
3136 unsigned align_offset = 0;
3137
3138 bool glc = false;
3139 unsigned swizzle_component_size = 0;
3140 memory_sync_info sync;
3141 Temp soffset = Temp(0, s1);
3142 };
3143
3144 using LoadCallback = Temp(*)(
3145 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3146 unsigned align, unsigned const_offset, Temp dst_hint);
3147
3148 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3149 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3150 {
3151 unsigned load_size = info->num_components * info->component_size;
3152 unsigned component_size = info->component_size;
3153
3154 unsigned num_vals = 0;
3155 Temp vals[info->dst.bytes()];
3156
3157 unsigned const_offset = info->const_offset;
3158
3159 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3160 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3161
3162 unsigned bytes_read = 0;
3163 while (bytes_read < load_size) {
3164 unsigned bytes_needed = load_size - bytes_read;
3165
3166 /* add buffer for unaligned loads */
3167 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3168
3169 if (byte_align) {
3170 if ((bytes_needed > 2 ||
3171 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
3172 !supports_8bit_16bit_loads) && byte_align_loads) {
3173 if (info->component_stride) {
3174 assert(supports_8bit_16bit_loads && "unimplemented");
3175 bytes_needed = 2;
3176 byte_align = 0;
3177 } else {
3178 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3179 bytes_needed = align(bytes_needed, 4);
3180 }
3181 } else {
3182 byte_align = 0;
3183 }
3184 }
3185
3186 if (info->swizzle_component_size)
3187 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3188 if (info->component_stride)
3189 bytes_needed = MIN2(bytes_needed, info->component_size);
3190
3191 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3192
3193 /* reduce constant offset */
3194 Operand offset = info->offset;
3195 unsigned reduced_const_offset = const_offset;
3196 bool remove_const_offset_completely = need_to_align_offset;
3197 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3198 unsigned to_add = const_offset;
3199 if (remove_const_offset_completely) {
3200 reduced_const_offset = 0;
3201 } else {
3202 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3203 reduced_const_offset %= max_const_offset_plus_one;
3204 }
3205 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3206 if (offset.isConstant()) {
3207 offset = Operand(offset.constantValue() + to_add);
3208 } else if (offset_tmp.regClass() == s1) {
3209 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3210 offset_tmp, Operand(to_add));
3211 } else if (offset_tmp.regClass() == v1) {
3212 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3213 } else {
3214 Temp lo = bld.tmp(offset_tmp.type(), 1);
3215 Temp hi = bld.tmp(offset_tmp.type(), 1);
3216 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3217
3218 if (offset_tmp.regClass() == s2) {
3219 Temp carry = bld.tmp(s1);
3220 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3221 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3222 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3223 } else {
3224 Temp new_lo = bld.tmp(v1);
3225 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3226 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3227 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3228 }
3229 }
3230 }
3231
3232 /* align offset down if needed */
3233 Operand aligned_offset = offset;
3234 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3235 if (need_to_align_offset) {
3236 align = 4;
3237 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3238 if (offset.isConstant()) {
3239 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3240 } else if (offset_tmp.regClass() == s1) {
3241 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3242 } else if (offset_tmp.regClass() == s2) {
3243 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3244 } else if (offset_tmp.regClass() == v1) {
3245 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3246 } else if (offset_tmp.regClass() == v2) {
3247 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3248 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3249 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3250 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3251 }
3252 }
3253 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3254 bld.copy(bld.def(s1), aligned_offset);
3255
3256 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3257 reduced_const_offset, byte_align ? Temp() : info->dst);
3258
3259 /* the callback wrote directly to dst */
3260 if (val == info->dst) {
3261 assert(num_vals == 0);
3262 emit_split_vector(ctx, info->dst, info->num_components);
3263 return;
3264 }
3265
3266 /* shift result right if needed */
3267 if (info->component_size < 4 && byte_align_loads) {
3268 Operand align((uint32_t)byte_align);
3269 if (byte_align == -1) {
3270 if (offset.isConstant())
3271 align = Operand(offset.constantValue() % 4u);
3272 else if (offset.size() == 2)
3273 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3274 else
3275 align = offset;
3276 }
3277
3278 assert(val.bytes() >= load_size && "unimplemented");
3279 if (val.type() == RegType::sgpr)
3280 byte_align_scalar(ctx, val, align, info->dst);
3281 else
3282 byte_align_vector(ctx, val, align, info->dst, component_size);
3283 return;
3284 }
3285
3286 /* add result to list and advance */
3287 if (info->component_stride) {
3288 assert(val.bytes() == info->component_size && "unimplemented");
3289 const_offset += info->component_stride;
3290 align_offset = (align_offset + info->component_stride) % align_mul;
3291 } else {
3292 const_offset += val.bytes();
3293 align_offset = (align_offset + val.bytes()) % align_mul;
3294 }
3295 bytes_read += val.bytes();
3296 vals[num_vals++] = val;
3297 }
3298
3299 /* create array of components */
3300 unsigned components_split = 0;
3301 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3302 bool has_vgprs = false;
3303 for (unsigned i = 0; i < num_vals;) {
3304 Temp tmp[num_vals];
3305 unsigned num_tmps = 0;
3306 unsigned tmp_size = 0;
3307 RegType reg_type = RegType::sgpr;
3308 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3309 if (vals[i].type() == RegType::vgpr)
3310 reg_type = RegType::vgpr;
3311 tmp_size += vals[i].bytes();
3312 tmp[num_tmps++] = vals[i++];
3313 }
3314 if (num_tmps > 1) {
3315 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3316 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3317 for (unsigned i = 0; i < num_tmps; i++)
3318 vec->operands[i] = Operand(tmp[i]);
3319 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3320 vec->definitions[0] = Definition(tmp[0]);
3321 bld.insert(std::move(vec));
3322 }
3323
3324 if (tmp[0].bytes() % component_size) {
3325 /* trim tmp[0] */
3326 assert(i == num_vals);
3327 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3328 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3329 }
3330
3331 RegClass elem_rc = RegClass::get(reg_type, component_size);
3332
3333 unsigned start = components_split;
3334
3335 if (tmp_size == elem_rc.bytes()) {
3336 allocated_vec[components_split++] = tmp[0];
3337 } else {
3338 assert(tmp_size % elem_rc.bytes() == 0);
3339 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3340 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3341 for (unsigned i = 0; i < split->definitions.size(); i++) {
3342 Temp component = bld.tmp(elem_rc);
3343 allocated_vec[components_split++] = component;
3344 split->definitions[i] = Definition(component);
3345 }
3346 split->operands[0] = Operand(tmp[0]);
3347 bld.insert(std::move(split));
3348 }
3349
3350 /* try to p_as_uniform early so we can create more optimizable code and
3351 * also update allocated_vec */
3352 for (unsigned j = start; j < components_split; j++) {
3353 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3354 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3355 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3356 }
3357 }
3358
3359 /* concatenate components and p_as_uniform() result if needed */
3360 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3361 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3362
3363 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3364
3365 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3366 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3367 for (unsigned i = 0; i < info->num_components; i++)
3368 vec->operands[i] = Operand(allocated_vec[i]);
3369 if (padding_bytes)
3370 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3371 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3372 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3373 vec->definitions[0] = Definition(tmp);
3374 bld.insert(std::move(vec));
3375 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3376 } else {
3377 vec->definitions[0] = Definition(info->dst);
3378 bld.insert(std::move(vec));
3379 }
3380 }
3381
3382 Operand load_lds_size_m0(Builder& bld)
3383 {
3384 /* TODO: m0 does not need to be initialized on GFX9+ */
3385 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3386 }
3387
3388 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3389 Temp offset, unsigned bytes_needed,
3390 unsigned align, unsigned const_offset,
3391 Temp dst_hint)
3392 {
3393 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3394
3395 Operand m = load_lds_size_m0(bld);
3396
3397 bool large_ds_read = bld.program->chip_class >= GFX7;
3398 bool usable_read2 = bld.program->chip_class >= GFX7;
3399
3400 bool read2 = false;
3401 unsigned size = 0;
3402 aco_opcode op;
3403 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3404 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3405 size = 16;
3406 op = aco_opcode::ds_read_b128;
3407 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3408 size = 16;
3409 read2 = true;
3410 op = aco_opcode::ds_read2_b64;
3411 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3412 size = 12;
3413 op = aco_opcode::ds_read_b96;
3414 } else if (bytes_needed >= 8 && align % 8 == 0) {
3415 size = 8;
3416 op = aco_opcode::ds_read_b64;
3417 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3418 size = 8;
3419 read2 = true;
3420 op = aco_opcode::ds_read2_b32;
3421 } else if (bytes_needed >= 4 && align % 4 == 0) {
3422 size = 4;
3423 op = aco_opcode::ds_read_b32;
3424 } else if (bytes_needed >= 2 && align % 2 == 0) {
3425 size = 2;
3426 op = aco_opcode::ds_read_u16;
3427 } else {
3428 size = 1;
3429 op = aco_opcode::ds_read_u8;
3430 }
3431
3432 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3433 if (const_offset >= max_offset_plus_one) {
3434 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3435 const_offset %= max_offset_plus_one;
3436 }
3437
3438 if (read2)
3439 const_offset /= (size / 2u);
3440
3441 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3442 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3443 Instruction *instr;
3444 if (read2)
3445 instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3446 else
3447 instr = bld.ds(op, Definition(val), offset, m, const_offset);
3448 static_cast<DS_instruction *>(instr)->sync = info->sync;
3449
3450 if (size < 4)
3451 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3452
3453 return val;
3454 }
3455
3456 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3457
3458 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3459 Temp offset, unsigned bytes_needed,
3460 unsigned align, unsigned const_offset,
3461 Temp dst_hint)
3462 {
3463 unsigned size = 0;
3464 aco_opcode op;
3465 if (bytes_needed <= 4) {
3466 size = 1;
3467 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3468 } else if (bytes_needed <= 8) {
3469 size = 2;
3470 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3471 } else if (bytes_needed <= 16) {
3472 size = 4;
3473 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3474 } else if (bytes_needed <= 32) {
3475 size = 8;
3476 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3477 } else {
3478 size = 16;
3479 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3480 }
3481 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3482 if (info->resource.id()) {
3483 load->operands[0] = Operand(info->resource);
3484 load->operands[1] = Operand(offset);
3485 } else {
3486 load->operands[0] = Operand(offset);
3487 load->operands[1] = Operand(0u);
3488 }
3489 RegClass rc(RegType::sgpr, size);
3490 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3491 load->definitions[0] = Definition(val);
3492 load->glc = info->glc;
3493 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3494 load->sync = info->sync;
3495 bld.insert(std::move(load));
3496 return val;
3497 }
3498
3499 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3500
3501 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3502 Temp offset, unsigned bytes_needed,
3503 unsigned align_, unsigned const_offset,
3504 Temp dst_hint)
3505 {
3506 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3507 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3508
3509 if (info->soffset.id()) {
3510 if (soffset.isTemp())
3511 vaddr = bld.copy(bld.def(v1), soffset);
3512 soffset = Operand(info->soffset);
3513 }
3514
3515 unsigned bytes_size = 0;
3516 aco_opcode op;
3517 if (bytes_needed == 1 || align_ % 2) {
3518 bytes_size = 1;
3519 op = aco_opcode::buffer_load_ubyte;
3520 } else if (bytes_needed == 2 || align_ % 4) {
3521 bytes_size = 2;
3522 op = aco_opcode::buffer_load_ushort;
3523 } else if (bytes_needed <= 4) {
3524 bytes_size = 4;
3525 op = aco_opcode::buffer_load_dword;
3526 } else if (bytes_needed <= 8) {
3527 bytes_size = 8;
3528 op = aco_opcode::buffer_load_dwordx2;
3529 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3530 bytes_size = 12;
3531 op = aco_opcode::buffer_load_dwordx3;
3532 } else {
3533 bytes_size = 16;
3534 op = aco_opcode::buffer_load_dwordx4;
3535 }
3536 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3537 mubuf->operands[0] = Operand(info->resource);
3538 mubuf->operands[1] = vaddr;
3539 mubuf->operands[2] = soffset;
3540 mubuf->offen = (offset.type() == RegType::vgpr);
3541 mubuf->glc = info->glc;
3542 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3543 mubuf->sync = info->sync;
3544 mubuf->offset = const_offset;
3545 mubuf->swizzled = info->swizzle_component_size != 0;
3546 RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
3547 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3548 mubuf->definitions[0] = Definition(val);
3549 bld.insert(std::move(mubuf));
3550
3551 return val;
3552 }
3553
3554 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3555 static auto emit_scratch_load = emit_load<mubuf_load_callback, false, true, 4096>;
3556
3557 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3558 {
3559 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3560 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3561
3562 if (addr.type() == RegType::vgpr)
3563 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3564 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3565 }
3566
3567 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3568 Temp offset, unsigned bytes_needed,
3569 unsigned align_, unsigned const_offset,
3570 Temp dst_hint)
3571 {
3572 unsigned bytes_size = 0;
3573 bool mubuf = bld.program->chip_class == GFX6;
3574 bool global = bld.program->chip_class >= GFX9;
3575 aco_opcode op;
3576 if (bytes_needed == 1) {
3577 bytes_size = 1;
3578 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3579 } else if (bytes_needed == 2) {
3580 bytes_size = 2;
3581 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3582 } else if (bytes_needed <= 4) {
3583 bytes_size = 4;
3584 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3585 } else if (bytes_needed <= 8) {
3586 bytes_size = 8;
3587 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3588 } else if (bytes_needed <= 12 && !mubuf) {
3589 bytes_size = 12;
3590 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3591 } else {
3592 bytes_size = 16;
3593 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3594 }
3595 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3596 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3597 if (mubuf) {
3598 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3599 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3600 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3601 mubuf->operands[2] = Operand(0u);
3602 mubuf->glc = info->glc;
3603 mubuf->dlc = false;
3604 mubuf->offset = 0;
3605 mubuf->addr64 = offset.type() == RegType::vgpr;
3606 mubuf->disable_wqm = false;
3607 mubuf->sync = info->sync;
3608 mubuf->definitions[0] = Definition(val);
3609 bld.insert(std::move(mubuf));
3610 } else {
3611 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3612
3613 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3614 flat->operands[0] = Operand(offset);
3615 flat->operands[1] = Operand(s1);
3616 flat->glc = info->glc;
3617 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3618 flat->sync = info->sync;
3619 flat->offset = 0u;
3620 flat->definitions[0] = Definition(val);
3621 bld.insert(std::move(flat));
3622 }
3623
3624 return val;
3625 }
3626
3627 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3628
3629 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3630 Temp address, unsigned base_offset, unsigned align)
3631 {
3632 assert(util_is_power_of_two_nonzero(align));
3633
3634 Builder bld(ctx->program, ctx->block);
3635
3636 unsigned num_components = dst.bytes() / elem_size_bytes;
3637 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3638 info.align_mul = align;
3639 info.align_offset = 0;
3640 info.sync = memory_sync_info(storage_shared);
3641 info.const_offset = base_offset;
3642 emit_lds_load(ctx, bld, &info);
3643
3644 return dst;
3645 }
3646
3647 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3648 {
3649 if (!count)
3650 return;
3651
3652 Builder bld(ctx->program, ctx->block);
3653
3654 ASSERTED bool is_subdword = false;
3655 for (unsigned i = 0; i < count; i++)
3656 is_subdword |= offsets[i] % 4;
3657 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3658 assert(!is_subdword || dst_type == RegType::vgpr);
3659
3660 /* count == 1 fast path */
3661 if (count == 1) {
3662 if (dst_type == RegType::sgpr)
3663 dst[0] = bld.as_uniform(src);
3664 else
3665 dst[0] = as_vgpr(ctx, src);
3666 return;
3667 }
3668
3669 for (unsigned i = 0; i < count - 1; i++)
3670 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3671 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3672
3673 if (is_subdword && src.type() == RegType::sgpr) {
3674 src = as_vgpr(ctx, src);
3675 } else {
3676 /* use allocated_vec if possible */
3677 auto it = ctx->allocated_vec.find(src.id());
3678 if (it != ctx->allocated_vec.end()) {
3679 if (!it->second[0].id())
3680 goto split;
3681 unsigned elem_size = it->second[0].bytes();
3682 assert(src.bytes() % elem_size == 0);
3683
3684 for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
3685 if (!it->second[i].id())
3686 goto split;
3687 }
3688
3689 for (unsigned i = 0; i < count; i++) {
3690 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3691 goto split;
3692 }
3693
3694 for (unsigned i = 0; i < count; i++) {
3695 unsigned start_idx = offsets[i] / elem_size;
3696 unsigned op_count = dst[i].bytes() / elem_size;
3697 if (op_count == 1) {
3698 if (dst_type == RegType::sgpr)
3699 dst[i] = bld.as_uniform(it->second[start_idx]);
3700 else
3701 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3702 continue;
3703 }
3704
3705 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3706 for (unsigned j = 0; j < op_count; j++) {
3707 Temp tmp = it->second[start_idx + j];
3708 if (dst_type == RegType::sgpr)
3709 tmp = bld.as_uniform(tmp);
3710 vec->operands[j] = Operand(tmp);
3711 }
3712 vec->definitions[0] = Definition(dst[i]);
3713 bld.insert(std::move(vec));
3714 }
3715 return;
3716 }
3717 }
3718
3719 split:
3720
3721 if (dst_type == RegType::sgpr)
3722 src = bld.as_uniform(src);
3723
3724 /* just split it */
3725 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3726 split->operands[0] = Operand(src);
3727 for (unsigned i = 0; i < count; i++)
3728 split->definitions[i] = Definition(dst[i]);
3729 bld.insert(std::move(split));
3730 }
3731
3732 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3733 int *start, int *count)
3734 {
3735 unsigned start_elem = ffs(todo_mask) - 1;
3736 bool skip = !(mask & (1 << start_elem));
3737 if (skip)
3738 mask = ~mask & todo_mask;
3739
3740 mask &= todo_mask;
3741
3742 u_bit_scan_consecutive_range(&mask, start, count);
3743
3744 return !skip;
3745 }
3746
3747 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3748 {
3749 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3750 }
3751
3752 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3753 Temp address, unsigned base_offset, unsigned align)
3754 {
3755 assert(util_is_power_of_two_nonzero(align));
3756 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3757
3758 Builder bld(ctx->program, ctx->block);
3759 bool large_ds_write = ctx->options->chip_class >= GFX7;
3760 bool usable_write2 = ctx->options->chip_class >= GFX7;
3761
3762 unsigned write_count = 0;
3763 Temp write_datas[32];
3764 unsigned offsets[32];
3765 aco_opcode opcodes[32];
3766
3767 wrmask = widen_mask(wrmask, elem_size_bytes);
3768
3769 uint32_t todo = u_bit_consecutive(0, data.bytes());
3770 while (todo) {
3771 int offset, bytes;
3772 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3773 offsets[write_count] = offset;
3774 opcodes[write_count] = aco_opcode::num_opcodes;
3775 write_count++;
3776 advance_write_mask(&todo, offset, bytes);
3777 continue;
3778 }
3779
3780 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3781 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3782 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3783 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3784
3785 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3786 aco_opcode op = aco_opcode::num_opcodes;
3787 if (bytes >= 16 && aligned16 && large_ds_write) {
3788 op = aco_opcode::ds_write_b128;
3789 bytes = 16;
3790 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3791 op = aco_opcode::ds_write_b96;
3792 bytes = 12;
3793 } else if (bytes >= 8 && aligned8) {
3794 op = aco_opcode::ds_write_b64;
3795 bytes = 8;
3796 } else if (bytes >= 4 && aligned4) {
3797 op = aco_opcode::ds_write_b32;
3798 bytes = 4;
3799 } else if (bytes >= 2 && aligned2) {
3800 op = aco_opcode::ds_write_b16;
3801 bytes = 2;
3802 } else if (bytes >= 1) {
3803 op = aco_opcode::ds_write_b8;
3804 bytes = 1;
3805 } else {
3806 assert(false);
3807 }
3808
3809 offsets[write_count] = offset;
3810 opcodes[write_count] = op;
3811 write_count++;
3812 advance_write_mask(&todo, offset, bytes);
3813 }
3814
3815 Operand m = load_lds_size_m0(bld);
3816
3817 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3818
3819 for (unsigned i = 0; i < write_count; i++) {
3820 aco_opcode op = opcodes[i];
3821 if (op == aco_opcode::num_opcodes)
3822 continue;
3823
3824 Temp data = write_datas[i];
3825
3826 unsigned second = write_count;
3827 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3828 for (second = i + 1; second < write_count; second++) {
3829 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3830 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3831 opcodes[second] = aco_opcode::num_opcodes;
3832 break;
3833 }
3834 }
3835 }
3836
3837 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3838 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3839
3840 unsigned inline_offset = base_offset + offsets[i];
3841 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3842 Temp address_offset = address;
3843 if (inline_offset > max_offset) {
3844 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3845 inline_offset = offsets[i];
3846 }
3847 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3848
3849 Instruction *instr;
3850 if (write2) {
3851 Temp second_data = write_datas[second];
3852 inline_offset /= data.bytes();
3853 instr = bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3854 } else {
3855 instr = bld.ds(op, address_offset, data, m, inline_offset);
3856 }
3857 static_cast<DS_instruction *>(instr)->sync =
3858 memory_sync_info(storage_shared);
3859 }
3860 }
3861
3862 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3863 {
3864 unsigned align = 16;
3865 if (const_offset)
3866 align = std::min(align, 1u << (ffs(const_offset) - 1));
3867
3868 return align;
3869 }
3870
3871
3872 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3873 {
3874 switch (bytes) {
3875 case 1:
3876 assert(!smem);
3877 return aco_opcode::buffer_store_byte;
3878 case 2:
3879 assert(!smem);
3880 return aco_opcode::buffer_store_short;
3881 case 4:
3882 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3883 case 8:
3884 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3885 case 12:
3886 assert(!smem);
3887 return aco_opcode::buffer_store_dwordx3;
3888 case 16:
3889 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3890 }
3891 unreachable("Unexpected store size");
3892 return aco_opcode::num_opcodes;
3893 }
3894
3895 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3896 Temp data, unsigned writemask, int swizzle_element_size,
3897 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3898 {
3899 unsigned write_count_with_skips = 0;
3900 bool skips[16];
3901
3902 /* determine how to split the data */
3903 unsigned todo = u_bit_consecutive(0, data.bytes());
3904 while (todo) {
3905 int offset, bytes;
3906 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3907 offsets[write_count_with_skips] = offset;
3908 if (skips[write_count_with_skips]) {
3909 advance_write_mask(&todo, offset, bytes);
3910 write_count_with_skips++;
3911 continue;
3912 }
3913
3914 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3915 * larger than swizzle_element_size */
3916 bytes = MIN2(bytes, swizzle_element_size);
3917 if (bytes % 4)
3918 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3919
3920 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3921 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3922 bytes = 8;
3923
3924 /* dword or larger stores have to be dword-aligned */
3925 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3926 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3927 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3928 if (!dword_aligned)
3929 bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3930
3931 advance_write_mask(&todo, offset, bytes);
3932 write_count_with_skips++;
3933 }
3934
3935 /* actually split data */
3936 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3937
3938 /* remove skips */
3939 for (unsigned i = 0; i < write_count_with_skips; i++) {
3940 if (skips[i])
3941 continue;
3942 write_datas[*write_count] = write_datas[i];
3943 offsets[*write_count] = offsets[i];
3944 (*write_count)++;
3945 }
3946 }
3947
3948 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3949 unsigned split_cnt = 0u, Temp dst = Temp())
3950 {
3951 Builder bld(ctx->program, ctx->block);
3952 unsigned dword_size = elem_size_bytes / 4;
3953
3954 if (!dst.id())
3955 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3956
3957 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3958 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3959 instr->definitions[0] = Definition(dst);
3960
3961 for (unsigned i = 0; i < cnt; ++i) {
3962 if (arr[i].id()) {
3963 assert(arr[i].size() == dword_size);
3964 allocated_vec[i] = arr[i];
3965 instr->operands[i] = Operand(arr[i]);
3966 } else {
3967 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3968 allocated_vec[i] = zero;
3969 instr->operands[i] = Operand(zero);
3970 }
3971 }
3972
3973 bld.insert(std::move(instr));
3974
3975 if (split_cnt)
3976 emit_split_vector(ctx, dst, split_cnt);
3977 else
3978 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3979
3980 return dst;
3981 }
3982
3983 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3984 {
3985 if (const_offset >= 4096) {
3986 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3987 const_offset %= 4096u;
3988
3989 if (!voffset.id())
3990 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3991 else if (unlikely(voffset.regClass() == s1))
3992 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3993 else if (likely(voffset.regClass() == v1))
3994 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3995 else
3996 unreachable("Unsupported register class of voffset");
3997 }
3998
3999 return const_offset;
4000 }
4001
4002 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
4003 unsigned const_offset = 0u, memory_sync_info sync=memory_sync_info(),
4004 bool slc = false, bool swizzled = false)
4005 {
4006 assert(vdata.id());
4007 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
4008 assert(vdata.size() >= 1 && vdata.size() <= 4);
4009
4010 Builder bld(ctx->program, ctx->block);
4011 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
4012 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
4013
4014 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
4015 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
4016 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
4017 /* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled,
4018 /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true,
4019 /* dlc*/ false, /* slc */ slc);
4020
4021 static_cast<MUBUF_instruction *>(r.instr)->sync = sync;
4022 }
4023
4024 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
4025 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
4026 bool allow_combining = true, memory_sync_info sync=memory_sync_info(), bool slc = false)
4027 {
4028 Builder bld(ctx->program, ctx->block);
4029 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
4030 assert(write_mask);
4031 write_mask = widen_mask(write_mask, elem_size_bytes);
4032
4033 unsigned write_count = 0;
4034 Temp write_datas[32];
4035 unsigned offsets[32];
4036 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
4037 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
4038
4039 for (unsigned i = 0; i < write_count; i++) {
4040 unsigned const_offset = offsets[i] + base_const_offset;
4041 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, sync, slc, !allow_combining);
4042 }
4043 }
4044
4045 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
4046 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
4047 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
4048 {
4049 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
4050 assert((num_components * elem_size_bytes) == dst.bytes());
4051 assert(!!stride != allow_combining);
4052
4053 Builder bld(ctx->program, ctx->block);
4054
4055 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
4056 info.component_stride = allow_combining ? 0 : stride;
4057 info.glc = true;
4058 info.swizzle_component_size = allow_combining ? 0 : 4;
4059 info.align_mul = MIN2(elem_size_bytes, 4);
4060 info.align_offset = 0;
4061 info.soffset = soffset;
4062 info.const_offset = base_const_offset;
4063 emit_mubuf_load(ctx, bld, &info);
4064 }
4065
4066 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
4067 {
4068 Builder bld(ctx->program, ctx->block);
4069 Temp offset = base_offset.first;
4070 unsigned const_offset = base_offset.second;
4071
4072 if (!nir_src_is_const(*off_src)) {
4073 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
4074 Temp with_stride;
4075
4076 /* Calculate indirect offset with stride */
4077 if (likely(indirect_offset_arg.regClass() == v1))
4078 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
4079 else if (indirect_offset_arg.regClass() == s1)
4080 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
4081 else
4082 unreachable("Unsupported register class of indirect offset");
4083
4084 /* Add to the supplied base offset */
4085 if (offset.id() == 0)
4086 offset = with_stride;
4087 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
4088 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
4089 else if (offset.size() == 1 && with_stride.size() == 1)
4090 offset = bld.vadd32(bld.def(v1), with_stride, offset);
4091 else
4092 unreachable("Unsupported register class of indirect offset");
4093 } else {
4094 unsigned const_offset_arg = nir_src_as_uint(*off_src);
4095 const_offset += const_offset_arg * stride;
4096 }
4097
4098 return std::make_pair(offset, const_offset);
4099 }
4100
4101 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
4102 {
4103 Builder bld(ctx->program, ctx->block);
4104 Temp offset;
4105
4106 if (off1.first.id() && off2.first.id()) {
4107 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
4108 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
4109 else if (off1.first.size() == 1 && off2.first.size() == 1)
4110 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
4111 else
4112 unreachable("Unsupported register class of indirect offset");
4113 } else {
4114 offset = off1.first.id() ? off1.first : off2.first;
4115 }
4116
4117 return std::make_pair(offset, off1.second + off2.second);
4118 }
4119
4120 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
4121 {
4122 Builder bld(ctx->program, ctx->block);
4123 unsigned const_offset = offs.second * multiplier;
4124
4125 if (!offs.first.id())
4126 return std::make_pair(offs.first, const_offset);
4127
4128 Temp offset = unlikely(offs.first.regClass() == s1)
4129 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
4130 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
4131
4132 return std::make_pair(offset, const_offset);
4133 }
4134
4135 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
4136 {
4137 Builder bld(ctx->program, ctx->block);
4138
4139 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
4140 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
4141 /* component is in bytes */
4142 const_offset += nir_intrinsic_component(instr) * component_stride;
4143
4144 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
4145 nir_src *off_src = nir_get_io_offset_src(instr);
4146 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
4147 }
4148
4149 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
4150 {
4151 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
4152 }
4153
4154 Temp get_tess_rel_patch_id(isel_context *ctx)
4155 {
4156 Builder bld(ctx->program, ctx->block);
4157
4158 switch (ctx->shader->info.stage) {
4159 case MESA_SHADER_TESS_CTRL:
4160 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
4161 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
4162 case MESA_SHADER_TESS_EVAL:
4163 return get_arg(ctx, ctx->args->tes_rel_patch_id);
4164 default:
4165 unreachable("Unsupported stage in get_tess_rel_patch_id");
4166 }
4167 }
4168
4169 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4170 {
4171 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4172 Builder bld(ctx->program, ctx->block);
4173
4174 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4175 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4176
4177 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4178
4179 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4180 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4181
4182 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4183 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4184 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4185
4186 return offset_mul(ctx, offs, 4u);
4187 }
4188
4189 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4190 {
4191 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4192 Builder bld(ctx->program, ctx->block);
4193
4194 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4195 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4196 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4197 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4198
4199 std::pair<Temp, unsigned> offs = instr
4200 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4201 : std::make_pair(Temp(), 0u);
4202
4203 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4204 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4205
4206 if (per_vertex) {
4207 assert(instr);
4208
4209 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4210 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4211
4212 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4213 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4214 } else {
4215 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4216 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4217 }
4218
4219 return offs;
4220 }
4221
4222 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4223 {
4224 Builder bld(ctx->program, ctx->block);
4225
4226 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4227 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4228
4229 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4230
4231 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4232 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4233 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4234
4235 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4236 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4237
4238 return offs;
4239 }
4240
4241 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4242 {
4243 Builder bld(ctx->program, ctx->block);
4244
4245 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4246 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4247 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4248 unsigned attr_stride = ctx->tcs_num_patches;
4249
4250 std::pair<Temp, unsigned> offs = instr
4251 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4252 : std::make_pair(Temp(), 0u);
4253
4254 if (const_base_offset)
4255 offs.second += const_base_offset * attr_stride;
4256
4257 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4258 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4259 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4260
4261 return offs;
4262 }
4263
4264 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4265 {
4266 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4267
4268 if (mask == 0)
4269 return false;
4270
4271 unsigned drv_loc = nir_intrinsic_base(instr);
4272 nir_src *off_src = nir_get_io_offset_src(instr);
4273
4274 if (!nir_src_is_const(*off_src)) {
4275 *indirect = true;
4276 return false;
4277 }
4278
4279 *indirect = false;
4280 uint64_t slot = per_vertex
4281 ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
4282 : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
4283 return (((uint64_t) 1) << slot) & mask;
4284 }
4285
4286 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4287 {
4288 unsigned write_mask = nir_intrinsic_write_mask(instr);
4289 unsigned component = nir_intrinsic_component(instr);
4290 unsigned idx = nir_intrinsic_base(instr) + component;
4291
4292 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4293 if (off_instr->type != nir_instr_type_load_const)
4294 return false;
4295
4296 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4297 idx += nir_src_as_uint(instr->src[1]) * 4u;
4298
4299 if (instr->src[0].ssa->bit_size == 64)
4300 write_mask = widen_mask(write_mask, 2);
4301
4302 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4303
4304 for (unsigned i = 0; i < 8; ++i) {
4305 if (write_mask & (1 << i)) {
4306 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4307 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4308 }
4309 idx++;
4310 }
4311
4312 return true;
4313 }
4314
4315 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4316 {
4317 /* Only TCS per-vertex inputs are supported by this function.
4318 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4319 */
4320 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4321 return false;
4322
4323 nir_src *off_src = nir_get_io_offset_src(instr);
4324 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4325 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4326 bool can_use_temps = nir_src_is_const(*off_src) &&
4327 vertex_index_instr->type == nir_instr_type_intrinsic &&
4328 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4329
4330 if (!can_use_temps)
4331 return false;
4332
4333 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4334 Temp *src = &ctx->inputs.temps[idx];
4335 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4336
4337 return true;
4338 }
4339
4340 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4341 {
4342 Builder bld(ctx->program, ctx->block);
4343
4344 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4345 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4346 bool indirect_write;
4347 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4348 if (temp_only_input && !indirect_write)
4349 return;
4350 }
4351
4352 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4353 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4354 unsigned write_mask = nir_intrinsic_write_mask(instr);
4355 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4356
4357 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4358 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4359 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4360 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4361 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, memory_sync_info(), true);
4362 } else {
4363 Temp lds_base;
4364
4365 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4366 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4367 unsigned itemsize = ctx->stage == vertex_geometry_gs
4368 ? ctx->program->info->vs.es_info.esgs_itemsize
4369 : ctx->program->info->tes.es_info.esgs_itemsize;
4370 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4371 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4372 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4373 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4374 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4375 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4376 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4377 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4378 */
4379 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4380 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4381 } else {
4382 unreachable("Invalid LS or ES stage");
4383 }
4384
4385 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4386 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4387 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4388 }
4389 }
4390
4391 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4392 {
4393 if (per_vertex)
4394 return false;
4395
4396 unsigned off = nir_intrinsic_base(instr) * 4u;
4397 return off == ctx->tcs_tess_lvl_out_loc ||
4398 off == ctx->tcs_tess_lvl_in_loc;
4399
4400 }
4401
4402 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4403 {
4404 uint64_t mask = per_vertex
4405 ? ctx->program->info->tcs.tes_inputs_read
4406 : ctx->program->info->tcs.tes_patch_inputs_read;
4407
4408 bool indirect_write = false;
4409 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4410 return indirect_write || output_read_by_tes;
4411 }
4412
4413 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4414 {
4415 uint64_t mask = per_vertex
4416 ? ctx->shader->info.outputs_read
4417 : ctx->shader->info.patch_outputs_read;
4418
4419 bool indirect_write = false;
4420 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4421 return indirect_write || output_read;
4422 }
4423
4424 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4425 {
4426 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4427 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4428
4429 Builder bld(ctx->program, ctx->block);
4430
4431 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4432 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4433 unsigned write_mask = nir_intrinsic_write_mask(instr);
4434
4435 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4436 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4437 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4438
4439 if (write_to_vmem) {
4440 std::pair<Temp, unsigned> vmem_offs = per_vertex
4441 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4442 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4443
4444 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4445 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4446 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, memory_sync_info(storage_vmem_output));
4447 }
4448
4449 if (write_to_lds) {
4450 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4451 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4452 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4453 }
4454 }
4455
4456 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4457 {
4458 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4459 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4460
4461 Builder bld(ctx->program, ctx->block);
4462
4463 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4464 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4465 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4466 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4467
4468 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4469 }
4470
4471 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4472 {
4473 if (ctx->stage == vertex_vs ||
4474 ctx->stage == tess_eval_vs ||
4475 ctx->stage == fragment_fs ||
4476 ctx->stage == ngg_vertex_gs ||
4477 ctx->stage == ngg_tess_eval_gs ||
4478 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4479 bool stored_to_temps = store_output_to_temps(ctx, instr);
4480 if (!stored_to_temps) {
4481 fprintf(stderr, "Unimplemented output offset instruction:\n");
4482 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
4483 fprintf(stderr, "\n");
4484 abort();
4485 }
4486 } else if (ctx->stage == vertex_es ||
4487 ctx->stage == vertex_ls ||
4488 ctx->stage == tess_eval_es ||
4489 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4490 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4491 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4492 visit_store_ls_or_es_output(ctx, instr);
4493 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4494 visit_store_tcs_output(ctx, instr, false);
4495 } else {
4496 unreachable("Shader stage not implemented");
4497 }
4498 }
4499
4500 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4501 {
4502 visit_load_tcs_output(ctx, instr, false);
4503 }
4504
4505 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4506 {
4507 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4508 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4509
4510 Builder bld(ctx->program, ctx->block);
4511
4512 if (dst.regClass() == v2b) {
4513 if (ctx->program->has_16bank_lds) {
4514 assert(ctx->options->chip_class <= GFX8);
4515 Builder::Result interp_p1 =
4516 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4517 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4518 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4519 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4520 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4521 bld.m0(prim_mask), interp_p1, idx, component);
4522 } else {
4523 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4524
4525 if (ctx->options->chip_class == GFX8)
4526 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4527
4528 Builder::Result interp_p1 =
4529 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4530 coord1, bld.m0(prim_mask), idx, component);
4531 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4532 interp_p1, idx, component);
4533 }
4534 } else {
4535 Builder::Result interp_p1 =
4536 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4537 bld.m0(prim_mask), idx, component);
4538
4539 if (ctx->program->has_16bank_lds)
4540 interp_p1.instr->operands[0].setLateKill(true);
4541
4542 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4543 bld.m0(prim_mask), interp_p1, idx, component);
4544 }
4545 }
4546
4547 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4548 {
4549 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4550 for (unsigned i = 0; i < num_components; i++)
4551 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4552 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4553 assert(num_components == 4);
4554 Builder bld(ctx->program, ctx->block);
4555 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4556 }
4557
4558 for (Operand& op : vec->operands)
4559 op = op.isUndefined() ? Operand(0u) : op;
4560
4561 vec->definitions[0] = Definition(dst);
4562 ctx->block->instructions.emplace_back(std::move(vec));
4563 emit_split_vector(ctx, dst, num_components);
4564 return;
4565 }
4566
4567 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4568 {
4569 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4570 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4571 unsigned idx = nir_intrinsic_base(instr);
4572 unsigned component = nir_intrinsic_component(instr);
4573 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4574
4575 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4576 if (offset) {
4577 assert(offset->u32 == 0);
4578 } else {
4579 /* the lower 15bit of the prim_mask contain the offset into LDS
4580 * while the upper bits contain the number of prims */
4581 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4582 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4583 Builder bld(ctx->program, ctx->block);
4584 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4585 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4586 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4587 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4588 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4589 }
4590
4591 if (instr->dest.ssa.num_components == 1) {
4592 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4593 } else {
4594 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4595 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4596 {
4597 Temp tmp = {ctx->program->allocateId(), v1};
4598 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4599 vec->operands[i] = Operand(tmp);
4600 }
4601 vec->definitions[0] = Definition(dst);
4602 ctx->block->instructions.emplace_back(std::move(vec));
4603 }
4604 }
4605
4606 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4607 unsigned offset, unsigned stride, unsigned channels)
4608 {
4609 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4610 if (vtx_info->chan_byte_size != 4 && channels == 3)
4611 return false;
4612 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4613 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4614 }
4615
4616 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4617 unsigned offset, unsigned stride, unsigned *channels)
4618 {
4619 if (!vtx_info->chan_byte_size) {
4620 *channels = vtx_info->num_channels;
4621 return vtx_info->chan_format;
4622 }
4623
4624 unsigned num_channels = *channels;
4625 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4626 unsigned new_channels = num_channels + 1;
4627 /* first, assume more loads is worse and try using a larger data format */
4628 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4629 new_channels++;
4630 /* don't make the attribute potentially out-of-bounds */
4631 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4632 new_channels = 5;
4633 }
4634
4635 if (new_channels == 5) {
4636 /* then try decreasing load size (at the cost of more loads) */
4637 new_channels = *channels;
4638 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4639 new_channels--;
4640 }
4641
4642 if (new_channels < *channels)
4643 *channels = new_channels;
4644 num_channels = new_channels;
4645 }
4646
4647 switch (vtx_info->chan_format) {
4648 case V_008F0C_BUF_DATA_FORMAT_8:
4649 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4650 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4651 case V_008F0C_BUF_DATA_FORMAT_16:
4652 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4653 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4654 case V_008F0C_BUF_DATA_FORMAT_32:
4655 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4656 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4657 }
4658 unreachable("shouldn't reach here");
4659 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4660 }
4661
4662 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4663 * so we may need to fix it up. */
4664 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4665 {
4666 Builder bld(ctx->program, ctx->block);
4667
4668 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4669 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4670
4671 /* For the integer-like cases, do a natural sign extension.
4672 *
4673 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4674 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4675 * exponent.
4676 */
4677 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4678 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4679
4680 /* Convert back to the right type. */
4681 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4682 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4683 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4684 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4685 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4686 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4687 }
4688
4689 return alpha;
4690 }
4691
4692 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4693 {
4694 Builder bld(ctx->program, ctx->block);
4695 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4696 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4697
4698 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4699 if (off_instr->type != nir_instr_type_load_const) {
4700 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4701 nir_print_instr(off_instr, stderr);
4702 fprintf(stderr, "\n");
4703 }
4704 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4705
4706 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4707
4708 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4709 unsigned component = nir_intrinsic_component(instr);
4710 unsigned bitsize = instr->dest.ssa.bit_size;
4711 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4712 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4713 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4714 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4715
4716 unsigned dfmt = attrib_format & 0xf;
4717 unsigned nfmt = (attrib_format >> 4) & 0x7;
4718 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4719
4720 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4721 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4722 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4723 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4724 if (post_shuffle)
4725 num_channels = MAX2(num_channels, 3);
4726
4727 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4728 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4729
4730 Temp index;
4731 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4732 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4733 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4734 if (divisor) {
4735 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4736 if (divisor != 1) {
4737 Temp divided = bld.tmp(v1);
4738 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4739 index = bld.vadd32(bld.def(v1), start_instance, divided);
4740 } else {
4741 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4742 }
4743 } else {
4744 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4745 }
4746 } else {
4747 index = bld.vadd32(bld.def(v1),
4748 get_arg(ctx, ctx->args->ac.base_vertex),
4749 get_arg(ctx, ctx->args->ac.vertex_id));
4750 }
4751
4752 Temp channels[num_channels];
4753 unsigned channel_start = 0;
4754 bool direct_fetch = false;
4755
4756 /* skip unused channels at the start */
4757 if (vtx_info->chan_byte_size && !post_shuffle) {
4758 channel_start = ffs(mask) - 1;
4759 for (unsigned i = 0; i < channel_start; i++)
4760 channels[i] = Temp(0, s1);
4761 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4762 num_channels = 3 - (ffs(mask) - 1);
4763 }
4764
4765 /* load channels */
4766 while (channel_start < num_channels) {
4767 unsigned fetch_component = num_channels - channel_start;
4768 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4769 bool expanded = false;
4770
4771 /* use MUBUF when possible to avoid possible alignment issues */
4772 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4773 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4774 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4775 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4776 vtx_info->chan_byte_size == 4;
4777 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4778 if (!use_mubuf) {
4779 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4780 } else {
4781 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4782 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4783 fetch_component = 4;
4784 expanded = true;
4785 }
4786 }
4787
4788 unsigned fetch_bytes = fetch_component * bitsize / 8;
4789
4790 Temp fetch_index = index;
4791 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4792 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4793 fetch_offset = fetch_offset % attrib_stride;
4794 }
4795
4796 Operand soffset(0u);
4797 if (fetch_offset >= 4096) {
4798 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4799 fetch_offset %= 4096;
4800 }
4801
4802 aco_opcode opcode;
4803 switch (fetch_bytes) {
4804 case 2:
4805 assert(!use_mubuf && bitsize == 16);
4806 opcode = aco_opcode::tbuffer_load_format_d16_x;
4807 break;
4808 case 4:
4809 if (bitsize == 16) {
4810 assert(!use_mubuf);
4811 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4812 } else {
4813 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4814 }
4815 break;
4816 case 6:
4817 assert(!use_mubuf && bitsize == 16);
4818 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4819 break;
4820 case 8:
4821 if (bitsize == 16) {
4822 assert(!use_mubuf);
4823 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4824 } else {
4825 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4826 }
4827 break;
4828 case 12:
4829 assert(ctx->options->chip_class >= GFX7 ||
4830 (!use_mubuf && ctx->options->chip_class == GFX6));
4831 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4832 break;
4833 case 16:
4834 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4835 break;
4836 default:
4837 unreachable("Unimplemented load_input vector size");
4838 }
4839
4840 Temp fetch_dst;
4841 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4842 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4843 num_channels <= 3)) {
4844 direct_fetch = true;
4845 fetch_dst = dst;
4846 } else {
4847 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4848 }
4849
4850 if (use_mubuf) {
4851 bld.mubuf(opcode,
4852 Definition(fetch_dst), list, fetch_index, soffset,
4853 fetch_offset, false, false, true).instr;
4854 } else {
4855 bld.mtbuf(opcode,
4856 Definition(fetch_dst), list, fetch_index, soffset,
4857 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4858 }
4859
4860 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4861
4862 if (fetch_component == 1) {
4863 channels[channel_start] = fetch_dst;
4864 } else {
4865 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4866 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4867 bitsize == 16 ? v2b : v1);
4868 }
4869
4870 channel_start += fetch_component;
4871 }
4872
4873 if (!direct_fetch) {
4874 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4875 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4876
4877 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4878 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4879 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4880
4881 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4882 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4883 unsigned num_temp = 0;
4884 for (unsigned i = 0; i < dst.size(); i++) {
4885 unsigned idx = i + component;
4886 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4887 Temp channel = channels[swizzle[idx]];
4888 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4889 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4890 vec->operands[i] = Operand(channel);
4891
4892 num_temp++;
4893 elems[i] = channel;
4894 } else if (is_float && idx == 3) {
4895 vec->operands[i] = Operand(0x3f800000u);
4896 } else if (!is_float && idx == 3) {
4897 vec->operands[i] = Operand(1u);
4898 } else {
4899 vec->operands[i] = Operand(0u);
4900 }
4901 }
4902 vec->definitions[0] = Definition(dst);
4903 ctx->block->instructions.emplace_back(std::move(vec));
4904 emit_split_vector(ctx, dst, dst.size());
4905
4906 if (num_temp == dst.size())
4907 ctx->allocated_vec.emplace(dst.id(), elems);
4908 }
4909 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4910 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4911 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4912 if (off_instr->type != nir_instr_type_load_const ||
4913 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4914 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4915 nir_print_instr(off_instr, stderr);
4916 fprintf(stderr, "\n");
4917 }
4918
4919 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4920 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4921 if (offset) {
4922 assert(offset->u32 == 0);
4923 } else {
4924 /* the lower 15bit of the prim_mask contain the offset into LDS
4925 * while the upper bits contain the number of prims */
4926 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4927 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4928 Builder bld(ctx->program, ctx->block);
4929 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4930 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4931 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4932 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4933 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4934 }
4935
4936 unsigned idx = nir_intrinsic_base(instr);
4937 unsigned component = nir_intrinsic_component(instr);
4938 unsigned vertex_id = 2; /* P0 */
4939
4940 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4941 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4942 switch (src0->u32) {
4943 case 0:
4944 vertex_id = 2; /* P0 */
4945 break;
4946 case 1:
4947 vertex_id = 0; /* P10 */
4948 break;
4949 case 2:
4950 vertex_id = 1; /* P20 */
4951 break;
4952 default:
4953 unreachable("invalid vertex index");
4954 }
4955 }
4956
4957 if (dst.size() == 1) {
4958 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4959 } else {
4960 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4961 for (unsigned i = 0; i < dst.size(); i++)
4962 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4963 vec->definitions[0] = Definition(dst);
4964 bld.insert(std::move(vec));
4965 }
4966
4967 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4968 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4969 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4970 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4971 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4972
4973 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4974 } else {
4975 unreachable("Shader stage not implemented");
4976 }
4977 }
4978
4979 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4980 {
4981 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4982
4983 Builder bld(ctx->program, ctx->block);
4984 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4985 Temp vertex_offset;
4986
4987 if (!nir_src_is_const(*vertex_src)) {
4988 /* better code could be created, but this case probably doesn't happen
4989 * much in practice */
4990 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4991 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4992 Temp elem;
4993
4994 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4995 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4996 if (i % 2u)
4997 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4998 } else {
4999 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
5000 }
5001
5002 if (vertex_offset.id()) {
5003 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
5004 Operand(i), indirect_vertex);
5005 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
5006 } else {
5007 vertex_offset = elem;
5008 }
5009 }
5010
5011 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
5012 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
5013 } else {
5014 unsigned vertex = nir_src_as_uint(*vertex_src);
5015 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
5016 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5017 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
5018 Operand((vertex % 2u) * 16u), Operand(16u));
5019 else
5020 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
5021 }
5022
5023 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
5024 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
5025 return offset_mul(ctx, offs, 4u);
5026 }
5027
5028 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5029 {
5030 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
5031
5032 Builder bld(ctx->program, ctx->block);
5033 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5034 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5035
5036 if (ctx->stage == geometry_gs) {
5037 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
5038 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
5039 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
5040 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
5041 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
5042 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
5043 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
5044 } else {
5045 unreachable("Unsupported GS stage.");
5046 }
5047 }
5048
5049 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5050 {
5051 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5052
5053 Builder bld(ctx->program, ctx->block);
5054 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5055
5056 if (load_input_from_temps(ctx, instr, dst))
5057 return;
5058
5059 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
5060 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5061 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
5062
5063 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
5064 }
5065
5066 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5067 {
5068 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5069
5070 Builder bld(ctx->program, ctx->block);
5071
5072 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
5073 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
5074 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5075
5076 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5077 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
5078
5079 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
5080 }
5081
5082 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5083 {
5084 switch (ctx->shader->info.stage) {
5085 case MESA_SHADER_GEOMETRY:
5086 visit_load_gs_per_vertex_input(ctx, instr);
5087 break;
5088 case MESA_SHADER_TESS_CTRL:
5089 visit_load_tcs_per_vertex_input(ctx, instr);
5090 break;
5091 case MESA_SHADER_TESS_EVAL:
5092 visit_load_tes_per_vertex_input(ctx, instr);
5093 break;
5094 default:
5095 unreachable("Unimplemented shader stage");
5096 }
5097 }
5098
5099 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5100 {
5101 visit_load_tcs_output(ctx, instr, true);
5102 }
5103
5104 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5105 {
5106 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
5107 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5108
5109 visit_store_tcs_output(ctx, instr, true);
5110 }
5111
5112 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
5113 {
5114 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5115
5116 Builder bld(ctx->program, ctx->block);
5117 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5118
5119 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
5120 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
5121 Operand tes_w(0u);
5122
5123 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
5124 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
5125 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
5126 tes_w = Operand(tmp);
5127 }
5128
5129 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
5130 emit_split_vector(ctx, tess_coord, 3);
5131 }
5132
5133 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
5134 {
5135 if (ctx->program->info->need_indirect_descriptor_sets) {
5136 Builder bld(ctx->program, ctx->block);
5137 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
5138 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
5139 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
5140 }
5141
5142 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
5143 }
5144
5145
5146 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
5147 {
5148 Builder bld(ctx->program, ctx->block);
5149 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
5150 if (!nir_dest_is_divergent(instr->dest))
5151 index = bld.as_uniform(index);
5152 unsigned desc_set = nir_intrinsic_desc_set(instr);
5153 unsigned binding = nir_intrinsic_binding(instr);
5154
5155 Temp desc_ptr;
5156 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
5157 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
5158 unsigned offset = layout->binding[binding].offset;
5159 unsigned stride;
5160 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
5161 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
5162 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
5163 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
5164 offset = pipeline_layout->push_constant_size + 16 * idx;
5165 stride = 16;
5166 } else {
5167 desc_ptr = load_desc_ptr(ctx, desc_set);
5168 stride = layout->binding[binding].size;
5169 }
5170
5171 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
5172 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
5173 if (stride != 1) {
5174 if (nir_const_index) {
5175 const_index = const_index * stride;
5176 } else if (index.type() == RegType::vgpr) {
5177 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
5178 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
5179 } else {
5180 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5181 }
5182 }
5183 if (offset) {
5184 if (nir_const_index) {
5185 const_index = const_index + offset;
5186 } else if (index.type() == RegType::vgpr) {
5187 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5188 } else {
5189 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5190 }
5191 }
5192
5193 if (nir_const_index && const_index == 0) {
5194 index = desc_ptr;
5195 } else if (index.type() == RegType::vgpr) {
5196 index = bld.vadd32(bld.def(v1),
5197 nir_const_index ? Operand(const_index) : Operand(index),
5198 Operand(desc_ptr));
5199 } else {
5200 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5201 nir_const_index ? Operand(const_index) : Operand(index),
5202 Operand(desc_ptr));
5203 }
5204
5205 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5206 }
5207
5208 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5209 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5210 bool glc=false, bool allow_smem=true, memory_sync_info sync=memory_sync_info())
5211 {
5212 Builder bld(ctx->program, ctx->block);
5213
5214 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5215 if (use_smem)
5216 offset = bld.as_uniform(offset);
5217
5218 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5219 info.glc = glc;
5220 info.sync = sync;
5221 info.align_mul = align_mul;
5222 info.align_offset = align_offset;
5223 if (use_smem)
5224 emit_smem_load(ctx, bld, &info);
5225 else
5226 emit_mubuf_load(ctx, bld, &info);
5227 }
5228
5229 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5230 {
5231 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5232 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5233
5234 Builder bld(ctx->program, ctx->block);
5235
5236 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5237 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5238 unsigned binding = nir_intrinsic_binding(idx_instr);
5239 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5240
5241 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5242 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5243 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5244 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5245 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5246 if (ctx->options->chip_class >= GFX10) {
5247 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5248 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5249 S_008F0C_RESOURCE_LEVEL(1);
5250 } else {
5251 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5252 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5253 }
5254 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5255 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5256 Operand(0xFFFFFFFFu),
5257 Operand(desc_type));
5258 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5259 rsrc, upper_dwords);
5260 } else {
5261 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5262 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5263 }
5264 unsigned size = instr->dest.ssa.bit_size / 8;
5265 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5266 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5267 }
5268
5269 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5270 {
5271 Builder bld(ctx->program, ctx->block);
5272 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5273 unsigned offset = nir_intrinsic_base(instr);
5274 unsigned count = instr->dest.ssa.num_components;
5275 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5276
5277 if (index_cv && instr->dest.ssa.bit_size == 32) {
5278 unsigned start = (offset + index_cv->u32) / 4u;
5279 start -= ctx->args->ac.base_inline_push_consts;
5280 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5281 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5282 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5283 for (unsigned i = 0; i < count; ++i) {
5284 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5285 vec->operands[i] = Operand{elems[i]};
5286 }
5287 vec->definitions[0] = Definition(dst);
5288 ctx->block->instructions.emplace_back(std::move(vec));
5289 ctx->allocated_vec.emplace(dst.id(), elems);
5290 return;
5291 }
5292 }
5293
5294 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5295 if (offset != 0) // TODO check if index != 0 as well
5296 index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5297 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5298 Temp vec = dst;
5299 bool trim = false;
5300 bool aligned = true;
5301
5302 if (instr->dest.ssa.bit_size == 8) {
5303 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5304 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5305 if (!aligned)
5306 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5307 } else if (instr->dest.ssa.bit_size == 16) {
5308 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5309 if (!aligned)
5310 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5311 }
5312
5313 aco_opcode op;
5314
5315 switch (vec.size()) {
5316 case 1:
5317 op = aco_opcode::s_load_dword;
5318 break;
5319 case 2:
5320 op = aco_opcode::s_load_dwordx2;
5321 break;
5322 case 3:
5323 vec = bld.tmp(s4);
5324 trim = true;
5325 case 4:
5326 op = aco_opcode::s_load_dwordx4;
5327 break;
5328 case 6:
5329 vec = bld.tmp(s8);
5330 trim = true;
5331 case 8:
5332 op = aco_opcode::s_load_dwordx8;
5333 break;
5334 default:
5335 unreachable("unimplemented or forbidden load_push_constant.");
5336 }
5337
5338 static_cast<SMEM_instruction*>(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true;
5339
5340 if (!aligned) {
5341 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5342 byte_align_scalar(ctx, vec, byte_offset, dst);
5343 return;
5344 }
5345
5346 if (trim) {
5347 emit_split_vector(ctx, vec, 4);
5348 RegClass rc = dst.size() == 3 ? s1 : s2;
5349 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5350 emit_extract_vector(ctx, vec, 0, rc),
5351 emit_extract_vector(ctx, vec, 1, rc),
5352 emit_extract_vector(ctx, vec, 2, rc));
5353
5354 }
5355 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5356 }
5357
5358 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5359 {
5360 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5361
5362 Builder bld(ctx->program, ctx->block);
5363
5364 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5365 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5366 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5367 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5368 if (ctx->options->chip_class >= GFX10) {
5369 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5370 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5371 S_008F0C_RESOURCE_LEVEL(1);
5372 } else {
5373 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5374 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5375 }
5376
5377 unsigned base = nir_intrinsic_base(instr);
5378 unsigned range = nir_intrinsic_range(instr);
5379
5380 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5381 if (base && offset.type() == RegType::sgpr)
5382 offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5383 else if (base && offset.type() == RegType::vgpr)
5384 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5385
5386 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5387 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5388 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5389 Operand(desc_type));
5390 unsigned size = instr->dest.ssa.bit_size / 8;
5391 // TODO: get alignment information for subdword constants
5392 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5393 }
5394
5395 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5396 {
5397 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5398 ctx->cf_info.exec_potentially_empty_discard = true;
5399
5400 ctx->program->needs_exact = true;
5401
5402 // TODO: optimize uniform conditions
5403 Builder bld(ctx->program, ctx->block);
5404 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5405 assert(src.regClass() == bld.lm);
5406 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5407 bld.pseudo(aco_opcode::p_discard_if, src);
5408 ctx->block->kind |= block_kind_uses_discard_if;
5409 return;
5410 }
5411
5412 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5413 {
5414 Builder bld(ctx->program, ctx->block);
5415
5416 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5417 ctx->cf_info.exec_potentially_empty_discard = true;
5418
5419 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5420 ctx->cf_info.parent_loop.has_divergent_continue;
5421
5422 if (ctx->block->loop_nest_depth &&
5423 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5424 /* we handle discards the same way as jump instructions */
5425 append_logical_end(ctx->block);
5426
5427 /* in loops, discard behaves like break */
5428 Block *linear_target = ctx->cf_info.parent_loop.exit;
5429 ctx->block->kind |= block_kind_discard;
5430
5431 if (!divergent) {
5432 /* uniform discard - loop ends here */
5433 assert(nir_instr_is_last(&instr->instr));
5434 ctx->block->kind |= block_kind_uniform;
5435 ctx->cf_info.has_branch = true;
5436 bld.branch(aco_opcode::p_branch);
5437 add_linear_edge(ctx->block->index, linear_target);
5438 return;
5439 }
5440
5441 /* we add a break right behind the discard() instructions */
5442 ctx->block->kind |= block_kind_break;
5443 unsigned idx = ctx->block->index;
5444
5445 ctx->cf_info.parent_loop.has_divergent_branch = true;
5446 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5447
5448 /* remove critical edges from linear CFG */
5449 bld.branch(aco_opcode::p_branch);
5450 Block* break_block = ctx->program->create_and_insert_block();
5451 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5452 break_block->kind |= block_kind_uniform;
5453 add_linear_edge(idx, break_block);
5454 add_linear_edge(break_block->index, linear_target);
5455 bld.reset(break_block);
5456 bld.branch(aco_opcode::p_branch);
5457
5458 Block* continue_block = ctx->program->create_and_insert_block();
5459 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5460 add_linear_edge(idx, continue_block);
5461 append_logical_start(continue_block);
5462 ctx->block = continue_block;
5463
5464 return;
5465 }
5466
5467 /* it can currently happen that NIR doesn't remove the unreachable code */
5468 if (!nir_instr_is_last(&instr->instr)) {
5469 ctx->program->needs_exact = true;
5470 /* save exec somewhere temporarily so that it doesn't get
5471 * overwritten before the discard from outer exec masks */
5472 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5473 bld.pseudo(aco_opcode::p_discard_if, cond);
5474 ctx->block->kind |= block_kind_uses_discard_if;
5475 return;
5476 }
5477
5478 /* This condition is incorrect for uniformly branched discards in a loop
5479 * predicated by a divergent condition, but the above code catches that case
5480 * and the discard would end up turning into a discard_if.
5481 * For example:
5482 * if (divergent) {
5483 * while (...) {
5484 * if (uniform) {
5485 * discard;
5486 * }
5487 * }
5488 * }
5489 */
5490 if (!ctx->cf_info.parent_if.is_divergent) {
5491 /* program just ends here */
5492 ctx->block->kind |= block_kind_uniform;
5493 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5494 0 /* enabled mask */, 9 /* dest */,
5495 false /* compressed */, true/* done */, true /* valid mask */);
5496 bld.sopp(aco_opcode::s_endpgm);
5497 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5498 } else {
5499 ctx->block->kind |= block_kind_discard;
5500 /* branch and linear edge is added by visit_if() */
5501 }
5502 }
5503
5504 enum aco_descriptor_type {
5505 ACO_DESC_IMAGE,
5506 ACO_DESC_FMASK,
5507 ACO_DESC_SAMPLER,
5508 ACO_DESC_BUFFER,
5509 ACO_DESC_PLANE_0,
5510 ACO_DESC_PLANE_1,
5511 ACO_DESC_PLANE_2,
5512 };
5513
5514 static bool
5515 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5516 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5517 return false;
5518 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5519 return dim == ac_image_cube ||
5520 dim == ac_image_1darray ||
5521 dim == ac_image_2darray ||
5522 dim == ac_image_2darraymsaa;
5523 }
5524
5525 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5526 enum aco_descriptor_type desc_type,
5527 const nir_tex_instr *tex_instr, bool image, bool write)
5528 {
5529 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5530 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5531 if (it != ctx->tex_desc.end())
5532 return it->second;
5533 */
5534 Temp index = Temp();
5535 bool index_set = false;
5536 unsigned constant_index = 0;
5537 unsigned descriptor_set;
5538 unsigned base_index;
5539 Builder bld(ctx->program, ctx->block);
5540
5541 if (!deref_instr) {
5542 assert(tex_instr && !image);
5543 descriptor_set = 0;
5544 base_index = tex_instr->sampler_index;
5545 } else {
5546 while(deref_instr->deref_type != nir_deref_type_var) {
5547 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5548 if (!array_size)
5549 array_size = 1;
5550
5551 assert(deref_instr->deref_type == nir_deref_type_array);
5552 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5553 if (const_value) {
5554 constant_index += array_size * const_value->u32;
5555 } else {
5556 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5557 if (indirect.type() == RegType::vgpr)
5558 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5559
5560 if (array_size != 1)
5561 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5562
5563 if (!index_set) {
5564 index = indirect;
5565 index_set = true;
5566 } else {
5567 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5568 }
5569 }
5570
5571 deref_instr = nir_src_as_deref(deref_instr->parent);
5572 }
5573 descriptor_set = deref_instr->var->data.descriptor_set;
5574 base_index = deref_instr->var->data.binding;
5575 }
5576
5577 Temp list = load_desc_ptr(ctx, descriptor_set);
5578 list = convert_pointer_to_64_bit(ctx, list);
5579
5580 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5581 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5582 unsigned offset = binding->offset;
5583 unsigned stride = binding->size;
5584 aco_opcode opcode;
5585 RegClass type;
5586
5587 assert(base_index < layout->binding_count);
5588
5589 switch (desc_type) {
5590 case ACO_DESC_IMAGE:
5591 type = s8;
5592 opcode = aco_opcode::s_load_dwordx8;
5593 break;
5594 case ACO_DESC_FMASK:
5595 type = s8;
5596 opcode = aco_opcode::s_load_dwordx8;
5597 offset += 32;
5598 break;
5599 case ACO_DESC_SAMPLER:
5600 type = s4;
5601 opcode = aco_opcode::s_load_dwordx4;
5602 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5603 offset += radv_combined_image_descriptor_sampler_offset(binding);
5604 break;
5605 case ACO_DESC_BUFFER:
5606 type = s4;
5607 opcode = aco_opcode::s_load_dwordx4;
5608 break;
5609 case ACO_DESC_PLANE_0:
5610 case ACO_DESC_PLANE_1:
5611 type = s8;
5612 opcode = aco_opcode::s_load_dwordx8;
5613 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5614 break;
5615 case ACO_DESC_PLANE_2:
5616 type = s4;
5617 opcode = aco_opcode::s_load_dwordx4;
5618 offset += 64;
5619 break;
5620 default:
5621 unreachable("invalid desc_type\n");
5622 }
5623
5624 offset += constant_index * stride;
5625
5626 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5627 (!index_set || binding->immutable_samplers_equal)) {
5628 if (binding->immutable_samplers_equal)
5629 constant_index = 0;
5630
5631 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5632 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5633 Operand(samplers[constant_index * 4 + 0]),
5634 Operand(samplers[constant_index * 4 + 1]),
5635 Operand(samplers[constant_index * 4 + 2]),
5636 Operand(samplers[constant_index * 4 + 3]));
5637 }
5638
5639 Operand off;
5640 if (!index_set) {
5641 off = bld.copy(bld.def(s1), Operand(offset));
5642 } else {
5643 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5644 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5645 }
5646
5647 Temp res = bld.smem(opcode, bld.def(type), list, off);
5648
5649 if (desc_type == ACO_DESC_PLANE_2) {
5650 Temp components[8];
5651 for (unsigned i = 0; i < 8; i++)
5652 components[i] = bld.tmp(s1);
5653 bld.pseudo(aco_opcode::p_split_vector,
5654 Definition(components[0]),
5655 Definition(components[1]),
5656 Definition(components[2]),
5657 Definition(components[3]),
5658 res);
5659
5660 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5661 bld.pseudo(aco_opcode::p_split_vector,
5662 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5663 Definition(components[4]),
5664 Definition(components[5]),
5665 Definition(components[6]),
5666 Definition(components[7]),
5667 desc2);
5668
5669 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5670 components[0], components[1], components[2], components[3],
5671 components[4], components[5], components[6], components[7]);
5672 }
5673
5674 return res;
5675 }
5676
5677 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5678 {
5679 switch (dim) {
5680 case GLSL_SAMPLER_DIM_BUF:
5681 return 1;
5682 case GLSL_SAMPLER_DIM_1D:
5683 return array ? 2 : 1;
5684 case GLSL_SAMPLER_DIM_2D:
5685 return array ? 3 : 2;
5686 case GLSL_SAMPLER_DIM_MS:
5687 return array ? 4 : 3;
5688 case GLSL_SAMPLER_DIM_3D:
5689 case GLSL_SAMPLER_DIM_CUBE:
5690 return 3;
5691 case GLSL_SAMPLER_DIM_RECT:
5692 case GLSL_SAMPLER_DIM_SUBPASS:
5693 return 2;
5694 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5695 return 3;
5696 default:
5697 break;
5698 }
5699 return 0;
5700 }
5701
5702
5703 /* Adjust the sample index according to FMASK.
5704 *
5705 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5706 * which is the identity mapping. Each nibble says which physical sample
5707 * should be fetched to get that sample.
5708 *
5709 * For example, 0x11111100 means there are only 2 samples stored and
5710 * the second sample covers 3/4 of the pixel. When reading samples 0
5711 * and 1, return physical sample 0 (determined by the first two 0s
5712 * in FMASK), otherwise return physical sample 1.
5713 *
5714 * The sample index should be adjusted as follows:
5715 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5716 */
5717 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5718 {
5719 Builder bld(ctx->program, ctx->block);
5720 Temp fmask = bld.tmp(v1);
5721 unsigned dim = ctx->options->chip_class >= GFX10
5722 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5723 : 0;
5724
5725 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5726 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5727 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5728 load->operands[0] = Operand(fmask_desc_ptr);
5729 load->operands[1] = Operand(s4); /* no sampler */
5730 load->operands[2] = Operand(coord);
5731 load->definitions[0] = Definition(fmask);
5732 load->glc = false;
5733 load->dlc = false;
5734 load->dmask = 0x1;
5735 load->unrm = true;
5736 load->da = da;
5737 load->dim = dim;
5738 ctx->block->instructions.emplace_back(std::move(load));
5739
5740 Operand sample_index4;
5741 if (sample_index.isConstant()) {
5742 if (sample_index.constantValue() < 16) {
5743 sample_index4 = Operand(sample_index.constantValue() << 2);
5744 } else {
5745 sample_index4 = Operand(0u);
5746 }
5747 } else if (sample_index.regClass() == s1) {
5748 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5749 } else {
5750 assert(sample_index.regClass() == v1);
5751 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5752 }
5753
5754 Temp final_sample;
5755 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5756 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5757 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5758 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5759 else
5760 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5761
5762 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5763 * resource descriptor is 0 (invalid),
5764 */
5765 Temp compare = bld.tmp(bld.lm);
5766 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5767 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5768
5769 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5770
5771 /* Replace the MSAA sample index. */
5772 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5773 }
5774
5775 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5776 {
5777
5778 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5779 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5780 bool is_array = glsl_sampler_type_is_array(type);
5781 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5782 assert(!add_frag_pos && "Input attachments should be lowered.");
5783 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5784 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5785 int count = image_type_to_components_count(dim, is_array);
5786 std::vector<Temp> coords(count);
5787 Builder bld(ctx->program, ctx->block);
5788
5789 if (is_ms) {
5790 count--;
5791 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5792 /* get sample index */
5793 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5794 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5795 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5796 std::vector<Temp> fmask_load_address;
5797 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5798 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5799
5800 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5801 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5802 } else {
5803 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5804 }
5805 }
5806
5807 if (gfx9_1d) {
5808 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5809 coords.resize(coords.size() + 1);
5810 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5811 if (is_array)
5812 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5813 } else {
5814 for (int i = 0; i < count; i++)
5815 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5816 }
5817
5818 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5819 instr->intrinsic == nir_intrinsic_image_deref_store) {
5820 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5821 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5822
5823 if (!level_zero)
5824 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5825 }
5826
5827 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5828 for (unsigned i = 0; i < coords.size(); i++)
5829 vec->operands[i] = Operand(coords[i]);
5830 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5831 vec->definitions[0] = Definition(res);
5832 ctx->block->instructions.emplace_back(std::move(vec));
5833 return res;
5834 }
5835
5836
5837 memory_sync_info get_memory_sync_info(nir_intrinsic_instr *instr, storage_class storage, unsigned semantics)
5838 {
5839 /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */
5840 if (semantics & semantic_atomicrmw)
5841 return memory_sync_info(storage, semantics);
5842
5843 unsigned access = nir_intrinsic_access(instr);
5844
5845 if (access & ACCESS_VOLATILE)
5846 semantics |= semantic_volatile;
5847 if (access & ACCESS_CAN_REORDER)
5848 semantics |= semantic_can_reorder | semantic_private;
5849
5850 return memory_sync_info(storage, semantics);
5851 }
5852
5853 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5854 {
5855 Builder bld(ctx->program, ctx->block);
5856 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5857 const struct glsl_type *type = glsl_without_array(var->type);
5858 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5859 bool is_array = glsl_sampler_type_is_array(type);
5860 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5861
5862 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5863 unsigned access = var->data.access | nir_intrinsic_access(instr);
5864
5865 if (dim == GLSL_SAMPLER_DIM_BUF) {
5866 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5867 unsigned num_channels = util_last_bit(mask);
5868 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5869 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5870
5871 aco_opcode opcode;
5872 switch (num_channels) {
5873 case 1:
5874 opcode = aco_opcode::buffer_load_format_x;
5875 break;
5876 case 2:
5877 opcode = aco_opcode::buffer_load_format_xy;
5878 break;
5879 case 3:
5880 opcode = aco_opcode::buffer_load_format_xyz;
5881 break;
5882 case 4:
5883 opcode = aco_opcode::buffer_load_format_xyzw;
5884 break;
5885 default:
5886 unreachable(">4 channel buffer image load");
5887 }
5888 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5889 load->operands[0] = Operand(rsrc);
5890 load->operands[1] = Operand(vindex);
5891 load->operands[2] = Operand((uint32_t) 0);
5892 Temp tmp;
5893 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5894 tmp = dst;
5895 else
5896 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5897 load->definitions[0] = Definition(tmp);
5898 load->idxen = true;
5899 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5900 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5901 load->sync = sync;
5902 ctx->block->instructions.emplace_back(std::move(load));
5903
5904 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5905 return;
5906 }
5907
5908 Temp coords = get_image_coords(ctx, instr, type);
5909 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5910
5911 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5912 unsigned num_components = util_bitcount(dmask);
5913 Temp tmp;
5914 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5915 tmp = dst;
5916 else
5917 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5918
5919 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5920 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5921
5922 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5923 load->operands[0] = Operand(resource);
5924 load->operands[1] = Operand(s4); /* no sampler */
5925 load->operands[2] = Operand(coords);
5926 load->definitions[0] = Definition(tmp);
5927 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5928 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5929 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5930 load->dmask = dmask;
5931 load->unrm = true;
5932 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5933 load->sync = sync;
5934 ctx->block->instructions.emplace_back(std::move(load));
5935
5936 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5937 return;
5938 }
5939
5940 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5941 {
5942 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5943 const struct glsl_type *type = glsl_without_array(var->type);
5944 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5945 bool is_array = glsl_sampler_type_is_array(type);
5946 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5947
5948 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5949 unsigned access = var->data.access | nir_intrinsic_access(instr);
5950 bool glc = ctx->options->chip_class == GFX6 || access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5951
5952 if (dim == GLSL_SAMPLER_DIM_BUF) {
5953 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5954 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5955 aco_opcode opcode;
5956 switch (data.size()) {
5957 case 1:
5958 opcode = aco_opcode::buffer_store_format_x;
5959 break;
5960 case 2:
5961 opcode = aco_opcode::buffer_store_format_xy;
5962 break;
5963 case 3:
5964 opcode = aco_opcode::buffer_store_format_xyz;
5965 break;
5966 case 4:
5967 opcode = aco_opcode::buffer_store_format_xyzw;
5968 break;
5969 default:
5970 unreachable(">4 channel buffer image store");
5971 }
5972 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5973 store->operands[0] = Operand(rsrc);
5974 store->operands[1] = Operand(vindex);
5975 store->operands[2] = Operand((uint32_t) 0);
5976 store->operands[3] = Operand(data);
5977 store->idxen = true;
5978 store->glc = glc;
5979 store->dlc = false;
5980 store->disable_wqm = true;
5981 store->sync = sync;
5982 ctx->program->needs_exact = true;
5983 ctx->block->instructions.emplace_back(std::move(store));
5984 return;
5985 }
5986
5987 assert(data.type() == RegType::vgpr);
5988 Temp coords = get_image_coords(ctx, instr, type);
5989 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5990
5991 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5992 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5993
5994 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5995 store->operands[0] = Operand(resource);
5996 store->operands[1] = Operand(data);
5997 store->operands[2] = Operand(coords);
5998 store->glc = glc;
5999 store->dlc = false;
6000 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6001 store->dmask = (1 << data.size()) - 1;
6002 store->unrm = true;
6003 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6004 store->disable_wqm = true;
6005 store->sync = sync;
6006 ctx->program->needs_exact = true;
6007 ctx->block->instructions.emplace_back(std::move(store));
6008 return;
6009 }
6010
6011 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6012 {
6013 /* return the previous value if dest is ever used */
6014 bool return_previous = false;
6015 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6016 return_previous = true;
6017 break;
6018 }
6019 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6020 return_previous = true;
6021 break;
6022 }
6023
6024 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6025 const struct glsl_type *type = glsl_without_array(var->type);
6026 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6027 bool is_array = glsl_sampler_type_is_array(type);
6028 Builder bld(ctx->program, ctx->block);
6029
6030 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
6031 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
6032
6033 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
6034 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
6035
6036 aco_opcode buf_op, image_op;
6037 switch (instr->intrinsic) {
6038 case nir_intrinsic_image_deref_atomic_add:
6039 buf_op = aco_opcode::buffer_atomic_add;
6040 image_op = aco_opcode::image_atomic_add;
6041 break;
6042 case nir_intrinsic_image_deref_atomic_umin:
6043 buf_op = aco_opcode::buffer_atomic_umin;
6044 image_op = aco_opcode::image_atomic_umin;
6045 break;
6046 case nir_intrinsic_image_deref_atomic_imin:
6047 buf_op = aco_opcode::buffer_atomic_smin;
6048 image_op = aco_opcode::image_atomic_smin;
6049 break;
6050 case nir_intrinsic_image_deref_atomic_umax:
6051 buf_op = aco_opcode::buffer_atomic_umax;
6052 image_op = aco_opcode::image_atomic_umax;
6053 break;
6054 case nir_intrinsic_image_deref_atomic_imax:
6055 buf_op = aco_opcode::buffer_atomic_smax;
6056 image_op = aco_opcode::image_atomic_smax;
6057 break;
6058 case nir_intrinsic_image_deref_atomic_and:
6059 buf_op = aco_opcode::buffer_atomic_and;
6060 image_op = aco_opcode::image_atomic_and;
6061 break;
6062 case nir_intrinsic_image_deref_atomic_or:
6063 buf_op = aco_opcode::buffer_atomic_or;
6064 image_op = aco_opcode::image_atomic_or;
6065 break;
6066 case nir_intrinsic_image_deref_atomic_xor:
6067 buf_op = aco_opcode::buffer_atomic_xor;
6068 image_op = aco_opcode::image_atomic_xor;
6069 break;
6070 case nir_intrinsic_image_deref_atomic_exchange:
6071 buf_op = aco_opcode::buffer_atomic_swap;
6072 image_op = aco_opcode::image_atomic_swap;
6073 break;
6074 case nir_intrinsic_image_deref_atomic_comp_swap:
6075 buf_op = aco_opcode::buffer_atomic_cmpswap;
6076 image_op = aco_opcode::image_atomic_cmpswap;
6077 break;
6078 default:
6079 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
6080 }
6081
6082 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6083 memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw);
6084
6085 if (dim == GLSL_SAMPLER_DIM_BUF) {
6086 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
6087 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
6088 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
6089 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6090 mubuf->operands[0] = Operand(resource);
6091 mubuf->operands[1] = Operand(vindex);
6092 mubuf->operands[2] = Operand((uint32_t)0);
6093 mubuf->operands[3] = Operand(data);
6094 if (return_previous)
6095 mubuf->definitions[0] = Definition(dst);
6096 mubuf->offset = 0;
6097 mubuf->idxen = true;
6098 mubuf->glc = return_previous;
6099 mubuf->dlc = false; /* Not needed for atomics */
6100 mubuf->disable_wqm = true;
6101 mubuf->sync = sync;
6102 ctx->program->needs_exact = true;
6103 ctx->block->instructions.emplace_back(std::move(mubuf));
6104 return;
6105 }
6106
6107 Temp coords = get_image_coords(ctx, instr, type);
6108 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
6109 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
6110 mimg->operands[0] = Operand(resource);
6111 mimg->operands[1] = Operand(data);
6112 mimg->operands[2] = Operand(coords);
6113 if (return_previous)
6114 mimg->definitions[0] = Definition(dst);
6115 mimg->glc = return_previous;
6116 mimg->dlc = false; /* Not needed for atomics */
6117 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6118 mimg->dmask = (1 << data.size()) - 1;
6119 mimg->unrm = true;
6120 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6121 mimg->disable_wqm = true;
6122 mimg->sync = sync;
6123 ctx->program->needs_exact = true;
6124 ctx->block->instructions.emplace_back(std::move(mimg));
6125 return;
6126 }
6127
6128 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
6129 {
6130 if (in_elements && ctx->options->chip_class == GFX8) {
6131 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
6132 Builder bld(ctx->program, ctx->block);
6133
6134 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6135
6136 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6137 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
6138
6139 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6140 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6141
6142 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6143 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6144
6145 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6146 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6147 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6148 if (dst.type() == RegType::vgpr)
6149 bld.copy(Definition(dst), shr_dst);
6150
6151 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6152 } else {
6153 emit_extract_vector(ctx, desc, 2, dst);
6154 }
6155 }
6156
6157 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6158 {
6159 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6160 const struct glsl_type *type = glsl_without_array(var->type);
6161 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6162 bool is_array = glsl_sampler_type_is_array(type);
6163 Builder bld(ctx->program, ctx->block);
6164
6165 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6166 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6167 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6168 }
6169
6170 /* LOD */
6171 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6172
6173 /* Resource */
6174 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6175
6176 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6177
6178 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6179 mimg->operands[0] = Operand(resource);
6180 mimg->operands[1] = Operand(s4); /* no sampler */
6181 mimg->operands[2] = Operand(lod);
6182 uint8_t& dmask = mimg->dmask;
6183 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6184 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6185 mimg->da = glsl_sampler_type_is_array(type);
6186 Definition& def = mimg->definitions[0];
6187 ctx->block->instructions.emplace_back(std::move(mimg));
6188
6189 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6190 glsl_sampler_type_is_array(type)) {
6191
6192 assert(instr->dest.ssa.num_components == 3);
6193 Temp tmp = {ctx->program->allocateId(), v3};
6194 def = Definition(tmp);
6195 emit_split_vector(ctx, tmp, 3);
6196
6197 /* divide 3rd value by 6 by multiplying with magic number */
6198 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6199 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6200
6201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6202 emit_extract_vector(ctx, tmp, 0, v1),
6203 emit_extract_vector(ctx, tmp, 1, v1),
6204 by_6);
6205
6206 } else if (ctx->options->chip_class == GFX9 &&
6207 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6208 glsl_sampler_type_is_array(type)) {
6209 assert(instr->dest.ssa.num_components == 2);
6210 def = Definition(dst);
6211 dmask = 0x5;
6212 } else {
6213 def = Definition(dst);
6214 }
6215
6216 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6217 }
6218
6219 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6220 {
6221 Builder bld(ctx->program, ctx->block);
6222 unsigned num_components = instr->num_components;
6223
6224 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6225 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6226 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6227
6228 unsigned access = nir_intrinsic_access(instr);
6229 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6230 unsigned size = instr->dest.ssa.bit_size / 8;
6231
6232 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6233 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6234 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6235 */
6236 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6237 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6238
6239 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6240 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem,
6241 get_memory_sync_info(instr, storage_buffer, 0));
6242 }
6243
6244 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6245 {
6246 Builder bld(ctx->program, ctx->block);
6247 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6248 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6249 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6250 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6251
6252 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6253 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6254
6255 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6256 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6257 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6258 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6259 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6260 */
6261 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6262
6263 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6264 ctx->options->chip_class >= GFX8 &&
6265 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6266 allow_smem;
6267 if (smem)
6268 offset = bld.as_uniform(offset);
6269 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6270
6271 unsigned write_count = 0;
6272 Temp write_datas[32];
6273 unsigned offsets[32];
6274 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6275 data, writemask, 16, &write_count, write_datas, offsets);
6276
6277 for (unsigned i = 0; i < write_count; i++) {
6278 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6279 if (smem && ctx->stage == fragment_fs)
6280 op = aco_opcode::p_fs_buffer_store_smem;
6281
6282 if (smem) {
6283 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6284 store->operands[0] = Operand(rsrc);
6285 if (offsets[i]) {
6286 Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6287 offset, Operand(offsets[i]));
6288 store->operands[1] = Operand(off);
6289 } else {
6290 store->operands[1] = Operand(offset);
6291 }
6292 if (op != aco_opcode::p_fs_buffer_store_smem)
6293 store->operands[1].setFixed(m0);
6294 store->operands[2] = Operand(write_datas[i]);
6295 store->glc = glc;
6296 store->dlc = false;
6297 store->disable_wqm = true;
6298 store->sync = sync;
6299 ctx->block->instructions.emplace_back(std::move(store));
6300 ctx->program->wb_smem_l1_on_end = true;
6301 if (op == aco_opcode::p_fs_buffer_store_smem) {
6302 ctx->block->kind |= block_kind_needs_lowering;
6303 ctx->program->needs_exact = true;
6304 }
6305 } else {
6306 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6307 store->operands[0] = Operand(rsrc);
6308 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6309 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6310 store->operands[3] = Operand(write_datas[i]);
6311 store->offset = offsets[i];
6312 store->offen = (offset.type() == RegType::vgpr);
6313 store->glc = glc;
6314 store->dlc = false;
6315 store->disable_wqm = true;
6316 store->sync = sync;
6317 ctx->program->needs_exact = true;
6318 ctx->block->instructions.emplace_back(std::move(store));
6319 }
6320 }
6321 }
6322
6323 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6324 {
6325 /* return the previous value if dest is ever used */
6326 bool return_previous = false;
6327 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6328 return_previous = true;
6329 break;
6330 }
6331 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6332 return_previous = true;
6333 break;
6334 }
6335
6336 Builder bld(ctx->program, ctx->block);
6337 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6338
6339 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6340 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6341 get_ssa_temp(ctx, instr->src[3].ssa), data);
6342
6343 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6344 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6345 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6346
6347 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6348
6349 aco_opcode op32, op64;
6350 switch (instr->intrinsic) {
6351 case nir_intrinsic_ssbo_atomic_add:
6352 op32 = aco_opcode::buffer_atomic_add;
6353 op64 = aco_opcode::buffer_atomic_add_x2;
6354 break;
6355 case nir_intrinsic_ssbo_atomic_imin:
6356 op32 = aco_opcode::buffer_atomic_smin;
6357 op64 = aco_opcode::buffer_atomic_smin_x2;
6358 break;
6359 case nir_intrinsic_ssbo_atomic_umin:
6360 op32 = aco_opcode::buffer_atomic_umin;
6361 op64 = aco_opcode::buffer_atomic_umin_x2;
6362 break;
6363 case nir_intrinsic_ssbo_atomic_imax:
6364 op32 = aco_opcode::buffer_atomic_smax;
6365 op64 = aco_opcode::buffer_atomic_smax_x2;
6366 break;
6367 case nir_intrinsic_ssbo_atomic_umax:
6368 op32 = aco_opcode::buffer_atomic_umax;
6369 op64 = aco_opcode::buffer_atomic_umax_x2;
6370 break;
6371 case nir_intrinsic_ssbo_atomic_and:
6372 op32 = aco_opcode::buffer_atomic_and;
6373 op64 = aco_opcode::buffer_atomic_and_x2;
6374 break;
6375 case nir_intrinsic_ssbo_atomic_or:
6376 op32 = aco_opcode::buffer_atomic_or;
6377 op64 = aco_opcode::buffer_atomic_or_x2;
6378 break;
6379 case nir_intrinsic_ssbo_atomic_xor:
6380 op32 = aco_opcode::buffer_atomic_xor;
6381 op64 = aco_opcode::buffer_atomic_xor_x2;
6382 break;
6383 case nir_intrinsic_ssbo_atomic_exchange:
6384 op32 = aco_opcode::buffer_atomic_swap;
6385 op64 = aco_opcode::buffer_atomic_swap_x2;
6386 break;
6387 case nir_intrinsic_ssbo_atomic_comp_swap:
6388 op32 = aco_opcode::buffer_atomic_cmpswap;
6389 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6390 break;
6391 default:
6392 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6393 }
6394 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6395 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6396 mubuf->operands[0] = Operand(rsrc);
6397 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6398 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6399 mubuf->operands[3] = Operand(data);
6400 if (return_previous)
6401 mubuf->definitions[0] = Definition(dst);
6402 mubuf->offset = 0;
6403 mubuf->offen = (offset.type() == RegType::vgpr);
6404 mubuf->glc = return_previous;
6405 mubuf->dlc = false; /* Not needed for atomics */
6406 mubuf->disable_wqm = true;
6407 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6408 ctx->program->needs_exact = true;
6409 ctx->block->instructions.emplace_back(std::move(mubuf));
6410 }
6411
6412 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6413
6414 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6415 Builder bld(ctx->program, ctx->block);
6416 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6417 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6418 }
6419
6420 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6421 {
6422 Builder bld(ctx->program, ctx->block);
6423 unsigned num_components = instr->num_components;
6424 unsigned component_size = instr->dest.ssa.bit_size / 8;
6425
6426 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6427 get_ssa_temp(ctx, &instr->dest.ssa),
6428 num_components, component_size};
6429 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6430 info.align_mul = nir_intrinsic_align_mul(instr);
6431 info.align_offset = nir_intrinsic_align_offset(instr);
6432 info.sync = get_memory_sync_info(instr, storage_buffer, 0);
6433 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6434 * it's safe to use SMEM */
6435 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6436 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6437 emit_global_load(ctx, bld, &info);
6438 } else {
6439 info.offset = Operand(bld.as_uniform(info.offset));
6440 emit_smem_load(ctx, bld, &info);
6441 }
6442 }
6443
6444 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6445 {
6446 Builder bld(ctx->program, ctx->block);
6447 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6448 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6449
6450 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6451 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6452 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6453 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6454
6455 if (ctx->options->chip_class >= GFX7)
6456 addr = as_vgpr(ctx, addr);
6457
6458 unsigned write_count = 0;
6459 Temp write_datas[32];
6460 unsigned offsets[32];
6461 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6462 16, &write_count, write_datas, offsets);
6463
6464 for (unsigned i = 0; i < write_count; i++) {
6465 if (ctx->options->chip_class >= GFX7) {
6466 unsigned offset = offsets[i];
6467 Temp store_addr = addr;
6468 if (offset > 0 && ctx->options->chip_class < GFX9) {
6469 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6470 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6471 Temp carry = bld.tmp(bld.lm);
6472 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6473
6474 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6475 Operand(offset), addr0);
6476 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6477 Operand(0u), addr1,
6478 carry).def(1).setHint(vcc);
6479
6480 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6481
6482 offset = 0;
6483 }
6484
6485 bool global = ctx->options->chip_class >= GFX9;
6486 aco_opcode op;
6487 switch (write_datas[i].bytes()) {
6488 case 1:
6489 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6490 break;
6491 case 2:
6492 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6493 break;
6494 case 4:
6495 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6496 break;
6497 case 8:
6498 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6499 break;
6500 case 12:
6501 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6502 break;
6503 case 16:
6504 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6505 break;
6506 default:
6507 unreachable("store_global not implemented for this size.");
6508 }
6509
6510 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6511 flat->operands[0] = Operand(store_addr);
6512 flat->operands[1] = Operand(s1);
6513 flat->operands[2] = Operand(write_datas[i]);
6514 flat->glc = glc;
6515 flat->dlc = false;
6516 flat->offset = offset;
6517 flat->disable_wqm = true;
6518 flat->sync = sync;
6519 ctx->program->needs_exact = true;
6520 ctx->block->instructions.emplace_back(std::move(flat));
6521 } else {
6522 assert(ctx->options->chip_class == GFX6);
6523
6524 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6525
6526 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6527
6528 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6529 mubuf->operands[0] = Operand(rsrc);
6530 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6531 mubuf->operands[2] = Operand(0u);
6532 mubuf->operands[3] = Operand(write_datas[i]);
6533 mubuf->glc = glc;
6534 mubuf->dlc = false;
6535 mubuf->offset = offsets[i];
6536 mubuf->addr64 = addr.type() == RegType::vgpr;
6537 mubuf->disable_wqm = true;
6538 mubuf->sync = sync;
6539 ctx->program->needs_exact = true;
6540 ctx->block->instructions.emplace_back(std::move(mubuf));
6541 }
6542 }
6543 }
6544
6545 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6546 {
6547 /* return the previous value if dest is ever used */
6548 bool return_previous = false;
6549 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6550 return_previous = true;
6551 break;
6552 }
6553 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6554 return_previous = true;
6555 break;
6556 }
6557
6558 Builder bld(ctx->program, ctx->block);
6559 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6560 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6561
6562 if (ctx->options->chip_class >= GFX7)
6563 addr = as_vgpr(ctx, addr);
6564
6565 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6566 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6567 get_ssa_temp(ctx, instr->src[2].ssa), data);
6568
6569 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6570
6571 aco_opcode op32, op64;
6572
6573 if (ctx->options->chip_class >= GFX7) {
6574 bool global = ctx->options->chip_class >= GFX9;
6575 switch (instr->intrinsic) {
6576 case nir_intrinsic_global_atomic_add:
6577 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6578 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6579 break;
6580 case nir_intrinsic_global_atomic_imin:
6581 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6582 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6583 break;
6584 case nir_intrinsic_global_atomic_umin:
6585 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6586 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6587 break;
6588 case nir_intrinsic_global_atomic_imax:
6589 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6590 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6591 break;
6592 case nir_intrinsic_global_atomic_umax:
6593 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6594 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6595 break;
6596 case nir_intrinsic_global_atomic_and:
6597 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6598 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6599 break;
6600 case nir_intrinsic_global_atomic_or:
6601 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6602 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6603 break;
6604 case nir_intrinsic_global_atomic_xor:
6605 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6606 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6607 break;
6608 case nir_intrinsic_global_atomic_exchange:
6609 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6610 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6611 break;
6612 case nir_intrinsic_global_atomic_comp_swap:
6613 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6614 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6615 break;
6616 default:
6617 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6618 }
6619
6620 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6621 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6622 flat->operands[0] = Operand(addr);
6623 flat->operands[1] = Operand(s1);
6624 flat->operands[2] = Operand(data);
6625 if (return_previous)
6626 flat->definitions[0] = Definition(dst);
6627 flat->glc = return_previous;
6628 flat->dlc = false; /* Not needed for atomics */
6629 flat->offset = 0;
6630 flat->disable_wqm = true;
6631 flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6632 ctx->program->needs_exact = true;
6633 ctx->block->instructions.emplace_back(std::move(flat));
6634 } else {
6635 assert(ctx->options->chip_class == GFX6);
6636
6637 switch (instr->intrinsic) {
6638 case nir_intrinsic_global_atomic_add:
6639 op32 = aco_opcode::buffer_atomic_add;
6640 op64 = aco_opcode::buffer_atomic_add_x2;
6641 break;
6642 case nir_intrinsic_global_atomic_imin:
6643 op32 = aco_opcode::buffer_atomic_smin;
6644 op64 = aco_opcode::buffer_atomic_smin_x2;
6645 break;
6646 case nir_intrinsic_global_atomic_umin:
6647 op32 = aco_opcode::buffer_atomic_umin;
6648 op64 = aco_opcode::buffer_atomic_umin_x2;
6649 break;
6650 case nir_intrinsic_global_atomic_imax:
6651 op32 = aco_opcode::buffer_atomic_smax;
6652 op64 = aco_opcode::buffer_atomic_smax_x2;
6653 break;
6654 case nir_intrinsic_global_atomic_umax:
6655 op32 = aco_opcode::buffer_atomic_umax;
6656 op64 = aco_opcode::buffer_atomic_umax_x2;
6657 break;
6658 case nir_intrinsic_global_atomic_and:
6659 op32 = aco_opcode::buffer_atomic_and;
6660 op64 = aco_opcode::buffer_atomic_and_x2;
6661 break;
6662 case nir_intrinsic_global_atomic_or:
6663 op32 = aco_opcode::buffer_atomic_or;
6664 op64 = aco_opcode::buffer_atomic_or_x2;
6665 break;
6666 case nir_intrinsic_global_atomic_xor:
6667 op32 = aco_opcode::buffer_atomic_xor;
6668 op64 = aco_opcode::buffer_atomic_xor_x2;
6669 break;
6670 case nir_intrinsic_global_atomic_exchange:
6671 op32 = aco_opcode::buffer_atomic_swap;
6672 op64 = aco_opcode::buffer_atomic_swap_x2;
6673 break;
6674 case nir_intrinsic_global_atomic_comp_swap:
6675 op32 = aco_opcode::buffer_atomic_cmpswap;
6676 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6677 break;
6678 default:
6679 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6680 }
6681
6682 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6683
6684 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6685
6686 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6687 mubuf->operands[0] = Operand(rsrc);
6688 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6689 mubuf->operands[2] = Operand(0u);
6690 mubuf->operands[3] = Operand(data);
6691 if (return_previous)
6692 mubuf->definitions[0] = Definition(dst);
6693 mubuf->glc = return_previous;
6694 mubuf->dlc = false;
6695 mubuf->offset = 0;
6696 mubuf->addr64 = addr.type() == RegType::vgpr;
6697 mubuf->disable_wqm = true;
6698 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6699 ctx->program->needs_exact = true;
6700 ctx->block->instructions.emplace_back(std::move(mubuf));
6701 }
6702 }
6703
6704 sync_scope translate_nir_scope(nir_scope scope)
6705 {
6706 switch (scope) {
6707 case NIR_SCOPE_NONE:
6708 case NIR_SCOPE_INVOCATION:
6709 return scope_invocation;
6710 case NIR_SCOPE_SUBGROUP:
6711 return scope_subgroup;
6712 case NIR_SCOPE_WORKGROUP:
6713 return scope_workgroup;
6714 case NIR_SCOPE_QUEUE_FAMILY:
6715 return scope_queuefamily;
6716 case NIR_SCOPE_DEVICE:
6717 return scope_device;
6718 }
6719 unreachable("invalid scope");
6720 }
6721
6722 void emit_scoped_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6723 Builder bld(ctx->program, ctx->block);
6724
6725 unsigned semantics = 0;
6726 unsigned storage = 0;
6727 sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr));
6728 sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr));
6729
6730 unsigned nir_storage = nir_intrinsic_memory_modes(instr);
6731 if (nir_storage & (nir_var_mem_ssbo | nir_var_mem_global))
6732 storage |= storage_buffer | storage_image; //TODO: split this when NIR gets nir_var_mem_image
6733 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && (nir_storage & nir_var_mem_shared))
6734 storage |= storage_shared;
6735 if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL && (nir_storage & nir_var_shader_out))
6736 storage |= storage_shared;
6737
6738 unsigned nir_semantics = nir_intrinsic_memory_semantics(instr);
6739 if (nir_semantics & NIR_MEMORY_ACQUIRE)
6740 semantics |= semantic_acquire | semantic_release;
6741 if (nir_semantics & NIR_MEMORY_RELEASE)
6742 semantics |= semantic_acquire | semantic_release;
6743
6744 assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
6745
6746 bld.barrier(aco_opcode::p_barrier,
6747 memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope),
6748 exec_scope);
6749 }
6750
6751 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6752 {
6753 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6754 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6755 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6756 Builder bld(ctx->program, ctx->block);
6757
6758 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6759 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6760 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6761 }
6762
6763 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6764 {
6765 unsigned writemask = nir_intrinsic_write_mask(instr);
6766 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6767 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6768 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6769
6770 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6771 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6772 }
6773
6774 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6775 {
6776 unsigned offset = nir_intrinsic_base(instr);
6777 Builder bld(ctx->program, ctx->block);
6778 Operand m = load_lds_size_m0(bld);
6779 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6780 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6781
6782 unsigned num_operands = 3;
6783 aco_opcode op32, op64, op32_rtn, op64_rtn;
6784 switch(instr->intrinsic) {
6785 case nir_intrinsic_shared_atomic_add:
6786 op32 = aco_opcode::ds_add_u32;
6787 op64 = aco_opcode::ds_add_u64;
6788 op32_rtn = aco_opcode::ds_add_rtn_u32;
6789 op64_rtn = aco_opcode::ds_add_rtn_u64;
6790 break;
6791 case nir_intrinsic_shared_atomic_imin:
6792 op32 = aco_opcode::ds_min_i32;
6793 op64 = aco_opcode::ds_min_i64;
6794 op32_rtn = aco_opcode::ds_min_rtn_i32;
6795 op64_rtn = aco_opcode::ds_min_rtn_i64;
6796 break;
6797 case nir_intrinsic_shared_atomic_umin:
6798 op32 = aco_opcode::ds_min_u32;
6799 op64 = aco_opcode::ds_min_u64;
6800 op32_rtn = aco_opcode::ds_min_rtn_u32;
6801 op64_rtn = aco_opcode::ds_min_rtn_u64;
6802 break;
6803 case nir_intrinsic_shared_atomic_imax:
6804 op32 = aco_opcode::ds_max_i32;
6805 op64 = aco_opcode::ds_max_i64;
6806 op32_rtn = aco_opcode::ds_max_rtn_i32;
6807 op64_rtn = aco_opcode::ds_max_rtn_i64;
6808 break;
6809 case nir_intrinsic_shared_atomic_umax:
6810 op32 = aco_opcode::ds_max_u32;
6811 op64 = aco_opcode::ds_max_u64;
6812 op32_rtn = aco_opcode::ds_max_rtn_u32;
6813 op64_rtn = aco_opcode::ds_max_rtn_u64;
6814 break;
6815 case nir_intrinsic_shared_atomic_and:
6816 op32 = aco_opcode::ds_and_b32;
6817 op64 = aco_opcode::ds_and_b64;
6818 op32_rtn = aco_opcode::ds_and_rtn_b32;
6819 op64_rtn = aco_opcode::ds_and_rtn_b64;
6820 break;
6821 case nir_intrinsic_shared_atomic_or:
6822 op32 = aco_opcode::ds_or_b32;
6823 op64 = aco_opcode::ds_or_b64;
6824 op32_rtn = aco_opcode::ds_or_rtn_b32;
6825 op64_rtn = aco_opcode::ds_or_rtn_b64;
6826 break;
6827 case nir_intrinsic_shared_atomic_xor:
6828 op32 = aco_opcode::ds_xor_b32;
6829 op64 = aco_opcode::ds_xor_b64;
6830 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6831 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6832 break;
6833 case nir_intrinsic_shared_atomic_exchange:
6834 op32 = aco_opcode::ds_write_b32;
6835 op64 = aco_opcode::ds_write_b64;
6836 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6837 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6838 break;
6839 case nir_intrinsic_shared_atomic_comp_swap:
6840 op32 = aco_opcode::ds_cmpst_b32;
6841 op64 = aco_opcode::ds_cmpst_b64;
6842 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6843 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6844 num_operands = 4;
6845 break;
6846 case nir_intrinsic_shared_atomic_fadd:
6847 op32 = aco_opcode::ds_add_f32;
6848 op32_rtn = aco_opcode::ds_add_rtn_f32;
6849 op64 = aco_opcode::num_opcodes;
6850 op64_rtn = aco_opcode::num_opcodes;
6851 break;
6852 default:
6853 unreachable("Unhandled shared atomic intrinsic");
6854 }
6855
6856 /* return the previous value if dest is ever used */
6857 bool return_previous = false;
6858 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6859 return_previous = true;
6860 break;
6861 }
6862 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6863 return_previous = true;
6864 break;
6865 }
6866
6867 aco_opcode op;
6868 if (data.size() == 1) {
6869 assert(instr->dest.ssa.bit_size == 32);
6870 op = return_previous ? op32_rtn : op32;
6871 } else {
6872 assert(instr->dest.ssa.bit_size == 64);
6873 op = return_previous ? op64_rtn : op64;
6874 }
6875
6876 if (offset > 65535) {
6877 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6878 offset = 0;
6879 }
6880
6881 aco_ptr<DS_instruction> ds;
6882 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6883 ds->operands[0] = Operand(address);
6884 ds->operands[1] = Operand(data);
6885 if (num_operands == 4)
6886 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6887 ds->operands[num_operands - 1] = m;
6888 ds->offset0 = offset;
6889 if (return_previous)
6890 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6891 ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw);
6892 ctx->block->instructions.emplace_back(std::move(ds));
6893 }
6894
6895 Temp get_scratch_resource(isel_context *ctx)
6896 {
6897 Builder bld(ctx->program, ctx->block);
6898 Temp scratch_addr = ctx->program->private_segment_buffer;
6899 if (ctx->stage != compute_cs)
6900 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6901
6902 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6903 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
6904
6905 if (ctx->program->chip_class >= GFX10) {
6906 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6907 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6908 S_008F0C_RESOURCE_LEVEL(1);
6909 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6910 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6911 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6912 }
6913
6914 /* older generations need element size = 4 bytes. element size removed in GFX9 */
6915 if (ctx->program->chip_class <= GFX8)
6916 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
6917
6918 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6919 }
6920
6921 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6922 Builder bld(ctx->program, ctx->block);
6923 Temp rsrc = get_scratch_resource(ctx);
6924 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6925 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6926
6927 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6928 instr->dest.ssa.bit_size / 8u, rsrc};
6929 info.align_mul = nir_intrinsic_align_mul(instr);
6930 info.align_offset = nir_intrinsic_align_offset(instr);
6931 info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0;
6932 info.sync = memory_sync_info(storage_scratch, semantic_private);
6933 info.soffset = ctx->program->scratch_offset;
6934 emit_scratch_load(ctx, bld, &info);
6935 }
6936
6937 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6938 Builder bld(ctx->program, ctx->block);
6939 Temp rsrc = get_scratch_resource(ctx);
6940 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6941 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6942
6943 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6944 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6945
6946 unsigned write_count = 0;
6947 Temp write_datas[32];
6948 unsigned offsets[32];
6949 unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16;
6950 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6951 swizzle_component_size, &write_count, write_datas, offsets);
6952
6953 for (unsigned i = 0; i < write_count; i++) {
6954 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6955 Instruction *instr = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true);
6956 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_scratch, semantic_private);
6957 }
6958 }
6959
6960 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6961 uint8_t log2_ps_iter_samples;
6962 if (ctx->program->info->ps.force_persample) {
6963 log2_ps_iter_samples =
6964 util_logbase2(ctx->options->key.fs.num_samples);
6965 } else {
6966 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6967 }
6968
6969 /* The bit pattern matches that used by fixed function fragment
6970 * processing. */
6971 static const unsigned ps_iter_masks[] = {
6972 0xffff, /* not used */
6973 0x5555,
6974 0x1111,
6975 0x0101,
6976 0x0001,
6977 };
6978 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6979
6980 Builder bld(ctx->program, ctx->block);
6981
6982 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6983 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6984 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6985 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6986 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6987 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6988 }
6989
6990 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6991 Builder bld(ctx->program, ctx->block);
6992
6993 unsigned stream = nir_intrinsic_stream_id(instr);
6994 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6995 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6996 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6997
6998 /* get GSVS ring */
6999 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
7000
7001 unsigned num_components =
7002 ctx->program->info->gs.num_stream_output_components[stream];
7003 assert(num_components);
7004
7005 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
7006 unsigned stream_offset = 0;
7007 for (unsigned i = 0; i < stream; i++) {
7008 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
7009 stream_offset += prev_stride * ctx->program->wave_size;
7010 }
7011
7012 /* Limit on the stride field for <= GFX7. */
7013 assert(stride < (1 << 14));
7014
7015 Temp gsvs_dwords[4];
7016 for (unsigned i = 0; i < 4; i++)
7017 gsvs_dwords[i] = bld.tmp(s1);
7018 bld.pseudo(aco_opcode::p_split_vector,
7019 Definition(gsvs_dwords[0]),
7020 Definition(gsvs_dwords[1]),
7021 Definition(gsvs_dwords[2]),
7022 Definition(gsvs_dwords[3]),
7023 gsvs_ring);
7024
7025 if (stream_offset) {
7026 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
7027
7028 Temp carry = bld.tmp(s1);
7029 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
7030 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
7031 }
7032
7033 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
7034 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
7035
7036 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7037 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
7038
7039 unsigned offset = 0;
7040 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
7041 if (ctx->program->info->gs.output_streams[i] != stream)
7042 continue;
7043
7044 for (unsigned j = 0; j < 4; j++) {
7045 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
7046 continue;
7047
7048 if (ctx->outputs.mask[i] & (1 << j)) {
7049 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
7050 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
7051 if (const_offset >= 4096u) {
7052 if (vaddr_offset.isUndefined())
7053 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
7054 else
7055 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
7056 const_offset %= 4096u;
7057 }
7058
7059 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
7060 mtbuf->operands[0] = Operand(gsvs_ring);
7061 mtbuf->operands[1] = vaddr_offset;
7062 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
7063 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
7064 mtbuf->offen = !vaddr_offset.isUndefined();
7065 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
7066 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
7067 mtbuf->offset = const_offset;
7068 mtbuf->glc = true;
7069 mtbuf->slc = true;
7070 mtbuf->sync = memory_sync_info(storage_vmem_output, semantic_can_reorder);
7071 bld.insert(std::move(mtbuf));
7072 }
7073
7074 offset += ctx->shader->info.gs.vertices_out;
7075 }
7076
7077 /* outputs for the next vertex are undefined and keeping them around can
7078 * create invalid IR with control flow */
7079 ctx->outputs.mask[i] = 0;
7080 }
7081
7082 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
7083 }
7084
7085 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
7086 {
7087 Builder bld(ctx->program, ctx->block);
7088
7089 if (cluster_size == 1) {
7090 return src;
7091 } if (op == nir_op_iand && cluster_size == 4) {
7092 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7093 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7094 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7095 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7096 } else if (op == nir_op_ior && cluster_size == 4) {
7097 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7098 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7099 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7100 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7101 //subgroupAnd(val) -> (exec & ~val) == 0
7102 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7103 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7104 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7105 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7106 //subgroupOr(val) -> (val & exec) != 0
7107 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7108 return bool_to_vector_condition(ctx, tmp);
7109 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7110 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7111 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7112 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7113 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7114 return bool_to_vector_condition(ctx, tmp);
7115 } else {
7116 //subgroupClustered{And,Or,Xor}(val, n) ->
7117 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7118 //cluster_offset = ~(n - 1) & lane_id
7119 //cluster_mask = ((1 << n) - 1)
7120 //subgroupClusteredAnd():
7121 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7122 //subgroupClusteredOr():
7123 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7124 //subgroupClusteredXor():
7125 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7126 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7127 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7128
7129 Temp tmp;
7130 if (op == nir_op_iand)
7131 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7132 else
7133 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7134
7135 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7136
7137 if (ctx->program->chip_class <= GFX7)
7138 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7139 else if (ctx->program->wave_size == 64)
7140 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7141 else
7142 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7143 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7144 if (cluster_mask != 0xffffffff)
7145 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7146
7147 Definition cmp_def = Definition();
7148 if (op == nir_op_iand) {
7149 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7150 } else if (op == nir_op_ior) {
7151 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7152 } else if (op == nir_op_ixor) {
7153 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7154 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7155 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7156 }
7157 cmp_def.setHint(vcc);
7158 return cmp_def.getTemp();
7159 }
7160 }
7161
7162 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7163 {
7164 Builder bld(ctx->program, ctx->block);
7165
7166 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7167 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7168 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7169 Temp tmp;
7170 if (op == nir_op_iand)
7171 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7172 else
7173 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7174
7175 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7176 Temp lo = lohi.def(0).getTemp();
7177 Temp hi = lohi.def(1).getTemp();
7178 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7179
7180 Definition cmp_def = Definition();
7181 if (op == nir_op_iand)
7182 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7183 else if (op == nir_op_ior)
7184 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7185 else if (op == nir_op_ixor)
7186 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7187 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7188 cmp_def.setHint(vcc);
7189 return cmp_def.getTemp();
7190 }
7191
7192 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7193 {
7194 Builder bld(ctx->program, ctx->block);
7195
7196 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7197 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7198 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7199 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7200 if (op == nir_op_iand)
7201 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7202 else if (op == nir_op_ior)
7203 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7204 else if (op == nir_op_ixor)
7205 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7206
7207 assert(false);
7208 return Temp();
7209 }
7210
7211 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7212 {
7213 Builder bld(ctx->program, ctx->block);
7214 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7215 if (src.regClass().type() == RegType::vgpr) {
7216 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7217 } else if (src.regClass() == s1) {
7218 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7219 } else if (src.regClass() == s2) {
7220 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7221 } else {
7222 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7223 nir_print_instr(&instr->instr, stderr);
7224 fprintf(stderr, "\n");
7225 }
7226 }
7227
7228 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7229 {
7230 Builder bld(ctx->program, ctx->block);
7231 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7232 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7233 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7234
7235 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7236 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7237 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7238 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7239
7240 /* Build DD X/Y */
7241 if (ctx->program->chip_class >= GFX8) {
7242 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7243 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7244 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7245 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7246 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7247 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7248 } else {
7249 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7250 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7251 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7252 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7253 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7254 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7255 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7256 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7257 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7258 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7259 }
7260
7261 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7262 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7263 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7264 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7265 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7266 Temp wqm1 = bld.tmp(v1);
7267 emit_wqm(ctx, tmp1, wqm1, true);
7268 Temp wqm2 = bld.tmp(v1);
7269 emit_wqm(ctx, tmp2, wqm2, true);
7270 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7271 return;
7272 }
7273
7274 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7275 {
7276 Builder bld(ctx->program, ctx->block);
7277 switch(instr->intrinsic) {
7278 case nir_intrinsic_load_barycentric_sample:
7279 case nir_intrinsic_load_barycentric_pixel:
7280 case nir_intrinsic_load_barycentric_centroid: {
7281 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7282 Temp bary = Temp(0, s2);
7283 switch (mode) {
7284 case INTERP_MODE_SMOOTH:
7285 case INTERP_MODE_NONE:
7286 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7287 bary = get_arg(ctx, ctx->args->ac.persp_center);
7288 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7289 bary = ctx->persp_centroid;
7290 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7291 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7292 break;
7293 case INTERP_MODE_NOPERSPECTIVE:
7294 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7295 bary = get_arg(ctx, ctx->args->ac.linear_center);
7296 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7297 bary = ctx->linear_centroid;
7298 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7299 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7300 break;
7301 default:
7302 break;
7303 }
7304 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7305 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7306 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7307 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7308 Operand(p1), Operand(p2));
7309 emit_split_vector(ctx, dst, 2);
7310 break;
7311 }
7312 case nir_intrinsic_load_barycentric_model: {
7313 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7314
7315 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7316 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7317 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7318 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7319 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7320 Operand(p1), Operand(p2), Operand(p3));
7321 emit_split_vector(ctx, dst, 3);
7322 break;
7323 }
7324 case nir_intrinsic_load_barycentric_at_sample: {
7325 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7326 switch (ctx->options->key.fs.num_samples) {
7327 case 2: sample_pos_offset += 1 << 3; break;
7328 case 4: sample_pos_offset += 3 << 3; break;
7329 case 8: sample_pos_offset += 7 << 3; break;
7330 default: break;
7331 }
7332 Temp sample_pos;
7333 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7334 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7335 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7336 //TODO: bounds checking?
7337 if (addr.type() == RegType::sgpr) {
7338 Operand offset;
7339 if (const_addr) {
7340 sample_pos_offset += const_addr->u32 << 3;
7341 offset = Operand(sample_pos_offset);
7342 } else if (ctx->options->chip_class >= GFX9) {
7343 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7344 } else {
7345 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7346 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7347 }
7348
7349 Operand off = bld.copy(bld.def(s1), Operand(offset));
7350 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7351
7352 } else if (ctx->options->chip_class >= GFX9) {
7353 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7354 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7355 } else if (ctx->options->chip_class >= GFX7) {
7356 /* addr += private_segment_buffer + sample_pos_offset */
7357 Temp tmp0 = bld.tmp(s1);
7358 Temp tmp1 = bld.tmp(s1);
7359 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7360 Definition scc_tmp = bld.def(s1, scc);
7361 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7362 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7363 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7364 Temp pck0 = bld.tmp(v1);
7365 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7366 tmp1 = as_vgpr(ctx, tmp1);
7367 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7368 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7369
7370 /* sample_pos = flat_load_dwordx2 addr */
7371 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7372 } else {
7373 assert(ctx->options->chip_class == GFX6);
7374
7375 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7376 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7377 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7378
7379 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7380 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7381
7382 sample_pos = bld.tmp(v2);
7383
7384 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7385 load->definitions[0] = Definition(sample_pos);
7386 load->operands[0] = Operand(rsrc);
7387 load->operands[1] = Operand(addr);
7388 load->operands[2] = Operand(0u);
7389 load->offset = sample_pos_offset;
7390 load->offen = 0;
7391 load->addr64 = true;
7392 load->glc = false;
7393 load->dlc = false;
7394 load->disable_wqm = false;
7395 ctx->block->instructions.emplace_back(std::move(load));
7396 }
7397
7398 /* sample_pos -= 0.5 */
7399 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7400 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7401 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7402 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7403 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7404
7405 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7406 break;
7407 }
7408 case nir_intrinsic_load_barycentric_at_offset: {
7409 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7410 RegClass rc = RegClass(offset.type(), 1);
7411 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7412 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7413 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7414 break;
7415 }
7416 case nir_intrinsic_load_front_face: {
7417 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7418 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7419 break;
7420 }
7421 case nir_intrinsic_load_view_index: {
7422 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7423 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7424 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7425 break;
7426 }
7427
7428 /* fallthrough */
7429 }
7430 case nir_intrinsic_load_layer_id: {
7431 unsigned idx = nir_intrinsic_base(instr);
7432 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7433 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7434 break;
7435 }
7436 case nir_intrinsic_load_frag_coord: {
7437 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7438 break;
7439 }
7440 case nir_intrinsic_load_sample_pos: {
7441 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7442 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7443 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7444 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7445 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7446 break;
7447 }
7448 case nir_intrinsic_load_tess_coord:
7449 visit_load_tess_coord(ctx, instr);
7450 break;
7451 case nir_intrinsic_load_interpolated_input:
7452 visit_load_interpolated_input(ctx, instr);
7453 break;
7454 case nir_intrinsic_store_output:
7455 visit_store_output(ctx, instr);
7456 break;
7457 case nir_intrinsic_load_input:
7458 case nir_intrinsic_load_input_vertex:
7459 visit_load_input(ctx, instr);
7460 break;
7461 case nir_intrinsic_load_output:
7462 visit_load_output(ctx, instr);
7463 break;
7464 case nir_intrinsic_load_per_vertex_input:
7465 visit_load_per_vertex_input(ctx, instr);
7466 break;
7467 case nir_intrinsic_load_per_vertex_output:
7468 visit_load_per_vertex_output(ctx, instr);
7469 break;
7470 case nir_intrinsic_store_per_vertex_output:
7471 visit_store_per_vertex_output(ctx, instr);
7472 break;
7473 case nir_intrinsic_load_ubo:
7474 visit_load_ubo(ctx, instr);
7475 break;
7476 case nir_intrinsic_load_push_constant:
7477 visit_load_push_constant(ctx, instr);
7478 break;
7479 case nir_intrinsic_load_constant:
7480 visit_load_constant(ctx, instr);
7481 break;
7482 case nir_intrinsic_vulkan_resource_index:
7483 visit_load_resource(ctx, instr);
7484 break;
7485 case nir_intrinsic_discard:
7486 visit_discard(ctx, instr);
7487 break;
7488 case nir_intrinsic_discard_if:
7489 visit_discard_if(ctx, instr);
7490 break;
7491 case nir_intrinsic_load_shared:
7492 visit_load_shared(ctx, instr);
7493 break;
7494 case nir_intrinsic_store_shared:
7495 visit_store_shared(ctx, instr);
7496 break;
7497 case nir_intrinsic_shared_atomic_add:
7498 case nir_intrinsic_shared_atomic_imin:
7499 case nir_intrinsic_shared_atomic_umin:
7500 case nir_intrinsic_shared_atomic_imax:
7501 case nir_intrinsic_shared_atomic_umax:
7502 case nir_intrinsic_shared_atomic_and:
7503 case nir_intrinsic_shared_atomic_or:
7504 case nir_intrinsic_shared_atomic_xor:
7505 case nir_intrinsic_shared_atomic_exchange:
7506 case nir_intrinsic_shared_atomic_comp_swap:
7507 case nir_intrinsic_shared_atomic_fadd:
7508 visit_shared_atomic(ctx, instr);
7509 break;
7510 case nir_intrinsic_image_deref_load:
7511 visit_image_load(ctx, instr);
7512 break;
7513 case nir_intrinsic_image_deref_store:
7514 visit_image_store(ctx, instr);
7515 break;
7516 case nir_intrinsic_image_deref_atomic_add:
7517 case nir_intrinsic_image_deref_atomic_umin:
7518 case nir_intrinsic_image_deref_atomic_imin:
7519 case nir_intrinsic_image_deref_atomic_umax:
7520 case nir_intrinsic_image_deref_atomic_imax:
7521 case nir_intrinsic_image_deref_atomic_and:
7522 case nir_intrinsic_image_deref_atomic_or:
7523 case nir_intrinsic_image_deref_atomic_xor:
7524 case nir_intrinsic_image_deref_atomic_exchange:
7525 case nir_intrinsic_image_deref_atomic_comp_swap:
7526 visit_image_atomic(ctx, instr);
7527 break;
7528 case nir_intrinsic_image_deref_size:
7529 visit_image_size(ctx, instr);
7530 break;
7531 case nir_intrinsic_load_ssbo:
7532 visit_load_ssbo(ctx, instr);
7533 break;
7534 case nir_intrinsic_store_ssbo:
7535 visit_store_ssbo(ctx, instr);
7536 break;
7537 case nir_intrinsic_load_global:
7538 visit_load_global(ctx, instr);
7539 break;
7540 case nir_intrinsic_store_global:
7541 visit_store_global(ctx, instr);
7542 break;
7543 case nir_intrinsic_global_atomic_add:
7544 case nir_intrinsic_global_atomic_imin:
7545 case nir_intrinsic_global_atomic_umin:
7546 case nir_intrinsic_global_atomic_imax:
7547 case nir_intrinsic_global_atomic_umax:
7548 case nir_intrinsic_global_atomic_and:
7549 case nir_intrinsic_global_atomic_or:
7550 case nir_intrinsic_global_atomic_xor:
7551 case nir_intrinsic_global_atomic_exchange:
7552 case nir_intrinsic_global_atomic_comp_swap:
7553 visit_global_atomic(ctx, instr);
7554 break;
7555 case nir_intrinsic_ssbo_atomic_add:
7556 case nir_intrinsic_ssbo_atomic_imin:
7557 case nir_intrinsic_ssbo_atomic_umin:
7558 case nir_intrinsic_ssbo_atomic_imax:
7559 case nir_intrinsic_ssbo_atomic_umax:
7560 case nir_intrinsic_ssbo_atomic_and:
7561 case nir_intrinsic_ssbo_atomic_or:
7562 case nir_intrinsic_ssbo_atomic_xor:
7563 case nir_intrinsic_ssbo_atomic_exchange:
7564 case nir_intrinsic_ssbo_atomic_comp_swap:
7565 visit_atomic_ssbo(ctx, instr);
7566 break;
7567 case nir_intrinsic_load_scratch:
7568 visit_load_scratch(ctx, instr);
7569 break;
7570 case nir_intrinsic_store_scratch:
7571 visit_store_scratch(ctx, instr);
7572 break;
7573 case nir_intrinsic_get_buffer_size:
7574 visit_get_buffer_size(ctx, instr);
7575 break;
7576 case nir_intrinsic_scoped_barrier:
7577 emit_scoped_barrier(ctx, instr);
7578 break;
7579 case nir_intrinsic_load_num_work_groups: {
7580 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7581 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7582 emit_split_vector(ctx, dst, 3);
7583 break;
7584 }
7585 case nir_intrinsic_load_local_invocation_id: {
7586 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7587 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7588 emit_split_vector(ctx, dst, 3);
7589 break;
7590 }
7591 case nir_intrinsic_load_work_group_id: {
7592 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7593 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7594 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7595 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7596 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7597 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7598 emit_split_vector(ctx, dst, 3);
7599 break;
7600 }
7601 case nir_intrinsic_load_local_invocation_index: {
7602 Temp id = emit_mbcnt(ctx, bld.def(v1));
7603
7604 /* The tg_size bits [6:11] contain the subgroup id,
7605 * we need this multiplied by the wave size, and then OR the thread id to it.
7606 */
7607 if (ctx->program->wave_size == 64) {
7608 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7609 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7610 get_arg(ctx, ctx->args->ac.tg_size));
7611 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7612 } else {
7613 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7614 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7615 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7616 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7617 }
7618 break;
7619 }
7620 case nir_intrinsic_load_subgroup_id: {
7621 if (ctx->stage == compute_cs) {
7622 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7623 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7624 } else {
7625 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7626 }
7627 break;
7628 }
7629 case nir_intrinsic_load_subgroup_invocation: {
7630 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7631 break;
7632 }
7633 case nir_intrinsic_load_num_subgroups: {
7634 if (ctx->stage == compute_cs)
7635 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7636 get_arg(ctx, ctx->args->ac.tg_size));
7637 else
7638 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7639 break;
7640 }
7641 case nir_intrinsic_ballot: {
7642 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7643 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7644 Definition tmp = bld.def(dst.regClass());
7645 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7646 if (instr->src[0].ssa->bit_size == 1) {
7647 assert(src.regClass() == bld.lm);
7648 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7649 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7650 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7651 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7652 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7653 } else {
7654 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7655 nir_print_instr(&instr->instr, stderr);
7656 fprintf(stderr, "\n");
7657 }
7658 if (dst.size() != bld.lm.size()) {
7659 /* Wave32 with ballot size set to 64 */
7660 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7661 }
7662 emit_wqm(ctx, tmp.getTemp(), dst);
7663 break;
7664 }
7665 case nir_intrinsic_shuffle:
7666 case nir_intrinsic_read_invocation: {
7667 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7668 if (!nir_src_is_divergent(instr->src[0])) {
7669 emit_uniform_subgroup(ctx, instr, src);
7670 } else {
7671 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7672 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7673 tid = bld.as_uniform(tid);
7674 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7675 if (src.regClass() == v1b || src.regClass() == v2b) {
7676 Temp tmp = bld.tmp(v1);
7677 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7678 if (dst.type() == RegType::vgpr)
7679 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7680 else
7681 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7682 } else if (src.regClass() == v1) {
7683 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7684 } else if (src.regClass() == v2) {
7685 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7686 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7687 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7688 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7689 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7690 emit_split_vector(ctx, dst, 2);
7691 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7692 assert(src.regClass() == bld.lm);
7693 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7694 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7695 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7696 assert(src.regClass() == bld.lm);
7697 Temp tmp;
7698 if (ctx->program->chip_class <= GFX7)
7699 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7700 else if (ctx->program->wave_size == 64)
7701 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7702 else
7703 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7704 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7705 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7706 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7707 } else {
7708 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7709 nir_print_instr(&instr->instr, stderr);
7710 fprintf(stderr, "\n");
7711 }
7712 }
7713 break;
7714 }
7715 case nir_intrinsic_load_sample_id: {
7716 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7717 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7718 break;
7719 }
7720 case nir_intrinsic_load_sample_mask_in: {
7721 visit_load_sample_mask_in(ctx, instr);
7722 break;
7723 }
7724 case nir_intrinsic_read_first_invocation: {
7725 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7726 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7727 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7728 emit_wqm(ctx,
7729 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7730 dst);
7731 } else if (src.regClass() == v2) {
7732 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7733 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7734 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7735 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7736 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7737 emit_split_vector(ctx, dst, 2);
7738 } else if (instr->dest.ssa.bit_size == 1) {
7739 assert(src.regClass() == bld.lm);
7740 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7741 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7742 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7743 } else if (src.regClass() == s1) {
7744 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7745 } else if (src.regClass() == s2) {
7746 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7747 } else {
7748 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7749 nir_print_instr(&instr->instr, stderr);
7750 fprintf(stderr, "\n");
7751 }
7752 break;
7753 }
7754 case nir_intrinsic_vote_all: {
7755 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7756 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7757 assert(src.regClass() == bld.lm);
7758 assert(dst.regClass() == bld.lm);
7759
7760 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7761 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7762 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7763 break;
7764 }
7765 case nir_intrinsic_vote_any: {
7766 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7767 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7768 assert(src.regClass() == bld.lm);
7769 assert(dst.regClass() == bld.lm);
7770
7771 Temp tmp = bool_to_scalar_condition(ctx, src);
7772 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7773 break;
7774 }
7775 case nir_intrinsic_reduce:
7776 case nir_intrinsic_inclusive_scan:
7777 case nir_intrinsic_exclusive_scan: {
7778 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7779 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7780 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7781 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7782 nir_intrinsic_cluster_size(instr) : 0;
7783 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7784
7785 if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
7786 emit_uniform_subgroup(ctx, instr, src);
7787 } else if (instr->dest.ssa.bit_size == 1) {
7788 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7789 op = nir_op_iand;
7790 else if (op == nir_op_iadd)
7791 op = nir_op_ixor;
7792 else if (op == nir_op_umax || op == nir_op_imax)
7793 op = nir_op_ior;
7794 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7795
7796 switch (instr->intrinsic) {
7797 case nir_intrinsic_reduce:
7798 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7799 break;
7800 case nir_intrinsic_exclusive_scan:
7801 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7802 break;
7803 case nir_intrinsic_inclusive_scan:
7804 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7805 break;
7806 default:
7807 assert(false);
7808 }
7809 } else if (cluster_size == 1) {
7810 bld.copy(Definition(dst), src);
7811 } else {
7812 unsigned bit_size = instr->src[0].ssa->bit_size;
7813
7814 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
7815
7816 ReduceOp reduce_op;
7817 switch (op) {
7818 #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
7819 #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
7820 CASEI(iadd)
7821 CASEI(imul)
7822 CASEI(imin)
7823 CASEI(umin)
7824 CASEI(imax)
7825 CASEI(umax)
7826 CASEI(iand)
7827 CASEI(ior)
7828 CASEI(ixor)
7829 CASEF(fadd)
7830 CASEF(fmul)
7831 CASEF(fmin)
7832 CASEF(fmax)
7833 default:
7834 unreachable("unknown reduction op");
7835 #undef CASEI
7836 #undef CASEF
7837 }
7838
7839 aco_opcode aco_op;
7840 switch (instr->intrinsic) {
7841 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7842 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7843 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7844 default:
7845 unreachable("unknown reduce intrinsic");
7846 }
7847
7848 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7849 reduce->operands[0] = Operand(src);
7850 // filled in by aco_reduce_assign.cpp, used internally as part of the
7851 // reduce sequence
7852 assert(dst.size() == 1 || dst.size() == 2);
7853 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7854 reduce->operands[2] = Operand(v1.as_linear());
7855
7856 Temp tmp_dst = bld.tmp(dst.regClass());
7857 reduce->definitions[0] = Definition(tmp_dst);
7858 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7859 reduce->definitions[2] = Definition();
7860 reduce->definitions[3] = Definition(scc, s1);
7861 reduce->definitions[4] = Definition();
7862 reduce->reduce_op = reduce_op;
7863 reduce->cluster_size = cluster_size;
7864 ctx->block->instructions.emplace_back(std::move(reduce));
7865
7866 emit_wqm(ctx, tmp_dst, dst);
7867 }
7868 break;
7869 }
7870 case nir_intrinsic_quad_broadcast: {
7871 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7872 if (!nir_dest_is_divergent(instr->dest)) {
7873 emit_uniform_subgroup(ctx, instr, src);
7874 } else {
7875 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7876 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7877 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7878
7879 if (instr->dest.ssa.bit_size == 1) {
7880 assert(src.regClass() == bld.lm);
7881 assert(dst.regClass() == bld.lm);
7882 uint32_t half_mask = 0x11111111u << lane;
7883 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7884 Temp tmp = bld.tmp(bld.lm);
7885 bld.sop1(Builder::s_wqm, Definition(tmp),
7886 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7887 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7888 emit_wqm(ctx, tmp, dst);
7889 } else if (instr->dest.ssa.bit_size == 8) {
7890 Temp tmp = bld.tmp(v1);
7891 if (ctx->program->chip_class >= GFX8)
7892 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7893 else
7894 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7895 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7896 } else if (instr->dest.ssa.bit_size == 16) {
7897 Temp tmp = bld.tmp(v1);
7898 if (ctx->program->chip_class >= GFX8)
7899 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7900 else
7901 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7902 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7903 } else if (instr->dest.ssa.bit_size == 32) {
7904 if (ctx->program->chip_class >= GFX8)
7905 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7906 else
7907 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7908 } else if (instr->dest.ssa.bit_size == 64) {
7909 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7910 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7911 if (ctx->program->chip_class >= GFX8) {
7912 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7913 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7914 } else {
7915 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7916 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7917 }
7918 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7919 emit_split_vector(ctx, dst, 2);
7920 } else {
7921 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7922 nir_print_instr(&instr->instr, stderr);
7923 fprintf(stderr, "\n");
7924 }
7925 }
7926 break;
7927 }
7928 case nir_intrinsic_quad_swap_horizontal:
7929 case nir_intrinsic_quad_swap_vertical:
7930 case nir_intrinsic_quad_swap_diagonal:
7931 case nir_intrinsic_quad_swizzle_amd: {
7932 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7933 if (!nir_dest_is_divergent(instr->dest)) {
7934 emit_uniform_subgroup(ctx, instr, src);
7935 break;
7936 }
7937 uint16_t dpp_ctrl = 0;
7938 switch (instr->intrinsic) {
7939 case nir_intrinsic_quad_swap_horizontal:
7940 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7941 break;
7942 case nir_intrinsic_quad_swap_vertical:
7943 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7944 break;
7945 case nir_intrinsic_quad_swap_diagonal:
7946 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7947 break;
7948 case nir_intrinsic_quad_swizzle_amd:
7949 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7950 break;
7951 default:
7952 break;
7953 }
7954 if (ctx->program->chip_class < GFX8)
7955 dpp_ctrl |= (1 << 15);
7956
7957 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7958 if (instr->dest.ssa.bit_size == 1) {
7959 assert(src.regClass() == bld.lm);
7960 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7961 if (ctx->program->chip_class >= GFX8)
7962 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7963 else
7964 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7965 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7966 emit_wqm(ctx, tmp, dst);
7967 } else if (instr->dest.ssa.bit_size == 8) {
7968 Temp tmp = bld.tmp(v1);
7969 if (ctx->program->chip_class >= GFX8)
7970 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7971 else
7972 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7973 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7974 } else if (instr->dest.ssa.bit_size == 16) {
7975 Temp tmp = bld.tmp(v1);
7976 if (ctx->program->chip_class >= GFX8)
7977 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7978 else
7979 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7980 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7981 } else if (instr->dest.ssa.bit_size == 32) {
7982 Temp tmp;
7983 if (ctx->program->chip_class >= GFX8)
7984 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7985 else
7986 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7987 emit_wqm(ctx, tmp, dst);
7988 } else if (instr->dest.ssa.bit_size == 64) {
7989 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7990 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7991 if (ctx->program->chip_class >= GFX8) {
7992 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7993 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7994 } else {
7995 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7996 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7997 }
7998 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7999 emit_split_vector(ctx, dst, 2);
8000 } else {
8001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8002 nir_print_instr(&instr->instr, stderr);
8003 fprintf(stderr, "\n");
8004 }
8005 break;
8006 }
8007 case nir_intrinsic_masked_swizzle_amd: {
8008 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8009 if (!nir_dest_is_divergent(instr->dest)) {
8010 emit_uniform_subgroup(ctx, instr, src);
8011 break;
8012 }
8013 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8014 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
8015 if (instr->dest.ssa.bit_size == 1) {
8016 assert(src.regClass() == bld.lm);
8017 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
8018 src = emit_masked_swizzle(ctx, bld, src, mask);
8019 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
8020 emit_wqm(ctx, tmp, dst);
8021 } else if (dst.regClass() == v1b) {
8022 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
8023 emit_extract_vector(ctx, tmp, 0, dst);
8024 } else if (dst.regClass() == v2b) {
8025 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
8026 emit_extract_vector(ctx, tmp, 0, dst);
8027 } else if (dst.regClass() == v1) {
8028 emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
8029 } else if (dst.regClass() == v2) {
8030 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8031 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8032 lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
8033 hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
8034 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8035 emit_split_vector(ctx, dst, 2);
8036 } else {
8037 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8038 nir_print_instr(&instr->instr, stderr);
8039 fprintf(stderr, "\n");
8040 }
8041 break;
8042 }
8043 case nir_intrinsic_write_invocation_amd: {
8044 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
8045 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
8046 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
8047 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8048 if (dst.regClass() == v1) {
8049 /* src2 is ignored for writelane. RA assigns the same reg for dst */
8050 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
8051 } else if (dst.regClass() == v2) {
8052 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
8053 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
8054 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
8055 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
8056 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
8057 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
8058 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8059 emit_split_vector(ctx, dst, 2);
8060 } else {
8061 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8062 nir_print_instr(&instr->instr, stderr);
8063 fprintf(stderr, "\n");
8064 }
8065 break;
8066 }
8067 case nir_intrinsic_mbcnt_amd: {
8068 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8069 RegClass rc = RegClass(src.type(), 1);
8070 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
8071 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
8072 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8073 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
8074 emit_wqm(ctx, wqm_tmp, dst);
8075 break;
8076 }
8077 case nir_intrinsic_load_helper_invocation: {
8078 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8079 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
8080 ctx->block->kind |= block_kind_needs_lowering;
8081 ctx->program->needs_exact = true;
8082 break;
8083 }
8084 case nir_intrinsic_is_helper_invocation: {
8085 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8086 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
8087 ctx->block->kind |= block_kind_needs_lowering;
8088 ctx->program->needs_exact = true;
8089 break;
8090 }
8091 case nir_intrinsic_demote:
8092 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
8093
8094 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8095 ctx->cf_info.exec_potentially_empty_discard = true;
8096 ctx->block->kind |= block_kind_uses_demote;
8097 ctx->program->needs_exact = true;
8098 break;
8099 case nir_intrinsic_demote_if: {
8100 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8101 assert(src.regClass() == bld.lm);
8102 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
8103 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
8104
8105 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8106 ctx->cf_info.exec_potentially_empty_discard = true;
8107 ctx->block->kind |= block_kind_uses_demote;
8108 ctx->program->needs_exact = true;
8109 break;
8110 }
8111 case nir_intrinsic_first_invocation: {
8112 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
8113 get_ssa_temp(ctx, &instr->dest.ssa));
8114 break;
8115 }
8116 case nir_intrinsic_shader_clock: {
8117 aco_opcode opcode =
8118 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
8119 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
8120 bld.smem(opcode, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), memory_sync_info(0, semantic_volatile));
8121 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
8122 break;
8123 }
8124 case nir_intrinsic_load_vertex_id_zero_base: {
8125 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8126 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8127 break;
8128 }
8129 case nir_intrinsic_load_first_vertex: {
8130 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8131 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8132 break;
8133 }
8134 case nir_intrinsic_load_base_instance: {
8135 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8136 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8137 break;
8138 }
8139 case nir_intrinsic_load_instance_id: {
8140 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8141 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8142 break;
8143 }
8144 case nir_intrinsic_load_draw_id: {
8145 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8146 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8147 break;
8148 }
8149 case nir_intrinsic_load_invocation_id: {
8150 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8151
8152 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8153 if (ctx->options->chip_class >= GFX10)
8154 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8155 else
8156 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8157 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8158 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8159 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8160 } else {
8161 unreachable("Unsupported stage for load_invocation_id");
8162 }
8163
8164 break;
8165 }
8166 case nir_intrinsic_load_primitive_id: {
8167 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8168
8169 switch (ctx->shader->info.stage) {
8170 case MESA_SHADER_GEOMETRY:
8171 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8172 break;
8173 case MESA_SHADER_TESS_CTRL:
8174 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8175 break;
8176 case MESA_SHADER_TESS_EVAL:
8177 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8178 break;
8179 default:
8180 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8181 }
8182
8183 break;
8184 }
8185 case nir_intrinsic_load_patch_vertices_in: {
8186 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8187 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8188
8189 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8190 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8191 break;
8192 }
8193 case nir_intrinsic_emit_vertex_with_counter: {
8194 visit_emit_vertex_with_counter(ctx, instr);
8195 break;
8196 }
8197 case nir_intrinsic_end_primitive_with_counter: {
8198 unsigned stream = nir_intrinsic_stream_id(instr);
8199 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8200 break;
8201 }
8202 case nir_intrinsic_set_vertex_count: {
8203 /* unused, the HW keeps track of this for us */
8204 break;
8205 }
8206 default:
8207 fprintf(stderr, "Unimplemented intrinsic instr: ");
8208 nir_print_instr(&instr->instr, stderr);
8209 fprintf(stderr, "\n");
8210 abort();
8211
8212 break;
8213 }
8214 }
8215
8216
8217 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8218 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8219 enum glsl_base_type *stype)
8220 {
8221 nir_deref_instr *texture_deref_instr = NULL;
8222 nir_deref_instr *sampler_deref_instr = NULL;
8223 int plane = -1;
8224
8225 for (unsigned i = 0; i < instr->num_srcs; i++) {
8226 switch (instr->src[i].src_type) {
8227 case nir_tex_src_texture_deref:
8228 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8229 break;
8230 case nir_tex_src_sampler_deref:
8231 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8232 break;
8233 case nir_tex_src_plane:
8234 plane = nir_src_as_int(instr->src[i].src);
8235 break;
8236 default:
8237 break;
8238 }
8239 }
8240
8241 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8242
8243 if (!sampler_deref_instr)
8244 sampler_deref_instr = texture_deref_instr;
8245
8246 if (plane >= 0) {
8247 assert(instr->op != nir_texop_txf_ms &&
8248 instr->op != nir_texop_samples_identical);
8249 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8250 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8251 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8252 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8253 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8254 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8255 } else {
8256 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8257 }
8258 if (samp_ptr) {
8259 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8260
8261 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8262 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8263 Builder bld(ctx->program, ctx->block);
8264
8265 /* to avoid unnecessary moves, we split and recombine sampler and image */
8266 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8267 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8268 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8269 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8270 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8271 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8272 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8273 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8274
8275 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8276 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8277 img[0], img[1], img[2], img[3],
8278 img[4], img[5], img[6], img[7]);
8279 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8280 samp[0], samp[1], samp[2], samp[3]);
8281 }
8282 }
8283 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8284 instr->op == nir_texop_samples_identical))
8285 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8286 }
8287
8288 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8289 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8290 {
8291 Builder bld(ctx->program, ctx->block);
8292
8293 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8294 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8295 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8296
8297 Operand neg_one(0xbf800000u);
8298 Operand one(0x3f800000u);
8299 Operand two(0x40000000u);
8300 Operand four(0x40800000u);
8301
8302 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8303 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8304 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8305
8306 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8307 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8308 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8309 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8310
8311 // select sc
8312 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8313 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8314 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8315 one, is_ma_y);
8316 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8317
8318 // select tc
8319 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8320 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8321 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8322
8323 // select ma
8324 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8325 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8326 deriv_z, is_ma_z);
8327 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8328 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8329 }
8330
8331 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8332 {
8333 Builder bld(ctx->program, ctx->block);
8334 Temp ma, tc, sc, id;
8335
8336 if (is_array) {
8337 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8338
8339 // see comment in ac_prepare_cube_coords()
8340 if (ctx->options->chip_class <= GFX8)
8341 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8342 }
8343
8344 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8345
8346 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8347 vop3a->operands[0] = Operand(ma);
8348 vop3a->abs[0] = true;
8349 Temp invma = bld.tmp(v1);
8350 vop3a->definitions[0] = Definition(invma);
8351 ctx->block->instructions.emplace_back(std::move(vop3a));
8352
8353 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8354 if (!is_deriv)
8355 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8356
8357 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8358 if (!is_deriv)
8359 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8360
8361 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8362
8363 if (is_deriv) {
8364 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8365 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8366
8367 for (unsigned i = 0; i < 2; i++) {
8368 // see comment in ac_prepare_cube_coords()
8369 Temp deriv_ma;
8370 Temp deriv_sc, deriv_tc;
8371 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8372 &deriv_ma, &deriv_sc, &deriv_tc);
8373
8374 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8375
8376 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8377 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8378 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8379 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8380 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8381 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8382 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8383 }
8384
8385 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8386 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8387 }
8388
8389 if (is_array)
8390 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8391 coords.resize(3);
8392 coords[0] = sc;
8393 coords[1] = tc;
8394 coords[2] = id;
8395 }
8396
8397 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8398 {
8399 if (vec->parent_instr->type != nir_instr_type_alu)
8400 return;
8401 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8402 if (vec_instr->op != nir_op_vec(vec->num_components))
8403 return;
8404
8405 for (unsigned i = 0; i < vec->num_components; i++) {
8406 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8407 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8408 }
8409 }
8410
8411 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8412 {
8413 Builder bld(ctx->program, ctx->block);
8414 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8415 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8416 has_clamped_lod = false;
8417 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8418 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8419 clamped_lod = Temp();
8420 std::vector<Temp> coords;
8421 std::vector<Temp> derivs;
8422 nir_const_value *sample_index_cv = NULL;
8423 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8424 enum glsl_base_type stype;
8425 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8426
8427 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8428 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8429 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8430 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8431
8432 for (unsigned i = 0; i < instr->num_srcs; i++) {
8433 switch (instr->src[i].src_type) {
8434 case nir_tex_src_coord: {
8435 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8436 for (unsigned i = 0; i < coord.size(); i++)
8437 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8438 break;
8439 }
8440 case nir_tex_src_bias:
8441 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8442 has_bias = true;
8443 break;
8444 case nir_tex_src_lod: {
8445 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8446
8447 if (val && val->f32 <= 0.0) {
8448 level_zero = true;
8449 } else {
8450 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8451 has_lod = true;
8452 }
8453 break;
8454 }
8455 case nir_tex_src_min_lod:
8456 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8457 has_clamped_lod = true;
8458 break;
8459 case nir_tex_src_comparator:
8460 if (instr->is_shadow) {
8461 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8462 has_compare = true;
8463 }
8464 break;
8465 case nir_tex_src_offset:
8466 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8467 get_const_vec(instr->src[i].src.ssa, const_offset);
8468 has_offset = true;
8469 break;
8470 case nir_tex_src_ddx:
8471 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8472 has_ddx = true;
8473 break;
8474 case nir_tex_src_ddy:
8475 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8476 has_ddy = true;
8477 break;
8478 case nir_tex_src_ms_index:
8479 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8480 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8481 has_sample_index = true;
8482 break;
8483 case nir_tex_src_texture_offset:
8484 case nir_tex_src_sampler_offset:
8485 default:
8486 break;
8487 }
8488 }
8489
8490 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8491 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8492
8493 if (instr->op == nir_texop_texture_samples) {
8494 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8495
8496 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8497 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8498 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8499
8500 Operand default_sample = Operand(1u);
8501 if (ctx->options->robust_buffer_access) {
8502 /* Extract the second dword of the descriptor, if it's
8503 * all zero, then it's a null descriptor.
8504 */
8505 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8506 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8507 default_sample = Operand(is_non_null_descriptor);
8508 }
8509
8510 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8511 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8512 samples, default_sample, bld.scc(is_msaa));
8513 return;
8514 }
8515
8516 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8517 aco_ptr<Instruction> tmp_instr;
8518 Temp acc, pack = Temp();
8519
8520 uint32_t pack_const = 0;
8521 for (unsigned i = 0; i < offset.size(); i++) {
8522 if (!const_offset[i])
8523 continue;
8524 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8525 }
8526
8527 if (offset.type() == RegType::sgpr) {
8528 for (unsigned i = 0; i < offset.size(); i++) {
8529 if (const_offset[i])
8530 continue;
8531
8532 acc = emit_extract_vector(ctx, offset, i, s1);
8533 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8534
8535 if (i) {
8536 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8537 }
8538
8539 if (pack == Temp()) {
8540 pack = acc;
8541 } else {
8542 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8543 }
8544 }
8545
8546 if (pack_const && pack != Temp())
8547 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8548 } else {
8549 for (unsigned i = 0; i < offset.size(); i++) {
8550 if (const_offset[i])
8551 continue;
8552
8553 acc = emit_extract_vector(ctx, offset, i, v1);
8554 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8555
8556 if (i) {
8557 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8558 }
8559
8560 if (pack == Temp()) {
8561 pack = acc;
8562 } else {
8563 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8564 }
8565 }
8566
8567 if (pack_const && pack != Temp())
8568 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8569 }
8570 if (pack_const && pack == Temp())
8571 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8572 else if (pack == Temp())
8573 has_offset = false;
8574 else
8575 offset = pack;
8576 }
8577
8578 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8579 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8580
8581 /* pack derivatives */
8582 if (has_ddx || has_ddy) {
8583 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8584 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8585 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8586 derivs = {ddx, zero, ddy, zero};
8587 } else {
8588 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8589 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8590 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8591 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8592 }
8593 has_derivs = true;
8594 }
8595
8596 if (instr->coord_components > 1 &&
8597 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8598 instr->is_array &&
8599 instr->op != nir_texop_txf)
8600 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8601
8602 if (instr->coord_components > 2 &&
8603 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8604 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8605 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8606 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8607 instr->is_array &&
8608 instr->op != nir_texop_txf &&
8609 instr->op != nir_texop_txf_ms &&
8610 instr->op != nir_texop_fragment_fetch &&
8611 instr->op != nir_texop_fragment_mask_fetch)
8612 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8613
8614 if (ctx->options->chip_class == GFX9 &&
8615 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8616 instr->op != nir_texop_lod && instr->coord_components) {
8617 assert(coords.size() > 0 && coords.size() < 3);
8618
8619 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8620 Operand((uint32_t) 0) :
8621 Operand((uint32_t) 0x3f000000)));
8622 }
8623
8624 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8625
8626 if (instr->op == nir_texop_samples_identical)
8627 resource = fmask_ptr;
8628
8629 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8630 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8631 instr->op != nir_texop_txs &&
8632 instr->op != nir_texop_fragment_fetch &&
8633 instr->op != nir_texop_fragment_mask_fetch) {
8634 assert(has_sample_index);
8635 Operand op(sample_index);
8636 if (sample_index_cv)
8637 op = Operand(sample_index_cv->u32);
8638 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8639 }
8640
8641 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8642 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8643 Temp off = emit_extract_vector(ctx, offset, i, v1);
8644 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8645 }
8646 has_offset = false;
8647 }
8648
8649 /* Build tex instruction */
8650 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8651 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8652 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8653 : 0;
8654 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8655 Temp tmp_dst = dst;
8656
8657 /* gather4 selects the component by dmask and always returns vec4 */
8658 if (instr->op == nir_texop_tg4) {
8659 assert(instr->dest.ssa.num_components == 4);
8660 if (instr->is_shadow)
8661 dmask = 1;
8662 else
8663 dmask = 1 << instr->component;
8664 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8665 tmp_dst = bld.tmp(v4);
8666 } else if (instr->op == nir_texop_samples_identical) {
8667 tmp_dst = bld.tmp(v1);
8668 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8669 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8670 }
8671
8672 aco_ptr<MIMG_instruction> tex;
8673 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8674 if (!has_lod)
8675 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8676
8677 bool div_by_6 = instr->op == nir_texop_txs &&
8678 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8679 instr->is_array &&
8680 (dmask & (1 << 2));
8681 if (tmp_dst.id() == dst.id() && div_by_6)
8682 tmp_dst = bld.tmp(tmp_dst.regClass());
8683
8684 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8685 tex->operands[0] = Operand(resource);
8686 tex->operands[1] = Operand(s4); /* no sampler */
8687 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8688 if (ctx->options->chip_class == GFX9 &&
8689 instr->op == nir_texop_txs &&
8690 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8691 instr->is_array) {
8692 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8693 } else if (instr->op == nir_texop_query_levels) {
8694 tex->dmask = 1 << 3;
8695 } else {
8696 tex->dmask = dmask;
8697 }
8698 tex->da = da;
8699 tex->definitions[0] = Definition(tmp_dst);
8700 tex->dim = dim;
8701 ctx->block->instructions.emplace_back(std::move(tex));
8702
8703 if (div_by_6) {
8704 /* divide 3rd value by 6 by multiplying with magic number */
8705 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8706 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8707 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8708 assert(instr->dest.ssa.num_components == 3);
8709 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8710 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8711 emit_extract_vector(ctx, tmp_dst, 0, v1),
8712 emit_extract_vector(ctx, tmp_dst, 1, v1),
8713 by_6);
8714
8715 }
8716
8717 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8718 return;
8719 }
8720
8721 Temp tg4_compare_cube_wa64 = Temp();
8722
8723 if (tg4_integer_workarounds) {
8724 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8725 tex->operands[0] = Operand(resource);
8726 tex->operands[1] = Operand(s4); /* no sampler */
8727 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8728 tex->dim = dim;
8729 tex->dmask = 0x3;
8730 tex->da = da;
8731 Temp size = bld.tmp(v2);
8732 tex->definitions[0] = Definition(size);
8733 ctx->block->instructions.emplace_back(std::move(tex));
8734 emit_split_vector(ctx, size, size.size());
8735
8736 Temp half_texel[2];
8737 for (unsigned i = 0; i < 2; i++) {
8738 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8739 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8740 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8741 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8742 }
8743
8744 Temp new_coords[2] = {
8745 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8746 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8747 };
8748
8749 if (tg4_integer_cube_workaround) {
8750 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8751 Temp desc[resource.size()];
8752 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8753 Format::PSEUDO, 1, resource.size())};
8754 split->operands[0] = Operand(resource);
8755 for (unsigned i = 0; i < resource.size(); i++) {
8756 desc[i] = bld.tmp(s1);
8757 split->definitions[i] = Definition(desc[i]);
8758 }
8759 ctx->block->instructions.emplace_back(std::move(split));
8760
8761 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8762 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8763 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8764
8765 Temp nfmt;
8766 if (stype == GLSL_TYPE_UINT) {
8767 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8768 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8769 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8770 bld.scc(compare_cube_wa));
8771 } else {
8772 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8773 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8774 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8775 bld.scc(compare_cube_wa));
8776 }
8777 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8778 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8779
8780 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8781
8782 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8783 Operand((uint32_t)C_008F14_NUM_FORMAT));
8784 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8785
8786 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8787 Format::PSEUDO, resource.size(), 1)};
8788 for (unsigned i = 0; i < resource.size(); i++)
8789 vec->operands[i] = Operand(desc[i]);
8790 resource = bld.tmp(resource.regClass());
8791 vec->definitions[0] = Definition(resource);
8792 ctx->block->instructions.emplace_back(std::move(vec));
8793
8794 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8795 new_coords[0], coords[0], tg4_compare_cube_wa64);
8796 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8797 new_coords[1], coords[1], tg4_compare_cube_wa64);
8798 }
8799 coords[0] = new_coords[0];
8800 coords[1] = new_coords[1];
8801 }
8802
8803 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8804 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8805
8806 assert(coords.size() == 1);
8807 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8808 aco_opcode op;
8809 switch (last_bit) {
8810 case 1:
8811 op = aco_opcode::buffer_load_format_x; break;
8812 case 2:
8813 op = aco_opcode::buffer_load_format_xy; break;
8814 case 3:
8815 op = aco_opcode::buffer_load_format_xyz; break;
8816 case 4:
8817 op = aco_opcode::buffer_load_format_xyzw; break;
8818 default:
8819 unreachable("Tex instruction loads more than 4 components.");
8820 }
8821
8822 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8823 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8824 tmp_dst = dst;
8825 else
8826 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8827
8828 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8829 mubuf->operands[0] = Operand(resource);
8830 mubuf->operands[1] = Operand(coords[0]);
8831 mubuf->operands[2] = Operand((uint32_t) 0);
8832 mubuf->definitions[0] = Definition(tmp_dst);
8833 mubuf->idxen = true;
8834 ctx->block->instructions.emplace_back(std::move(mubuf));
8835
8836 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8837 return;
8838 }
8839
8840 /* gather MIMG address components */
8841 std::vector<Temp> args;
8842 if (has_offset)
8843 args.emplace_back(offset);
8844 if (has_bias)
8845 args.emplace_back(bias);
8846 if (has_compare)
8847 args.emplace_back(compare);
8848 if (has_derivs)
8849 args.insert(args.end(), derivs.begin(), derivs.end());
8850
8851 args.insert(args.end(), coords.begin(), coords.end());
8852 if (has_sample_index)
8853 args.emplace_back(sample_index);
8854 if (has_lod)
8855 args.emplace_back(lod);
8856 if (has_clamped_lod)
8857 args.emplace_back(clamped_lod);
8858
8859 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8860 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8861 vec->definitions[0] = Definition(arg);
8862 for (unsigned i = 0; i < args.size(); i++)
8863 vec->operands[i] = Operand(args[i]);
8864 ctx->block->instructions.emplace_back(std::move(vec));
8865
8866
8867 if (instr->op == nir_texop_txf ||
8868 instr->op == nir_texop_txf_ms ||
8869 instr->op == nir_texop_samples_identical ||
8870 instr->op == nir_texop_fragment_fetch ||
8871 instr->op == nir_texop_fragment_mask_fetch) {
8872 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8873 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8874 tex->operands[0] = Operand(resource);
8875 tex->operands[1] = Operand(s4); /* no sampler */
8876 tex->operands[2] = Operand(arg);
8877 tex->dim = dim;
8878 tex->dmask = dmask;
8879 tex->unrm = true;
8880 tex->da = da;
8881 tex->definitions[0] = Definition(tmp_dst);
8882 ctx->block->instructions.emplace_back(std::move(tex));
8883
8884 if (instr->op == nir_texop_samples_identical) {
8885 assert(dmask == 1 && dst.regClass() == v1);
8886 assert(dst.id() != tmp_dst.id());
8887
8888 Temp tmp = bld.tmp(bld.lm);
8889 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8890 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8891
8892 } else {
8893 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8894 }
8895 return;
8896 }
8897
8898 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8899 aco_opcode opcode = aco_opcode::image_sample;
8900 if (has_offset) { /* image_sample_*_o */
8901 if (has_clamped_lod) {
8902 if (has_compare) {
8903 opcode = aco_opcode::image_sample_c_cl_o;
8904 if (has_derivs)
8905 opcode = aco_opcode::image_sample_c_d_cl_o;
8906 if (has_bias)
8907 opcode = aco_opcode::image_sample_c_b_cl_o;
8908 } else {
8909 opcode = aco_opcode::image_sample_cl_o;
8910 if (has_derivs)
8911 opcode = aco_opcode::image_sample_d_cl_o;
8912 if (has_bias)
8913 opcode = aco_opcode::image_sample_b_cl_o;
8914 }
8915 } else if (has_compare) {
8916 opcode = aco_opcode::image_sample_c_o;
8917 if (has_derivs)
8918 opcode = aco_opcode::image_sample_c_d_o;
8919 if (has_bias)
8920 opcode = aco_opcode::image_sample_c_b_o;
8921 if (level_zero)
8922 opcode = aco_opcode::image_sample_c_lz_o;
8923 if (has_lod)
8924 opcode = aco_opcode::image_sample_c_l_o;
8925 } else {
8926 opcode = aco_opcode::image_sample_o;
8927 if (has_derivs)
8928 opcode = aco_opcode::image_sample_d_o;
8929 if (has_bias)
8930 opcode = aco_opcode::image_sample_b_o;
8931 if (level_zero)
8932 opcode = aco_opcode::image_sample_lz_o;
8933 if (has_lod)
8934 opcode = aco_opcode::image_sample_l_o;
8935 }
8936 } else if (has_clamped_lod) { /* image_sample_*_cl */
8937 if (has_compare) {
8938 opcode = aco_opcode::image_sample_c_cl;
8939 if (has_derivs)
8940 opcode = aco_opcode::image_sample_c_d_cl;
8941 if (has_bias)
8942 opcode = aco_opcode::image_sample_c_b_cl;
8943 } else {
8944 opcode = aco_opcode::image_sample_cl;
8945 if (has_derivs)
8946 opcode = aco_opcode::image_sample_d_cl;
8947 if (has_bias)
8948 opcode = aco_opcode::image_sample_b_cl;
8949 }
8950 } else { /* no offset */
8951 if (has_compare) {
8952 opcode = aco_opcode::image_sample_c;
8953 if (has_derivs)
8954 opcode = aco_opcode::image_sample_c_d;
8955 if (has_bias)
8956 opcode = aco_opcode::image_sample_c_b;
8957 if (level_zero)
8958 opcode = aco_opcode::image_sample_c_lz;
8959 if (has_lod)
8960 opcode = aco_opcode::image_sample_c_l;
8961 } else {
8962 opcode = aco_opcode::image_sample;
8963 if (has_derivs)
8964 opcode = aco_opcode::image_sample_d;
8965 if (has_bias)
8966 opcode = aco_opcode::image_sample_b;
8967 if (level_zero)
8968 opcode = aco_opcode::image_sample_lz;
8969 if (has_lod)
8970 opcode = aco_opcode::image_sample_l;
8971 }
8972 }
8973
8974 if (instr->op == nir_texop_tg4) {
8975 if (has_offset) { /* image_gather4_*_o */
8976 if (has_compare) {
8977 opcode = aco_opcode::image_gather4_c_lz_o;
8978 if (has_lod)
8979 opcode = aco_opcode::image_gather4_c_l_o;
8980 if (has_bias)
8981 opcode = aco_opcode::image_gather4_c_b_o;
8982 } else {
8983 opcode = aco_opcode::image_gather4_lz_o;
8984 if (has_lod)
8985 opcode = aco_opcode::image_gather4_l_o;
8986 if (has_bias)
8987 opcode = aco_opcode::image_gather4_b_o;
8988 }
8989 } else {
8990 if (has_compare) {
8991 opcode = aco_opcode::image_gather4_c_lz;
8992 if (has_lod)
8993 opcode = aco_opcode::image_gather4_c_l;
8994 if (has_bias)
8995 opcode = aco_opcode::image_gather4_c_b;
8996 } else {
8997 opcode = aco_opcode::image_gather4_lz;
8998 if (has_lod)
8999 opcode = aco_opcode::image_gather4_l;
9000 if (has_bias)
9001 opcode = aco_opcode::image_gather4_b;
9002 }
9003 }
9004 } else if (instr->op == nir_texop_lod) {
9005 opcode = aco_opcode::image_get_lod;
9006 }
9007
9008 /* we don't need the bias, sample index, compare value or offset to be
9009 * computed in WQM but if the p_create_vector copies the coordinates, then it
9010 * needs to be in WQM */
9011 if (ctx->stage == fragment_fs &&
9012 !has_derivs && !has_lod && !level_zero &&
9013 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
9014 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
9015 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
9016
9017 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
9018 tex->operands[0] = Operand(resource);
9019 tex->operands[1] = Operand(sampler);
9020 tex->operands[2] = Operand(arg);
9021 tex->dim = dim;
9022 tex->dmask = dmask;
9023 tex->da = da;
9024 tex->definitions[0] = Definition(tmp_dst);
9025 ctx->block->instructions.emplace_back(std::move(tex));
9026
9027 if (tg4_integer_cube_workaround) {
9028 assert(tmp_dst.id() != dst.id());
9029 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
9030
9031 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
9032 Temp val[4];
9033 for (unsigned i = 0; i < dst.size(); i++) {
9034 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
9035 Temp cvt_val;
9036 if (stype == GLSL_TYPE_UINT)
9037 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
9038 else
9039 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
9040 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
9041 }
9042 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
9043 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
9044 val[0], val[1], val[2], val[3]);
9045 }
9046 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
9047 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
9048
9049 }
9050
9051
9052 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
9053 {
9054 Temp tmp = get_ssa_temp(ctx, ssa);
9055 if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
9056 return Operand(rc);
9057 } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
9058 if (ctx->program->wave_size == 64)
9059 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
9060 else
9061 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
9062 } else {
9063 return Operand(tmp);
9064 }
9065 }
9066
9067 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
9068 {
9069 aco_ptr<Pseudo_instruction> phi;
9070 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
9071 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
9072
9073 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
9074 logical |= ctx->block->kind & block_kind_merge;
9075 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
9076
9077 /* we want a sorted list of sources, since the predecessor list is also sorted */
9078 std::map<unsigned, nir_ssa_def*> phi_src;
9079 nir_foreach_phi_src(src, instr)
9080 phi_src[src->pred->index] = src->src.ssa;
9081
9082 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
9083 unsigned num_operands = 0;
9084 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
9085 unsigned num_defined = 0;
9086 unsigned cur_pred_idx = 0;
9087 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
9088 if (cur_pred_idx < preds.size()) {
9089 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
9090 unsigned block = ctx->cf_info.nir_to_aco[src.first];
9091 unsigned skipped = 0;
9092 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
9093 skipped++;
9094 if (cur_pred_idx + skipped < preds.size()) {
9095 for (unsigned i = 0; i < skipped; i++)
9096 operands[num_operands++] = Operand(dst.regClass());
9097 cur_pred_idx += skipped;
9098 } else {
9099 continue;
9100 }
9101 }
9102 /* Handle missing predecessors at the end. This shouldn't happen with loop
9103 * headers and we can't ignore these sources for loop header phis. */
9104 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
9105 continue;
9106 cur_pred_idx++;
9107 Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
9108 operands[num_operands++] = op;
9109 num_defined += !op.isUndefined();
9110 }
9111 /* handle block_kind_continue_or_break at loop exit blocks */
9112 while (cur_pred_idx++ < preds.size())
9113 operands[num_operands++] = Operand(dst.regClass());
9114
9115 /* If the loop ends with a break, still add a linear continue edge in case
9116 * that break is divergent or continue_or_break is used. We'll either remove
9117 * this operand later in visit_loop() if it's not necessary or replace the
9118 * undef with something correct. */
9119 if (!logical && ctx->block->kind & block_kind_loop_header) {
9120 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
9121 nir_block *last = nir_loop_last_block(loop);
9122 if (last->successors[0] != instr->instr.block)
9123 operands[num_operands++] = Operand(RegClass());
9124 }
9125
9126 if (num_defined == 0) {
9127 Builder bld(ctx->program, ctx->block);
9128 if (dst.regClass() == s1) {
9129 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
9130 } else if (dst.regClass() == v1) {
9131 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
9132 } else {
9133 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9134 for (unsigned i = 0; i < dst.size(); i++)
9135 vec->operands[i] = Operand(0u);
9136 vec->definitions[0] = Definition(dst);
9137 ctx->block->instructions.emplace_back(std::move(vec));
9138 }
9139 return;
9140 }
9141
9142 /* we can use a linear phi in some cases if one src is undef */
9143 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
9144 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
9145
9146 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
9147 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
9148 assert(invert->kind & block_kind_invert);
9149
9150 unsigned then_block = invert->linear_preds[0];
9151
9152 Block* insert_block = NULL;
9153 for (unsigned i = 0; i < num_operands; i++) {
9154 Operand op = operands[i];
9155 if (op.isUndefined())
9156 continue;
9157 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
9158 phi->operands[0] = op;
9159 break;
9160 }
9161 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
9162 phi->operands[1] = Operand(dst.regClass());
9163 phi->definitions[0] = Definition(dst);
9164 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
9165 return;
9166 }
9167
9168 /* try to scalarize vector phis */
9169 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
9170 // TODO: scalarize linear phis on divergent ifs
9171 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
9172 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
9173 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
9174 Operand src = operands[i];
9175 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
9176 can_scalarize = false;
9177 }
9178 if (can_scalarize) {
9179 unsigned num_components = instr->dest.ssa.num_components;
9180 assert(dst.size() % num_components == 0);
9181 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
9182
9183 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9184 for (unsigned k = 0; k < num_components; k++) {
9185 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9186 for (unsigned i = 0; i < num_operands; i++) {
9187 Operand src = operands[i];
9188 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9189 }
9190 Temp phi_dst = {ctx->program->allocateId(), rc};
9191 phi->definitions[0] = Definition(phi_dst);
9192 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9193 new_vec[k] = phi_dst;
9194 vec->operands[k] = Operand(phi_dst);
9195 }
9196 vec->definitions[0] = Definition(dst);
9197 ctx->block->instructions.emplace_back(std::move(vec));
9198 ctx->allocated_vec.emplace(dst.id(), new_vec);
9199 return;
9200 }
9201 }
9202
9203 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9204 for (unsigned i = 0; i < num_operands; i++)
9205 phi->operands[i] = operands[i];
9206 phi->definitions[0] = Definition(dst);
9207 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9208 }
9209
9210
9211 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9212 {
9213 Temp dst = get_ssa_temp(ctx, &instr->def);
9214
9215 assert(dst.type() == RegType::sgpr);
9216
9217 if (dst.size() == 1) {
9218 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9219 } else {
9220 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9221 for (unsigned i = 0; i < dst.size(); i++)
9222 vec->operands[i] = Operand(0u);
9223 vec->definitions[0] = Definition(dst);
9224 ctx->block->instructions.emplace_back(std::move(vec));
9225 }
9226 }
9227
9228 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9229 {
9230 Builder bld(ctx->program, ctx->block);
9231 Block *logical_target;
9232 append_logical_end(ctx->block);
9233 unsigned idx = ctx->block->index;
9234
9235 switch (instr->type) {
9236 case nir_jump_break:
9237 logical_target = ctx->cf_info.parent_loop.exit;
9238 add_logical_edge(idx, logical_target);
9239 ctx->block->kind |= block_kind_break;
9240
9241 if (!ctx->cf_info.parent_if.is_divergent &&
9242 !ctx->cf_info.parent_loop.has_divergent_continue) {
9243 /* uniform break - directly jump out of the loop */
9244 ctx->block->kind |= block_kind_uniform;
9245 ctx->cf_info.has_branch = true;
9246 bld.branch(aco_opcode::p_branch);
9247 add_linear_edge(idx, logical_target);
9248 return;
9249 }
9250 ctx->cf_info.parent_loop.has_divergent_branch = true;
9251 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9252 break;
9253 case nir_jump_continue:
9254 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9255 add_logical_edge(idx, logical_target);
9256 ctx->block->kind |= block_kind_continue;
9257
9258 if (ctx->cf_info.parent_if.is_divergent) {
9259 /* for potential uniform breaks after this continue,
9260 we must ensure that they are handled correctly */
9261 ctx->cf_info.parent_loop.has_divergent_continue = true;
9262 ctx->cf_info.parent_loop.has_divergent_branch = true;
9263 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9264 } else {
9265 /* uniform continue - directly jump to the loop header */
9266 ctx->block->kind |= block_kind_uniform;
9267 ctx->cf_info.has_branch = true;
9268 bld.branch(aco_opcode::p_branch);
9269 add_linear_edge(idx, logical_target);
9270 return;
9271 }
9272 break;
9273 default:
9274 fprintf(stderr, "Unknown NIR jump instr: ");
9275 nir_print_instr(&instr->instr, stderr);
9276 fprintf(stderr, "\n");
9277 abort();
9278 }
9279
9280 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9281 ctx->cf_info.exec_potentially_empty_break = true;
9282 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9283 }
9284
9285 /* remove critical edges from linear CFG */
9286 bld.branch(aco_opcode::p_branch);
9287 Block* break_block = ctx->program->create_and_insert_block();
9288 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9289 break_block->kind |= block_kind_uniform;
9290 add_linear_edge(idx, break_block);
9291 /* the loop_header pointer might be invalidated by this point */
9292 if (instr->type == nir_jump_continue)
9293 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9294 add_linear_edge(break_block->index, logical_target);
9295 bld.reset(break_block);
9296 bld.branch(aco_opcode::p_branch);
9297
9298 Block* continue_block = ctx->program->create_and_insert_block();
9299 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9300 add_linear_edge(idx, continue_block);
9301 append_logical_start(continue_block);
9302 ctx->block = continue_block;
9303 return;
9304 }
9305
9306 void visit_block(isel_context *ctx, nir_block *block)
9307 {
9308 nir_foreach_instr(instr, block) {
9309 switch (instr->type) {
9310 case nir_instr_type_alu:
9311 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9312 break;
9313 case nir_instr_type_load_const:
9314 visit_load_const(ctx, nir_instr_as_load_const(instr));
9315 break;
9316 case nir_instr_type_intrinsic:
9317 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9318 break;
9319 case nir_instr_type_tex:
9320 visit_tex(ctx, nir_instr_as_tex(instr));
9321 break;
9322 case nir_instr_type_phi:
9323 visit_phi(ctx, nir_instr_as_phi(instr));
9324 break;
9325 case nir_instr_type_ssa_undef:
9326 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9327 break;
9328 case nir_instr_type_deref:
9329 break;
9330 case nir_instr_type_jump:
9331 visit_jump(ctx, nir_instr_as_jump(instr));
9332 break;
9333 default:
9334 fprintf(stderr, "Unknown NIR instr type: ");
9335 nir_print_instr(instr, stderr);
9336 fprintf(stderr, "\n");
9337 //abort();
9338 }
9339 }
9340
9341 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9342 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9343 }
9344
9345
9346
9347 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9348 aco_ptr<Instruction>& header_phi, Operand *vals)
9349 {
9350 vals[0] = Operand(header_phi->definitions[0].getTemp());
9351 RegClass rc = vals[0].regClass();
9352
9353 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9354
9355 unsigned next_pred = 1;
9356
9357 for (unsigned idx = first + 1; idx <= last; idx++) {
9358 Block& block = ctx->program->blocks[idx];
9359 if (block.loop_nest_depth != loop_nest_depth) {
9360 vals[idx - first] = vals[idx - 1 - first];
9361 continue;
9362 }
9363
9364 if (block.kind & block_kind_continue) {
9365 vals[idx - first] = header_phi->operands[next_pred];
9366 next_pred++;
9367 continue;
9368 }
9369
9370 bool all_same = true;
9371 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9372 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9373
9374 Operand val;
9375 if (all_same) {
9376 val = vals[block.linear_preds[0] - first];
9377 } else {
9378 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9379 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9380 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9381 phi->operands[i] = vals[block.linear_preds[i] - first];
9382 val = Operand(Temp(ctx->program->allocateId(), rc));
9383 phi->definitions[0] = Definition(val.getTemp());
9384 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9385 }
9386 vals[idx - first] = val;
9387 }
9388
9389 return vals[last - first];
9390 }
9391
9392 static void visit_loop(isel_context *ctx, nir_loop *loop)
9393 {
9394 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9395 append_logical_end(ctx->block);
9396 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9397 Builder bld(ctx->program, ctx->block);
9398 bld.branch(aco_opcode::p_branch);
9399 unsigned loop_preheader_idx = ctx->block->index;
9400
9401 Block loop_exit = Block();
9402 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9403 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9404
9405 Block* loop_header = ctx->program->create_and_insert_block();
9406 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9407 loop_header->kind |= block_kind_loop_header;
9408 add_edge(loop_preheader_idx, loop_header);
9409 ctx->block = loop_header;
9410
9411 /* emit loop body */
9412 unsigned loop_header_idx = loop_header->index;
9413 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9414 append_logical_start(ctx->block);
9415 bool unreachable = visit_cf_list(ctx, &loop->body);
9416
9417 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9418 if (!ctx->cf_info.has_branch) {
9419 append_logical_end(ctx->block);
9420 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9421 /* Discards can result in code running with an empty exec mask.
9422 * This would result in divergent breaks not ever being taken. As a
9423 * workaround, break the loop when the loop mask is empty instead of
9424 * always continuing. */
9425 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9426 unsigned block_idx = ctx->block->index;
9427
9428 /* create helper blocks to avoid critical edges */
9429 Block *break_block = ctx->program->create_and_insert_block();
9430 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9431 break_block->kind = block_kind_uniform;
9432 bld.reset(break_block);
9433 bld.branch(aco_opcode::p_branch);
9434 add_linear_edge(block_idx, break_block);
9435 add_linear_edge(break_block->index, &loop_exit);
9436
9437 Block *continue_block = ctx->program->create_and_insert_block();
9438 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9439 continue_block->kind = block_kind_uniform;
9440 bld.reset(continue_block);
9441 bld.branch(aco_opcode::p_branch);
9442 add_linear_edge(block_idx, continue_block);
9443 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9444
9445 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9446 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9447 ctx->block = &ctx->program->blocks[block_idx];
9448 } else {
9449 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9450 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9451 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9452 else
9453 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9454 }
9455
9456 bld.reset(ctx->block);
9457 bld.branch(aco_opcode::p_branch);
9458 }
9459
9460 /* Fixup phis in loop header from unreachable blocks.
9461 * has_branch/has_divergent_branch also indicates if the loop ends with a
9462 * break/continue instruction, but we don't emit those if unreachable=true */
9463 if (unreachable) {
9464 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9465 bool linear = ctx->cf_info.has_branch;
9466 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9467 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9468 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9469 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9470 /* the last operand should be the one that needs to be removed */
9471 instr->operands.pop_back();
9472 } else if (!is_phi(instr)) {
9473 break;
9474 }
9475 }
9476 }
9477
9478 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9479 * and the previous one shouldn't both happen at once because a break in the
9480 * merge block would get CSE'd */
9481 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9482 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9483 Operand vals[num_vals];
9484 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9485 if (instr->opcode == aco_opcode::p_linear_phi) {
9486 if (ctx->cf_info.has_branch)
9487 instr->operands.pop_back();
9488 else
9489 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9490 } else if (!is_phi(instr)) {
9491 break;
9492 }
9493 }
9494 }
9495
9496 ctx->cf_info.has_branch = false;
9497
9498 // TODO: if the loop has not a single exit, we must add one °°
9499 /* emit loop successor block */
9500 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9501 append_logical_start(ctx->block);
9502
9503 #if 0
9504 // TODO: check if it is beneficial to not branch on continues
9505 /* trim linear phis in loop header */
9506 for (auto&& instr : loop_entry->instructions) {
9507 if (instr->opcode == aco_opcode::p_linear_phi) {
9508 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9509 new_phi->definitions[0] = instr->definitions[0];
9510 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9511 new_phi->operands[i] = instr->operands[i];
9512 /* check that the remaining operands are all the same */
9513 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9514 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9515 instr.swap(new_phi);
9516 } else if (instr->opcode == aco_opcode::p_phi) {
9517 continue;
9518 } else {
9519 break;
9520 }
9521 }
9522 #endif
9523 }
9524
9525 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9526 {
9527 ic->cond = cond;
9528
9529 append_logical_end(ctx->block);
9530 ctx->block->kind |= block_kind_branch;
9531
9532 /* branch to linear then block */
9533 assert(cond.regClass() == ctx->program->lane_mask);
9534 aco_ptr<Pseudo_branch_instruction> branch;
9535 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9536 branch->operands[0] = Operand(cond);
9537 ctx->block->instructions.push_back(std::move(branch));
9538
9539 ic->BB_if_idx = ctx->block->index;
9540 ic->BB_invert = Block();
9541 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9542 /* Invert blocks are intentionally not marked as top level because they
9543 * are not part of the logical cfg. */
9544 ic->BB_invert.kind |= block_kind_invert;
9545 ic->BB_endif = Block();
9546 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9547 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9548
9549 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9550 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9551 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9552 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9553 ctx->cf_info.parent_if.is_divergent = true;
9554
9555 /* divergent branches use cbranch_execz */
9556 ctx->cf_info.exec_potentially_empty_discard = false;
9557 ctx->cf_info.exec_potentially_empty_break = false;
9558 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9559
9560 /** emit logical then block */
9561 Block* BB_then_logical = ctx->program->create_and_insert_block();
9562 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9563 add_edge(ic->BB_if_idx, BB_then_logical);
9564 ctx->block = BB_then_logical;
9565 append_logical_start(BB_then_logical);
9566 }
9567
9568 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9569 {
9570 Block *BB_then_logical = ctx->block;
9571 append_logical_end(BB_then_logical);
9572 /* branch from logical then block to invert block */
9573 aco_ptr<Pseudo_branch_instruction> branch;
9574 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9575 BB_then_logical->instructions.emplace_back(std::move(branch));
9576 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9577 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9578 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9579 BB_then_logical->kind |= block_kind_uniform;
9580 assert(!ctx->cf_info.has_branch);
9581 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9582 ctx->cf_info.parent_loop.has_divergent_branch = false;
9583
9584 /** emit linear then block */
9585 Block* BB_then_linear = ctx->program->create_and_insert_block();
9586 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9587 BB_then_linear->kind |= block_kind_uniform;
9588 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9589 /* branch from linear then block to invert block */
9590 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9591 BB_then_linear->instructions.emplace_back(std::move(branch));
9592 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9593
9594 /** emit invert merge block */
9595 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9596 ic->invert_idx = ctx->block->index;
9597
9598 /* branch to linear else block (skip else) */
9599 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9600 branch->operands[0] = Operand(ic->cond);
9601 ctx->block->instructions.push_back(std::move(branch));
9602
9603 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9604 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9605 ic->exec_potentially_empty_break_depth_old =
9606 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9607 /* divergent branches use cbranch_execz */
9608 ctx->cf_info.exec_potentially_empty_discard = false;
9609 ctx->cf_info.exec_potentially_empty_break = false;
9610 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9611
9612 /** emit logical else block */
9613 Block* BB_else_logical = ctx->program->create_and_insert_block();
9614 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9615 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9616 add_linear_edge(ic->invert_idx, BB_else_logical);
9617 ctx->block = BB_else_logical;
9618 append_logical_start(BB_else_logical);
9619 }
9620
9621 static void end_divergent_if(isel_context *ctx, if_context *ic)
9622 {
9623 Block *BB_else_logical = ctx->block;
9624 append_logical_end(BB_else_logical);
9625
9626 /* branch from logical else block to endif block */
9627 aco_ptr<Pseudo_branch_instruction> branch;
9628 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9629 BB_else_logical->instructions.emplace_back(std::move(branch));
9630 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9631 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9632 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9633 BB_else_logical->kind |= block_kind_uniform;
9634
9635 assert(!ctx->cf_info.has_branch);
9636 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9637
9638
9639 /** emit linear else block */
9640 Block* BB_else_linear = ctx->program->create_and_insert_block();
9641 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9642 BB_else_linear->kind |= block_kind_uniform;
9643 add_linear_edge(ic->invert_idx, BB_else_linear);
9644
9645 /* branch from linear else block to endif block */
9646 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9647 BB_else_linear->instructions.emplace_back(std::move(branch));
9648 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9649
9650
9651 /** emit endif merge block */
9652 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9653 append_logical_start(ctx->block);
9654
9655
9656 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9657 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9658 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9659 ctx->cf_info.exec_potentially_empty_break_depth =
9660 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9661 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9662 !ctx->cf_info.parent_if.is_divergent) {
9663 ctx->cf_info.exec_potentially_empty_break = false;
9664 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9665 }
9666 /* uniform control flow never has an empty exec-mask */
9667 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9668 ctx->cf_info.exec_potentially_empty_discard = false;
9669 ctx->cf_info.exec_potentially_empty_break = false;
9670 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9671 }
9672 }
9673
9674 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9675 {
9676 assert(cond.regClass() == s1);
9677
9678 append_logical_end(ctx->block);
9679 ctx->block->kind |= block_kind_uniform;
9680
9681 aco_ptr<Pseudo_branch_instruction> branch;
9682 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9683 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9684 branch->operands[0] = Operand(cond);
9685 branch->operands[0].setFixed(scc);
9686 ctx->block->instructions.emplace_back(std::move(branch));
9687
9688 ic->BB_if_idx = ctx->block->index;
9689 ic->BB_endif = Block();
9690 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9691 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9692
9693 ctx->cf_info.has_branch = false;
9694 ctx->cf_info.parent_loop.has_divergent_branch = false;
9695
9696 /** emit then block */
9697 Block* BB_then = ctx->program->create_and_insert_block();
9698 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9699 add_edge(ic->BB_if_idx, BB_then);
9700 append_logical_start(BB_then);
9701 ctx->block = BB_then;
9702 }
9703
9704 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9705 {
9706 Block *BB_then = ctx->block;
9707
9708 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9709 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9710
9711 if (!ic->uniform_has_then_branch) {
9712 append_logical_end(BB_then);
9713 /* branch from then block to endif block */
9714 aco_ptr<Pseudo_branch_instruction> branch;
9715 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9716 BB_then->instructions.emplace_back(std::move(branch));
9717 add_linear_edge(BB_then->index, &ic->BB_endif);
9718 if (!ic->then_branch_divergent)
9719 add_logical_edge(BB_then->index, &ic->BB_endif);
9720 BB_then->kind |= block_kind_uniform;
9721 }
9722
9723 ctx->cf_info.has_branch = false;
9724 ctx->cf_info.parent_loop.has_divergent_branch = false;
9725
9726 /** emit else block */
9727 Block* BB_else = ctx->program->create_and_insert_block();
9728 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9729 add_edge(ic->BB_if_idx, BB_else);
9730 append_logical_start(BB_else);
9731 ctx->block = BB_else;
9732 }
9733
9734 static void end_uniform_if(isel_context *ctx, if_context *ic)
9735 {
9736 Block *BB_else = ctx->block;
9737
9738 if (!ctx->cf_info.has_branch) {
9739 append_logical_end(BB_else);
9740 /* branch from then block to endif block */
9741 aco_ptr<Pseudo_branch_instruction> branch;
9742 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9743 BB_else->instructions.emplace_back(std::move(branch));
9744 add_linear_edge(BB_else->index, &ic->BB_endif);
9745 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9746 add_logical_edge(BB_else->index, &ic->BB_endif);
9747 BB_else->kind |= block_kind_uniform;
9748 }
9749
9750 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9751 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9752
9753 /** emit endif merge block */
9754 if (!ctx->cf_info.has_branch) {
9755 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9756 append_logical_start(ctx->block);
9757 }
9758 }
9759
9760 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9761 {
9762 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9763 Builder bld(ctx->program, ctx->block);
9764 aco_ptr<Pseudo_branch_instruction> branch;
9765 if_context ic;
9766
9767 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
9768 /**
9769 * Uniform conditionals are represented in the following way*) :
9770 *
9771 * The linear and logical CFG:
9772 * BB_IF
9773 * / \
9774 * BB_THEN (logical) BB_ELSE (logical)
9775 * \ /
9776 * BB_ENDIF
9777 *
9778 * *) Exceptions may be due to break and continue statements within loops
9779 * If a break/continue happens within uniform control flow, it branches
9780 * to the loop exit/entry block. Otherwise, it branches to the next
9781 * merge block.
9782 **/
9783
9784 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9785 assert(cond.regClass() == ctx->program->lane_mask);
9786 cond = bool_to_scalar_condition(ctx, cond);
9787
9788 begin_uniform_if_then(ctx, &ic, cond);
9789 visit_cf_list(ctx, &if_stmt->then_list);
9790
9791 begin_uniform_if_else(ctx, &ic);
9792 visit_cf_list(ctx, &if_stmt->else_list);
9793
9794 end_uniform_if(ctx, &ic);
9795 } else { /* non-uniform condition */
9796 /**
9797 * To maintain a logical and linear CFG without critical edges,
9798 * non-uniform conditionals are represented in the following way*) :
9799 *
9800 * The linear CFG:
9801 * BB_IF
9802 * / \
9803 * BB_THEN (logical) BB_THEN (linear)
9804 * \ /
9805 * BB_INVERT (linear)
9806 * / \
9807 * BB_ELSE (logical) BB_ELSE (linear)
9808 * \ /
9809 * BB_ENDIF
9810 *
9811 * The logical CFG:
9812 * BB_IF
9813 * / \
9814 * BB_THEN (logical) BB_ELSE (logical)
9815 * \ /
9816 * BB_ENDIF
9817 *
9818 * *) Exceptions may be due to break and continue statements within loops
9819 **/
9820
9821 begin_divergent_if_then(ctx, &ic, cond);
9822 visit_cf_list(ctx, &if_stmt->then_list);
9823
9824 begin_divergent_if_else(ctx, &ic);
9825 visit_cf_list(ctx, &if_stmt->else_list);
9826
9827 end_divergent_if(ctx, &ic);
9828 }
9829
9830 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9831 }
9832
9833 static bool visit_cf_list(isel_context *ctx,
9834 struct exec_list *list)
9835 {
9836 foreach_list_typed(nir_cf_node, node, node, list) {
9837 switch (node->type) {
9838 case nir_cf_node_block:
9839 visit_block(ctx, nir_cf_node_as_block(node));
9840 break;
9841 case nir_cf_node_if:
9842 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9843 return true;
9844 break;
9845 case nir_cf_node_loop:
9846 visit_loop(ctx, nir_cf_node_as_loop(node));
9847 break;
9848 default:
9849 unreachable("unimplemented cf list type");
9850 }
9851 }
9852 return false;
9853 }
9854
9855 static void create_null_export(isel_context *ctx)
9856 {
9857 /* Some shader stages always need to have exports.
9858 * So when there is none, we need to add a null export.
9859 */
9860
9861 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9862 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9863 Builder bld(ctx->program, ctx->block);
9864 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9865 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9866 }
9867
9868 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9869 {
9870 assert(ctx->stage == vertex_vs ||
9871 ctx->stage == tess_eval_vs ||
9872 ctx->stage == gs_copy_vs ||
9873 ctx->stage == ngg_vertex_gs ||
9874 ctx->stage == ngg_tess_eval_gs);
9875
9876 int offset = (ctx->stage & sw_tes)
9877 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9878 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9879 uint64_t mask = ctx->outputs.mask[slot];
9880 if (!is_pos && !mask)
9881 return false;
9882 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9883 return false;
9884 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9885 exp->enabled_mask = mask;
9886 for (unsigned i = 0; i < 4; ++i) {
9887 if (mask & (1 << i))
9888 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9889 else
9890 exp->operands[i] = Operand(v1);
9891 }
9892 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9893 * Setting valid_mask=1 prevents it and has no other effect.
9894 */
9895 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9896 exp->done = false;
9897 exp->compressed = false;
9898 if (is_pos)
9899 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9900 else
9901 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9902 ctx->block->instructions.emplace_back(std::move(exp));
9903
9904 return true;
9905 }
9906
9907 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9908 {
9909 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9910 exp->enabled_mask = 0;
9911 for (unsigned i = 0; i < 4; ++i)
9912 exp->operands[i] = Operand(v1);
9913 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9914 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9915 exp->enabled_mask |= 0x1;
9916 }
9917 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9918 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9919 exp->enabled_mask |= 0x4;
9920 }
9921 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9922 if (ctx->options->chip_class < GFX9) {
9923 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9924 exp->enabled_mask |= 0x8;
9925 } else {
9926 Builder bld(ctx->program, ctx->block);
9927
9928 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9929 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9930 if (exp->operands[2].isTemp())
9931 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9932
9933 exp->operands[2] = Operand(out);
9934 exp->enabled_mask |= 0x4;
9935 }
9936 }
9937 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9938 exp->done = false;
9939 exp->compressed = false;
9940 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9941 ctx->block->instructions.emplace_back(std::move(exp));
9942 }
9943
9944 static void create_export_phis(isel_context *ctx)
9945 {
9946 /* Used when exports are needed, but the output temps are defined in a preceding block.
9947 * This function will set up phis in order to access the outputs in the next block.
9948 */
9949
9950 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9951 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9952 ctx->block->instructions.pop_back();
9953
9954 Builder bld(ctx->program, ctx->block);
9955
9956 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9957 uint64_t mask = ctx->outputs.mask[slot];
9958 for (unsigned i = 0; i < 4; ++i) {
9959 if (!(mask & (1 << i)))
9960 continue;
9961
9962 Temp old = ctx->outputs.temps[slot * 4 + i];
9963 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9964 ctx->outputs.temps[slot * 4 + i] = phi;
9965 }
9966 }
9967
9968 bld.insert(std::move(logical_start));
9969 }
9970
9971 static void create_vs_exports(isel_context *ctx)
9972 {
9973 assert(ctx->stage == vertex_vs ||
9974 ctx->stage == tess_eval_vs ||
9975 ctx->stage == gs_copy_vs ||
9976 ctx->stage == ngg_vertex_gs ||
9977 ctx->stage == ngg_tess_eval_gs);
9978
9979 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9980 ? &ctx->program->info->tes.outinfo
9981 : &ctx->program->info->vs.outinfo;
9982
9983 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9984 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9985 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9986 }
9987
9988 if (ctx->options->key.has_multiview_view_index) {
9989 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9990 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9991 }
9992
9993 /* the order these position exports are created is important */
9994 int next_pos = 0;
9995 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9996 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9997 export_vs_psiz_layer_viewport(ctx, &next_pos);
9998 exported_pos = true;
9999 }
10000 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
10001 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
10002 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
10003 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
10004
10005 if (ctx->export_clip_dists) {
10006 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
10007 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
10008 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
10009 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
10010 }
10011
10012 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10013 if (i < VARYING_SLOT_VAR0 &&
10014 i != VARYING_SLOT_LAYER &&
10015 i != VARYING_SLOT_PRIMITIVE_ID &&
10016 i != VARYING_SLOT_VIEWPORT)
10017 continue;
10018
10019 export_vs_varying(ctx, i, false, NULL);
10020 }
10021
10022 if (!exported_pos)
10023 create_null_export(ctx);
10024 }
10025
10026 static bool export_fs_mrt_z(isel_context *ctx)
10027 {
10028 Builder bld(ctx->program, ctx->block);
10029 unsigned enabled_channels = 0;
10030 bool compr = false;
10031 Operand values[4];
10032
10033 for (unsigned i = 0; i < 4; ++i) {
10034 values[i] = Operand(v1);
10035 }
10036
10037 /* Both stencil and sample mask only need 16-bits. */
10038 if (!ctx->program->info->ps.writes_z &&
10039 (ctx->program->info->ps.writes_stencil ||
10040 ctx->program->info->ps.writes_sample_mask)) {
10041 compr = true; /* COMPR flag */
10042
10043 if (ctx->program->info->ps.writes_stencil) {
10044 /* Stencil should be in X[23:16]. */
10045 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10046 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
10047 enabled_channels |= 0x3;
10048 }
10049
10050 if (ctx->program->info->ps.writes_sample_mask) {
10051 /* SampleMask should be in Y[15:0]. */
10052 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10053 enabled_channels |= 0xc;
10054 }
10055 } else {
10056 if (ctx->program->info->ps.writes_z) {
10057 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
10058 enabled_channels |= 0x1;
10059 }
10060
10061 if (ctx->program->info->ps.writes_stencil) {
10062 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10063 enabled_channels |= 0x2;
10064 }
10065
10066 if (ctx->program->info->ps.writes_sample_mask) {
10067 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10068 enabled_channels |= 0x4;
10069 }
10070 }
10071
10072 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
10073 * writemask component.
10074 */
10075 if (ctx->options->chip_class == GFX6 &&
10076 ctx->options->family != CHIP_OLAND &&
10077 ctx->options->family != CHIP_HAINAN) {
10078 enabled_channels |= 0x1;
10079 }
10080
10081 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10082 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
10083
10084 return true;
10085 }
10086
10087 static bool export_fs_mrt_color(isel_context *ctx, int slot)
10088 {
10089 Builder bld(ctx->program, ctx->block);
10090 unsigned write_mask = ctx->outputs.mask[slot];
10091 Operand values[4];
10092
10093 for (unsigned i = 0; i < 4; ++i) {
10094 if (write_mask & (1 << i)) {
10095 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
10096 } else {
10097 values[i] = Operand(v1);
10098 }
10099 }
10100
10101 unsigned target, col_format;
10102 unsigned enabled_channels = 0;
10103 aco_opcode compr_op = (aco_opcode)0;
10104
10105 slot -= FRAG_RESULT_DATA0;
10106 target = V_008DFC_SQ_EXP_MRT + slot;
10107 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
10108
10109 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
10110 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
10111 bool is_16bit = values[0].regClass() == v2b;
10112
10113 switch (col_format)
10114 {
10115 case V_028714_SPI_SHADER_ZERO:
10116 enabled_channels = 0; /* writemask */
10117 target = V_008DFC_SQ_EXP_NULL;
10118 break;
10119
10120 case V_028714_SPI_SHADER_32_R:
10121 enabled_channels = 1;
10122 break;
10123
10124 case V_028714_SPI_SHADER_32_GR:
10125 enabled_channels = 0x3;
10126 break;
10127
10128 case V_028714_SPI_SHADER_32_AR:
10129 if (ctx->options->chip_class >= GFX10) {
10130 /* Special case: on GFX10, the outputs are different for 32_AR */
10131 enabled_channels = 0x3;
10132 values[1] = values[3];
10133 values[3] = Operand(v1);
10134 } else {
10135 enabled_channels = 0x9;
10136 }
10137 break;
10138
10139 case V_028714_SPI_SHADER_FP16_ABGR:
10140 enabled_channels = 0x5;
10141 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
10142 if (is_16bit) {
10143 if (ctx->options->chip_class >= GFX9) {
10144 /* Pack the FP16 values together instead of converting them to
10145 * FP32 and back to FP16.
10146 * TODO: use p_create_vector and let the compiler optimizes.
10147 */
10148 compr_op = aco_opcode::v_pack_b32_f16;
10149 } else {
10150 for (unsigned i = 0; i < 4; i++) {
10151 if ((write_mask >> i) & 1)
10152 values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
10153 }
10154 }
10155 }
10156 break;
10157
10158 case V_028714_SPI_SHADER_UNORM16_ABGR:
10159 enabled_channels = 0x5;
10160 if (is_16bit && ctx->options->chip_class >= GFX9) {
10161 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
10162 } else {
10163 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
10164 }
10165 break;
10166
10167 case V_028714_SPI_SHADER_SNORM16_ABGR:
10168 enabled_channels = 0x5;
10169 if (is_16bit && ctx->options->chip_class >= GFX9) {
10170 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
10171 } else {
10172 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10173 }
10174 break;
10175
10176 case V_028714_SPI_SHADER_UINT16_ABGR: {
10177 enabled_channels = 0x5;
10178 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10179 if (is_int8 || is_int10) {
10180 /* clamp */
10181 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10182 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10183
10184 for (unsigned i = 0; i < 4; i++) {
10185 if ((write_mask >> i) & 1) {
10186 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10187 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10188 values[i]);
10189 }
10190 }
10191 } else if (is_16bit) {
10192 for (unsigned i = 0; i < 4; i++) {
10193 if ((write_mask >> i) & 1) {
10194 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10195 values[i] = Operand(tmp);
10196 }
10197 }
10198 }
10199 break;
10200 }
10201
10202 case V_028714_SPI_SHADER_SINT16_ABGR:
10203 enabled_channels = 0x5;
10204 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10205 if (is_int8 || is_int10) {
10206 /* clamp */
10207 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10208 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10209 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10210 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10211
10212 for (unsigned i = 0; i < 4; i++) {
10213 if ((write_mask >> i) & 1) {
10214 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10215 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10216 values[i]);
10217 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10218 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10219 values[i]);
10220 }
10221 }
10222 } else if (is_16bit) {
10223 for (unsigned i = 0; i < 4; i++) {
10224 if ((write_mask >> i) & 1) {
10225 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10226 values[i] = Operand(tmp);
10227 }
10228 }
10229 }
10230 break;
10231
10232 case V_028714_SPI_SHADER_32_ABGR:
10233 enabled_channels = 0xF;
10234 break;
10235
10236 default:
10237 break;
10238 }
10239
10240 if (target == V_008DFC_SQ_EXP_NULL)
10241 return false;
10242
10243 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10244 if (ctx->options->enable_mrt_output_nan_fixup &&
10245 !is_16bit &&
10246 (col_format == V_028714_SPI_SHADER_32_R ||
10247 col_format == V_028714_SPI_SHADER_32_GR ||
10248 col_format == V_028714_SPI_SHADER_32_AR ||
10249 col_format == V_028714_SPI_SHADER_32_ABGR ||
10250 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10251 for (int i = 0; i < 4; i++) {
10252 if (!(write_mask & (1 << i)))
10253 continue;
10254
10255 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10256 bld.hint_vcc(bld.def(bld.lm)), values[i],
10257 bld.copy(bld.def(v1), Operand(3u)));
10258 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10259 bld.copy(bld.def(v1), Operand(0u)), isnan);
10260 }
10261 }
10262
10263 if ((bool) compr_op) {
10264 for (int i = 0; i < 2; i++) {
10265 /* check if at least one of the values to be compressed is enabled */
10266 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10267 if (enabled) {
10268 enabled_channels |= enabled << (i*2);
10269 values[i] = bld.vop3(compr_op, bld.def(v1),
10270 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10271 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10272 } else {
10273 values[i] = Operand(v1);
10274 }
10275 }
10276 values[2] = Operand(v1);
10277 values[3] = Operand(v1);
10278 } else {
10279 for (int i = 0; i < 4; i++)
10280 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10281 }
10282
10283 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10284 enabled_channels, target, (bool) compr_op);
10285 return true;
10286 }
10287
10288 static void create_fs_exports(isel_context *ctx)
10289 {
10290 bool exported = false;
10291
10292 /* Export depth, stencil and sample mask. */
10293 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10294 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10295 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10296 exported |= export_fs_mrt_z(ctx);
10297
10298 /* Export all color render targets. */
10299 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10300 if (ctx->outputs.mask[i])
10301 exported |= export_fs_mrt_color(ctx, i);
10302
10303 if (!exported)
10304 create_null_export(ctx);
10305 }
10306
10307 static void create_workgroup_barrier(Builder& bld)
10308 {
10309 bld.barrier(aco_opcode::p_barrier,
10310 memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup),
10311 scope_workgroup);
10312 }
10313
10314 static void write_tcs_tess_factors(isel_context *ctx)
10315 {
10316 unsigned outer_comps;
10317 unsigned inner_comps;
10318
10319 switch (ctx->args->options->key.tcs.primitive_mode) {
10320 case GL_ISOLINES:
10321 outer_comps = 2;
10322 inner_comps = 0;
10323 break;
10324 case GL_TRIANGLES:
10325 outer_comps = 3;
10326 inner_comps = 1;
10327 break;
10328 case GL_QUADS:
10329 outer_comps = 4;
10330 inner_comps = 2;
10331 break;
10332 default:
10333 return;
10334 }
10335
10336 Builder bld(ctx->program, ctx->block);
10337
10338 create_workgroup_barrier(bld);
10339
10340 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10341 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10342
10343 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10344 if_context ic_invocation_id_is_zero;
10345 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10346 bld.reset(ctx->block);
10347
10348 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10349
10350 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10351 unsigned stride = inner_comps + outer_comps;
10352 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10353 Temp tf_inner_vec;
10354 Temp tf_outer_vec;
10355 Temp out[6];
10356 assert(stride <= (sizeof(out) / sizeof(Temp)));
10357
10358 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10359 // LINES reversal
10360 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10361 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10362 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10363 } else {
10364 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10365 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10366
10367 for (unsigned i = 0; i < outer_comps; ++i)
10368 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10369 for (unsigned i = 0; i < inner_comps; ++i)
10370 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10371 }
10372
10373 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10374 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10375 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10376 unsigned tf_const_offset = 0;
10377
10378 if (ctx->program->chip_class <= GFX8) {
10379 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10380 if_context ic_rel_patch_id_is_zero;
10381 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10382 bld.reset(ctx->block);
10383
10384 /* Store the dynamic HS control word. */
10385 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10386 bld.mubuf(aco_opcode::buffer_store_dword,
10387 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10388 /* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false,
10389 /* addr64 */ false, /* disable_wqm */ false, /* glc */ true);
10390 tf_const_offset += 4;
10391
10392 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10393 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10394 bld.reset(ctx->block);
10395 }
10396
10397 assert(stride == 2 || stride == 4 || stride == 6);
10398 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10399 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, memory_sync_info());
10400
10401 /* Store to offchip for TES to read - only if TES reads them */
10402 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10403 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10404 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10405
10406 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10407 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, memory_sync_info(storage_vmem_output));
10408
10409 if (likely(inner_comps)) {
10410 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10411 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, memory_sync_info(storage_vmem_output));
10412 }
10413 }
10414
10415 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10416 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10417 }
10418
10419 static void emit_stream_output(isel_context *ctx,
10420 Temp const *so_buffers,
10421 Temp const *so_write_offset,
10422 const struct radv_stream_output *output)
10423 {
10424 unsigned num_comps = util_bitcount(output->component_mask);
10425 unsigned writemask = (1 << num_comps) - 1;
10426 unsigned loc = output->location;
10427 unsigned buf = output->buffer;
10428
10429 assert(num_comps && num_comps <= 4);
10430 if (!num_comps || num_comps > 4)
10431 return;
10432
10433 unsigned start = ffs(output->component_mask) - 1;
10434
10435 Temp out[4];
10436 bool all_undef = true;
10437 assert(ctx->stage & hw_vs);
10438 for (unsigned i = 0; i < num_comps; i++) {
10439 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10440 all_undef = all_undef && !out[i].id();
10441 }
10442 if (all_undef)
10443 return;
10444
10445 while (writemask) {
10446 int start, count;
10447 u_bit_scan_consecutive_range(&writemask, &start, &count);
10448 if (count == 3 && ctx->options->chip_class == GFX6) {
10449 /* GFX6 doesn't support storing vec3, split it. */
10450 writemask |= 1u << (start + 2);
10451 count = 2;
10452 }
10453
10454 unsigned offset = output->offset + start * 4;
10455
10456 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10457 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10458 for (int i = 0; i < count; ++i)
10459 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10460 vec->definitions[0] = Definition(write_data);
10461 ctx->block->instructions.emplace_back(std::move(vec));
10462
10463 aco_opcode opcode;
10464 switch (count) {
10465 case 1:
10466 opcode = aco_opcode::buffer_store_dword;
10467 break;
10468 case 2:
10469 opcode = aco_opcode::buffer_store_dwordx2;
10470 break;
10471 case 3:
10472 opcode = aco_opcode::buffer_store_dwordx3;
10473 break;
10474 case 4:
10475 opcode = aco_opcode::buffer_store_dwordx4;
10476 break;
10477 default:
10478 unreachable("Unsupported dword count.");
10479 }
10480
10481 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10482 store->operands[0] = Operand(so_buffers[buf]);
10483 store->operands[1] = Operand(so_write_offset[buf]);
10484 store->operands[2] = Operand((uint32_t) 0);
10485 store->operands[3] = Operand(write_data);
10486 if (offset > 4095) {
10487 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10488 Builder bld(ctx->program, ctx->block);
10489 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10490 } else {
10491 store->offset = offset;
10492 }
10493 store->offen = true;
10494 store->glc = true;
10495 store->dlc = false;
10496 store->slc = true;
10497 ctx->block->instructions.emplace_back(std::move(store));
10498 }
10499 }
10500
10501 static void emit_streamout(isel_context *ctx, unsigned stream)
10502 {
10503 Builder bld(ctx->program, ctx->block);
10504
10505 Temp so_buffers[4];
10506 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10507 for (unsigned i = 0; i < 4; i++) {
10508 unsigned stride = ctx->program->info->so.strides[i];
10509 if (!stride)
10510 continue;
10511
10512 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10513 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10514 }
10515
10516 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10517 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10518
10519 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10520
10521 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10522
10523 if_context ic;
10524 begin_divergent_if_then(ctx, &ic, can_emit);
10525
10526 bld.reset(ctx->block);
10527
10528 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10529
10530 Temp so_write_offset[4];
10531
10532 for (unsigned i = 0; i < 4; i++) {
10533 unsigned stride = ctx->program->info->so.strides[i];
10534 if (!stride)
10535 continue;
10536
10537 if (stride == 1) {
10538 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10539 get_arg(ctx, ctx->args->streamout_write_idx),
10540 get_arg(ctx, ctx->args->streamout_offset[i]));
10541 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10542
10543 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10544 } else {
10545 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10546 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10547 get_arg(ctx, ctx->args->streamout_offset[i]));
10548 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10549 }
10550 }
10551
10552 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10553 struct radv_stream_output *output =
10554 &ctx->program->info->so.outputs[i];
10555 if (stream != output->stream)
10556 continue;
10557
10558 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10559 }
10560
10561 begin_divergent_if_else(ctx, &ic);
10562 end_divergent_if(ctx, &ic);
10563 }
10564
10565 } /* end namespace */
10566
10567 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10568 {
10569 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10570 Builder bld(ctx->program, ctx->block);
10571 constexpr unsigned hs_idx = 1u;
10572 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10573 get_arg(ctx, ctx->args->merged_wave_info),
10574 Operand((8u << 16) | (hs_idx * 8u)));
10575 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10576
10577 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10578
10579 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10580 get_arg(ctx, ctx->args->rel_auto_id),
10581 get_arg(ctx, ctx->args->ac.instance_id),
10582 ls_has_nonzero_hs_threads);
10583 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10584 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10585 get_arg(ctx, ctx->args->rel_auto_id),
10586 ls_has_nonzero_hs_threads);
10587 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10588 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10589 get_arg(ctx, ctx->args->ac.vertex_id),
10590 ls_has_nonzero_hs_threads);
10591
10592 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10593 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10594 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10595 }
10596
10597 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10598 {
10599 /* Split all arguments except for the first (ring_offsets) and the last
10600 * (exec) so that the dead channels don't stay live throughout the program.
10601 */
10602 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10603 if (startpgm->definitions[i].regClass().size() > 1) {
10604 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10605 startpgm->definitions[i].regClass().size());
10606 }
10607 }
10608 }
10609
10610 void handle_bc_optimize(isel_context *ctx)
10611 {
10612 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10613 Builder bld(ctx->program, ctx->block);
10614 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10615 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10616 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10617 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10618 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10619 if (uses_center && uses_centroid) {
10620 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10621 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10622
10623 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10624 Temp new_coord[2];
10625 for (unsigned i = 0; i < 2; i++) {
10626 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10627 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10628 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10629 persp_centroid, persp_center, sel);
10630 }
10631 ctx->persp_centroid = bld.tmp(v2);
10632 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10633 Operand(new_coord[0]), Operand(new_coord[1]));
10634 emit_split_vector(ctx, ctx->persp_centroid, 2);
10635 }
10636
10637 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10638 Temp new_coord[2];
10639 for (unsigned i = 0; i < 2; i++) {
10640 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10641 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10642 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10643 linear_centroid, linear_center, sel);
10644 }
10645 ctx->linear_centroid = bld.tmp(v2);
10646 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10647 Operand(new_coord[0]), Operand(new_coord[1]));
10648 emit_split_vector(ctx, ctx->linear_centroid, 2);
10649 }
10650 }
10651 }
10652
10653 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10654 {
10655 Program *program = ctx->program;
10656
10657 unsigned float_controls = shader->info.float_controls_execution_mode;
10658
10659 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10660 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10661 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10662 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10663 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10664
10665 program->next_fp_mode.must_flush_denorms32 =
10666 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10667 program->next_fp_mode.must_flush_denorms16_64 =
10668 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10669 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10670
10671 program->next_fp_mode.care_about_round32 =
10672 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10673
10674 program->next_fp_mode.care_about_round16_64 =
10675 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10676 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10677
10678 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
10679 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
10680 if (program->next_fp_mode.must_flush_denorms16_64)
10681 program->next_fp_mode.denorm16_64 = 0;
10682 else
10683 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10684
10685 /* preserving fp32 denorms is expensive, so only do it if asked */
10686 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10687 program->next_fp_mode.denorm32 = fp_denorm_keep;
10688 else
10689 program->next_fp_mode.denorm32 = 0;
10690
10691 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10692 program->next_fp_mode.round32 = fp_round_tz;
10693 else
10694 program->next_fp_mode.round32 = fp_round_ne;
10695
10696 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10697 program->next_fp_mode.round16_64 = fp_round_tz;
10698 else
10699 program->next_fp_mode.round16_64 = fp_round_ne;
10700
10701 ctx->block->fp_mode = program->next_fp_mode;
10702 }
10703
10704 void cleanup_cfg(Program *program)
10705 {
10706 /* create linear_succs/logical_succs */
10707 for (Block& BB : program->blocks) {
10708 for (unsigned idx : BB.linear_preds)
10709 program->blocks[idx].linear_succs.emplace_back(BB.index);
10710 for (unsigned idx : BB.logical_preds)
10711 program->blocks[idx].logical_succs.emplace_back(BB.index);
10712 }
10713 }
10714
10715 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10716 {
10717 Builder bld(ctx->program, ctx->block);
10718
10719 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10720 Temp count = i == 0
10721 ? get_arg(ctx, ctx->args->merged_wave_info)
10722 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10723 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10724
10725 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10726 Temp cond;
10727
10728 if (ctx->program->wave_size == 64) {
10729 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10730 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10731 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10732 } else {
10733 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10734 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10735 }
10736
10737 return cond;
10738 }
10739
10740 bool ngg_early_prim_export(isel_context *ctx)
10741 {
10742 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10743 return true;
10744 }
10745
10746 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10747 {
10748 Builder bld(ctx->program, ctx->block);
10749
10750 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10751 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10752
10753 /* Get the id of the current wave within the threadgroup (workgroup) */
10754 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10755 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10756
10757 /* Execute the following code only on the first wave (wave id 0),
10758 * use the SCC def to tell if the wave id is zero or not.
10759 */
10760 Temp cond = wave_id_in_tg.def(1).getTemp();
10761 if_context ic;
10762 begin_uniform_if_then(ctx, &ic, cond);
10763 begin_uniform_if_else(ctx, &ic);
10764 bld.reset(ctx->block);
10765
10766 /* Number of vertices output by VS/TES */
10767 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10768 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10769 /* Number of primitives output by VS/TES */
10770 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10771 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10772
10773 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10774 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10775 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10776
10777 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10778 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10779
10780 end_uniform_if(ctx, &ic);
10781
10782 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10783 bld.reset(ctx->block);
10784 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10785 }
10786
10787 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10788 {
10789 Builder bld(ctx->program, ctx->block);
10790
10791 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10792 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10793 }
10794
10795 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10796 Temp tmp;
10797
10798 for (unsigned i = 0; i < num_vertices; ++i) {
10799 assert(vtxindex[i].id());
10800
10801 if (i)
10802 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10803 else
10804 tmp = vtxindex[i];
10805
10806 /* The initial edge flag is always false in tess eval shaders. */
10807 if (ctx->stage == ngg_vertex_gs) {
10808 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10809 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10810 }
10811 }
10812
10813 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10814
10815 return tmp;
10816 }
10817
10818 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10819 {
10820 Builder bld(ctx->program, ctx->block);
10821 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10822
10823 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10824 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10825 false /* compressed */, true/* done */, false /* valid mask */);
10826 }
10827
10828 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10829 {
10830 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10831 * These must always come before VS exports.
10832 *
10833 * It is recommended to do these as early as possible. They can be at the beginning when
10834 * there is no SW GS and the shader doesn't write edge flags.
10835 */
10836
10837 if_context ic;
10838 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10839 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10840
10841 Builder bld(ctx->program, ctx->block);
10842 constexpr unsigned max_vertices_per_primitive = 3;
10843 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10844
10845 if (ctx->stage == ngg_vertex_gs) {
10846 /* TODO: optimize for points & lines */
10847 } else if (ctx->stage == ngg_tess_eval_gs) {
10848 if (ctx->shader->info.tess.point_mode)
10849 num_vertices_per_primitive = 1;
10850 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10851 num_vertices_per_primitive = 2;
10852 } else {
10853 unreachable("Unsupported NGG shader stage");
10854 }
10855
10856 Temp vtxindex[max_vertices_per_primitive];
10857 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10858 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10859 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10860 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10861 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10862 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10863 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10864 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10865
10866 /* Export primitive data to the index buffer. */
10867 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10868
10869 /* Export primitive ID. */
10870 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10871 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10872 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10873 Temp provoking_vtx_index = vtxindex[0];
10874 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10875
10876 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10877 }
10878
10879 begin_divergent_if_else(ctx, &ic);
10880 end_divergent_if(ctx, &ic);
10881 }
10882
10883 void ngg_emit_nogs_output(isel_context *ctx)
10884 {
10885 /* Emits NGG GS output, for stages that don't have SW GS. */
10886
10887 if_context ic;
10888 Builder bld(ctx->program, ctx->block);
10889 bool late_prim_export = !ngg_early_prim_export(ctx);
10890
10891 /* NGG streamout is currently disabled by default. */
10892 assert(!ctx->args->shader_info->so.num_outputs);
10893
10894 if (late_prim_export) {
10895 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10896 create_export_phis(ctx);
10897 /* Do what we need to do in the GS threads. */
10898 ngg_emit_nogs_gsthreads(ctx);
10899
10900 /* What comes next should be executed on ES threads. */
10901 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10902 begin_divergent_if_then(ctx, &ic, is_es_thread);
10903 bld.reset(ctx->block);
10904 }
10905
10906 /* Export VS outputs */
10907 ctx->block->kind |= block_kind_export_end;
10908 create_vs_exports(ctx);
10909
10910 /* Export primitive ID */
10911 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10912 Temp prim_id;
10913
10914 if (ctx->stage == ngg_vertex_gs) {
10915 /* Wait for GS threads to store primitive ID in LDS. */
10916 create_workgroup_barrier(bld);
10917
10918 /* Calculate LDS address where the GS threads stored the primitive ID. */
10919 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10920 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10921 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10922 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10923 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10924 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10925
10926 /* Load primitive ID from LDS. */
10927 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10928 } else if (ctx->stage == ngg_tess_eval_gs) {
10929 /* TES: Just use the patch ID as the primitive ID. */
10930 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10931 } else {
10932 unreachable("unsupported NGG shader stage.");
10933 }
10934
10935 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10936 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10937
10938 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10939 }
10940
10941 if (late_prim_export) {
10942 begin_divergent_if_else(ctx, &ic);
10943 end_divergent_if(ctx, &ic);
10944 bld.reset(ctx->block);
10945 }
10946 }
10947
10948 void select_program(Program *program,
10949 unsigned shader_count,
10950 struct nir_shader *const *shaders,
10951 ac_shader_config* config,
10952 struct radv_shader_args *args)
10953 {
10954 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10955 if_context ic_merged_wave_info;
10956 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10957
10958 for (unsigned i = 0; i < shader_count; i++) {
10959 nir_shader *nir = shaders[i];
10960 init_context(&ctx, nir);
10961
10962 setup_fp_mode(&ctx, nir);
10963
10964 if (!i) {
10965 /* needs to be after init_context() for FS */
10966 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10967 append_logical_start(ctx.block);
10968
10969 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10970 fix_ls_vgpr_init_bug(&ctx, startpgm);
10971
10972 split_arguments(&ctx, startpgm);
10973 }
10974
10975 if (ngg_no_gs) {
10976 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10977
10978 if (ngg_early_prim_export(&ctx))
10979 ngg_emit_nogs_gsthreads(&ctx);
10980 }
10981
10982 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10983 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10984 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10985 ((nir->info.stage == MESA_SHADER_VERTEX &&
10986 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10987 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10988 ctx.stage == tess_eval_geometry_gs));
10989
10990 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10991 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10992 if (check_merged_wave_info) {
10993 Temp cond = merged_wave_info_to_mask(&ctx, i);
10994 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10995 }
10996
10997 if (i) {
10998 Builder bld(ctx.program, ctx.block);
10999
11000 create_workgroup_barrier(bld);
11001
11002 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
11003 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
11004 }
11005 } else if (ctx.stage == geometry_gs)
11006 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
11007
11008 if (ctx.stage == fragment_fs)
11009 handle_bc_optimize(&ctx);
11010
11011 visit_cf_list(&ctx, &func->body);
11012
11013 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
11014 emit_streamout(&ctx, 0);
11015
11016 if (ctx.stage & hw_vs) {
11017 create_vs_exports(&ctx);
11018 ctx.block->kind |= block_kind_export_end;
11019 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
11020 ngg_emit_nogs_output(&ctx);
11021 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
11022 Builder bld(ctx.program, ctx.block);
11023 bld.barrier(aco_opcode::p_barrier,
11024 memory_sync_info(storage_vmem_output, semantic_release, scope_device));
11025 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
11026 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
11027 write_tcs_tess_factors(&ctx);
11028 }
11029
11030 if (ctx.stage == fragment_fs) {
11031 create_fs_exports(&ctx);
11032 ctx.block->kind |= block_kind_export_end;
11033 }
11034
11035 if (endif_merged_wave_info) {
11036 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
11037 end_divergent_if(&ctx, &ic_merged_wave_info);
11038 }
11039
11040 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
11041 ngg_emit_nogs_output(&ctx);
11042
11043 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
11044 /* Outputs of the previous stage are inputs to the next stage */
11045 ctx.inputs = ctx.outputs;
11046 ctx.outputs = shader_io_state();
11047 }
11048 }
11049
11050 program->config->float_mode = program->blocks[0].fp_mode.val;
11051
11052 append_logical_end(ctx.block);
11053 ctx.block->kind |= block_kind_uniform;
11054 Builder bld(ctx.program, ctx.block);
11055 if (ctx.program->wb_smem_l1_on_end)
11056 bld.smem(aco_opcode::s_dcache_wb, memory_sync_info(storage_buffer, semantic_volatile));
11057 bld.sopp(aco_opcode::s_endpgm);
11058
11059 cleanup_cfg(program);
11060 }
11061
11062 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
11063 ac_shader_config* config,
11064 struct radv_shader_args *args)
11065 {
11066 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
11067
11068 ctx.block->fp_mode = program->next_fp_mode;
11069
11070 add_startpgm(&ctx);
11071 append_logical_start(ctx.block);
11072
11073 Builder bld(ctx.program, ctx.block);
11074
11075 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
11076
11077 Operand stream_id(0u);
11078 if (args->shader_info->so.num_outputs)
11079 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11080 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
11081
11082 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
11083
11084 std::stack<Block> endif_blocks;
11085
11086 for (unsigned stream = 0; stream < 4; stream++) {
11087 if (stream_id.isConstant() && stream != stream_id.constantValue())
11088 continue;
11089
11090 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
11091 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
11092 continue;
11093
11094 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
11095
11096 unsigned BB_if_idx = ctx.block->index;
11097 Block BB_endif = Block();
11098 if (!stream_id.isConstant()) {
11099 /* begin IF */
11100 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
11101 append_logical_end(ctx.block);
11102 ctx.block->kind |= block_kind_uniform;
11103 bld.branch(aco_opcode::p_cbranch_z, cond);
11104
11105 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
11106
11107 ctx.block = ctx.program->create_and_insert_block();
11108 add_edge(BB_if_idx, ctx.block);
11109 bld.reset(ctx.block);
11110 append_logical_start(ctx.block);
11111 }
11112
11113 unsigned offset = 0;
11114 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
11115 if (args->shader_info->gs.output_streams[i] != stream)
11116 continue;
11117
11118 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
11119 unsigned length = util_last_bit(output_usage_mask);
11120 for (unsigned j = 0; j < length; ++j) {
11121 if (!(output_usage_mask & (1 << j)))
11122 continue;
11123
11124 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
11125 Temp voffset = vtx_offset;
11126 if (const_offset >= 4096u) {
11127 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
11128 const_offset %= 4096u;
11129 }
11130
11131 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
11132 mubuf->definitions[0] = bld.def(v1);
11133 mubuf->operands[0] = Operand(gsvs_ring);
11134 mubuf->operands[1] = Operand(voffset);
11135 mubuf->operands[2] = Operand(0u);
11136 mubuf->offen = true;
11137 mubuf->offset = const_offset;
11138 mubuf->glc = true;
11139 mubuf->slc = true;
11140 mubuf->dlc = args->options->chip_class >= GFX10;
11141
11142 ctx.outputs.mask[i] |= 1 << j;
11143 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
11144
11145 bld.insert(std::move(mubuf));
11146
11147 offset++;
11148 }
11149 }
11150
11151 if (args->shader_info->so.num_outputs) {
11152 emit_streamout(&ctx, stream);
11153 bld.reset(ctx.block);
11154 }
11155
11156 if (stream == 0) {
11157 create_vs_exports(&ctx);
11158 ctx.block->kind |= block_kind_export_end;
11159 }
11160
11161 if (!stream_id.isConstant()) {
11162 append_logical_end(ctx.block);
11163
11164 /* branch from then block to endif block */
11165 bld.branch(aco_opcode::p_branch);
11166 add_edge(ctx.block->index, &BB_endif);
11167 ctx.block->kind |= block_kind_uniform;
11168
11169 /* emit else block */
11170 ctx.block = ctx.program->create_and_insert_block();
11171 add_edge(BB_if_idx, ctx.block);
11172 bld.reset(ctx.block);
11173 append_logical_start(ctx.block);
11174
11175 endif_blocks.push(std::move(BB_endif));
11176 }
11177 }
11178
11179 while (!endif_blocks.empty()) {
11180 Block BB_endif = std::move(endif_blocks.top());
11181 endif_blocks.pop();
11182
11183 Block *BB_else = ctx.block;
11184
11185 append_logical_end(BB_else);
11186 /* branch from else block to endif block */
11187 bld.branch(aco_opcode::p_branch);
11188 add_edge(BB_else->index, &BB_endif);
11189 BB_else->kind |= block_kind_uniform;
11190
11191 /** emit endif merge block */
11192 ctx.block = program->insert_block(std::move(BB_endif));
11193 bld.reset(ctx.block);
11194 append_logical_start(ctx.block);
11195 }
11196
11197 program->config->float_mode = program->blocks[0].fp_mode.val;
11198
11199 append_logical_end(ctx.block);
11200 ctx.block->kind |= block_kind_uniform;
11201 bld.sopp(aco_opcode::s_endpgm);
11202
11203 cleanup_cfg(program);
11204 }
11205 }