aco: Use context variables instead of calculating TCS inputs/outputs.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 RegClass rc;
308 if (num_components > vec_src.size()) {
309 if (vec_src.type() == RegType::sgpr) {
310 /* should still help get_alu_src() */
311 emit_split_vector(ctx, vec_src, vec_src.size());
312 return;
313 }
314 /* sub-dword split */
315 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
316 } else {
317 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
318 }
319 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
320 split->operands[0] = Operand(vec_src);
321 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
322 for (unsigned i = 0; i < num_components; i++) {
323 elems[i] = {ctx->program->allocateId(), rc};
324 split->definitions[i] = Definition(elems[i]);
325 }
326 ctx->block->instructions.emplace_back(std::move(split));
327 ctx->allocated_vec.emplace(vec_src.id(), elems);
328 }
329
330 /* This vector expansion uses a mask to determine which elements in the new vector
331 * come from the original vector. The other elements are undefined. */
332 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
333 {
334 emit_split_vector(ctx, vec_src, util_bitcount(mask));
335
336 if (vec_src == dst)
337 return;
338
339 Builder bld(ctx->program, ctx->block);
340 if (num_components == 1) {
341 if (dst.type() == RegType::sgpr)
342 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
343 else
344 bld.copy(Definition(dst), vec_src);
345 return;
346 }
347
348 unsigned component_size = dst.size() / num_components;
349 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
350
351 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
352 vec->definitions[0] = Definition(dst);
353 unsigned k = 0;
354 for (unsigned i = 0; i < num_components; i++) {
355 if (mask & (1 << i)) {
356 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
357 if (dst.type() == RegType::sgpr)
358 src = bld.as_uniform(src);
359 vec->operands[i] = Operand(src);
360 } else {
361 vec->operands[i] = Operand(0u);
362 }
363 elems[i] = vec->operands[i].getTemp();
364 }
365 ctx->block->instructions.emplace_back(std::move(vec));
366 ctx->allocated_vec.emplace(dst.id(), elems);
367 }
368
369 /* adjust misaligned small bit size loads */
370 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
371 {
372 Builder bld(ctx->program, ctx->block);
373 Operand shift;
374 Temp select = Temp();
375 if (offset.isConstant()) {
376 assert(offset.constantValue() && offset.constantValue() < 4);
377 shift = Operand(offset.constantValue() * 8);
378 } else {
379 /* bit_offset = 8 * (offset & 0x3) */
380 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
381 select = bld.tmp(s1);
382 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
383 }
384
385 if (vec.size() == 1) {
386 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
387 } else if (vec.size() == 2) {
388 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
389 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
390 if (tmp == dst)
391 emit_split_vector(ctx, dst, 2);
392 else
393 emit_extract_vector(ctx, tmp, 0, dst);
394 } else if (vec.size() == 4) {
395 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
396 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
397 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
398 if (select != Temp())
399 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
400 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
401 Temp mid = bld.tmp(s1);
402 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
403 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
404 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
405 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
406 emit_split_vector(ctx, dst, 2);
407 }
408 }
409
410 /* this function trims subdword vectors:
411 * if dst is vgpr - split the src and create a shrunk version according to the mask.
412 * if dst is sgpr - split the src, but move the original to sgpr. */
413 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
414 {
415 assert(vec_src.type() == RegType::vgpr);
416 emit_split_vector(ctx, vec_src, num_components);
417
418 Builder bld(ctx->program, ctx->block);
419 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
420 unsigned component_size = vec_src.bytes() / num_components;
421 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
422
423 unsigned k = 0;
424 for (unsigned i = 0; i < num_components; i++) {
425 if (mask & (1 << i))
426 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
427 }
428
429 if (dst.type() == RegType::vgpr) {
430 assert(dst.bytes() == k * component_size);
431 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
432 for (unsigned i = 0; i < k; i++)
433 vec->operands[i] = Operand(elems[i]);
434 vec->definitions[0] = Definition(dst);
435 bld.insert(std::move(vec));
436 } else {
437 // TODO: alignbyte if mask doesn't start with 1?
438 assert(mask & 1);
439 assert(dst.size() == vec_src.size());
440 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
441 }
442 ctx->allocated_vec.emplace(dst.id(), elems);
443 }
444
445 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
446 {
447 Builder bld(ctx->program, ctx->block);
448 if (!dst.id())
449 dst = bld.tmp(bld.lm);
450
451 assert(val.regClass() == s1);
452 assert(dst.regClass() == bld.lm);
453
454 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
455 }
456
457 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
458 {
459 Builder bld(ctx->program, ctx->block);
460 if (!dst.id())
461 dst = bld.tmp(s1);
462
463 assert(val.regClass() == bld.lm);
464 assert(dst.regClass() == s1);
465
466 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
467 Temp tmp = bld.tmp(s1);
468 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
469 return emit_wqm(ctx, tmp, dst);
470 }
471
472 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
473 {
474 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
475 return get_ssa_temp(ctx, src.src.ssa);
476
477 if (src.src.ssa->num_components == size) {
478 bool identity_swizzle = true;
479 for (unsigned i = 0; identity_swizzle && i < size; i++) {
480 if (src.swizzle[i] != i)
481 identity_swizzle = false;
482 }
483 if (identity_swizzle)
484 return get_ssa_temp(ctx, src.src.ssa);
485 }
486
487 Temp vec = get_ssa_temp(ctx, src.src.ssa);
488 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
489 assert(elem_size > 0);
490 assert(vec.bytes() % elem_size == 0);
491
492 if (elem_size < 4 && vec.type() == RegType::sgpr) {
493 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
494 assert(size == 1);
495 unsigned swizzle = src.swizzle[0];
496 if (vec.size() > 1) {
497 assert(src.src.ssa->bit_size == 16);
498 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
499 swizzle = swizzle & 1;
500 }
501 if (swizzle == 0)
502 return vec;
503
504 Temp dst{ctx->program->allocateId(), s1};
505 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 2)};
506 bfe->operands[0] = Operand(vec);
507 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
508 bfe->definitions[0] = Definition(dst);
509 bfe->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
510 ctx->block->instructions.emplace_back(std::move(bfe));
511 return dst;
512 }
513
514 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
515 if (size == 1) {
516 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
517 } else {
518 assert(size <= 4);
519 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
520 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
521 for (unsigned i = 0; i < size; ++i) {
522 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
523 vec_instr->operands[i] = Operand{elems[i]};
524 }
525 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
526 vec_instr->definitions[0] = Definition(dst);
527 ctx->block->instructions.emplace_back(std::move(vec_instr));
528 ctx->allocated_vec.emplace(dst.id(), elems);
529 return dst;
530 }
531 }
532
533 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
534 {
535 if (ptr.size() == 2)
536 return ptr;
537 Builder bld(ctx->program, ctx->block);
538 if (ptr.type() == RegType::vgpr)
539 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
540 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
541 ptr, Operand((unsigned)ctx->options->address32_hi));
542 }
543
544 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
545 {
546 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
547 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
548 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
549 sop2->definitions[0] = Definition(dst);
550 if (writes_scc)
551 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
552 ctx->block->instructions.emplace_back(std::move(sop2));
553 }
554
555 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
556 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
557 {
558 Builder bld(ctx->program, ctx->block);
559 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
560 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
561 if (src1.type() == RegType::sgpr) {
562 if (commutative && src0.type() == RegType::vgpr) {
563 Temp t = src0;
564 src0 = src1;
565 src1 = t;
566 } else {
567 src1 = as_vgpr(ctx, src1);
568 }
569 }
570
571 if (flush_denorms && ctx->program->chip_class < GFX9) {
572 assert(dst.size() == 1);
573 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
574 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
575 } else {
576 bld.vop2(op, Definition(dst), src0, src1);
577 }
578 }
579
580 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
581 bool flush_denorms = false)
582 {
583 Temp src0 = get_alu_src(ctx, instr->src[0]);
584 Temp src1 = get_alu_src(ctx, instr->src[1]);
585 Temp src2 = get_alu_src(ctx, instr->src[2]);
586
587 /* ensure that the instruction has at most 1 sgpr operand
588 * The optimizer will inline constants for us */
589 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
590 src0 = as_vgpr(ctx, src0);
591 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
592 src1 = as_vgpr(ctx, src1);
593 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
594 src2 = as_vgpr(ctx, src2);
595
596 Builder bld(ctx->program, ctx->block);
597 if (flush_denorms && ctx->program->chip_class < GFX9) {
598 assert(dst.size() == 1);
599 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
600 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
601 } else {
602 bld.vop3(op, Definition(dst), src0, src1, src2);
603 }
604 }
605
606 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
607 {
608 Builder bld(ctx->program, ctx->block);
609 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
610 }
611
612 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
613 {
614 Temp src0 = get_alu_src(ctx, instr->src[0]);
615 Temp src1 = get_alu_src(ctx, instr->src[1]);
616 assert(src0.size() == src1.size());
617
618 aco_ptr<Instruction> vopc;
619 if (src1.type() == RegType::sgpr) {
620 if (src0.type() == RegType::vgpr) {
621 /* to swap the operands, we might also have to change the opcode */
622 switch (op) {
623 case aco_opcode::v_cmp_lt_f16:
624 op = aco_opcode::v_cmp_gt_f16;
625 break;
626 case aco_opcode::v_cmp_ge_f16:
627 op = aco_opcode::v_cmp_le_f16;
628 break;
629 case aco_opcode::v_cmp_lt_i16:
630 op = aco_opcode::v_cmp_gt_i16;
631 break;
632 case aco_opcode::v_cmp_ge_i16:
633 op = aco_opcode::v_cmp_le_i16;
634 break;
635 case aco_opcode::v_cmp_lt_u16:
636 op = aco_opcode::v_cmp_gt_u16;
637 break;
638 case aco_opcode::v_cmp_ge_u16:
639 op = aco_opcode::v_cmp_le_u16;
640 break;
641 case aco_opcode::v_cmp_lt_f32:
642 op = aco_opcode::v_cmp_gt_f32;
643 break;
644 case aco_opcode::v_cmp_ge_f32:
645 op = aco_opcode::v_cmp_le_f32;
646 break;
647 case aco_opcode::v_cmp_lt_i32:
648 op = aco_opcode::v_cmp_gt_i32;
649 break;
650 case aco_opcode::v_cmp_ge_i32:
651 op = aco_opcode::v_cmp_le_i32;
652 break;
653 case aco_opcode::v_cmp_lt_u32:
654 op = aco_opcode::v_cmp_gt_u32;
655 break;
656 case aco_opcode::v_cmp_ge_u32:
657 op = aco_opcode::v_cmp_le_u32;
658 break;
659 case aco_opcode::v_cmp_lt_f64:
660 op = aco_opcode::v_cmp_gt_f64;
661 break;
662 case aco_opcode::v_cmp_ge_f64:
663 op = aco_opcode::v_cmp_le_f64;
664 break;
665 case aco_opcode::v_cmp_lt_i64:
666 op = aco_opcode::v_cmp_gt_i64;
667 break;
668 case aco_opcode::v_cmp_ge_i64:
669 op = aco_opcode::v_cmp_le_i64;
670 break;
671 case aco_opcode::v_cmp_lt_u64:
672 op = aco_opcode::v_cmp_gt_u64;
673 break;
674 case aco_opcode::v_cmp_ge_u64:
675 op = aco_opcode::v_cmp_le_u64;
676 break;
677 default: /* eq and ne are commutative */
678 break;
679 }
680 Temp t = src0;
681 src0 = src1;
682 src1 = t;
683 } else {
684 src1 = as_vgpr(ctx, src1);
685 }
686 }
687
688 Builder bld(ctx->program, ctx->block);
689 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
690 }
691
692 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
693 {
694 Temp src0 = get_alu_src(ctx, instr->src[0]);
695 Temp src1 = get_alu_src(ctx, instr->src[1]);
696 Builder bld(ctx->program, ctx->block);
697
698 assert(dst.regClass() == bld.lm);
699 assert(src0.type() == RegType::sgpr);
700 assert(src1.type() == RegType::sgpr);
701 assert(src0.regClass() == src1.regClass());
702
703 /* Emit the SALU comparison instruction */
704 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
705 /* Turn the result into a per-lane bool */
706 bool_to_vector_condition(ctx, cmp, dst);
707 }
708
709 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
710 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
711 {
712 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
713 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
714 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
715 bool use_valu = s_op == aco_opcode::num_opcodes ||
716 divergent_vals ||
717 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
718 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
719 aco_opcode op = use_valu ? v_op : s_op;
720 assert(op != aco_opcode::num_opcodes);
721 assert(dst.regClass() == ctx->program->lane_mask);
722
723 if (use_valu)
724 emit_vopc_instruction(ctx, instr, op, dst);
725 else
726 emit_sopc_instruction(ctx, instr, op, dst);
727 }
728
729 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
730 {
731 Builder bld(ctx->program, ctx->block);
732 Temp src0 = get_alu_src(ctx, instr->src[0]);
733 Temp src1 = get_alu_src(ctx, instr->src[1]);
734
735 assert(dst.regClass() == bld.lm);
736 assert(src0.regClass() == bld.lm);
737 assert(src1.regClass() == bld.lm);
738
739 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
740 }
741
742 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
743 {
744 Builder bld(ctx->program, ctx->block);
745 Temp cond = get_alu_src(ctx, instr->src[0]);
746 Temp then = get_alu_src(ctx, instr->src[1]);
747 Temp els = get_alu_src(ctx, instr->src[2]);
748
749 assert(cond.regClass() == bld.lm);
750
751 if (dst.type() == RegType::vgpr) {
752 aco_ptr<Instruction> bcsel;
753 if (dst.regClass() == v2b) {
754 then = as_vgpr(ctx, then);
755 els = as_vgpr(ctx, els);
756
757 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), els, then, cond);
758 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
759 } else if (dst.regClass() == v1) {
760 then = as_vgpr(ctx, then);
761 els = as_vgpr(ctx, els);
762
763 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
764 } else if (dst.regClass() == v2) {
765 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
766 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
767 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
768 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
769
770 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
771 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
772
773 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
774 } else {
775 fprintf(stderr, "Unimplemented NIR instr bit size: ");
776 nir_print_instr(&instr->instr, stderr);
777 fprintf(stderr, "\n");
778 }
779 return;
780 }
781
782 if (instr->dest.dest.ssa.bit_size == 1) {
783 assert(dst.regClass() == bld.lm);
784 assert(then.regClass() == bld.lm);
785 assert(els.regClass() == bld.lm);
786 }
787
788 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
789 if (dst.regClass() == s1 || dst.regClass() == s2) {
790 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
791 assert(dst.size() == then.size());
792 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
793 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
794 } else {
795 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
796 nir_print_instr(&instr->instr, stderr);
797 fprintf(stderr, "\n");
798 }
799 return;
800 }
801
802 /* divergent boolean bcsel
803 * this implements bcsel on bools: dst = s0 ? s1 : s2
804 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
805 assert(instr->dest.dest.ssa.bit_size == 1);
806
807 if (cond.id() != then.id())
808 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
809
810 if (cond.id() == els.id())
811 bld.sop1(Builder::s_mov, Definition(dst), then);
812 else
813 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
814 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
815 }
816
817 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
818 aco_opcode op, uint32_t undo)
819 {
820 /* multiply by 16777216 to handle denormals */
821 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
822 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
823 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
824 scaled = bld.vop1(op, bld.def(v1), scaled);
825 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
826
827 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
828
829 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
830 }
831
832 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
833 {
834 if (ctx->block->fp_mode.denorm32 == 0) {
835 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
836 return;
837 }
838
839 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
840 }
841
842 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
843 {
844 if (ctx->block->fp_mode.denorm32 == 0) {
845 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
846 return;
847 }
848
849 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
850 }
851
852 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
853 {
854 if (ctx->block->fp_mode.denorm32 == 0) {
855 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
856 return;
857 }
858
859 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
860 }
861
862 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
863 {
864 if (ctx->block->fp_mode.denorm32 == 0) {
865 bld.vop1(aco_opcode::v_log_f32, dst, val);
866 return;
867 }
868
869 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
870 }
871
872 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
873 {
874 if (ctx->options->chip_class >= GFX7)
875 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
876
877 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
878 /* TODO: create more efficient code! */
879 if (val.type() == RegType::sgpr)
880 val = as_vgpr(ctx, val);
881
882 /* Split the input value. */
883 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
884 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
885
886 /* Extract the exponent and compute the unbiased value. */
887 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
888
889 /* Extract the fractional part. */
890 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
891 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
892
893 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
894 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
895
896 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
897 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
898 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
899 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
900 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
901
902 /* Get the sign bit. */
903 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
904
905 /* Decide the operation to apply depending on the unbiased exponent. */
906 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
907 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
908 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
909 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
910 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
911 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
912
913 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
914 }
915
916 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
917 {
918 if (ctx->options->chip_class >= GFX7)
919 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
920
921 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
922 Temp src0 = as_vgpr(ctx, val);
923
924 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
925 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
926
927 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
928 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
929 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
930
931 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
932 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
933 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
934 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
935
936 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
937 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
938
939 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
940
941 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
942 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
943
944 return add->definitions[0].getTemp();
945 }
946
947 Temp convert_int(Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
948 if (!dst.id()) {
949 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
950 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
951 else
952 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
953 }
954
955 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
956 return bld.copy(Definition(dst), src);
957 else if (dst.bytes() < src.bytes())
958 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
959
960 Temp tmp = dst;
961 if (dst_bits == 64)
962 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
963
964 if (tmp == src) {
965 } else if (src.regClass() == s1) {
966 if (is_signed)
967 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
968 else
969 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
970 } else {
971 assert(src_bits != 8 || src.regClass() == v1b);
972 assert(src_bits != 16 || src.regClass() == v2b);
973 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
974 sdwa->operands[0] = Operand(src);
975 sdwa->definitions[0] = Definition(tmp);
976 if (is_signed)
977 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
978 else
979 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
980 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
981 bld.insert(std::move(sdwa));
982 }
983
984 if (dst_bits == 64) {
985 if (is_signed && dst.regClass() == s2) {
986 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
987 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
988 } else if (is_signed && dst.regClass() == v2) {
989 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
990 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
991 } else {
992 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
993 }
994 }
995
996 return dst;
997 }
998
999 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1000 {
1001 if (!instr->dest.dest.is_ssa) {
1002 fprintf(stderr, "nir alu dst not in ssa: ");
1003 nir_print_instr(&instr->instr, stderr);
1004 fprintf(stderr, "\n");
1005 abort();
1006 }
1007 Builder bld(ctx->program, ctx->block);
1008 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1009 switch(instr->op) {
1010 case nir_op_vec2:
1011 case nir_op_vec3:
1012 case nir_op_vec4: {
1013 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1014 unsigned num = instr->dest.dest.ssa.num_components;
1015 for (unsigned i = 0; i < num; ++i)
1016 elems[i] = get_alu_src(ctx, instr->src[i]);
1017
1018 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1019 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1020 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1021 for (unsigned i = 0; i < num; ++i) {
1022 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1023 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1024 else
1025 vec->operands[i] = Operand{elems[i]};
1026 }
1027 vec->definitions[0] = Definition(dst);
1028 ctx->block->instructions.emplace_back(std::move(vec));
1029 ctx->allocated_vec.emplace(dst.id(), elems);
1030 } else {
1031 // TODO: that is a bit suboptimal..
1032 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1033 for (unsigned i = 0; i < num - 1; ++i)
1034 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1035 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1036 for (unsigned i = 0; i < num; ++i) {
1037 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1038 if (bit % 32 == 0) {
1039 elems[bit / 32] = elems[i];
1040 } else {
1041 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1042 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1043 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1044 }
1045 }
1046 if (dst.size() == 1)
1047 bld.copy(Definition(dst), elems[0]);
1048 else
1049 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1050 }
1051 break;
1052 }
1053 case nir_op_mov: {
1054 Temp src = get_alu_src(ctx, instr->src[0]);
1055 aco_ptr<Instruction> mov;
1056 if (dst.type() == RegType::sgpr) {
1057 if (src.type() == RegType::vgpr)
1058 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1059 else if (src.regClass() == s1)
1060 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1061 else if (src.regClass() == s2)
1062 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1063 else
1064 unreachable("wrong src register class for nir_op_imov");
1065 } else if (dst.regClass() == v1) {
1066 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1067 } else if (dst.regClass() == v2) {
1068 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1069 } else {
1070 nir_print_instr(&instr->instr, stderr);
1071 unreachable("Should have been lowered to scalar.");
1072 }
1073 break;
1074 }
1075 case nir_op_inot: {
1076 Temp src = get_alu_src(ctx, instr->src[0]);
1077 if (instr->dest.dest.ssa.bit_size == 1) {
1078 assert(src.regClass() == bld.lm);
1079 assert(dst.regClass() == bld.lm);
1080 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1081 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1082 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1083 } else if (dst.regClass() == v1) {
1084 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1085 } else if (dst.type() == RegType::sgpr) {
1086 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1087 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ineg: {
1096 Temp src = get_alu_src(ctx, instr->src[0]);
1097 if (dst.regClass() == v1) {
1098 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1099 } else if (dst.regClass() == s1) {
1100 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1101 } else if (dst.size() == 2) {
1102 Temp src0 = bld.tmp(dst.type(), 1);
1103 Temp src1 = bld.tmp(dst.type(), 1);
1104 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1105
1106 if (dst.regClass() == s2) {
1107 Temp carry = bld.tmp(s1);
1108 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1109 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1110 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1111 } else {
1112 Temp lower = bld.tmp(v1);
1113 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1114 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1116 }
1117 } else {
1118 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1119 nir_print_instr(&instr->instr, stderr);
1120 fprintf(stderr, "\n");
1121 }
1122 break;
1123 }
1124 case nir_op_iabs: {
1125 if (dst.regClass() == s1) {
1126 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1127 } else if (dst.regClass() == v1) {
1128 Temp src = get_alu_src(ctx, instr->src[0]);
1129 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1130 } else {
1131 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1132 nir_print_instr(&instr->instr, stderr);
1133 fprintf(stderr, "\n");
1134 }
1135 break;
1136 }
1137 case nir_op_isign: {
1138 Temp src = get_alu_src(ctx, instr->src[0]);
1139 if (dst.regClass() == s1) {
1140 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1141 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1142 } else if (dst.regClass() == s2) {
1143 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1144 Temp neqz;
1145 if (ctx->program->chip_class >= GFX8)
1146 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1147 else
1148 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1149 /* SCC gets zero-extended to 64 bit */
1150 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1151 } else if (dst.regClass() == v1) {
1152 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1153 } else if (dst.regClass() == v2) {
1154 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1155 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1156 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1157 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1158 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1159 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1160 } else {
1161 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1162 nir_print_instr(&instr->instr, stderr);
1163 fprintf(stderr, "\n");
1164 }
1165 break;
1166 }
1167 case nir_op_imax: {
1168 if (dst.regClass() == v1) {
1169 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1170 } else if (dst.regClass() == s1) {
1171 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1172 } else {
1173 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1174 nir_print_instr(&instr->instr, stderr);
1175 fprintf(stderr, "\n");
1176 }
1177 break;
1178 }
1179 case nir_op_umax: {
1180 if (dst.regClass() == v1) {
1181 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1182 } else if (dst.regClass() == s1) {
1183 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1184 } else {
1185 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1186 nir_print_instr(&instr->instr, stderr);
1187 fprintf(stderr, "\n");
1188 }
1189 break;
1190 }
1191 case nir_op_imin: {
1192 if (dst.regClass() == v1) {
1193 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1194 } else if (dst.regClass() == s1) {
1195 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1196 } else {
1197 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1198 nir_print_instr(&instr->instr, stderr);
1199 fprintf(stderr, "\n");
1200 }
1201 break;
1202 }
1203 case nir_op_umin: {
1204 if (dst.regClass() == v1) {
1205 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1206 } else if (dst.regClass() == s1) {
1207 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1208 } else {
1209 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1210 nir_print_instr(&instr->instr, stderr);
1211 fprintf(stderr, "\n");
1212 }
1213 break;
1214 }
1215 case nir_op_ior: {
1216 if (instr->dest.dest.ssa.bit_size == 1) {
1217 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1218 } else if (dst.regClass() == v1) {
1219 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1220 } else if (dst.regClass() == s1) {
1221 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1222 } else if (dst.regClass() == s2) {
1223 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1224 } else {
1225 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1226 nir_print_instr(&instr->instr, stderr);
1227 fprintf(stderr, "\n");
1228 }
1229 break;
1230 }
1231 case nir_op_iand: {
1232 if (instr->dest.dest.ssa.bit_size == 1) {
1233 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1234 } else if (dst.regClass() == v1) {
1235 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1236 } else if (dst.regClass() == s1) {
1237 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1238 } else if (dst.regClass() == s2) {
1239 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1240 } else {
1241 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1242 nir_print_instr(&instr->instr, stderr);
1243 fprintf(stderr, "\n");
1244 }
1245 break;
1246 }
1247 case nir_op_ixor: {
1248 if (instr->dest.dest.ssa.bit_size == 1) {
1249 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1250 } else if (dst.regClass() == v1) {
1251 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1252 } else if (dst.regClass() == s1) {
1253 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1254 } else if (dst.regClass() == s2) {
1255 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1256 } else {
1257 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1258 nir_print_instr(&instr->instr, stderr);
1259 fprintf(stderr, "\n");
1260 }
1261 break;
1262 }
1263 case nir_op_ushr: {
1264 if (dst.regClass() == v1) {
1265 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1266 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1267 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1268 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1269 } else if (dst.regClass() == v2) {
1270 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1271 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1272 } else if (dst.regClass() == s2) {
1273 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1274 } else if (dst.regClass() == s1) {
1275 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1276 } else {
1277 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1278 nir_print_instr(&instr->instr, stderr);
1279 fprintf(stderr, "\n");
1280 }
1281 break;
1282 }
1283 case nir_op_ishl: {
1284 if (dst.regClass() == v1) {
1285 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1286 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1287 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1288 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1289 } else if (dst.regClass() == v2) {
1290 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1291 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1292 } else if (dst.regClass() == s1) {
1293 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1294 } else if (dst.regClass() == s2) {
1295 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1296 } else {
1297 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1298 nir_print_instr(&instr->instr, stderr);
1299 fprintf(stderr, "\n");
1300 }
1301 break;
1302 }
1303 case nir_op_ishr: {
1304 if (dst.regClass() == v1) {
1305 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1306 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1307 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1308 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1309 } else if (dst.regClass() == v2) {
1310 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1311 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1312 } else if (dst.regClass() == s1) {
1313 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1314 } else if (dst.regClass() == s2) {
1315 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1316 } else {
1317 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1318 nir_print_instr(&instr->instr, stderr);
1319 fprintf(stderr, "\n");
1320 }
1321 break;
1322 }
1323 case nir_op_find_lsb: {
1324 Temp src = get_alu_src(ctx, instr->src[0]);
1325 if (src.regClass() == s1) {
1326 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1327 } else if (src.regClass() == v1) {
1328 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1329 } else if (src.regClass() == s2) {
1330 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1331 } else {
1332 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1333 nir_print_instr(&instr->instr, stderr);
1334 fprintf(stderr, "\n");
1335 }
1336 break;
1337 }
1338 case nir_op_ufind_msb:
1339 case nir_op_ifind_msb: {
1340 Temp src = get_alu_src(ctx, instr->src[0]);
1341 if (src.regClass() == s1 || src.regClass() == s2) {
1342 aco_opcode op = src.regClass() == s2 ?
1343 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1344 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1345 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1346
1347 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1348 Operand(src.size() * 32u - 1u), msb_rev);
1349 Temp msb = sub.def(0).getTemp();
1350 Temp carry = sub.def(1).getTemp();
1351
1352 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1353 } else if (src.regClass() == v1) {
1354 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1355 Temp msb_rev = bld.tmp(v1);
1356 emit_vop1_instruction(ctx, instr, op, msb_rev);
1357 Temp msb = bld.tmp(v1);
1358 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1359 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1360 } else {
1361 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1362 nir_print_instr(&instr->instr, stderr);
1363 fprintf(stderr, "\n");
1364 }
1365 break;
1366 }
1367 case nir_op_bitfield_reverse: {
1368 if (dst.regClass() == s1) {
1369 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1370 } else if (dst.regClass() == v1) {
1371 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1372 } else {
1373 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1374 nir_print_instr(&instr->instr, stderr);
1375 fprintf(stderr, "\n");
1376 }
1377 break;
1378 }
1379 case nir_op_iadd: {
1380 if (dst.regClass() == s1) {
1381 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1382 break;
1383 }
1384
1385 Temp src0 = get_alu_src(ctx, instr->src[0]);
1386 Temp src1 = get_alu_src(ctx, instr->src[1]);
1387 if (dst.regClass() == v1) {
1388 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1389 break;
1390 }
1391
1392 assert(src0.size() == 2 && src1.size() == 2);
1393 Temp src00 = bld.tmp(src0.type(), 1);
1394 Temp src01 = bld.tmp(dst.type(), 1);
1395 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1396 Temp src10 = bld.tmp(src1.type(), 1);
1397 Temp src11 = bld.tmp(dst.type(), 1);
1398 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1399
1400 if (dst.regClass() == s2) {
1401 Temp carry = bld.tmp(s1);
1402 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1403 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1405 } else if (dst.regClass() == v2) {
1406 Temp dst0 = bld.tmp(v1);
1407 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1408 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1409 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1410 } else {
1411 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1412 nir_print_instr(&instr->instr, stderr);
1413 fprintf(stderr, "\n");
1414 }
1415 break;
1416 }
1417 case nir_op_uadd_sat: {
1418 Temp src0 = get_alu_src(ctx, instr->src[0]);
1419 Temp src1 = get_alu_src(ctx, instr->src[1]);
1420 if (dst.regClass() == s1) {
1421 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1422 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1423 src0, src1);
1424 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1425 } else if (dst.regClass() == v1) {
1426 if (ctx->options->chip_class >= GFX9) {
1427 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1428 add->operands[0] = Operand(src0);
1429 add->operands[1] = Operand(src1);
1430 add->definitions[0] = Definition(dst);
1431 add->clamp = 1;
1432 ctx->block->instructions.emplace_back(std::move(add));
1433 } else {
1434 if (src1.regClass() != v1)
1435 std::swap(src0, src1);
1436 assert(src1.regClass() == v1);
1437 Temp tmp = bld.tmp(v1);
1438 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1439 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1440 }
1441 } else {
1442 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1443 nir_print_instr(&instr->instr, stderr);
1444 fprintf(stderr, "\n");
1445 }
1446 break;
1447 }
1448 case nir_op_uadd_carry: {
1449 Temp src0 = get_alu_src(ctx, instr->src[0]);
1450 Temp src1 = get_alu_src(ctx, instr->src[1]);
1451 if (dst.regClass() == s1) {
1452 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1453 break;
1454 }
1455 if (dst.regClass() == v1) {
1456 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1457 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1458 break;
1459 }
1460
1461 Temp src00 = bld.tmp(src0.type(), 1);
1462 Temp src01 = bld.tmp(dst.type(), 1);
1463 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1464 Temp src10 = bld.tmp(src1.type(), 1);
1465 Temp src11 = bld.tmp(dst.type(), 1);
1466 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1467 if (dst.regClass() == s2) {
1468 Temp carry = bld.tmp(s1);
1469 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1470 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1471 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1472 } else if (dst.regClass() == v2) {
1473 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1474 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1475 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1476 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1477 } else {
1478 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1479 nir_print_instr(&instr->instr, stderr);
1480 fprintf(stderr, "\n");
1481 }
1482 break;
1483 }
1484 case nir_op_isub: {
1485 if (dst.regClass() == s1) {
1486 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1487 break;
1488 }
1489
1490 Temp src0 = get_alu_src(ctx, instr->src[0]);
1491 Temp src1 = get_alu_src(ctx, instr->src[1]);
1492 if (dst.regClass() == v1) {
1493 bld.vsub32(Definition(dst), src0, src1);
1494 break;
1495 }
1496
1497 Temp src00 = bld.tmp(src0.type(), 1);
1498 Temp src01 = bld.tmp(dst.type(), 1);
1499 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1500 Temp src10 = bld.tmp(src1.type(), 1);
1501 Temp src11 = bld.tmp(dst.type(), 1);
1502 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1503 if (dst.regClass() == s2) {
1504 Temp carry = bld.tmp(s1);
1505 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1506 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1507 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1508 } else if (dst.regClass() == v2) {
1509 Temp lower = bld.tmp(v1);
1510 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1511 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1512 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1513 } else {
1514 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1515 nir_print_instr(&instr->instr, stderr);
1516 fprintf(stderr, "\n");
1517 }
1518 break;
1519 }
1520 case nir_op_usub_borrow: {
1521 Temp src0 = get_alu_src(ctx, instr->src[0]);
1522 Temp src1 = get_alu_src(ctx, instr->src[1]);
1523 if (dst.regClass() == s1) {
1524 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1525 break;
1526 } else if (dst.regClass() == v1) {
1527 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1528 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1529 break;
1530 }
1531
1532 Temp src00 = bld.tmp(src0.type(), 1);
1533 Temp src01 = bld.tmp(dst.type(), 1);
1534 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1535 Temp src10 = bld.tmp(src1.type(), 1);
1536 Temp src11 = bld.tmp(dst.type(), 1);
1537 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1538 if (dst.regClass() == s2) {
1539 Temp borrow = bld.tmp(s1);
1540 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1541 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1542 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1543 } else if (dst.regClass() == v2) {
1544 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1545 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1546 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1547 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1548 } else {
1549 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1550 nir_print_instr(&instr->instr, stderr);
1551 fprintf(stderr, "\n");
1552 }
1553 break;
1554 }
1555 case nir_op_imul: {
1556 if (dst.regClass() == v1) {
1557 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1558 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1559 } else if (dst.regClass() == s1) {
1560 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1561 } else {
1562 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1563 nir_print_instr(&instr->instr, stderr);
1564 fprintf(stderr, "\n");
1565 }
1566 break;
1567 }
1568 case nir_op_umul_high: {
1569 if (dst.regClass() == v1) {
1570 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1571 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1572 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1573 } else if (dst.regClass() == s1) {
1574 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1575 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1576 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1577 } else {
1578 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1579 nir_print_instr(&instr->instr, stderr);
1580 fprintf(stderr, "\n");
1581 }
1582 break;
1583 }
1584 case nir_op_imul_high: {
1585 if (dst.regClass() == v1) {
1586 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1587 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1588 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1589 } else if (dst.regClass() == s1) {
1590 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1591 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1592 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1593 } else {
1594 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1595 nir_print_instr(&instr->instr, stderr);
1596 fprintf(stderr, "\n");
1597 }
1598 break;
1599 }
1600 case nir_op_fmul: {
1601 Temp src0 = get_alu_src(ctx, instr->src[0]);
1602 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1603 if (dst.regClass() == v2b) {
1604 Temp tmp = bld.tmp(v1);
1605 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, tmp, true);
1606 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1607 } else if (dst.regClass() == v1) {
1608 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1609 } else if (dst.regClass() == v2) {
1610 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1611 } else {
1612 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1613 nir_print_instr(&instr->instr, stderr);
1614 fprintf(stderr, "\n");
1615 }
1616 break;
1617 }
1618 case nir_op_fadd: {
1619 Temp src0 = get_alu_src(ctx, instr->src[0]);
1620 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1621 if (dst.regClass() == v2b) {
1622 Temp tmp = bld.tmp(v1);
1623 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, tmp, true);
1624 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1625 } else if (dst.regClass() == v1) {
1626 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1627 } else if (dst.regClass() == v2) {
1628 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1629 } else {
1630 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1631 nir_print_instr(&instr->instr, stderr);
1632 fprintf(stderr, "\n");
1633 }
1634 break;
1635 }
1636 case nir_op_fsub: {
1637 Temp src0 = get_alu_src(ctx, instr->src[0]);
1638 Temp src1 = get_alu_src(ctx, instr->src[1]);
1639 if (dst.regClass() == v2b) {
1640 Temp tmp = bld.tmp(v1);
1641 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1642 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, tmp, false);
1643 else
1644 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, tmp, true);
1645 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1646 } else if (dst.regClass() == v1) {
1647 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1648 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1649 else
1650 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1651 } else if (dst.regClass() == v2) {
1652 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1653 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1654 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1655 sub->neg[1] = true;
1656 } else {
1657 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1658 nir_print_instr(&instr->instr, stderr);
1659 fprintf(stderr, "\n");
1660 }
1661 break;
1662 }
1663 case nir_op_fmax: {
1664 Temp src0 = get_alu_src(ctx, instr->src[0]);
1665 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1666 if (dst.regClass() == v2b) {
1667 // TODO: check fp_mode.must_flush_denorms16_64
1668 Temp tmp = bld.tmp(v1);
1669 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1670 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1671 } else if (dst.regClass() == v1) {
1672 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1673 } else if (dst.regClass() == v2) {
1674 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1675 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1676 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1677 } else {
1678 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1679 }
1680 } else {
1681 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1682 nir_print_instr(&instr->instr, stderr);
1683 fprintf(stderr, "\n");
1684 }
1685 break;
1686 }
1687 case nir_op_fmin: {
1688 Temp src0 = get_alu_src(ctx, instr->src[0]);
1689 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1690 if (dst.regClass() == v2b) {
1691 // TODO: check fp_mode.must_flush_denorms16_64
1692 Temp tmp = bld.tmp(v1);
1693 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1694 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1695 } else if (dst.regClass() == v1) {
1696 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1697 } else if (dst.regClass() == v2) {
1698 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1699 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1700 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1701 } else {
1702 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1703 }
1704 } else {
1705 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1706 nir_print_instr(&instr->instr, stderr);
1707 fprintf(stderr, "\n");
1708 }
1709 break;
1710 }
1711 case nir_op_fmax3: {
1712 if (dst.regClass() == v2b) {
1713 Temp tmp = bld.tmp(v1);
1714 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, tmp, false);
1715 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1716 } else if (dst.regClass() == v1) {
1717 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1718 } else {
1719 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1720 nir_print_instr(&instr->instr, stderr);
1721 fprintf(stderr, "\n");
1722 }
1723 break;
1724 }
1725 case nir_op_fmin3: {
1726 if (dst.regClass() == v2b) {
1727 Temp tmp = bld.tmp(v1);
1728 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, tmp, false);
1729 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1730 } else if (dst.regClass() == v1) {
1731 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1732 } else {
1733 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1734 nir_print_instr(&instr->instr, stderr);
1735 fprintf(stderr, "\n");
1736 }
1737 break;
1738 }
1739 case nir_op_fmed3: {
1740 if (dst.regClass() == v2b) {
1741 Temp tmp = bld.tmp(v1);
1742 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, tmp, false);
1743 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1744 } else if (dst.regClass() == v1) {
1745 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1746 } else {
1747 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1748 nir_print_instr(&instr->instr, stderr);
1749 fprintf(stderr, "\n");
1750 }
1751 break;
1752 }
1753 case nir_op_umax3: {
1754 if (dst.size() == 1) {
1755 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_umin3: {
1764 if (dst.size() == 1) {
1765 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1766 } else {
1767 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1768 nir_print_instr(&instr->instr, stderr);
1769 fprintf(stderr, "\n");
1770 }
1771 break;
1772 }
1773 case nir_op_umed3: {
1774 if (dst.size() == 1) {
1775 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1776 } else {
1777 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1778 nir_print_instr(&instr->instr, stderr);
1779 fprintf(stderr, "\n");
1780 }
1781 break;
1782 }
1783 case nir_op_imax3: {
1784 if (dst.size() == 1) {
1785 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1786 } else {
1787 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1788 nir_print_instr(&instr->instr, stderr);
1789 fprintf(stderr, "\n");
1790 }
1791 break;
1792 }
1793 case nir_op_imin3: {
1794 if (dst.size() == 1) {
1795 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1796 } else {
1797 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1798 nir_print_instr(&instr->instr, stderr);
1799 fprintf(stderr, "\n");
1800 }
1801 break;
1802 }
1803 case nir_op_imed3: {
1804 if (dst.size() == 1) {
1805 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1806 } else {
1807 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1808 nir_print_instr(&instr->instr, stderr);
1809 fprintf(stderr, "\n");
1810 }
1811 break;
1812 }
1813 case nir_op_cube_face_coord: {
1814 Temp in = get_alu_src(ctx, instr->src[0], 3);
1815 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1816 emit_extract_vector(ctx, in, 1, v1),
1817 emit_extract_vector(ctx, in, 2, v1) };
1818 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1819 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1820 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1821 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1822 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1823 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1824 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1825 break;
1826 }
1827 case nir_op_cube_face_index: {
1828 Temp in = get_alu_src(ctx, instr->src[0], 3);
1829 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1830 emit_extract_vector(ctx, in, 1, v1),
1831 emit_extract_vector(ctx, in, 2, v1) };
1832 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1833 break;
1834 }
1835 case nir_op_bcsel: {
1836 emit_bcsel(ctx, instr, dst);
1837 break;
1838 }
1839 case nir_op_frsq: {
1840 Temp src = get_alu_src(ctx, instr->src[0]);
1841 if (dst.regClass() == v2b) {
1842 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1843 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1844 } else if (dst.regClass() == v1) {
1845 emit_rsq(ctx, bld, Definition(dst), src);
1846 } else if (dst.regClass() == v2) {
1847 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1848 } else {
1849 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1850 nir_print_instr(&instr->instr, stderr);
1851 fprintf(stderr, "\n");
1852 }
1853 break;
1854 }
1855 case nir_op_fneg: {
1856 Temp src = get_alu_src(ctx, instr->src[0]);
1857 if (dst.regClass() == v2b) {
1858 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1859 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1860 } else if (dst.regClass() == v1) {
1861 if (ctx->block->fp_mode.must_flush_denorms32)
1862 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1863 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1864 } else if (dst.regClass() == v2) {
1865 if (ctx->block->fp_mode.must_flush_denorms16_64)
1866 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1867 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1868 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1869 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1870 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1871 } else {
1872 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1873 nir_print_instr(&instr->instr, stderr);
1874 fprintf(stderr, "\n");
1875 }
1876 break;
1877 }
1878 case nir_op_fabs: {
1879 Temp src = get_alu_src(ctx, instr->src[0]);
1880 if (dst.regClass() == v2b) {
1881 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1882 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1883 } else if (dst.regClass() == v1) {
1884 if (ctx->block->fp_mode.must_flush_denorms32)
1885 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1886 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1887 } else if (dst.regClass() == v2) {
1888 if (ctx->block->fp_mode.must_flush_denorms16_64)
1889 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1890 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1891 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1892 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1893 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1894 } else {
1895 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1896 nir_print_instr(&instr->instr, stderr);
1897 fprintf(stderr, "\n");
1898 }
1899 break;
1900 }
1901 case nir_op_fsat: {
1902 Temp src = get_alu_src(ctx, instr->src[0]);
1903 if (dst.regClass() == v2b) {
1904 Temp tmp = bld.vop3(aco_opcode::v_med3_f16, bld.def(v1), Operand(0u), Operand(0x3f800000u), src);
1905 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1906 } else if (dst.regClass() == v1) {
1907 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1908 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1909 // TODO: confirm that this holds under any circumstances
1910 } else if (dst.regClass() == v2) {
1911 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1912 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1913 vop3->clamp = true;
1914 } else {
1915 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1916 nir_print_instr(&instr->instr, stderr);
1917 fprintf(stderr, "\n");
1918 }
1919 break;
1920 }
1921 case nir_op_flog2: {
1922 Temp src = get_alu_src(ctx, instr->src[0]);
1923 if (dst.regClass() == v2b) {
1924 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1925 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1926 } else if (dst.regClass() == v1) {
1927 emit_log2(ctx, bld, Definition(dst), src);
1928 } else {
1929 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1930 nir_print_instr(&instr->instr, stderr);
1931 fprintf(stderr, "\n");
1932 }
1933 break;
1934 }
1935 case nir_op_frcp: {
1936 Temp src = get_alu_src(ctx, instr->src[0]);
1937 if (dst.regClass() == v2b) {
1938 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1939 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1940 } else if (dst.regClass() == v1) {
1941 emit_rcp(ctx, bld, Definition(dst), src);
1942 } else if (dst.regClass() == v2) {
1943 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1944 } else {
1945 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1946 nir_print_instr(&instr->instr, stderr);
1947 fprintf(stderr, "\n");
1948 }
1949 break;
1950 }
1951 case nir_op_fexp2: {
1952 if (dst.regClass() == v2b) {
1953 Temp src = get_alu_src(ctx, instr->src[0]);
1954 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1955 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1956 } else if (dst.regClass() == v1) {
1957 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1958 } else {
1959 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1960 nir_print_instr(&instr->instr, stderr);
1961 fprintf(stderr, "\n");
1962 }
1963 break;
1964 }
1965 case nir_op_fsqrt: {
1966 Temp src = get_alu_src(ctx, instr->src[0]);
1967 if (dst.regClass() == v2b) {
1968 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1969 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1970 } else if (dst.regClass() == v1) {
1971 emit_sqrt(ctx, bld, Definition(dst), src);
1972 } else if (dst.regClass() == v2) {
1973 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1974 } else {
1975 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1976 nir_print_instr(&instr->instr, stderr);
1977 fprintf(stderr, "\n");
1978 }
1979 break;
1980 }
1981 case nir_op_ffract: {
1982 if (dst.regClass() == v2b) {
1983 Temp src = get_alu_src(ctx, instr->src[0]);
1984 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1985 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1986 } else if (dst.regClass() == v1) {
1987 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1988 } else if (dst.regClass() == v2) {
1989 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1990 } else {
1991 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1992 nir_print_instr(&instr->instr, stderr);
1993 fprintf(stderr, "\n");
1994 }
1995 break;
1996 }
1997 case nir_op_ffloor: {
1998 Temp src = get_alu_src(ctx, instr->src[0]);
1999 if (dst.regClass() == v2b) {
2000 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
2001 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2002 } else if (dst.regClass() == v1) {
2003 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
2004 } else if (dst.regClass() == v2) {
2005 emit_floor_f64(ctx, bld, Definition(dst), src);
2006 } else {
2007 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2008 nir_print_instr(&instr->instr, stderr);
2009 fprintf(stderr, "\n");
2010 }
2011 break;
2012 }
2013 case nir_op_fceil: {
2014 Temp src0 = get_alu_src(ctx, instr->src[0]);
2015 if (dst.regClass() == v2b) {
2016 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
2017 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2018 } else if (dst.regClass() == v1) {
2019 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2020 } else if (dst.regClass() == v2) {
2021 if (ctx->options->chip_class >= GFX7) {
2022 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2023 } else {
2024 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2025 /* trunc = trunc(src0)
2026 * if (src0 > 0.0 && src0 != trunc)
2027 * trunc += 1.0
2028 */
2029 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2030 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2031 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2032 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2033 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2034 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2035 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2036 }
2037 } else {
2038 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2039 nir_print_instr(&instr->instr, stderr);
2040 fprintf(stderr, "\n");
2041 }
2042 break;
2043 }
2044 case nir_op_ftrunc: {
2045 Temp src = get_alu_src(ctx, instr->src[0]);
2046 if (dst.regClass() == v2b) {
2047 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
2048 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2049 } else if (dst.regClass() == v1) {
2050 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2051 } else if (dst.regClass() == v2) {
2052 emit_trunc_f64(ctx, bld, Definition(dst), src);
2053 } else {
2054 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2055 nir_print_instr(&instr->instr, stderr);
2056 fprintf(stderr, "\n");
2057 }
2058 break;
2059 }
2060 case nir_op_fround_even: {
2061 Temp src0 = get_alu_src(ctx, instr->src[0]);
2062 if (dst.regClass() == v2b) {
2063 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2065 } else if (dst.regClass() == v1) {
2066 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2067 } else if (dst.regClass() == v2) {
2068 if (ctx->options->chip_class >= GFX7) {
2069 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2070 } else {
2071 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2072 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2073 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2074
2075 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2076 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2077 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2078 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2079 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2080 tmp = sub->definitions[0].getTemp();
2081
2082 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2083 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2084 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2085 Temp cond = vop3->definitions[0].getTemp();
2086
2087 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2088 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2089 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2090 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2091
2092 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2093 }
2094 } else {
2095 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2096 nir_print_instr(&instr->instr, stderr);
2097 fprintf(stderr, "\n");
2098 }
2099 break;
2100 }
2101 case nir_op_fsin:
2102 case nir_op_fcos: {
2103 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2104 aco_ptr<Instruction> norm;
2105 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2106 if (dst.regClass() == v2b) {
2107 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2108 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2109 tmp = bld.vop1(opcode, bld.def(v1), tmp);
2110 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2111 } else if (dst.regClass() == v1) {
2112 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2113
2114 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2115 if (ctx->options->chip_class < GFX9)
2116 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2117
2118 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2119 bld.vop1(opcode, Definition(dst), tmp);
2120 } else {
2121 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2122 nir_print_instr(&instr->instr, stderr);
2123 fprintf(stderr, "\n");
2124 }
2125 break;
2126 }
2127 case nir_op_ldexp: {
2128 Temp src0 = get_alu_src(ctx, instr->src[0]);
2129 Temp src1 = get_alu_src(ctx, instr->src[1]);
2130 if (dst.regClass() == v2b) {
2131 Temp tmp = bld.tmp(v1);
2132 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, tmp, false);
2133 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2134 } else if (dst.regClass() == v1) {
2135 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2136 } else if (dst.regClass() == v2) {
2137 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2138 } else {
2139 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2140 nir_print_instr(&instr->instr, stderr);
2141 fprintf(stderr, "\n");
2142 }
2143 break;
2144 }
2145 case nir_op_frexp_sig: {
2146 Temp src = get_alu_src(ctx, instr->src[0]);
2147 if (dst.regClass() == v2b) {
2148 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2149 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2150 } else if (dst.regClass() == v1) {
2151 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2152 } else if (dst.regClass() == v2) {
2153 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2154 } else {
2155 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2156 nir_print_instr(&instr->instr, stderr);
2157 fprintf(stderr, "\n");
2158 }
2159 break;
2160 }
2161 case nir_op_frexp_exp: {
2162 Temp src = get_alu_src(ctx, instr->src[0]);
2163 if (instr->src[0].src.ssa->bit_size == 16) {
2164 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2165 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2166 convert_int(bld, tmp, 8, 32, true, dst);
2167 } else if (instr->src[0].src.ssa->bit_size == 32) {
2168 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2169 } else if (instr->src[0].src.ssa->bit_size == 64) {
2170 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2171 } else {
2172 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2173 nir_print_instr(&instr->instr, stderr);
2174 fprintf(stderr, "\n");
2175 }
2176 break;
2177 }
2178 case nir_op_fsign: {
2179 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2180 if (dst.regClass() == v2b) {
2181 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2182 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2183 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2184 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2185 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2186 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), minus_one, src, cond);
2187 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2188 } else if (dst.regClass() == v1) {
2189 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2190 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2191 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2192 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2193 } else if (dst.regClass() == v2) {
2194 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2195 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2196 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2197
2198 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2199 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2200 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2201
2202 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2203 } else {
2204 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2205 nir_print_instr(&instr->instr, stderr);
2206 fprintf(stderr, "\n");
2207 }
2208 break;
2209 }
2210 case nir_op_f2f16:
2211 case nir_op_f2f16_rtne: {
2212 Temp src = get_alu_src(ctx, instr->src[0]);
2213 if (instr->src[0].src.ssa->bit_size == 64)
2214 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2215 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2216 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2217 break;
2218 }
2219 case nir_op_f2f16_rtz: {
2220 Temp src = get_alu_src(ctx, instr->src[0]);
2221 if (instr->src[0].src.ssa->bit_size == 64)
2222 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2223 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2224 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2225 break;
2226 }
2227 case nir_op_f2f32: {
2228 if (instr->src[0].src.ssa->bit_size == 16) {
2229 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2230 } else if (instr->src[0].src.ssa->bit_size == 64) {
2231 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_f2f64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 16)
2242 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2243 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2244 break;
2245 }
2246 case nir_op_i2f16: {
2247 assert(dst.regClass() == v2b);
2248 Temp src = get_alu_src(ctx, instr->src[0]);
2249 if (instr->src[0].src.ssa->bit_size == 8)
2250 src = convert_int(bld, src, 8, 16, true);
2251 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_i16, bld.def(v1), src);
2252 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2253 break;
2254 }
2255 case nir_op_i2f32: {
2256 assert(dst.size() == 1);
2257 Temp src = get_alu_src(ctx, instr->src[0]);
2258 if (instr->src[0].src.ssa->bit_size <= 16)
2259 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2260 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2261 break;
2262 }
2263 case nir_op_i2f64: {
2264 if (instr->src[0].src.ssa->bit_size <= 32) {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 if (instr->src[0].src.ssa->bit_size <= 16)
2267 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2268 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2269 } else if (instr->src[0].src.ssa->bit_size == 64) {
2270 Temp src = get_alu_src(ctx, instr->src[0]);
2271 RegClass rc = RegClass(src.type(), 1);
2272 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2273 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2274 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2275 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2276 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2277 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2278
2279 } else {
2280 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2281 nir_print_instr(&instr->instr, stderr);
2282 fprintf(stderr, "\n");
2283 }
2284 break;
2285 }
2286 case nir_op_u2f16: {
2287 assert(dst.regClass() == v2b);
2288 Temp src = get_alu_src(ctx, instr->src[0]);
2289 if (instr->src[0].src.ssa->bit_size == 8)
2290 src = convert_int(bld, src, 8, 16, false);
2291 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v1), src);
2292 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2293 break;
2294 }
2295 case nir_op_u2f32: {
2296 assert(dst.size() == 1);
2297 Temp src = get_alu_src(ctx, instr->src[0]);
2298 if (instr->src[0].src.ssa->bit_size == 8) {
2299 //TODO: we should use v_cvt_f32_ubyte1/v_cvt_f32_ubyte2/etc depending on the register assignment
2300 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2301 } else {
2302 if (instr->src[0].src.ssa->bit_size == 16)
2303 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2304 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2305 }
2306 break;
2307 }
2308 case nir_op_u2f64: {
2309 if (instr->src[0].src.ssa->bit_size <= 32) {
2310 Temp src = get_alu_src(ctx, instr->src[0]);
2311 if (instr->src[0].src.ssa->bit_size <= 16)
2312 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2313 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2314 } else if (instr->src[0].src.ssa->bit_size == 64) {
2315 Temp src = get_alu_src(ctx, instr->src[0]);
2316 RegClass rc = RegClass(src.type(), 1);
2317 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2318 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2319 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2320 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2321 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2322 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_f2i8:
2331 case nir_op_f2i16: {
2332 Temp src = get_alu_src(ctx, instr->src[0]);
2333 if (instr->src[0].src.ssa->bit_size == 16)
2334 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2335 else if (instr->src[0].src.ssa->bit_size == 32)
2336 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2337 else
2338 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2339
2340 if (dst.type() == RegType::vgpr)
2341 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2342 else
2343 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2344 break;
2345 }
2346 case nir_op_f2u8:
2347 case nir_op_f2u16: {
2348 Temp src = get_alu_src(ctx, instr->src[0]);
2349 if (instr->src[0].src.ssa->bit_size == 16)
2350 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2351 else if (instr->src[0].src.ssa->bit_size == 32)
2352 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2353 else
2354 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2355
2356 if (dst.type() == RegType::vgpr)
2357 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2358 else
2359 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2360 break;
2361 }
2362 case nir_op_f2i32: {
2363 Temp src = get_alu_src(ctx, instr->src[0]);
2364 if (instr->src[0].src.ssa->bit_size == 16) {
2365 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2366 if (dst.type() == RegType::vgpr) {
2367 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2368 } else {
2369 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2370 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2371 }
2372 } else if (instr->src[0].src.ssa->bit_size == 32) {
2373 if (dst.type() == RegType::vgpr)
2374 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2375 else
2376 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2377 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2378
2379 } else if (instr->src[0].src.ssa->bit_size == 64) {
2380 if (dst.type() == RegType::vgpr)
2381 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2382 else
2383 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2384 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2385
2386 } else {
2387 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2388 nir_print_instr(&instr->instr, stderr);
2389 fprintf(stderr, "\n");
2390 }
2391 break;
2392 }
2393 case nir_op_f2u32: {
2394 Temp src = get_alu_src(ctx, instr->src[0]);
2395 if (instr->src[0].src.ssa->bit_size == 16) {
2396 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2397 if (dst.type() == RegType::vgpr) {
2398 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2399 } else {
2400 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2401 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2402 }
2403 } else if (instr->src[0].src.ssa->bit_size == 32) {
2404 if (dst.type() == RegType::vgpr)
2405 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2406 else
2407 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2408 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2409
2410 } else if (instr->src[0].src.ssa->bit_size == 64) {
2411 if (dst.type() == RegType::vgpr)
2412 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2413 else
2414 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2415 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2416
2417 } else {
2418 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2419 nir_print_instr(&instr->instr, stderr);
2420 fprintf(stderr, "\n");
2421 }
2422 break;
2423 }
2424 case nir_op_f2i64: {
2425 Temp src = get_alu_src(ctx, instr->src[0]);
2426 if (instr->src[0].src.ssa->bit_size == 16)
2427 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2428
2429 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2430 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2431 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2432 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2433 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2434 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2435 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2436 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2437 Temp new_exponent = bld.tmp(v1);
2438 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2439 if (ctx->program->chip_class >= GFX8)
2440 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2441 else
2442 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2443 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2444 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2445 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2446 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2447 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2448 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2449 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2450 Temp new_lower = bld.tmp(v1);
2451 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2452 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2453 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2454
2455 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2456 if (src.type() == RegType::vgpr)
2457 src = bld.as_uniform(src);
2458 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2459 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2460 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2461 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2462 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2463 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2464 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2465 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2466 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2467 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2468 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2469 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2470 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2471 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2472 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2473 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2474 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2475 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2476 Temp borrow = bld.tmp(s1);
2477 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2478 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2479 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2480
2481 } else if (instr->src[0].src.ssa->bit_size == 64) {
2482 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2483 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2484 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2485 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2486 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2487 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2488 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2489 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2490 if (dst.type() == RegType::sgpr) {
2491 lower = bld.as_uniform(lower);
2492 upper = bld.as_uniform(upper);
2493 }
2494 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2495
2496 } else {
2497 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2498 nir_print_instr(&instr->instr, stderr);
2499 fprintf(stderr, "\n");
2500 }
2501 break;
2502 }
2503 case nir_op_f2u64: {
2504 Temp src = get_alu_src(ctx, instr->src[0]);
2505 if (instr->src[0].src.ssa->bit_size == 16)
2506 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2507
2508 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2509 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2510 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2511 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2512 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2513 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2514 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2515 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2516 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2517 Temp new_exponent = bld.tmp(v1);
2518 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2519 if (ctx->program->chip_class >= GFX8)
2520 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2521 else
2522 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2523 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2524 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2525 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2526 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2527 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2528 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2529 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2530
2531 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2532 if (src.type() == RegType::vgpr)
2533 src = bld.as_uniform(src);
2534 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2535 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2536 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2537 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2538 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2539 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2540 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2541 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2542 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2543 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2544 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2545 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2546 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2547 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2548 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2549 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2550 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2551 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2552
2553 } else if (instr->src[0].src.ssa->bit_size == 64) {
2554 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2555 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2556 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2557 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2558 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2559 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2560 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2561 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2562 if (dst.type() == RegType::sgpr) {
2563 lower = bld.as_uniform(lower);
2564 upper = bld.as_uniform(upper);
2565 }
2566 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2567
2568 } else {
2569 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2570 nir_print_instr(&instr->instr, stderr);
2571 fprintf(stderr, "\n");
2572 }
2573 break;
2574 }
2575 case nir_op_b2f16: {
2576 Temp src = get_alu_src(ctx, instr->src[0]);
2577 assert(src.regClass() == bld.lm);
2578
2579 if (dst.regClass() == s1) {
2580 src = bool_to_scalar_condition(ctx, src);
2581 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2582 } else if (dst.regClass() == v2b) {
2583 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2584 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2585 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2586 } else {
2587 unreachable("Wrong destination register class for nir_op_b2f16.");
2588 }
2589 break;
2590 }
2591 case nir_op_b2f32: {
2592 Temp src = get_alu_src(ctx, instr->src[0]);
2593 assert(src.regClass() == bld.lm);
2594
2595 if (dst.regClass() == s1) {
2596 src = bool_to_scalar_condition(ctx, src);
2597 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2598 } else if (dst.regClass() == v1) {
2599 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2600 } else {
2601 unreachable("Wrong destination register class for nir_op_b2f32.");
2602 }
2603 break;
2604 }
2605 case nir_op_b2f64: {
2606 Temp src = get_alu_src(ctx, instr->src[0]);
2607 assert(src.regClass() == bld.lm);
2608
2609 if (dst.regClass() == s2) {
2610 src = bool_to_scalar_condition(ctx, src);
2611 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2612 } else if (dst.regClass() == v2) {
2613 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2614 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2615 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2616 } else {
2617 unreachable("Wrong destination register class for nir_op_b2f64.");
2618 }
2619 break;
2620 }
2621 case nir_op_i2i8:
2622 case nir_op_i2i16:
2623 case nir_op_i2i32:
2624 case nir_op_i2i64: {
2625 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2626 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2627 break;
2628 }
2629 case nir_op_u2u8:
2630 case nir_op_u2u16:
2631 case nir_op_u2u32:
2632 case nir_op_u2u64: {
2633 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2634 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2635 break;
2636 }
2637 case nir_op_b2b32:
2638 case nir_op_b2i32: {
2639 Temp src = get_alu_src(ctx, instr->src[0]);
2640 assert(src.regClass() == bld.lm);
2641
2642 if (dst.regClass() == s1) {
2643 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2644 bool_to_scalar_condition(ctx, src, dst);
2645 } else if (dst.regClass() == v1) {
2646 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2647 } else {
2648 unreachable("Invalid register class for b2i32");
2649 }
2650 break;
2651 }
2652 case nir_op_b2b1:
2653 case nir_op_i2b1: {
2654 Temp src = get_alu_src(ctx, instr->src[0]);
2655 assert(dst.regClass() == bld.lm);
2656
2657 if (src.type() == RegType::vgpr) {
2658 assert(src.regClass() == v1 || src.regClass() == v2);
2659 assert(dst.regClass() == bld.lm);
2660 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2661 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2662 } else {
2663 assert(src.regClass() == s1 || src.regClass() == s2);
2664 Temp tmp;
2665 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2666 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2667 } else {
2668 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2669 bld.scc(bld.def(s1)), Operand(0u), src);
2670 }
2671 bool_to_vector_condition(ctx, tmp, dst);
2672 }
2673 break;
2674 }
2675 case nir_op_pack_64_2x32_split: {
2676 Temp src0 = get_alu_src(ctx, instr->src[0]);
2677 Temp src1 = get_alu_src(ctx, instr->src[1]);
2678
2679 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2680 break;
2681 }
2682 case nir_op_unpack_64_2x32_split_x:
2683 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2684 break;
2685 case nir_op_unpack_64_2x32_split_y:
2686 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2687 break;
2688 case nir_op_unpack_32_2x16_split_x:
2689 if (dst.type() == RegType::vgpr) {
2690 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2691 } else {
2692 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2693 }
2694 break;
2695 case nir_op_unpack_32_2x16_split_y:
2696 if (dst.type() == RegType::vgpr) {
2697 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2698 } else {
2699 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2700 }
2701 break;
2702 case nir_op_pack_32_2x16_split: {
2703 Temp src0 = get_alu_src(ctx, instr->src[0]);
2704 Temp src1 = get_alu_src(ctx, instr->src[1]);
2705 if (dst.regClass() == v1) {
2706 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2707 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2708 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2709 } else {
2710 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2711 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2712 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2713 }
2714 break;
2715 }
2716 case nir_op_pack_half_2x16: {
2717 Temp src = get_alu_src(ctx, instr->src[0], 2);
2718
2719 if (dst.regClass() == v1) {
2720 Temp src0 = bld.tmp(v1);
2721 Temp src1 = bld.tmp(v1);
2722 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2723 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2724 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2725 else
2726 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2727 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2728 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2729 } else {
2730 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2731 nir_print_instr(&instr->instr, stderr);
2732 fprintf(stderr, "\n");
2733 }
2734 break;
2735 }
2736 case nir_op_unpack_half_2x16_split_x: {
2737 if (dst.regClass() == v1) {
2738 Builder bld(ctx->program, ctx->block);
2739 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2740 } else {
2741 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2742 nir_print_instr(&instr->instr, stderr);
2743 fprintf(stderr, "\n");
2744 }
2745 break;
2746 }
2747 case nir_op_unpack_half_2x16_split_y: {
2748 if (dst.regClass() == v1) {
2749 Builder bld(ctx->program, ctx->block);
2750 /* TODO: use SDWA here */
2751 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2752 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2753 } else {
2754 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2755 nir_print_instr(&instr->instr, stderr);
2756 fprintf(stderr, "\n");
2757 }
2758 break;
2759 }
2760 case nir_op_fquantize2f16: {
2761 Temp src = get_alu_src(ctx, instr->src[0]);
2762 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2763 Temp f32, cmp_res;
2764
2765 if (ctx->program->chip_class >= GFX8) {
2766 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2767 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2768 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2769 } else {
2770 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2771 * so compare the result and flush to 0 if it's smaller.
2772 */
2773 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2774 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2775 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2776 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2777 cmp_res = vop3->definitions[0].getTemp();
2778 }
2779
2780 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2781 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2782 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2783 } else {
2784 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2785 }
2786 break;
2787 }
2788 case nir_op_bfm: {
2789 Temp bits = get_alu_src(ctx, instr->src[0]);
2790 Temp offset = get_alu_src(ctx, instr->src[1]);
2791
2792 if (dst.regClass() == s1) {
2793 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2794 } else if (dst.regClass() == v1) {
2795 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2796 } else {
2797 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2798 nir_print_instr(&instr->instr, stderr);
2799 fprintf(stderr, "\n");
2800 }
2801 break;
2802 }
2803 case nir_op_bitfield_select: {
2804 /* (mask & insert) | (~mask & base) */
2805 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2806 Temp insert = get_alu_src(ctx, instr->src[1]);
2807 Temp base = get_alu_src(ctx, instr->src[2]);
2808
2809 /* dst = (insert & bitmask) | (base & ~bitmask) */
2810 if (dst.regClass() == s1) {
2811 aco_ptr<Instruction> sop2;
2812 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2813 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2814 Operand lhs;
2815 if (const_insert && const_bitmask) {
2816 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2817 } else {
2818 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2819 lhs = Operand(insert);
2820 }
2821
2822 Operand rhs;
2823 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2824 if (const_base && const_bitmask) {
2825 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2826 } else {
2827 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2828 rhs = Operand(base);
2829 }
2830
2831 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2832
2833 } else if (dst.regClass() == v1) {
2834 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2835 base = as_vgpr(ctx, base);
2836 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2837 insert = as_vgpr(ctx, insert);
2838
2839 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2840
2841 } else {
2842 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2843 nir_print_instr(&instr->instr, stderr);
2844 fprintf(stderr, "\n");
2845 }
2846 break;
2847 }
2848 case nir_op_ubfe:
2849 case nir_op_ibfe: {
2850 Temp base = get_alu_src(ctx, instr->src[0]);
2851 Temp offset = get_alu_src(ctx, instr->src[1]);
2852 Temp bits = get_alu_src(ctx, instr->src[2]);
2853
2854 if (dst.type() == RegType::sgpr) {
2855 Operand extract;
2856 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2857 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2858 if (const_offset && const_bits) {
2859 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2860 extract = Operand(const_extract);
2861 } else {
2862 Operand width;
2863 if (const_bits) {
2864 width = Operand(const_bits->u32 << 16);
2865 } else {
2866 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2867 }
2868 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2869 }
2870
2871 aco_opcode opcode;
2872 if (dst.regClass() == s1) {
2873 if (instr->op == nir_op_ubfe)
2874 opcode = aco_opcode::s_bfe_u32;
2875 else
2876 opcode = aco_opcode::s_bfe_i32;
2877 } else if (dst.regClass() == s2) {
2878 if (instr->op == nir_op_ubfe)
2879 opcode = aco_opcode::s_bfe_u64;
2880 else
2881 opcode = aco_opcode::s_bfe_i64;
2882 } else {
2883 unreachable("Unsupported BFE bit size");
2884 }
2885
2886 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2887
2888 } else {
2889 aco_opcode opcode;
2890 if (dst.regClass() == v1) {
2891 if (instr->op == nir_op_ubfe)
2892 opcode = aco_opcode::v_bfe_u32;
2893 else
2894 opcode = aco_opcode::v_bfe_i32;
2895 } else {
2896 unreachable("Unsupported BFE bit size");
2897 }
2898
2899 emit_vop3a_instruction(ctx, instr, opcode, dst);
2900 }
2901 break;
2902 }
2903 case nir_op_bit_count: {
2904 Temp src = get_alu_src(ctx, instr->src[0]);
2905 if (src.regClass() == s1) {
2906 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2907 } else if (src.regClass() == v1) {
2908 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2909 } else if (src.regClass() == v2) {
2910 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2911 emit_extract_vector(ctx, src, 1, v1),
2912 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2913 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2914 } else if (src.regClass() == s2) {
2915 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2916 } else {
2917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2918 nir_print_instr(&instr->instr, stderr);
2919 fprintf(stderr, "\n");
2920 }
2921 break;
2922 }
2923 case nir_op_flt: {
2924 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2925 break;
2926 }
2927 case nir_op_fge: {
2928 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2929 break;
2930 }
2931 case nir_op_feq: {
2932 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2933 break;
2934 }
2935 case nir_op_fne: {
2936 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2937 break;
2938 }
2939 case nir_op_ilt: {
2940 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2941 break;
2942 }
2943 case nir_op_ige: {
2944 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2945 break;
2946 }
2947 case nir_op_ieq: {
2948 if (instr->src[0].src.ssa->bit_size == 1)
2949 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2950 else
2951 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2952 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2953 break;
2954 }
2955 case nir_op_ine: {
2956 if (instr->src[0].src.ssa->bit_size == 1)
2957 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2958 else
2959 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2960 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2961 break;
2962 }
2963 case nir_op_ult: {
2964 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2965 break;
2966 }
2967 case nir_op_uge: {
2968 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2969 break;
2970 }
2971 case nir_op_fddx:
2972 case nir_op_fddy:
2973 case nir_op_fddx_fine:
2974 case nir_op_fddy_fine:
2975 case nir_op_fddx_coarse:
2976 case nir_op_fddy_coarse: {
2977 Temp src = get_alu_src(ctx, instr->src[0]);
2978 uint16_t dpp_ctrl1, dpp_ctrl2;
2979 if (instr->op == nir_op_fddx_fine) {
2980 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2981 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2982 } else if (instr->op == nir_op_fddy_fine) {
2983 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2984 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2985 } else {
2986 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2987 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2988 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2989 else
2990 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2991 }
2992
2993 Temp tmp;
2994 if (ctx->program->chip_class >= GFX8) {
2995 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2996 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2997 } else {
2998 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2999 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
3000 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
3001 }
3002 emit_wqm(ctx, tmp, dst, true);
3003 break;
3004 }
3005 default:
3006 fprintf(stderr, "Unknown NIR ALU instr: ");
3007 nir_print_instr(&instr->instr, stderr);
3008 fprintf(stderr, "\n");
3009 }
3010 }
3011
3012 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3013 {
3014 Temp dst = get_ssa_temp(ctx, &instr->def);
3015
3016 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3017 // which get truncated the lsb if double and msb if int
3018 // for now, we only use s_mov_b64 with 64bit inline constants
3019 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3020 assert(dst.type() == RegType::sgpr);
3021
3022 Builder bld(ctx->program, ctx->block);
3023
3024 if (instr->def.bit_size == 1) {
3025 assert(dst.regClass() == bld.lm);
3026 int val = instr->value[0].b ? -1 : 0;
3027 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3028 bld.sop1(Builder::s_mov, Definition(dst), op);
3029 } else if (instr->def.bit_size == 8) {
3030 /* ensure that the value is correctly represented in the low byte of the register */
3031 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3032 } else if (instr->def.bit_size == 16) {
3033 /* ensure that the value is correctly represented in the low half of the register */
3034 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3035 } else if (dst.size() == 1) {
3036 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3037 } else {
3038 assert(dst.size() != 1);
3039 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3040 if (instr->def.bit_size == 64)
3041 for (unsigned i = 0; i < dst.size(); i++)
3042 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3043 else {
3044 for (unsigned i = 0; i < dst.size(); i++)
3045 vec->operands[i] = Operand{instr->value[i].u32};
3046 }
3047 vec->definitions[0] = Definition(dst);
3048 ctx->block->instructions.emplace_back(std::move(vec));
3049 }
3050 }
3051
3052 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3053 {
3054 uint32_t new_mask = 0;
3055 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3056 if (mask & (1u << i))
3057 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3058 return new_mask;
3059 }
3060
3061 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst)
3062 {
3063 Builder bld(ctx->program, ctx->block);
3064 if (offset.isTemp()) {
3065 Temp tmp[3] = {vec, vec, vec};
3066
3067 if (vec.size() == 3) {
3068 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
3069 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
3070 } else if (vec.size() == 2) {
3071 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
3072 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
3073 }
3074 for (unsigned i = 0; i < dst.size(); i++)
3075 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
3076
3077 vec = tmp[0];
3078 if (dst.size() == 2)
3079 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
3080
3081 offset = Operand(0u);
3082 }
3083
3084 if (vec.bytes() == dst.bytes() && offset.constantValue() == 0)
3085 bld.copy(Definition(dst), vec);
3086 else
3087 trim_subdword_vector(ctx, vec, dst, vec.bytes(), ((1 << dst.bytes()) - 1) << offset.constantValue());
3088 }
3089
3090 struct LoadEmitInfo {
3091 Operand offset;
3092 Temp dst;
3093 unsigned num_components;
3094 unsigned component_size;
3095 Temp resource = Temp(0, s1);
3096 unsigned component_stride = 0;
3097 unsigned const_offset = 0;
3098 unsigned align_mul = 0;
3099 unsigned align_offset = 0;
3100
3101 bool glc = false;
3102 unsigned swizzle_component_size = 0;
3103 barrier_interaction barrier = barrier_none;
3104 bool can_reorder = true;
3105 Temp soffset = Temp(0, s1);
3106 };
3107
3108 using LoadCallback = Temp(*)(
3109 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3110 unsigned align, unsigned const_offset, Temp dst_hint);
3111
3112 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3113 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3114 {
3115 unsigned load_size = info->num_components * info->component_size;
3116 unsigned component_size = info->component_size;
3117
3118 unsigned num_vals = 0;
3119 Temp vals[info->dst.bytes()];
3120
3121 unsigned const_offset = info->const_offset;
3122
3123 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3124 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3125
3126 unsigned bytes_read = 0;
3127 while (bytes_read < load_size) {
3128 unsigned bytes_needed = load_size - bytes_read;
3129
3130 /* add buffer for unaligned loads */
3131 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3132
3133 if (byte_align) {
3134 if ((bytes_needed > 2 || !supports_8bit_16bit_loads) && byte_align_loads) {
3135 if (info->component_stride) {
3136 assert(supports_8bit_16bit_loads && "unimplemented");
3137 bytes_needed = 2;
3138 byte_align = 0;
3139 } else {
3140 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3141 bytes_needed = align(bytes_needed, 4);
3142 }
3143 } else {
3144 byte_align = 0;
3145 }
3146 }
3147
3148 if (info->swizzle_component_size)
3149 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3150 if (info->component_stride)
3151 bytes_needed = MIN2(bytes_needed, info->component_size);
3152
3153 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3154
3155 /* reduce constant offset */
3156 Operand offset = info->offset;
3157 unsigned reduced_const_offset = const_offset;
3158 bool remove_const_offset_completely = need_to_align_offset;
3159 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3160 unsigned to_add = const_offset;
3161 if (remove_const_offset_completely) {
3162 reduced_const_offset = 0;
3163 } else {
3164 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3165 reduced_const_offset %= max_const_offset_plus_one;
3166 }
3167 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3168 if (offset.isConstant()) {
3169 offset = Operand(offset.constantValue() + to_add);
3170 } else if (offset_tmp.regClass() == s1) {
3171 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3172 offset_tmp, Operand(to_add));
3173 } else if (offset_tmp.regClass() == v1) {
3174 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3175 } else {
3176 Temp lo = bld.tmp(offset_tmp.type(), 1);
3177 Temp hi = bld.tmp(offset_tmp.type(), 1);
3178 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3179
3180 if (offset_tmp.regClass() == s2) {
3181 Temp carry = bld.tmp(s1);
3182 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3183 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3184 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3185 } else {
3186 Temp new_lo = bld.tmp(v1);
3187 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3188 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3189 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3190 }
3191 }
3192 }
3193
3194 /* align offset down if needed */
3195 Operand aligned_offset = offset;
3196 if (need_to_align_offset) {
3197 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3198 if (offset.isConstant()) {
3199 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3200 } else if (offset_tmp.regClass() == s1) {
3201 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3202 } else if (offset_tmp.regClass() == s2) {
3203 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3204 } else if (offset_tmp.regClass() == v1) {
3205 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3206 } else if (offset_tmp.regClass() == v2) {
3207 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3208 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3209 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3210 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3211 }
3212 }
3213 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3214 bld.copy(bld.def(s1), aligned_offset);
3215
3216 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3217 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3218 reduced_const_offset, byte_align ? Temp() : info->dst);
3219
3220 /* shift result right if needed */
3221 if (byte_align) {
3222 Operand align((uint32_t)byte_align);
3223 if (byte_align == -1) {
3224 if (offset.isConstant())
3225 align = Operand(offset.constantValue() % 4u);
3226 else if (offset.size() == 2)
3227 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3228 else
3229 align = offset;
3230 }
3231
3232 if (align.isTemp() || align.constantValue()) {
3233 assert(val.bytes() >= load_size && "unimplemented");
3234 Temp new_val = bld.tmp(RegClass::get(val.type(), load_size));
3235 if (val.type() == RegType::sgpr)
3236 byte_align_scalar(ctx, val, align, new_val);
3237 else
3238 byte_align_vector(ctx, val, align, new_val);
3239 val = new_val;
3240 }
3241 }
3242
3243 /* add result to list and advance */
3244 if (info->component_stride) {
3245 assert(val.bytes() == info->component_size && "unimplemented");
3246 const_offset += info->component_stride;
3247 align_offset = (align_offset + info->component_stride) % align_mul;
3248 } else {
3249 const_offset += val.bytes();
3250 align_offset = (align_offset + val.bytes()) % align_mul;
3251 }
3252 bytes_read += val.bytes();
3253 vals[num_vals++] = val;
3254 }
3255
3256 /* the callback wrote directly to dst */
3257 if (vals[0] == info->dst) {
3258 assert(num_vals == 1);
3259 emit_split_vector(ctx, info->dst, info->num_components);
3260 return;
3261 }
3262
3263 /* create array of components */
3264 unsigned components_split = 0;
3265 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3266 bool has_vgprs = false;
3267 for (unsigned i = 0; i < num_vals;) {
3268 Temp tmp[num_vals];
3269 unsigned num_tmps = 0;
3270 unsigned tmp_size = 0;
3271 RegType reg_type = RegType::sgpr;
3272 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3273 if (vals[i].type() == RegType::vgpr)
3274 reg_type = RegType::vgpr;
3275 tmp_size += vals[i].bytes();
3276 tmp[num_tmps++] = vals[i++];
3277 }
3278 if (num_tmps > 1) {
3279 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3280 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3281 for (unsigned i = 0; i < num_vals; i++)
3282 vec->operands[i] = Operand(tmp[i]);
3283 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3284 vec->definitions[0] = Definition(tmp[0]);
3285 bld.insert(std::move(vec));
3286 }
3287
3288 if (tmp[0].bytes() % component_size) {
3289 /* trim tmp[0] */
3290 assert(i == num_vals);
3291 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3292 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3293 }
3294
3295 RegClass elem_rc = RegClass::get(reg_type, component_size);
3296
3297 unsigned start = components_split;
3298
3299 if (tmp_size == elem_rc.bytes()) {
3300 allocated_vec[components_split++] = tmp[0];
3301 } else {
3302 assert(tmp_size % elem_rc.bytes() == 0);
3303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3304 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3305 for (unsigned i = 0; i < split->definitions.size(); i++) {
3306 Temp component = bld.tmp(elem_rc);
3307 allocated_vec[components_split++] = component;
3308 split->definitions[i] = Definition(component);
3309 }
3310 split->operands[0] = Operand(tmp[0]);
3311 bld.insert(std::move(split));
3312 }
3313
3314 /* try to p_as_uniform early so we can create more optimizable code and
3315 * also update allocated_vec */
3316 for (unsigned j = start; j < components_split; j++) {
3317 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3318 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3319 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3320 }
3321 }
3322
3323 /* concatenate components and p_as_uniform() result if needed */
3324 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3325 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3326
3327 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3328
3329 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3330 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3331 for (unsigned i = 0; i < info->num_components; i++)
3332 vec->operands[i] = Operand(allocated_vec[i]);
3333 if (padding_bytes)
3334 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3335 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3336 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3337 vec->definitions[0] = Definition(tmp);
3338 bld.insert(std::move(vec));
3339 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3340 } else {
3341 vec->definitions[0] = Definition(info->dst);
3342 bld.insert(std::move(vec));
3343 }
3344 }
3345
3346 Operand load_lds_size_m0(Builder& bld)
3347 {
3348 /* TODO: m0 does not need to be initialized on GFX9+ */
3349 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3350 }
3351
3352 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3353 Temp offset, unsigned bytes_needed,
3354 unsigned align, unsigned const_offset,
3355 Temp dst_hint)
3356 {
3357 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3358
3359 Operand m = load_lds_size_m0(bld);
3360
3361 bool large_ds_read = bld.program->chip_class >= GFX7;
3362 bool usable_read2 = bld.program->chip_class >= GFX7;
3363
3364 bool read2 = false;
3365 unsigned size = 0;
3366 aco_opcode op;
3367 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3368 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3369 size = 16;
3370 op = aco_opcode::ds_read_b128;
3371 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3372 size = 16;
3373 read2 = true;
3374 op = aco_opcode::ds_read2_b64;
3375 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3376 size = 12;
3377 op = aco_opcode::ds_read_b96;
3378 } else if (bytes_needed >= 8 && align % 8 == 0) {
3379 size = 8;
3380 op = aco_opcode::ds_read_b64;
3381 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3382 size = 8;
3383 read2 = true;
3384 op = aco_opcode::ds_read2_b32;
3385 } else if (bytes_needed >= 4 && align % 4 == 0) {
3386 size = 4;
3387 op = aco_opcode::ds_read_b32;
3388 } else if (bytes_needed >= 2 && align % 2 == 0) {
3389 size = 2;
3390 op = aco_opcode::ds_read_u16;
3391 } else {
3392 size = 1;
3393 op = aco_opcode::ds_read_u8;
3394 }
3395
3396 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3397 if (const_offset >= max_offset_plus_one) {
3398 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3399 const_offset %= max_offset_plus_one;
3400 }
3401
3402 if (read2)
3403 const_offset /= (size / 2u);
3404
3405 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3406 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3407 if (read2)
3408 bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3409 else
3410 bld.ds(op, Definition(val), offset, m, const_offset);
3411
3412 if (size < 4)
3413 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3414
3415 return val;
3416 }
3417
3418 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3419
3420 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3421 Temp offset, unsigned bytes_needed,
3422 unsigned align, unsigned const_offset,
3423 Temp dst_hint)
3424 {
3425 unsigned size = 0;
3426 aco_opcode op;
3427 if (bytes_needed <= 4) {
3428 size = 1;
3429 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3430 } else if (bytes_needed <= 8) {
3431 size = 2;
3432 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3433 } else if (bytes_needed <= 16) {
3434 size = 4;
3435 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3436 } else if (bytes_needed <= 32) {
3437 size = 8;
3438 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3439 } else {
3440 size = 16;
3441 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3442 }
3443 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3444 if (info->resource.id()) {
3445 load->operands[0] = Operand(info->resource);
3446 load->operands[1] = Operand(offset);
3447 } else {
3448 load->operands[0] = Operand(offset);
3449 load->operands[1] = Operand(0u);
3450 }
3451 RegClass rc(RegType::sgpr, size);
3452 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3453 load->definitions[0] = Definition(val);
3454 load->glc = info->glc;
3455 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3456 load->barrier = info->barrier;
3457 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3458 bld.insert(std::move(load));
3459 return val;
3460 }
3461
3462 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3463
3464 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3465 Temp offset, unsigned bytes_needed,
3466 unsigned align_, unsigned const_offset,
3467 Temp dst_hint)
3468 {
3469 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3470 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3471
3472 if (info->soffset.id()) {
3473 if (soffset.isTemp())
3474 vaddr = bld.copy(bld.def(v1), soffset);
3475 soffset = Operand(info->soffset);
3476 }
3477
3478 unsigned bytes_size = 0;
3479 aco_opcode op;
3480 if (bytes_needed == 1) {
3481 bytes_size = 1;
3482 op = aco_opcode::buffer_load_ubyte;
3483 } else if (bytes_needed == 2) {
3484 bytes_size = 2;
3485 op = aco_opcode::buffer_load_ushort;
3486 } else if (bytes_needed <= 4) {
3487 bytes_size = 4;
3488 op = aco_opcode::buffer_load_dword;
3489 } else if (bytes_needed <= 8) {
3490 bytes_size = 8;
3491 op = aco_opcode::buffer_load_dwordx2;
3492 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3493 bytes_size = 12;
3494 op = aco_opcode::buffer_load_dwordx3;
3495 } else {
3496 bytes_size = 16;
3497 op = aco_opcode::buffer_load_dwordx4;
3498 }
3499 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3500 mubuf->operands[0] = Operand(info->resource);
3501 mubuf->operands[1] = vaddr;
3502 mubuf->operands[2] = soffset;
3503 mubuf->offen = (offset.type() == RegType::vgpr);
3504 mubuf->glc = info->glc;
3505 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3506 mubuf->barrier = info->barrier;
3507 mubuf->can_reorder = info->can_reorder;
3508 mubuf->offset = const_offset;
3509 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3510 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3511 mubuf->definitions[0] = Definition(val);
3512 bld.insert(std::move(mubuf));
3513
3514 if (bytes_size < 4)
3515 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, bytes_size)), val, Operand(0u));
3516
3517 return val;
3518 }
3519
3520 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3521
3522 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3523 {
3524 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3525 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3526
3527 if (addr.type() == RegType::vgpr)
3528 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3529 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3530 }
3531
3532 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3533 Temp offset, unsigned bytes_needed,
3534 unsigned align_, unsigned const_offset,
3535 Temp dst_hint)
3536 {
3537 unsigned bytes_size = 0;
3538 bool mubuf = bld.program->chip_class == GFX6;
3539 bool global = bld.program->chip_class >= GFX9;
3540 aco_opcode op;
3541 if (bytes_needed == 1) {
3542 bytes_size = 1;
3543 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3544 } else if (bytes_needed == 2) {
3545 bytes_size = 2;
3546 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3547 } else if (bytes_needed <= 4) {
3548 bytes_size = 4;
3549 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3550 } else if (bytes_needed <= 8) {
3551 bytes_size = 8;
3552 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3553 } else if (bytes_needed <= 12 && !mubuf) {
3554 bytes_size = 12;
3555 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3556 } else {
3557 bytes_size = 16;
3558 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3559 }
3560 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3561 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3562 if (mubuf) {
3563 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3564 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3565 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3566 mubuf->operands[2] = Operand(0u);
3567 mubuf->glc = info->glc;
3568 mubuf->dlc = false;
3569 mubuf->offset = 0;
3570 mubuf->addr64 = offset.type() == RegType::vgpr;
3571 mubuf->disable_wqm = false;
3572 mubuf->barrier = info->barrier;
3573 mubuf->definitions[0] = Definition(val);
3574 bld.insert(std::move(mubuf));
3575 } else {
3576 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3577
3578 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3579 flat->operands[0] = Operand(offset);
3580 flat->operands[1] = Operand(s1);
3581 flat->glc = info->glc;
3582 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3583 flat->barrier = info->barrier;
3584 flat->offset = 0u;
3585 flat->definitions[0] = Definition(val);
3586 bld.insert(std::move(flat));
3587 }
3588
3589 if (bytes_size < 4)
3590 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, bytes_size)), val, Operand(0u));
3591
3592 return val;
3593 }
3594
3595 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3596
3597 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3598 Temp address, unsigned base_offset, unsigned align)
3599 {
3600 assert(util_is_power_of_two_nonzero(align));
3601
3602 Builder bld(ctx->program, ctx->block);
3603
3604 unsigned num_components = dst.bytes() / elem_size_bytes;
3605 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3606 info.align_mul = align;
3607 info.align_offset = 0;
3608 info.barrier = barrier_shared;
3609 info.can_reorder = false;
3610 info.const_offset = base_offset;
3611 emit_lds_load(ctx, bld, &info);
3612
3613 return dst;
3614 }
3615
3616 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3617 {
3618 if (!count)
3619 return;
3620
3621 Builder bld(ctx->program, ctx->block);
3622
3623 ASSERTED bool is_subdword = false;
3624 for (unsigned i = 0; i < count; i++)
3625 is_subdword |= offsets[i] % 4;
3626 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3627 assert(!is_subdword || dst_type == RegType::vgpr);
3628
3629 /* count == 1 fast path */
3630 if (count == 1) {
3631 if (dst_type == RegType::sgpr)
3632 dst[0] = bld.as_uniform(src);
3633 else
3634 dst[0] = as_vgpr(ctx, src);
3635 return;
3636 }
3637
3638 for (unsigned i = 0; i < count - 1; i++)
3639 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3640 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3641
3642 if (is_subdword && src.type() == RegType::sgpr) {
3643 src = as_vgpr(ctx, src);
3644 } else {
3645 /* use allocated_vec if possible */
3646 auto it = ctx->allocated_vec.find(src.id());
3647 if (it != ctx->allocated_vec.end()) {
3648 unsigned total_size = 0;
3649 for (unsigned i = 0; it->second[i].bytes() && (i < NIR_MAX_VEC_COMPONENTS); i++)
3650 total_size += it->second[i].bytes();
3651 if (total_size != src.bytes())
3652 goto split;
3653
3654 unsigned elem_size = it->second[0].bytes();
3655
3656 for (unsigned i = 0; i < count; i++) {
3657 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3658 goto split;
3659 }
3660
3661 for (unsigned i = 0; i < count; i++) {
3662 unsigned start_idx = offsets[i] / elem_size;
3663 unsigned op_count = dst[i].bytes() / elem_size;
3664 if (op_count == 1) {
3665 if (dst_type == RegType::sgpr)
3666 dst[i] = bld.as_uniform(it->second[start_idx]);
3667 else
3668 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3669 continue;
3670 }
3671
3672 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3673 for (unsigned j = 0; j < op_count; j++) {
3674 Temp tmp = it->second[start_idx + j];
3675 if (dst_type == RegType::sgpr)
3676 tmp = bld.as_uniform(tmp);
3677 vec->operands[j] = Operand(tmp);
3678 }
3679 vec->definitions[0] = Definition(dst[i]);
3680 bld.insert(std::move(vec));
3681 }
3682 return;
3683 }
3684 }
3685
3686 if (dst_type == RegType::sgpr)
3687 src = bld.as_uniform(src);
3688
3689 split:
3690 /* just split it */
3691 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3692 split->operands[0] = Operand(src);
3693 for (unsigned i = 0; i < count; i++)
3694 split->definitions[i] = Definition(dst[i]);
3695 bld.insert(std::move(split));
3696 }
3697
3698 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3699 int *start, int *count)
3700 {
3701 unsigned start_elem = ffs(todo_mask) - 1;
3702 bool skip = !(mask & (1 << start_elem));
3703 if (skip)
3704 mask = ~mask & todo_mask;
3705
3706 mask &= todo_mask;
3707
3708 u_bit_scan_consecutive_range(&mask, start, count);
3709
3710 return !skip;
3711 }
3712
3713 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3714 {
3715 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3716 }
3717
3718 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3719 Temp address, unsigned base_offset, unsigned align)
3720 {
3721 assert(util_is_power_of_two_nonzero(align));
3722 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3723
3724 Builder bld(ctx->program, ctx->block);
3725 bool large_ds_write = ctx->options->chip_class >= GFX7;
3726 bool usable_write2 = ctx->options->chip_class >= GFX7;
3727
3728 unsigned write_count = 0;
3729 Temp write_datas[32];
3730 unsigned offsets[32];
3731 aco_opcode opcodes[32];
3732
3733 wrmask = widen_mask(wrmask, elem_size_bytes);
3734
3735 uint32_t todo = u_bit_consecutive(0, data.bytes());
3736 while (todo) {
3737 int offset, bytes;
3738 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3739 offsets[write_count] = offset;
3740 opcodes[write_count] = aco_opcode::num_opcodes;
3741 write_count++;
3742 advance_write_mask(&todo, offset, bytes);
3743 continue;
3744 }
3745
3746 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3747 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3748 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3749 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3750
3751 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3752 aco_opcode op = aco_opcode::num_opcodes;
3753 if (bytes >= 16 && aligned16 && large_ds_write) {
3754 op = aco_opcode::ds_write_b128;
3755 bytes = 16;
3756 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3757 op = aco_opcode::ds_write_b96;
3758 bytes = 12;
3759 } else if (bytes >= 8 && aligned8) {
3760 op = aco_opcode::ds_write_b64;
3761 bytes = 8;
3762 } else if (bytes >= 4 && aligned4) {
3763 op = aco_opcode::ds_write_b32;
3764 bytes = 4;
3765 } else if (bytes >= 2 && aligned2) {
3766 op = aco_opcode::ds_write_b16;
3767 bytes = 2;
3768 } else if (bytes >= 1) {
3769 op = aco_opcode::ds_write_b8;
3770 bytes = 1;
3771 } else {
3772 assert(false);
3773 }
3774
3775 offsets[write_count] = offset;
3776 opcodes[write_count] = op;
3777 write_count++;
3778 advance_write_mask(&todo, offset, bytes);
3779 }
3780
3781 Operand m = load_lds_size_m0(bld);
3782
3783 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3784
3785 for (unsigned i = 0; i < write_count; i++) {
3786 aco_opcode op = opcodes[i];
3787 if (op == aco_opcode::num_opcodes)
3788 continue;
3789
3790 Temp data = write_datas[i];
3791
3792 unsigned second = write_count;
3793 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3794 for (second = i + 1; second < write_count; second++) {
3795 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3796 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3797 opcodes[second] = aco_opcode::num_opcodes;
3798 break;
3799 }
3800 }
3801 }
3802
3803 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3804 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3805
3806 unsigned inline_offset = base_offset + offsets[i];
3807 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3808 Temp address_offset = address;
3809 if (inline_offset > max_offset) {
3810 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3811 inline_offset = offsets[i];
3812 }
3813 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3814
3815 if (write2) {
3816 Temp second_data = write_datas[second];
3817 inline_offset /= data.bytes();
3818 bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3819 } else {
3820 bld.ds(op, address_offset, data, m, inline_offset);
3821 }
3822 }
3823 }
3824
3825 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3826 {
3827 unsigned align = 16;
3828 if (const_offset)
3829 align = std::min(align, 1u << (ffs(const_offset) - 1));
3830
3831 return align;
3832 }
3833
3834
3835 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3836 {
3837 switch (bytes) {
3838 case 1:
3839 assert(!smem);
3840 return aco_opcode::buffer_store_byte;
3841 case 2:
3842 assert(!smem);
3843 return aco_opcode::buffer_store_short;
3844 case 4:
3845 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3846 case 8:
3847 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3848 case 12:
3849 assert(!smem);
3850 return aco_opcode::buffer_store_dwordx3;
3851 case 16:
3852 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3853 }
3854 unreachable("Unexpected store size");
3855 return aco_opcode::num_opcodes;
3856 }
3857
3858 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3859 Temp data, unsigned writemask, int swizzle_element_size,
3860 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3861 {
3862 unsigned write_count_with_skips = 0;
3863 bool skips[16];
3864
3865 /* determine how to split the data */
3866 unsigned todo = u_bit_consecutive(0, data.bytes());
3867 while (todo) {
3868 int offset, bytes;
3869 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3870 offsets[write_count_with_skips] = offset;
3871 if (skips[write_count_with_skips]) {
3872 advance_write_mask(&todo, offset, bytes);
3873 write_count_with_skips++;
3874 continue;
3875 }
3876
3877 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3878 * larger than swizzle_element_size */
3879 bytes = MIN2(bytes, swizzle_element_size);
3880 if (bytes % 4)
3881 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3882
3883 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3884 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3885 bytes = 8;
3886
3887 /* dword or larger stores have to be dword-aligned */
3888 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3889 unsigned align_offset = instr ? nir_intrinsic_align_mul(instr) : 0;
3890 bool dword_aligned = (align_offset + offset) % 4 == 0 && align_mul % 4 == 0;
3891 if (bytes >= 4 && !dword_aligned)
3892 bytes = MIN2(bytes, 2);
3893
3894 advance_write_mask(&todo, offset, bytes);
3895 write_count_with_skips++;
3896 }
3897
3898 /* actually split data */
3899 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3900
3901 /* remove skips */
3902 for (unsigned i = 0; i < write_count_with_skips; i++) {
3903 if (skips[i])
3904 continue;
3905 write_datas[*write_count] = write_datas[i];
3906 offsets[*write_count] = offsets[i];
3907 (*write_count)++;
3908 }
3909 }
3910
3911 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3912 unsigned split_cnt = 0u, Temp dst = Temp())
3913 {
3914 Builder bld(ctx->program, ctx->block);
3915 unsigned dword_size = elem_size_bytes / 4;
3916
3917 if (!dst.id())
3918 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3919
3920 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3921 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3922 instr->definitions[0] = Definition(dst);
3923
3924 for (unsigned i = 0; i < cnt; ++i) {
3925 if (arr[i].id()) {
3926 assert(arr[i].size() == dword_size);
3927 allocated_vec[i] = arr[i];
3928 instr->operands[i] = Operand(arr[i]);
3929 } else {
3930 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3931 allocated_vec[i] = zero;
3932 instr->operands[i] = Operand(zero);
3933 }
3934 }
3935
3936 bld.insert(std::move(instr));
3937
3938 if (split_cnt)
3939 emit_split_vector(ctx, dst, split_cnt);
3940 else
3941 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3942
3943 return dst;
3944 }
3945
3946 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3947 {
3948 if (const_offset >= 4096) {
3949 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3950 const_offset %= 4096u;
3951
3952 if (!voffset.id())
3953 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3954 else if (unlikely(voffset.regClass() == s1))
3955 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3956 else if (likely(voffset.regClass() == v1))
3957 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3958 else
3959 unreachable("Unsupported register class of voffset");
3960 }
3961
3962 return const_offset;
3963 }
3964
3965 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3966 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3967 {
3968 assert(vdata.id());
3969 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3970 assert(vdata.size() >= 1 && vdata.size() <= 4);
3971
3972 Builder bld(ctx->program, ctx->block);
3973 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
3974 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3975
3976 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3977 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3978 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3979 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3980 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3981
3982 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3983 }
3984
3985 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3986 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3987 bool allow_combining = true, bool reorder = true, bool slc = false)
3988 {
3989 Builder bld(ctx->program, ctx->block);
3990 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3991 assert(write_mask);
3992 write_mask = widen_mask(write_mask, elem_size_bytes);
3993
3994 unsigned write_count = 0;
3995 Temp write_datas[32];
3996 unsigned offsets[32];
3997 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
3998 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
3999
4000 for (unsigned i = 0; i < write_count; i++) {
4001 unsigned const_offset = offsets[i] + base_const_offset;
4002 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, reorder, slc);
4003 }
4004 }
4005
4006 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
4007 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
4008 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
4009 {
4010 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
4011 assert((num_components * elem_size_bytes / 4) == dst.size());
4012 assert(!!stride != allow_combining);
4013
4014 Builder bld(ctx->program, ctx->block);
4015
4016 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
4017 info.component_stride = allow_combining ? 0 : stride;
4018 info.glc = true;
4019 info.swizzle_component_size = allow_combining ? 0 : 4;
4020 info.align_mul = MIN2(elem_size_bytes, 4);
4021 info.align_offset = 0;
4022 info.soffset = soffset;
4023 info.const_offset = base_const_offset;
4024 emit_mubuf_load(ctx, bld, &info);
4025 }
4026
4027 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
4028 {
4029 Builder bld(ctx->program, ctx->block);
4030 Temp offset = base_offset.first;
4031 unsigned const_offset = base_offset.second;
4032
4033 if (!nir_src_is_const(*off_src)) {
4034 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
4035 Temp with_stride;
4036
4037 /* Calculate indirect offset with stride */
4038 if (likely(indirect_offset_arg.regClass() == v1))
4039 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
4040 else if (indirect_offset_arg.regClass() == s1)
4041 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
4042 else
4043 unreachable("Unsupported register class of indirect offset");
4044
4045 /* Add to the supplied base offset */
4046 if (offset.id() == 0)
4047 offset = with_stride;
4048 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
4049 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
4050 else if (offset.size() == 1 && with_stride.size() == 1)
4051 offset = bld.vadd32(bld.def(v1), with_stride, offset);
4052 else
4053 unreachable("Unsupported register class of indirect offset");
4054 } else {
4055 unsigned const_offset_arg = nir_src_as_uint(*off_src);
4056 const_offset += const_offset_arg * stride;
4057 }
4058
4059 return std::make_pair(offset, const_offset);
4060 }
4061
4062 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
4063 {
4064 Builder bld(ctx->program, ctx->block);
4065 Temp offset;
4066
4067 if (off1.first.id() && off2.first.id()) {
4068 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
4069 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
4070 else if (off1.first.size() == 1 && off2.first.size() == 1)
4071 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
4072 else
4073 unreachable("Unsupported register class of indirect offset");
4074 } else {
4075 offset = off1.first.id() ? off1.first : off2.first;
4076 }
4077
4078 return std::make_pair(offset, off1.second + off2.second);
4079 }
4080
4081 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
4082 {
4083 Builder bld(ctx->program, ctx->block);
4084 unsigned const_offset = offs.second * multiplier;
4085
4086 if (!offs.first.id())
4087 return std::make_pair(offs.first, const_offset);
4088
4089 Temp offset = unlikely(offs.first.regClass() == s1)
4090 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
4091 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
4092
4093 return std::make_pair(offset, const_offset);
4094 }
4095
4096 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
4097 {
4098 Builder bld(ctx->program, ctx->block);
4099
4100 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
4101 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
4102 /* component is in bytes */
4103 const_offset += nir_intrinsic_component(instr) * component_stride;
4104
4105 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
4106 nir_src *off_src = nir_get_io_offset_src(instr);
4107 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
4108 }
4109
4110 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
4111 {
4112 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
4113 }
4114
4115 Temp get_tess_rel_patch_id(isel_context *ctx)
4116 {
4117 Builder bld(ctx->program, ctx->block);
4118
4119 switch (ctx->shader->info.stage) {
4120 case MESA_SHADER_TESS_CTRL:
4121 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
4122 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
4123 case MESA_SHADER_TESS_EVAL:
4124 return get_arg(ctx, ctx->args->tes_rel_patch_id);
4125 default:
4126 unreachable("Unsupported stage in get_tess_rel_patch_id");
4127 }
4128 }
4129
4130 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4131 {
4132 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4133 Builder bld(ctx->program, ctx->block);
4134
4135 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4136 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4137
4138 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4139
4140 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4141 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4142
4143 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4144 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4145 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4146
4147 return offset_mul(ctx, offs, 4u);
4148 }
4149
4150 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4151 {
4152 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4153 Builder bld(ctx->program, ctx->block);
4154
4155 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4156 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4157 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4158 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4159
4160 std::pair<Temp, unsigned> offs = instr
4161 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4162 : std::make_pair(Temp(), 0u);
4163
4164 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4165 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4166
4167 if (per_vertex) {
4168 assert(instr);
4169
4170 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4171 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4172
4173 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4174 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4175 } else {
4176 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4177 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4178 }
4179
4180 return offs;
4181 }
4182
4183 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4184 {
4185 Builder bld(ctx->program, ctx->block);
4186
4187 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4188 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4189
4190 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4191
4192 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4193 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4194 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4195
4196 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4197 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4198
4199 return offs;
4200 }
4201
4202 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4203 {
4204 Builder bld(ctx->program, ctx->block);
4205
4206 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4207 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4208 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4209 unsigned attr_stride = ctx->tcs_num_patches;
4210
4211 std::pair<Temp, unsigned> offs = instr
4212 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4213 : std::make_pair(Temp(), 0u);
4214
4215 if (const_base_offset)
4216 offs.second += const_base_offset * attr_stride;
4217
4218 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4219 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4220 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4221
4222 return offs;
4223 }
4224
4225 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4226 {
4227 if (mask == 0)
4228 return false;
4229
4230 unsigned off = nir_intrinsic_base(instr) * 4u;
4231 nir_src *off_src = nir_get_io_offset_src(instr);
4232
4233 if (!nir_src_is_const(*off_src)) {
4234 *indirect = true;
4235 return false;
4236 }
4237
4238 *indirect = false;
4239 off += nir_src_as_uint(*off_src) * 16u;
4240
4241 while (mask) {
4242 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
4243 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
4244 return true;
4245 }
4246
4247 return false;
4248 }
4249
4250 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4251 {
4252 unsigned write_mask = nir_intrinsic_write_mask(instr);
4253 unsigned component = nir_intrinsic_component(instr);
4254 unsigned idx = nir_intrinsic_base(instr) + component;
4255
4256 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4257 if (off_instr->type != nir_instr_type_load_const)
4258 return false;
4259
4260 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4261 idx += nir_src_as_uint(instr->src[1]) * 4u;
4262
4263 if (instr->src[0].ssa->bit_size == 64)
4264 write_mask = widen_mask(write_mask, 2);
4265
4266 for (unsigned i = 0; i < 8; ++i) {
4267 if (write_mask & (1 << i)) {
4268 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4269 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
4270 }
4271 idx++;
4272 }
4273
4274 return true;
4275 }
4276
4277 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4278 {
4279 /* Only TCS per-vertex inputs are supported by this function.
4280 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4281 */
4282 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4283 return false;
4284
4285 nir_src *off_src = nir_get_io_offset_src(instr);
4286 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4287 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4288 bool can_use_temps = nir_src_is_const(*off_src) &&
4289 vertex_index_instr->type == nir_instr_type_intrinsic &&
4290 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4291
4292 if (!can_use_temps)
4293 return false;
4294
4295 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4296 Temp *src = &ctx->inputs.temps[idx];
4297 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4298
4299 return true;
4300 }
4301
4302 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4303 {
4304 Builder bld(ctx->program, ctx->block);
4305
4306 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4307 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4308 bool indirect_write;
4309 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4310 if (temp_only_input && !indirect_write)
4311 return;
4312 }
4313
4314 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4315 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4316 unsigned write_mask = nir_intrinsic_write_mask(instr);
4317 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4318
4319 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4320 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4321 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4322 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4323 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
4324 } else {
4325 Temp lds_base;
4326
4327 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4328 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4329 unsigned itemsize = ctx->stage == vertex_geometry_gs
4330 ? ctx->program->info->vs.es_info.esgs_itemsize
4331 : ctx->program->info->tes.es_info.esgs_itemsize;
4332 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4333 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4334 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4335 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4336 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4337 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4338 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4339 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4340 */
4341 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4342 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4343 } else {
4344 unreachable("Invalid LS or ES stage");
4345 }
4346
4347 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4348 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4349 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4350 }
4351 }
4352
4353 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4354 {
4355 if (per_vertex)
4356 return false;
4357
4358 unsigned off = nir_intrinsic_base(instr) * 4u;
4359 return off == ctx->tcs_tess_lvl_out_loc ||
4360 off == ctx->tcs_tess_lvl_in_loc;
4361
4362 }
4363
4364 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4365 {
4366 uint64_t mask = per_vertex
4367 ? ctx->program->info->tcs.tes_inputs_read
4368 : ctx->program->info->tcs.tes_patch_inputs_read;
4369
4370 bool indirect_write = false;
4371 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4372 return indirect_write || output_read_by_tes;
4373 }
4374
4375 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4376 {
4377 uint64_t mask = per_vertex
4378 ? ctx->shader->info.outputs_read
4379 : ctx->shader->info.patch_outputs_read;
4380
4381 bool indirect_write = false;
4382 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4383 return indirect_write || output_read;
4384 }
4385
4386 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4387 {
4388 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4389 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4390
4391 Builder bld(ctx->program, ctx->block);
4392
4393 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4394 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4395 unsigned write_mask = nir_intrinsic_write_mask(instr);
4396
4397 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4398 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4399 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4400
4401 if (write_to_vmem) {
4402 std::pair<Temp, unsigned> vmem_offs = per_vertex
4403 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4404 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4405
4406 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4407 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4408 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
4409 }
4410
4411 if (write_to_lds) {
4412 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4413 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4414 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4415 }
4416 }
4417
4418 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4419 {
4420 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4421 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4422
4423 Builder bld(ctx->program, ctx->block);
4424
4425 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4426 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4427 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4428 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4429
4430 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4431 }
4432
4433 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4434 {
4435 if (ctx->stage == vertex_vs ||
4436 ctx->stage == tess_eval_vs ||
4437 ctx->stage == fragment_fs ||
4438 ctx->stage == ngg_vertex_gs ||
4439 ctx->stage == ngg_tess_eval_gs ||
4440 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4441 bool stored_to_temps = store_output_to_temps(ctx, instr);
4442 if (!stored_to_temps) {
4443 fprintf(stderr, "Unimplemented output offset instruction:\n");
4444 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
4445 fprintf(stderr, "\n");
4446 abort();
4447 }
4448 } else if (ctx->stage == vertex_es ||
4449 ctx->stage == vertex_ls ||
4450 ctx->stage == tess_eval_es ||
4451 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4452 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4453 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4454 visit_store_ls_or_es_output(ctx, instr);
4455 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4456 visit_store_tcs_output(ctx, instr, false);
4457 } else {
4458 unreachable("Shader stage not implemented");
4459 }
4460 }
4461
4462 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4463 {
4464 visit_load_tcs_output(ctx, instr, false);
4465 }
4466
4467 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4468 {
4469 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4470 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4471
4472 Builder bld(ctx->program, ctx->block);
4473 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
4474 if (ctx->program->has_16bank_lds)
4475 interp_p1.instr->operands[0].setLateKill(true);
4476 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
4477 }
4478
4479 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4480 {
4481 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4482 for (unsigned i = 0; i < num_components; i++)
4483 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4484 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4485 assert(num_components == 4);
4486 Builder bld(ctx->program, ctx->block);
4487 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4488 }
4489
4490 for (Operand& op : vec->operands)
4491 op = op.isUndefined() ? Operand(0u) : op;
4492
4493 vec->definitions[0] = Definition(dst);
4494 ctx->block->instructions.emplace_back(std::move(vec));
4495 emit_split_vector(ctx, dst, num_components);
4496 return;
4497 }
4498
4499 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4500 {
4501 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4502 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4503 unsigned idx = nir_intrinsic_base(instr);
4504 unsigned component = nir_intrinsic_component(instr);
4505 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4506
4507 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4508 if (offset) {
4509 assert(offset->u32 == 0);
4510 } else {
4511 /* the lower 15bit of the prim_mask contain the offset into LDS
4512 * while the upper bits contain the number of prims */
4513 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4514 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4515 Builder bld(ctx->program, ctx->block);
4516 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4517 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4518 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4519 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4520 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4521 }
4522
4523 if (instr->dest.ssa.num_components == 1) {
4524 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4525 } else {
4526 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4527 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4528 {
4529 Temp tmp = {ctx->program->allocateId(), v1};
4530 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4531 vec->operands[i] = Operand(tmp);
4532 }
4533 vec->definitions[0] = Definition(dst);
4534 ctx->block->instructions.emplace_back(std::move(vec));
4535 }
4536 }
4537
4538 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4539 unsigned offset, unsigned stride, unsigned channels)
4540 {
4541 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4542 if (vtx_info->chan_byte_size != 4 && channels == 3)
4543 return false;
4544 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4545 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4546 }
4547
4548 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4549 unsigned offset, unsigned stride, unsigned *channels)
4550 {
4551 if (!vtx_info->chan_byte_size) {
4552 *channels = vtx_info->num_channels;
4553 return vtx_info->chan_format;
4554 }
4555
4556 unsigned num_channels = *channels;
4557 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4558 unsigned new_channels = num_channels + 1;
4559 /* first, assume more loads is worse and try using a larger data format */
4560 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4561 new_channels++;
4562 /* don't make the attribute potentially out-of-bounds */
4563 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4564 new_channels = 5;
4565 }
4566
4567 if (new_channels == 5) {
4568 /* then try decreasing load size (at the cost of more loads) */
4569 new_channels = *channels;
4570 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4571 new_channels--;
4572 }
4573
4574 if (new_channels < *channels)
4575 *channels = new_channels;
4576 num_channels = new_channels;
4577 }
4578
4579 switch (vtx_info->chan_format) {
4580 case V_008F0C_BUF_DATA_FORMAT_8:
4581 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4582 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4583 case V_008F0C_BUF_DATA_FORMAT_16:
4584 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4585 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4586 case V_008F0C_BUF_DATA_FORMAT_32:
4587 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4588 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4589 }
4590 unreachable("shouldn't reach here");
4591 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4592 }
4593
4594 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4595 * so we may need to fix it up. */
4596 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4597 {
4598 Builder bld(ctx->program, ctx->block);
4599
4600 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4601 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4602
4603 /* For the integer-like cases, do a natural sign extension.
4604 *
4605 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4606 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4607 * exponent.
4608 */
4609 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4610 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4611
4612 /* Convert back to the right type. */
4613 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4614 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4615 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4616 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4617 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4618 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4619 }
4620
4621 return alpha;
4622 }
4623
4624 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4625 {
4626 Builder bld(ctx->program, ctx->block);
4627 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4628 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4629
4630 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4631 if (off_instr->type != nir_instr_type_load_const) {
4632 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4633 nir_print_instr(off_instr, stderr);
4634 fprintf(stderr, "\n");
4635 }
4636 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4637
4638 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4639
4640 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4641 unsigned component = nir_intrinsic_component(instr);
4642 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4643 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4644 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4645 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4646
4647 unsigned dfmt = attrib_format & 0xf;
4648 unsigned nfmt = (attrib_format >> 4) & 0x7;
4649 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4650
4651 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4652 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4653 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4654 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4655 if (post_shuffle)
4656 num_channels = MAX2(num_channels, 3);
4657
4658 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4659 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4660
4661 Temp index;
4662 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4663 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4664 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4665 if (divisor) {
4666 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4667 if (divisor != 1) {
4668 Temp divided = bld.tmp(v1);
4669 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4670 index = bld.vadd32(bld.def(v1), start_instance, divided);
4671 } else {
4672 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4673 }
4674 } else {
4675 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4676 }
4677 } else {
4678 index = bld.vadd32(bld.def(v1),
4679 get_arg(ctx, ctx->args->ac.base_vertex),
4680 get_arg(ctx, ctx->args->ac.vertex_id));
4681 }
4682
4683 Temp channels[num_channels];
4684 unsigned channel_start = 0;
4685 bool direct_fetch = false;
4686
4687 /* skip unused channels at the start */
4688 if (vtx_info->chan_byte_size && !post_shuffle) {
4689 channel_start = ffs(mask) - 1;
4690 for (unsigned i = 0; i < channel_start; i++)
4691 channels[i] = Temp(0, s1);
4692 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4693 num_channels = 3 - (ffs(mask) - 1);
4694 }
4695
4696 /* load channels */
4697 while (channel_start < num_channels) {
4698 unsigned fetch_size = num_channels - channel_start;
4699 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4700 bool expanded = false;
4701
4702 /* use MUBUF when possible to avoid possible alignment issues */
4703 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4704 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4705 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4706 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4707 vtx_info->chan_byte_size == 4;
4708 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4709 if (!use_mubuf) {
4710 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4711 } else {
4712 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4713 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4714 fetch_size = 4;
4715 expanded = true;
4716 }
4717 }
4718
4719 Temp fetch_index = index;
4720 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4721 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4722 fetch_offset = fetch_offset % attrib_stride;
4723 }
4724
4725 Operand soffset(0u);
4726 if (fetch_offset >= 4096) {
4727 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4728 fetch_offset %= 4096;
4729 }
4730
4731 aco_opcode opcode;
4732 switch (fetch_size) {
4733 case 1:
4734 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4735 break;
4736 case 2:
4737 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4738 break;
4739 case 3:
4740 assert(ctx->options->chip_class >= GFX7 ||
4741 (!use_mubuf && ctx->options->chip_class == GFX6));
4742 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4743 break;
4744 case 4:
4745 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4746 break;
4747 default:
4748 unreachable("Unimplemented load_input vector size");
4749 }
4750
4751 Temp fetch_dst;
4752 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4753 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4754 num_channels <= 3)) {
4755 direct_fetch = true;
4756 fetch_dst = dst;
4757 } else {
4758 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4759 }
4760
4761 if (use_mubuf) {
4762 Instruction *mubuf = bld.mubuf(opcode,
4763 Definition(fetch_dst), list, fetch_index, soffset,
4764 fetch_offset, false, true).instr;
4765 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4766 } else {
4767 Instruction *mtbuf = bld.mtbuf(opcode,
4768 Definition(fetch_dst), list, fetch_index, soffset,
4769 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4770 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4771 }
4772
4773 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4774
4775 if (fetch_size == 1) {
4776 channels[channel_start] = fetch_dst;
4777 } else {
4778 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4779 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4780 }
4781
4782 channel_start += fetch_size;
4783 }
4784
4785 if (!direct_fetch) {
4786 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4787 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4788
4789 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4790 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4791 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4792
4793 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4794 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4795 unsigned num_temp = 0;
4796 for (unsigned i = 0; i < dst.size(); i++) {
4797 unsigned idx = i + component;
4798 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4799 Temp channel = channels[swizzle[idx]];
4800 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4801 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4802 vec->operands[i] = Operand(channel);
4803
4804 num_temp++;
4805 elems[i] = channel;
4806 } else if (is_float && idx == 3) {
4807 vec->operands[i] = Operand(0x3f800000u);
4808 } else if (!is_float && idx == 3) {
4809 vec->operands[i] = Operand(1u);
4810 } else {
4811 vec->operands[i] = Operand(0u);
4812 }
4813 }
4814 vec->definitions[0] = Definition(dst);
4815 ctx->block->instructions.emplace_back(std::move(vec));
4816 emit_split_vector(ctx, dst, dst.size());
4817
4818 if (num_temp == dst.size())
4819 ctx->allocated_vec.emplace(dst.id(), elems);
4820 }
4821 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4822 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4823 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4824 if (off_instr->type != nir_instr_type_load_const ||
4825 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4826 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4827 nir_print_instr(off_instr, stderr);
4828 fprintf(stderr, "\n");
4829 }
4830
4831 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4832 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4833 if (offset) {
4834 assert(offset->u32 == 0);
4835 } else {
4836 /* the lower 15bit of the prim_mask contain the offset into LDS
4837 * while the upper bits contain the number of prims */
4838 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4839 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4840 Builder bld(ctx->program, ctx->block);
4841 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4842 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4843 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4844 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4845 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4846 }
4847
4848 unsigned idx = nir_intrinsic_base(instr);
4849 unsigned component = nir_intrinsic_component(instr);
4850 unsigned vertex_id = 2; /* P0 */
4851
4852 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4853 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4854 switch (src0->u32) {
4855 case 0:
4856 vertex_id = 2; /* P0 */
4857 break;
4858 case 1:
4859 vertex_id = 0; /* P10 */
4860 break;
4861 case 2:
4862 vertex_id = 1; /* P20 */
4863 break;
4864 default:
4865 unreachable("invalid vertex index");
4866 }
4867 }
4868
4869 if (dst.size() == 1) {
4870 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4871 } else {
4872 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4873 for (unsigned i = 0; i < dst.size(); i++)
4874 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4875 vec->definitions[0] = Definition(dst);
4876 bld.insert(std::move(vec));
4877 }
4878
4879 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4880 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4881 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4882 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4883 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4884
4885 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4886 } else {
4887 unreachable("Shader stage not implemented");
4888 }
4889 }
4890
4891 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4892 {
4893 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4894
4895 Builder bld(ctx->program, ctx->block);
4896 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4897 Temp vertex_offset;
4898
4899 if (!nir_src_is_const(*vertex_src)) {
4900 /* better code could be created, but this case probably doesn't happen
4901 * much in practice */
4902 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4903 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4904 Temp elem;
4905
4906 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4907 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4908 if (i % 2u)
4909 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4910 } else {
4911 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4912 }
4913
4914 if (vertex_offset.id()) {
4915 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4916 Operand(i), indirect_vertex);
4917 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4918 } else {
4919 vertex_offset = elem;
4920 }
4921 }
4922
4923 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4924 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4925 } else {
4926 unsigned vertex = nir_src_as_uint(*vertex_src);
4927 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4928 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4929 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4930 Operand((vertex % 2u) * 16u), Operand(16u));
4931 else
4932 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4933 }
4934
4935 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4936 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4937 return offset_mul(ctx, offs, 4u);
4938 }
4939
4940 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4941 {
4942 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4943
4944 Builder bld(ctx->program, ctx->block);
4945 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4946 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4947
4948 if (ctx->stage == geometry_gs) {
4949 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4950 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4951 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4952 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4953 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4954 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4955 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4956 } else {
4957 unreachable("Unsupported GS stage.");
4958 }
4959 }
4960
4961 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4962 {
4963 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4964
4965 Builder bld(ctx->program, ctx->block);
4966 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4967
4968 if (load_input_from_temps(ctx, instr, dst))
4969 return;
4970
4971 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4972 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4973 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4974
4975 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4976 }
4977
4978 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4979 {
4980 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4981
4982 Builder bld(ctx->program, ctx->block);
4983
4984 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4985 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4986 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4987
4988 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4989 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4990
4991 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4992 }
4993
4994 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4995 {
4996 switch (ctx->shader->info.stage) {
4997 case MESA_SHADER_GEOMETRY:
4998 visit_load_gs_per_vertex_input(ctx, instr);
4999 break;
5000 case MESA_SHADER_TESS_CTRL:
5001 visit_load_tcs_per_vertex_input(ctx, instr);
5002 break;
5003 case MESA_SHADER_TESS_EVAL:
5004 visit_load_tes_per_vertex_input(ctx, instr);
5005 break;
5006 default:
5007 unreachable("Unimplemented shader stage");
5008 }
5009 }
5010
5011 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5012 {
5013 visit_load_tcs_output(ctx, instr, true);
5014 }
5015
5016 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5017 {
5018 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
5019 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5020
5021 visit_store_tcs_output(ctx, instr, true);
5022 }
5023
5024 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
5025 {
5026 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5027
5028 Builder bld(ctx->program, ctx->block);
5029 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5030
5031 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
5032 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
5033 Operand tes_w(0u);
5034
5035 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
5036 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
5037 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
5038 tes_w = Operand(tmp);
5039 }
5040
5041 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
5042 emit_split_vector(ctx, tess_coord, 3);
5043 }
5044
5045 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
5046 {
5047 if (ctx->program->info->need_indirect_descriptor_sets) {
5048 Builder bld(ctx->program, ctx->block);
5049 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
5050 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
5051 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
5052 }
5053
5054 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
5055 }
5056
5057
5058 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
5059 {
5060 Builder bld(ctx->program, ctx->block);
5061 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
5062 if (!ctx->divergent_vals[instr->dest.ssa.index])
5063 index = bld.as_uniform(index);
5064 unsigned desc_set = nir_intrinsic_desc_set(instr);
5065 unsigned binding = nir_intrinsic_binding(instr);
5066
5067 Temp desc_ptr;
5068 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
5069 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
5070 unsigned offset = layout->binding[binding].offset;
5071 unsigned stride;
5072 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
5073 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
5074 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
5075 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
5076 offset = pipeline_layout->push_constant_size + 16 * idx;
5077 stride = 16;
5078 } else {
5079 desc_ptr = load_desc_ptr(ctx, desc_set);
5080 stride = layout->binding[binding].size;
5081 }
5082
5083 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
5084 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
5085 if (stride != 1) {
5086 if (nir_const_index) {
5087 const_index = const_index * stride;
5088 } else if (index.type() == RegType::vgpr) {
5089 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
5090 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
5091 } else {
5092 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5093 }
5094 }
5095 if (offset) {
5096 if (nir_const_index) {
5097 const_index = const_index + offset;
5098 } else if (index.type() == RegType::vgpr) {
5099 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5100 } else {
5101 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5102 }
5103 }
5104
5105 if (nir_const_index && const_index == 0) {
5106 index = desc_ptr;
5107 } else if (index.type() == RegType::vgpr) {
5108 index = bld.vadd32(bld.def(v1),
5109 nir_const_index ? Operand(const_index) : Operand(index),
5110 Operand(desc_ptr));
5111 } else {
5112 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5113 nir_const_index ? Operand(const_index) : Operand(index),
5114 Operand(desc_ptr));
5115 }
5116
5117 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5118 }
5119
5120 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5121 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5122 bool glc=false, bool readonly=true)
5123 {
5124 Builder bld(ctx->program, ctx->block);
5125
5126 bool use_smem = dst.type() != RegType::vgpr && ((ctx->options->chip_class >= GFX8 && component_size >= 4) || readonly);
5127 if (use_smem)
5128 offset = bld.as_uniform(offset);
5129
5130 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5131 info.glc = glc;
5132 info.barrier = readonly ? barrier_none : barrier_buffer;
5133 info.can_reorder = readonly;
5134 info.align_mul = align_mul;
5135 info.align_offset = align_offset;
5136 if (use_smem)
5137 emit_smem_load(ctx, bld, &info);
5138 else
5139 emit_mubuf_load(ctx, bld, &info);
5140 }
5141
5142 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5143 {
5144 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5145 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5146
5147 Builder bld(ctx->program, ctx->block);
5148
5149 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5150 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5151 unsigned binding = nir_intrinsic_binding(idx_instr);
5152 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5153
5154 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5155 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5156 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5157 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5158 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5159 if (ctx->options->chip_class >= GFX10) {
5160 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5161 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5162 S_008F0C_RESOURCE_LEVEL(1);
5163 } else {
5164 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5165 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5166 }
5167 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5168 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5169 Operand(0xFFFFFFFFu),
5170 Operand(desc_type));
5171 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5172 rsrc, upper_dwords);
5173 } else {
5174 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5175 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5176 }
5177 unsigned size = instr->dest.ssa.bit_size / 8;
5178 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5179 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5180 }
5181
5182 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5183 {
5184 Builder bld(ctx->program, ctx->block);
5185 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5186 unsigned offset = nir_intrinsic_base(instr);
5187 unsigned count = instr->dest.ssa.num_components;
5188 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5189
5190 if (index_cv && instr->dest.ssa.bit_size == 32) {
5191 unsigned start = (offset + index_cv->u32) / 4u;
5192 start -= ctx->args->ac.base_inline_push_consts;
5193 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5194 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5195 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5196 for (unsigned i = 0; i < count; ++i) {
5197 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5198 vec->operands[i] = Operand{elems[i]};
5199 }
5200 vec->definitions[0] = Definition(dst);
5201 ctx->block->instructions.emplace_back(std::move(vec));
5202 ctx->allocated_vec.emplace(dst.id(), elems);
5203 return;
5204 }
5205 }
5206
5207 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5208 if (offset != 0) // TODO check if index != 0 as well
5209 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5210 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5211 Temp vec = dst;
5212 bool trim = false;
5213 bool aligned = true;
5214
5215 if (instr->dest.ssa.bit_size == 8) {
5216 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5217 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5218 if (!aligned)
5219 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5220 } else if (instr->dest.ssa.bit_size == 16) {
5221 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5222 if (!aligned)
5223 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5224 }
5225
5226 aco_opcode op;
5227
5228 switch (vec.size()) {
5229 case 1:
5230 op = aco_opcode::s_load_dword;
5231 break;
5232 case 2:
5233 op = aco_opcode::s_load_dwordx2;
5234 break;
5235 case 3:
5236 vec = bld.tmp(s4);
5237 trim = true;
5238 case 4:
5239 op = aco_opcode::s_load_dwordx4;
5240 break;
5241 case 6:
5242 vec = bld.tmp(s8);
5243 trim = true;
5244 case 8:
5245 op = aco_opcode::s_load_dwordx8;
5246 break;
5247 default:
5248 unreachable("unimplemented or forbidden load_push_constant.");
5249 }
5250
5251 bld.smem(op, Definition(vec), ptr, index);
5252
5253 if (!aligned) {
5254 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5255 byte_align_scalar(ctx, vec, byte_offset, dst);
5256 return;
5257 }
5258
5259 if (trim) {
5260 emit_split_vector(ctx, vec, 4);
5261 RegClass rc = dst.size() == 3 ? s1 : s2;
5262 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5263 emit_extract_vector(ctx, vec, 0, rc),
5264 emit_extract_vector(ctx, vec, 1, rc),
5265 emit_extract_vector(ctx, vec, 2, rc));
5266
5267 }
5268 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5269 }
5270
5271 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5272 {
5273 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5274
5275 Builder bld(ctx->program, ctx->block);
5276
5277 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5278 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5279 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5280 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5281 if (ctx->options->chip_class >= GFX10) {
5282 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5283 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5284 S_008F0C_RESOURCE_LEVEL(1);
5285 } else {
5286 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5287 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5288 }
5289
5290 unsigned base = nir_intrinsic_base(instr);
5291 unsigned range = nir_intrinsic_range(instr);
5292
5293 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5294 if (base && offset.type() == RegType::sgpr)
5295 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5296 else if (base && offset.type() == RegType::vgpr)
5297 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5298
5299 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5300 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5301 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5302 Operand(desc_type));
5303 unsigned size = instr->dest.ssa.bit_size / 8;
5304 // TODO: get alignment information for subdword constants
5305 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5306 }
5307
5308 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5309 {
5310 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5311 ctx->cf_info.exec_potentially_empty_discard = true;
5312
5313 ctx->program->needs_exact = true;
5314
5315 // TODO: optimize uniform conditions
5316 Builder bld(ctx->program, ctx->block);
5317 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5318 assert(src.regClass() == bld.lm);
5319 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5320 bld.pseudo(aco_opcode::p_discard_if, src);
5321 ctx->block->kind |= block_kind_uses_discard_if;
5322 return;
5323 }
5324
5325 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5326 {
5327 Builder bld(ctx->program, ctx->block);
5328
5329 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5330 ctx->cf_info.exec_potentially_empty_discard = true;
5331
5332 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5333 ctx->cf_info.parent_loop.has_divergent_continue;
5334
5335 if (ctx->block->loop_nest_depth &&
5336 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5337 /* we handle discards the same way as jump instructions */
5338 append_logical_end(ctx->block);
5339
5340 /* in loops, discard behaves like break */
5341 Block *linear_target = ctx->cf_info.parent_loop.exit;
5342 ctx->block->kind |= block_kind_discard;
5343
5344 if (!divergent) {
5345 /* uniform discard - loop ends here */
5346 assert(nir_instr_is_last(&instr->instr));
5347 ctx->block->kind |= block_kind_uniform;
5348 ctx->cf_info.has_branch = true;
5349 bld.branch(aco_opcode::p_branch);
5350 add_linear_edge(ctx->block->index, linear_target);
5351 return;
5352 }
5353
5354 /* we add a break right behind the discard() instructions */
5355 ctx->block->kind |= block_kind_break;
5356 unsigned idx = ctx->block->index;
5357
5358 ctx->cf_info.parent_loop.has_divergent_branch = true;
5359 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5360
5361 /* remove critical edges from linear CFG */
5362 bld.branch(aco_opcode::p_branch);
5363 Block* break_block = ctx->program->create_and_insert_block();
5364 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5365 break_block->kind |= block_kind_uniform;
5366 add_linear_edge(idx, break_block);
5367 add_linear_edge(break_block->index, linear_target);
5368 bld.reset(break_block);
5369 bld.branch(aco_opcode::p_branch);
5370
5371 Block* continue_block = ctx->program->create_and_insert_block();
5372 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5373 add_linear_edge(idx, continue_block);
5374 append_logical_start(continue_block);
5375 ctx->block = continue_block;
5376
5377 return;
5378 }
5379
5380 /* it can currently happen that NIR doesn't remove the unreachable code */
5381 if (!nir_instr_is_last(&instr->instr)) {
5382 ctx->program->needs_exact = true;
5383 /* save exec somewhere temporarily so that it doesn't get
5384 * overwritten before the discard from outer exec masks */
5385 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5386 bld.pseudo(aco_opcode::p_discard_if, cond);
5387 ctx->block->kind |= block_kind_uses_discard_if;
5388 return;
5389 }
5390
5391 /* This condition is incorrect for uniformly branched discards in a loop
5392 * predicated by a divergent condition, but the above code catches that case
5393 * and the discard would end up turning into a discard_if.
5394 * For example:
5395 * if (divergent) {
5396 * while (...) {
5397 * if (uniform) {
5398 * discard;
5399 * }
5400 * }
5401 * }
5402 */
5403 if (!ctx->cf_info.parent_if.is_divergent) {
5404 /* program just ends here */
5405 ctx->block->kind |= block_kind_uniform;
5406 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5407 0 /* enabled mask */, 9 /* dest */,
5408 false /* compressed */, true/* done */, true /* valid mask */);
5409 bld.sopp(aco_opcode::s_endpgm);
5410 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5411 } else {
5412 ctx->block->kind |= block_kind_discard;
5413 /* branch and linear edge is added by visit_if() */
5414 }
5415 }
5416
5417 enum aco_descriptor_type {
5418 ACO_DESC_IMAGE,
5419 ACO_DESC_FMASK,
5420 ACO_DESC_SAMPLER,
5421 ACO_DESC_BUFFER,
5422 ACO_DESC_PLANE_0,
5423 ACO_DESC_PLANE_1,
5424 ACO_DESC_PLANE_2,
5425 };
5426
5427 static bool
5428 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5429 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5430 return false;
5431 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5432 return dim == ac_image_cube ||
5433 dim == ac_image_1darray ||
5434 dim == ac_image_2darray ||
5435 dim == ac_image_2darraymsaa;
5436 }
5437
5438 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5439 enum aco_descriptor_type desc_type,
5440 const nir_tex_instr *tex_instr, bool image, bool write)
5441 {
5442 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5443 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5444 if (it != ctx->tex_desc.end())
5445 return it->second;
5446 */
5447 Temp index = Temp();
5448 bool index_set = false;
5449 unsigned constant_index = 0;
5450 unsigned descriptor_set;
5451 unsigned base_index;
5452 Builder bld(ctx->program, ctx->block);
5453
5454 if (!deref_instr) {
5455 assert(tex_instr && !image);
5456 descriptor_set = 0;
5457 base_index = tex_instr->sampler_index;
5458 } else {
5459 while(deref_instr->deref_type != nir_deref_type_var) {
5460 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5461 if (!array_size)
5462 array_size = 1;
5463
5464 assert(deref_instr->deref_type == nir_deref_type_array);
5465 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5466 if (const_value) {
5467 constant_index += array_size * const_value->u32;
5468 } else {
5469 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5470 if (indirect.type() == RegType::vgpr)
5471 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5472
5473 if (array_size != 1)
5474 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5475
5476 if (!index_set) {
5477 index = indirect;
5478 index_set = true;
5479 } else {
5480 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5481 }
5482 }
5483
5484 deref_instr = nir_src_as_deref(deref_instr->parent);
5485 }
5486 descriptor_set = deref_instr->var->data.descriptor_set;
5487 base_index = deref_instr->var->data.binding;
5488 }
5489
5490 Temp list = load_desc_ptr(ctx, descriptor_set);
5491 list = convert_pointer_to_64_bit(ctx, list);
5492
5493 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5494 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5495 unsigned offset = binding->offset;
5496 unsigned stride = binding->size;
5497 aco_opcode opcode;
5498 RegClass type;
5499
5500 assert(base_index < layout->binding_count);
5501
5502 switch (desc_type) {
5503 case ACO_DESC_IMAGE:
5504 type = s8;
5505 opcode = aco_opcode::s_load_dwordx8;
5506 break;
5507 case ACO_DESC_FMASK:
5508 type = s8;
5509 opcode = aco_opcode::s_load_dwordx8;
5510 offset += 32;
5511 break;
5512 case ACO_DESC_SAMPLER:
5513 type = s4;
5514 opcode = aco_opcode::s_load_dwordx4;
5515 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5516 offset += radv_combined_image_descriptor_sampler_offset(binding);
5517 break;
5518 case ACO_DESC_BUFFER:
5519 type = s4;
5520 opcode = aco_opcode::s_load_dwordx4;
5521 break;
5522 case ACO_DESC_PLANE_0:
5523 case ACO_DESC_PLANE_1:
5524 type = s8;
5525 opcode = aco_opcode::s_load_dwordx8;
5526 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5527 break;
5528 case ACO_DESC_PLANE_2:
5529 type = s4;
5530 opcode = aco_opcode::s_load_dwordx4;
5531 offset += 64;
5532 break;
5533 default:
5534 unreachable("invalid desc_type\n");
5535 }
5536
5537 offset += constant_index * stride;
5538
5539 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5540 (!index_set || binding->immutable_samplers_equal)) {
5541 if (binding->immutable_samplers_equal)
5542 constant_index = 0;
5543
5544 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5545 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5546 Operand(samplers[constant_index * 4 + 0]),
5547 Operand(samplers[constant_index * 4 + 1]),
5548 Operand(samplers[constant_index * 4 + 2]),
5549 Operand(samplers[constant_index * 4 + 3]));
5550 }
5551
5552 Operand off;
5553 if (!index_set) {
5554 off = bld.copy(bld.def(s1), Operand(offset));
5555 } else {
5556 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5557 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5558 }
5559
5560 Temp res = bld.smem(opcode, bld.def(type), list, off);
5561
5562 if (desc_type == ACO_DESC_PLANE_2) {
5563 Temp components[8];
5564 for (unsigned i = 0; i < 8; i++)
5565 components[i] = bld.tmp(s1);
5566 bld.pseudo(aco_opcode::p_split_vector,
5567 Definition(components[0]),
5568 Definition(components[1]),
5569 Definition(components[2]),
5570 Definition(components[3]),
5571 res);
5572
5573 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5574 bld.pseudo(aco_opcode::p_split_vector,
5575 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5576 Definition(components[4]),
5577 Definition(components[5]),
5578 Definition(components[6]),
5579 Definition(components[7]),
5580 desc2);
5581
5582 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5583 components[0], components[1], components[2], components[3],
5584 components[4], components[5], components[6], components[7]);
5585 }
5586
5587 return res;
5588 }
5589
5590 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5591 {
5592 switch (dim) {
5593 case GLSL_SAMPLER_DIM_BUF:
5594 return 1;
5595 case GLSL_SAMPLER_DIM_1D:
5596 return array ? 2 : 1;
5597 case GLSL_SAMPLER_DIM_2D:
5598 return array ? 3 : 2;
5599 case GLSL_SAMPLER_DIM_MS:
5600 return array ? 4 : 3;
5601 case GLSL_SAMPLER_DIM_3D:
5602 case GLSL_SAMPLER_DIM_CUBE:
5603 return 3;
5604 case GLSL_SAMPLER_DIM_RECT:
5605 case GLSL_SAMPLER_DIM_SUBPASS:
5606 return 2;
5607 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5608 return 3;
5609 default:
5610 break;
5611 }
5612 return 0;
5613 }
5614
5615
5616 /* Adjust the sample index according to FMASK.
5617 *
5618 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5619 * which is the identity mapping. Each nibble says which physical sample
5620 * should be fetched to get that sample.
5621 *
5622 * For example, 0x11111100 means there are only 2 samples stored and
5623 * the second sample covers 3/4 of the pixel. When reading samples 0
5624 * and 1, return physical sample 0 (determined by the first two 0s
5625 * in FMASK), otherwise return physical sample 1.
5626 *
5627 * The sample index should be adjusted as follows:
5628 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5629 */
5630 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5631 {
5632 Builder bld(ctx->program, ctx->block);
5633 Temp fmask = bld.tmp(v1);
5634 unsigned dim = ctx->options->chip_class >= GFX10
5635 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5636 : 0;
5637
5638 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5639 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5640 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5641 load->operands[0] = Operand(fmask_desc_ptr);
5642 load->operands[1] = Operand(s4); /* no sampler */
5643 load->operands[2] = Operand(coord);
5644 load->definitions[0] = Definition(fmask);
5645 load->glc = false;
5646 load->dlc = false;
5647 load->dmask = 0x1;
5648 load->unrm = true;
5649 load->da = da;
5650 load->dim = dim;
5651 load->can_reorder = true; /* fmask images shouldn't be modified */
5652 ctx->block->instructions.emplace_back(std::move(load));
5653
5654 Operand sample_index4;
5655 if (sample_index.isConstant()) {
5656 if (sample_index.constantValue() < 16) {
5657 sample_index4 = Operand(sample_index.constantValue() << 2);
5658 } else {
5659 sample_index4 = Operand(0u);
5660 }
5661 } else if (sample_index.regClass() == s1) {
5662 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5663 } else {
5664 assert(sample_index.regClass() == v1);
5665 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5666 }
5667
5668 Temp final_sample;
5669 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5670 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5671 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5672 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5673 else
5674 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5675
5676 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5677 * resource descriptor is 0 (invalid),
5678 */
5679 Temp compare = bld.tmp(bld.lm);
5680 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5681 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5682
5683 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5684
5685 /* Replace the MSAA sample index. */
5686 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5687 }
5688
5689 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5690 {
5691
5692 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5693 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5694 bool is_array = glsl_sampler_type_is_array(type);
5695 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5696 assert(!add_frag_pos && "Input attachments should be lowered.");
5697 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5698 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5699 int count = image_type_to_components_count(dim, is_array);
5700 std::vector<Temp> coords(count);
5701 Builder bld(ctx->program, ctx->block);
5702
5703 if (is_ms) {
5704 count--;
5705 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5706 /* get sample index */
5707 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5708 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5709 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5710 std::vector<Temp> fmask_load_address;
5711 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5712 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5713
5714 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5715 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5716 } else {
5717 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5718 }
5719 }
5720
5721 if (gfx9_1d) {
5722 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5723 coords.resize(coords.size() + 1);
5724 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5725 if (is_array)
5726 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5727 } else {
5728 for (int i = 0; i < count; i++)
5729 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5730 }
5731
5732 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5733 instr->intrinsic == nir_intrinsic_image_deref_store) {
5734 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5735 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5736
5737 if (!level_zero)
5738 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5739 }
5740
5741 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5742 for (unsigned i = 0; i < coords.size(); i++)
5743 vec->operands[i] = Operand(coords[i]);
5744 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5745 vec->definitions[0] = Definition(res);
5746 ctx->block->instructions.emplace_back(std::move(vec));
5747 return res;
5748 }
5749
5750
5751 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5752 {
5753 Builder bld(ctx->program, ctx->block);
5754 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5755 const struct glsl_type *type = glsl_without_array(var->type);
5756 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5757 bool is_array = glsl_sampler_type_is_array(type);
5758 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5759
5760 if (dim == GLSL_SAMPLER_DIM_BUF) {
5761 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5762 unsigned num_channels = util_last_bit(mask);
5763 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5764 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5765
5766 aco_opcode opcode;
5767 switch (num_channels) {
5768 case 1:
5769 opcode = aco_opcode::buffer_load_format_x;
5770 break;
5771 case 2:
5772 opcode = aco_opcode::buffer_load_format_xy;
5773 break;
5774 case 3:
5775 opcode = aco_opcode::buffer_load_format_xyz;
5776 break;
5777 case 4:
5778 opcode = aco_opcode::buffer_load_format_xyzw;
5779 break;
5780 default:
5781 unreachable(">4 channel buffer image load");
5782 }
5783 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5784 load->operands[0] = Operand(rsrc);
5785 load->operands[1] = Operand(vindex);
5786 load->operands[2] = Operand((uint32_t) 0);
5787 Temp tmp;
5788 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5789 tmp = dst;
5790 else
5791 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5792 load->definitions[0] = Definition(tmp);
5793 load->idxen = true;
5794 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5795 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5796 load->barrier = barrier_image;
5797 ctx->block->instructions.emplace_back(std::move(load));
5798
5799 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5800 return;
5801 }
5802
5803 Temp coords = get_image_coords(ctx, instr, type);
5804 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5805
5806 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5807 unsigned num_components = util_bitcount(dmask);
5808 Temp tmp;
5809 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5810 tmp = dst;
5811 else
5812 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5813
5814 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5815 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5816
5817 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5818 load->operands[0] = Operand(resource);
5819 load->operands[1] = Operand(s4); /* no sampler */
5820 load->operands[2] = Operand(coords);
5821 load->definitions[0] = Definition(tmp);
5822 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5823 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5824 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5825 load->dmask = dmask;
5826 load->unrm = true;
5827 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5828 load->barrier = barrier_image;
5829 ctx->block->instructions.emplace_back(std::move(load));
5830
5831 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5832 return;
5833 }
5834
5835 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5836 {
5837 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5838 const struct glsl_type *type = glsl_without_array(var->type);
5839 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5840 bool is_array = glsl_sampler_type_is_array(type);
5841 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5842
5843 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5844
5845 if (dim == GLSL_SAMPLER_DIM_BUF) {
5846 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5847 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5848 aco_opcode opcode;
5849 switch (data.size()) {
5850 case 1:
5851 opcode = aco_opcode::buffer_store_format_x;
5852 break;
5853 case 2:
5854 opcode = aco_opcode::buffer_store_format_xy;
5855 break;
5856 case 3:
5857 opcode = aco_opcode::buffer_store_format_xyz;
5858 break;
5859 case 4:
5860 opcode = aco_opcode::buffer_store_format_xyzw;
5861 break;
5862 default:
5863 unreachable(">4 channel buffer image store");
5864 }
5865 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5866 store->operands[0] = Operand(rsrc);
5867 store->operands[1] = Operand(vindex);
5868 store->operands[2] = Operand((uint32_t) 0);
5869 store->operands[3] = Operand(data);
5870 store->idxen = true;
5871 store->glc = glc;
5872 store->dlc = false;
5873 store->disable_wqm = true;
5874 store->barrier = barrier_image;
5875 ctx->program->needs_exact = true;
5876 ctx->block->instructions.emplace_back(std::move(store));
5877 return;
5878 }
5879
5880 assert(data.type() == RegType::vgpr);
5881 Temp coords = get_image_coords(ctx, instr, type);
5882 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5883
5884 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5885 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5886
5887 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5888 store->operands[0] = Operand(resource);
5889 store->operands[1] = Operand(data);
5890 store->operands[2] = Operand(coords);
5891 store->glc = glc;
5892 store->dlc = false;
5893 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5894 store->dmask = (1 << data.size()) - 1;
5895 store->unrm = true;
5896 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5897 store->disable_wqm = true;
5898 store->barrier = barrier_image;
5899 ctx->program->needs_exact = true;
5900 ctx->block->instructions.emplace_back(std::move(store));
5901 return;
5902 }
5903
5904 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5905 {
5906 /* return the previous value if dest is ever used */
5907 bool return_previous = false;
5908 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5909 return_previous = true;
5910 break;
5911 }
5912 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5913 return_previous = true;
5914 break;
5915 }
5916
5917 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5918 const struct glsl_type *type = glsl_without_array(var->type);
5919 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5920 bool is_array = glsl_sampler_type_is_array(type);
5921 Builder bld(ctx->program, ctx->block);
5922
5923 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5924 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5925
5926 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5927 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5928
5929 aco_opcode buf_op, image_op;
5930 switch (instr->intrinsic) {
5931 case nir_intrinsic_image_deref_atomic_add:
5932 buf_op = aco_opcode::buffer_atomic_add;
5933 image_op = aco_opcode::image_atomic_add;
5934 break;
5935 case nir_intrinsic_image_deref_atomic_umin:
5936 buf_op = aco_opcode::buffer_atomic_umin;
5937 image_op = aco_opcode::image_atomic_umin;
5938 break;
5939 case nir_intrinsic_image_deref_atomic_imin:
5940 buf_op = aco_opcode::buffer_atomic_smin;
5941 image_op = aco_opcode::image_atomic_smin;
5942 break;
5943 case nir_intrinsic_image_deref_atomic_umax:
5944 buf_op = aco_opcode::buffer_atomic_umax;
5945 image_op = aco_opcode::image_atomic_umax;
5946 break;
5947 case nir_intrinsic_image_deref_atomic_imax:
5948 buf_op = aco_opcode::buffer_atomic_smax;
5949 image_op = aco_opcode::image_atomic_smax;
5950 break;
5951 case nir_intrinsic_image_deref_atomic_and:
5952 buf_op = aco_opcode::buffer_atomic_and;
5953 image_op = aco_opcode::image_atomic_and;
5954 break;
5955 case nir_intrinsic_image_deref_atomic_or:
5956 buf_op = aco_opcode::buffer_atomic_or;
5957 image_op = aco_opcode::image_atomic_or;
5958 break;
5959 case nir_intrinsic_image_deref_atomic_xor:
5960 buf_op = aco_opcode::buffer_atomic_xor;
5961 image_op = aco_opcode::image_atomic_xor;
5962 break;
5963 case nir_intrinsic_image_deref_atomic_exchange:
5964 buf_op = aco_opcode::buffer_atomic_swap;
5965 image_op = aco_opcode::image_atomic_swap;
5966 break;
5967 case nir_intrinsic_image_deref_atomic_comp_swap:
5968 buf_op = aco_opcode::buffer_atomic_cmpswap;
5969 image_op = aco_opcode::image_atomic_cmpswap;
5970 break;
5971 default:
5972 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5973 }
5974
5975 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5976
5977 if (dim == GLSL_SAMPLER_DIM_BUF) {
5978 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5979 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5980 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5981 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5982 mubuf->operands[0] = Operand(resource);
5983 mubuf->operands[1] = Operand(vindex);
5984 mubuf->operands[2] = Operand((uint32_t)0);
5985 mubuf->operands[3] = Operand(data);
5986 if (return_previous)
5987 mubuf->definitions[0] = Definition(dst);
5988 mubuf->offset = 0;
5989 mubuf->idxen = true;
5990 mubuf->glc = return_previous;
5991 mubuf->dlc = false; /* Not needed for atomics */
5992 mubuf->disable_wqm = true;
5993 mubuf->barrier = barrier_image;
5994 ctx->program->needs_exact = true;
5995 ctx->block->instructions.emplace_back(std::move(mubuf));
5996 return;
5997 }
5998
5999 Temp coords = get_image_coords(ctx, instr, type);
6000 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
6001 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
6002 mimg->operands[0] = Operand(resource);
6003 mimg->operands[1] = Operand(data);
6004 mimg->operands[2] = Operand(coords);
6005 if (return_previous)
6006 mimg->definitions[0] = Definition(dst);
6007 mimg->glc = return_previous;
6008 mimg->dlc = false; /* Not needed for atomics */
6009 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6010 mimg->dmask = (1 << data.size()) - 1;
6011 mimg->unrm = true;
6012 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6013 mimg->disable_wqm = true;
6014 mimg->barrier = barrier_image;
6015 ctx->program->needs_exact = true;
6016 ctx->block->instructions.emplace_back(std::move(mimg));
6017 return;
6018 }
6019
6020 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
6021 {
6022 if (in_elements && ctx->options->chip_class == GFX8) {
6023 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
6024 Builder bld(ctx->program, ctx->block);
6025
6026 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6027
6028 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6029 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
6030
6031 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6032 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6033
6034 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6035 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6036
6037 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6038 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6039 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6040 if (dst.type() == RegType::vgpr)
6041 bld.copy(Definition(dst), shr_dst);
6042
6043 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6044 } else {
6045 emit_extract_vector(ctx, desc, 2, dst);
6046 }
6047 }
6048
6049 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6050 {
6051 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6052 const struct glsl_type *type = glsl_without_array(var->type);
6053 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6054 bool is_array = glsl_sampler_type_is_array(type);
6055 Builder bld(ctx->program, ctx->block);
6056
6057 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6058 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6059 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6060 }
6061
6062 /* LOD */
6063 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6064
6065 /* Resource */
6066 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6067
6068 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6069
6070 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6071 mimg->operands[0] = Operand(resource);
6072 mimg->operands[1] = Operand(s4); /* no sampler */
6073 mimg->operands[2] = Operand(lod);
6074 uint8_t& dmask = mimg->dmask;
6075 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6076 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6077 mimg->da = glsl_sampler_type_is_array(type);
6078 mimg->can_reorder = true;
6079 Definition& def = mimg->definitions[0];
6080 ctx->block->instructions.emplace_back(std::move(mimg));
6081
6082 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6083 glsl_sampler_type_is_array(type)) {
6084
6085 assert(instr->dest.ssa.num_components == 3);
6086 Temp tmp = {ctx->program->allocateId(), v3};
6087 def = Definition(tmp);
6088 emit_split_vector(ctx, tmp, 3);
6089
6090 /* divide 3rd value by 6 by multiplying with magic number */
6091 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6092 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6093
6094 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6095 emit_extract_vector(ctx, tmp, 0, v1),
6096 emit_extract_vector(ctx, tmp, 1, v1),
6097 by_6);
6098
6099 } else if (ctx->options->chip_class == GFX9 &&
6100 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6101 glsl_sampler_type_is_array(type)) {
6102 assert(instr->dest.ssa.num_components == 2);
6103 def = Definition(dst);
6104 dmask = 0x5;
6105 } else {
6106 def = Definition(dst);
6107 }
6108
6109 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6110 }
6111
6112 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6113 {
6114 Builder bld(ctx->program, ctx->block);
6115 unsigned num_components = instr->num_components;
6116
6117 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6118 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6119 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6120
6121 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6122 unsigned size = instr->dest.ssa.bit_size / 8;
6123 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6124 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, false);
6125 }
6126
6127 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6128 {
6129 Builder bld(ctx->program, ctx->block);
6130 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6131 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6132 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6133 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6134
6135 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6136 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6137
6138 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
6139 ctx->options->chip_class >= GFX8 &&
6140 elem_size_bytes >= 4;
6141 if (smem)
6142 offset = bld.as_uniform(offset);
6143 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6144
6145 unsigned write_count = 0;
6146 Temp write_datas[32];
6147 unsigned offsets[32];
6148 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6149 data, writemask, 16, &write_count, write_datas, offsets);
6150
6151 for (unsigned i = 0; i < write_count; i++) {
6152 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6153 if (smem && ctx->stage == fragment_fs)
6154 op = aco_opcode::p_fs_buffer_store_smem;
6155
6156 if (smem) {
6157 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6158 store->operands[0] = Operand(rsrc);
6159 if (offsets[i]) {
6160 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6161 offset, Operand(offsets[i]));
6162 store->operands[1] = Operand(off);
6163 } else {
6164 store->operands[1] = Operand(offset);
6165 }
6166 if (op != aco_opcode::p_fs_buffer_store_smem)
6167 store->operands[1].setFixed(m0);
6168 store->operands[2] = Operand(write_datas[i]);
6169 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6170 store->dlc = false;
6171 store->disable_wqm = true;
6172 store->barrier = barrier_buffer;
6173 ctx->block->instructions.emplace_back(std::move(store));
6174 ctx->program->wb_smem_l1_on_end = true;
6175 if (op == aco_opcode::p_fs_buffer_store_smem) {
6176 ctx->block->kind |= block_kind_needs_lowering;
6177 ctx->program->needs_exact = true;
6178 }
6179 } else {
6180 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6181 store->operands[0] = Operand(rsrc);
6182 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6183 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6184 store->operands[3] = Operand(write_datas[i]);
6185 store->offset = offsets[i];
6186 store->offen = (offset.type() == RegType::vgpr);
6187 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6188 store->dlc = false;
6189 store->disable_wqm = true;
6190 store->barrier = barrier_buffer;
6191 ctx->program->needs_exact = true;
6192 ctx->block->instructions.emplace_back(std::move(store));
6193 }
6194 }
6195 }
6196
6197 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6198 {
6199 /* return the previous value if dest is ever used */
6200 bool return_previous = false;
6201 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6202 return_previous = true;
6203 break;
6204 }
6205 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6206 return_previous = true;
6207 break;
6208 }
6209
6210 Builder bld(ctx->program, ctx->block);
6211 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6212
6213 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6214 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6215 get_ssa_temp(ctx, instr->src[3].ssa), data);
6216
6217 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6218 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6219 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6220
6221 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6222
6223 aco_opcode op32, op64;
6224 switch (instr->intrinsic) {
6225 case nir_intrinsic_ssbo_atomic_add:
6226 op32 = aco_opcode::buffer_atomic_add;
6227 op64 = aco_opcode::buffer_atomic_add_x2;
6228 break;
6229 case nir_intrinsic_ssbo_atomic_imin:
6230 op32 = aco_opcode::buffer_atomic_smin;
6231 op64 = aco_opcode::buffer_atomic_smin_x2;
6232 break;
6233 case nir_intrinsic_ssbo_atomic_umin:
6234 op32 = aco_opcode::buffer_atomic_umin;
6235 op64 = aco_opcode::buffer_atomic_umin_x2;
6236 break;
6237 case nir_intrinsic_ssbo_atomic_imax:
6238 op32 = aco_opcode::buffer_atomic_smax;
6239 op64 = aco_opcode::buffer_atomic_smax_x2;
6240 break;
6241 case nir_intrinsic_ssbo_atomic_umax:
6242 op32 = aco_opcode::buffer_atomic_umax;
6243 op64 = aco_opcode::buffer_atomic_umax_x2;
6244 break;
6245 case nir_intrinsic_ssbo_atomic_and:
6246 op32 = aco_opcode::buffer_atomic_and;
6247 op64 = aco_opcode::buffer_atomic_and_x2;
6248 break;
6249 case nir_intrinsic_ssbo_atomic_or:
6250 op32 = aco_opcode::buffer_atomic_or;
6251 op64 = aco_opcode::buffer_atomic_or_x2;
6252 break;
6253 case nir_intrinsic_ssbo_atomic_xor:
6254 op32 = aco_opcode::buffer_atomic_xor;
6255 op64 = aco_opcode::buffer_atomic_xor_x2;
6256 break;
6257 case nir_intrinsic_ssbo_atomic_exchange:
6258 op32 = aco_opcode::buffer_atomic_swap;
6259 op64 = aco_opcode::buffer_atomic_swap_x2;
6260 break;
6261 case nir_intrinsic_ssbo_atomic_comp_swap:
6262 op32 = aco_opcode::buffer_atomic_cmpswap;
6263 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6264 break;
6265 default:
6266 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6267 }
6268 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6269 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6270 mubuf->operands[0] = Operand(rsrc);
6271 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6272 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6273 mubuf->operands[3] = Operand(data);
6274 if (return_previous)
6275 mubuf->definitions[0] = Definition(dst);
6276 mubuf->offset = 0;
6277 mubuf->offen = (offset.type() == RegType::vgpr);
6278 mubuf->glc = return_previous;
6279 mubuf->dlc = false; /* Not needed for atomics */
6280 mubuf->disable_wqm = true;
6281 mubuf->barrier = barrier_buffer;
6282 ctx->program->needs_exact = true;
6283 ctx->block->instructions.emplace_back(std::move(mubuf));
6284 }
6285
6286 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6287
6288 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6289 Builder bld(ctx->program, ctx->block);
6290 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6291 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6292 }
6293
6294 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6295 {
6296 Builder bld(ctx->program, ctx->block);
6297 unsigned num_components = instr->num_components;
6298 unsigned component_size = instr->dest.ssa.bit_size / 8;
6299
6300 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6301 get_ssa_temp(ctx, &instr->dest.ssa),
6302 num_components, component_size};
6303 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6304 info.align_mul = nir_intrinsic_align_mul(instr);
6305 info.align_offset = nir_intrinsic_align_offset(instr);
6306 info.barrier = barrier_buffer;
6307 info.can_reorder = false;
6308 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6309 * it's safe to use SMEM */
6310 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6311 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6312 emit_global_load(ctx, bld, &info);
6313 } else {
6314 info.offset = Operand(bld.as_uniform(info.offset));
6315 emit_smem_load(ctx, bld, &info);
6316 }
6317 }
6318
6319 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6320 {
6321 Builder bld(ctx->program, ctx->block);
6322 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6323 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6324
6325 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6326 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6327 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6328
6329 if (ctx->options->chip_class >= GFX7)
6330 addr = as_vgpr(ctx, addr);
6331
6332 unsigned write_count = 0;
6333 Temp write_datas[32];
6334 unsigned offsets[32];
6335 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6336 16, &write_count, write_datas, offsets);
6337
6338 for (unsigned i = 0; i < write_count; i++) {
6339 if (ctx->options->chip_class >= GFX7) {
6340 unsigned offset = offsets[i];
6341 Temp store_addr = addr;
6342 if (offset > 0 && ctx->options->chip_class < GFX9) {
6343 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6344 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6345 Temp carry = bld.tmp(bld.lm);
6346 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6347
6348 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6349 Operand(offset), addr0);
6350 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6351 Operand(0u), addr1,
6352 carry).def(1).setHint(vcc);
6353
6354 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6355
6356 offset = 0;
6357 }
6358
6359 bool global = ctx->options->chip_class >= GFX9;
6360 aco_opcode op;
6361 switch (write_datas[i].bytes()) {
6362 case 1:
6363 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6364 break;
6365 case 2:
6366 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6367 break;
6368 case 4:
6369 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6370 break;
6371 case 8:
6372 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6373 break;
6374 case 12:
6375 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6376 break;
6377 case 16:
6378 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6379 break;
6380 default:
6381 unreachable("store_global not implemented for this size.");
6382 }
6383
6384 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6385 flat->operands[0] = Operand(store_addr);
6386 flat->operands[1] = Operand(s1);
6387 flat->operands[2] = Operand(write_datas[i]);
6388 flat->glc = glc;
6389 flat->dlc = false;
6390 flat->offset = offset;
6391 flat->disable_wqm = true;
6392 flat->barrier = barrier_buffer;
6393 ctx->program->needs_exact = true;
6394 ctx->block->instructions.emplace_back(std::move(flat));
6395 } else {
6396 assert(ctx->options->chip_class == GFX6);
6397
6398 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6399
6400 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6401
6402 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6403 mubuf->operands[0] = Operand(rsrc);
6404 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6405 mubuf->operands[2] = Operand(0u);
6406 mubuf->operands[3] = Operand(write_datas[i]);
6407 mubuf->glc = glc;
6408 mubuf->dlc = false;
6409 mubuf->offset = offsets[i];
6410 mubuf->addr64 = addr.type() == RegType::vgpr;
6411 mubuf->disable_wqm = true;
6412 mubuf->barrier = barrier_buffer;
6413 ctx->program->needs_exact = true;
6414 ctx->block->instructions.emplace_back(std::move(mubuf));
6415 }
6416 }
6417 }
6418
6419 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6420 {
6421 /* return the previous value if dest is ever used */
6422 bool return_previous = false;
6423 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6424 return_previous = true;
6425 break;
6426 }
6427 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6428 return_previous = true;
6429 break;
6430 }
6431
6432 Builder bld(ctx->program, ctx->block);
6433 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6434 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6435
6436 if (ctx->options->chip_class >= GFX7)
6437 addr = as_vgpr(ctx, addr);
6438
6439 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6440 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6441 get_ssa_temp(ctx, instr->src[2].ssa), data);
6442
6443 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6444
6445 aco_opcode op32, op64;
6446
6447 if (ctx->options->chip_class >= GFX7) {
6448 bool global = ctx->options->chip_class >= GFX9;
6449 switch (instr->intrinsic) {
6450 case nir_intrinsic_global_atomic_add:
6451 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6452 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6453 break;
6454 case nir_intrinsic_global_atomic_imin:
6455 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6456 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6457 break;
6458 case nir_intrinsic_global_atomic_umin:
6459 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6460 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6461 break;
6462 case nir_intrinsic_global_atomic_imax:
6463 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6464 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6465 break;
6466 case nir_intrinsic_global_atomic_umax:
6467 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6468 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6469 break;
6470 case nir_intrinsic_global_atomic_and:
6471 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6472 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6473 break;
6474 case nir_intrinsic_global_atomic_or:
6475 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6476 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6477 break;
6478 case nir_intrinsic_global_atomic_xor:
6479 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6480 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6481 break;
6482 case nir_intrinsic_global_atomic_exchange:
6483 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6484 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6485 break;
6486 case nir_intrinsic_global_atomic_comp_swap:
6487 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6488 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6489 break;
6490 default:
6491 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6492 }
6493
6494 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6495 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6496 flat->operands[0] = Operand(addr);
6497 flat->operands[1] = Operand(s1);
6498 flat->operands[2] = Operand(data);
6499 if (return_previous)
6500 flat->definitions[0] = Definition(dst);
6501 flat->glc = return_previous;
6502 flat->dlc = false; /* Not needed for atomics */
6503 flat->offset = 0;
6504 flat->disable_wqm = true;
6505 flat->barrier = barrier_buffer;
6506 ctx->program->needs_exact = true;
6507 ctx->block->instructions.emplace_back(std::move(flat));
6508 } else {
6509 assert(ctx->options->chip_class == GFX6);
6510
6511 switch (instr->intrinsic) {
6512 case nir_intrinsic_global_atomic_add:
6513 op32 = aco_opcode::buffer_atomic_add;
6514 op64 = aco_opcode::buffer_atomic_add_x2;
6515 break;
6516 case nir_intrinsic_global_atomic_imin:
6517 op32 = aco_opcode::buffer_atomic_smin;
6518 op64 = aco_opcode::buffer_atomic_smin_x2;
6519 break;
6520 case nir_intrinsic_global_atomic_umin:
6521 op32 = aco_opcode::buffer_atomic_umin;
6522 op64 = aco_opcode::buffer_atomic_umin_x2;
6523 break;
6524 case nir_intrinsic_global_atomic_imax:
6525 op32 = aco_opcode::buffer_atomic_smax;
6526 op64 = aco_opcode::buffer_atomic_smax_x2;
6527 break;
6528 case nir_intrinsic_global_atomic_umax:
6529 op32 = aco_opcode::buffer_atomic_umax;
6530 op64 = aco_opcode::buffer_atomic_umax_x2;
6531 break;
6532 case nir_intrinsic_global_atomic_and:
6533 op32 = aco_opcode::buffer_atomic_and;
6534 op64 = aco_opcode::buffer_atomic_and_x2;
6535 break;
6536 case nir_intrinsic_global_atomic_or:
6537 op32 = aco_opcode::buffer_atomic_or;
6538 op64 = aco_opcode::buffer_atomic_or_x2;
6539 break;
6540 case nir_intrinsic_global_atomic_xor:
6541 op32 = aco_opcode::buffer_atomic_xor;
6542 op64 = aco_opcode::buffer_atomic_xor_x2;
6543 break;
6544 case nir_intrinsic_global_atomic_exchange:
6545 op32 = aco_opcode::buffer_atomic_swap;
6546 op64 = aco_opcode::buffer_atomic_swap_x2;
6547 break;
6548 case nir_intrinsic_global_atomic_comp_swap:
6549 op32 = aco_opcode::buffer_atomic_cmpswap;
6550 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6551 break;
6552 default:
6553 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6554 }
6555
6556 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6557
6558 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6559
6560 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6561 mubuf->operands[0] = Operand(rsrc);
6562 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6563 mubuf->operands[2] = Operand(0u);
6564 mubuf->operands[3] = Operand(data);
6565 if (return_previous)
6566 mubuf->definitions[0] = Definition(dst);
6567 mubuf->glc = return_previous;
6568 mubuf->dlc = false;
6569 mubuf->offset = 0;
6570 mubuf->addr64 = addr.type() == RegType::vgpr;
6571 mubuf->disable_wqm = true;
6572 mubuf->barrier = barrier_buffer;
6573 ctx->program->needs_exact = true;
6574 ctx->block->instructions.emplace_back(std::move(mubuf));
6575 }
6576 }
6577
6578 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6579 Builder bld(ctx->program, ctx->block);
6580 switch(instr->intrinsic) {
6581 case nir_intrinsic_group_memory_barrier:
6582 case nir_intrinsic_memory_barrier:
6583 bld.barrier(aco_opcode::p_memory_barrier_common);
6584 break;
6585 case nir_intrinsic_memory_barrier_buffer:
6586 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6587 break;
6588 case nir_intrinsic_memory_barrier_image:
6589 bld.barrier(aco_opcode::p_memory_barrier_image);
6590 break;
6591 case nir_intrinsic_memory_barrier_tcs_patch:
6592 case nir_intrinsic_memory_barrier_shared:
6593 bld.barrier(aco_opcode::p_memory_barrier_shared);
6594 break;
6595 default:
6596 unreachable("Unimplemented memory barrier intrinsic");
6597 break;
6598 }
6599 }
6600
6601 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6602 {
6603 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6604 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6605 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6606 Builder bld(ctx->program, ctx->block);
6607
6608 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6609 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6610 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6611 }
6612
6613 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6614 {
6615 unsigned writemask = nir_intrinsic_write_mask(instr);
6616 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6617 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6618 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6619
6620 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6621 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6622 }
6623
6624 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6625 {
6626 unsigned offset = nir_intrinsic_base(instr);
6627 Builder bld(ctx->program, ctx->block);
6628 Operand m = load_lds_size_m0(bld);
6629 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6630 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6631
6632 unsigned num_operands = 3;
6633 aco_opcode op32, op64, op32_rtn, op64_rtn;
6634 switch(instr->intrinsic) {
6635 case nir_intrinsic_shared_atomic_add:
6636 op32 = aco_opcode::ds_add_u32;
6637 op64 = aco_opcode::ds_add_u64;
6638 op32_rtn = aco_opcode::ds_add_rtn_u32;
6639 op64_rtn = aco_opcode::ds_add_rtn_u64;
6640 break;
6641 case nir_intrinsic_shared_atomic_imin:
6642 op32 = aco_opcode::ds_min_i32;
6643 op64 = aco_opcode::ds_min_i64;
6644 op32_rtn = aco_opcode::ds_min_rtn_i32;
6645 op64_rtn = aco_opcode::ds_min_rtn_i64;
6646 break;
6647 case nir_intrinsic_shared_atomic_umin:
6648 op32 = aco_opcode::ds_min_u32;
6649 op64 = aco_opcode::ds_min_u64;
6650 op32_rtn = aco_opcode::ds_min_rtn_u32;
6651 op64_rtn = aco_opcode::ds_min_rtn_u64;
6652 break;
6653 case nir_intrinsic_shared_atomic_imax:
6654 op32 = aco_opcode::ds_max_i32;
6655 op64 = aco_opcode::ds_max_i64;
6656 op32_rtn = aco_opcode::ds_max_rtn_i32;
6657 op64_rtn = aco_opcode::ds_max_rtn_i64;
6658 break;
6659 case nir_intrinsic_shared_atomic_umax:
6660 op32 = aco_opcode::ds_max_u32;
6661 op64 = aco_opcode::ds_max_u64;
6662 op32_rtn = aco_opcode::ds_max_rtn_u32;
6663 op64_rtn = aco_opcode::ds_max_rtn_u64;
6664 break;
6665 case nir_intrinsic_shared_atomic_and:
6666 op32 = aco_opcode::ds_and_b32;
6667 op64 = aco_opcode::ds_and_b64;
6668 op32_rtn = aco_opcode::ds_and_rtn_b32;
6669 op64_rtn = aco_opcode::ds_and_rtn_b64;
6670 break;
6671 case nir_intrinsic_shared_atomic_or:
6672 op32 = aco_opcode::ds_or_b32;
6673 op64 = aco_opcode::ds_or_b64;
6674 op32_rtn = aco_opcode::ds_or_rtn_b32;
6675 op64_rtn = aco_opcode::ds_or_rtn_b64;
6676 break;
6677 case nir_intrinsic_shared_atomic_xor:
6678 op32 = aco_opcode::ds_xor_b32;
6679 op64 = aco_opcode::ds_xor_b64;
6680 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6681 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6682 break;
6683 case nir_intrinsic_shared_atomic_exchange:
6684 op32 = aco_opcode::ds_write_b32;
6685 op64 = aco_opcode::ds_write_b64;
6686 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6687 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6688 break;
6689 case nir_intrinsic_shared_atomic_comp_swap:
6690 op32 = aco_opcode::ds_cmpst_b32;
6691 op64 = aco_opcode::ds_cmpst_b64;
6692 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6693 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6694 num_operands = 4;
6695 break;
6696 default:
6697 unreachable("Unhandled shared atomic intrinsic");
6698 }
6699
6700 /* return the previous value if dest is ever used */
6701 bool return_previous = false;
6702 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6703 return_previous = true;
6704 break;
6705 }
6706 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6707 return_previous = true;
6708 break;
6709 }
6710
6711 aco_opcode op;
6712 if (data.size() == 1) {
6713 assert(instr->dest.ssa.bit_size == 32);
6714 op = return_previous ? op32_rtn : op32;
6715 } else {
6716 assert(instr->dest.ssa.bit_size == 64);
6717 op = return_previous ? op64_rtn : op64;
6718 }
6719
6720 if (offset > 65535) {
6721 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6722 offset = 0;
6723 }
6724
6725 aco_ptr<DS_instruction> ds;
6726 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6727 ds->operands[0] = Operand(address);
6728 ds->operands[1] = Operand(data);
6729 if (num_operands == 4)
6730 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6731 ds->operands[num_operands - 1] = m;
6732 ds->offset0 = offset;
6733 if (return_previous)
6734 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6735 ctx->block->instructions.emplace_back(std::move(ds));
6736 }
6737
6738 Temp get_scratch_resource(isel_context *ctx)
6739 {
6740 Builder bld(ctx->program, ctx->block);
6741 Temp scratch_addr = ctx->program->private_segment_buffer;
6742 if (ctx->stage != compute_cs)
6743 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6744
6745 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6746 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6747
6748 if (ctx->program->chip_class >= GFX10) {
6749 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6750 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6751 S_008F0C_RESOURCE_LEVEL(1);
6752 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6753 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6754 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6755 }
6756
6757 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6758 if (ctx->program->chip_class <= GFX8)
6759 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6760
6761 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6762 }
6763
6764 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6765 Builder bld(ctx->program, ctx->block);
6766 Temp rsrc = get_scratch_resource(ctx);
6767 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6768 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6769
6770 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6771 instr->dest.ssa.bit_size / 8u, rsrc};
6772 info.align_mul = nir_intrinsic_align_mul(instr);
6773 info.align_offset = nir_intrinsic_align_offset(instr);
6774 info.swizzle_component_size = 16;
6775 info.can_reorder = false;
6776 info.soffset = ctx->program->scratch_offset;
6777 emit_mubuf_load(ctx, bld, &info);
6778 }
6779
6780 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6781 Builder bld(ctx->program, ctx->block);
6782 Temp rsrc = get_scratch_resource(ctx);
6783 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6784 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6785
6786 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6787 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6788
6789 unsigned write_count = 0;
6790 Temp write_datas[32];
6791 unsigned offsets[32];
6792 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6793 16, &write_count, write_datas, offsets);
6794
6795 for (unsigned i = 0; i < write_count; i++) {
6796 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6797 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true);
6798 }
6799 }
6800
6801 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6802 uint8_t log2_ps_iter_samples;
6803 if (ctx->program->info->ps.force_persample) {
6804 log2_ps_iter_samples =
6805 util_logbase2(ctx->options->key.fs.num_samples);
6806 } else {
6807 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6808 }
6809
6810 /* The bit pattern matches that used by fixed function fragment
6811 * processing. */
6812 static const unsigned ps_iter_masks[] = {
6813 0xffff, /* not used */
6814 0x5555,
6815 0x1111,
6816 0x0101,
6817 0x0001,
6818 };
6819 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6820
6821 Builder bld(ctx->program, ctx->block);
6822
6823 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6824 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6825 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6826 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6827 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6828 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6829 }
6830
6831 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6832 Builder bld(ctx->program, ctx->block);
6833
6834 unsigned stream = nir_intrinsic_stream_id(instr);
6835 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6836 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6837 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6838
6839 /* get GSVS ring */
6840 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6841
6842 unsigned num_components =
6843 ctx->program->info->gs.num_stream_output_components[stream];
6844 assert(num_components);
6845
6846 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6847 unsigned stream_offset = 0;
6848 for (unsigned i = 0; i < stream; i++) {
6849 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6850 stream_offset += prev_stride * ctx->program->wave_size;
6851 }
6852
6853 /* Limit on the stride field for <= GFX7. */
6854 assert(stride < (1 << 14));
6855
6856 Temp gsvs_dwords[4];
6857 for (unsigned i = 0; i < 4; i++)
6858 gsvs_dwords[i] = bld.tmp(s1);
6859 bld.pseudo(aco_opcode::p_split_vector,
6860 Definition(gsvs_dwords[0]),
6861 Definition(gsvs_dwords[1]),
6862 Definition(gsvs_dwords[2]),
6863 Definition(gsvs_dwords[3]),
6864 gsvs_ring);
6865
6866 if (stream_offset) {
6867 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6868
6869 Temp carry = bld.tmp(s1);
6870 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6871 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6872 }
6873
6874 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6875 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6876
6877 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6878 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6879
6880 unsigned offset = 0;
6881 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6882 if (ctx->program->info->gs.output_streams[i] != stream)
6883 continue;
6884
6885 for (unsigned j = 0; j < 4; j++) {
6886 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6887 continue;
6888
6889 if (ctx->outputs.mask[i] & (1 << j)) {
6890 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6891 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6892 if (const_offset >= 4096u) {
6893 if (vaddr_offset.isUndefined())
6894 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6895 else
6896 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6897 const_offset %= 4096u;
6898 }
6899
6900 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6901 mtbuf->operands[0] = Operand(gsvs_ring);
6902 mtbuf->operands[1] = vaddr_offset;
6903 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6904 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6905 mtbuf->offen = !vaddr_offset.isUndefined();
6906 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6907 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6908 mtbuf->offset = const_offset;
6909 mtbuf->glc = true;
6910 mtbuf->slc = true;
6911 mtbuf->barrier = barrier_gs_data;
6912 mtbuf->can_reorder = true;
6913 bld.insert(std::move(mtbuf));
6914 }
6915
6916 offset += ctx->shader->info.gs.vertices_out;
6917 }
6918
6919 /* outputs for the next vertex are undefined and keeping them around can
6920 * create invalid IR with control flow */
6921 ctx->outputs.mask[i] = 0;
6922 }
6923
6924 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6925 }
6926
6927 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6928 {
6929 Builder bld(ctx->program, ctx->block);
6930
6931 if (cluster_size == 1) {
6932 return src;
6933 } if (op == nir_op_iand && cluster_size == 4) {
6934 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6935 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6936 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6937 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6938 } else if (op == nir_op_ior && cluster_size == 4) {
6939 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6940 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6941 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6942 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6943 //subgroupAnd(val) -> (exec & ~val) == 0
6944 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6945 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6946 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6947 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6948 //subgroupOr(val) -> (val & exec) != 0
6949 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6950 return bool_to_vector_condition(ctx, tmp);
6951 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6952 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6953 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6954 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6955 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6956 return bool_to_vector_condition(ctx, tmp);
6957 } else {
6958 //subgroupClustered{And,Or,Xor}(val, n) ->
6959 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6960 //cluster_offset = ~(n - 1) & lane_id
6961 //cluster_mask = ((1 << n) - 1)
6962 //subgroupClusteredAnd():
6963 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6964 //subgroupClusteredOr():
6965 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6966 //subgroupClusteredXor():
6967 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6968 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6969 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6970
6971 Temp tmp;
6972 if (op == nir_op_iand)
6973 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6974 else
6975 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6976
6977 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6978
6979 if (ctx->program->chip_class <= GFX7)
6980 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6981 else if (ctx->program->wave_size == 64)
6982 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6983 else
6984 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6985 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6986 if (cluster_mask != 0xffffffff)
6987 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6988
6989 Definition cmp_def = Definition();
6990 if (op == nir_op_iand) {
6991 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6992 } else if (op == nir_op_ior) {
6993 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6994 } else if (op == nir_op_ixor) {
6995 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6996 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6997 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6998 }
6999 cmp_def.setHint(vcc);
7000 return cmp_def.getTemp();
7001 }
7002 }
7003
7004 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7005 {
7006 Builder bld(ctx->program, ctx->block);
7007
7008 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7009 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7010 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7011 Temp tmp;
7012 if (op == nir_op_iand)
7013 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7014 else
7015 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7016
7017 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7018 Temp lo = lohi.def(0).getTemp();
7019 Temp hi = lohi.def(1).getTemp();
7020 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7021
7022 Definition cmp_def = Definition();
7023 if (op == nir_op_iand)
7024 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7025 else if (op == nir_op_ior)
7026 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7027 else if (op == nir_op_ixor)
7028 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7029 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7030 cmp_def.setHint(vcc);
7031 return cmp_def.getTemp();
7032 }
7033
7034 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7035 {
7036 Builder bld(ctx->program, ctx->block);
7037
7038 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7039 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7040 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7041 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7042 if (op == nir_op_iand)
7043 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7044 else if (op == nir_op_ior)
7045 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7046 else if (op == nir_op_ixor)
7047 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7048
7049 assert(false);
7050 return Temp();
7051 }
7052
7053 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7054 {
7055 Builder bld(ctx->program, ctx->block);
7056 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7057 if (src.regClass().type() == RegType::vgpr) {
7058 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7059 } else if (src.regClass() == s1) {
7060 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7061 } else if (src.regClass() == s2) {
7062 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7063 } else {
7064 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7065 nir_print_instr(&instr->instr, stderr);
7066 fprintf(stderr, "\n");
7067 }
7068 }
7069
7070 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7071 {
7072 Builder bld(ctx->program, ctx->block);
7073 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7074 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7075 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7076
7077 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7078 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7079 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7080 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7081
7082 /* Build DD X/Y */
7083 if (ctx->program->chip_class >= GFX8) {
7084 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7085 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7086 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7087 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7088 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7089 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7090 } else {
7091 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7092 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7093 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7094 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7095 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7096 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7097 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7098 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7099 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7100 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7101 }
7102
7103 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7104 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7105 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7106 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7107 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7108 Temp wqm1 = bld.tmp(v1);
7109 emit_wqm(ctx, tmp1, wqm1, true);
7110 Temp wqm2 = bld.tmp(v1);
7111 emit_wqm(ctx, tmp2, wqm2, true);
7112 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7113 return;
7114 }
7115
7116 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7117 {
7118 Builder bld(ctx->program, ctx->block);
7119 switch(instr->intrinsic) {
7120 case nir_intrinsic_load_barycentric_sample:
7121 case nir_intrinsic_load_barycentric_pixel:
7122 case nir_intrinsic_load_barycentric_centroid: {
7123 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7124 Temp bary = Temp(0, s2);
7125 switch (mode) {
7126 case INTERP_MODE_SMOOTH:
7127 case INTERP_MODE_NONE:
7128 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7129 bary = get_arg(ctx, ctx->args->ac.persp_center);
7130 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7131 bary = ctx->persp_centroid;
7132 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7133 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7134 break;
7135 case INTERP_MODE_NOPERSPECTIVE:
7136 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7137 bary = get_arg(ctx, ctx->args->ac.linear_center);
7138 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7139 bary = ctx->linear_centroid;
7140 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7141 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7142 break;
7143 default:
7144 break;
7145 }
7146 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7147 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7148 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7149 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7150 Operand(p1), Operand(p2));
7151 emit_split_vector(ctx, dst, 2);
7152 break;
7153 }
7154 case nir_intrinsic_load_barycentric_model: {
7155 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7156
7157 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7158 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7159 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7160 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7161 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7162 Operand(p1), Operand(p2), Operand(p3));
7163 emit_split_vector(ctx, dst, 3);
7164 break;
7165 }
7166 case nir_intrinsic_load_barycentric_at_sample: {
7167 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7168 switch (ctx->options->key.fs.num_samples) {
7169 case 2: sample_pos_offset += 1 << 3; break;
7170 case 4: sample_pos_offset += 3 << 3; break;
7171 case 8: sample_pos_offset += 7 << 3; break;
7172 default: break;
7173 }
7174 Temp sample_pos;
7175 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7176 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7177 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7178 if (addr.type() == RegType::sgpr) {
7179 Operand offset;
7180 if (const_addr) {
7181 sample_pos_offset += const_addr->u32 << 3;
7182 offset = Operand(sample_pos_offset);
7183 } else if (ctx->options->chip_class >= GFX9) {
7184 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7185 } else {
7186 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7187 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7188 }
7189
7190 Operand off = bld.copy(bld.def(s1), Operand(offset));
7191 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7192
7193 } else if (ctx->options->chip_class >= GFX9) {
7194 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7195 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7196 } else if (ctx->options->chip_class >= GFX7) {
7197 /* addr += private_segment_buffer + sample_pos_offset */
7198 Temp tmp0 = bld.tmp(s1);
7199 Temp tmp1 = bld.tmp(s1);
7200 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7201 Definition scc_tmp = bld.def(s1, scc);
7202 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7203 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7204 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7205 Temp pck0 = bld.tmp(v1);
7206 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7207 tmp1 = as_vgpr(ctx, tmp1);
7208 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7209 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7210
7211 /* sample_pos = flat_load_dwordx2 addr */
7212 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7213 } else {
7214 assert(ctx->options->chip_class == GFX6);
7215
7216 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7217 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7218 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7219
7220 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7221 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7222
7223 sample_pos = bld.tmp(v2);
7224
7225 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7226 load->definitions[0] = Definition(sample_pos);
7227 load->operands[0] = Operand(rsrc);
7228 load->operands[1] = Operand(addr);
7229 load->operands[2] = Operand(0u);
7230 load->offset = sample_pos_offset;
7231 load->offen = 0;
7232 load->addr64 = true;
7233 load->glc = false;
7234 load->dlc = false;
7235 load->disable_wqm = false;
7236 load->barrier = barrier_none;
7237 load->can_reorder = true;
7238 ctx->block->instructions.emplace_back(std::move(load));
7239 }
7240
7241 /* sample_pos -= 0.5 */
7242 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7243 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7244 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7245 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7246 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7247
7248 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7249 break;
7250 }
7251 case nir_intrinsic_load_barycentric_at_offset: {
7252 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7253 RegClass rc = RegClass(offset.type(), 1);
7254 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7255 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7256 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7257 break;
7258 }
7259 case nir_intrinsic_load_front_face: {
7260 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7261 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7262 break;
7263 }
7264 case nir_intrinsic_load_view_index: {
7265 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7266 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7267 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7268 break;
7269 }
7270
7271 /* fallthrough */
7272 }
7273 case nir_intrinsic_load_layer_id: {
7274 unsigned idx = nir_intrinsic_base(instr);
7275 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7276 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7277 break;
7278 }
7279 case nir_intrinsic_load_frag_coord: {
7280 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7281 break;
7282 }
7283 case nir_intrinsic_load_sample_pos: {
7284 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7285 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7286 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7287 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7288 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7289 break;
7290 }
7291 case nir_intrinsic_load_tess_coord:
7292 visit_load_tess_coord(ctx, instr);
7293 break;
7294 case nir_intrinsic_load_interpolated_input:
7295 visit_load_interpolated_input(ctx, instr);
7296 break;
7297 case nir_intrinsic_store_output:
7298 visit_store_output(ctx, instr);
7299 break;
7300 case nir_intrinsic_load_input:
7301 case nir_intrinsic_load_input_vertex:
7302 visit_load_input(ctx, instr);
7303 break;
7304 case nir_intrinsic_load_output:
7305 visit_load_output(ctx, instr);
7306 break;
7307 case nir_intrinsic_load_per_vertex_input:
7308 visit_load_per_vertex_input(ctx, instr);
7309 break;
7310 case nir_intrinsic_load_per_vertex_output:
7311 visit_load_per_vertex_output(ctx, instr);
7312 break;
7313 case nir_intrinsic_store_per_vertex_output:
7314 visit_store_per_vertex_output(ctx, instr);
7315 break;
7316 case nir_intrinsic_load_ubo:
7317 visit_load_ubo(ctx, instr);
7318 break;
7319 case nir_intrinsic_load_push_constant:
7320 visit_load_push_constant(ctx, instr);
7321 break;
7322 case nir_intrinsic_load_constant:
7323 visit_load_constant(ctx, instr);
7324 break;
7325 case nir_intrinsic_vulkan_resource_index:
7326 visit_load_resource(ctx, instr);
7327 break;
7328 case nir_intrinsic_discard:
7329 visit_discard(ctx, instr);
7330 break;
7331 case nir_intrinsic_discard_if:
7332 visit_discard_if(ctx, instr);
7333 break;
7334 case nir_intrinsic_load_shared:
7335 visit_load_shared(ctx, instr);
7336 break;
7337 case nir_intrinsic_store_shared:
7338 visit_store_shared(ctx, instr);
7339 break;
7340 case nir_intrinsic_shared_atomic_add:
7341 case nir_intrinsic_shared_atomic_imin:
7342 case nir_intrinsic_shared_atomic_umin:
7343 case nir_intrinsic_shared_atomic_imax:
7344 case nir_intrinsic_shared_atomic_umax:
7345 case nir_intrinsic_shared_atomic_and:
7346 case nir_intrinsic_shared_atomic_or:
7347 case nir_intrinsic_shared_atomic_xor:
7348 case nir_intrinsic_shared_atomic_exchange:
7349 case nir_intrinsic_shared_atomic_comp_swap:
7350 visit_shared_atomic(ctx, instr);
7351 break;
7352 case nir_intrinsic_image_deref_load:
7353 visit_image_load(ctx, instr);
7354 break;
7355 case nir_intrinsic_image_deref_store:
7356 visit_image_store(ctx, instr);
7357 break;
7358 case nir_intrinsic_image_deref_atomic_add:
7359 case nir_intrinsic_image_deref_atomic_umin:
7360 case nir_intrinsic_image_deref_atomic_imin:
7361 case nir_intrinsic_image_deref_atomic_umax:
7362 case nir_intrinsic_image_deref_atomic_imax:
7363 case nir_intrinsic_image_deref_atomic_and:
7364 case nir_intrinsic_image_deref_atomic_or:
7365 case nir_intrinsic_image_deref_atomic_xor:
7366 case nir_intrinsic_image_deref_atomic_exchange:
7367 case nir_intrinsic_image_deref_atomic_comp_swap:
7368 visit_image_atomic(ctx, instr);
7369 break;
7370 case nir_intrinsic_image_deref_size:
7371 visit_image_size(ctx, instr);
7372 break;
7373 case nir_intrinsic_load_ssbo:
7374 visit_load_ssbo(ctx, instr);
7375 break;
7376 case nir_intrinsic_store_ssbo:
7377 visit_store_ssbo(ctx, instr);
7378 break;
7379 case nir_intrinsic_load_global:
7380 visit_load_global(ctx, instr);
7381 break;
7382 case nir_intrinsic_store_global:
7383 visit_store_global(ctx, instr);
7384 break;
7385 case nir_intrinsic_global_atomic_add:
7386 case nir_intrinsic_global_atomic_imin:
7387 case nir_intrinsic_global_atomic_umin:
7388 case nir_intrinsic_global_atomic_imax:
7389 case nir_intrinsic_global_atomic_umax:
7390 case nir_intrinsic_global_atomic_and:
7391 case nir_intrinsic_global_atomic_or:
7392 case nir_intrinsic_global_atomic_xor:
7393 case nir_intrinsic_global_atomic_exchange:
7394 case nir_intrinsic_global_atomic_comp_swap:
7395 visit_global_atomic(ctx, instr);
7396 break;
7397 case nir_intrinsic_ssbo_atomic_add:
7398 case nir_intrinsic_ssbo_atomic_imin:
7399 case nir_intrinsic_ssbo_atomic_umin:
7400 case nir_intrinsic_ssbo_atomic_imax:
7401 case nir_intrinsic_ssbo_atomic_umax:
7402 case nir_intrinsic_ssbo_atomic_and:
7403 case nir_intrinsic_ssbo_atomic_or:
7404 case nir_intrinsic_ssbo_atomic_xor:
7405 case nir_intrinsic_ssbo_atomic_exchange:
7406 case nir_intrinsic_ssbo_atomic_comp_swap:
7407 visit_atomic_ssbo(ctx, instr);
7408 break;
7409 case nir_intrinsic_load_scratch:
7410 visit_load_scratch(ctx, instr);
7411 break;
7412 case nir_intrinsic_store_scratch:
7413 visit_store_scratch(ctx, instr);
7414 break;
7415 case nir_intrinsic_get_buffer_size:
7416 visit_get_buffer_size(ctx, instr);
7417 break;
7418 case nir_intrinsic_control_barrier: {
7419 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7420 /* GFX6 only (thanks to a hw bug workaround):
7421 * The real barrier instruction isn’t needed, because an entire patch
7422 * always fits into a single wave.
7423 */
7424 break;
7425 }
7426
7427 if (ctx->program->workgroup_size > ctx->program->wave_size)
7428 bld.sopp(aco_opcode::s_barrier);
7429
7430 break;
7431 }
7432 case nir_intrinsic_memory_barrier_tcs_patch:
7433 case nir_intrinsic_group_memory_barrier:
7434 case nir_intrinsic_memory_barrier:
7435 case nir_intrinsic_memory_barrier_buffer:
7436 case nir_intrinsic_memory_barrier_image:
7437 case nir_intrinsic_memory_barrier_shared:
7438 emit_memory_barrier(ctx, instr);
7439 break;
7440 case nir_intrinsic_load_num_work_groups: {
7441 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7442 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7443 emit_split_vector(ctx, dst, 3);
7444 break;
7445 }
7446 case nir_intrinsic_load_local_invocation_id: {
7447 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7448 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7449 emit_split_vector(ctx, dst, 3);
7450 break;
7451 }
7452 case nir_intrinsic_load_work_group_id: {
7453 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7454 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7455 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7456 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7457 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7458 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7459 emit_split_vector(ctx, dst, 3);
7460 break;
7461 }
7462 case nir_intrinsic_load_local_invocation_index: {
7463 Temp id = emit_mbcnt(ctx, bld.def(v1));
7464
7465 /* The tg_size bits [6:11] contain the subgroup id,
7466 * we need this multiplied by the wave size, and then OR the thread id to it.
7467 */
7468 if (ctx->program->wave_size == 64) {
7469 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7470 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7471 get_arg(ctx, ctx->args->ac.tg_size));
7472 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7473 } else {
7474 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7475 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7476 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7477 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7478 }
7479 break;
7480 }
7481 case nir_intrinsic_load_subgroup_id: {
7482 if (ctx->stage == compute_cs) {
7483 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7484 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7485 } else {
7486 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7487 }
7488 break;
7489 }
7490 case nir_intrinsic_load_subgroup_invocation: {
7491 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7492 break;
7493 }
7494 case nir_intrinsic_load_num_subgroups: {
7495 if (ctx->stage == compute_cs)
7496 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7497 get_arg(ctx, ctx->args->ac.tg_size));
7498 else
7499 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7500 break;
7501 }
7502 case nir_intrinsic_ballot: {
7503 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7504 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7505 Definition tmp = bld.def(dst.regClass());
7506 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7507 if (instr->src[0].ssa->bit_size == 1) {
7508 assert(src.regClass() == bld.lm);
7509 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7510 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7511 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7512 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7513 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7514 } else {
7515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7516 nir_print_instr(&instr->instr, stderr);
7517 fprintf(stderr, "\n");
7518 }
7519 if (dst.size() != bld.lm.size()) {
7520 /* Wave32 with ballot size set to 64 */
7521 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7522 }
7523 emit_wqm(ctx, tmp.getTemp(), dst);
7524 break;
7525 }
7526 case nir_intrinsic_shuffle:
7527 case nir_intrinsic_read_invocation: {
7528 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7529 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7530 emit_uniform_subgroup(ctx, instr, src);
7531 } else {
7532 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7533 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7534 tid = bld.as_uniform(tid);
7535 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7536 if (src.regClass() == v1) {
7537 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7538 } else if (src.regClass() == v2) {
7539 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7540 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7541 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7542 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7543 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7544 emit_split_vector(ctx, dst, 2);
7545 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7546 assert(src.regClass() == bld.lm);
7547 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7548 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7549 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7550 assert(src.regClass() == bld.lm);
7551 Temp tmp;
7552 if (ctx->program->chip_class <= GFX7)
7553 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7554 else if (ctx->program->wave_size == 64)
7555 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7556 else
7557 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7558 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7559 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7560 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7561 } else {
7562 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7563 nir_print_instr(&instr->instr, stderr);
7564 fprintf(stderr, "\n");
7565 }
7566 }
7567 break;
7568 }
7569 case nir_intrinsic_load_sample_id: {
7570 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7571 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7572 break;
7573 }
7574 case nir_intrinsic_load_sample_mask_in: {
7575 visit_load_sample_mask_in(ctx, instr);
7576 break;
7577 }
7578 case nir_intrinsic_read_first_invocation: {
7579 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7580 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7581 if (src.regClass() == v1) {
7582 emit_wqm(ctx,
7583 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7584 dst);
7585 } else if (src.regClass() == v2) {
7586 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7587 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7588 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7589 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7590 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7591 emit_split_vector(ctx, dst, 2);
7592 } else if (instr->dest.ssa.bit_size == 1) {
7593 assert(src.regClass() == bld.lm);
7594 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7595 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7596 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7597 } else if (src.regClass() == s1) {
7598 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7599 } else if (src.regClass() == s2) {
7600 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7601 } else {
7602 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7603 nir_print_instr(&instr->instr, stderr);
7604 fprintf(stderr, "\n");
7605 }
7606 break;
7607 }
7608 case nir_intrinsic_vote_all: {
7609 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7610 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7611 assert(src.regClass() == bld.lm);
7612 assert(dst.regClass() == bld.lm);
7613
7614 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7615 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7616 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7617 break;
7618 }
7619 case nir_intrinsic_vote_any: {
7620 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7621 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7622 assert(src.regClass() == bld.lm);
7623 assert(dst.regClass() == bld.lm);
7624
7625 Temp tmp = bool_to_scalar_condition(ctx, src);
7626 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7627 break;
7628 }
7629 case nir_intrinsic_reduce:
7630 case nir_intrinsic_inclusive_scan:
7631 case nir_intrinsic_exclusive_scan: {
7632 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7633 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7634 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7635 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7636 nir_intrinsic_cluster_size(instr) : 0;
7637 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7638
7639 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7640 emit_uniform_subgroup(ctx, instr, src);
7641 } else if (instr->dest.ssa.bit_size == 1) {
7642 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7643 op = nir_op_iand;
7644 else if (op == nir_op_iadd)
7645 op = nir_op_ixor;
7646 else if (op == nir_op_umax || op == nir_op_imax)
7647 op = nir_op_ior;
7648 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7649
7650 switch (instr->intrinsic) {
7651 case nir_intrinsic_reduce:
7652 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7653 break;
7654 case nir_intrinsic_exclusive_scan:
7655 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7656 break;
7657 case nir_intrinsic_inclusive_scan:
7658 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7659 break;
7660 default:
7661 assert(false);
7662 }
7663 } else if (cluster_size == 1) {
7664 bld.copy(Definition(dst), src);
7665 } else {
7666 src = as_vgpr(ctx, src);
7667
7668 ReduceOp reduce_op;
7669 switch (op) {
7670 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7671 CASE(iadd)
7672 CASE(imul)
7673 CASE(fadd)
7674 CASE(fmul)
7675 CASE(imin)
7676 CASE(umin)
7677 CASE(fmin)
7678 CASE(imax)
7679 CASE(umax)
7680 CASE(fmax)
7681 CASE(iand)
7682 CASE(ior)
7683 CASE(ixor)
7684 default:
7685 unreachable("unknown reduction op");
7686 #undef CASE
7687 }
7688
7689 aco_opcode aco_op;
7690 switch (instr->intrinsic) {
7691 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7692 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7693 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7694 default:
7695 unreachable("unknown reduce intrinsic");
7696 }
7697
7698 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7699 reduce->operands[0] = Operand(src);
7700 // filled in by aco_reduce_assign.cpp, used internally as part of the
7701 // reduce sequence
7702 assert(dst.size() == 1 || dst.size() == 2);
7703 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7704 reduce->operands[2] = Operand(v1.as_linear());
7705
7706 Temp tmp_dst = bld.tmp(dst.regClass());
7707 reduce->definitions[0] = Definition(tmp_dst);
7708 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7709 reduce->definitions[2] = Definition();
7710 reduce->definitions[3] = Definition(scc, s1);
7711 reduce->definitions[4] = Definition();
7712 reduce->reduce_op = reduce_op;
7713 reduce->cluster_size = cluster_size;
7714 ctx->block->instructions.emplace_back(std::move(reduce));
7715
7716 emit_wqm(ctx, tmp_dst, dst);
7717 }
7718 break;
7719 }
7720 case nir_intrinsic_quad_broadcast: {
7721 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7722 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7723 emit_uniform_subgroup(ctx, instr, src);
7724 } else {
7725 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7726 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7727 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7728
7729 if (instr->dest.ssa.bit_size == 1) {
7730 assert(src.regClass() == bld.lm);
7731 assert(dst.regClass() == bld.lm);
7732 uint32_t half_mask = 0x11111111u << lane;
7733 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7734 Temp tmp = bld.tmp(bld.lm);
7735 bld.sop1(Builder::s_wqm, Definition(tmp),
7736 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7737 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7738 emit_wqm(ctx, tmp, dst);
7739 } else if (instr->dest.ssa.bit_size == 32) {
7740 if (ctx->program->chip_class >= GFX8)
7741 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7742 else
7743 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7744 } else if (instr->dest.ssa.bit_size == 64) {
7745 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7746 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7747 if (ctx->program->chip_class >= GFX8) {
7748 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7749 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7750 } else {
7751 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7752 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7753 }
7754 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7755 emit_split_vector(ctx, dst, 2);
7756 } else {
7757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7758 nir_print_instr(&instr->instr, stderr);
7759 fprintf(stderr, "\n");
7760 }
7761 }
7762 break;
7763 }
7764 case nir_intrinsic_quad_swap_horizontal:
7765 case nir_intrinsic_quad_swap_vertical:
7766 case nir_intrinsic_quad_swap_diagonal:
7767 case nir_intrinsic_quad_swizzle_amd: {
7768 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7769 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7770 emit_uniform_subgroup(ctx, instr, src);
7771 break;
7772 }
7773 uint16_t dpp_ctrl = 0;
7774 switch (instr->intrinsic) {
7775 case nir_intrinsic_quad_swap_horizontal:
7776 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7777 break;
7778 case nir_intrinsic_quad_swap_vertical:
7779 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7780 break;
7781 case nir_intrinsic_quad_swap_diagonal:
7782 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7783 break;
7784 case nir_intrinsic_quad_swizzle_amd:
7785 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7786 break;
7787 default:
7788 break;
7789 }
7790 if (ctx->program->chip_class < GFX8)
7791 dpp_ctrl |= (1 << 15);
7792
7793 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7794 if (instr->dest.ssa.bit_size == 1) {
7795 assert(src.regClass() == bld.lm);
7796 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7797 if (ctx->program->chip_class >= GFX8)
7798 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7799 else
7800 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7801 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7802 emit_wqm(ctx, tmp, dst);
7803 } else if (instr->dest.ssa.bit_size == 32) {
7804 Temp tmp;
7805 if (ctx->program->chip_class >= GFX8)
7806 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7807 else
7808 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7809 emit_wqm(ctx, tmp, dst);
7810 } else if (instr->dest.ssa.bit_size == 64) {
7811 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7812 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7813 if (ctx->program->chip_class >= GFX8) {
7814 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7815 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7816 } else {
7817 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7818 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7819 }
7820 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7821 emit_split_vector(ctx, dst, 2);
7822 } else {
7823 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7824 nir_print_instr(&instr->instr, stderr);
7825 fprintf(stderr, "\n");
7826 }
7827 break;
7828 }
7829 case nir_intrinsic_masked_swizzle_amd: {
7830 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7831 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7832 emit_uniform_subgroup(ctx, instr, src);
7833 break;
7834 }
7835 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7836 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7837 if (dst.regClass() == v1) {
7838 emit_wqm(ctx,
7839 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7840 dst);
7841 } else if (dst.regClass() == v2) {
7842 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7843 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7844 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7845 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7846 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7847 emit_split_vector(ctx, dst, 2);
7848 } else {
7849 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7850 nir_print_instr(&instr->instr, stderr);
7851 fprintf(stderr, "\n");
7852 }
7853 break;
7854 }
7855 case nir_intrinsic_write_invocation_amd: {
7856 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7857 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7858 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7859 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7860 if (dst.regClass() == v1) {
7861 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7862 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7863 } else if (dst.regClass() == v2) {
7864 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7865 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7866 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7867 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7868 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7869 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7870 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7871 emit_split_vector(ctx, dst, 2);
7872 } else {
7873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7874 nir_print_instr(&instr->instr, stderr);
7875 fprintf(stderr, "\n");
7876 }
7877 break;
7878 }
7879 case nir_intrinsic_mbcnt_amd: {
7880 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7881 RegClass rc = RegClass(src.type(), 1);
7882 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7883 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7884 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7885 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7886 emit_wqm(ctx, wqm_tmp, dst);
7887 break;
7888 }
7889 case nir_intrinsic_load_helper_invocation: {
7890 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7891 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7892 ctx->block->kind |= block_kind_needs_lowering;
7893 ctx->program->needs_exact = true;
7894 break;
7895 }
7896 case nir_intrinsic_is_helper_invocation: {
7897 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7898 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7899 ctx->block->kind |= block_kind_needs_lowering;
7900 ctx->program->needs_exact = true;
7901 break;
7902 }
7903 case nir_intrinsic_demote:
7904 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7905
7906 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7907 ctx->cf_info.exec_potentially_empty_discard = true;
7908 ctx->block->kind |= block_kind_uses_demote;
7909 ctx->program->needs_exact = true;
7910 break;
7911 case nir_intrinsic_demote_if: {
7912 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7913 assert(src.regClass() == bld.lm);
7914 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7915 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7916
7917 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7918 ctx->cf_info.exec_potentially_empty_discard = true;
7919 ctx->block->kind |= block_kind_uses_demote;
7920 ctx->program->needs_exact = true;
7921 break;
7922 }
7923 case nir_intrinsic_first_invocation: {
7924 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7925 get_ssa_temp(ctx, &instr->dest.ssa));
7926 break;
7927 }
7928 case nir_intrinsic_shader_clock:
7929 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7930 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7931 break;
7932 case nir_intrinsic_load_vertex_id_zero_base: {
7933 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7934 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7935 break;
7936 }
7937 case nir_intrinsic_load_first_vertex: {
7938 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7939 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7940 break;
7941 }
7942 case nir_intrinsic_load_base_instance: {
7943 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7944 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7945 break;
7946 }
7947 case nir_intrinsic_load_instance_id: {
7948 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7949 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7950 break;
7951 }
7952 case nir_intrinsic_load_draw_id: {
7953 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7954 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7955 break;
7956 }
7957 case nir_intrinsic_load_invocation_id: {
7958 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7959
7960 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7961 if (ctx->options->chip_class >= GFX10)
7962 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7963 else
7964 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7965 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7966 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7967 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7968 } else {
7969 unreachable("Unsupported stage for load_invocation_id");
7970 }
7971
7972 break;
7973 }
7974 case nir_intrinsic_load_primitive_id: {
7975 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7976
7977 switch (ctx->shader->info.stage) {
7978 case MESA_SHADER_GEOMETRY:
7979 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7980 break;
7981 case MESA_SHADER_TESS_CTRL:
7982 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7983 break;
7984 case MESA_SHADER_TESS_EVAL:
7985 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7986 break;
7987 default:
7988 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7989 }
7990
7991 break;
7992 }
7993 case nir_intrinsic_load_patch_vertices_in: {
7994 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7995 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7996
7997 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7998 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7999 break;
8000 }
8001 case nir_intrinsic_emit_vertex_with_counter: {
8002 visit_emit_vertex_with_counter(ctx, instr);
8003 break;
8004 }
8005 case nir_intrinsic_end_primitive_with_counter: {
8006 unsigned stream = nir_intrinsic_stream_id(instr);
8007 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8008 break;
8009 }
8010 case nir_intrinsic_set_vertex_count: {
8011 /* unused, the HW keeps track of this for us */
8012 break;
8013 }
8014 default:
8015 fprintf(stderr, "Unimplemented intrinsic instr: ");
8016 nir_print_instr(&instr->instr, stderr);
8017 fprintf(stderr, "\n");
8018 abort();
8019
8020 break;
8021 }
8022 }
8023
8024
8025 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8026 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8027 enum glsl_base_type *stype)
8028 {
8029 nir_deref_instr *texture_deref_instr = NULL;
8030 nir_deref_instr *sampler_deref_instr = NULL;
8031 int plane = -1;
8032
8033 for (unsigned i = 0; i < instr->num_srcs; i++) {
8034 switch (instr->src[i].src_type) {
8035 case nir_tex_src_texture_deref:
8036 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8037 break;
8038 case nir_tex_src_sampler_deref:
8039 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8040 break;
8041 case nir_tex_src_plane:
8042 plane = nir_src_as_int(instr->src[i].src);
8043 break;
8044 default:
8045 break;
8046 }
8047 }
8048
8049 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8050
8051 if (!sampler_deref_instr)
8052 sampler_deref_instr = texture_deref_instr;
8053
8054 if (plane >= 0) {
8055 assert(instr->op != nir_texop_txf_ms &&
8056 instr->op != nir_texop_samples_identical);
8057 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8058 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8059 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8060 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8061 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8062 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8063 } else {
8064 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8065 }
8066 if (samp_ptr) {
8067 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8068
8069 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8070 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8071 Builder bld(ctx->program, ctx->block);
8072
8073 /* to avoid unnecessary moves, we split and recombine sampler and image */
8074 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8075 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8076 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8077 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8078 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8079 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8080 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8081 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8082
8083 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8084 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8085 img[0], img[1], img[2], img[3],
8086 img[4], img[5], img[6], img[7]);
8087 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8088 samp[0], samp[1], samp[2], samp[3]);
8089 }
8090 }
8091 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8092 instr->op == nir_texop_samples_identical))
8093 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8094 }
8095
8096 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8097 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8098 {
8099 Builder bld(ctx->program, ctx->block);
8100
8101 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8102 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8103 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8104
8105 Operand neg_one(0xbf800000u);
8106 Operand one(0x3f800000u);
8107 Operand two(0x40000000u);
8108 Operand four(0x40800000u);
8109
8110 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8111 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8112 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8113
8114 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8115 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8116 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8117 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8118
8119 // select sc
8120 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8121 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8122 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8123 one, is_ma_y);
8124 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8125
8126 // select tc
8127 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8128 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8129 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8130
8131 // select ma
8132 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8133 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8134 deriv_z, is_ma_z);
8135 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8136 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8137 }
8138
8139 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8140 {
8141 Builder bld(ctx->program, ctx->block);
8142 Temp ma, tc, sc, id;
8143
8144 if (is_array) {
8145 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8146
8147 // see comment in ac_prepare_cube_coords()
8148 if (ctx->options->chip_class <= GFX8)
8149 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8150 }
8151
8152 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8153
8154 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8155 vop3a->operands[0] = Operand(ma);
8156 vop3a->abs[0] = true;
8157 Temp invma = bld.tmp(v1);
8158 vop3a->definitions[0] = Definition(invma);
8159 ctx->block->instructions.emplace_back(std::move(vop3a));
8160
8161 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8162 if (!is_deriv)
8163 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8164
8165 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8166 if (!is_deriv)
8167 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8168
8169 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8170
8171 if (is_deriv) {
8172 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8173 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8174
8175 for (unsigned i = 0; i < 2; i++) {
8176 // see comment in ac_prepare_cube_coords()
8177 Temp deriv_ma;
8178 Temp deriv_sc, deriv_tc;
8179 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8180 &deriv_ma, &deriv_sc, &deriv_tc);
8181
8182 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8183
8184 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8185 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8186 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8187 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8188 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8189 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8190 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8191 }
8192
8193 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8194 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8195 }
8196
8197 if (is_array)
8198 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8199 coords.resize(3);
8200 coords[0] = sc;
8201 coords[1] = tc;
8202 coords[2] = id;
8203 }
8204
8205 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8206 {
8207 if (vec->parent_instr->type != nir_instr_type_alu)
8208 return;
8209 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8210 if (vec_instr->op != nir_op_vec(vec->num_components))
8211 return;
8212
8213 for (unsigned i = 0; i < vec->num_components; i++) {
8214 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8215 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8216 }
8217 }
8218
8219 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8220 {
8221 Builder bld(ctx->program, ctx->block);
8222 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8223 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8224 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8225 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8226 std::vector<Temp> coords;
8227 std::vector<Temp> derivs;
8228 nir_const_value *sample_index_cv = NULL;
8229 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8230 enum glsl_base_type stype;
8231 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8232
8233 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8234 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8235 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8236 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8237
8238 for (unsigned i = 0; i < instr->num_srcs; i++) {
8239 switch (instr->src[i].src_type) {
8240 case nir_tex_src_coord: {
8241 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8242 for (unsigned i = 0; i < coord.size(); i++)
8243 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8244 break;
8245 }
8246 case nir_tex_src_bias:
8247 if (instr->op == nir_texop_txb) {
8248 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8249 has_bias = true;
8250 }
8251 break;
8252 case nir_tex_src_lod: {
8253 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8254
8255 if (val && val->f32 <= 0.0) {
8256 level_zero = true;
8257 } else {
8258 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8259 has_lod = true;
8260 }
8261 break;
8262 }
8263 case nir_tex_src_comparator:
8264 if (instr->is_shadow) {
8265 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8266 has_compare = true;
8267 }
8268 break;
8269 case nir_tex_src_offset:
8270 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8271 get_const_vec(instr->src[i].src.ssa, const_offset);
8272 has_offset = true;
8273 break;
8274 case nir_tex_src_ddx:
8275 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8276 has_ddx = true;
8277 break;
8278 case nir_tex_src_ddy:
8279 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8280 has_ddy = true;
8281 break;
8282 case nir_tex_src_ms_index:
8283 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8284 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8285 has_sample_index = true;
8286 break;
8287 case nir_tex_src_texture_offset:
8288 case nir_tex_src_sampler_offset:
8289 default:
8290 break;
8291 }
8292 }
8293
8294 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8295 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8296
8297 if (instr->op == nir_texop_texture_samples) {
8298 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8299
8300 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8301 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8302 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8303
8304 Operand default_sample = Operand(1u);
8305 if (ctx->options->robust_buffer_access) {
8306 /* Extract the second dword of the descriptor, if it's
8307 * all zero, then it's a null descriptor.
8308 */
8309 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8310 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8311 default_sample = Operand(is_non_null_descriptor);
8312 }
8313
8314 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8315 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8316 samples, default_sample, bld.scc(is_msaa));
8317 return;
8318 }
8319
8320 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8321 aco_ptr<Instruction> tmp_instr;
8322 Temp acc, pack = Temp();
8323
8324 uint32_t pack_const = 0;
8325 for (unsigned i = 0; i < offset.size(); i++) {
8326 if (!const_offset[i])
8327 continue;
8328 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8329 }
8330
8331 if (offset.type() == RegType::sgpr) {
8332 for (unsigned i = 0; i < offset.size(); i++) {
8333 if (const_offset[i])
8334 continue;
8335
8336 acc = emit_extract_vector(ctx, offset, i, s1);
8337 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8338
8339 if (i) {
8340 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8341 }
8342
8343 if (pack == Temp()) {
8344 pack = acc;
8345 } else {
8346 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8347 }
8348 }
8349
8350 if (pack_const && pack != Temp())
8351 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8352 } else {
8353 for (unsigned i = 0; i < offset.size(); i++) {
8354 if (const_offset[i])
8355 continue;
8356
8357 acc = emit_extract_vector(ctx, offset, i, v1);
8358 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8359
8360 if (i) {
8361 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8362 }
8363
8364 if (pack == Temp()) {
8365 pack = acc;
8366 } else {
8367 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8368 }
8369 }
8370
8371 if (pack_const && pack != Temp())
8372 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8373 }
8374 if (pack_const && pack == Temp())
8375 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8376 else if (pack == Temp())
8377 has_offset = false;
8378 else
8379 offset = pack;
8380 }
8381
8382 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8383 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8384
8385 /* pack derivatives */
8386 if (has_ddx || has_ddy) {
8387 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8388 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8389 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8390 derivs = {ddx, zero, ddy, zero};
8391 } else {
8392 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8393 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8394 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8395 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8396 }
8397 has_derivs = true;
8398 }
8399
8400 if (instr->coord_components > 1 &&
8401 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8402 instr->is_array &&
8403 instr->op != nir_texop_txf)
8404 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8405
8406 if (instr->coord_components > 2 &&
8407 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8408 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8409 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8410 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8411 instr->is_array &&
8412 instr->op != nir_texop_txf &&
8413 instr->op != nir_texop_txf_ms &&
8414 instr->op != nir_texop_fragment_fetch &&
8415 instr->op != nir_texop_fragment_mask_fetch)
8416 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8417
8418 if (ctx->options->chip_class == GFX9 &&
8419 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8420 instr->op != nir_texop_lod && instr->coord_components) {
8421 assert(coords.size() > 0 && coords.size() < 3);
8422
8423 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8424 Operand((uint32_t) 0) :
8425 Operand((uint32_t) 0x3f000000)));
8426 }
8427
8428 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8429
8430 if (instr->op == nir_texop_samples_identical)
8431 resource = fmask_ptr;
8432
8433 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8434 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8435 instr->op != nir_texop_txs &&
8436 instr->op != nir_texop_fragment_fetch &&
8437 instr->op != nir_texop_fragment_mask_fetch) {
8438 assert(has_sample_index);
8439 Operand op(sample_index);
8440 if (sample_index_cv)
8441 op = Operand(sample_index_cv->u32);
8442 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8443 }
8444
8445 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8446 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8447 Temp off = emit_extract_vector(ctx, offset, i, v1);
8448 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8449 }
8450 has_offset = false;
8451 }
8452
8453 /* Build tex instruction */
8454 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8455 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8456 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8457 : 0;
8458 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8459 Temp tmp_dst = dst;
8460
8461 /* gather4 selects the component by dmask and always returns vec4 */
8462 if (instr->op == nir_texop_tg4) {
8463 assert(instr->dest.ssa.num_components == 4);
8464 if (instr->is_shadow)
8465 dmask = 1;
8466 else
8467 dmask = 1 << instr->component;
8468 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8469 tmp_dst = bld.tmp(v4);
8470 } else if (instr->op == nir_texop_samples_identical) {
8471 tmp_dst = bld.tmp(v1);
8472 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8473 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8474 }
8475
8476 aco_ptr<MIMG_instruction> tex;
8477 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8478 if (!has_lod)
8479 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8480
8481 bool div_by_6 = instr->op == nir_texop_txs &&
8482 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8483 instr->is_array &&
8484 (dmask & (1 << 2));
8485 if (tmp_dst.id() == dst.id() && div_by_6)
8486 tmp_dst = bld.tmp(tmp_dst.regClass());
8487
8488 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8489 tex->operands[0] = Operand(resource);
8490 tex->operands[1] = Operand(s4); /* no sampler */
8491 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8492 if (ctx->options->chip_class == GFX9 &&
8493 instr->op == nir_texop_txs &&
8494 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8495 instr->is_array) {
8496 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8497 } else if (instr->op == nir_texop_query_levels) {
8498 tex->dmask = 1 << 3;
8499 } else {
8500 tex->dmask = dmask;
8501 }
8502 tex->da = da;
8503 tex->definitions[0] = Definition(tmp_dst);
8504 tex->dim = dim;
8505 tex->can_reorder = true;
8506 ctx->block->instructions.emplace_back(std::move(tex));
8507
8508 if (div_by_6) {
8509 /* divide 3rd value by 6 by multiplying with magic number */
8510 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8511 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8512 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8513 assert(instr->dest.ssa.num_components == 3);
8514 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8515 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8516 emit_extract_vector(ctx, tmp_dst, 0, v1),
8517 emit_extract_vector(ctx, tmp_dst, 1, v1),
8518 by_6);
8519
8520 }
8521
8522 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8523 return;
8524 }
8525
8526 Temp tg4_compare_cube_wa64 = Temp();
8527
8528 if (tg4_integer_workarounds) {
8529 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8530 tex->operands[0] = Operand(resource);
8531 tex->operands[1] = Operand(s4); /* no sampler */
8532 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8533 tex->dim = dim;
8534 tex->dmask = 0x3;
8535 tex->da = da;
8536 Temp size = bld.tmp(v2);
8537 tex->definitions[0] = Definition(size);
8538 tex->can_reorder = true;
8539 ctx->block->instructions.emplace_back(std::move(tex));
8540 emit_split_vector(ctx, size, size.size());
8541
8542 Temp half_texel[2];
8543 for (unsigned i = 0; i < 2; i++) {
8544 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8545 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8546 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8547 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8548 }
8549
8550 Temp new_coords[2] = {
8551 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8552 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8553 };
8554
8555 if (tg4_integer_cube_workaround) {
8556 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8557 Temp desc[resource.size()];
8558 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8559 Format::PSEUDO, 1, resource.size())};
8560 split->operands[0] = Operand(resource);
8561 for (unsigned i = 0; i < resource.size(); i++) {
8562 desc[i] = bld.tmp(s1);
8563 split->definitions[i] = Definition(desc[i]);
8564 }
8565 ctx->block->instructions.emplace_back(std::move(split));
8566
8567 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8568 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8569 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8570
8571 Temp nfmt;
8572 if (stype == GLSL_TYPE_UINT) {
8573 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8574 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8575 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8576 bld.scc(compare_cube_wa));
8577 } else {
8578 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8579 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8580 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8581 bld.scc(compare_cube_wa));
8582 }
8583 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8584 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8585
8586 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8587
8588 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8589 Operand((uint32_t)C_008F14_NUM_FORMAT));
8590 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8591
8592 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8593 Format::PSEUDO, resource.size(), 1)};
8594 for (unsigned i = 0; i < resource.size(); i++)
8595 vec->operands[i] = Operand(desc[i]);
8596 resource = bld.tmp(resource.regClass());
8597 vec->definitions[0] = Definition(resource);
8598 ctx->block->instructions.emplace_back(std::move(vec));
8599
8600 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8601 new_coords[0], coords[0], tg4_compare_cube_wa64);
8602 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8603 new_coords[1], coords[1], tg4_compare_cube_wa64);
8604 }
8605 coords[0] = new_coords[0];
8606 coords[1] = new_coords[1];
8607 }
8608
8609 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8610 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8611
8612 assert(coords.size() == 1);
8613 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8614 aco_opcode op;
8615 switch (last_bit) {
8616 case 1:
8617 op = aco_opcode::buffer_load_format_x; break;
8618 case 2:
8619 op = aco_opcode::buffer_load_format_xy; break;
8620 case 3:
8621 op = aco_opcode::buffer_load_format_xyz; break;
8622 case 4:
8623 op = aco_opcode::buffer_load_format_xyzw; break;
8624 default:
8625 unreachable("Tex instruction loads more than 4 components.");
8626 }
8627
8628 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8629 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8630 tmp_dst = dst;
8631 else
8632 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8633
8634 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8635 mubuf->operands[0] = Operand(resource);
8636 mubuf->operands[1] = Operand(coords[0]);
8637 mubuf->operands[2] = Operand((uint32_t) 0);
8638 mubuf->definitions[0] = Definition(tmp_dst);
8639 mubuf->idxen = true;
8640 mubuf->can_reorder = true;
8641 ctx->block->instructions.emplace_back(std::move(mubuf));
8642
8643 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8644 return;
8645 }
8646
8647 /* gather MIMG address components */
8648 std::vector<Temp> args;
8649 if (has_offset)
8650 args.emplace_back(offset);
8651 if (has_bias)
8652 args.emplace_back(bias);
8653 if (has_compare)
8654 args.emplace_back(compare);
8655 if (has_derivs)
8656 args.insert(args.end(), derivs.begin(), derivs.end());
8657
8658 args.insert(args.end(), coords.begin(), coords.end());
8659 if (has_sample_index)
8660 args.emplace_back(sample_index);
8661 if (has_lod)
8662 args.emplace_back(lod);
8663
8664 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8665 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8666 vec->definitions[0] = Definition(arg);
8667 for (unsigned i = 0; i < args.size(); i++)
8668 vec->operands[i] = Operand(args[i]);
8669 ctx->block->instructions.emplace_back(std::move(vec));
8670
8671
8672 if (instr->op == nir_texop_txf ||
8673 instr->op == nir_texop_txf_ms ||
8674 instr->op == nir_texop_samples_identical ||
8675 instr->op == nir_texop_fragment_fetch ||
8676 instr->op == nir_texop_fragment_mask_fetch) {
8677 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8678 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8679 tex->operands[0] = Operand(resource);
8680 tex->operands[1] = Operand(s4); /* no sampler */
8681 tex->operands[2] = Operand(arg);
8682 tex->dim = dim;
8683 tex->dmask = dmask;
8684 tex->unrm = true;
8685 tex->da = da;
8686 tex->definitions[0] = Definition(tmp_dst);
8687 tex->can_reorder = true;
8688 ctx->block->instructions.emplace_back(std::move(tex));
8689
8690 if (instr->op == nir_texop_samples_identical) {
8691 assert(dmask == 1 && dst.regClass() == v1);
8692 assert(dst.id() != tmp_dst.id());
8693
8694 Temp tmp = bld.tmp(bld.lm);
8695 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8696 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8697
8698 } else {
8699 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8700 }
8701 return;
8702 }
8703
8704 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8705 aco_opcode opcode = aco_opcode::image_sample;
8706 if (has_offset) { /* image_sample_*_o */
8707 if (has_compare) {
8708 opcode = aco_opcode::image_sample_c_o;
8709 if (has_derivs)
8710 opcode = aco_opcode::image_sample_c_d_o;
8711 if (has_bias)
8712 opcode = aco_opcode::image_sample_c_b_o;
8713 if (level_zero)
8714 opcode = aco_opcode::image_sample_c_lz_o;
8715 if (has_lod)
8716 opcode = aco_opcode::image_sample_c_l_o;
8717 } else {
8718 opcode = aco_opcode::image_sample_o;
8719 if (has_derivs)
8720 opcode = aco_opcode::image_sample_d_o;
8721 if (has_bias)
8722 opcode = aco_opcode::image_sample_b_o;
8723 if (level_zero)
8724 opcode = aco_opcode::image_sample_lz_o;
8725 if (has_lod)
8726 opcode = aco_opcode::image_sample_l_o;
8727 }
8728 } else { /* no offset */
8729 if (has_compare) {
8730 opcode = aco_opcode::image_sample_c;
8731 if (has_derivs)
8732 opcode = aco_opcode::image_sample_c_d;
8733 if (has_bias)
8734 opcode = aco_opcode::image_sample_c_b;
8735 if (level_zero)
8736 opcode = aco_opcode::image_sample_c_lz;
8737 if (has_lod)
8738 opcode = aco_opcode::image_sample_c_l;
8739 } else {
8740 opcode = aco_opcode::image_sample;
8741 if (has_derivs)
8742 opcode = aco_opcode::image_sample_d;
8743 if (has_bias)
8744 opcode = aco_opcode::image_sample_b;
8745 if (level_zero)
8746 opcode = aco_opcode::image_sample_lz;
8747 if (has_lod)
8748 opcode = aco_opcode::image_sample_l;
8749 }
8750 }
8751
8752 if (instr->op == nir_texop_tg4) {
8753 if (has_offset) {
8754 opcode = aco_opcode::image_gather4_lz_o;
8755 if (has_compare)
8756 opcode = aco_opcode::image_gather4_c_lz_o;
8757 } else {
8758 opcode = aco_opcode::image_gather4_lz;
8759 if (has_compare)
8760 opcode = aco_opcode::image_gather4_c_lz;
8761 }
8762 } else if (instr->op == nir_texop_lod) {
8763 opcode = aco_opcode::image_get_lod;
8764 }
8765
8766 /* we don't need the bias, sample index, compare value or offset to be
8767 * computed in WQM but if the p_create_vector copies the coordinates, then it
8768 * needs to be in WQM */
8769 if (ctx->stage == fragment_fs &&
8770 !has_derivs && !has_lod && !level_zero &&
8771 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8772 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8773 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8774
8775 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8776 tex->operands[0] = Operand(resource);
8777 tex->operands[1] = Operand(sampler);
8778 tex->operands[2] = Operand(arg);
8779 tex->dim = dim;
8780 tex->dmask = dmask;
8781 tex->da = da;
8782 tex->definitions[0] = Definition(tmp_dst);
8783 tex->can_reorder = true;
8784 ctx->block->instructions.emplace_back(std::move(tex));
8785
8786 if (tg4_integer_cube_workaround) {
8787 assert(tmp_dst.id() != dst.id());
8788 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8789
8790 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8791 Temp val[4];
8792 for (unsigned i = 0; i < dst.size(); i++) {
8793 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8794 Temp cvt_val;
8795 if (stype == GLSL_TYPE_UINT)
8796 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8797 else
8798 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8799 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8800 }
8801 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8802 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8803 val[0], val[1], val[2], val[3]);
8804 }
8805 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8806 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8807
8808 }
8809
8810
8811 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8812 {
8813 Temp tmp = get_ssa_temp(ctx, ssa);
8814 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8815 return Operand(tmp.regClass());
8816 else
8817 return Operand(tmp);
8818 }
8819
8820 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8821 {
8822 aco_ptr<Pseudo_instruction> phi;
8823 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8824 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8825
8826 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8827 logical |= ctx->block->kind & block_kind_merge;
8828 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8829
8830 /* we want a sorted list of sources, since the predecessor list is also sorted */
8831 std::map<unsigned, nir_ssa_def*> phi_src;
8832 nir_foreach_phi_src(src, instr)
8833 phi_src[src->pred->index] = src->src.ssa;
8834
8835 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8836 unsigned num_operands = 0;
8837 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8838 unsigned num_defined = 0;
8839 unsigned cur_pred_idx = 0;
8840 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8841 if (cur_pred_idx < preds.size()) {
8842 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8843 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8844 unsigned skipped = 0;
8845 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8846 skipped++;
8847 if (cur_pred_idx + skipped < preds.size()) {
8848 for (unsigned i = 0; i < skipped; i++)
8849 operands[num_operands++] = Operand(dst.regClass());
8850 cur_pred_idx += skipped;
8851 } else {
8852 continue;
8853 }
8854 }
8855 /* Handle missing predecessors at the end. This shouldn't happen with loop
8856 * headers and we can't ignore these sources for loop header phis. */
8857 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8858 continue;
8859 cur_pred_idx++;
8860 Operand op = get_phi_operand(ctx, src.second);
8861 operands[num_operands++] = op;
8862 num_defined += !op.isUndefined();
8863 }
8864 /* handle block_kind_continue_or_break at loop exit blocks */
8865 while (cur_pred_idx++ < preds.size())
8866 operands[num_operands++] = Operand(dst.regClass());
8867
8868 /* If the loop ends with a break, still add a linear continue edge in case
8869 * that break is divergent or continue_or_break is used. We'll either remove
8870 * this operand later in visit_loop() if it's not necessary or replace the
8871 * undef with something correct. */
8872 if (!logical && ctx->block->kind & block_kind_loop_header) {
8873 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8874 nir_block *last = nir_loop_last_block(loop);
8875 if (last->successors[0] != instr->instr.block)
8876 operands[num_operands++] = Operand(RegClass());
8877 }
8878
8879 if (num_defined == 0) {
8880 Builder bld(ctx->program, ctx->block);
8881 if (dst.regClass() == s1) {
8882 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8883 } else if (dst.regClass() == v1) {
8884 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8885 } else {
8886 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8887 for (unsigned i = 0; i < dst.size(); i++)
8888 vec->operands[i] = Operand(0u);
8889 vec->definitions[0] = Definition(dst);
8890 ctx->block->instructions.emplace_back(std::move(vec));
8891 }
8892 return;
8893 }
8894
8895 /* we can use a linear phi in some cases if one src is undef */
8896 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8897 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8898
8899 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8900 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8901 assert(invert->kind & block_kind_invert);
8902
8903 unsigned then_block = invert->linear_preds[0];
8904
8905 Block* insert_block = NULL;
8906 for (unsigned i = 0; i < num_operands; i++) {
8907 Operand op = operands[i];
8908 if (op.isUndefined())
8909 continue;
8910 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8911 phi->operands[0] = op;
8912 break;
8913 }
8914 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8915 phi->operands[1] = Operand(dst.regClass());
8916 phi->definitions[0] = Definition(dst);
8917 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8918 return;
8919 }
8920
8921 /* try to scalarize vector phis */
8922 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8923 // TODO: scalarize linear phis on divergent ifs
8924 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8925 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8926 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8927 Operand src = operands[i];
8928 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8929 can_scalarize = false;
8930 }
8931 if (can_scalarize) {
8932 unsigned num_components = instr->dest.ssa.num_components;
8933 assert(dst.size() % num_components == 0);
8934 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8935
8936 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8937 for (unsigned k = 0; k < num_components; k++) {
8938 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8939 for (unsigned i = 0; i < num_operands; i++) {
8940 Operand src = operands[i];
8941 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8942 }
8943 Temp phi_dst = {ctx->program->allocateId(), rc};
8944 phi->definitions[0] = Definition(phi_dst);
8945 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8946 new_vec[k] = phi_dst;
8947 vec->operands[k] = Operand(phi_dst);
8948 }
8949 vec->definitions[0] = Definition(dst);
8950 ctx->block->instructions.emplace_back(std::move(vec));
8951 ctx->allocated_vec.emplace(dst.id(), new_vec);
8952 return;
8953 }
8954 }
8955
8956 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8957 for (unsigned i = 0; i < num_operands; i++)
8958 phi->operands[i] = operands[i];
8959 phi->definitions[0] = Definition(dst);
8960 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8961 }
8962
8963
8964 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8965 {
8966 Temp dst = get_ssa_temp(ctx, &instr->def);
8967
8968 assert(dst.type() == RegType::sgpr);
8969
8970 if (dst.size() == 1) {
8971 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8972 } else {
8973 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8974 for (unsigned i = 0; i < dst.size(); i++)
8975 vec->operands[i] = Operand(0u);
8976 vec->definitions[0] = Definition(dst);
8977 ctx->block->instructions.emplace_back(std::move(vec));
8978 }
8979 }
8980
8981 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8982 {
8983 Builder bld(ctx->program, ctx->block);
8984 Block *logical_target;
8985 append_logical_end(ctx->block);
8986 unsigned idx = ctx->block->index;
8987
8988 switch (instr->type) {
8989 case nir_jump_break:
8990 logical_target = ctx->cf_info.parent_loop.exit;
8991 add_logical_edge(idx, logical_target);
8992 ctx->block->kind |= block_kind_break;
8993
8994 if (!ctx->cf_info.parent_if.is_divergent &&
8995 !ctx->cf_info.parent_loop.has_divergent_continue) {
8996 /* uniform break - directly jump out of the loop */
8997 ctx->block->kind |= block_kind_uniform;
8998 ctx->cf_info.has_branch = true;
8999 bld.branch(aco_opcode::p_branch);
9000 add_linear_edge(idx, logical_target);
9001 return;
9002 }
9003 ctx->cf_info.parent_loop.has_divergent_branch = true;
9004 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9005 break;
9006 case nir_jump_continue:
9007 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9008 add_logical_edge(idx, logical_target);
9009 ctx->block->kind |= block_kind_continue;
9010
9011 if (ctx->cf_info.parent_if.is_divergent) {
9012 /* for potential uniform breaks after this continue,
9013 we must ensure that they are handled correctly */
9014 ctx->cf_info.parent_loop.has_divergent_continue = true;
9015 ctx->cf_info.parent_loop.has_divergent_branch = true;
9016 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9017 } else {
9018 /* uniform continue - directly jump to the loop header */
9019 ctx->block->kind |= block_kind_uniform;
9020 ctx->cf_info.has_branch = true;
9021 bld.branch(aco_opcode::p_branch);
9022 add_linear_edge(idx, logical_target);
9023 return;
9024 }
9025 break;
9026 default:
9027 fprintf(stderr, "Unknown NIR jump instr: ");
9028 nir_print_instr(&instr->instr, stderr);
9029 fprintf(stderr, "\n");
9030 abort();
9031 }
9032
9033 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9034 ctx->cf_info.exec_potentially_empty_break = true;
9035 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9036 }
9037
9038 /* remove critical edges from linear CFG */
9039 bld.branch(aco_opcode::p_branch);
9040 Block* break_block = ctx->program->create_and_insert_block();
9041 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9042 break_block->kind |= block_kind_uniform;
9043 add_linear_edge(idx, break_block);
9044 /* the loop_header pointer might be invalidated by this point */
9045 if (instr->type == nir_jump_continue)
9046 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9047 add_linear_edge(break_block->index, logical_target);
9048 bld.reset(break_block);
9049 bld.branch(aco_opcode::p_branch);
9050
9051 Block* continue_block = ctx->program->create_and_insert_block();
9052 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9053 add_linear_edge(idx, continue_block);
9054 append_logical_start(continue_block);
9055 ctx->block = continue_block;
9056 return;
9057 }
9058
9059 void visit_block(isel_context *ctx, nir_block *block)
9060 {
9061 nir_foreach_instr(instr, block) {
9062 switch (instr->type) {
9063 case nir_instr_type_alu:
9064 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9065 break;
9066 case nir_instr_type_load_const:
9067 visit_load_const(ctx, nir_instr_as_load_const(instr));
9068 break;
9069 case nir_instr_type_intrinsic:
9070 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9071 break;
9072 case nir_instr_type_tex:
9073 visit_tex(ctx, nir_instr_as_tex(instr));
9074 break;
9075 case nir_instr_type_phi:
9076 visit_phi(ctx, nir_instr_as_phi(instr));
9077 break;
9078 case nir_instr_type_ssa_undef:
9079 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9080 break;
9081 case nir_instr_type_deref:
9082 break;
9083 case nir_instr_type_jump:
9084 visit_jump(ctx, nir_instr_as_jump(instr));
9085 break;
9086 default:
9087 fprintf(stderr, "Unknown NIR instr type: ");
9088 nir_print_instr(instr, stderr);
9089 fprintf(stderr, "\n");
9090 //abort();
9091 }
9092 }
9093
9094 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9095 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9096 }
9097
9098
9099
9100 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9101 aco_ptr<Instruction>& header_phi, Operand *vals)
9102 {
9103 vals[0] = Operand(header_phi->definitions[0].getTemp());
9104 RegClass rc = vals[0].regClass();
9105
9106 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9107
9108 unsigned next_pred = 1;
9109
9110 for (unsigned idx = first + 1; idx <= last; idx++) {
9111 Block& block = ctx->program->blocks[idx];
9112 if (block.loop_nest_depth != loop_nest_depth) {
9113 vals[idx - first] = vals[idx - 1 - first];
9114 continue;
9115 }
9116
9117 if (block.kind & block_kind_continue) {
9118 vals[idx - first] = header_phi->operands[next_pred];
9119 next_pred++;
9120 continue;
9121 }
9122
9123 bool all_same = true;
9124 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9125 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9126
9127 Operand val;
9128 if (all_same) {
9129 val = vals[block.linear_preds[0] - first];
9130 } else {
9131 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9132 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9133 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9134 phi->operands[i] = vals[block.linear_preds[i] - first];
9135 val = Operand(Temp(ctx->program->allocateId(), rc));
9136 phi->definitions[0] = Definition(val.getTemp());
9137 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9138 }
9139 vals[idx - first] = val;
9140 }
9141
9142 return vals[last - first];
9143 }
9144
9145 static void visit_loop(isel_context *ctx, nir_loop *loop)
9146 {
9147 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9148 append_logical_end(ctx->block);
9149 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9150 Builder bld(ctx->program, ctx->block);
9151 bld.branch(aco_opcode::p_branch);
9152 unsigned loop_preheader_idx = ctx->block->index;
9153
9154 Block loop_exit = Block();
9155 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9156 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9157
9158 Block* loop_header = ctx->program->create_and_insert_block();
9159 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9160 loop_header->kind |= block_kind_loop_header;
9161 add_edge(loop_preheader_idx, loop_header);
9162 ctx->block = loop_header;
9163
9164 /* emit loop body */
9165 unsigned loop_header_idx = loop_header->index;
9166 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9167 append_logical_start(ctx->block);
9168 bool unreachable = visit_cf_list(ctx, &loop->body);
9169
9170 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9171 if (!ctx->cf_info.has_branch) {
9172 append_logical_end(ctx->block);
9173 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9174 /* Discards can result in code running with an empty exec mask.
9175 * This would result in divergent breaks not ever being taken. As a
9176 * workaround, break the loop when the loop mask is empty instead of
9177 * always continuing. */
9178 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9179 unsigned block_idx = ctx->block->index;
9180
9181 /* create helper blocks to avoid critical edges */
9182 Block *break_block = ctx->program->create_and_insert_block();
9183 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9184 break_block->kind = block_kind_uniform;
9185 bld.reset(break_block);
9186 bld.branch(aco_opcode::p_branch);
9187 add_linear_edge(block_idx, break_block);
9188 add_linear_edge(break_block->index, &loop_exit);
9189
9190 Block *continue_block = ctx->program->create_and_insert_block();
9191 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9192 continue_block->kind = block_kind_uniform;
9193 bld.reset(continue_block);
9194 bld.branch(aco_opcode::p_branch);
9195 add_linear_edge(block_idx, continue_block);
9196 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9197
9198 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9199 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9200 ctx->block = &ctx->program->blocks[block_idx];
9201 } else {
9202 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9203 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9204 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9205 else
9206 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9207 }
9208
9209 bld.reset(ctx->block);
9210 bld.branch(aco_opcode::p_branch);
9211 }
9212
9213 /* Fixup phis in loop header from unreachable blocks.
9214 * has_branch/has_divergent_branch also indicates if the loop ends with a
9215 * break/continue instruction, but we don't emit those if unreachable=true */
9216 if (unreachable) {
9217 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9218 bool linear = ctx->cf_info.has_branch;
9219 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9220 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9221 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9222 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9223 /* the last operand should be the one that needs to be removed */
9224 instr->operands.pop_back();
9225 } else if (!is_phi(instr)) {
9226 break;
9227 }
9228 }
9229 }
9230
9231 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9232 * and the previous one shouldn't both happen at once because a break in the
9233 * merge block would get CSE'd */
9234 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9235 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9236 Operand vals[num_vals];
9237 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9238 if (instr->opcode == aco_opcode::p_linear_phi) {
9239 if (ctx->cf_info.has_branch)
9240 instr->operands.pop_back();
9241 else
9242 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9243 } else if (!is_phi(instr)) {
9244 break;
9245 }
9246 }
9247 }
9248
9249 ctx->cf_info.has_branch = false;
9250
9251 // TODO: if the loop has not a single exit, we must add one °°
9252 /* emit loop successor block */
9253 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9254 append_logical_start(ctx->block);
9255
9256 #if 0
9257 // TODO: check if it is beneficial to not branch on continues
9258 /* trim linear phis in loop header */
9259 for (auto&& instr : loop_entry->instructions) {
9260 if (instr->opcode == aco_opcode::p_linear_phi) {
9261 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9262 new_phi->definitions[0] = instr->definitions[0];
9263 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9264 new_phi->operands[i] = instr->operands[i];
9265 /* check that the remaining operands are all the same */
9266 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9267 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9268 instr.swap(new_phi);
9269 } else if (instr->opcode == aco_opcode::p_phi) {
9270 continue;
9271 } else {
9272 break;
9273 }
9274 }
9275 #endif
9276 }
9277
9278 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9279 {
9280 ic->cond = cond;
9281
9282 append_logical_end(ctx->block);
9283 ctx->block->kind |= block_kind_branch;
9284
9285 /* branch to linear then block */
9286 assert(cond.regClass() == ctx->program->lane_mask);
9287 aco_ptr<Pseudo_branch_instruction> branch;
9288 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9289 branch->operands[0] = Operand(cond);
9290 ctx->block->instructions.push_back(std::move(branch));
9291
9292 ic->BB_if_idx = ctx->block->index;
9293 ic->BB_invert = Block();
9294 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9295 /* Invert blocks are intentionally not marked as top level because they
9296 * are not part of the logical cfg. */
9297 ic->BB_invert.kind |= block_kind_invert;
9298 ic->BB_endif = Block();
9299 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9300 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9301
9302 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9303 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9304 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9305 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9306 ctx->cf_info.parent_if.is_divergent = true;
9307
9308 /* divergent branches use cbranch_execz */
9309 ctx->cf_info.exec_potentially_empty_discard = false;
9310 ctx->cf_info.exec_potentially_empty_break = false;
9311 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9312
9313 /** emit logical then block */
9314 Block* BB_then_logical = ctx->program->create_and_insert_block();
9315 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9316 add_edge(ic->BB_if_idx, BB_then_logical);
9317 ctx->block = BB_then_logical;
9318 append_logical_start(BB_then_logical);
9319 }
9320
9321 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9322 {
9323 Block *BB_then_logical = ctx->block;
9324 append_logical_end(BB_then_logical);
9325 /* branch from logical then block to invert block */
9326 aco_ptr<Pseudo_branch_instruction> branch;
9327 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9328 BB_then_logical->instructions.emplace_back(std::move(branch));
9329 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9330 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9331 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9332 BB_then_logical->kind |= block_kind_uniform;
9333 assert(!ctx->cf_info.has_branch);
9334 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9335 ctx->cf_info.parent_loop.has_divergent_branch = false;
9336
9337 /** emit linear then block */
9338 Block* BB_then_linear = ctx->program->create_and_insert_block();
9339 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9340 BB_then_linear->kind |= block_kind_uniform;
9341 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9342 /* branch from linear then block to invert block */
9343 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9344 BB_then_linear->instructions.emplace_back(std::move(branch));
9345 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9346
9347 /** emit invert merge block */
9348 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9349 ic->invert_idx = ctx->block->index;
9350
9351 /* branch to linear else block (skip else) */
9352 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9353 branch->operands[0] = Operand(ic->cond);
9354 ctx->block->instructions.push_back(std::move(branch));
9355
9356 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9357 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9358 ic->exec_potentially_empty_break_depth_old =
9359 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9360 /* divergent branches use cbranch_execz */
9361 ctx->cf_info.exec_potentially_empty_discard = false;
9362 ctx->cf_info.exec_potentially_empty_break = false;
9363 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9364
9365 /** emit logical else block */
9366 Block* BB_else_logical = ctx->program->create_and_insert_block();
9367 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9368 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9369 add_linear_edge(ic->invert_idx, BB_else_logical);
9370 ctx->block = BB_else_logical;
9371 append_logical_start(BB_else_logical);
9372 }
9373
9374 static void end_divergent_if(isel_context *ctx, if_context *ic)
9375 {
9376 Block *BB_else_logical = ctx->block;
9377 append_logical_end(BB_else_logical);
9378
9379 /* branch from logical else block to endif block */
9380 aco_ptr<Pseudo_branch_instruction> branch;
9381 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9382 BB_else_logical->instructions.emplace_back(std::move(branch));
9383 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9384 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9385 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9386 BB_else_logical->kind |= block_kind_uniform;
9387
9388 assert(!ctx->cf_info.has_branch);
9389 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9390
9391
9392 /** emit linear else block */
9393 Block* BB_else_linear = ctx->program->create_and_insert_block();
9394 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9395 BB_else_linear->kind |= block_kind_uniform;
9396 add_linear_edge(ic->invert_idx, BB_else_linear);
9397
9398 /* branch from linear else block to endif block */
9399 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9400 BB_else_linear->instructions.emplace_back(std::move(branch));
9401 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9402
9403
9404 /** emit endif merge block */
9405 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9406 append_logical_start(ctx->block);
9407
9408
9409 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9410 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9411 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9412 ctx->cf_info.exec_potentially_empty_break_depth =
9413 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9414 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9415 !ctx->cf_info.parent_if.is_divergent) {
9416 ctx->cf_info.exec_potentially_empty_break = false;
9417 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9418 }
9419 /* uniform control flow never has an empty exec-mask */
9420 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9421 ctx->cf_info.exec_potentially_empty_discard = false;
9422 ctx->cf_info.exec_potentially_empty_break = false;
9423 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9424 }
9425 }
9426
9427 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9428 {
9429 assert(cond.regClass() == s1);
9430
9431 append_logical_end(ctx->block);
9432 ctx->block->kind |= block_kind_uniform;
9433
9434 aco_ptr<Pseudo_branch_instruction> branch;
9435 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9436 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9437 branch->operands[0] = Operand(cond);
9438 branch->operands[0].setFixed(scc);
9439 ctx->block->instructions.emplace_back(std::move(branch));
9440
9441 ic->BB_if_idx = ctx->block->index;
9442 ic->BB_endif = Block();
9443 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9444 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9445
9446 ctx->cf_info.has_branch = false;
9447 ctx->cf_info.parent_loop.has_divergent_branch = false;
9448
9449 /** emit then block */
9450 Block* BB_then = ctx->program->create_and_insert_block();
9451 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9452 add_edge(ic->BB_if_idx, BB_then);
9453 append_logical_start(BB_then);
9454 ctx->block = BB_then;
9455 }
9456
9457 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9458 {
9459 Block *BB_then = ctx->block;
9460
9461 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9462 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9463
9464 if (!ic->uniform_has_then_branch) {
9465 append_logical_end(BB_then);
9466 /* branch from then block to endif block */
9467 aco_ptr<Pseudo_branch_instruction> branch;
9468 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9469 BB_then->instructions.emplace_back(std::move(branch));
9470 add_linear_edge(BB_then->index, &ic->BB_endif);
9471 if (!ic->then_branch_divergent)
9472 add_logical_edge(BB_then->index, &ic->BB_endif);
9473 BB_then->kind |= block_kind_uniform;
9474 }
9475
9476 ctx->cf_info.has_branch = false;
9477 ctx->cf_info.parent_loop.has_divergent_branch = false;
9478
9479 /** emit else block */
9480 Block* BB_else = ctx->program->create_and_insert_block();
9481 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9482 add_edge(ic->BB_if_idx, BB_else);
9483 append_logical_start(BB_else);
9484 ctx->block = BB_else;
9485 }
9486
9487 static void end_uniform_if(isel_context *ctx, if_context *ic)
9488 {
9489 Block *BB_else = ctx->block;
9490
9491 if (!ctx->cf_info.has_branch) {
9492 append_logical_end(BB_else);
9493 /* branch from then block to endif block */
9494 aco_ptr<Pseudo_branch_instruction> branch;
9495 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9496 BB_else->instructions.emplace_back(std::move(branch));
9497 add_linear_edge(BB_else->index, &ic->BB_endif);
9498 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9499 add_logical_edge(BB_else->index, &ic->BB_endif);
9500 BB_else->kind |= block_kind_uniform;
9501 }
9502
9503 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9504 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9505
9506 /** emit endif merge block */
9507 if (!ctx->cf_info.has_branch) {
9508 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9509 append_logical_start(ctx->block);
9510 }
9511 }
9512
9513 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9514 {
9515 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9516 Builder bld(ctx->program, ctx->block);
9517 aco_ptr<Pseudo_branch_instruction> branch;
9518 if_context ic;
9519
9520 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9521 /**
9522 * Uniform conditionals are represented in the following way*) :
9523 *
9524 * The linear and logical CFG:
9525 * BB_IF
9526 * / \
9527 * BB_THEN (logical) BB_ELSE (logical)
9528 * \ /
9529 * BB_ENDIF
9530 *
9531 * *) Exceptions may be due to break and continue statements within loops
9532 * If a break/continue happens within uniform control flow, it branches
9533 * to the loop exit/entry block. Otherwise, it branches to the next
9534 * merge block.
9535 **/
9536
9537 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9538 assert(cond.regClass() == ctx->program->lane_mask);
9539 cond = bool_to_scalar_condition(ctx, cond);
9540
9541 begin_uniform_if_then(ctx, &ic, cond);
9542 visit_cf_list(ctx, &if_stmt->then_list);
9543
9544 begin_uniform_if_else(ctx, &ic);
9545 visit_cf_list(ctx, &if_stmt->else_list);
9546
9547 end_uniform_if(ctx, &ic);
9548 } else { /* non-uniform condition */
9549 /**
9550 * To maintain a logical and linear CFG without critical edges,
9551 * non-uniform conditionals are represented in the following way*) :
9552 *
9553 * The linear CFG:
9554 * BB_IF
9555 * / \
9556 * BB_THEN (logical) BB_THEN (linear)
9557 * \ /
9558 * BB_INVERT (linear)
9559 * / \
9560 * BB_ELSE (logical) BB_ELSE (linear)
9561 * \ /
9562 * BB_ENDIF
9563 *
9564 * The logical CFG:
9565 * BB_IF
9566 * / \
9567 * BB_THEN (logical) BB_ELSE (logical)
9568 * \ /
9569 * BB_ENDIF
9570 *
9571 * *) Exceptions may be due to break and continue statements within loops
9572 **/
9573
9574 begin_divergent_if_then(ctx, &ic, cond);
9575 visit_cf_list(ctx, &if_stmt->then_list);
9576
9577 begin_divergent_if_else(ctx, &ic);
9578 visit_cf_list(ctx, &if_stmt->else_list);
9579
9580 end_divergent_if(ctx, &ic);
9581 }
9582
9583 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9584 }
9585
9586 static bool visit_cf_list(isel_context *ctx,
9587 struct exec_list *list)
9588 {
9589 foreach_list_typed(nir_cf_node, node, node, list) {
9590 switch (node->type) {
9591 case nir_cf_node_block:
9592 visit_block(ctx, nir_cf_node_as_block(node));
9593 break;
9594 case nir_cf_node_if:
9595 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9596 return true;
9597 break;
9598 case nir_cf_node_loop:
9599 visit_loop(ctx, nir_cf_node_as_loop(node));
9600 break;
9601 default:
9602 unreachable("unimplemented cf list type");
9603 }
9604 }
9605 return false;
9606 }
9607
9608 static void create_null_export(isel_context *ctx)
9609 {
9610 /* Some shader stages always need to have exports.
9611 * So when there is none, we need to add a null export.
9612 */
9613
9614 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9615 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9616 Builder bld(ctx->program, ctx->block);
9617 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9618 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9619 }
9620
9621 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9622 {
9623 assert(ctx->stage == vertex_vs ||
9624 ctx->stage == tess_eval_vs ||
9625 ctx->stage == gs_copy_vs ||
9626 ctx->stage == ngg_vertex_gs ||
9627 ctx->stage == ngg_tess_eval_gs);
9628
9629 int offset = (ctx->stage & sw_tes)
9630 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9631 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9632 uint64_t mask = ctx->outputs.mask[slot];
9633 if (!is_pos && !mask)
9634 return false;
9635 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9636 return false;
9637 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9638 exp->enabled_mask = mask;
9639 for (unsigned i = 0; i < 4; ++i) {
9640 if (mask & (1 << i))
9641 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9642 else
9643 exp->operands[i] = Operand(v1);
9644 }
9645 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9646 * Setting valid_mask=1 prevents it and has no other effect.
9647 */
9648 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9649 exp->done = false;
9650 exp->compressed = false;
9651 if (is_pos)
9652 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9653 else
9654 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9655 ctx->block->instructions.emplace_back(std::move(exp));
9656
9657 return true;
9658 }
9659
9660 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9661 {
9662 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9663 exp->enabled_mask = 0;
9664 for (unsigned i = 0; i < 4; ++i)
9665 exp->operands[i] = Operand(v1);
9666 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9667 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9668 exp->enabled_mask |= 0x1;
9669 }
9670 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9671 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9672 exp->enabled_mask |= 0x4;
9673 }
9674 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9675 if (ctx->options->chip_class < GFX9) {
9676 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9677 exp->enabled_mask |= 0x8;
9678 } else {
9679 Builder bld(ctx->program, ctx->block);
9680
9681 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9682 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9683 if (exp->operands[2].isTemp())
9684 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9685
9686 exp->operands[2] = Operand(out);
9687 exp->enabled_mask |= 0x4;
9688 }
9689 }
9690 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9691 exp->done = false;
9692 exp->compressed = false;
9693 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9694 ctx->block->instructions.emplace_back(std::move(exp));
9695 }
9696
9697 static void create_export_phis(isel_context *ctx)
9698 {
9699 /* Used when exports are needed, but the output temps are defined in a preceding block.
9700 * This function will set up phis in order to access the outputs in the next block.
9701 */
9702
9703 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9704 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9705 ctx->block->instructions.pop_back();
9706
9707 Builder bld(ctx->program, ctx->block);
9708
9709 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9710 uint64_t mask = ctx->outputs.mask[slot];
9711 for (unsigned i = 0; i < 4; ++i) {
9712 if (!(mask & (1 << i)))
9713 continue;
9714
9715 Temp old = ctx->outputs.temps[slot * 4 + i];
9716 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9717 ctx->outputs.temps[slot * 4 + i] = phi;
9718 }
9719 }
9720
9721 bld.insert(std::move(logical_start));
9722 }
9723
9724 static void create_vs_exports(isel_context *ctx)
9725 {
9726 assert(ctx->stage == vertex_vs ||
9727 ctx->stage == tess_eval_vs ||
9728 ctx->stage == gs_copy_vs ||
9729 ctx->stage == ngg_vertex_gs ||
9730 ctx->stage == ngg_tess_eval_gs);
9731
9732 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9733 ? &ctx->program->info->tes.outinfo
9734 : &ctx->program->info->vs.outinfo;
9735
9736 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9737 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9738 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9739 }
9740
9741 if (ctx->options->key.has_multiview_view_index) {
9742 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9743 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9744 }
9745
9746 /* the order these position exports are created is important */
9747 int next_pos = 0;
9748 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9749 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9750 export_vs_psiz_layer_viewport(ctx, &next_pos);
9751 exported_pos = true;
9752 }
9753 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9754 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9755 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9756 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9757
9758 if (ctx->export_clip_dists) {
9759 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9760 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9761 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9762 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9763 }
9764
9765 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9766 if (i < VARYING_SLOT_VAR0 &&
9767 i != VARYING_SLOT_LAYER &&
9768 i != VARYING_SLOT_PRIMITIVE_ID &&
9769 i != VARYING_SLOT_VIEWPORT)
9770 continue;
9771
9772 export_vs_varying(ctx, i, false, NULL);
9773 }
9774
9775 if (!exported_pos)
9776 create_null_export(ctx);
9777 }
9778
9779 static bool export_fs_mrt_z(isel_context *ctx)
9780 {
9781 Builder bld(ctx->program, ctx->block);
9782 unsigned enabled_channels = 0;
9783 bool compr = false;
9784 Operand values[4];
9785
9786 for (unsigned i = 0; i < 4; ++i) {
9787 values[i] = Operand(v1);
9788 }
9789
9790 /* Both stencil and sample mask only need 16-bits. */
9791 if (!ctx->program->info->ps.writes_z &&
9792 (ctx->program->info->ps.writes_stencil ||
9793 ctx->program->info->ps.writes_sample_mask)) {
9794 compr = true; /* COMPR flag */
9795
9796 if (ctx->program->info->ps.writes_stencil) {
9797 /* Stencil should be in X[23:16]. */
9798 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9799 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9800 enabled_channels |= 0x3;
9801 }
9802
9803 if (ctx->program->info->ps.writes_sample_mask) {
9804 /* SampleMask should be in Y[15:0]. */
9805 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9806 enabled_channels |= 0xc;
9807 }
9808 } else {
9809 if (ctx->program->info->ps.writes_z) {
9810 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9811 enabled_channels |= 0x1;
9812 }
9813
9814 if (ctx->program->info->ps.writes_stencil) {
9815 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9816 enabled_channels |= 0x2;
9817 }
9818
9819 if (ctx->program->info->ps.writes_sample_mask) {
9820 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9821 enabled_channels |= 0x4;
9822 }
9823 }
9824
9825 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9826 * writemask component.
9827 */
9828 if (ctx->options->chip_class == GFX6 &&
9829 ctx->options->family != CHIP_OLAND &&
9830 ctx->options->family != CHIP_HAINAN) {
9831 enabled_channels |= 0x1;
9832 }
9833
9834 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9835 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9836
9837 return true;
9838 }
9839
9840 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9841 {
9842 Builder bld(ctx->program, ctx->block);
9843 unsigned write_mask = ctx->outputs.mask[slot];
9844 Operand values[4];
9845
9846 for (unsigned i = 0; i < 4; ++i) {
9847 if (write_mask & (1 << i)) {
9848 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9849 } else {
9850 values[i] = Operand(v1);
9851 }
9852 }
9853
9854 unsigned target, col_format;
9855 unsigned enabled_channels = 0;
9856 aco_opcode compr_op = (aco_opcode)0;
9857
9858 slot -= FRAG_RESULT_DATA0;
9859 target = V_008DFC_SQ_EXP_MRT + slot;
9860 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9861
9862 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9863 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9864
9865 switch (col_format)
9866 {
9867 case V_028714_SPI_SHADER_ZERO:
9868 enabled_channels = 0; /* writemask */
9869 target = V_008DFC_SQ_EXP_NULL;
9870 break;
9871
9872 case V_028714_SPI_SHADER_32_R:
9873 enabled_channels = 1;
9874 break;
9875
9876 case V_028714_SPI_SHADER_32_GR:
9877 enabled_channels = 0x3;
9878 break;
9879
9880 case V_028714_SPI_SHADER_32_AR:
9881 if (ctx->options->chip_class >= GFX10) {
9882 /* Special case: on GFX10, the outputs are different for 32_AR */
9883 enabled_channels = 0x3;
9884 values[1] = values[3];
9885 values[3] = Operand(v1);
9886 } else {
9887 enabled_channels = 0x9;
9888 }
9889 break;
9890
9891 case V_028714_SPI_SHADER_FP16_ABGR:
9892 enabled_channels = 0x5;
9893 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9894 break;
9895
9896 case V_028714_SPI_SHADER_UNORM16_ABGR:
9897 enabled_channels = 0x5;
9898 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9899 break;
9900
9901 case V_028714_SPI_SHADER_SNORM16_ABGR:
9902 enabled_channels = 0x5;
9903 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9904 break;
9905
9906 case V_028714_SPI_SHADER_UINT16_ABGR: {
9907 enabled_channels = 0x5;
9908 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9909 if (is_int8 || is_int10) {
9910 /* clamp */
9911 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9912 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9913
9914 for (unsigned i = 0; i < 4; i++) {
9915 if ((write_mask >> i) & 1) {
9916 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9917 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9918 values[i]);
9919 }
9920 }
9921 }
9922 break;
9923 }
9924
9925 case V_028714_SPI_SHADER_SINT16_ABGR:
9926 enabled_channels = 0x5;
9927 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9928 if (is_int8 || is_int10) {
9929 /* clamp */
9930 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9931 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9932 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9933 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9934
9935 for (unsigned i = 0; i < 4; i++) {
9936 if ((write_mask >> i) & 1) {
9937 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9938 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9939 values[i]);
9940 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9941 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9942 values[i]);
9943 }
9944 }
9945 }
9946 break;
9947
9948 case V_028714_SPI_SHADER_32_ABGR:
9949 enabled_channels = 0xF;
9950 break;
9951
9952 default:
9953 break;
9954 }
9955
9956 if (target == V_008DFC_SQ_EXP_NULL)
9957 return false;
9958
9959 if ((bool) compr_op) {
9960 for (int i = 0; i < 2; i++) {
9961 /* check if at least one of the values to be compressed is enabled */
9962 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9963 if (enabled) {
9964 enabled_channels |= enabled << (i*2);
9965 values[i] = bld.vop3(compr_op, bld.def(v1),
9966 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9967 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9968 } else {
9969 values[i] = Operand(v1);
9970 }
9971 }
9972 values[2] = Operand(v1);
9973 values[3] = Operand(v1);
9974 } else {
9975 for (int i = 0; i < 4; i++)
9976 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9977 }
9978
9979 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9980 enabled_channels, target, (bool) compr_op);
9981 return true;
9982 }
9983
9984 static void create_fs_exports(isel_context *ctx)
9985 {
9986 bool exported = false;
9987
9988 /* Export depth, stencil and sample mask. */
9989 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9990 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9991 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
9992 exported |= export_fs_mrt_z(ctx);
9993
9994 /* Export all color render targets. */
9995 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
9996 if (ctx->outputs.mask[i])
9997 exported |= export_fs_mrt_color(ctx, i);
9998
9999 if (!exported)
10000 create_null_export(ctx);
10001 }
10002
10003 static void write_tcs_tess_factors(isel_context *ctx)
10004 {
10005 unsigned outer_comps;
10006 unsigned inner_comps;
10007
10008 switch (ctx->args->options->key.tcs.primitive_mode) {
10009 case GL_ISOLINES:
10010 outer_comps = 2;
10011 inner_comps = 0;
10012 break;
10013 case GL_TRIANGLES:
10014 outer_comps = 3;
10015 inner_comps = 1;
10016 break;
10017 case GL_QUADS:
10018 outer_comps = 4;
10019 inner_comps = 2;
10020 break;
10021 default:
10022 return;
10023 }
10024
10025 Builder bld(ctx->program, ctx->block);
10026
10027 bld.barrier(aco_opcode::p_memory_barrier_shared);
10028 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10029 bld.sopp(aco_opcode::s_barrier);
10030
10031 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10032 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10033
10034 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10035 if_context ic_invocation_id_is_zero;
10036 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10037 bld.reset(ctx->block);
10038
10039 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10040
10041 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10042 unsigned stride = inner_comps + outer_comps;
10043 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10044 Temp tf_inner_vec;
10045 Temp tf_outer_vec;
10046 Temp out[6];
10047 assert(stride <= (sizeof(out) / sizeof(Temp)));
10048
10049 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10050 // LINES reversal
10051 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10052 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10053 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10054 } else {
10055 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10056 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10057
10058 for (unsigned i = 0; i < outer_comps; ++i)
10059 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10060 for (unsigned i = 0; i < inner_comps; ++i)
10061 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10062 }
10063
10064 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10065 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10066 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10067 unsigned tf_const_offset = 0;
10068
10069 if (ctx->program->chip_class <= GFX8) {
10070 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10071 if_context ic_rel_patch_id_is_zero;
10072 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10073 bld.reset(ctx->block);
10074
10075 /* Store the dynamic HS control word. */
10076 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10077 bld.mubuf(aco_opcode::buffer_store_dword,
10078 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10079 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10080 /* disable_wqm */ false, /* glc */ true);
10081 tf_const_offset += 4;
10082
10083 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10084 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10085 bld.reset(ctx->block);
10086 }
10087
10088 assert(stride == 2 || stride == 4 || stride == 6);
10089 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10090 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10091
10092 /* Store to offchip for TES to read - only if TES reads them */
10093 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10094 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10095 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10096
10097 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10098 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10099
10100 if (likely(inner_comps)) {
10101 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10102 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10103 }
10104 }
10105
10106 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10107 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10108 }
10109
10110 static void emit_stream_output(isel_context *ctx,
10111 Temp const *so_buffers,
10112 Temp const *so_write_offset,
10113 const struct radv_stream_output *output)
10114 {
10115 unsigned num_comps = util_bitcount(output->component_mask);
10116 unsigned writemask = (1 << num_comps) - 1;
10117 unsigned loc = output->location;
10118 unsigned buf = output->buffer;
10119
10120 assert(num_comps && num_comps <= 4);
10121 if (!num_comps || num_comps > 4)
10122 return;
10123
10124 unsigned start = ffs(output->component_mask) - 1;
10125
10126 Temp out[4];
10127 bool all_undef = true;
10128 assert(ctx->stage & hw_vs);
10129 for (unsigned i = 0; i < num_comps; i++) {
10130 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10131 all_undef = all_undef && !out[i].id();
10132 }
10133 if (all_undef)
10134 return;
10135
10136 while (writemask) {
10137 int start, count;
10138 u_bit_scan_consecutive_range(&writemask, &start, &count);
10139 if (count == 3 && ctx->options->chip_class == GFX6) {
10140 /* GFX6 doesn't support storing vec3, split it. */
10141 writemask |= 1u << (start + 2);
10142 count = 2;
10143 }
10144
10145 unsigned offset = output->offset + start * 4;
10146
10147 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10148 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10149 for (int i = 0; i < count; ++i)
10150 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10151 vec->definitions[0] = Definition(write_data);
10152 ctx->block->instructions.emplace_back(std::move(vec));
10153
10154 aco_opcode opcode;
10155 switch (count) {
10156 case 1:
10157 opcode = aco_opcode::buffer_store_dword;
10158 break;
10159 case 2:
10160 opcode = aco_opcode::buffer_store_dwordx2;
10161 break;
10162 case 3:
10163 opcode = aco_opcode::buffer_store_dwordx3;
10164 break;
10165 case 4:
10166 opcode = aco_opcode::buffer_store_dwordx4;
10167 break;
10168 default:
10169 unreachable("Unsupported dword count.");
10170 }
10171
10172 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10173 store->operands[0] = Operand(so_buffers[buf]);
10174 store->operands[1] = Operand(so_write_offset[buf]);
10175 store->operands[2] = Operand((uint32_t) 0);
10176 store->operands[3] = Operand(write_data);
10177 if (offset > 4095) {
10178 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10179 Builder bld(ctx->program, ctx->block);
10180 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10181 } else {
10182 store->offset = offset;
10183 }
10184 store->offen = true;
10185 store->glc = true;
10186 store->dlc = false;
10187 store->slc = true;
10188 store->can_reorder = true;
10189 ctx->block->instructions.emplace_back(std::move(store));
10190 }
10191 }
10192
10193 static void emit_streamout(isel_context *ctx, unsigned stream)
10194 {
10195 Builder bld(ctx->program, ctx->block);
10196
10197 Temp so_buffers[4];
10198 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10199 for (unsigned i = 0; i < 4; i++) {
10200 unsigned stride = ctx->program->info->so.strides[i];
10201 if (!stride)
10202 continue;
10203
10204 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10205 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10206 }
10207
10208 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10209 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10210
10211 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10212
10213 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10214
10215 if_context ic;
10216 begin_divergent_if_then(ctx, &ic, can_emit);
10217
10218 bld.reset(ctx->block);
10219
10220 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10221
10222 Temp so_write_offset[4];
10223
10224 for (unsigned i = 0; i < 4; i++) {
10225 unsigned stride = ctx->program->info->so.strides[i];
10226 if (!stride)
10227 continue;
10228
10229 if (stride == 1) {
10230 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10231 get_arg(ctx, ctx->args->streamout_write_idx),
10232 get_arg(ctx, ctx->args->streamout_offset[i]));
10233 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10234
10235 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10236 } else {
10237 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10238 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10239 get_arg(ctx, ctx->args->streamout_offset[i]));
10240 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10241 }
10242 }
10243
10244 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10245 struct radv_stream_output *output =
10246 &ctx->program->info->so.outputs[i];
10247 if (stream != output->stream)
10248 continue;
10249
10250 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10251 }
10252
10253 begin_divergent_if_else(ctx, &ic);
10254 end_divergent_if(ctx, &ic);
10255 }
10256
10257 } /* end namespace */
10258
10259 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10260 {
10261 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10262 Builder bld(ctx->program, ctx->block);
10263 constexpr unsigned hs_idx = 1u;
10264 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10265 get_arg(ctx, ctx->args->merged_wave_info),
10266 Operand((8u << 16) | (hs_idx * 8u)));
10267 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10268
10269 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10270
10271 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10272 get_arg(ctx, ctx->args->rel_auto_id),
10273 get_arg(ctx, ctx->args->ac.instance_id),
10274 ls_has_nonzero_hs_threads);
10275 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10276 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10277 get_arg(ctx, ctx->args->rel_auto_id),
10278 ls_has_nonzero_hs_threads);
10279 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10280 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10281 get_arg(ctx, ctx->args->ac.vertex_id),
10282 ls_has_nonzero_hs_threads);
10283
10284 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10285 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10286 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10287 }
10288
10289 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10290 {
10291 /* Split all arguments except for the first (ring_offsets) and the last
10292 * (exec) so that the dead channels don't stay live throughout the program.
10293 */
10294 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10295 if (startpgm->definitions[i].regClass().size() > 1) {
10296 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10297 startpgm->definitions[i].regClass().size());
10298 }
10299 }
10300 }
10301
10302 void handle_bc_optimize(isel_context *ctx)
10303 {
10304 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10305 Builder bld(ctx->program, ctx->block);
10306 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10307 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10308 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10309 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10310 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10311 if (uses_center && uses_centroid) {
10312 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10313 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10314
10315 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10316 Temp new_coord[2];
10317 for (unsigned i = 0; i < 2; i++) {
10318 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10319 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10320 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10321 persp_centroid, persp_center, sel);
10322 }
10323 ctx->persp_centroid = bld.tmp(v2);
10324 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10325 Operand(new_coord[0]), Operand(new_coord[1]));
10326 emit_split_vector(ctx, ctx->persp_centroid, 2);
10327 }
10328
10329 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10330 Temp new_coord[2];
10331 for (unsigned i = 0; i < 2; i++) {
10332 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10333 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10334 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10335 linear_centroid, linear_center, sel);
10336 }
10337 ctx->linear_centroid = bld.tmp(v2);
10338 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10339 Operand(new_coord[0]), Operand(new_coord[1]));
10340 emit_split_vector(ctx, ctx->linear_centroid, 2);
10341 }
10342 }
10343 }
10344
10345 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10346 {
10347 Program *program = ctx->program;
10348
10349 unsigned float_controls = shader->info.float_controls_execution_mode;
10350
10351 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10352 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10353 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10354 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10355 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10356
10357 program->next_fp_mode.must_flush_denorms32 =
10358 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10359 program->next_fp_mode.must_flush_denorms16_64 =
10360 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10361 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10362
10363 program->next_fp_mode.care_about_round32 =
10364 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10365
10366 program->next_fp_mode.care_about_round16_64 =
10367 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10368 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10369
10370 /* default to preserving fp16 and fp64 denorms, since it's free */
10371 if (program->next_fp_mode.must_flush_denorms16_64)
10372 program->next_fp_mode.denorm16_64 = 0;
10373 else
10374 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10375
10376 /* preserving fp32 denorms is expensive, so only do it if asked */
10377 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10378 program->next_fp_mode.denorm32 = fp_denorm_keep;
10379 else
10380 program->next_fp_mode.denorm32 = 0;
10381
10382 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10383 program->next_fp_mode.round32 = fp_round_tz;
10384 else
10385 program->next_fp_mode.round32 = fp_round_ne;
10386
10387 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10388 program->next_fp_mode.round16_64 = fp_round_tz;
10389 else
10390 program->next_fp_mode.round16_64 = fp_round_ne;
10391
10392 ctx->block->fp_mode = program->next_fp_mode;
10393 }
10394
10395 void cleanup_cfg(Program *program)
10396 {
10397 /* create linear_succs/logical_succs */
10398 for (Block& BB : program->blocks) {
10399 for (unsigned idx : BB.linear_preds)
10400 program->blocks[idx].linear_succs.emplace_back(BB.index);
10401 for (unsigned idx : BB.logical_preds)
10402 program->blocks[idx].logical_succs.emplace_back(BB.index);
10403 }
10404 }
10405
10406 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10407 {
10408 Builder bld(ctx->program, ctx->block);
10409
10410 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10411 Temp count = i == 0
10412 ? get_arg(ctx, ctx->args->merged_wave_info)
10413 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10414 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10415
10416 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10417 Temp cond;
10418
10419 if (ctx->program->wave_size == 64) {
10420 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10421 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10422 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10423 } else {
10424 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10425 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10426 }
10427
10428 return cond;
10429 }
10430
10431 bool ngg_early_prim_export(isel_context *ctx)
10432 {
10433 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10434 return true;
10435 }
10436
10437 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10438 {
10439 Builder bld(ctx->program, ctx->block);
10440
10441 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10442 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10443
10444 /* Get the id of the current wave within the threadgroup (workgroup) */
10445 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10446 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10447
10448 /* Execute the following code only on the first wave (wave id 0),
10449 * use the SCC def to tell if the wave id is zero or not.
10450 */
10451 Temp cond = wave_id_in_tg.def(1).getTemp();
10452 if_context ic;
10453 begin_uniform_if_then(ctx, &ic, cond);
10454 begin_uniform_if_else(ctx, &ic);
10455 bld.reset(ctx->block);
10456
10457 /* Number of vertices output by VS/TES */
10458 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10459 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10460 /* Number of primitives output by VS/TES */
10461 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10462 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10463
10464 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10465 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10466 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10467
10468 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10469 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10470
10471 end_uniform_if(ctx, &ic);
10472
10473 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10474 bld.reset(ctx->block);
10475 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10476 }
10477
10478 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10479 {
10480 Builder bld(ctx->program, ctx->block);
10481
10482 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10483 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10484 }
10485
10486 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10487 Temp tmp;
10488
10489 for (unsigned i = 0; i < num_vertices; ++i) {
10490 assert(vtxindex[i].id());
10491
10492 if (i)
10493 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10494 else
10495 tmp = vtxindex[i];
10496
10497 /* The initial edge flag is always false in tess eval shaders. */
10498 if (ctx->stage == ngg_vertex_gs) {
10499 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10500 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10501 }
10502 }
10503
10504 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10505
10506 return tmp;
10507 }
10508
10509 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10510 {
10511 Builder bld(ctx->program, ctx->block);
10512 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10513
10514 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10515 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10516 false /* compressed */, true/* done */, false /* valid mask */);
10517 }
10518
10519 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10520 {
10521 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10522 * These must always come before VS exports.
10523 *
10524 * It is recommended to do these as early as possible. They can be at the beginning when
10525 * there is no SW GS and the shader doesn't write edge flags.
10526 */
10527
10528 if_context ic;
10529 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10530 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10531
10532 Builder bld(ctx->program, ctx->block);
10533 constexpr unsigned max_vertices_per_primitive = 3;
10534 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10535
10536 if (ctx->stage == ngg_vertex_gs) {
10537 /* TODO: optimize for points & lines */
10538 } else if (ctx->stage == ngg_tess_eval_gs) {
10539 if (ctx->shader->info.tess.point_mode)
10540 num_vertices_per_primitive = 1;
10541 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10542 num_vertices_per_primitive = 2;
10543 } else {
10544 unreachable("Unsupported NGG shader stage");
10545 }
10546
10547 Temp vtxindex[max_vertices_per_primitive];
10548 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10549 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10550 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10551 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10552 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10553 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10554 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10555 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10556
10557 /* Export primitive data to the index buffer. */
10558 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10559
10560 /* Export primitive ID. */
10561 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10562 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10563 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10564 Temp provoking_vtx_index = vtxindex[0];
10565 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10566
10567 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10568 }
10569
10570 begin_divergent_if_else(ctx, &ic);
10571 end_divergent_if(ctx, &ic);
10572 }
10573
10574 void ngg_emit_nogs_output(isel_context *ctx)
10575 {
10576 /* Emits NGG GS output, for stages that don't have SW GS. */
10577
10578 if_context ic;
10579 Builder bld(ctx->program, ctx->block);
10580 bool late_prim_export = !ngg_early_prim_export(ctx);
10581
10582 /* NGG streamout is currently disabled by default. */
10583 assert(!ctx->args->shader_info->so.num_outputs);
10584
10585 if (late_prim_export) {
10586 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10587 create_export_phis(ctx);
10588 /* Do what we need to do in the GS threads. */
10589 ngg_emit_nogs_gsthreads(ctx);
10590
10591 /* What comes next should be executed on ES threads. */
10592 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10593 begin_divergent_if_then(ctx, &ic, is_es_thread);
10594 bld.reset(ctx->block);
10595 }
10596
10597 /* Export VS outputs */
10598 ctx->block->kind |= block_kind_export_end;
10599 create_vs_exports(ctx);
10600
10601 /* Export primitive ID */
10602 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10603 Temp prim_id;
10604
10605 if (ctx->stage == ngg_vertex_gs) {
10606 /* Wait for GS threads to store primitive ID in LDS. */
10607 bld.barrier(aco_opcode::p_memory_barrier_shared);
10608 bld.sopp(aco_opcode::s_barrier);
10609
10610 /* Calculate LDS address where the GS threads stored the primitive ID. */
10611 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10612 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10613 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10614 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10615 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10616 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10617
10618 /* Load primitive ID from LDS. */
10619 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10620 } else if (ctx->stage == ngg_tess_eval_gs) {
10621 /* TES: Just use the patch ID as the primitive ID. */
10622 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10623 } else {
10624 unreachable("unsupported NGG shader stage.");
10625 }
10626
10627 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10628 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10629
10630 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10631 }
10632
10633 if (late_prim_export) {
10634 begin_divergent_if_else(ctx, &ic);
10635 end_divergent_if(ctx, &ic);
10636 bld.reset(ctx->block);
10637 }
10638 }
10639
10640 void select_program(Program *program,
10641 unsigned shader_count,
10642 struct nir_shader *const *shaders,
10643 ac_shader_config* config,
10644 struct radv_shader_args *args)
10645 {
10646 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10647 if_context ic_merged_wave_info;
10648 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10649
10650 for (unsigned i = 0; i < shader_count; i++) {
10651 nir_shader *nir = shaders[i];
10652 init_context(&ctx, nir);
10653
10654 setup_fp_mode(&ctx, nir);
10655
10656 if (!i) {
10657 /* needs to be after init_context() for FS */
10658 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10659 append_logical_start(ctx.block);
10660
10661 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10662 fix_ls_vgpr_init_bug(&ctx, startpgm);
10663
10664 split_arguments(&ctx, startpgm);
10665 }
10666
10667 if (ngg_no_gs) {
10668 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10669
10670 if (ngg_early_prim_export(&ctx))
10671 ngg_emit_nogs_gsthreads(&ctx);
10672 }
10673
10674 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10675 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10676 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10677 ((nir->info.stage == MESA_SHADER_VERTEX &&
10678 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10679 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10680 ctx.stage == tess_eval_geometry_gs));
10681
10682 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10683 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10684 if (check_merged_wave_info) {
10685 Temp cond = merged_wave_info_to_mask(&ctx, i);
10686 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10687 }
10688
10689 if (i) {
10690 Builder bld(ctx.program, ctx.block);
10691
10692 bld.barrier(aco_opcode::p_memory_barrier_shared);
10693 bld.sopp(aco_opcode::s_barrier);
10694
10695 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10696 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10697 }
10698 } else if (ctx.stage == geometry_gs)
10699 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10700
10701 if (ctx.stage == fragment_fs)
10702 handle_bc_optimize(&ctx);
10703
10704 visit_cf_list(&ctx, &func->body);
10705
10706 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10707 emit_streamout(&ctx, 0);
10708
10709 if (ctx.stage & hw_vs) {
10710 create_vs_exports(&ctx);
10711 ctx.block->kind |= block_kind_export_end;
10712 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10713 ngg_emit_nogs_output(&ctx);
10714 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10715 Builder bld(ctx.program, ctx.block);
10716 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10717 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10718 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10719 write_tcs_tess_factors(&ctx);
10720 }
10721
10722 if (ctx.stage == fragment_fs) {
10723 create_fs_exports(&ctx);
10724 ctx.block->kind |= block_kind_export_end;
10725 }
10726
10727 if (endif_merged_wave_info) {
10728 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10729 end_divergent_if(&ctx, &ic_merged_wave_info);
10730 }
10731
10732 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10733 ngg_emit_nogs_output(&ctx);
10734
10735 ralloc_free(ctx.divergent_vals);
10736
10737 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10738 /* Outputs of the previous stage are inputs to the next stage */
10739 ctx.inputs = ctx.outputs;
10740 ctx.outputs = shader_io_state();
10741 }
10742 }
10743
10744 program->config->float_mode = program->blocks[0].fp_mode.val;
10745
10746 append_logical_end(ctx.block);
10747 ctx.block->kind |= block_kind_uniform;
10748 Builder bld(ctx.program, ctx.block);
10749 if (ctx.program->wb_smem_l1_on_end)
10750 bld.smem(aco_opcode::s_dcache_wb, false);
10751 bld.sopp(aco_opcode::s_endpgm);
10752
10753 cleanup_cfg(program);
10754 }
10755
10756 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10757 ac_shader_config* config,
10758 struct radv_shader_args *args)
10759 {
10760 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10761
10762 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10763 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10764 program->next_fp_mode.must_flush_denorms32 = false;
10765 program->next_fp_mode.must_flush_denorms16_64 = false;
10766 program->next_fp_mode.care_about_round32 = false;
10767 program->next_fp_mode.care_about_round16_64 = false;
10768 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10769 program->next_fp_mode.denorm32 = 0;
10770 program->next_fp_mode.round32 = fp_round_ne;
10771 program->next_fp_mode.round16_64 = fp_round_ne;
10772 ctx.block->fp_mode = program->next_fp_mode;
10773
10774 add_startpgm(&ctx);
10775 append_logical_start(ctx.block);
10776
10777 Builder bld(ctx.program, ctx.block);
10778
10779 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10780
10781 Operand stream_id(0u);
10782 if (args->shader_info->so.num_outputs)
10783 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10784 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10785
10786 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10787
10788 std::stack<Block> endif_blocks;
10789
10790 for (unsigned stream = 0; stream < 4; stream++) {
10791 if (stream_id.isConstant() && stream != stream_id.constantValue())
10792 continue;
10793
10794 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10795 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10796 continue;
10797
10798 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10799
10800 unsigned BB_if_idx = ctx.block->index;
10801 Block BB_endif = Block();
10802 if (!stream_id.isConstant()) {
10803 /* begin IF */
10804 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10805 append_logical_end(ctx.block);
10806 ctx.block->kind |= block_kind_uniform;
10807 bld.branch(aco_opcode::p_cbranch_z, cond);
10808
10809 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10810
10811 ctx.block = ctx.program->create_and_insert_block();
10812 add_edge(BB_if_idx, ctx.block);
10813 bld.reset(ctx.block);
10814 append_logical_start(ctx.block);
10815 }
10816
10817 unsigned offset = 0;
10818 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10819 if (args->shader_info->gs.output_streams[i] != stream)
10820 continue;
10821
10822 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10823 unsigned length = util_last_bit(output_usage_mask);
10824 for (unsigned j = 0; j < length; ++j) {
10825 if (!(output_usage_mask & (1 << j)))
10826 continue;
10827
10828 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10829 Temp voffset = vtx_offset;
10830 if (const_offset >= 4096u) {
10831 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10832 const_offset %= 4096u;
10833 }
10834
10835 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10836 mubuf->definitions[0] = bld.def(v1);
10837 mubuf->operands[0] = Operand(gsvs_ring);
10838 mubuf->operands[1] = Operand(voffset);
10839 mubuf->operands[2] = Operand(0u);
10840 mubuf->offen = true;
10841 mubuf->offset = const_offset;
10842 mubuf->glc = true;
10843 mubuf->slc = true;
10844 mubuf->dlc = args->options->chip_class >= GFX10;
10845 mubuf->barrier = barrier_none;
10846 mubuf->can_reorder = true;
10847
10848 ctx.outputs.mask[i] |= 1 << j;
10849 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10850
10851 bld.insert(std::move(mubuf));
10852
10853 offset++;
10854 }
10855 }
10856
10857 if (args->shader_info->so.num_outputs) {
10858 emit_streamout(&ctx, stream);
10859 bld.reset(ctx.block);
10860 }
10861
10862 if (stream == 0) {
10863 create_vs_exports(&ctx);
10864 ctx.block->kind |= block_kind_export_end;
10865 }
10866
10867 if (!stream_id.isConstant()) {
10868 append_logical_end(ctx.block);
10869
10870 /* branch from then block to endif block */
10871 bld.branch(aco_opcode::p_branch);
10872 add_edge(ctx.block->index, &BB_endif);
10873 ctx.block->kind |= block_kind_uniform;
10874
10875 /* emit else block */
10876 ctx.block = ctx.program->create_and_insert_block();
10877 add_edge(BB_if_idx, ctx.block);
10878 bld.reset(ctx.block);
10879 append_logical_start(ctx.block);
10880
10881 endif_blocks.push(std::move(BB_endif));
10882 }
10883 }
10884
10885 while (!endif_blocks.empty()) {
10886 Block BB_endif = std::move(endif_blocks.top());
10887 endif_blocks.pop();
10888
10889 Block *BB_else = ctx.block;
10890
10891 append_logical_end(BB_else);
10892 /* branch from else block to endif block */
10893 bld.branch(aco_opcode::p_branch);
10894 add_edge(BB_else->index, &BB_endif);
10895 BB_else->kind |= block_kind_uniform;
10896
10897 /** emit endif merge block */
10898 ctx.block = program->insert_block(std::move(BB_endif));
10899 bld.reset(ctx.block);
10900 append_logical_start(ctx.block);
10901 }
10902
10903 program->config->float_mode = program->blocks[0].fp_mode.val;
10904
10905 append_logical_end(ctx.block);
10906 ctx.block->kind |= block_kind_uniform;
10907 bld.sopp(aco_opcode::s_endpgm);
10908
10909 cleanup_cfg(program);
10910 }
10911 }