aco: refactor visit_store_ssbo() to use new helpers
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else {
565 src1 = as_vgpr(ctx, src1);
566 }
567 }
568
569 if (flush_denorms && ctx->program->chip_class < GFX9) {
570 assert(dst.size() == 1);
571 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
572 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
573 } else {
574 bld.vop2(op, Definition(dst), src0, src1);
575 }
576 }
577
578 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
579 bool flush_denorms = false)
580 {
581 Temp src0 = get_alu_src(ctx, instr->src[0]);
582 Temp src1 = get_alu_src(ctx, instr->src[1]);
583 Temp src2 = get_alu_src(ctx, instr->src[2]);
584
585 /* ensure that the instruction has at most 1 sgpr operand
586 * The optimizer will inline constants for us */
587 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
588 src0 = as_vgpr(ctx, src0);
589 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
590 src1 = as_vgpr(ctx, src1);
591 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
592 src2 = as_vgpr(ctx, src2);
593
594 Builder bld(ctx->program, ctx->block);
595 if (flush_denorms && ctx->program->chip_class < GFX9) {
596 assert(dst.size() == 1);
597 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
598 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
599 } else {
600 bld.vop3(op, Definition(dst), src0, src1, src2);
601 }
602 }
603
604 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
605 {
606 Builder bld(ctx->program, ctx->block);
607 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
608 }
609
610 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
611 {
612 Temp src0 = get_alu_src(ctx, instr->src[0]);
613 Temp src1 = get_alu_src(ctx, instr->src[1]);
614 assert(src0.size() == src1.size());
615
616 aco_ptr<Instruction> vopc;
617 if (src1.type() == RegType::sgpr) {
618 if (src0.type() == RegType::vgpr) {
619 /* to swap the operands, we might also have to change the opcode */
620 switch (op) {
621 case aco_opcode::v_cmp_lt_f16:
622 op = aco_opcode::v_cmp_gt_f16;
623 break;
624 case aco_opcode::v_cmp_ge_f16:
625 op = aco_opcode::v_cmp_le_f16;
626 break;
627 case aco_opcode::v_cmp_lt_i16:
628 op = aco_opcode::v_cmp_gt_i16;
629 break;
630 case aco_opcode::v_cmp_ge_i16:
631 op = aco_opcode::v_cmp_le_i16;
632 break;
633 case aco_opcode::v_cmp_lt_u16:
634 op = aco_opcode::v_cmp_gt_u16;
635 break;
636 case aco_opcode::v_cmp_ge_u16:
637 op = aco_opcode::v_cmp_le_u16;
638 break;
639 case aco_opcode::v_cmp_lt_f32:
640 op = aco_opcode::v_cmp_gt_f32;
641 break;
642 case aco_opcode::v_cmp_ge_f32:
643 op = aco_opcode::v_cmp_le_f32;
644 break;
645 case aco_opcode::v_cmp_lt_i32:
646 op = aco_opcode::v_cmp_gt_i32;
647 break;
648 case aco_opcode::v_cmp_ge_i32:
649 op = aco_opcode::v_cmp_le_i32;
650 break;
651 case aco_opcode::v_cmp_lt_u32:
652 op = aco_opcode::v_cmp_gt_u32;
653 break;
654 case aco_opcode::v_cmp_ge_u32:
655 op = aco_opcode::v_cmp_le_u32;
656 break;
657 case aco_opcode::v_cmp_lt_f64:
658 op = aco_opcode::v_cmp_gt_f64;
659 break;
660 case aco_opcode::v_cmp_ge_f64:
661 op = aco_opcode::v_cmp_le_f64;
662 break;
663 case aco_opcode::v_cmp_lt_i64:
664 op = aco_opcode::v_cmp_gt_i64;
665 break;
666 case aco_opcode::v_cmp_ge_i64:
667 op = aco_opcode::v_cmp_le_i64;
668 break;
669 case aco_opcode::v_cmp_lt_u64:
670 op = aco_opcode::v_cmp_gt_u64;
671 break;
672 case aco_opcode::v_cmp_ge_u64:
673 op = aco_opcode::v_cmp_le_u64;
674 break;
675 default: /* eq and ne are commutative */
676 break;
677 }
678 Temp t = src0;
679 src0 = src1;
680 src1 = t;
681 } else {
682 src1 = as_vgpr(ctx, src1);
683 }
684 }
685
686 Builder bld(ctx->program, ctx->block);
687 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
688 }
689
690 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
691 {
692 Temp src0 = get_alu_src(ctx, instr->src[0]);
693 Temp src1 = get_alu_src(ctx, instr->src[1]);
694 Builder bld(ctx->program, ctx->block);
695
696 assert(dst.regClass() == bld.lm);
697 assert(src0.type() == RegType::sgpr);
698 assert(src1.type() == RegType::sgpr);
699 assert(src0.regClass() == src1.regClass());
700
701 /* Emit the SALU comparison instruction */
702 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
703 /* Turn the result into a per-lane bool */
704 bool_to_vector_condition(ctx, cmp, dst);
705 }
706
707 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
708 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
709 {
710 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
711 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
712 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
713 bool use_valu = s_op == aco_opcode::num_opcodes ||
714 divergent_vals ||
715 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
716 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
717 aco_opcode op = use_valu ? v_op : s_op;
718 assert(op != aco_opcode::num_opcodes);
719 assert(dst.regClass() == ctx->program->lane_mask);
720
721 if (use_valu)
722 emit_vopc_instruction(ctx, instr, op, dst);
723 else
724 emit_sopc_instruction(ctx, instr, op, dst);
725 }
726
727 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
728 {
729 Builder bld(ctx->program, ctx->block);
730 Temp src0 = get_alu_src(ctx, instr->src[0]);
731 Temp src1 = get_alu_src(ctx, instr->src[1]);
732
733 assert(dst.regClass() == bld.lm);
734 assert(src0.regClass() == bld.lm);
735 assert(src1.regClass() == bld.lm);
736
737 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
738 }
739
740 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
741 {
742 Builder bld(ctx->program, ctx->block);
743 Temp cond = get_alu_src(ctx, instr->src[0]);
744 Temp then = get_alu_src(ctx, instr->src[1]);
745 Temp els = get_alu_src(ctx, instr->src[2]);
746
747 assert(cond.regClass() == bld.lm);
748
749 if (dst.type() == RegType::vgpr) {
750 aco_ptr<Instruction> bcsel;
751 if (dst.regClass() == v2b) {
752 then = as_vgpr(ctx, then);
753 els = as_vgpr(ctx, els);
754
755 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), els, then, cond);
756 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
757 } else if (dst.regClass() == v1) {
758 then = as_vgpr(ctx, then);
759 els = as_vgpr(ctx, els);
760
761 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
762 } else if (dst.regClass() == v2) {
763 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
765 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
766 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
767
768 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
769 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
770
771 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
772 } else {
773 fprintf(stderr, "Unimplemented NIR instr bit size: ");
774 nir_print_instr(&instr->instr, stderr);
775 fprintf(stderr, "\n");
776 }
777 return;
778 }
779
780 if (instr->dest.dest.ssa.bit_size == 1) {
781 assert(dst.regClass() == bld.lm);
782 assert(then.regClass() == bld.lm);
783 assert(els.regClass() == bld.lm);
784 }
785
786 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
787 if (dst.regClass() == s1 || dst.regClass() == s2) {
788 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
789 assert(dst.size() == then.size());
790 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
791 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
792 } else {
793 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
794 nir_print_instr(&instr->instr, stderr);
795 fprintf(stderr, "\n");
796 }
797 return;
798 }
799
800 /* divergent boolean bcsel
801 * this implements bcsel on bools: dst = s0 ? s1 : s2
802 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
803 assert(instr->dest.dest.ssa.bit_size == 1);
804
805 if (cond.id() != then.id())
806 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
807
808 if (cond.id() == els.id())
809 bld.sop1(Builder::s_mov, Definition(dst), then);
810 else
811 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
812 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
813 }
814
815 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
816 aco_opcode op, uint32_t undo)
817 {
818 /* multiply by 16777216 to handle denormals */
819 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
820 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
821 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
822 scaled = bld.vop1(op, bld.def(v1), scaled);
823 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
824
825 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
826
827 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
828 }
829
830 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
831 {
832 if (ctx->block->fp_mode.denorm32 == 0) {
833 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
834 return;
835 }
836
837 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
838 }
839
840 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
841 {
842 if (ctx->block->fp_mode.denorm32 == 0) {
843 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
844 return;
845 }
846
847 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
848 }
849
850 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
851 {
852 if (ctx->block->fp_mode.denorm32 == 0) {
853 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
854 return;
855 }
856
857 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
858 }
859
860 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
861 {
862 if (ctx->block->fp_mode.denorm32 == 0) {
863 bld.vop1(aco_opcode::v_log_f32, dst, val);
864 return;
865 }
866
867 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
868 }
869
870 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
871 {
872 if (ctx->options->chip_class >= GFX7)
873 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
874
875 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
876 /* TODO: create more efficient code! */
877 if (val.type() == RegType::sgpr)
878 val = as_vgpr(ctx, val);
879
880 /* Split the input value. */
881 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
882 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
883
884 /* Extract the exponent and compute the unbiased value. */
885 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
886
887 /* Extract the fractional part. */
888 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
889 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
890
891 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
892 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
893
894 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
895 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
896 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
897 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
898 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
899
900 /* Get the sign bit. */
901 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
902
903 /* Decide the operation to apply depending on the unbiased exponent. */
904 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
905 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
906 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
907 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
908 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
909 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
910
911 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
912 }
913
914 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
915 {
916 if (ctx->options->chip_class >= GFX7)
917 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
918
919 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
920 Temp src0 = as_vgpr(ctx, val);
921
922 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
923 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
924
925 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
926 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
927 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
928
929 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
930 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
931 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
932 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
933
934 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
935 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
936
937 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
938
939 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
940 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
941
942 return add->definitions[0].getTemp();
943 }
944
945 Temp convert_int(Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
946 if (!dst.id()) {
947 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
948 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
949 else
950 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
951 }
952
953 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
954 return bld.copy(Definition(dst), src);
955 else if (dst.bytes() < src.bytes())
956 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
957
958 Temp tmp = dst;
959 if (dst_bits == 64)
960 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
961
962 if (tmp == src) {
963 } else if (src.regClass() == s1) {
964 if (is_signed)
965 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
966 else
967 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
968 } else {
969 assert(src_bits != 8 || src.regClass() == v1b);
970 assert(src_bits != 16 || src.regClass() == v2b);
971 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
972 sdwa->operands[0] = Operand(src);
973 sdwa->definitions[0] = Definition(tmp);
974 if (is_signed)
975 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
976 else
977 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
978 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
979 bld.insert(std::move(sdwa));
980 }
981
982 if (dst_bits == 64) {
983 if (is_signed && dst.regClass() == s2) {
984 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
985 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
986 } else if (is_signed && dst.regClass() == v2) {
987 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
988 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
989 } else {
990 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
991 }
992 }
993
994 return dst;
995 }
996
997 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
998 {
999 if (!instr->dest.dest.is_ssa) {
1000 fprintf(stderr, "nir alu dst not in ssa: ");
1001 nir_print_instr(&instr->instr, stderr);
1002 fprintf(stderr, "\n");
1003 abort();
1004 }
1005 Builder bld(ctx->program, ctx->block);
1006 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1007 switch(instr->op) {
1008 case nir_op_vec2:
1009 case nir_op_vec3:
1010 case nir_op_vec4: {
1011 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1012 unsigned num = instr->dest.dest.ssa.num_components;
1013 for (unsigned i = 0; i < num; ++i)
1014 elems[i] = get_alu_src(ctx, instr->src[i]);
1015
1016 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1017 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1018 for (unsigned i = 0; i < num; ++i)
1019 vec->operands[i] = Operand{elems[i]};
1020 vec->definitions[0] = Definition(dst);
1021 ctx->block->instructions.emplace_back(std::move(vec));
1022 ctx->allocated_vec.emplace(dst.id(), elems);
1023 } else {
1024 // TODO: that is a bit suboptimal..
1025 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1026 for (unsigned i = 0; i < num - 1; ++i)
1027 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1028 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1029 for (unsigned i = 0; i < num; ++i) {
1030 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1031 if (bit % 32 == 0) {
1032 elems[bit / 32] = elems[i];
1033 } else {
1034 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1035 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1036 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1037 }
1038 }
1039 if (dst.size() == 1)
1040 bld.copy(Definition(dst), elems[0]);
1041 else
1042 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1043 }
1044 break;
1045 }
1046 case nir_op_mov: {
1047 Temp src = get_alu_src(ctx, instr->src[0]);
1048 aco_ptr<Instruction> mov;
1049 if (dst.type() == RegType::sgpr) {
1050 if (src.type() == RegType::vgpr)
1051 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1052 else if (src.regClass() == s1)
1053 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1054 else if (src.regClass() == s2)
1055 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1056 else
1057 unreachable("wrong src register class for nir_op_imov");
1058 } else if (dst.regClass() == v1) {
1059 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1060 } else if (dst.regClass() == v2) {
1061 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1062 } else {
1063 nir_print_instr(&instr->instr, stderr);
1064 unreachable("Should have been lowered to scalar.");
1065 }
1066 break;
1067 }
1068 case nir_op_inot: {
1069 Temp src = get_alu_src(ctx, instr->src[0]);
1070 if (instr->dest.dest.ssa.bit_size == 1) {
1071 assert(src.regClass() == bld.lm);
1072 assert(dst.regClass() == bld.lm);
1073 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1074 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1075 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1076 } else if (dst.regClass() == v1) {
1077 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1078 } else if (dst.type() == RegType::sgpr) {
1079 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1080 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1081 } else {
1082 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1083 nir_print_instr(&instr->instr, stderr);
1084 fprintf(stderr, "\n");
1085 }
1086 break;
1087 }
1088 case nir_op_ineg: {
1089 Temp src = get_alu_src(ctx, instr->src[0]);
1090 if (dst.regClass() == v1) {
1091 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1092 } else if (dst.regClass() == s1) {
1093 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1094 } else if (dst.size() == 2) {
1095 Temp src0 = bld.tmp(dst.type(), 1);
1096 Temp src1 = bld.tmp(dst.type(), 1);
1097 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1098
1099 if (dst.regClass() == s2) {
1100 Temp carry = bld.tmp(s1);
1101 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1102 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1103 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1104 } else {
1105 Temp lower = bld.tmp(v1);
1106 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1107 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1108 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1109 }
1110 } else {
1111 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1112 nir_print_instr(&instr->instr, stderr);
1113 fprintf(stderr, "\n");
1114 }
1115 break;
1116 }
1117 case nir_op_iabs: {
1118 if (dst.regClass() == s1) {
1119 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1120 } else if (dst.regClass() == v1) {
1121 Temp src = get_alu_src(ctx, instr->src[0]);
1122 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_isign: {
1131 Temp src = get_alu_src(ctx, instr->src[0]);
1132 if (dst.regClass() == s1) {
1133 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1134 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1135 } else if (dst.regClass() == s2) {
1136 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1137 Temp neqz;
1138 if (ctx->program->chip_class >= GFX8)
1139 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1140 else
1141 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1142 /* SCC gets zero-extended to 64 bit */
1143 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1144 } else if (dst.regClass() == v1) {
1145 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1146 } else if (dst.regClass() == v2) {
1147 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1148 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1149 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1150 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1151 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1153 } else {
1154 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1155 nir_print_instr(&instr->instr, stderr);
1156 fprintf(stderr, "\n");
1157 }
1158 break;
1159 }
1160 case nir_op_imax: {
1161 if (dst.regClass() == v1) {
1162 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1163 } else if (dst.regClass() == s1) {
1164 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1165 } else {
1166 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1167 nir_print_instr(&instr->instr, stderr);
1168 fprintf(stderr, "\n");
1169 }
1170 break;
1171 }
1172 case nir_op_umax: {
1173 if (dst.regClass() == v1) {
1174 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1175 } else if (dst.regClass() == s1) {
1176 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1177 } else {
1178 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1179 nir_print_instr(&instr->instr, stderr);
1180 fprintf(stderr, "\n");
1181 }
1182 break;
1183 }
1184 case nir_op_imin: {
1185 if (dst.regClass() == v1) {
1186 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1187 } else if (dst.regClass() == s1) {
1188 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1189 } else {
1190 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1191 nir_print_instr(&instr->instr, stderr);
1192 fprintf(stderr, "\n");
1193 }
1194 break;
1195 }
1196 case nir_op_umin: {
1197 if (dst.regClass() == v1) {
1198 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1199 } else if (dst.regClass() == s1) {
1200 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1201 } else {
1202 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1203 nir_print_instr(&instr->instr, stderr);
1204 fprintf(stderr, "\n");
1205 }
1206 break;
1207 }
1208 case nir_op_ior: {
1209 if (instr->dest.dest.ssa.bit_size == 1) {
1210 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1211 } else if (dst.regClass() == v1) {
1212 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1213 } else if (dst.regClass() == s1) {
1214 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1215 } else if (dst.regClass() == s2) {
1216 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1217 } else {
1218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1219 nir_print_instr(&instr->instr, stderr);
1220 fprintf(stderr, "\n");
1221 }
1222 break;
1223 }
1224 case nir_op_iand: {
1225 if (instr->dest.dest.ssa.bit_size == 1) {
1226 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1227 } else if (dst.regClass() == v1) {
1228 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1229 } else if (dst.regClass() == s1) {
1230 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1231 } else if (dst.regClass() == s2) {
1232 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_ixor: {
1241 if (instr->dest.dest.ssa.bit_size == 1) {
1242 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1243 } else if (dst.regClass() == v1) {
1244 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1245 } else if (dst.regClass() == s1) {
1246 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1247 } else if (dst.regClass() == s2) {
1248 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1249 } else {
1250 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1251 nir_print_instr(&instr->instr, stderr);
1252 fprintf(stderr, "\n");
1253 }
1254 break;
1255 }
1256 case nir_op_ushr: {
1257 if (dst.regClass() == v1) {
1258 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1259 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1260 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1261 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1262 } else if (dst.regClass() == v2) {
1263 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1264 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1265 } else if (dst.regClass() == s2) {
1266 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1267 } else if (dst.regClass() == s1) {
1268 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_ishl: {
1277 if (dst.regClass() == v1) {
1278 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1279 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1280 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1281 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1282 } else if (dst.regClass() == v2) {
1283 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1284 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1285 } else if (dst.regClass() == s1) {
1286 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1287 } else if (dst.regClass() == s2) {
1288 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1289 } else {
1290 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1291 nir_print_instr(&instr->instr, stderr);
1292 fprintf(stderr, "\n");
1293 }
1294 break;
1295 }
1296 case nir_op_ishr: {
1297 if (dst.regClass() == v1) {
1298 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1299 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1300 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1301 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1302 } else if (dst.regClass() == v2) {
1303 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1304 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1305 } else if (dst.regClass() == s1) {
1306 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1307 } else if (dst.regClass() == s2) {
1308 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1309 } else {
1310 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1311 nir_print_instr(&instr->instr, stderr);
1312 fprintf(stderr, "\n");
1313 }
1314 break;
1315 }
1316 case nir_op_find_lsb: {
1317 Temp src = get_alu_src(ctx, instr->src[0]);
1318 if (src.regClass() == s1) {
1319 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1320 } else if (src.regClass() == v1) {
1321 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1322 } else if (src.regClass() == s2) {
1323 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1324 } else {
1325 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1326 nir_print_instr(&instr->instr, stderr);
1327 fprintf(stderr, "\n");
1328 }
1329 break;
1330 }
1331 case nir_op_ufind_msb:
1332 case nir_op_ifind_msb: {
1333 Temp src = get_alu_src(ctx, instr->src[0]);
1334 if (src.regClass() == s1 || src.regClass() == s2) {
1335 aco_opcode op = src.regClass() == s2 ?
1336 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1337 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1338 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1339
1340 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1341 Operand(src.size() * 32u - 1u), msb_rev);
1342 Temp msb = sub.def(0).getTemp();
1343 Temp carry = sub.def(1).getTemp();
1344
1345 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1346 } else if (src.regClass() == v1) {
1347 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1348 Temp msb_rev = bld.tmp(v1);
1349 emit_vop1_instruction(ctx, instr, op, msb_rev);
1350 Temp msb = bld.tmp(v1);
1351 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1352 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_bitfield_reverse: {
1361 if (dst.regClass() == s1) {
1362 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1363 } else if (dst.regClass() == v1) {
1364 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1365 } else {
1366 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1367 nir_print_instr(&instr->instr, stderr);
1368 fprintf(stderr, "\n");
1369 }
1370 break;
1371 }
1372 case nir_op_iadd: {
1373 if (dst.regClass() == s1) {
1374 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1375 break;
1376 }
1377
1378 Temp src0 = get_alu_src(ctx, instr->src[0]);
1379 Temp src1 = get_alu_src(ctx, instr->src[1]);
1380 if (dst.regClass() == v1) {
1381 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1382 break;
1383 }
1384
1385 assert(src0.size() == 2 && src1.size() == 2);
1386 Temp src00 = bld.tmp(src0.type(), 1);
1387 Temp src01 = bld.tmp(dst.type(), 1);
1388 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1389 Temp src10 = bld.tmp(src1.type(), 1);
1390 Temp src11 = bld.tmp(dst.type(), 1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1392
1393 if (dst.regClass() == s2) {
1394 Temp carry = bld.tmp(s1);
1395 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1396 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1397 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1398 } else if (dst.regClass() == v2) {
1399 Temp dst0 = bld.tmp(v1);
1400 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1401 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1402 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1403 } else {
1404 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1405 nir_print_instr(&instr->instr, stderr);
1406 fprintf(stderr, "\n");
1407 }
1408 break;
1409 }
1410 case nir_op_uadd_sat: {
1411 Temp src0 = get_alu_src(ctx, instr->src[0]);
1412 Temp src1 = get_alu_src(ctx, instr->src[1]);
1413 if (dst.regClass() == s1) {
1414 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1415 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1416 src0, src1);
1417 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1418 } else if (dst.regClass() == v1) {
1419 if (ctx->options->chip_class >= GFX9) {
1420 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1421 add->operands[0] = Operand(src0);
1422 add->operands[1] = Operand(src1);
1423 add->definitions[0] = Definition(dst);
1424 add->clamp = 1;
1425 ctx->block->instructions.emplace_back(std::move(add));
1426 } else {
1427 if (src1.regClass() != v1)
1428 std::swap(src0, src1);
1429 assert(src1.regClass() == v1);
1430 Temp tmp = bld.tmp(v1);
1431 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1432 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1433 }
1434 } else {
1435 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1436 nir_print_instr(&instr->instr, stderr);
1437 fprintf(stderr, "\n");
1438 }
1439 break;
1440 }
1441 case nir_op_uadd_carry: {
1442 Temp src0 = get_alu_src(ctx, instr->src[0]);
1443 Temp src1 = get_alu_src(ctx, instr->src[1]);
1444 if (dst.regClass() == s1) {
1445 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1446 break;
1447 }
1448 if (dst.regClass() == v1) {
1449 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1450 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1451 break;
1452 }
1453
1454 Temp src00 = bld.tmp(src0.type(), 1);
1455 Temp src01 = bld.tmp(dst.type(), 1);
1456 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1457 Temp src10 = bld.tmp(src1.type(), 1);
1458 Temp src11 = bld.tmp(dst.type(), 1);
1459 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1460 if (dst.regClass() == s2) {
1461 Temp carry = bld.tmp(s1);
1462 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1463 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1464 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1465 } else if (dst.regClass() == v2) {
1466 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1467 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1468 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1469 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1470 } else {
1471 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1472 nir_print_instr(&instr->instr, stderr);
1473 fprintf(stderr, "\n");
1474 }
1475 break;
1476 }
1477 case nir_op_isub: {
1478 if (dst.regClass() == s1) {
1479 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1480 break;
1481 }
1482
1483 Temp src0 = get_alu_src(ctx, instr->src[0]);
1484 Temp src1 = get_alu_src(ctx, instr->src[1]);
1485 if (dst.regClass() == v1) {
1486 bld.vsub32(Definition(dst), src0, src1);
1487 break;
1488 }
1489
1490 Temp src00 = bld.tmp(src0.type(), 1);
1491 Temp src01 = bld.tmp(dst.type(), 1);
1492 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1493 Temp src10 = bld.tmp(src1.type(), 1);
1494 Temp src11 = bld.tmp(dst.type(), 1);
1495 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1496 if (dst.regClass() == s2) {
1497 Temp carry = bld.tmp(s1);
1498 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1499 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1500 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1501 } else if (dst.regClass() == v2) {
1502 Temp lower = bld.tmp(v1);
1503 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1504 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1505 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1506 } else {
1507 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1508 nir_print_instr(&instr->instr, stderr);
1509 fprintf(stderr, "\n");
1510 }
1511 break;
1512 }
1513 case nir_op_usub_borrow: {
1514 Temp src0 = get_alu_src(ctx, instr->src[0]);
1515 Temp src1 = get_alu_src(ctx, instr->src[1]);
1516 if (dst.regClass() == s1) {
1517 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1518 break;
1519 } else if (dst.regClass() == v1) {
1520 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1521 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1522 break;
1523 }
1524
1525 Temp src00 = bld.tmp(src0.type(), 1);
1526 Temp src01 = bld.tmp(dst.type(), 1);
1527 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1528 Temp src10 = bld.tmp(src1.type(), 1);
1529 Temp src11 = bld.tmp(dst.type(), 1);
1530 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1531 if (dst.regClass() == s2) {
1532 Temp borrow = bld.tmp(s1);
1533 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1534 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1535 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1536 } else if (dst.regClass() == v2) {
1537 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1538 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1539 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1540 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1541 } else {
1542 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1543 nir_print_instr(&instr->instr, stderr);
1544 fprintf(stderr, "\n");
1545 }
1546 break;
1547 }
1548 case nir_op_imul: {
1549 if (dst.regClass() == v1) {
1550 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1551 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1552 } else if (dst.regClass() == s1) {
1553 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_umul_high: {
1562 if (dst.regClass() == v1) {
1563 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1564 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1565 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1566 } else if (dst.regClass() == s1) {
1567 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1568 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1569 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1570 } else {
1571 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1572 nir_print_instr(&instr->instr, stderr);
1573 fprintf(stderr, "\n");
1574 }
1575 break;
1576 }
1577 case nir_op_imul_high: {
1578 if (dst.regClass() == v1) {
1579 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1580 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1581 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1582 } else if (dst.regClass() == s1) {
1583 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1584 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1585 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1586 } else {
1587 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1588 nir_print_instr(&instr->instr, stderr);
1589 fprintf(stderr, "\n");
1590 }
1591 break;
1592 }
1593 case nir_op_fmul: {
1594 Temp src0 = get_alu_src(ctx, instr->src[0]);
1595 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1596 if (dst.regClass() == v2b) {
1597 Temp tmp = bld.tmp(v1);
1598 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, tmp, true);
1599 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1600 } else if (dst.regClass() == v1) {
1601 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1602 } else if (dst.regClass() == v2) {
1603 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1604 } else {
1605 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1606 nir_print_instr(&instr->instr, stderr);
1607 fprintf(stderr, "\n");
1608 }
1609 break;
1610 }
1611 case nir_op_fadd: {
1612 Temp src0 = get_alu_src(ctx, instr->src[0]);
1613 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1614 if (dst.regClass() == v2b) {
1615 Temp tmp = bld.tmp(v1);
1616 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, tmp, true);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1618 } else if (dst.regClass() == v1) {
1619 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1620 } else if (dst.regClass() == v2) {
1621 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fsub: {
1630 Temp src0 = get_alu_src(ctx, instr->src[0]);
1631 Temp src1 = get_alu_src(ctx, instr->src[1]);
1632 if (dst.regClass() == v2b) {
1633 Temp tmp = bld.tmp(v1);
1634 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1635 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, tmp, false);
1636 else
1637 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, tmp, true);
1638 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1639 } else if (dst.regClass() == v1) {
1640 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1641 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1642 else
1643 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1644 } else if (dst.regClass() == v2) {
1645 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1646 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1647 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1648 sub->neg[1] = true;
1649 } else {
1650 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1651 nir_print_instr(&instr->instr, stderr);
1652 fprintf(stderr, "\n");
1653 }
1654 break;
1655 }
1656 case nir_op_fmax: {
1657 Temp src0 = get_alu_src(ctx, instr->src[0]);
1658 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1659 if (dst.regClass() == v2b) {
1660 // TODO: check fp_mode.must_flush_denorms16_64
1661 Temp tmp = bld.tmp(v1);
1662 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1663 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1664 } else if (dst.regClass() == v1) {
1665 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1666 } else if (dst.regClass() == v2) {
1667 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1668 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1669 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1670 } else {
1671 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1672 }
1673 } else {
1674 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1675 nir_print_instr(&instr->instr, stderr);
1676 fprintf(stderr, "\n");
1677 }
1678 break;
1679 }
1680 case nir_op_fmin: {
1681 Temp src0 = get_alu_src(ctx, instr->src[0]);
1682 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1683 if (dst.regClass() == v2b) {
1684 // TODO: check fp_mode.must_flush_denorms16_64
1685 Temp tmp = bld.tmp(v1);
1686 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1687 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1688 } else if (dst.regClass() == v1) {
1689 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1690 } else if (dst.regClass() == v2) {
1691 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1692 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1693 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1694 } else {
1695 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1696 }
1697 } else {
1698 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1699 nir_print_instr(&instr->instr, stderr);
1700 fprintf(stderr, "\n");
1701 }
1702 break;
1703 }
1704 case nir_op_fmax3: {
1705 if (dst.regClass() == v2b) {
1706 Temp tmp = bld.tmp(v1);
1707 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, tmp, false);
1708 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1709 } else if (dst.regClass() == v1) {
1710 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1711 } else {
1712 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1713 nir_print_instr(&instr->instr, stderr);
1714 fprintf(stderr, "\n");
1715 }
1716 break;
1717 }
1718 case nir_op_fmin3: {
1719 if (dst.regClass() == v2b) {
1720 Temp tmp = bld.tmp(v1);
1721 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, tmp, false);
1722 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1723 } else if (dst.regClass() == v1) {
1724 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1725 } else {
1726 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1727 nir_print_instr(&instr->instr, stderr);
1728 fprintf(stderr, "\n");
1729 }
1730 break;
1731 }
1732 case nir_op_fmed3: {
1733 if (dst.regClass() == v2b) {
1734 Temp tmp = bld.tmp(v1);
1735 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, tmp, false);
1736 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1737 } else if (dst.regClass() == v1) {
1738 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1739 } else {
1740 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1741 nir_print_instr(&instr->instr, stderr);
1742 fprintf(stderr, "\n");
1743 }
1744 break;
1745 }
1746 case nir_op_umax3: {
1747 if (dst.size() == 1) {
1748 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1749 } else {
1750 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1751 nir_print_instr(&instr->instr, stderr);
1752 fprintf(stderr, "\n");
1753 }
1754 break;
1755 }
1756 case nir_op_umin3: {
1757 if (dst.size() == 1) {
1758 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1759 } else {
1760 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1761 nir_print_instr(&instr->instr, stderr);
1762 fprintf(stderr, "\n");
1763 }
1764 break;
1765 }
1766 case nir_op_umed3: {
1767 if (dst.size() == 1) {
1768 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1769 } else {
1770 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1771 nir_print_instr(&instr->instr, stderr);
1772 fprintf(stderr, "\n");
1773 }
1774 break;
1775 }
1776 case nir_op_imax3: {
1777 if (dst.size() == 1) {
1778 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1779 } else {
1780 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1781 nir_print_instr(&instr->instr, stderr);
1782 fprintf(stderr, "\n");
1783 }
1784 break;
1785 }
1786 case nir_op_imin3: {
1787 if (dst.size() == 1) {
1788 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1789 } else {
1790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1791 nir_print_instr(&instr->instr, stderr);
1792 fprintf(stderr, "\n");
1793 }
1794 break;
1795 }
1796 case nir_op_imed3: {
1797 if (dst.size() == 1) {
1798 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1799 } else {
1800 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1801 nir_print_instr(&instr->instr, stderr);
1802 fprintf(stderr, "\n");
1803 }
1804 break;
1805 }
1806 case nir_op_cube_face_coord: {
1807 Temp in = get_alu_src(ctx, instr->src[0], 3);
1808 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1809 emit_extract_vector(ctx, in, 1, v1),
1810 emit_extract_vector(ctx, in, 2, v1) };
1811 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1812 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1813 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1814 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1815 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1816 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1817 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1818 break;
1819 }
1820 case nir_op_cube_face_index: {
1821 Temp in = get_alu_src(ctx, instr->src[0], 3);
1822 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1823 emit_extract_vector(ctx, in, 1, v1),
1824 emit_extract_vector(ctx, in, 2, v1) };
1825 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1826 break;
1827 }
1828 case nir_op_bcsel: {
1829 emit_bcsel(ctx, instr, dst);
1830 break;
1831 }
1832 case nir_op_frsq: {
1833 Temp src = get_alu_src(ctx, instr->src[0]);
1834 if (dst.regClass() == v2b) {
1835 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1836 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1837 } else if (dst.regClass() == v1) {
1838 emit_rsq(ctx, bld, Definition(dst), src);
1839 } else if (dst.regClass() == v2) {
1840 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1841 } else {
1842 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1843 nir_print_instr(&instr->instr, stderr);
1844 fprintf(stderr, "\n");
1845 }
1846 break;
1847 }
1848 case nir_op_fneg: {
1849 Temp src = get_alu_src(ctx, instr->src[0]);
1850 if (dst.regClass() == v2b) {
1851 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1852 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1853 } else if (dst.regClass() == v1) {
1854 if (ctx->block->fp_mode.must_flush_denorms32)
1855 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1856 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1857 } else if (dst.regClass() == v2) {
1858 if (ctx->block->fp_mode.must_flush_denorms16_64)
1859 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1860 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1861 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1862 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1863 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1864 } else {
1865 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1866 nir_print_instr(&instr->instr, stderr);
1867 fprintf(stderr, "\n");
1868 }
1869 break;
1870 }
1871 case nir_op_fabs: {
1872 Temp src = get_alu_src(ctx, instr->src[0]);
1873 if (dst.regClass() == v2b) {
1874 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1875 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1876 } else if (dst.regClass() == v1) {
1877 if (ctx->block->fp_mode.must_flush_denorms32)
1878 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1879 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1880 } else if (dst.regClass() == v2) {
1881 if (ctx->block->fp_mode.must_flush_denorms16_64)
1882 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1883 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1884 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1885 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1886 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1887 } else {
1888 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1889 nir_print_instr(&instr->instr, stderr);
1890 fprintf(stderr, "\n");
1891 }
1892 break;
1893 }
1894 case nir_op_fsat: {
1895 Temp src = get_alu_src(ctx, instr->src[0]);
1896 if (dst.regClass() == v2b) {
1897 Temp tmp = bld.vop3(aco_opcode::v_med3_f16, bld.def(v1), Operand(0u), Operand(0x3f800000u), src);
1898 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1899 } else if (dst.regClass() == v1) {
1900 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1901 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1902 // TODO: confirm that this holds under any circumstances
1903 } else if (dst.regClass() == v2) {
1904 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1905 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1906 vop3->clamp = true;
1907 } else {
1908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1909 nir_print_instr(&instr->instr, stderr);
1910 fprintf(stderr, "\n");
1911 }
1912 break;
1913 }
1914 case nir_op_flog2: {
1915 Temp src = get_alu_src(ctx, instr->src[0]);
1916 if (dst.regClass() == v2b) {
1917 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1918 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1919 } else if (dst.regClass() == v1) {
1920 emit_log2(ctx, bld, Definition(dst), src);
1921 } else {
1922 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1923 nir_print_instr(&instr->instr, stderr);
1924 fprintf(stderr, "\n");
1925 }
1926 break;
1927 }
1928 case nir_op_frcp: {
1929 Temp src = get_alu_src(ctx, instr->src[0]);
1930 if (dst.regClass() == v2b) {
1931 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1932 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1933 } else if (dst.regClass() == v1) {
1934 emit_rcp(ctx, bld, Definition(dst), src);
1935 } else if (dst.regClass() == v2) {
1936 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1937 } else {
1938 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1939 nir_print_instr(&instr->instr, stderr);
1940 fprintf(stderr, "\n");
1941 }
1942 break;
1943 }
1944 case nir_op_fexp2: {
1945 if (dst.regClass() == v2b) {
1946 Temp src = get_alu_src(ctx, instr->src[0]);
1947 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1948 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1949 } else if (dst.regClass() == v1) {
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1951 } else {
1952 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1953 nir_print_instr(&instr->instr, stderr);
1954 fprintf(stderr, "\n");
1955 }
1956 break;
1957 }
1958 case nir_op_fsqrt: {
1959 Temp src = get_alu_src(ctx, instr->src[0]);
1960 if (dst.regClass() == v2b) {
1961 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1962 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1963 } else if (dst.regClass() == v1) {
1964 emit_sqrt(ctx, bld, Definition(dst), src);
1965 } else if (dst.regClass() == v2) {
1966 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1967 } else {
1968 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1969 nir_print_instr(&instr->instr, stderr);
1970 fprintf(stderr, "\n");
1971 }
1972 break;
1973 }
1974 case nir_op_ffract: {
1975 if (dst.regClass() == v2b) {
1976 Temp src = get_alu_src(ctx, instr->src[0]);
1977 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1978 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1979 } else if (dst.regClass() == v1) {
1980 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1981 } else if (dst.regClass() == v2) {
1982 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1983 } else {
1984 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1985 nir_print_instr(&instr->instr, stderr);
1986 fprintf(stderr, "\n");
1987 }
1988 break;
1989 }
1990 case nir_op_ffloor: {
1991 Temp src = get_alu_src(ctx, instr->src[0]);
1992 if (dst.regClass() == v2b) {
1993 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
1994 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1995 } else if (dst.regClass() == v1) {
1996 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1997 } else if (dst.regClass() == v2) {
1998 emit_floor_f64(ctx, bld, Definition(dst), src);
1999 } else {
2000 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2001 nir_print_instr(&instr->instr, stderr);
2002 fprintf(stderr, "\n");
2003 }
2004 break;
2005 }
2006 case nir_op_fceil: {
2007 Temp src0 = get_alu_src(ctx, instr->src[0]);
2008 if (dst.regClass() == v2b) {
2009 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
2010 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2011 } else if (dst.regClass() == v1) {
2012 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2013 } else if (dst.regClass() == v2) {
2014 if (ctx->options->chip_class >= GFX7) {
2015 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2016 } else {
2017 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2018 /* trunc = trunc(src0)
2019 * if (src0 > 0.0 && src0 != trunc)
2020 * trunc += 1.0
2021 */
2022 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2023 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2024 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2025 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2026 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2027 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2028 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2029 }
2030 } else {
2031 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2032 nir_print_instr(&instr->instr, stderr);
2033 fprintf(stderr, "\n");
2034 }
2035 break;
2036 }
2037 case nir_op_ftrunc: {
2038 Temp src = get_alu_src(ctx, instr->src[0]);
2039 if (dst.regClass() == v2b) {
2040 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
2041 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2042 } else if (dst.regClass() == v1) {
2043 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2044 } else if (dst.regClass() == v2) {
2045 emit_trunc_f64(ctx, bld, Definition(dst), src);
2046 } else {
2047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2048 nir_print_instr(&instr->instr, stderr);
2049 fprintf(stderr, "\n");
2050 }
2051 break;
2052 }
2053 case nir_op_fround_even: {
2054 Temp src0 = get_alu_src(ctx, instr->src[0]);
2055 if (dst.regClass() == v2b) {
2056 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
2057 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2058 } else if (dst.regClass() == v1) {
2059 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2060 } else if (dst.regClass() == v2) {
2061 if (ctx->options->chip_class >= GFX7) {
2062 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2063 } else {
2064 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2065 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2066 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2067
2068 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2069 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2070 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2071 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2072 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2073 tmp = sub->definitions[0].getTemp();
2074
2075 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2076 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2077 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2078 Temp cond = vop3->definitions[0].getTemp();
2079
2080 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2081 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2082 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2083 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2084
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2086 }
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_fsin:
2095 case nir_op_fcos: {
2096 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2097 aco_ptr<Instruction> norm;
2098 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2099 if (dst.regClass() == v2b) {
2100 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2101 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2102 tmp = bld.vop1(opcode, bld.def(v1), tmp);
2103 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2104 } else if (dst.regClass() == v1) {
2105 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2106
2107 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2108 if (ctx->options->chip_class < GFX9)
2109 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2110
2111 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2112 bld.vop1(opcode, Definition(dst), tmp);
2113 } else {
2114 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2115 nir_print_instr(&instr->instr, stderr);
2116 fprintf(stderr, "\n");
2117 }
2118 break;
2119 }
2120 case nir_op_ldexp: {
2121 Temp src0 = get_alu_src(ctx, instr->src[0]);
2122 Temp src1 = get_alu_src(ctx, instr->src[1]);
2123 if (dst.regClass() == v2b) {
2124 Temp tmp = bld.tmp(v1);
2125 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, tmp, false);
2126 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2127 } else if (dst.regClass() == v1) {
2128 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2129 } else if (dst.regClass() == v2) {
2130 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2131 } else {
2132 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2133 nir_print_instr(&instr->instr, stderr);
2134 fprintf(stderr, "\n");
2135 }
2136 break;
2137 }
2138 case nir_op_frexp_sig: {
2139 Temp src = get_alu_src(ctx, instr->src[0]);
2140 if (dst.regClass() == v2b) {
2141 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2142 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2143 } else if (dst.regClass() == v1) {
2144 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2145 } else if (dst.regClass() == v2) {
2146 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2147 } else {
2148 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2149 nir_print_instr(&instr->instr, stderr);
2150 fprintf(stderr, "\n");
2151 }
2152 break;
2153 }
2154 case nir_op_frexp_exp: {
2155 Temp src = get_alu_src(ctx, instr->src[0]);
2156 if (instr->src[0].src.ssa->bit_size == 16) {
2157 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2158 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2159 convert_int(bld, tmp, 8, 32, true, dst);
2160 } else if (instr->src[0].src.ssa->bit_size == 32) {
2161 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2162 } else if (instr->src[0].src.ssa->bit_size == 64) {
2163 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2164 } else {
2165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2166 nir_print_instr(&instr->instr, stderr);
2167 fprintf(stderr, "\n");
2168 }
2169 break;
2170 }
2171 case nir_op_fsign: {
2172 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2173 if (dst.regClass() == v2b) {
2174 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2175 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2176 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2177 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2178 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2179 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), minus_one, src, cond);
2180 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2181 } else if (dst.regClass() == v1) {
2182 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2183 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2184 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2185 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2186 } else if (dst.regClass() == v2) {
2187 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2188 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2189 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2190
2191 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2192 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2193 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2194
2195 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2196 } else {
2197 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2198 nir_print_instr(&instr->instr, stderr);
2199 fprintf(stderr, "\n");
2200 }
2201 break;
2202 }
2203 case nir_op_f2f16:
2204 case nir_op_f2f16_rtne: {
2205 Temp src = get_alu_src(ctx, instr->src[0]);
2206 if (instr->src[0].src.ssa->bit_size == 64)
2207 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2208 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2209 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2210 break;
2211 }
2212 case nir_op_f2f16_rtz: {
2213 Temp src = get_alu_src(ctx, instr->src[0]);
2214 if (instr->src[0].src.ssa->bit_size == 64)
2215 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2216 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2217 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2218 break;
2219 }
2220 case nir_op_f2f32: {
2221 if (instr->src[0].src.ssa->bit_size == 16) {
2222 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2223 } else if (instr->src[0].src.ssa->bit_size == 64) {
2224 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2225 } else {
2226 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2227 nir_print_instr(&instr->instr, stderr);
2228 fprintf(stderr, "\n");
2229 }
2230 break;
2231 }
2232 case nir_op_f2f64: {
2233 Temp src = get_alu_src(ctx, instr->src[0]);
2234 if (instr->src[0].src.ssa->bit_size == 16)
2235 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2236 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2237 break;
2238 }
2239 case nir_op_i2f16: {
2240 assert(dst.regClass() == v2b);
2241 Temp src = get_alu_src(ctx, instr->src[0]);
2242 if (instr->src[0].src.ssa->bit_size == 8)
2243 src = convert_int(bld, src, 8, 16, true);
2244 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_i16, bld.def(v1), src);
2245 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2246 break;
2247 }
2248 case nir_op_i2f32: {
2249 assert(dst.size() == 1);
2250 Temp src = get_alu_src(ctx, instr->src[0]);
2251 if (instr->src[0].src.ssa->bit_size <= 16)
2252 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2253 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2254 break;
2255 }
2256 case nir_op_i2f64: {
2257 if (instr->src[0].src.ssa->bit_size <= 32) {
2258 Temp src = get_alu_src(ctx, instr->src[0]);
2259 if (instr->src[0].src.ssa->bit_size <= 16)
2260 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2261 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2262 } else if (instr->src[0].src.ssa->bit_size == 64) {
2263 Temp src = get_alu_src(ctx, instr->src[0]);
2264 RegClass rc = RegClass(src.type(), 1);
2265 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2266 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2267 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2268 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2269 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2270 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2271
2272 } else {
2273 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2274 nir_print_instr(&instr->instr, stderr);
2275 fprintf(stderr, "\n");
2276 }
2277 break;
2278 }
2279 case nir_op_u2f16: {
2280 assert(dst.regClass() == v2b);
2281 Temp src = get_alu_src(ctx, instr->src[0]);
2282 if (instr->src[0].src.ssa->bit_size == 8)
2283 src = convert_int(bld, src, 8, 16, false);
2284 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v1), src);
2285 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2286 break;
2287 }
2288 case nir_op_u2f32: {
2289 assert(dst.size() == 1);
2290 Temp src = get_alu_src(ctx, instr->src[0]);
2291 if (instr->src[0].src.ssa->bit_size == 8) {
2292 //TODO: we should use v_cvt_f32_ubyte1/v_cvt_f32_ubyte2/etc depending on the register assignment
2293 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2294 } else {
2295 if (instr->src[0].src.ssa->bit_size == 16)
2296 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2297 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2298 }
2299 break;
2300 }
2301 case nir_op_u2f64: {
2302 if (instr->src[0].src.ssa->bit_size <= 32) {
2303 Temp src = get_alu_src(ctx, instr->src[0]);
2304 if (instr->src[0].src.ssa->bit_size <= 16)
2305 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2306 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2307 } else if (instr->src[0].src.ssa->bit_size == 64) {
2308 Temp src = get_alu_src(ctx, instr->src[0]);
2309 RegClass rc = RegClass(src.type(), 1);
2310 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2311 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2312 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2313 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2314 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2315 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2316 } else {
2317 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2318 nir_print_instr(&instr->instr, stderr);
2319 fprintf(stderr, "\n");
2320 }
2321 break;
2322 }
2323 case nir_op_f2i8:
2324 case nir_op_f2i16: {
2325 Temp src = get_alu_src(ctx, instr->src[0]);
2326 if (instr->src[0].src.ssa->bit_size == 16)
2327 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2328 else if (instr->src[0].src.ssa->bit_size == 32)
2329 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2330 else
2331 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2332
2333 if (dst.type() == RegType::vgpr)
2334 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2335 else
2336 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2337 break;
2338 }
2339 case nir_op_f2u8:
2340 case nir_op_f2u16: {
2341 Temp src = get_alu_src(ctx, instr->src[0]);
2342 if (instr->src[0].src.ssa->bit_size == 16)
2343 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2344 else if (instr->src[0].src.ssa->bit_size == 32)
2345 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2346 else
2347 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2348
2349 if (dst.type() == RegType::vgpr)
2350 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2351 else
2352 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2353 break;
2354 }
2355 case nir_op_f2i32: {
2356 Temp src = get_alu_src(ctx, instr->src[0]);
2357 if (instr->src[0].src.ssa->bit_size == 16) {
2358 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2359 if (dst.type() == RegType::vgpr) {
2360 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2361 } else {
2362 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2363 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2364 }
2365 } else if (instr->src[0].src.ssa->bit_size == 32) {
2366 if (dst.type() == RegType::vgpr)
2367 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2368 else
2369 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2370 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2371
2372 } else if (instr->src[0].src.ssa->bit_size == 64) {
2373 if (dst.type() == RegType::vgpr)
2374 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2375 else
2376 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2377 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2378
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_f2u32: {
2387 Temp src = get_alu_src(ctx, instr->src[0]);
2388 if (instr->src[0].src.ssa->bit_size == 16) {
2389 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2390 if (dst.type() == RegType::vgpr) {
2391 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2392 } else {
2393 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2394 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2395 }
2396 } else if (instr->src[0].src.ssa->bit_size == 32) {
2397 if (dst.type() == RegType::vgpr)
2398 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2399 else
2400 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2401 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2402
2403 } else if (instr->src[0].src.ssa->bit_size == 64) {
2404 if (dst.type() == RegType::vgpr)
2405 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2406 else
2407 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2408 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2409
2410 } else {
2411 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2412 nir_print_instr(&instr->instr, stderr);
2413 fprintf(stderr, "\n");
2414 }
2415 break;
2416 }
2417 case nir_op_f2i64: {
2418 Temp src = get_alu_src(ctx, instr->src[0]);
2419 if (instr->src[0].src.ssa->bit_size == 16)
2420 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2421
2422 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2423 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2424 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2425 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2426 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2427 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2428 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2429 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2430 Temp new_exponent = bld.tmp(v1);
2431 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2432 if (ctx->program->chip_class >= GFX8)
2433 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2434 else
2435 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2436 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2437 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2438 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2439 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2440 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2441 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2442 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2443 Temp new_lower = bld.tmp(v1);
2444 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2445 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2446 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2447
2448 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2449 if (src.type() == RegType::vgpr)
2450 src = bld.as_uniform(src);
2451 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2452 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2453 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2454 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2455 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2456 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2457 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2458 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2459 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2460 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2461 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2462 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2463 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2464 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2465 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2466 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2467 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2468 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2469 Temp borrow = bld.tmp(s1);
2470 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2471 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2472 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2473
2474 } else if (instr->src[0].src.ssa->bit_size == 64) {
2475 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2476 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2477 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2478 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2479 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2480 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2481 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2482 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2483 if (dst.type() == RegType::sgpr) {
2484 lower = bld.as_uniform(lower);
2485 upper = bld.as_uniform(upper);
2486 }
2487 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2488
2489 } else {
2490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2491 nir_print_instr(&instr->instr, stderr);
2492 fprintf(stderr, "\n");
2493 }
2494 break;
2495 }
2496 case nir_op_f2u64: {
2497 Temp src = get_alu_src(ctx, instr->src[0]);
2498 if (instr->src[0].src.ssa->bit_size == 16)
2499 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2500
2501 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2502 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2503 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2504 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2505 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2506 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2507 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2508 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2509 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2510 Temp new_exponent = bld.tmp(v1);
2511 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2512 if (ctx->program->chip_class >= GFX8)
2513 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2514 else
2515 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2516 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2517 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2518 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2519 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2520 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2521 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2522 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2523
2524 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2525 if (src.type() == RegType::vgpr)
2526 src = bld.as_uniform(src);
2527 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2528 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2529 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2530 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2531 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2532 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2533 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2534 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2535 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2536 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2537 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2538 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2539 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2540 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2541 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2542 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2543 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2544 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2545
2546 } else if (instr->src[0].src.ssa->bit_size == 64) {
2547 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2548 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2549 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2550 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2551 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2552 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2553 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2554 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2555 if (dst.type() == RegType::sgpr) {
2556 lower = bld.as_uniform(lower);
2557 upper = bld.as_uniform(upper);
2558 }
2559 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2560
2561 } else {
2562 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2563 nir_print_instr(&instr->instr, stderr);
2564 fprintf(stderr, "\n");
2565 }
2566 break;
2567 }
2568 case nir_op_b2f16: {
2569 Temp src = get_alu_src(ctx, instr->src[0]);
2570 assert(src.regClass() == bld.lm);
2571
2572 if (dst.regClass() == s1) {
2573 src = bool_to_scalar_condition(ctx, src);
2574 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2575 } else if (dst.regClass() == v2b) {
2576 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2577 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2578 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2579 } else {
2580 unreachable("Wrong destination register class for nir_op_b2f16.");
2581 }
2582 break;
2583 }
2584 case nir_op_b2f32: {
2585 Temp src = get_alu_src(ctx, instr->src[0]);
2586 assert(src.regClass() == bld.lm);
2587
2588 if (dst.regClass() == s1) {
2589 src = bool_to_scalar_condition(ctx, src);
2590 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2591 } else if (dst.regClass() == v1) {
2592 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2593 } else {
2594 unreachable("Wrong destination register class for nir_op_b2f32.");
2595 }
2596 break;
2597 }
2598 case nir_op_b2f64: {
2599 Temp src = get_alu_src(ctx, instr->src[0]);
2600 assert(src.regClass() == bld.lm);
2601
2602 if (dst.regClass() == s2) {
2603 src = bool_to_scalar_condition(ctx, src);
2604 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2605 } else if (dst.regClass() == v2) {
2606 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2607 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2608 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2609 } else {
2610 unreachable("Wrong destination register class for nir_op_b2f64.");
2611 }
2612 break;
2613 }
2614 case nir_op_i2i8:
2615 case nir_op_i2i16:
2616 case nir_op_i2i32:
2617 case nir_op_i2i64: {
2618 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2619 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2620 break;
2621 }
2622 case nir_op_u2u8:
2623 case nir_op_u2u16:
2624 case nir_op_u2u32:
2625 case nir_op_u2u64: {
2626 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2627 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2628 break;
2629 }
2630 case nir_op_b2b32:
2631 case nir_op_b2i32: {
2632 Temp src = get_alu_src(ctx, instr->src[0]);
2633 assert(src.regClass() == bld.lm);
2634
2635 if (dst.regClass() == s1) {
2636 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2637 bool_to_scalar_condition(ctx, src, dst);
2638 } else if (dst.regClass() == v1) {
2639 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2640 } else {
2641 unreachable("Invalid register class for b2i32");
2642 }
2643 break;
2644 }
2645 case nir_op_b2b1:
2646 case nir_op_i2b1: {
2647 Temp src = get_alu_src(ctx, instr->src[0]);
2648 assert(dst.regClass() == bld.lm);
2649
2650 if (src.type() == RegType::vgpr) {
2651 assert(src.regClass() == v1 || src.regClass() == v2);
2652 assert(dst.regClass() == bld.lm);
2653 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2654 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2655 } else {
2656 assert(src.regClass() == s1 || src.regClass() == s2);
2657 Temp tmp;
2658 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2659 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2660 } else {
2661 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2662 bld.scc(bld.def(s1)), Operand(0u), src);
2663 }
2664 bool_to_vector_condition(ctx, tmp, dst);
2665 }
2666 break;
2667 }
2668 case nir_op_pack_64_2x32_split: {
2669 Temp src0 = get_alu_src(ctx, instr->src[0]);
2670 Temp src1 = get_alu_src(ctx, instr->src[1]);
2671
2672 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2673 break;
2674 }
2675 case nir_op_unpack_64_2x32_split_x:
2676 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2677 break;
2678 case nir_op_unpack_64_2x32_split_y:
2679 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2680 break;
2681 case nir_op_unpack_32_2x16_split_x:
2682 if (dst.type() == RegType::vgpr) {
2683 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2684 } else {
2685 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2686 }
2687 break;
2688 case nir_op_unpack_32_2x16_split_y:
2689 if (dst.type() == RegType::vgpr) {
2690 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2691 } else {
2692 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2693 }
2694 break;
2695 case nir_op_pack_32_2x16_split: {
2696 Temp src0 = get_alu_src(ctx, instr->src[0]);
2697 Temp src1 = get_alu_src(ctx, instr->src[1]);
2698 if (dst.regClass() == v1) {
2699 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2700 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2701 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2702 } else {
2703 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2704 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2705 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2706 }
2707 break;
2708 }
2709 case nir_op_pack_half_2x16: {
2710 Temp src = get_alu_src(ctx, instr->src[0], 2);
2711
2712 if (dst.regClass() == v1) {
2713 Temp src0 = bld.tmp(v1);
2714 Temp src1 = bld.tmp(v1);
2715 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2716 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2717 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2718 else
2719 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2720 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2721 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2722 } else {
2723 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2724 nir_print_instr(&instr->instr, stderr);
2725 fprintf(stderr, "\n");
2726 }
2727 break;
2728 }
2729 case nir_op_unpack_half_2x16_split_x: {
2730 if (dst.regClass() == v1) {
2731 Builder bld(ctx->program, ctx->block);
2732 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2733 } else {
2734 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2735 nir_print_instr(&instr->instr, stderr);
2736 fprintf(stderr, "\n");
2737 }
2738 break;
2739 }
2740 case nir_op_unpack_half_2x16_split_y: {
2741 if (dst.regClass() == v1) {
2742 Builder bld(ctx->program, ctx->block);
2743 /* TODO: use SDWA here */
2744 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2745 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2746 } else {
2747 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2748 nir_print_instr(&instr->instr, stderr);
2749 fprintf(stderr, "\n");
2750 }
2751 break;
2752 }
2753 case nir_op_fquantize2f16: {
2754 Temp src = get_alu_src(ctx, instr->src[0]);
2755 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2756 Temp f32, cmp_res;
2757
2758 if (ctx->program->chip_class >= GFX8) {
2759 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2760 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2761 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2762 } else {
2763 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2764 * so compare the result and flush to 0 if it's smaller.
2765 */
2766 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2767 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2768 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2769 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2770 cmp_res = vop3->definitions[0].getTemp();
2771 }
2772
2773 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2774 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2775 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2776 } else {
2777 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2778 }
2779 break;
2780 }
2781 case nir_op_bfm: {
2782 Temp bits = get_alu_src(ctx, instr->src[0]);
2783 Temp offset = get_alu_src(ctx, instr->src[1]);
2784
2785 if (dst.regClass() == s1) {
2786 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2787 } else if (dst.regClass() == v1) {
2788 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2789 } else {
2790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2791 nir_print_instr(&instr->instr, stderr);
2792 fprintf(stderr, "\n");
2793 }
2794 break;
2795 }
2796 case nir_op_bitfield_select: {
2797 /* (mask & insert) | (~mask & base) */
2798 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2799 Temp insert = get_alu_src(ctx, instr->src[1]);
2800 Temp base = get_alu_src(ctx, instr->src[2]);
2801
2802 /* dst = (insert & bitmask) | (base & ~bitmask) */
2803 if (dst.regClass() == s1) {
2804 aco_ptr<Instruction> sop2;
2805 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2806 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2807 Operand lhs;
2808 if (const_insert && const_bitmask) {
2809 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2810 } else {
2811 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2812 lhs = Operand(insert);
2813 }
2814
2815 Operand rhs;
2816 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2817 if (const_base && const_bitmask) {
2818 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2819 } else {
2820 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2821 rhs = Operand(base);
2822 }
2823
2824 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2825
2826 } else if (dst.regClass() == v1) {
2827 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2828 base = as_vgpr(ctx, base);
2829 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2830 insert = as_vgpr(ctx, insert);
2831
2832 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2833
2834 } else {
2835 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2836 nir_print_instr(&instr->instr, stderr);
2837 fprintf(stderr, "\n");
2838 }
2839 break;
2840 }
2841 case nir_op_ubfe:
2842 case nir_op_ibfe: {
2843 Temp base = get_alu_src(ctx, instr->src[0]);
2844 Temp offset = get_alu_src(ctx, instr->src[1]);
2845 Temp bits = get_alu_src(ctx, instr->src[2]);
2846
2847 if (dst.type() == RegType::sgpr) {
2848 Operand extract;
2849 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2850 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2851 if (const_offset && const_bits) {
2852 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2853 extract = Operand(const_extract);
2854 } else {
2855 Operand width;
2856 if (const_bits) {
2857 width = Operand(const_bits->u32 << 16);
2858 } else {
2859 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2860 }
2861 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2862 }
2863
2864 aco_opcode opcode;
2865 if (dst.regClass() == s1) {
2866 if (instr->op == nir_op_ubfe)
2867 opcode = aco_opcode::s_bfe_u32;
2868 else
2869 opcode = aco_opcode::s_bfe_i32;
2870 } else if (dst.regClass() == s2) {
2871 if (instr->op == nir_op_ubfe)
2872 opcode = aco_opcode::s_bfe_u64;
2873 else
2874 opcode = aco_opcode::s_bfe_i64;
2875 } else {
2876 unreachable("Unsupported BFE bit size");
2877 }
2878
2879 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2880
2881 } else {
2882 aco_opcode opcode;
2883 if (dst.regClass() == v1) {
2884 if (instr->op == nir_op_ubfe)
2885 opcode = aco_opcode::v_bfe_u32;
2886 else
2887 opcode = aco_opcode::v_bfe_i32;
2888 } else {
2889 unreachable("Unsupported BFE bit size");
2890 }
2891
2892 emit_vop3a_instruction(ctx, instr, opcode, dst);
2893 }
2894 break;
2895 }
2896 case nir_op_bit_count: {
2897 Temp src = get_alu_src(ctx, instr->src[0]);
2898 if (src.regClass() == s1) {
2899 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2900 } else if (src.regClass() == v1) {
2901 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2902 } else if (src.regClass() == v2) {
2903 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2904 emit_extract_vector(ctx, src, 1, v1),
2905 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2906 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2907 } else if (src.regClass() == s2) {
2908 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2909 } else {
2910 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2911 nir_print_instr(&instr->instr, stderr);
2912 fprintf(stderr, "\n");
2913 }
2914 break;
2915 }
2916 case nir_op_flt: {
2917 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2918 break;
2919 }
2920 case nir_op_fge: {
2921 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2922 break;
2923 }
2924 case nir_op_feq: {
2925 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2926 break;
2927 }
2928 case nir_op_fne: {
2929 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2930 break;
2931 }
2932 case nir_op_ilt: {
2933 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2934 break;
2935 }
2936 case nir_op_ige: {
2937 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2938 break;
2939 }
2940 case nir_op_ieq: {
2941 if (instr->src[0].src.ssa->bit_size == 1)
2942 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2943 else
2944 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2945 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2946 break;
2947 }
2948 case nir_op_ine: {
2949 if (instr->src[0].src.ssa->bit_size == 1)
2950 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2951 else
2952 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2953 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2954 break;
2955 }
2956 case nir_op_ult: {
2957 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2958 break;
2959 }
2960 case nir_op_uge: {
2961 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2962 break;
2963 }
2964 case nir_op_fddx:
2965 case nir_op_fddy:
2966 case nir_op_fddx_fine:
2967 case nir_op_fddy_fine:
2968 case nir_op_fddx_coarse:
2969 case nir_op_fddy_coarse: {
2970 Temp src = get_alu_src(ctx, instr->src[0]);
2971 uint16_t dpp_ctrl1, dpp_ctrl2;
2972 if (instr->op == nir_op_fddx_fine) {
2973 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2974 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2975 } else if (instr->op == nir_op_fddy_fine) {
2976 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2977 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2978 } else {
2979 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2980 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2981 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2982 else
2983 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2984 }
2985
2986 Temp tmp;
2987 if (ctx->program->chip_class >= GFX8) {
2988 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2989 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2990 } else {
2991 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2992 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2993 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2994 }
2995 emit_wqm(ctx, tmp, dst, true);
2996 break;
2997 }
2998 default:
2999 fprintf(stderr, "Unknown NIR ALU instr: ");
3000 nir_print_instr(&instr->instr, stderr);
3001 fprintf(stderr, "\n");
3002 }
3003 }
3004
3005 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3006 {
3007 Temp dst = get_ssa_temp(ctx, &instr->def);
3008
3009 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3010 // which get truncated the lsb if double and msb if int
3011 // for now, we only use s_mov_b64 with 64bit inline constants
3012 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3013 assert(dst.type() == RegType::sgpr);
3014
3015 Builder bld(ctx->program, ctx->block);
3016
3017 if (instr->def.bit_size == 1) {
3018 assert(dst.regClass() == bld.lm);
3019 int val = instr->value[0].b ? -1 : 0;
3020 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3021 bld.sop1(Builder::s_mov, Definition(dst), op);
3022 } else if (instr->def.bit_size == 8) {
3023 /* ensure that the value is correctly represented in the low byte of the register */
3024 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3025 } else if (instr->def.bit_size == 16) {
3026 /* ensure that the value is correctly represented in the low half of the register */
3027 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3028 } else if (dst.size() == 1) {
3029 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3030 } else {
3031 assert(dst.size() != 1);
3032 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3033 if (instr->def.bit_size == 64)
3034 for (unsigned i = 0; i < dst.size(); i++)
3035 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3036 else {
3037 for (unsigned i = 0; i < dst.size(); i++)
3038 vec->operands[i] = Operand{instr->value[i].u32};
3039 }
3040 vec->definitions[0] = Definition(dst);
3041 ctx->block->instructions.emplace_back(std::move(vec));
3042 }
3043 }
3044
3045 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3046 {
3047 uint32_t new_mask = 0;
3048 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3049 if (mask & (1u << i))
3050 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3051 return new_mask;
3052 }
3053
3054 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst)
3055 {
3056 Builder bld(ctx->program, ctx->block);
3057 if (offset.isTemp()) {
3058 Temp tmp[3] = {vec, vec, vec};
3059
3060 if (vec.size() == 3) {
3061 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
3062 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
3063 } else if (vec.size() == 2) {
3064 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
3065 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
3066 }
3067 for (unsigned i = 0; i < dst.size(); i++)
3068 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
3069
3070 vec = tmp[0];
3071 if (dst.size() == 2)
3072 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
3073
3074 offset = Operand(0u);
3075 }
3076
3077 if (vec.bytes() == dst.bytes() && offset.constantValue() == 0)
3078 bld.copy(Definition(dst), vec);
3079 else
3080 trim_subdword_vector(ctx, vec, dst, vec.bytes(), ((1 << dst.bytes()) - 1) << offset.constantValue());
3081 }
3082
3083 struct LoadEmitInfo {
3084 Operand offset;
3085 Temp dst;
3086 unsigned num_components;
3087 unsigned component_size;
3088 Temp resource = Temp(0, s1);
3089 unsigned component_stride = 0;
3090 unsigned const_offset = 0;
3091 unsigned align_mul = 0;
3092 unsigned align_offset = 0;
3093
3094 bool glc = false;
3095 unsigned swizzle_component_size = 0;
3096 barrier_interaction barrier = barrier_none;
3097 bool can_reorder = true;
3098 Temp soffset = Temp(0, s1);
3099 };
3100
3101 using LoadCallback = Temp(*)(
3102 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3103 unsigned align, unsigned const_offset, Temp dst_hint);
3104
3105 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3106 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3107 {
3108 unsigned load_size = info->num_components * info->component_size;
3109 unsigned component_size = info->component_size;
3110
3111 unsigned num_vals = 0;
3112 Temp vals[info->dst.bytes()];
3113
3114 unsigned const_offset = info->const_offset;
3115
3116 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3117 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3118
3119 unsigned bytes_read = 0;
3120 while (bytes_read < load_size) {
3121 unsigned bytes_needed = load_size - bytes_read;
3122
3123 /* add buffer for unaligned loads */
3124 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3125
3126 if (byte_align) {
3127 if ((bytes_needed > 2 || !supports_8bit_16bit_loads) && byte_align_loads) {
3128 if (info->component_stride) {
3129 assert(supports_8bit_16bit_loads && "unimplemented");
3130 bytes_needed = 2;
3131 byte_align = 0;
3132 } else {
3133 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3134 bytes_needed = align(bytes_needed, 4);
3135 }
3136 } else {
3137 byte_align = 0;
3138 }
3139 }
3140
3141 if (info->swizzle_component_size)
3142 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3143 if (info->component_stride)
3144 bytes_needed = MIN2(bytes_needed, info->component_size);
3145
3146 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3147
3148 /* reduce constant offset */
3149 Operand offset = info->offset;
3150 unsigned reduced_const_offset = const_offset;
3151 bool remove_const_offset_completely = need_to_align_offset;
3152 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3153 unsigned to_add = const_offset;
3154 if (remove_const_offset_completely) {
3155 reduced_const_offset = 0;
3156 } else {
3157 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3158 reduced_const_offset %= max_const_offset_plus_one;
3159 }
3160 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3161 if (offset.isConstant()) {
3162 offset = Operand(offset.constantValue() + to_add);
3163 } else if (offset_tmp.regClass() == s1) {
3164 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3165 offset_tmp, Operand(to_add));
3166 } else if (offset_tmp.regClass() == v1) {
3167 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3168 } else {
3169 Temp lo = bld.tmp(offset_tmp.type(), 1);
3170 Temp hi = bld.tmp(offset_tmp.type(), 1);
3171 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3172
3173 if (offset_tmp.regClass() == s2) {
3174 Temp carry = bld.tmp(s1);
3175 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3176 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3177 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3178 } else {
3179 Temp new_lo = bld.tmp(v1);
3180 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3181 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3182 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3183 }
3184 }
3185 }
3186
3187 /* align offset down if needed */
3188 Operand aligned_offset = offset;
3189 if (need_to_align_offset) {
3190 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3191 if (offset.isConstant()) {
3192 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3193 } else if (offset_tmp.regClass() == s1) {
3194 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3195 } else if (offset_tmp.regClass() == s2) {
3196 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3197 } else if (offset_tmp.regClass() == v1) {
3198 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3199 } else if (offset_tmp.regClass() == v2) {
3200 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3201 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3202 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3203 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3204 }
3205 }
3206 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3207 bld.copy(bld.def(s1), aligned_offset);
3208
3209 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3210 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3211 reduced_const_offset, byte_align ? Temp() : info->dst);
3212
3213 /* shift result right if needed */
3214 if (byte_align) {
3215 Operand align((uint32_t)byte_align);
3216 if (byte_align == -1) {
3217 if (offset.isConstant())
3218 align = Operand(offset.constantValue() % 4u);
3219 else if (offset.size() == 2)
3220 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3221 else
3222 align = offset;
3223 }
3224
3225 if (align.isTemp() || align.constantValue()) {
3226 assert(val.bytes() >= load_size && "unimplemented");
3227 Temp new_val = bld.tmp(RegClass::get(val.type(), load_size));
3228 if (val.type() == RegType::sgpr)
3229 byte_align_scalar(ctx, val, align, new_val);
3230 else
3231 byte_align_vector(ctx, val, align, new_val);
3232 val = new_val;
3233 }
3234 }
3235
3236 /* add result to list and advance */
3237 if (info->component_stride) {
3238 assert(val.bytes() == info->component_size && "unimplemented");
3239 const_offset += info->component_stride;
3240 align_offset = (align_offset + info->component_stride) % align_mul;
3241 } else {
3242 const_offset += val.bytes();
3243 align_offset = (align_offset + val.bytes()) % align_mul;
3244 }
3245 bytes_read += val.bytes();
3246 vals[num_vals++] = val;
3247 }
3248
3249 /* the callback wrote directly to dst */
3250 if (vals[0] == info->dst) {
3251 assert(num_vals == 1);
3252 emit_split_vector(ctx, info->dst, info->num_components);
3253 return;
3254 }
3255
3256 /* create array of components */
3257 unsigned components_split = 0;
3258 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3259 bool has_vgprs = false;
3260 for (unsigned i = 0; i < num_vals;) {
3261 Temp tmp[num_vals];
3262 unsigned num_tmps = 0;
3263 unsigned tmp_size = 0;
3264 RegType reg_type = RegType::sgpr;
3265 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3266 if (vals[i].type() == RegType::vgpr)
3267 reg_type = RegType::vgpr;
3268 tmp_size += vals[i].bytes();
3269 tmp[num_tmps++] = vals[i++];
3270 }
3271 if (num_tmps > 1) {
3272 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3273 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3274 for (unsigned i = 0; i < num_vals; i++)
3275 vec->operands[i] = Operand(tmp[i]);
3276 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3277 vec->definitions[0] = Definition(tmp[0]);
3278 bld.insert(std::move(vec));
3279 }
3280
3281 if (tmp[0].bytes() % component_size) {
3282 /* trim tmp[0] */
3283 assert(i == num_vals);
3284 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3285 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3286 }
3287
3288 RegClass elem_rc = RegClass::get(reg_type, component_size);
3289
3290 unsigned start = components_split;
3291
3292 if (tmp_size == elem_rc.bytes()) {
3293 allocated_vec[components_split++] = tmp[0];
3294 } else {
3295 assert(tmp_size % elem_rc.bytes() == 0);
3296 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3297 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3298 for (unsigned i = 0; i < split->definitions.size(); i++) {
3299 Temp component = bld.tmp(elem_rc);
3300 allocated_vec[components_split++] = component;
3301 split->definitions[i] = Definition(component);
3302 }
3303 split->operands[0] = Operand(tmp[0]);
3304 bld.insert(std::move(split));
3305 }
3306
3307 /* try to p_as_uniform early so we can create more optimizable code and
3308 * also update allocated_vec */
3309 for (unsigned j = start; j < components_split; j++) {
3310 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3311 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3312 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3313 }
3314 }
3315
3316 /* concatenate components and p_as_uniform() result if needed */
3317 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3318 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3319
3320 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3321
3322 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3323 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3324 for (unsigned i = 0; i < info->num_components; i++)
3325 vec->operands[i] = Operand(allocated_vec[i]);
3326 if (padding_bytes)
3327 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3328 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3329 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3330 vec->definitions[0] = Definition(tmp);
3331 bld.insert(std::move(vec));
3332 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3333 } else {
3334 vec->definitions[0] = Definition(info->dst);
3335 bld.insert(std::move(vec));
3336 }
3337 }
3338
3339 Operand load_lds_size_m0(Builder& bld)
3340 {
3341 /* TODO: m0 does not need to be initialized on GFX9+ */
3342 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3343 }
3344
3345 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3346 Temp offset, unsigned bytes_needed,
3347 unsigned align, unsigned const_offset,
3348 Temp dst_hint)
3349 {
3350 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3351
3352 Operand m = load_lds_size_m0(bld);
3353
3354 bool large_ds_read = bld.program->chip_class >= GFX7;
3355 bool usable_read2 = bld.program->chip_class >= GFX7;
3356
3357 bool read2 = false;
3358 unsigned size = 0;
3359 aco_opcode op;
3360 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3361 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3362 size = 16;
3363 op = aco_opcode::ds_read_b128;
3364 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3365 size = 16;
3366 read2 = true;
3367 op = aco_opcode::ds_read2_b64;
3368 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3369 size = 12;
3370 op = aco_opcode::ds_read_b96;
3371 } else if (bytes_needed >= 8 && align % 8 == 0) {
3372 size = 8;
3373 op = aco_opcode::ds_read_b64;
3374 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3375 size = 8;
3376 read2 = true;
3377 op = aco_opcode::ds_read2_b32;
3378 } else if (bytes_needed >= 4 && align % 4 == 0) {
3379 size = 4;
3380 op = aco_opcode::ds_read_b32;
3381 } else if (bytes_needed >= 2 && align % 2 == 0) {
3382 size = 2;
3383 op = aco_opcode::ds_read_u16;
3384 } else {
3385 size = 1;
3386 op = aco_opcode::ds_read_u8;
3387 }
3388
3389 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3390 if (const_offset >= max_offset_plus_one) {
3391 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3392 const_offset %= max_offset_plus_one;
3393 }
3394
3395 if (read2)
3396 const_offset /= (size / 2u);
3397
3398 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3399 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3400 if (read2)
3401 bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3402 else
3403 bld.ds(op, Definition(val), offset, m, const_offset);
3404
3405 if (size < 4)
3406 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3407
3408 return val;
3409 }
3410
3411 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3412
3413 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3414 Temp offset, unsigned bytes_needed,
3415 unsigned align, unsigned const_offset,
3416 Temp dst_hint)
3417 {
3418 unsigned size = 0;
3419 aco_opcode op;
3420 if (bytes_needed <= 4) {
3421 size = 1;
3422 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3423 } else if (bytes_needed <= 8) {
3424 size = 2;
3425 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3426 } else if (bytes_needed <= 16) {
3427 size = 4;
3428 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3429 } else if (bytes_needed <= 32) {
3430 size = 8;
3431 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3432 } else {
3433 size = 16;
3434 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3435 }
3436 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3437 if (info->resource.id()) {
3438 load->operands[0] = Operand(info->resource);
3439 load->operands[1] = Operand(offset);
3440 } else {
3441 load->operands[0] = Operand(offset);
3442 load->operands[1] = Operand(0u);
3443 }
3444 RegClass rc(RegType::sgpr, size);
3445 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3446 load->definitions[0] = Definition(val);
3447 load->glc = info->glc;
3448 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3449 load->barrier = info->barrier;
3450 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3451 bld.insert(std::move(load));
3452 return val;
3453 }
3454
3455 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3456
3457 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3458 Temp offset, unsigned bytes_needed,
3459 unsigned align_, unsigned const_offset,
3460 Temp dst_hint)
3461 {
3462 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3463 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3464
3465 if (info->soffset.id()) {
3466 if (soffset.isTemp())
3467 vaddr = bld.copy(bld.def(v1), soffset);
3468 soffset = Operand(info->soffset);
3469 }
3470
3471 unsigned bytes_size = 0;
3472 aco_opcode op;
3473 if (bytes_needed == 1) {
3474 bytes_size = 1;
3475 op = aco_opcode::buffer_load_ubyte;
3476 } else if (bytes_needed == 2) {
3477 bytes_size = 2;
3478 op = aco_opcode::buffer_load_ushort;
3479 } else if (bytes_needed <= 4) {
3480 bytes_size = 4;
3481 op = aco_opcode::buffer_load_dword;
3482 } else if (bytes_needed <= 8) {
3483 bytes_size = 8;
3484 op = aco_opcode::buffer_load_dwordx2;
3485 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3486 bytes_size = 12;
3487 op = aco_opcode::buffer_load_dwordx3;
3488 } else {
3489 bytes_size = 16;
3490 op = aco_opcode::buffer_load_dwordx4;
3491 }
3492 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3493 mubuf->operands[0] = Operand(info->resource);
3494 mubuf->operands[1] = vaddr;
3495 mubuf->operands[2] = soffset;
3496 mubuf->offen = (offset.type() == RegType::vgpr);
3497 mubuf->glc = info->glc;
3498 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3499 mubuf->barrier = info->barrier;
3500 mubuf->can_reorder = info->can_reorder;
3501 mubuf->offset = const_offset;
3502 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3503 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3504 mubuf->definitions[0] = Definition(val);
3505 bld.insert(std::move(mubuf));
3506
3507 if (bytes_size < 4)
3508 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, bytes_size)), val, Operand(0u));
3509
3510 return val;
3511 }
3512
3513 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3514
3515 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3516 {
3517 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3518 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3519
3520 if (addr.type() == RegType::vgpr)
3521 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3522 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3523 }
3524
3525 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3526 Temp offset, unsigned bytes_needed,
3527 unsigned align_, unsigned const_offset,
3528 Temp dst_hint)
3529 {
3530 unsigned bytes_size = 0;
3531 bool mubuf = bld.program->chip_class == GFX6;
3532 bool global = bld.program->chip_class >= GFX9;
3533 aco_opcode op;
3534 if (bytes_needed == 1) {
3535 bytes_size = 1;
3536 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3537 } else if (bytes_needed == 2) {
3538 bytes_size = 2;
3539 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3540 } else if (bytes_needed <= 4) {
3541 bytes_size = 4;
3542 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3543 } else if (bytes_needed <= 8) {
3544 bytes_size = 8;
3545 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3546 } else if (bytes_needed <= 12 && !mubuf) {
3547 bytes_size = 12;
3548 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3549 } else {
3550 bytes_size = 16;
3551 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3552 }
3553 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3554 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3555 if (mubuf) {
3556 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3557 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3558 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3559 mubuf->operands[2] = Operand(0u);
3560 mubuf->glc = info->glc;
3561 mubuf->dlc = false;
3562 mubuf->offset = 0;
3563 mubuf->addr64 = offset.type() == RegType::vgpr;
3564 mubuf->disable_wqm = false;
3565 mubuf->barrier = info->barrier;
3566 mubuf->definitions[0] = Definition(val);
3567 bld.insert(std::move(mubuf));
3568 } else {
3569 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3570
3571 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3572 flat->operands[0] = Operand(offset);
3573 flat->operands[1] = Operand(s1);
3574 flat->glc = info->glc;
3575 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3576 flat->barrier = info->barrier;
3577 flat->offset = 0u;
3578 flat->definitions[0] = Definition(val);
3579 bld.insert(std::move(flat));
3580 }
3581
3582 if (bytes_size < 4)
3583 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, bytes_size)), val, Operand(0u));
3584
3585 return val;
3586 }
3587
3588 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3589
3590 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3591 Temp address, unsigned base_offset, unsigned align)
3592 {
3593 assert(util_is_power_of_two_nonzero(align));
3594
3595 Builder bld(ctx->program, ctx->block);
3596
3597 unsigned num_components = dst.bytes() / elem_size_bytes;
3598 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3599 info.align_mul = align;
3600 info.align_offset = 0;
3601 info.barrier = barrier_shared;
3602 info.can_reorder = false;
3603 info.const_offset = base_offset;
3604 emit_lds_load(ctx, bld, &info);
3605
3606 return dst;
3607 }
3608
3609 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3610 {
3611 if (!count)
3612 return;
3613
3614 Builder bld(ctx->program, ctx->block);
3615
3616 ASSERTED bool is_subdword = false;
3617 for (unsigned i = 0; i < count; i++)
3618 is_subdword |= offsets[i] % 4;
3619 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3620 assert(!is_subdword || dst_type == RegType::vgpr);
3621
3622 /* count == 1 fast path */
3623 if (count == 1) {
3624 if (dst_type == RegType::sgpr)
3625 dst[0] = bld.as_uniform(src);
3626 else
3627 dst[0] = as_vgpr(ctx, src);
3628 return;
3629 }
3630
3631 for (unsigned i = 0; i < count - 1; i++)
3632 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3633 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3634
3635 if (is_subdword && src.type() == RegType::sgpr) {
3636 src = as_vgpr(ctx, src);
3637 } else {
3638 /* use allocated_vec if possible */
3639 auto it = ctx->allocated_vec.find(src.id());
3640 if (it != ctx->allocated_vec.end()) {
3641 unsigned total_size = 0;
3642 for (unsigned i = 0; it->second[i].bytes() && (i < NIR_MAX_VEC_COMPONENTS); i++)
3643 total_size += it->second[i].bytes();
3644 if (total_size != src.bytes())
3645 goto split;
3646
3647 unsigned elem_size = it->second[0].bytes();
3648
3649 for (unsigned i = 0; i < count; i++) {
3650 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3651 goto split;
3652 }
3653
3654 for (unsigned i = 0; i < count; i++) {
3655 unsigned start_idx = offsets[i] / elem_size;
3656 unsigned op_count = dst[i].bytes() / elem_size;
3657 if (op_count == 1) {
3658 if (dst_type == RegType::sgpr)
3659 dst[i] = bld.as_uniform(it->second[start_idx]);
3660 else
3661 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3662 continue;
3663 }
3664
3665 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3666 for (unsigned j = 0; j < op_count; j++) {
3667 Temp tmp = it->second[start_idx + j];
3668 if (dst_type == RegType::sgpr)
3669 tmp = bld.as_uniform(tmp);
3670 vec->operands[j] = Operand(tmp);
3671 }
3672 vec->definitions[0] = Definition(dst[i]);
3673 bld.insert(std::move(vec));
3674 }
3675 return;
3676 }
3677 }
3678
3679 if (dst_type == RegType::sgpr)
3680 src = bld.as_uniform(src);
3681
3682 split:
3683 /* just split it */
3684 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3685 split->operands[0] = Operand(src);
3686 for (unsigned i = 0; i < count; i++)
3687 split->definitions[i] = Definition(dst[i]);
3688 bld.insert(std::move(split));
3689 }
3690
3691 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3692 int *start, int *count)
3693 {
3694 unsigned start_elem = ffs(todo_mask) - 1;
3695 bool skip = !(mask & (1 << start_elem));
3696 if (skip)
3697 mask = ~mask & todo_mask;
3698
3699 mask &= todo_mask;
3700
3701 u_bit_scan_consecutive_range(&mask, start, count);
3702
3703 return !skip;
3704 }
3705
3706 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3707 {
3708 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3709 }
3710
3711 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3712 Temp address, unsigned base_offset, unsigned align)
3713 {
3714 assert(util_is_power_of_two_nonzero(align));
3715 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3716
3717 Builder bld(ctx->program, ctx->block);
3718 bool large_ds_write = ctx->options->chip_class >= GFX7;
3719 bool usable_write2 = ctx->options->chip_class >= GFX7;
3720
3721 unsigned write_count = 0;
3722 Temp write_datas[32];
3723 unsigned offsets[32];
3724 aco_opcode opcodes[32];
3725
3726 wrmask = widen_mask(wrmask, elem_size_bytes);
3727
3728 uint32_t todo = u_bit_consecutive(0, data.bytes());
3729 while (todo) {
3730 int offset, bytes;
3731 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3732 offsets[write_count] = offset;
3733 opcodes[write_count] = aco_opcode::num_opcodes;
3734 write_count++;
3735 advance_write_mask(&todo, offset, bytes);
3736 continue;
3737 }
3738
3739 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3740 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3741 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3742 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3743
3744 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3745 aco_opcode op = aco_opcode::num_opcodes;
3746 if (bytes >= 16 && aligned16 && large_ds_write) {
3747 op = aco_opcode::ds_write_b128;
3748 bytes = 16;
3749 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3750 op = aco_opcode::ds_write_b96;
3751 bytes = 12;
3752 } else if (bytes >= 8 && aligned8) {
3753 op = aco_opcode::ds_write_b64;
3754 bytes = 8;
3755 } else if (bytes >= 4 && aligned4) {
3756 op = aco_opcode::ds_write_b32;
3757 bytes = 4;
3758 } else if (bytes >= 2 && aligned2) {
3759 op = aco_opcode::ds_write_b16;
3760 bytes = 2;
3761 } else if (bytes >= 1) {
3762 op = aco_opcode::ds_write_b8;
3763 bytes = 1;
3764 } else {
3765 assert(false);
3766 }
3767
3768 offsets[write_count] = offset;
3769 opcodes[write_count] = op;
3770 write_count++;
3771 advance_write_mask(&todo, offset, bytes);
3772 }
3773
3774 Operand m = load_lds_size_m0(bld);
3775
3776 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3777
3778 for (unsigned i = 0; i < write_count; i++) {
3779 aco_opcode op = opcodes[i];
3780 if (op == aco_opcode::num_opcodes)
3781 continue;
3782
3783 Temp data = write_datas[i];
3784
3785 unsigned second = write_count;
3786 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3787 for (second = i + 1; second < write_count; second++) {
3788 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3789 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3790 opcodes[second] = aco_opcode::num_opcodes;
3791 break;
3792 }
3793 }
3794 }
3795
3796 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3797 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3798
3799 unsigned inline_offset = base_offset + offsets[i];
3800 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3801 Temp address_offset = address;
3802 if (inline_offset > max_offset) {
3803 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3804 inline_offset = offsets[i];
3805 }
3806 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3807
3808 if (write2) {
3809 Temp second_data = write_datas[second];
3810 inline_offset /= data.bytes();
3811 bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3812 } else {
3813 bld.ds(op, address_offset, data, m, inline_offset);
3814 }
3815 }
3816 }
3817
3818 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3819 {
3820 unsigned align = 16;
3821 if (const_offset)
3822 align = std::min(align, 1u << (ffs(const_offset) - 1));
3823
3824 return align;
3825 }
3826
3827
3828 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3829 Temp data, unsigned writemask, int swizzle_element_size,
3830 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3831 {
3832 unsigned write_count_with_skips = 0;
3833 bool skips[16];
3834
3835 /* determine how to split the data */
3836 unsigned todo = u_bit_consecutive(0, data.bytes());
3837 while (todo) {
3838 int offset, bytes;
3839 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3840 offsets[write_count_with_skips] = offset;
3841 if (skips[write_count_with_skips]) {
3842 advance_write_mask(&todo, offset, bytes);
3843 write_count_with_skips++;
3844 continue;
3845 }
3846
3847 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3848 * larger than swizzle_element_size */
3849 bytes = MIN2(bytes, swizzle_element_size);
3850 if (bytes % 4)
3851 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3852
3853 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3854 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3855 bytes = 8;
3856
3857 /* dword or larger stores have to be dword-aligned */
3858 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3859 unsigned align_offset = instr ? nir_intrinsic_align_mul(instr) : 0;
3860 bool dword_aligned = (align_offset + offset) % 4 == 0 && align_mul % 4 == 0;
3861 if (bytes >= 4 && !dword_aligned)
3862 bytes = MIN2(bytes, 2);
3863
3864 advance_write_mask(&todo, offset, bytes);
3865 write_count_with_skips++;
3866 }
3867
3868 /* actually split data */
3869 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3870
3871 /* remove skips */
3872 for (unsigned i = 0; i < write_count_with_skips; i++) {
3873 if (skips[i])
3874 continue;
3875 write_datas[*write_count] = write_datas[i];
3876 offsets[*write_count] = offsets[i];
3877 (*write_count)++;
3878 }
3879 }
3880
3881 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3882 unsigned split_cnt = 0u, Temp dst = Temp())
3883 {
3884 Builder bld(ctx->program, ctx->block);
3885 unsigned dword_size = elem_size_bytes / 4;
3886
3887 if (!dst.id())
3888 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3889
3890 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3891 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3892 instr->definitions[0] = Definition(dst);
3893
3894 for (unsigned i = 0; i < cnt; ++i) {
3895 if (arr[i].id()) {
3896 assert(arr[i].size() == dword_size);
3897 allocated_vec[i] = arr[i];
3898 instr->operands[i] = Operand(arr[i]);
3899 } else {
3900 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3901 allocated_vec[i] = zero;
3902 instr->operands[i] = Operand(zero);
3903 }
3904 }
3905
3906 bld.insert(std::move(instr));
3907
3908 if (split_cnt)
3909 emit_split_vector(ctx, dst, split_cnt);
3910 else
3911 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3912
3913 return dst;
3914 }
3915
3916 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3917 {
3918 if (const_offset >= 4096) {
3919 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3920 const_offset %= 4096u;
3921
3922 if (!voffset.id())
3923 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3924 else if (unlikely(voffset.regClass() == s1))
3925 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3926 else if (likely(voffset.regClass() == v1))
3927 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3928 else
3929 unreachable("Unsupported register class of voffset");
3930 }
3931
3932 return const_offset;
3933 }
3934
3935 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3936 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3937 {
3938 assert(vdata.id());
3939 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3940 assert(vdata.size() >= 1 && vdata.size() <= 4);
3941
3942 Builder bld(ctx->program, ctx->block);
3943 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3944 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3945
3946 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3947 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3948 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3949 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3950 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3951
3952 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3953 }
3954
3955 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3956 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3957 bool allow_combining = true, bool reorder = true, bool slc = false)
3958 {
3959 Builder bld(ctx->program, ctx->block);
3960 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3961 assert(write_mask);
3962 write_mask = widen_mask(write_mask, elem_size_bytes);
3963
3964 unsigned write_count = 0;
3965 Temp write_datas[32];
3966 unsigned offsets[32];
3967 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
3968 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
3969
3970 for (unsigned i = 0; i < write_count; i++) {
3971 unsigned const_offset = offsets[i] + base_const_offset;
3972 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, reorder, slc);
3973 }
3974 }
3975
3976 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3977 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3978 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3979 {
3980 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3981 assert((num_components * elem_size_bytes / 4) == dst.size());
3982 assert(!!stride != allow_combining);
3983
3984 Builder bld(ctx->program, ctx->block);
3985
3986 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
3987 info.component_stride = allow_combining ? 0 : stride;
3988 info.glc = true;
3989 info.swizzle_component_size = allow_combining ? 0 : 4;
3990 info.align_mul = MIN2(elem_size_bytes, 4);
3991 info.align_offset = 0;
3992 info.soffset = soffset;
3993 info.const_offset = base_const_offset;
3994 emit_mubuf_load(ctx, bld, &info);
3995 }
3996
3997 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3998 {
3999 Builder bld(ctx->program, ctx->block);
4000 Temp offset = base_offset.first;
4001 unsigned const_offset = base_offset.second;
4002
4003 if (!nir_src_is_const(*off_src)) {
4004 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
4005 Temp with_stride;
4006
4007 /* Calculate indirect offset with stride */
4008 if (likely(indirect_offset_arg.regClass() == v1))
4009 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
4010 else if (indirect_offset_arg.regClass() == s1)
4011 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
4012 else
4013 unreachable("Unsupported register class of indirect offset");
4014
4015 /* Add to the supplied base offset */
4016 if (offset.id() == 0)
4017 offset = with_stride;
4018 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
4019 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
4020 else if (offset.size() == 1 && with_stride.size() == 1)
4021 offset = bld.vadd32(bld.def(v1), with_stride, offset);
4022 else
4023 unreachable("Unsupported register class of indirect offset");
4024 } else {
4025 unsigned const_offset_arg = nir_src_as_uint(*off_src);
4026 const_offset += const_offset_arg * stride;
4027 }
4028
4029 return std::make_pair(offset, const_offset);
4030 }
4031
4032 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
4033 {
4034 Builder bld(ctx->program, ctx->block);
4035 Temp offset;
4036
4037 if (off1.first.id() && off2.first.id()) {
4038 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
4039 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
4040 else if (off1.first.size() == 1 && off2.first.size() == 1)
4041 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
4042 else
4043 unreachable("Unsupported register class of indirect offset");
4044 } else {
4045 offset = off1.first.id() ? off1.first : off2.first;
4046 }
4047
4048 return std::make_pair(offset, off1.second + off2.second);
4049 }
4050
4051 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
4052 {
4053 Builder bld(ctx->program, ctx->block);
4054 unsigned const_offset = offs.second * multiplier;
4055
4056 if (!offs.first.id())
4057 return std::make_pair(offs.first, const_offset);
4058
4059 Temp offset = unlikely(offs.first.regClass() == s1)
4060 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
4061 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
4062
4063 return std::make_pair(offset, const_offset);
4064 }
4065
4066 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
4067 {
4068 Builder bld(ctx->program, ctx->block);
4069
4070 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
4071 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
4072 /* component is in bytes */
4073 const_offset += nir_intrinsic_component(instr) * component_stride;
4074
4075 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
4076 nir_src *off_src = nir_get_io_offset_src(instr);
4077 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
4078 }
4079
4080 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
4081 {
4082 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
4083 }
4084
4085 Temp get_tess_rel_patch_id(isel_context *ctx)
4086 {
4087 Builder bld(ctx->program, ctx->block);
4088
4089 switch (ctx->shader->info.stage) {
4090 case MESA_SHADER_TESS_CTRL:
4091 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
4092 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
4093 case MESA_SHADER_TESS_EVAL:
4094 return get_arg(ctx, ctx->args->tes_rel_patch_id);
4095 default:
4096 unreachable("Unsupported stage in get_tess_rel_patch_id");
4097 }
4098 }
4099
4100 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4101 {
4102 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4103 Builder bld(ctx->program, ctx->block);
4104
4105 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4106 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4107
4108 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4109
4110 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4111 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4112
4113 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4114 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4115 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4116
4117 return offset_mul(ctx, offs, 4u);
4118 }
4119
4120 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4121 {
4122 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4123 Builder bld(ctx->program, ctx->block);
4124
4125 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4126 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
4127 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
4128 uint32_t output_vertex_size = num_tcs_outputs * 16;
4129 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4130 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
4131
4132 std::pair<Temp, unsigned> offs = instr
4133 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4134 : std::make_pair(Temp(), 0u);
4135
4136 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4137 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4138
4139 if (per_vertex) {
4140 assert(instr);
4141
4142 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4143 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4144
4145 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4146 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4147 } else {
4148 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4149 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4150 }
4151
4152 return offs;
4153 }
4154
4155 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4156 {
4157 Builder bld(ctx->program, ctx->block);
4158
4159 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4160 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4161
4162 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4163
4164 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4165 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4166 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4167
4168 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4169 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4170
4171 return offs;
4172 }
4173
4174 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4175 {
4176 Builder bld(ctx->program, ctx->block);
4177
4178 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
4179 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
4180 : ctx->args->options->key.tes.tcs_num_outputs;
4181
4182 unsigned output_vertex_size = num_tcs_outputs * 16;
4183 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4184 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4185 unsigned attr_stride = ctx->tcs_num_patches;
4186
4187 std::pair<Temp, unsigned> offs = instr
4188 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4189 : std::make_pair(Temp(), 0u);
4190
4191 if (const_base_offset)
4192 offs.second += const_base_offset * attr_stride;
4193
4194 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4195 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4196 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4197
4198 return offs;
4199 }
4200
4201 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4202 {
4203 if (mask == 0)
4204 return false;
4205
4206 unsigned off = nir_intrinsic_base(instr) * 4u;
4207 nir_src *off_src = nir_get_io_offset_src(instr);
4208
4209 if (!nir_src_is_const(*off_src)) {
4210 *indirect = true;
4211 return false;
4212 }
4213
4214 *indirect = false;
4215 off += nir_src_as_uint(*off_src) * 16u;
4216
4217 while (mask) {
4218 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
4219 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
4220 return true;
4221 }
4222
4223 return false;
4224 }
4225
4226 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4227 {
4228 unsigned write_mask = nir_intrinsic_write_mask(instr);
4229 unsigned component = nir_intrinsic_component(instr);
4230 unsigned idx = nir_intrinsic_base(instr) + component;
4231
4232 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4233 if (off_instr->type != nir_instr_type_load_const)
4234 return false;
4235
4236 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4237 idx += nir_src_as_uint(instr->src[1]) * 4u;
4238
4239 if (instr->src[0].ssa->bit_size == 64)
4240 write_mask = widen_mask(write_mask, 2);
4241
4242 for (unsigned i = 0; i < 8; ++i) {
4243 if (write_mask & (1 << i)) {
4244 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4245 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
4246 }
4247 idx++;
4248 }
4249
4250 return true;
4251 }
4252
4253 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4254 {
4255 /* Only TCS per-vertex inputs are supported by this function.
4256 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4257 */
4258 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4259 return false;
4260
4261 nir_src *off_src = nir_get_io_offset_src(instr);
4262 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4263 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4264 bool can_use_temps = nir_src_is_const(*off_src) &&
4265 vertex_index_instr->type == nir_instr_type_intrinsic &&
4266 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4267
4268 if (!can_use_temps)
4269 return false;
4270
4271 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4272 Temp *src = &ctx->inputs.temps[idx];
4273 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4274
4275 return true;
4276 }
4277
4278 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4279 {
4280 Builder bld(ctx->program, ctx->block);
4281
4282 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4283 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4284 bool indirect_write;
4285 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4286 if (temp_only_input && !indirect_write)
4287 return;
4288 }
4289
4290 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4291 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4292 unsigned write_mask = nir_intrinsic_write_mask(instr);
4293 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4294
4295 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4296 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4297 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4298 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4299 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
4300 } else {
4301 Temp lds_base;
4302
4303 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4304 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4305 unsigned itemsize = ctx->stage == vertex_geometry_gs
4306 ? ctx->program->info->vs.es_info.esgs_itemsize
4307 : ctx->program->info->tes.es_info.esgs_itemsize;
4308 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4309 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4310 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4311 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4312 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4313 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4314 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4315 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4316 */
4317 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
4318 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4319 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
4320 } else {
4321 unreachable("Invalid LS or ES stage");
4322 }
4323
4324 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4325 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4326 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4327 }
4328 }
4329
4330 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4331 {
4332 if (per_vertex)
4333 return false;
4334
4335 unsigned off = nir_intrinsic_base(instr) * 4u;
4336 return off == ctx->tcs_tess_lvl_out_loc ||
4337 off == ctx->tcs_tess_lvl_in_loc;
4338
4339 }
4340
4341 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4342 {
4343 uint64_t mask = per_vertex
4344 ? ctx->program->info->tcs.tes_inputs_read
4345 : ctx->program->info->tcs.tes_patch_inputs_read;
4346
4347 bool indirect_write = false;
4348 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4349 return indirect_write || output_read_by_tes;
4350 }
4351
4352 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4353 {
4354 uint64_t mask = per_vertex
4355 ? ctx->shader->info.outputs_read
4356 : ctx->shader->info.patch_outputs_read;
4357
4358 bool indirect_write = false;
4359 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4360 return indirect_write || output_read;
4361 }
4362
4363 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4364 {
4365 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4366 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4367
4368 Builder bld(ctx->program, ctx->block);
4369
4370 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4371 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4372 unsigned write_mask = nir_intrinsic_write_mask(instr);
4373
4374 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4375 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4376 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4377
4378 if (write_to_vmem) {
4379 std::pair<Temp, unsigned> vmem_offs = per_vertex
4380 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4381 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4382
4383 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4384 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4385 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
4386 }
4387
4388 if (write_to_lds) {
4389 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4390 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4391 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4392 }
4393 }
4394
4395 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4396 {
4397 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4398 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4399
4400 Builder bld(ctx->program, ctx->block);
4401
4402 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4403 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4404 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4405 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4406
4407 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4408 }
4409
4410 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4411 {
4412 if (ctx->stage == vertex_vs ||
4413 ctx->stage == tess_eval_vs ||
4414 ctx->stage == fragment_fs ||
4415 ctx->stage == ngg_vertex_gs ||
4416 ctx->stage == ngg_tess_eval_gs ||
4417 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4418 bool stored_to_temps = store_output_to_temps(ctx, instr);
4419 if (!stored_to_temps) {
4420 fprintf(stderr, "Unimplemented output offset instruction:\n");
4421 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
4422 fprintf(stderr, "\n");
4423 abort();
4424 }
4425 } else if (ctx->stage == vertex_es ||
4426 ctx->stage == vertex_ls ||
4427 ctx->stage == tess_eval_es ||
4428 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4429 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4430 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4431 visit_store_ls_or_es_output(ctx, instr);
4432 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4433 visit_store_tcs_output(ctx, instr, false);
4434 } else {
4435 unreachable("Shader stage not implemented");
4436 }
4437 }
4438
4439 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4440 {
4441 visit_load_tcs_output(ctx, instr, false);
4442 }
4443
4444 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4445 {
4446 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4447 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4448
4449 Builder bld(ctx->program, ctx->block);
4450 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
4451 if (ctx->program->has_16bank_lds)
4452 interp_p1.instr->operands[0].setLateKill(true);
4453 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
4454 }
4455
4456 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4457 {
4458 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4459 for (unsigned i = 0; i < num_components; i++)
4460 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4461 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4462 assert(num_components == 4);
4463 Builder bld(ctx->program, ctx->block);
4464 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4465 }
4466
4467 for (Operand& op : vec->operands)
4468 op = op.isUndefined() ? Operand(0u) : op;
4469
4470 vec->definitions[0] = Definition(dst);
4471 ctx->block->instructions.emplace_back(std::move(vec));
4472 emit_split_vector(ctx, dst, num_components);
4473 return;
4474 }
4475
4476 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4477 {
4478 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4479 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4480 unsigned idx = nir_intrinsic_base(instr);
4481 unsigned component = nir_intrinsic_component(instr);
4482 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4483
4484 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4485 if (offset) {
4486 assert(offset->u32 == 0);
4487 } else {
4488 /* the lower 15bit of the prim_mask contain the offset into LDS
4489 * while the upper bits contain the number of prims */
4490 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4491 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4492 Builder bld(ctx->program, ctx->block);
4493 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4494 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4495 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4496 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4497 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4498 }
4499
4500 if (instr->dest.ssa.num_components == 1) {
4501 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4502 } else {
4503 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4504 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4505 {
4506 Temp tmp = {ctx->program->allocateId(), v1};
4507 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4508 vec->operands[i] = Operand(tmp);
4509 }
4510 vec->definitions[0] = Definition(dst);
4511 ctx->block->instructions.emplace_back(std::move(vec));
4512 }
4513 }
4514
4515 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4516 unsigned offset, unsigned stride, unsigned channels)
4517 {
4518 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4519 if (vtx_info->chan_byte_size != 4 && channels == 3)
4520 return false;
4521 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4522 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4523 }
4524
4525 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4526 unsigned offset, unsigned stride, unsigned *channels)
4527 {
4528 if (!vtx_info->chan_byte_size) {
4529 *channels = vtx_info->num_channels;
4530 return vtx_info->chan_format;
4531 }
4532
4533 unsigned num_channels = *channels;
4534 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4535 unsigned new_channels = num_channels + 1;
4536 /* first, assume more loads is worse and try using a larger data format */
4537 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4538 new_channels++;
4539 /* don't make the attribute potentially out-of-bounds */
4540 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4541 new_channels = 5;
4542 }
4543
4544 if (new_channels == 5) {
4545 /* then try decreasing load size (at the cost of more loads) */
4546 new_channels = *channels;
4547 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4548 new_channels--;
4549 }
4550
4551 if (new_channels < *channels)
4552 *channels = new_channels;
4553 num_channels = new_channels;
4554 }
4555
4556 switch (vtx_info->chan_format) {
4557 case V_008F0C_BUF_DATA_FORMAT_8:
4558 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4559 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4560 case V_008F0C_BUF_DATA_FORMAT_16:
4561 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4562 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4563 case V_008F0C_BUF_DATA_FORMAT_32:
4564 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4565 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4566 }
4567 unreachable("shouldn't reach here");
4568 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4569 }
4570
4571 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4572 * so we may need to fix it up. */
4573 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4574 {
4575 Builder bld(ctx->program, ctx->block);
4576
4577 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4578 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4579
4580 /* For the integer-like cases, do a natural sign extension.
4581 *
4582 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4583 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4584 * exponent.
4585 */
4586 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4587 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4588
4589 /* Convert back to the right type. */
4590 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4591 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4592 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4593 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4594 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4595 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4596 }
4597
4598 return alpha;
4599 }
4600
4601 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4602 {
4603 Builder bld(ctx->program, ctx->block);
4604 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4605 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4606
4607 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4608 if (off_instr->type != nir_instr_type_load_const) {
4609 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4610 nir_print_instr(off_instr, stderr);
4611 fprintf(stderr, "\n");
4612 }
4613 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4614
4615 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4616
4617 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4618 unsigned component = nir_intrinsic_component(instr);
4619 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4620 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4621 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4622 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4623
4624 unsigned dfmt = attrib_format & 0xf;
4625 unsigned nfmt = (attrib_format >> 4) & 0x7;
4626 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4627
4628 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4629 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4630 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4631 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4632 if (post_shuffle)
4633 num_channels = MAX2(num_channels, 3);
4634
4635 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4636 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4637
4638 Temp index;
4639 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4640 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4641 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4642 if (divisor) {
4643 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4644 if (divisor != 1) {
4645 Temp divided = bld.tmp(v1);
4646 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4647 index = bld.vadd32(bld.def(v1), start_instance, divided);
4648 } else {
4649 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4650 }
4651 } else {
4652 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4653 }
4654 } else {
4655 index = bld.vadd32(bld.def(v1),
4656 get_arg(ctx, ctx->args->ac.base_vertex),
4657 get_arg(ctx, ctx->args->ac.vertex_id));
4658 }
4659
4660 Temp channels[num_channels];
4661 unsigned channel_start = 0;
4662 bool direct_fetch = false;
4663
4664 /* skip unused channels at the start */
4665 if (vtx_info->chan_byte_size && !post_shuffle) {
4666 channel_start = ffs(mask) - 1;
4667 for (unsigned i = 0; i < channel_start; i++)
4668 channels[i] = Temp(0, s1);
4669 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4670 num_channels = 3 - (ffs(mask) - 1);
4671 }
4672
4673 /* load channels */
4674 while (channel_start < num_channels) {
4675 unsigned fetch_size = num_channels - channel_start;
4676 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4677 bool expanded = false;
4678
4679 /* use MUBUF when possible to avoid possible alignment issues */
4680 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4681 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4682 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4683 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4684 vtx_info->chan_byte_size == 4;
4685 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4686 if (!use_mubuf) {
4687 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4688 } else {
4689 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4690 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4691 fetch_size = 4;
4692 expanded = true;
4693 }
4694 }
4695
4696 Temp fetch_index = index;
4697 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4698 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4699 fetch_offset = fetch_offset % attrib_stride;
4700 }
4701
4702 Operand soffset(0u);
4703 if (fetch_offset >= 4096) {
4704 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4705 fetch_offset %= 4096;
4706 }
4707
4708 aco_opcode opcode;
4709 switch (fetch_size) {
4710 case 1:
4711 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4712 break;
4713 case 2:
4714 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4715 break;
4716 case 3:
4717 assert(ctx->options->chip_class >= GFX7 ||
4718 (!use_mubuf && ctx->options->chip_class == GFX6));
4719 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4720 break;
4721 case 4:
4722 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4723 break;
4724 default:
4725 unreachable("Unimplemented load_input vector size");
4726 }
4727
4728 Temp fetch_dst;
4729 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4730 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4731 num_channels <= 3)) {
4732 direct_fetch = true;
4733 fetch_dst = dst;
4734 } else {
4735 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4736 }
4737
4738 if (use_mubuf) {
4739 Instruction *mubuf = bld.mubuf(opcode,
4740 Definition(fetch_dst), list, fetch_index, soffset,
4741 fetch_offset, false, true).instr;
4742 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4743 } else {
4744 Instruction *mtbuf = bld.mtbuf(opcode,
4745 Definition(fetch_dst), list, fetch_index, soffset,
4746 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4747 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4748 }
4749
4750 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4751
4752 if (fetch_size == 1) {
4753 channels[channel_start] = fetch_dst;
4754 } else {
4755 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4756 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4757 }
4758
4759 channel_start += fetch_size;
4760 }
4761
4762 if (!direct_fetch) {
4763 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4764 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4765
4766 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4767 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4768 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4769
4770 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4771 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4772 unsigned num_temp = 0;
4773 for (unsigned i = 0; i < dst.size(); i++) {
4774 unsigned idx = i + component;
4775 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4776 Temp channel = channels[swizzle[idx]];
4777 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4778 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4779 vec->operands[i] = Operand(channel);
4780
4781 num_temp++;
4782 elems[i] = channel;
4783 } else if (is_float && idx == 3) {
4784 vec->operands[i] = Operand(0x3f800000u);
4785 } else if (!is_float && idx == 3) {
4786 vec->operands[i] = Operand(1u);
4787 } else {
4788 vec->operands[i] = Operand(0u);
4789 }
4790 }
4791 vec->definitions[0] = Definition(dst);
4792 ctx->block->instructions.emplace_back(std::move(vec));
4793 emit_split_vector(ctx, dst, dst.size());
4794
4795 if (num_temp == dst.size())
4796 ctx->allocated_vec.emplace(dst.id(), elems);
4797 }
4798 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4799 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4800 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4801 if (off_instr->type != nir_instr_type_load_const ||
4802 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4803 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4804 nir_print_instr(off_instr, stderr);
4805 fprintf(stderr, "\n");
4806 }
4807
4808 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4809 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4810 if (offset) {
4811 assert(offset->u32 == 0);
4812 } else {
4813 /* the lower 15bit of the prim_mask contain the offset into LDS
4814 * while the upper bits contain the number of prims */
4815 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4816 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4817 Builder bld(ctx->program, ctx->block);
4818 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4819 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4820 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4821 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4822 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4823 }
4824
4825 unsigned idx = nir_intrinsic_base(instr);
4826 unsigned component = nir_intrinsic_component(instr);
4827 unsigned vertex_id = 2; /* P0 */
4828
4829 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4830 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4831 switch (src0->u32) {
4832 case 0:
4833 vertex_id = 2; /* P0 */
4834 break;
4835 case 1:
4836 vertex_id = 0; /* P10 */
4837 break;
4838 case 2:
4839 vertex_id = 1; /* P20 */
4840 break;
4841 default:
4842 unreachable("invalid vertex index");
4843 }
4844 }
4845
4846 if (dst.size() == 1) {
4847 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4848 } else {
4849 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4850 for (unsigned i = 0; i < dst.size(); i++)
4851 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4852 vec->definitions[0] = Definition(dst);
4853 bld.insert(std::move(vec));
4854 }
4855
4856 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4857 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4858 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4859 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4860 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4861
4862 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4863 } else {
4864 unreachable("Shader stage not implemented");
4865 }
4866 }
4867
4868 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4869 {
4870 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4871
4872 Builder bld(ctx->program, ctx->block);
4873 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4874 Temp vertex_offset;
4875
4876 if (!nir_src_is_const(*vertex_src)) {
4877 /* better code could be created, but this case probably doesn't happen
4878 * much in practice */
4879 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4880 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4881 Temp elem;
4882
4883 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4884 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4885 if (i % 2u)
4886 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4887 } else {
4888 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4889 }
4890
4891 if (vertex_offset.id()) {
4892 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4893 Operand(i), indirect_vertex);
4894 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4895 } else {
4896 vertex_offset = elem;
4897 }
4898 }
4899
4900 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4901 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4902 } else {
4903 unsigned vertex = nir_src_as_uint(*vertex_src);
4904 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4905 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4906 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4907 Operand((vertex % 2u) * 16u), Operand(16u));
4908 else
4909 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4910 }
4911
4912 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4913 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4914 return offset_mul(ctx, offs, 4u);
4915 }
4916
4917 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4918 {
4919 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4920
4921 Builder bld(ctx->program, ctx->block);
4922 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4923 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4924
4925 if (ctx->stage == geometry_gs) {
4926 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4927 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4928 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4929 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4930 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4931 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4932 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4933 } else {
4934 unreachable("Unsupported GS stage.");
4935 }
4936 }
4937
4938 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4939 {
4940 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4941
4942 Builder bld(ctx->program, ctx->block);
4943 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4944
4945 if (load_input_from_temps(ctx, instr, dst))
4946 return;
4947
4948 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4949 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4950 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4951
4952 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4953 }
4954
4955 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4956 {
4957 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4958
4959 Builder bld(ctx->program, ctx->block);
4960
4961 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4962 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4963 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4964
4965 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4966 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4967
4968 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4969 }
4970
4971 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4972 {
4973 switch (ctx->shader->info.stage) {
4974 case MESA_SHADER_GEOMETRY:
4975 visit_load_gs_per_vertex_input(ctx, instr);
4976 break;
4977 case MESA_SHADER_TESS_CTRL:
4978 visit_load_tcs_per_vertex_input(ctx, instr);
4979 break;
4980 case MESA_SHADER_TESS_EVAL:
4981 visit_load_tes_per_vertex_input(ctx, instr);
4982 break;
4983 default:
4984 unreachable("Unimplemented shader stage");
4985 }
4986 }
4987
4988 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4989 {
4990 visit_load_tcs_output(ctx, instr, true);
4991 }
4992
4993 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4994 {
4995 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4996 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4997
4998 visit_store_tcs_output(ctx, instr, true);
4999 }
5000
5001 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
5002 {
5003 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5004
5005 Builder bld(ctx->program, ctx->block);
5006 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5007
5008 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
5009 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
5010 Operand tes_w(0u);
5011
5012 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
5013 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
5014 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
5015 tes_w = Operand(tmp);
5016 }
5017
5018 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
5019 emit_split_vector(ctx, tess_coord, 3);
5020 }
5021
5022 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
5023 {
5024 if (ctx->program->info->need_indirect_descriptor_sets) {
5025 Builder bld(ctx->program, ctx->block);
5026 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
5027 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
5028 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
5029 }
5030
5031 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
5032 }
5033
5034
5035 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
5036 {
5037 Builder bld(ctx->program, ctx->block);
5038 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
5039 if (!ctx->divergent_vals[instr->dest.ssa.index])
5040 index = bld.as_uniform(index);
5041 unsigned desc_set = nir_intrinsic_desc_set(instr);
5042 unsigned binding = nir_intrinsic_binding(instr);
5043
5044 Temp desc_ptr;
5045 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
5046 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
5047 unsigned offset = layout->binding[binding].offset;
5048 unsigned stride;
5049 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
5050 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
5051 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
5052 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
5053 offset = pipeline_layout->push_constant_size + 16 * idx;
5054 stride = 16;
5055 } else {
5056 desc_ptr = load_desc_ptr(ctx, desc_set);
5057 stride = layout->binding[binding].size;
5058 }
5059
5060 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
5061 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
5062 if (stride != 1) {
5063 if (nir_const_index) {
5064 const_index = const_index * stride;
5065 } else if (index.type() == RegType::vgpr) {
5066 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
5067 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
5068 } else {
5069 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5070 }
5071 }
5072 if (offset) {
5073 if (nir_const_index) {
5074 const_index = const_index + offset;
5075 } else if (index.type() == RegType::vgpr) {
5076 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5077 } else {
5078 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5079 }
5080 }
5081
5082 if (nir_const_index && const_index == 0) {
5083 index = desc_ptr;
5084 } else if (index.type() == RegType::vgpr) {
5085 index = bld.vadd32(bld.def(v1),
5086 nir_const_index ? Operand(const_index) : Operand(index),
5087 Operand(desc_ptr));
5088 } else {
5089 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5090 nir_const_index ? Operand(const_index) : Operand(index),
5091 Operand(desc_ptr));
5092 }
5093
5094 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5095 }
5096
5097 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5098 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5099 bool glc=false, bool readonly=true)
5100 {
5101 Builder bld(ctx->program, ctx->block);
5102
5103 bool use_smem = dst.type() != RegType::vgpr && ((ctx->options->chip_class >= GFX8 && component_size >= 4) || readonly);
5104 if (use_smem)
5105 offset = bld.as_uniform(offset);
5106
5107 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5108 info.glc = glc;
5109 info.barrier = readonly ? barrier_none : barrier_buffer;
5110 info.can_reorder = readonly;
5111 info.align_mul = align_mul;
5112 info.align_offset = align_offset;
5113 if (use_smem)
5114 emit_smem_load(ctx, bld, &info);
5115 else
5116 emit_mubuf_load(ctx, bld, &info);
5117 }
5118
5119 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5120 {
5121 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5122 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5123
5124 Builder bld(ctx->program, ctx->block);
5125
5126 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5127 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5128 unsigned binding = nir_intrinsic_binding(idx_instr);
5129 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5130
5131 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5132 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5133 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5134 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5135 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5136 if (ctx->options->chip_class >= GFX10) {
5137 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5138 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5139 S_008F0C_RESOURCE_LEVEL(1);
5140 } else {
5141 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5142 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5143 }
5144 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5145 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5146 Operand(0xFFFFFFFFu),
5147 Operand(desc_type));
5148 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5149 rsrc, upper_dwords);
5150 } else {
5151 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5152 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5153 }
5154 unsigned size = instr->dest.ssa.bit_size / 8;
5155 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5156 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5157 }
5158
5159 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5160 {
5161 Builder bld(ctx->program, ctx->block);
5162 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5163 unsigned offset = nir_intrinsic_base(instr);
5164 unsigned count = instr->dest.ssa.num_components;
5165 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5166
5167 if (index_cv && instr->dest.ssa.bit_size == 32) {
5168 unsigned start = (offset + index_cv->u32) / 4u;
5169 start -= ctx->args->ac.base_inline_push_consts;
5170 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5171 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5172 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5173 for (unsigned i = 0; i < count; ++i) {
5174 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5175 vec->operands[i] = Operand{elems[i]};
5176 }
5177 vec->definitions[0] = Definition(dst);
5178 ctx->block->instructions.emplace_back(std::move(vec));
5179 ctx->allocated_vec.emplace(dst.id(), elems);
5180 return;
5181 }
5182 }
5183
5184 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5185 if (offset != 0) // TODO check if index != 0 as well
5186 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5187 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5188 Temp vec = dst;
5189 bool trim = false;
5190 bool aligned = true;
5191
5192 if (instr->dest.ssa.bit_size == 8) {
5193 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5194 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5195 if (!aligned)
5196 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5197 } else if (instr->dest.ssa.bit_size == 16) {
5198 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5199 if (!aligned)
5200 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5201 }
5202
5203 aco_opcode op;
5204
5205 switch (vec.size()) {
5206 case 1:
5207 op = aco_opcode::s_load_dword;
5208 break;
5209 case 2:
5210 op = aco_opcode::s_load_dwordx2;
5211 break;
5212 case 3:
5213 vec = bld.tmp(s4);
5214 trim = true;
5215 case 4:
5216 op = aco_opcode::s_load_dwordx4;
5217 break;
5218 case 6:
5219 vec = bld.tmp(s8);
5220 trim = true;
5221 case 8:
5222 op = aco_opcode::s_load_dwordx8;
5223 break;
5224 default:
5225 unreachable("unimplemented or forbidden load_push_constant.");
5226 }
5227
5228 bld.smem(op, Definition(vec), ptr, index);
5229
5230 if (!aligned) {
5231 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5232 byte_align_scalar(ctx, vec, byte_offset, dst);
5233 return;
5234 }
5235
5236 if (trim) {
5237 emit_split_vector(ctx, vec, 4);
5238 RegClass rc = dst.size() == 3 ? s1 : s2;
5239 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5240 emit_extract_vector(ctx, vec, 0, rc),
5241 emit_extract_vector(ctx, vec, 1, rc),
5242 emit_extract_vector(ctx, vec, 2, rc));
5243
5244 }
5245 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5246 }
5247
5248 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5249 {
5250 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5251
5252 Builder bld(ctx->program, ctx->block);
5253
5254 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5255 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5256 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5257 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5258 if (ctx->options->chip_class >= GFX10) {
5259 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5260 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5261 S_008F0C_RESOURCE_LEVEL(1);
5262 } else {
5263 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5264 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5265 }
5266
5267 unsigned base = nir_intrinsic_base(instr);
5268 unsigned range = nir_intrinsic_range(instr);
5269
5270 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5271 if (base && offset.type() == RegType::sgpr)
5272 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5273 else if (base && offset.type() == RegType::vgpr)
5274 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5275
5276 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5277 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5278 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5279 Operand(desc_type));
5280 unsigned size = instr->dest.ssa.bit_size / 8;
5281 // TODO: get alignment information for subdword constants
5282 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5283 }
5284
5285 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5286 {
5287 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5288 ctx->cf_info.exec_potentially_empty_discard = true;
5289
5290 ctx->program->needs_exact = true;
5291
5292 // TODO: optimize uniform conditions
5293 Builder bld(ctx->program, ctx->block);
5294 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5295 assert(src.regClass() == bld.lm);
5296 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5297 bld.pseudo(aco_opcode::p_discard_if, src);
5298 ctx->block->kind |= block_kind_uses_discard_if;
5299 return;
5300 }
5301
5302 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5303 {
5304 Builder bld(ctx->program, ctx->block);
5305
5306 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5307 ctx->cf_info.exec_potentially_empty_discard = true;
5308
5309 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5310 ctx->cf_info.parent_loop.has_divergent_continue;
5311
5312 if (ctx->block->loop_nest_depth &&
5313 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5314 /* we handle discards the same way as jump instructions */
5315 append_logical_end(ctx->block);
5316
5317 /* in loops, discard behaves like break */
5318 Block *linear_target = ctx->cf_info.parent_loop.exit;
5319 ctx->block->kind |= block_kind_discard;
5320
5321 if (!divergent) {
5322 /* uniform discard - loop ends here */
5323 assert(nir_instr_is_last(&instr->instr));
5324 ctx->block->kind |= block_kind_uniform;
5325 ctx->cf_info.has_branch = true;
5326 bld.branch(aco_opcode::p_branch);
5327 add_linear_edge(ctx->block->index, linear_target);
5328 return;
5329 }
5330
5331 /* we add a break right behind the discard() instructions */
5332 ctx->block->kind |= block_kind_break;
5333 unsigned idx = ctx->block->index;
5334
5335 ctx->cf_info.parent_loop.has_divergent_branch = true;
5336 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5337
5338 /* remove critical edges from linear CFG */
5339 bld.branch(aco_opcode::p_branch);
5340 Block* break_block = ctx->program->create_and_insert_block();
5341 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5342 break_block->kind |= block_kind_uniform;
5343 add_linear_edge(idx, break_block);
5344 add_linear_edge(break_block->index, linear_target);
5345 bld.reset(break_block);
5346 bld.branch(aco_opcode::p_branch);
5347
5348 Block* continue_block = ctx->program->create_and_insert_block();
5349 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5350 add_linear_edge(idx, continue_block);
5351 append_logical_start(continue_block);
5352 ctx->block = continue_block;
5353
5354 return;
5355 }
5356
5357 /* it can currently happen that NIR doesn't remove the unreachable code */
5358 if (!nir_instr_is_last(&instr->instr)) {
5359 ctx->program->needs_exact = true;
5360 /* save exec somewhere temporarily so that it doesn't get
5361 * overwritten before the discard from outer exec masks */
5362 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5363 bld.pseudo(aco_opcode::p_discard_if, cond);
5364 ctx->block->kind |= block_kind_uses_discard_if;
5365 return;
5366 }
5367
5368 /* This condition is incorrect for uniformly branched discards in a loop
5369 * predicated by a divergent condition, but the above code catches that case
5370 * and the discard would end up turning into a discard_if.
5371 * For example:
5372 * if (divergent) {
5373 * while (...) {
5374 * if (uniform) {
5375 * discard;
5376 * }
5377 * }
5378 * }
5379 */
5380 if (!ctx->cf_info.parent_if.is_divergent) {
5381 /* program just ends here */
5382 ctx->block->kind |= block_kind_uniform;
5383 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5384 0 /* enabled mask */, 9 /* dest */,
5385 false /* compressed */, true/* done */, true /* valid mask */);
5386 bld.sopp(aco_opcode::s_endpgm);
5387 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5388 } else {
5389 ctx->block->kind |= block_kind_discard;
5390 /* branch and linear edge is added by visit_if() */
5391 }
5392 }
5393
5394 enum aco_descriptor_type {
5395 ACO_DESC_IMAGE,
5396 ACO_DESC_FMASK,
5397 ACO_DESC_SAMPLER,
5398 ACO_DESC_BUFFER,
5399 ACO_DESC_PLANE_0,
5400 ACO_DESC_PLANE_1,
5401 ACO_DESC_PLANE_2,
5402 };
5403
5404 static bool
5405 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5406 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5407 return false;
5408 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5409 return dim == ac_image_cube ||
5410 dim == ac_image_1darray ||
5411 dim == ac_image_2darray ||
5412 dim == ac_image_2darraymsaa;
5413 }
5414
5415 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5416 enum aco_descriptor_type desc_type,
5417 const nir_tex_instr *tex_instr, bool image, bool write)
5418 {
5419 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5420 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5421 if (it != ctx->tex_desc.end())
5422 return it->second;
5423 */
5424 Temp index = Temp();
5425 bool index_set = false;
5426 unsigned constant_index = 0;
5427 unsigned descriptor_set;
5428 unsigned base_index;
5429 Builder bld(ctx->program, ctx->block);
5430
5431 if (!deref_instr) {
5432 assert(tex_instr && !image);
5433 descriptor_set = 0;
5434 base_index = tex_instr->sampler_index;
5435 } else {
5436 while(deref_instr->deref_type != nir_deref_type_var) {
5437 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5438 if (!array_size)
5439 array_size = 1;
5440
5441 assert(deref_instr->deref_type == nir_deref_type_array);
5442 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5443 if (const_value) {
5444 constant_index += array_size * const_value->u32;
5445 } else {
5446 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5447 if (indirect.type() == RegType::vgpr)
5448 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5449
5450 if (array_size != 1)
5451 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5452
5453 if (!index_set) {
5454 index = indirect;
5455 index_set = true;
5456 } else {
5457 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5458 }
5459 }
5460
5461 deref_instr = nir_src_as_deref(deref_instr->parent);
5462 }
5463 descriptor_set = deref_instr->var->data.descriptor_set;
5464 base_index = deref_instr->var->data.binding;
5465 }
5466
5467 Temp list = load_desc_ptr(ctx, descriptor_set);
5468 list = convert_pointer_to_64_bit(ctx, list);
5469
5470 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5471 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5472 unsigned offset = binding->offset;
5473 unsigned stride = binding->size;
5474 aco_opcode opcode;
5475 RegClass type;
5476
5477 assert(base_index < layout->binding_count);
5478
5479 switch (desc_type) {
5480 case ACO_DESC_IMAGE:
5481 type = s8;
5482 opcode = aco_opcode::s_load_dwordx8;
5483 break;
5484 case ACO_DESC_FMASK:
5485 type = s8;
5486 opcode = aco_opcode::s_load_dwordx8;
5487 offset += 32;
5488 break;
5489 case ACO_DESC_SAMPLER:
5490 type = s4;
5491 opcode = aco_opcode::s_load_dwordx4;
5492 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5493 offset += radv_combined_image_descriptor_sampler_offset(binding);
5494 break;
5495 case ACO_DESC_BUFFER:
5496 type = s4;
5497 opcode = aco_opcode::s_load_dwordx4;
5498 break;
5499 case ACO_DESC_PLANE_0:
5500 case ACO_DESC_PLANE_1:
5501 type = s8;
5502 opcode = aco_opcode::s_load_dwordx8;
5503 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5504 break;
5505 case ACO_DESC_PLANE_2:
5506 type = s4;
5507 opcode = aco_opcode::s_load_dwordx4;
5508 offset += 64;
5509 break;
5510 default:
5511 unreachable("invalid desc_type\n");
5512 }
5513
5514 offset += constant_index * stride;
5515
5516 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5517 (!index_set || binding->immutable_samplers_equal)) {
5518 if (binding->immutable_samplers_equal)
5519 constant_index = 0;
5520
5521 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5522 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5523 Operand(samplers[constant_index * 4 + 0]),
5524 Operand(samplers[constant_index * 4 + 1]),
5525 Operand(samplers[constant_index * 4 + 2]),
5526 Operand(samplers[constant_index * 4 + 3]));
5527 }
5528
5529 Operand off;
5530 if (!index_set) {
5531 off = bld.copy(bld.def(s1), Operand(offset));
5532 } else {
5533 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5534 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5535 }
5536
5537 Temp res = bld.smem(opcode, bld.def(type), list, off);
5538
5539 if (desc_type == ACO_DESC_PLANE_2) {
5540 Temp components[8];
5541 for (unsigned i = 0; i < 8; i++)
5542 components[i] = bld.tmp(s1);
5543 bld.pseudo(aco_opcode::p_split_vector,
5544 Definition(components[0]),
5545 Definition(components[1]),
5546 Definition(components[2]),
5547 Definition(components[3]),
5548 res);
5549
5550 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5551 bld.pseudo(aco_opcode::p_split_vector,
5552 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5553 Definition(components[4]),
5554 Definition(components[5]),
5555 Definition(components[6]),
5556 Definition(components[7]),
5557 desc2);
5558
5559 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5560 components[0], components[1], components[2], components[3],
5561 components[4], components[5], components[6], components[7]);
5562 }
5563
5564 return res;
5565 }
5566
5567 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5568 {
5569 switch (dim) {
5570 case GLSL_SAMPLER_DIM_BUF:
5571 return 1;
5572 case GLSL_SAMPLER_DIM_1D:
5573 return array ? 2 : 1;
5574 case GLSL_SAMPLER_DIM_2D:
5575 return array ? 3 : 2;
5576 case GLSL_SAMPLER_DIM_MS:
5577 return array ? 4 : 3;
5578 case GLSL_SAMPLER_DIM_3D:
5579 case GLSL_SAMPLER_DIM_CUBE:
5580 return 3;
5581 case GLSL_SAMPLER_DIM_RECT:
5582 case GLSL_SAMPLER_DIM_SUBPASS:
5583 return 2;
5584 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5585 return 3;
5586 default:
5587 break;
5588 }
5589 return 0;
5590 }
5591
5592
5593 /* Adjust the sample index according to FMASK.
5594 *
5595 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5596 * which is the identity mapping. Each nibble says which physical sample
5597 * should be fetched to get that sample.
5598 *
5599 * For example, 0x11111100 means there are only 2 samples stored and
5600 * the second sample covers 3/4 of the pixel. When reading samples 0
5601 * and 1, return physical sample 0 (determined by the first two 0s
5602 * in FMASK), otherwise return physical sample 1.
5603 *
5604 * The sample index should be adjusted as follows:
5605 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5606 */
5607 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5608 {
5609 Builder bld(ctx->program, ctx->block);
5610 Temp fmask = bld.tmp(v1);
5611 unsigned dim = ctx->options->chip_class >= GFX10
5612 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5613 : 0;
5614
5615 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5616 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5617 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5618 load->operands[0] = Operand(fmask_desc_ptr);
5619 load->operands[1] = Operand(s4); /* no sampler */
5620 load->operands[2] = Operand(coord);
5621 load->definitions[0] = Definition(fmask);
5622 load->glc = false;
5623 load->dlc = false;
5624 load->dmask = 0x1;
5625 load->unrm = true;
5626 load->da = da;
5627 load->dim = dim;
5628 load->can_reorder = true; /* fmask images shouldn't be modified */
5629 ctx->block->instructions.emplace_back(std::move(load));
5630
5631 Operand sample_index4;
5632 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5633 sample_index4 = Operand(sample_index.constantValue() << 2);
5634 } else if (sample_index.regClass() == s1) {
5635 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5636 } else {
5637 assert(sample_index.regClass() == v1);
5638 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5639 }
5640
5641 Temp final_sample;
5642 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5643 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5644 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5645 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5646 else
5647 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5648
5649 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5650 * resource descriptor is 0 (invalid),
5651 */
5652 Temp compare = bld.tmp(bld.lm);
5653 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5654 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5655
5656 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5657
5658 /* Replace the MSAA sample index. */
5659 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5660 }
5661
5662 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5663 {
5664
5665 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5666 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5667 bool is_array = glsl_sampler_type_is_array(type);
5668 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5669 assert(!add_frag_pos && "Input attachments should be lowered.");
5670 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5671 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5672 int count = image_type_to_components_count(dim, is_array);
5673 std::vector<Temp> coords(count);
5674 Builder bld(ctx->program, ctx->block);
5675
5676 if (is_ms) {
5677 count--;
5678 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5679 /* get sample index */
5680 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5681 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5682 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5683 std::vector<Temp> fmask_load_address;
5684 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5685 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5686
5687 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5688 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5689 } else {
5690 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5691 }
5692 }
5693
5694 if (gfx9_1d) {
5695 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5696 coords.resize(coords.size() + 1);
5697 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5698 if (is_array)
5699 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5700 } else {
5701 for (int i = 0; i < count; i++)
5702 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5703 }
5704
5705 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5706 instr->intrinsic == nir_intrinsic_image_deref_store) {
5707 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5708 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5709
5710 if (!level_zero)
5711 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5712 }
5713
5714 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5715 for (unsigned i = 0; i < coords.size(); i++)
5716 vec->operands[i] = Operand(coords[i]);
5717 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5718 vec->definitions[0] = Definition(res);
5719 ctx->block->instructions.emplace_back(std::move(vec));
5720 return res;
5721 }
5722
5723
5724 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5725 {
5726 Builder bld(ctx->program, ctx->block);
5727 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5728 const struct glsl_type *type = glsl_without_array(var->type);
5729 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5730 bool is_array = glsl_sampler_type_is_array(type);
5731 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5732
5733 if (dim == GLSL_SAMPLER_DIM_BUF) {
5734 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5735 unsigned num_channels = util_last_bit(mask);
5736 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5737 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5738
5739 aco_opcode opcode;
5740 switch (num_channels) {
5741 case 1:
5742 opcode = aco_opcode::buffer_load_format_x;
5743 break;
5744 case 2:
5745 opcode = aco_opcode::buffer_load_format_xy;
5746 break;
5747 case 3:
5748 opcode = aco_opcode::buffer_load_format_xyz;
5749 break;
5750 case 4:
5751 opcode = aco_opcode::buffer_load_format_xyzw;
5752 break;
5753 default:
5754 unreachable(">4 channel buffer image load");
5755 }
5756 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5757 load->operands[0] = Operand(rsrc);
5758 load->operands[1] = Operand(vindex);
5759 load->operands[2] = Operand((uint32_t) 0);
5760 Temp tmp;
5761 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5762 tmp = dst;
5763 else
5764 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5765 load->definitions[0] = Definition(tmp);
5766 load->idxen = true;
5767 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5768 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5769 load->barrier = barrier_image;
5770 ctx->block->instructions.emplace_back(std::move(load));
5771
5772 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5773 return;
5774 }
5775
5776 Temp coords = get_image_coords(ctx, instr, type);
5777 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5778
5779 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5780 unsigned num_components = util_bitcount(dmask);
5781 Temp tmp;
5782 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5783 tmp = dst;
5784 else
5785 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5786
5787 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5788 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5789
5790 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5791 load->operands[0] = Operand(resource);
5792 load->operands[1] = Operand(s4); /* no sampler */
5793 load->operands[2] = Operand(coords);
5794 load->definitions[0] = Definition(tmp);
5795 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5796 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5797 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5798 load->dmask = dmask;
5799 load->unrm = true;
5800 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5801 load->barrier = barrier_image;
5802 ctx->block->instructions.emplace_back(std::move(load));
5803
5804 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5805 return;
5806 }
5807
5808 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5809 {
5810 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5811 const struct glsl_type *type = glsl_without_array(var->type);
5812 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5813 bool is_array = glsl_sampler_type_is_array(type);
5814 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5815
5816 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5817
5818 if (dim == GLSL_SAMPLER_DIM_BUF) {
5819 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5820 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5821 aco_opcode opcode;
5822 switch (data.size()) {
5823 case 1:
5824 opcode = aco_opcode::buffer_store_format_x;
5825 break;
5826 case 2:
5827 opcode = aco_opcode::buffer_store_format_xy;
5828 break;
5829 case 3:
5830 opcode = aco_opcode::buffer_store_format_xyz;
5831 break;
5832 case 4:
5833 opcode = aco_opcode::buffer_store_format_xyzw;
5834 break;
5835 default:
5836 unreachable(">4 channel buffer image store");
5837 }
5838 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5839 store->operands[0] = Operand(rsrc);
5840 store->operands[1] = Operand(vindex);
5841 store->operands[2] = Operand((uint32_t) 0);
5842 store->operands[3] = Operand(data);
5843 store->idxen = true;
5844 store->glc = glc;
5845 store->dlc = false;
5846 store->disable_wqm = true;
5847 store->barrier = barrier_image;
5848 ctx->program->needs_exact = true;
5849 ctx->block->instructions.emplace_back(std::move(store));
5850 return;
5851 }
5852
5853 assert(data.type() == RegType::vgpr);
5854 Temp coords = get_image_coords(ctx, instr, type);
5855 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5856
5857 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5858 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5859
5860 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5861 store->operands[0] = Operand(resource);
5862 store->operands[1] = Operand(data);
5863 store->operands[2] = Operand(coords);
5864 store->glc = glc;
5865 store->dlc = false;
5866 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5867 store->dmask = (1 << data.size()) - 1;
5868 store->unrm = true;
5869 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5870 store->disable_wqm = true;
5871 store->barrier = barrier_image;
5872 ctx->program->needs_exact = true;
5873 ctx->block->instructions.emplace_back(std::move(store));
5874 return;
5875 }
5876
5877 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5878 {
5879 /* return the previous value if dest is ever used */
5880 bool return_previous = false;
5881 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5882 return_previous = true;
5883 break;
5884 }
5885 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5886 return_previous = true;
5887 break;
5888 }
5889
5890 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5891 const struct glsl_type *type = glsl_without_array(var->type);
5892 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5893 bool is_array = glsl_sampler_type_is_array(type);
5894 Builder bld(ctx->program, ctx->block);
5895
5896 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5897 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5898
5899 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5900 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5901
5902 aco_opcode buf_op, image_op;
5903 switch (instr->intrinsic) {
5904 case nir_intrinsic_image_deref_atomic_add:
5905 buf_op = aco_opcode::buffer_atomic_add;
5906 image_op = aco_opcode::image_atomic_add;
5907 break;
5908 case nir_intrinsic_image_deref_atomic_umin:
5909 buf_op = aco_opcode::buffer_atomic_umin;
5910 image_op = aco_opcode::image_atomic_umin;
5911 break;
5912 case nir_intrinsic_image_deref_atomic_imin:
5913 buf_op = aco_opcode::buffer_atomic_smin;
5914 image_op = aco_opcode::image_atomic_smin;
5915 break;
5916 case nir_intrinsic_image_deref_atomic_umax:
5917 buf_op = aco_opcode::buffer_atomic_umax;
5918 image_op = aco_opcode::image_atomic_umax;
5919 break;
5920 case nir_intrinsic_image_deref_atomic_imax:
5921 buf_op = aco_opcode::buffer_atomic_smax;
5922 image_op = aco_opcode::image_atomic_smax;
5923 break;
5924 case nir_intrinsic_image_deref_atomic_and:
5925 buf_op = aco_opcode::buffer_atomic_and;
5926 image_op = aco_opcode::image_atomic_and;
5927 break;
5928 case nir_intrinsic_image_deref_atomic_or:
5929 buf_op = aco_opcode::buffer_atomic_or;
5930 image_op = aco_opcode::image_atomic_or;
5931 break;
5932 case nir_intrinsic_image_deref_atomic_xor:
5933 buf_op = aco_opcode::buffer_atomic_xor;
5934 image_op = aco_opcode::image_atomic_xor;
5935 break;
5936 case nir_intrinsic_image_deref_atomic_exchange:
5937 buf_op = aco_opcode::buffer_atomic_swap;
5938 image_op = aco_opcode::image_atomic_swap;
5939 break;
5940 case nir_intrinsic_image_deref_atomic_comp_swap:
5941 buf_op = aco_opcode::buffer_atomic_cmpswap;
5942 image_op = aco_opcode::image_atomic_cmpswap;
5943 break;
5944 default:
5945 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5946 }
5947
5948 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5949
5950 if (dim == GLSL_SAMPLER_DIM_BUF) {
5951 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5952 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5953 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5954 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5955 mubuf->operands[0] = Operand(resource);
5956 mubuf->operands[1] = Operand(vindex);
5957 mubuf->operands[2] = Operand((uint32_t)0);
5958 mubuf->operands[3] = Operand(data);
5959 if (return_previous)
5960 mubuf->definitions[0] = Definition(dst);
5961 mubuf->offset = 0;
5962 mubuf->idxen = true;
5963 mubuf->glc = return_previous;
5964 mubuf->dlc = false; /* Not needed for atomics */
5965 mubuf->disable_wqm = true;
5966 mubuf->barrier = barrier_image;
5967 ctx->program->needs_exact = true;
5968 ctx->block->instructions.emplace_back(std::move(mubuf));
5969 return;
5970 }
5971
5972 Temp coords = get_image_coords(ctx, instr, type);
5973 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5974 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5975 mimg->operands[0] = Operand(resource);
5976 mimg->operands[1] = Operand(data);
5977 mimg->operands[2] = Operand(coords);
5978 if (return_previous)
5979 mimg->definitions[0] = Definition(dst);
5980 mimg->glc = return_previous;
5981 mimg->dlc = false; /* Not needed for atomics */
5982 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5983 mimg->dmask = (1 << data.size()) - 1;
5984 mimg->unrm = true;
5985 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5986 mimg->disable_wqm = true;
5987 mimg->barrier = barrier_image;
5988 ctx->program->needs_exact = true;
5989 ctx->block->instructions.emplace_back(std::move(mimg));
5990 return;
5991 }
5992
5993 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5994 {
5995 if (in_elements && ctx->options->chip_class == GFX8) {
5996 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5997 Builder bld(ctx->program, ctx->block);
5998
5999 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6000
6001 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6002 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
6003
6004 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6005 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6006
6007 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6008 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6009
6010 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6011 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6012 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6013 if (dst.type() == RegType::vgpr)
6014 bld.copy(Definition(dst), shr_dst);
6015
6016 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6017 } else {
6018 emit_extract_vector(ctx, desc, 2, dst);
6019 }
6020 }
6021
6022 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6023 {
6024 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6025 const struct glsl_type *type = glsl_without_array(var->type);
6026 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6027 bool is_array = glsl_sampler_type_is_array(type);
6028 Builder bld(ctx->program, ctx->block);
6029
6030 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6031 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6032 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6033 }
6034
6035 /* LOD */
6036 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6037
6038 /* Resource */
6039 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6040
6041 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6042
6043 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6044 mimg->operands[0] = Operand(resource);
6045 mimg->operands[1] = Operand(s4); /* no sampler */
6046 mimg->operands[2] = Operand(lod);
6047 uint8_t& dmask = mimg->dmask;
6048 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6049 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6050 mimg->da = glsl_sampler_type_is_array(type);
6051 mimg->can_reorder = true;
6052 Definition& def = mimg->definitions[0];
6053 ctx->block->instructions.emplace_back(std::move(mimg));
6054
6055 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6056 glsl_sampler_type_is_array(type)) {
6057
6058 assert(instr->dest.ssa.num_components == 3);
6059 Temp tmp = {ctx->program->allocateId(), v3};
6060 def = Definition(tmp);
6061 emit_split_vector(ctx, tmp, 3);
6062
6063 /* divide 3rd value by 6 by multiplying with magic number */
6064 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6065 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6066
6067 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6068 emit_extract_vector(ctx, tmp, 0, v1),
6069 emit_extract_vector(ctx, tmp, 1, v1),
6070 by_6);
6071
6072 } else if (ctx->options->chip_class == GFX9 &&
6073 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6074 glsl_sampler_type_is_array(type)) {
6075 assert(instr->dest.ssa.num_components == 2);
6076 def = Definition(dst);
6077 dmask = 0x5;
6078 } else {
6079 def = Definition(dst);
6080 }
6081
6082 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6083 }
6084
6085 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6086 {
6087 Builder bld(ctx->program, ctx->block);
6088 unsigned num_components = instr->num_components;
6089
6090 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6091 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6092 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6093
6094 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6095 unsigned size = instr->dest.ssa.bit_size / 8;
6096 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6097 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, false);
6098 }
6099
6100 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6101 {
6102 Builder bld(ctx->program, ctx->block);
6103 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6104 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6105 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6106 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6107
6108 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6109 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6110
6111 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
6112 ctx->options->chip_class >= GFX8 &&
6113 elem_size_bytes >= 4;
6114 if (smem)
6115 offset = bld.as_uniform(offset);
6116 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6117
6118 unsigned write_count = 0;
6119 Temp write_datas[32];
6120 unsigned offsets[32];
6121 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6122 data, writemask, 16, &write_count, write_datas, offsets);
6123
6124 for (unsigned i = 0; i < write_count; i++) {
6125 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
6126 switch (write_datas[i].bytes()) {
6127 case 1:
6128 vmem_op = aco_opcode::buffer_store_byte;
6129 break;
6130 case 2:
6131 vmem_op = aco_opcode::buffer_store_short;
6132 break;
6133 case 4:
6134 vmem_op = aco_opcode::buffer_store_dword;
6135 smem_op = aco_opcode::s_buffer_store_dword;
6136 break;
6137 case 8:
6138 vmem_op = aco_opcode::buffer_store_dwordx2;
6139 smem_op = aco_opcode::s_buffer_store_dwordx2;
6140 break;
6141 case 12:
6142 vmem_op = aco_opcode::buffer_store_dwordx3;
6143 assert(!smem && ctx->options->chip_class > GFX6);
6144 break;
6145 case 16:
6146 vmem_op = aco_opcode::buffer_store_dwordx4;
6147 smem_op = aco_opcode::s_buffer_store_dwordx4;
6148 break;
6149 default:
6150 unreachable("Store SSBO not implemented for this size.");
6151 }
6152 if (ctx->stage == fragment_fs)
6153 smem_op = aco_opcode::p_fs_buffer_store_smem;
6154
6155 if (smem) {
6156 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
6157 store->operands[0] = Operand(rsrc);
6158 if (offsets[i]) {
6159 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6160 offset, Operand(offsets[i]));
6161 store->operands[1] = Operand(off);
6162 } else {
6163 store->operands[1] = Operand(offset);
6164 }
6165 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
6166 store->operands[1].setFixed(m0);
6167 store->operands[2] = Operand(write_datas[i]);
6168 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6169 store->dlc = false;
6170 store->disable_wqm = true;
6171 store->barrier = barrier_buffer;
6172 ctx->block->instructions.emplace_back(std::move(store));
6173 ctx->program->wb_smem_l1_on_end = true;
6174 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
6175 ctx->block->kind |= block_kind_needs_lowering;
6176 ctx->program->needs_exact = true;
6177 }
6178 } else {
6179 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
6180 store->operands[0] = Operand(rsrc);
6181 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6182 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6183 store->operands[3] = Operand(write_datas[i]);
6184 store->offset = offsets[i];
6185 store->offen = (offset.type() == RegType::vgpr);
6186 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6187 store->dlc = false;
6188 store->disable_wqm = true;
6189 store->barrier = barrier_buffer;
6190 ctx->program->needs_exact = true;
6191 ctx->block->instructions.emplace_back(std::move(store));
6192 }
6193 }
6194 }
6195
6196 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6197 {
6198 /* return the previous value if dest is ever used */
6199 bool return_previous = false;
6200 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6201 return_previous = true;
6202 break;
6203 }
6204 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6205 return_previous = true;
6206 break;
6207 }
6208
6209 Builder bld(ctx->program, ctx->block);
6210 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6211
6212 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6213 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6214 get_ssa_temp(ctx, instr->src[3].ssa), data);
6215
6216 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6217 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6218 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6219
6220 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6221
6222 aco_opcode op32, op64;
6223 switch (instr->intrinsic) {
6224 case nir_intrinsic_ssbo_atomic_add:
6225 op32 = aco_opcode::buffer_atomic_add;
6226 op64 = aco_opcode::buffer_atomic_add_x2;
6227 break;
6228 case nir_intrinsic_ssbo_atomic_imin:
6229 op32 = aco_opcode::buffer_atomic_smin;
6230 op64 = aco_opcode::buffer_atomic_smin_x2;
6231 break;
6232 case nir_intrinsic_ssbo_atomic_umin:
6233 op32 = aco_opcode::buffer_atomic_umin;
6234 op64 = aco_opcode::buffer_atomic_umin_x2;
6235 break;
6236 case nir_intrinsic_ssbo_atomic_imax:
6237 op32 = aco_opcode::buffer_atomic_smax;
6238 op64 = aco_opcode::buffer_atomic_smax_x2;
6239 break;
6240 case nir_intrinsic_ssbo_atomic_umax:
6241 op32 = aco_opcode::buffer_atomic_umax;
6242 op64 = aco_opcode::buffer_atomic_umax_x2;
6243 break;
6244 case nir_intrinsic_ssbo_atomic_and:
6245 op32 = aco_opcode::buffer_atomic_and;
6246 op64 = aco_opcode::buffer_atomic_and_x2;
6247 break;
6248 case nir_intrinsic_ssbo_atomic_or:
6249 op32 = aco_opcode::buffer_atomic_or;
6250 op64 = aco_opcode::buffer_atomic_or_x2;
6251 break;
6252 case nir_intrinsic_ssbo_atomic_xor:
6253 op32 = aco_opcode::buffer_atomic_xor;
6254 op64 = aco_opcode::buffer_atomic_xor_x2;
6255 break;
6256 case nir_intrinsic_ssbo_atomic_exchange:
6257 op32 = aco_opcode::buffer_atomic_swap;
6258 op64 = aco_opcode::buffer_atomic_swap_x2;
6259 break;
6260 case nir_intrinsic_ssbo_atomic_comp_swap:
6261 op32 = aco_opcode::buffer_atomic_cmpswap;
6262 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6263 break;
6264 default:
6265 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6266 }
6267 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6268 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6269 mubuf->operands[0] = Operand(rsrc);
6270 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6271 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6272 mubuf->operands[3] = Operand(data);
6273 if (return_previous)
6274 mubuf->definitions[0] = Definition(dst);
6275 mubuf->offset = 0;
6276 mubuf->offen = (offset.type() == RegType::vgpr);
6277 mubuf->glc = return_previous;
6278 mubuf->dlc = false; /* Not needed for atomics */
6279 mubuf->disable_wqm = true;
6280 mubuf->barrier = barrier_buffer;
6281 ctx->program->needs_exact = true;
6282 ctx->block->instructions.emplace_back(std::move(mubuf));
6283 }
6284
6285 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6286
6287 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6288 Builder bld(ctx->program, ctx->block);
6289 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6290 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6291 }
6292
6293 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6294 {
6295 Builder bld(ctx->program, ctx->block);
6296 unsigned num_components = instr->num_components;
6297 unsigned component_size = instr->dest.ssa.bit_size / 8;
6298
6299 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6300 get_ssa_temp(ctx, &instr->dest.ssa),
6301 num_components, component_size};
6302 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6303 info.align_mul = nir_intrinsic_align_mul(instr);
6304 info.align_offset = nir_intrinsic_align_offset(instr);
6305 info.barrier = barrier_buffer;
6306 info.can_reorder = false;
6307 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6308 * it's safe to use SMEM */
6309 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6310 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6311 emit_global_load(ctx, bld, &info);
6312 } else {
6313 info.offset = Operand(bld.as_uniform(info.offset));
6314 emit_smem_load(ctx, bld, &info);
6315 }
6316 }
6317
6318 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6319 {
6320 Builder bld(ctx->program, ctx->block);
6321 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6322
6323 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6324 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6325
6326 if (ctx->options->chip_class >= GFX7)
6327 addr = as_vgpr(ctx, addr);
6328
6329 unsigned writemask = nir_intrinsic_write_mask(instr);
6330 while (writemask) {
6331 int start, count;
6332 u_bit_scan_consecutive_range(&writemask, &start, &count);
6333 if (count == 3 && ctx->options->chip_class == GFX6) {
6334 /* GFX6 doesn't support storing vec3, split it. */
6335 writemask |= 1u << (start + 2);
6336 count = 2;
6337 }
6338 unsigned num_bytes = count * elem_size_bytes;
6339
6340 Temp write_data = data;
6341 if (count != instr->num_components) {
6342 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6343 for (int i = 0; i < count; i++)
6344 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6345 write_data = bld.tmp(RegType::vgpr, count);
6346 vec->definitions[0] = Definition(write_data);
6347 ctx->block->instructions.emplace_back(std::move(vec));
6348 }
6349
6350 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6351 unsigned offset = start * elem_size_bytes;
6352
6353 if (ctx->options->chip_class >= GFX7) {
6354 if (offset > 0 && ctx->options->chip_class < GFX9) {
6355 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6356 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6357 Temp carry = bld.tmp(bld.lm);
6358 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6359
6360 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6361 Operand(offset), addr0);
6362 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6363 Operand(0u), addr1,
6364 carry).def(1).setHint(vcc);
6365
6366 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6367
6368 offset = 0;
6369 }
6370
6371 bool global = ctx->options->chip_class >= GFX9;
6372 aco_opcode op;
6373 switch (num_bytes) {
6374 case 4:
6375 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6376 break;
6377 case 8:
6378 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6379 break;
6380 case 12:
6381 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6382 break;
6383 case 16:
6384 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6385 break;
6386 default:
6387 unreachable("store_global not implemented for this size.");
6388 }
6389
6390 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6391 flat->operands[0] = Operand(addr);
6392 flat->operands[1] = Operand(s1);
6393 flat->operands[2] = Operand(data);
6394 flat->glc = glc;
6395 flat->dlc = false;
6396 flat->offset = offset;
6397 flat->disable_wqm = true;
6398 flat->barrier = barrier_buffer;
6399 ctx->program->needs_exact = true;
6400 ctx->block->instructions.emplace_back(std::move(flat));
6401 } else {
6402 assert(ctx->options->chip_class == GFX6);
6403
6404 aco_opcode op;
6405 switch (num_bytes) {
6406 case 4:
6407 op = aco_opcode::buffer_store_dword;
6408 break;
6409 case 8:
6410 op = aco_opcode::buffer_store_dwordx2;
6411 break;
6412 case 16:
6413 op = aco_opcode::buffer_store_dwordx4;
6414 break;
6415 default:
6416 unreachable("store_global not implemented for this size.");
6417 }
6418
6419 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6420
6421 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6422 mubuf->operands[0] = Operand(rsrc);
6423 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6424 mubuf->operands[2] = Operand(0u);
6425 mubuf->operands[3] = Operand(write_data);
6426 mubuf->glc = glc;
6427 mubuf->dlc = false;
6428 mubuf->offset = offset;
6429 mubuf->addr64 = addr.type() == RegType::vgpr;
6430 mubuf->disable_wqm = true;
6431 mubuf->barrier = barrier_buffer;
6432 ctx->program->needs_exact = true;
6433 ctx->block->instructions.emplace_back(std::move(mubuf));
6434 }
6435 }
6436 }
6437
6438 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6439 {
6440 /* return the previous value if dest is ever used */
6441 bool return_previous = false;
6442 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6443 return_previous = true;
6444 break;
6445 }
6446 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6447 return_previous = true;
6448 break;
6449 }
6450
6451 Builder bld(ctx->program, ctx->block);
6452 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6453 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6454
6455 if (ctx->options->chip_class >= GFX7)
6456 addr = as_vgpr(ctx, addr);
6457
6458 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6459 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6460 get_ssa_temp(ctx, instr->src[2].ssa), data);
6461
6462 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6463
6464 aco_opcode op32, op64;
6465
6466 if (ctx->options->chip_class >= GFX7) {
6467 bool global = ctx->options->chip_class >= GFX9;
6468 switch (instr->intrinsic) {
6469 case nir_intrinsic_global_atomic_add:
6470 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6471 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6472 break;
6473 case nir_intrinsic_global_atomic_imin:
6474 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6475 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6476 break;
6477 case nir_intrinsic_global_atomic_umin:
6478 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6479 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6480 break;
6481 case nir_intrinsic_global_atomic_imax:
6482 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6483 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6484 break;
6485 case nir_intrinsic_global_atomic_umax:
6486 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6487 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6488 break;
6489 case nir_intrinsic_global_atomic_and:
6490 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6491 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6492 break;
6493 case nir_intrinsic_global_atomic_or:
6494 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6495 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6496 break;
6497 case nir_intrinsic_global_atomic_xor:
6498 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6499 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6500 break;
6501 case nir_intrinsic_global_atomic_exchange:
6502 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6503 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6504 break;
6505 case nir_intrinsic_global_atomic_comp_swap:
6506 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6507 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6508 break;
6509 default:
6510 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6511 }
6512
6513 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6514 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6515 flat->operands[0] = Operand(addr);
6516 flat->operands[1] = Operand(s1);
6517 flat->operands[2] = Operand(data);
6518 if (return_previous)
6519 flat->definitions[0] = Definition(dst);
6520 flat->glc = return_previous;
6521 flat->dlc = false; /* Not needed for atomics */
6522 flat->offset = 0;
6523 flat->disable_wqm = true;
6524 flat->barrier = barrier_buffer;
6525 ctx->program->needs_exact = true;
6526 ctx->block->instructions.emplace_back(std::move(flat));
6527 } else {
6528 assert(ctx->options->chip_class == GFX6);
6529
6530 switch (instr->intrinsic) {
6531 case nir_intrinsic_global_atomic_add:
6532 op32 = aco_opcode::buffer_atomic_add;
6533 op64 = aco_opcode::buffer_atomic_add_x2;
6534 break;
6535 case nir_intrinsic_global_atomic_imin:
6536 op32 = aco_opcode::buffer_atomic_smin;
6537 op64 = aco_opcode::buffer_atomic_smin_x2;
6538 break;
6539 case nir_intrinsic_global_atomic_umin:
6540 op32 = aco_opcode::buffer_atomic_umin;
6541 op64 = aco_opcode::buffer_atomic_umin_x2;
6542 break;
6543 case nir_intrinsic_global_atomic_imax:
6544 op32 = aco_opcode::buffer_atomic_smax;
6545 op64 = aco_opcode::buffer_atomic_smax_x2;
6546 break;
6547 case nir_intrinsic_global_atomic_umax:
6548 op32 = aco_opcode::buffer_atomic_umax;
6549 op64 = aco_opcode::buffer_atomic_umax_x2;
6550 break;
6551 case nir_intrinsic_global_atomic_and:
6552 op32 = aco_opcode::buffer_atomic_and;
6553 op64 = aco_opcode::buffer_atomic_and_x2;
6554 break;
6555 case nir_intrinsic_global_atomic_or:
6556 op32 = aco_opcode::buffer_atomic_or;
6557 op64 = aco_opcode::buffer_atomic_or_x2;
6558 break;
6559 case nir_intrinsic_global_atomic_xor:
6560 op32 = aco_opcode::buffer_atomic_xor;
6561 op64 = aco_opcode::buffer_atomic_xor_x2;
6562 break;
6563 case nir_intrinsic_global_atomic_exchange:
6564 op32 = aco_opcode::buffer_atomic_swap;
6565 op64 = aco_opcode::buffer_atomic_swap_x2;
6566 break;
6567 case nir_intrinsic_global_atomic_comp_swap:
6568 op32 = aco_opcode::buffer_atomic_cmpswap;
6569 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6570 break;
6571 default:
6572 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6573 }
6574
6575 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6576
6577 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6578
6579 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6580 mubuf->operands[0] = Operand(rsrc);
6581 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6582 mubuf->operands[2] = Operand(0u);
6583 mubuf->operands[3] = Operand(data);
6584 if (return_previous)
6585 mubuf->definitions[0] = Definition(dst);
6586 mubuf->glc = return_previous;
6587 mubuf->dlc = false;
6588 mubuf->offset = 0;
6589 mubuf->addr64 = addr.type() == RegType::vgpr;
6590 mubuf->disable_wqm = true;
6591 mubuf->barrier = barrier_buffer;
6592 ctx->program->needs_exact = true;
6593 ctx->block->instructions.emplace_back(std::move(mubuf));
6594 }
6595 }
6596
6597 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6598 Builder bld(ctx->program, ctx->block);
6599 switch(instr->intrinsic) {
6600 case nir_intrinsic_group_memory_barrier:
6601 case nir_intrinsic_memory_barrier:
6602 bld.barrier(aco_opcode::p_memory_barrier_common);
6603 break;
6604 case nir_intrinsic_memory_barrier_buffer:
6605 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6606 break;
6607 case nir_intrinsic_memory_barrier_image:
6608 bld.barrier(aco_opcode::p_memory_barrier_image);
6609 break;
6610 case nir_intrinsic_memory_barrier_tcs_patch:
6611 case nir_intrinsic_memory_barrier_shared:
6612 bld.barrier(aco_opcode::p_memory_barrier_shared);
6613 break;
6614 default:
6615 unreachable("Unimplemented memory barrier intrinsic");
6616 break;
6617 }
6618 }
6619
6620 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6621 {
6622 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6623 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6624 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6625 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6626 Builder bld(ctx->program, ctx->block);
6627
6628 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6629 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6630 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6631 }
6632
6633 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6634 {
6635 unsigned writemask = nir_intrinsic_write_mask(instr);
6636 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6637 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6638 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6639 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6640
6641 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6642 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6643 }
6644
6645 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6646 {
6647 unsigned offset = nir_intrinsic_base(instr);
6648 Builder bld(ctx->program, ctx->block);
6649 Operand m = load_lds_size_m0(bld);
6650 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6651 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6652
6653 unsigned num_operands = 3;
6654 aco_opcode op32, op64, op32_rtn, op64_rtn;
6655 switch(instr->intrinsic) {
6656 case nir_intrinsic_shared_atomic_add:
6657 op32 = aco_opcode::ds_add_u32;
6658 op64 = aco_opcode::ds_add_u64;
6659 op32_rtn = aco_opcode::ds_add_rtn_u32;
6660 op64_rtn = aco_opcode::ds_add_rtn_u64;
6661 break;
6662 case nir_intrinsic_shared_atomic_imin:
6663 op32 = aco_opcode::ds_min_i32;
6664 op64 = aco_opcode::ds_min_i64;
6665 op32_rtn = aco_opcode::ds_min_rtn_i32;
6666 op64_rtn = aco_opcode::ds_min_rtn_i64;
6667 break;
6668 case nir_intrinsic_shared_atomic_umin:
6669 op32 = aco_opcode::ds_min_u32;
6670 op64 = aco_opcode::ds_min_u64;
6671 op32_rtn = aco_opcode::ds_min_rtn_u32;
6672 op64_rtn = aco_opcode::ds_min_rtn_u64;
6673 break;
6674 case nir_intrinsic_shared_atomic_imax:
6675 op32 = aco_opcode::ds_max_i32;
6676 op64 = aco_opcode::ds_max_i64;
6677 op32_rtn = aco_opcode::ds_max_rtn_i32;
6678 op64_rtn = aco_opcode::ds_max_rtn_i64;
6679 break;
6680 case nir_intrinsic_shared_atomic_umax:
6681 op32 = aco_opcode::ds_max_u32;
6682 op64 = aco_opcode::ds_max_u64;
6683 op32_rtn = aco_opcode::ds_max_rtn_u32;
6684 op64_rtn = aco_opcode::ds_max_rtn_u64;
6685 break;
6686 case nir_intrinsic_shared_atomic_and:
6687 op32 = aco_opcode::ds_and_b32;
6688 op64 = aco_opcode::ds_and_b64;
6689 op32_rtn = aco_opcode::ds_and_rtn_b32;
6690 op64_rtn = aco_opcode::ds_and_rtn_b64;
6691 break;
6692 case nir_intrinsic_shared_atomic_or:
6693 op32 = aco_opcode::ds_or_b32;
6694 op64 = aco_opcode::ds_or_b64;
6695 op32_rtn = aco_opcode::ds_or_rtn_b32;
6696 op64_rtn = aco_opcode::ds_or_rtn_b64;
6697 break;
6698 case nir_intrinsic_shared_atomic_xor:
6699 op32 = aco_opcode::ds_xor_b32;
6700 op64 = aco_opcode::ds_xor_b64;
6701 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6702 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6703 break;
6704 case nir_intrinsic_shared_atomic_exchange:
6705 op32 = aco_opcode::ds_write_b32;
6706 op64 = aco_opcode::ds_write_b64;
6707 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6708 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6709 break;
6710 case nir_intrinsic_shared_atomic_comp_swap:
6711 op32 = aco_opcode::ds_cmpst_b32;
6712 op64 = aco_opcode::ds_cmpst_b64;
6713 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6714 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6715 num_operands = 4;
6716 break;
6717 default:
6718 unreachable("Unhandled shared atomic intrinsic");
6719 }
6720
6721 /* return the previous value if dest is ever used */
6722 bool return_previous = false;
6723 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6724 return_previous = true;
6725 break;
6726 }
6727 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6728 return_previous = true;
6729 break;
6730 }
6731
6732 aco_opcode op;
6733 if (data.size() == 1) {
6734 assert(instr->dest.ssa.bit_size == 32);
6735 op = return_previous ? op32_rtn : op32;
6736 } else {
6737 assert(instr->dest.ssa.bit_size == 64);
6738 op = return_previous ? op64_rtn : op64;
6739 }
6740
6741 if (offset > 65535) {
6742 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6743 offset = 0;
6744 }
6745
6746 aco_ptr<DS_instruction> ds;
6747 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6748 ds->operands[0] = Operand(address);
6749 ds->operands[1] = Operand(data);
6750 if (num_operands == 4)
6751 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6752 ds->operands[num_operands - 1] = m;
6753 ds->offset0 = offset;
6754 if (return_previous)
6755 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6756 ctx->block->instructions.emplace_back(std::move(ds));
6757 }
6758
6759 Temp get_scratch_resource(isel_context *ctx)
6760 {
6761 Builder bld(ctx->program, ctx->block);
6762 Temp scratch_addr = ctx->program->private_segment_buffer;
6763 if (ctx->stage != compute_cs)
6764 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6765
6766 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6767 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6768
6769 if (ctx->program->chip_class >= GFX10) {
6770 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6771 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6772 S_008F0C_RESOURCE_LEVEL(1);
6773 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6774 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6775 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6776 }
6777
6778 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6779 if (ctx->program->chip_class <= GFX8)
6780 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6781
6782 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6783 }
6784
6785 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6786 Builder bld(ctx->program, ctx->block);
6787 Temp rsrc = get_scratch_resource(ctx);
6788 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6789 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6790
6791 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6792 instr->dest.ssa.bit_size / 8u, rsrc};
6793 info.align_mul = nir_intrinsic_align_mul(instr);
6794 info.align_offset = nir_intrinsic_align_offset(instr);
6795 info.swizzle_component_size = 16;
6796 info.can_reorder = false;
6797 info.soffset = ctx->program->scratch_offset;
6798 emit_mubuf_load(ctx, bld, &info);
6799 }
6800
6801 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6802 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6803 Builder bld(ctx->program, ctx->block);
6804 Temp rsrc = get_scratch_resource(ctx);
6805 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6806 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6807
6808 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6809 unsigned writemask = nir_intrinsic_write_mask(instr);
6810
6811 while (writemask) {
6812 int start, count;
6813 u_bit_scan_consecutive_range(&writemask, &start, &count);
6814 int num_bytes = count * elem_size_bytes;
6815
6816 if (num_bytes > 16) {
6817 assert(elem_size_bytes == 8);
6818 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6819 count = 2;
6820 num_bytes = 16;
6821 }
6822
6823 // TODO: check alignment of sub-dword stores
6824 // TODO: split 3 bytes. there is no store instruction for that
6825
6826 Temp write_data;
6827 if (count != instr->num_components) {
6828 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6829 for (int i = 0; i < count; i++) {
6830 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6831 vec->operands[i] = Operand(elem);
6832 }
6833 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6834 vec->definitions[0] = Definition(write_data);
6835 ctx->block->instructions.emplace_back(std::move(vec));
6836 } else {
6837 write_data = data;
6838 }
6839
6840 aco_opcode op;
6841 switch (num_bytes) {
6842 case 4:
6843 op = aco_opcode::buffer_store_dword;
6844 break;
6845 case 8:
6846 op = aco_opcode::buffer_store_dwordx2;
6847 break;
6848 case 12:
6849 op = aco_opcode::buffer_store_dwordx3;
6850 break;
6851 case 16:
6852 op = aco_opcode::buffer_store_dwordx4;
6853 break;
6854 default:
6855 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6856 }
6857
6858 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6859 }
6860 }
6861
6862 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6863 uint8_t log2_ps_iter_samples;
6864 if (ctx->program->info->ps.force_persample) {
6865 log2_ps_iter_samples =
6866 util_logbase2(ctx->options->key.fs.num_samples);
6867 } else {
6868 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6869 }
6870
6871 /* The bit pattern matches that used by fixed function fragment
6872 * processing. */
6873 static const unsigned ps_iter_masks[] = {
6874 0xffff, /* not used */
6875 0x5555,
6876 0x1111,
6877 0x0101,
6878 0x0001,
6879 };
6880 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6881
6882 Builder bld(ctx->program, ctx->block);
6883
6884 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6885 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6886 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6887 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6888 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6889 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6890 }
6891
6892 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6893 Builder bld(ctx->program, ctx->block);
6894
6895 unsigned stream = nir_intrinsic_stream_id(instr);
6896 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6897 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6898 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6899
6900 /* get GSVS ring */
6901 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6902
6903 unsigned num_components =
6904 ctx->program->info->gs.num_stream_output_components[stream];
6905 assert(num_components);
6906
6907 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6908 unsigned stream_offset = 0;
6909 for (unsigned i = 0; i < stream; i++) {
6910 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6911 stream_offset += prev_stride * ctx->program->wave_size;
6912 }
6913
6914 /* Limit on the stride field for <= GFX7. */
6915 assert(stride < (1 << 14));
6916
6917 Temp gsvs_dwords[4];
6918 for (unsigned i = 0; i < 4; i++)
6919 gsvs_dwords[i] = bld.tmp(s1);
6920 bld.pseudo(aco_opcode::p_split_vector,
6921 Definition(gsvs_dwords[0]),
6922 Definition(gsvs_dwords[1]),
6923 Definition(gsvs_dwords[2]),
6924 Definition(gsvs_dwords[3]),
6925 gsvs_ring);
6926
6927 if (stream_offset) {
6928 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6929
6930 Temp carry = bld.tmp(s1);
6931 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6932 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6933 }
6934
6935 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6936 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6937
6938 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6939 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6940
6941 unsigned offset = 0;
6942 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6943 if (ctx->program->info->gs.output_streams[i] != stream)
6944 continue;
6945
6946 for (unsigned j = 0; j < 4; j++) {
6947 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6948 continue;
6949
6950 if (ctx->outputs.mask[i] & (1 << j)) {
6951 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6952 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6953 if (const_offset >= 4096u) {
6954 if (vaddr_offset.isUndefined())
6955 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6956 else
6957 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6958 const_offset %= 4096u;
6959 }
6960
6961 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6962 mtbuf->operands[0] = Operand(gsvs_ring);
6963 mtbuf->operands[1] = vaddr_offset;
6964 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6965 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6966 mtbuf->offen = !vaddr_offset.isUndefined();
6967 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6968 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6969 mtbuf->offset = const_offset;
6970 mtbuf->glc = true;
6971 mtbuf->slc = true;
6972 mtbuf->barrier = barrier_gs_data;
6973 mtbuf->can_reorder = true;
6974 bld.insert(std::move(mtbuf));
6975 }
6976
6977 offset += ctx->shader->info.gs.vertices_out;
6978 }
6979
6980 /* outputs for the next vertex are undefined and keeping them around can
6981 * create invalid IR with control flow */
6982 ctx->outputs.mask[i] = 0;
6983 }
6984
6985 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6986 }
6987
6988 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6989 {
6990 Builder bld(ctx->program, ctx->block);
6991
6992 if (cluster_size == 1) {
6993 return src;
6994 } if (op == nir_op_iand && cluster_size == 4) {
6995 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6996 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6997 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6998 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6999 } else if (op == nir_op_ior && cluster_size == 4) {
7000 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7001 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7002 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7003 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7004 //subgroupAnd(val) -> (exec & ~val) == 0
7005 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7006 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7007 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7008 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7009 //subgroupOr(val) -> (val & exec) != 0
7010 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7011 return bool_to_vector_condition(ctx, tmp);
7012 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7013 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7014 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7015 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7016 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7017 return bool_to_vector_condition(ctx, tmp);
7018 } else {
7019 //subgroupClustered{And,Or,Xor}(val, n) ->
7020 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7021 //cluster_offset = ~(n - 1) & lane_id
7022 //cluster_mask = ((1 << n) - 1)
7023 //subgroupClusteredAnd():
7024 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7025 //subgroupClusteredOr():
7026 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7027 //subgroupClusteredXor():
7028 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7029 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7030 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7031
7032 Temp tmp;
7033 if (op == nir_op_iand)
7034 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7035 else
7036 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7037
7038 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7039
7040 if (ctx->program->chip_class <= GFX7)
7041 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7042 else if (ctx->program->wave_size == 64)
7043 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7044 else
7045 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7046 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7047 if (cluster_mask != 0xffffffff)
7048 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7049
7050 Definition cmp_def = Definition();
7051 if (op == nir_op_iand) {
7052 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7053 } else if (op == nir_op_ior) {
7054 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7055 } else if (op == nir_op_ixor) {
7056 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7057 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7058 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7059 }
7060 cmp_def.setHint(vcc);
7061 return cmp_def.getTemp();
7062 }
7063 }
7064
7065 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7066 {
7067 Builder bld(ctx->program, ctx->block);
7068
7069 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7070 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7071 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7072 Temp tmp;
7073 if (op == nir_op_iand)
7074 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7075 else
7076 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7077
7078 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7079 Temp lo = lohi.def(0).getTemp();
7080 Temp hi = lohi.def(1).getTemp();
7081 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7082
7083 Definition cmp_def = Definition();
7084 if (op == nir_op_iand)
7085 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7086 else if (op == nir_op_ior)
7087 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7088 else if (op == nir_op_ixor)
7089 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7090 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7091 cmp_def.setHint(vcc);
7092 return cmp_def.getTemp();
7093 }
7094
7095 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7096 {
7097 Builder bld(ctx->program, ctx->block);
7098
7099 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7100 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7101 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7102 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7103 if (op == nir_op_iand)
7104 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7105 else if (op == nir_op_ior)
7106 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7107 else if (op == nir_op_ixor)
7108 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7109
7110 assert(false);
7111 return Temp();
7112 }
7113
7114 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7115 {
7116 Builder bld(ctx->program, ctx->block);
7117 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7118 if (src.regClass().type() == RegType::vgpr) {
7119 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7120 } else if (src.regClass() == s1) {
7121 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7122 } else if (src.regClass() == s2) {
7123 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7124 } else {
7125 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7126 nir_print_instr(&instr->instr, stderr);
7127 fprintf(stderr, "\n");
7128 }
7129 }
7130
7131 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7132 {
7133 Builder bld(ctx->program, ctx->block);
7134 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7135 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7136 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7137
7138 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7139 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7140 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7141 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7142
7143 /* Build DD X/Y */
7144 if (ctx->program->chip_class >= GFX8) {
7145 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7146 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7147 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7148 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7149 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7150 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7151 } else {
7152 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7153 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7154 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7155 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7156 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7157 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7158 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7159 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7160 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7161 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7162 }
7163
7164 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7165 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7166 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7167 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7168 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7169 Temp wqm1 = bld.tmp(v1);
7170 emit_wqm(ctx, tmp1, wqm1, true);
7171 Temp wqm2 = bld.tmp(v1);
7172 emit_wqm(ctx, tmp2, wqm2, true);
7173 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7174 return;
7175 }
7176
7177 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7178 {
7179 Builder bld(ctx->program, ctx->block);
7180 switch(instr->intrinsic) {
7181 case nir_intrinsic_load_barycentric_sample:
7182 case nir_intrinsic_load_barycentric_pixel:
7183 case nir_intrinsic_load_barycentric_centroid: {
7184 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7185 Temp bary = Temp(0, s2);
7186 switch (mode) {
7187 case INTERP_MODE_SMOOTH:
7188 case INTERP_MODE_NONE:
7189 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7190 bary = get_arg(ctx, ctx->args->ac.persp_center);
7191 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7192 bary = ctx->persp_centroid;
7193 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7194 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7195 break;
7196 case INTERP_MODE_NOPERSPECTIVE:
7197 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7198 bary = get_arg(ctx, ctx->args->ac.linear_center);
7199 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7200 bary = ctx->linear_centroid;
7201 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7202 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7203 break;
7204 default:
7205 break;
7206 }
7207 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7208 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7209 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7210 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7211 Operand(p1), Operand(p2));
7212 emit_split_vector(ctx, dst, 2);
7213 break;
7214 }
7215 case nir_intrinsic_load_barycentric_model: {
7216 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7217
7218 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7219 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7220 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7221 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7222 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7223 Operand(p1), Operand(p2), Operand(p3));
7224 emit_split_vector(ctx, dst, 3);
7225 break;
7226 }
7227 case nir_intrinsic_load_barycentric_at_sample: {
7228 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7229 switch (ctx->options->key.fs.num_samples) {
7230 case 2: sample_pos_offset += 1 << 3; break;
7231 case 4: sample_pos_offset += 3 << 3; break;
7232 case 8: sample_pos_offset += 7 << 3; break;
7233 default: break;
7234 }
7235 Temp sample_pos;
7236 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7237 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7238 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7239 if (addr.type() == RegType::sgpr) {
7240 Operand offset;
7241 if (const_addr) {
7242 sample_pos_offset += const_addr->u32 << 3;
7243 offset = Operand(sample_pos_offset);
7244 } else if (ctx->options->chip_class >= GFX9) {
7245 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7246 } else {
7247 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7248 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7249 }
7250
7251 Operand off = bld.copy(bld.def(s1), Operand(offset));
7252 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7253
7254 } else if (ctx->options->chip_class >= GFX9) {
7255 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7256 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7257 } else if (ctx->options->chip_class >= GFX7) {
7258 /* addr += private_segment_buffer + sample_pos_offset */
7259 Temp tmp0 = bld.tmp(s1);
7260 Temp tmp1 = bld.tmp(s1);
7261 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7262 Definition scc_tmp = bld.def(s1, scc);
7263 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7264 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7265 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7266 Temp pck0 = bld.tmp(v1);
7267 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7268 tmp1 = as_vgpr(ctx, tmp1);
7269 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7270 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7271
7272 /* sample_pos = flat_load_dwordx2 addr */
7273 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7274 } else {
7275 assert(ctx->options->chip_class == GFX6);
7276
7277 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7278 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7279 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7280
7281 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7282 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7283
7284 sample_pos = bld.tmp(v2);
7285
7286 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7287 load->definitions[0] = Definition(sample_pos);
7288 load->operands[0] = Operand(rsrc);
7289 load->operands[1] = Operand(addr);
7290 load->operands[2] = Operand(0u);
7291 load->offset = sample_pos_offset;
7292 load->offen = 0;
7293 load->addr64 = true;
7294 load->glc = false;
7295 load->dlc = false;
7296 load->disable_wqm = false;
7297 load->barrier = barrier_none;
7298 load->can_reorder = true;
7299 ctx->block->instructions.emplace_back(std::move(load));
7300 }
7301
7302 /* sample_pos -= 0.5 */
7303 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7304 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7305 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7306 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7307 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7308
7309 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7310 break;
7311 }
7312 case nir_intrinsic_load_barycentric_at_offset: {
7313 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7314 RegClass rc = RegClass(offset.type(), 1);
7315 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7316 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7317 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7318 break;
7319 }
7320 case nir_intrinsic_load_front_face: {
7321 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7322 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7323 break;
7324 }
7325 case nir_intrinsic_load_view_index: {
7326 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7327 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7328 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7329 break;
7330 }
7331
7332 /* fallthrough */
7333 }
7334 case nir_intrinsic_load_layer_id: {
7335 unsigned idx = nir_intrinsic_base(instr);
7336 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7337 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7338 break;
7339 }
7340 case nir_intrinsic_load_frag_coord: {
7341 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7342 break;
7343 }
7344 case nir_intrinsic_load_sample_pos: {
7345 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7346 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7347 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7348 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7349 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7350 break;
7351 }
7352 case nir_intrinsic_load_tess_coord:
7353 visit_load_tess_coord(ctx, instr);
7354 break;
7355 case nir_intrinsic_load_interpolated_input:
7356 visit_load_interpolated_input(ctx, instr);
7357 break;
7358 case nir_intrinsic_store_output:
7359 visit_store_output(ctx, instr);
7360 break;
7361 case nir_intrinsic_load_input:
7362 case nir_intrinsic_load_input_vertex:
7363 visit_load_input(ctx, instr);
7364 break;
7365 case nir_intrinsic_load_output:
7366 visit_load_output(ctx, instr);
7367 break;
7368 case nir_intrinsic_load_per_vertex_input:
7369 visit_load_per_vertex_input(ctx, instr);
7370 break;
7371 case nir_intrinsic_load_per_vertex_output:
7372 visit_load_per_vertex_output(ctx, instr);
7373 break;
7374 case nir_intrinsic_store_per_vertex_output:
7375 visit_store_per_vertex_output(ctx, instr);
7376 break;
7377 case nir_intrinsic_load_ubo:
7378 visit_load_ubo(ctx, instr);
7379 break;
7380 case nir_intrinsic_load_push_constant:
7381 visit_load_push_constant(ctx, instr);
7382 break;
7383 case nir_intrinsic_load_constant:
7384 visit_load_constant(ctx, instr);
7385 break;
7386 case nir_intrinsic_vulkan_resource_index:
7387 visit_load_resource(ctx, instr);
7388 break;
7389 case nir_intrinsic_discard:
7390 visit_discard(ctx, instr);
7391 break;
7392 case nir_intrinsic_discard_if:
7393 visit_discard_if(ctx, instr);
7394 break;
7395 case nir_intrinsic_load_shared:
7396 visit_load_shared(ctx, instr);
7397 break;
7398 case nir_intrinsic_store_shared:
7399 visit_store_shared(ctx, instr);
7400 break;
7401 case nir_intrinsic_shared_atomic_add:
7402 case nir_intrinsic_shared_atomic_imin:
7403 case nir_intrinsic_shared_atomic_umin:
7404 case nir_intrinsic_shared_atomic_imax:
7405 case nir_intrinsic_shared_atomic_umax:
7406 case nir_intrinsic_shared_atomic_and:
7407 case nir_intrinsic_shared_atomic_or:
7408 case nir_intrinsic_shared_atomic_xor:
7409 case nir_intrinsic_shared_atomic_exchange:
7410 case nir_intrinsic_shared_atomic_comp_swap:
7411 visit_shared_atomic(ctx, instr);
7412 break;
7413 case nir_intrinsic_image_deref_load:
7414 visit_image_load(ctx, instr);
7415 break;
7416 case nir_intrinsic_image_deref_store:
7417 visit_image_store(ctx, instr);
7418 break;
7419 case nir_intrinsic_image_deref_atomic_add:
7420 case nir_intrinsic_image_deref_atomic_umin:
7421 case nir_intrinsic_image_deref_atomic_imin:
7422 case nir_intrinsic_image_deref_atomic_umax:
7423 case nir_intrinsic_image_deref_atomic_imax:
7424 case nir_intrinsic_image_deref_atomic_and:
7425 case nir_intrinsic_image_deref_atomic_or:
7426 case nir_intrinsic_image_deref_atomic_xor:
7427 case nir_intrinsic_image_deref_atomic_exchange:
7428 case nir_intrinsic_image_deref_atomic_comp_swap:
7429 visit_image_atomic(ctx, instr);
7430 break;
7431 case nir_intrinsic_image_deref_size:
7432 visit_image_size(ctx, instr);
7433 break;
7434 case nir_intrinsic_load_ssbo:
7435 visit_load_ssbo(ctx, instr);
7436 break;
7437 case nir_intrinsic_store_ssbo:
7438 visit_store_ssbo(ctx, instr);
7439 break;
7440 case nir_intrinsic_load_global:
7441 visit_load_global(ctx, instr);
7442 break;
7443 case nir_intrinsic_store_global:
7444 visit_store_global(ctx, instr);
7445 break;
7446 case nir_intrinsic_global_atomic_add:
7447 case nir_intrinsic_global_atomic_imin:
7448 case nir_intrinsic_global_atomic_umin:
7449 case nir_intrinsic_global_atomic_imax:
7450 case nir_intrinsic_global_atomic_umax:
7451 case nir_intrinsic_global_atomic_and:
7452 case nir_intrinsic_global_atomic_or:
7453 case nir_intrinsic_global_atomic_xor:
7454 case nir_intrinsic_global_atomic_exchange:
7455 case nir_intrinsic_global_atomic_comp_swap:
7456 visit_global_atomic(ctx, instr);
7457 break;
7458 case nir_intrinsic_ssbo_atomic_add:
7459 case nir_intrinsic_ssbo_atomic_imin:
7460 case nir_intrinsic_ssbo_atomic_umin:
7461 case nir_intrinsic_ssbo_atomic_imax:
7462 case nir_intrinsic_ssbo_atomic_umax:
7463 case nir_intrinsic_ssbo_atomic_and:
7464 case nir_intrinsic_ssbo_atomic_or:
7465 case nir_intrinsic_ssbo_atomic_xor:
7466 case nir_intrinsic_ssbo_atomic_exchange:
7467 case nir_intrinsic_ssbo_atomic_comp_swap:
7468 visit_atomic_ssbo(ctx, instr);
7469 break;
7470 case nir_intrinsic_load_scratch:
7471 visit_load_scratch(ctx, instr);
7472 break;
7473 case nir_intrinsic_store_scratch:
7474 visit_store_scratch(ctx, instr);
7475 break;
7476 case nir_intrinsic_get_buffer_size:
7477 visit_get_buffer_size(ctx, instr);
7478 break;
7479 case nir_intrinsic_control_barrier: {
7480 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7481 /* GFX6 only (thanks to a hw bug workaround):
7482 * The real barrier instruction isn’t needed, because an entire patch
7483 * always fits into a single wave.
7484 */
7485 break;
7486 }
7487
7488 if (ctx->program->workgroup_size > ctx->program->wave_size)
7489 bld.sopp(aco_opcode::s_barrier);
7490
7491 break;
7492 }
7493 case nir_intrinsic_memory_barrier_tcs_patch:
7494 case nir_intrinsic_group_memory_barrier:
7495 case nir_intrinsic_memory_barrier:
7496 case nir_intrinsic_memory_barrier_buffer:
7497 case nir_intrinsic_memory_barrier_image:
7498 case nir_intrinsic_memory_barrier_shared:
7499 emit_memory_barrier(ctx, instr);
7500 break;
7501 case nir_intrinsic_load_num_work_groups: {
7502 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7503 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7504 emit_split_vector(ctx, dst, 3);
7505 break;
7506 }
7507 case nir_intrinsic_load_local_invocation_id: {
7508 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7509 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7510 emit_split_vector(ctx, dst, 3);
7511 break;
7512 }
7513 case nir_intrinsic_load_work_group_id: {
7514 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7515 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7516 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7517 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7518 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7519 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7520 emit_split_vector(ctx, dst, 3);
7521 break;
7522 }
7523 case nir_intrinsic_load_local_invocation_index: {
7524 Temp id = emit_mbcnt(ctx, bld.def(v1));
7525
7526 /* The tg_size bits [6:11] contain the subgroup id,
7527 * we need this multiplied by the wave size, and then OR the thread id to it.
7528 */
7529 if (ctx->program->wave_size == 64) {
7530 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7531 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7532 get_arg(ctx, ctx->args->ac.tg_size));
7533 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7534 } else {
7535 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7536 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7537 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7538 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7539 }
7540 break;
7541 }
7542 case nir_intrinsic_load_subgroup_id: {
7543 if (ctx->stage == compute_cs) {
7544 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7545 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7546 } else {
7547 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7548 }
7549 break;
7550 }
7551 case nir_intrinsic_load_subgroup_invocation: {
7552 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7553 break;
7554 }
7555 case nir_intrinsic_load_num_subgroups: {
7556 if (ctx->stage == compute_cs)
7557 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7558 get_arg(ctx, ctx->args->ac.tg_size));
7559 else
7560 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7561 break;
7562 }
7563 case nir_intrinsic_ballot: {
7564 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7565 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7566 Definition tmp = bld.def(dst.regClass());
7567 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7568 if (instr->src[0].ssa->bit_size == 1) {
7569 assert(src.regClass() == bld.lm);
7570 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7571 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7572 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7573 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7574 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7575 } else {
7576 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7577 nir_print_instr(&instr->instr, stderr);
7578 fprintf(stderr, "\n");
7579 }
7580 if (dst.size() != bld.lm.size()) {
7581 /* Wave32 with ballot size set to 64 */
7582 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7583 }
7584 emit_wqm(ctx, tmp.getTemp(), dst);
7585 break;
7586 }
7587 case nir_intrinsic_shuffle:
7588 case nir_intrinsic_read_invocation: {
7589 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7590 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7591 emit_uniform_subgroup(ctx, instr, src);
7592 } else {
7593 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7594 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7595 tid = bld.as_uniform(tid);
7596 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7597 if (src.regClass() == v1) {
7598 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7599 } else if (src.regClass() == v2) {
7600 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7601 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7602 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7603 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7604 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7605 emit_split_vector(ctx, dst, 2);
7606 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7607 assert(src.regClass() == bld.lm);
7608 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7609 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7610 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7611 assert(src.regClass() == bld.lm);
7612 Temp tmp;
7613 if (ctx->program->chip_class <= GFX7)
7614 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7615 else if (ctx->program->wave_size == 64)
7616 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7617 else
7618 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7619 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7620 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7621 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7622 } else {
7623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7624 nir_print_instr(&instr->instr, stderr);
7625 fprintf(stderr, "\n");
7626 }
7627 }
7628 break;
7629 }
7630 case nir_intrinsic_load_sample_id: {
7631 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7632 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7633 break;
7634 }
7635 case nir_intrinsic_load_sample_mask_in: {
7636 visit_load_sample_mask_in(ctx, instr);
7637 break;
7638 }
7639 case nir_intrinsic_read_first_invocation: {
7640 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7641 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7642 if (src.regClass() == v1) {
7643 emit_wqm(ctx,
7644 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7645 dst);
7646 } else if (src.regClass() == v2) {
7647 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7648 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7649 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7650 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7651 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7652 emit_split_vector(ctx, dst, 2);
7653 } else if (instr->dest.ssa.bit_size == 1) {
7654 assert(src.regClass() == bld.lm);
7655 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7656 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7657 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7658 } else if (src.regClass() == s1) {
7659 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7660 } else if (src.regClass() == s2) {
7661 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7662 } else {
7663 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7664 nir_print_instr(&instr->instr, stderr);
7665 fprintf(stderr, "\n");
7666 }
7667 break;
7668 }
7669 case nir_intrinsic_vote_all: {
7670 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7671 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7672 assert(src.regClass() == bld.lm);
7673 assert(dst.regClass() == bld.lm);
7674
7675 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7676 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7677 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7678 break;
7679 }
7680 case nir_intrinsic_vote_any: {
7681 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7682 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7683 assert(src.regClass() == bld.lm);
7684 assert(dst.regClass() == bld.lm);
7685
7686 Temp tmp = bool_to_scalar_condition(ctx, src);
7687 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7688 break;
7689 }
7690 case nir_intrinsic_reduce:
7691 case nir_intrinsic_inclusive_scan:
7692 case nir_intrinsic_exclusive_scan: {
7693 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7694 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7695 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7696 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7697 nir_intrinsic_cluster_size(instr) : 0;
7698 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7699
7700 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7701 emit_uniform_subgroup(ctx, instr, src);
7702 } else if (instr->dest.ssa.bit_size == 1) {
7703 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7704 op = nir_op_iand;
7705 else if (op == nir_op_iadd)
7706 op = nir_op_ixor;
7707 else if (op == nir_op_umax || op == nir_op_imax)
7708 op = nir_op_ior;
7709 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7710
7711 switch (instr->intrinsic) {
7712 case nir_intrinsic_reduce:
7713 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7714 break;
7715 case nir_intrinsic_exclusive_scan:
7716 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7717 break;
7718 case nir_intrinsic_inclusive_scan:
7719 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7720 break;
7721 default:
7722 assert(false);
7723 }
7724 } else if (cluster_size == 1) {
7725 bld.copy(Definition(dst), src);
7726 } else {
7727 src = as_vgpr(ctx, src);
7728
7729 ReduceOp reduce_op;
7730 switch (op) {
7731 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7732 CASE(iadd)
7733 CASE(imul)
7734 CASE(fadd)
7735 CASE(fmul)
7736 CASE(imin)
7737 CASE(umin)
7738 CASE(fmin)
7739 CASE(imax)
7740 CASE(umax)
7741 CASE(fmax)
7742 CASE(iand)
7743 CASE(ior)
7744 CASE(ixor)
7745 default:
7746 unreachable("unknown reduction op");
7747 #undef CASE
7748 }
7749
7750 aco_opcode aco_op;
7751 switch (instr->intrinsic) {
7752 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7753 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7754 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7755 default:
7756 unreachable("unknown reduce intrinsic");
7757 }
7758
7759 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7760 reduce->operands[0] = Operand(src);
7761 // filled in by aco_reduce_assign.cpp, used internally as part of the
7762 // reduce sequence
7763 assert(dst.size() == 1 || dst.size() == 2);
7764 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7765 reduce->operands[2] = Operand(v1.as_linear());
7766
7767 Temp tmp_dst = bld.tmp(dst.regClass());
7768 reduce->definitions[0] = Definition(tmp_dst);
7769 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7770 reduce->definitions[2] = Definition();
7771 reduce->definitions[3] = Definition(scc, s1);
7772 reduce->definitions[4] = Definition();
7773 reduce->reduce_op = reduce_op;
7774 reduce->cluster_size = cluster_size;
7775 ctx->block->instructions.emplace_back(std::move(reduce));
7776
7777 emit_wqm(ctx, tmp_dst, dst);
7778 }
7779 break;
7780 }
7781 case nir_intrinsic_quad_broadcast: {
7782 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7783 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7784 emit_uniform_subgroup(ctx, instr, src);
7785 } else {
7786 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7787 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7788 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7789
7790 if (instr->dest.ssa.bit_size == 1) {
7791 assert(src.regClass() == bld.lm);
7792 assert(dst.regClass() == bld.lm);
7793 uint32_t half_mask = 0x11111111u << lane;
7794 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7795 Temp tmp = bld.tmp(bld.lm);
7796 bld.sop1(Builder::s_wqm, Definition(tmp),
7797 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7798 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7799 emit_wqm(ctx, tmp, dst);
7800 } else if (instr->dest.ssa.bit_size == 32) {
7801 if (ctx->program->chip_class >= GFX8)
7802 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7803 else
7804 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7805 } else if (instr->dest.ssa.bit_size == 64) {
7806 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7807 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7808 if (ctx->program->chip_class >= GFX8) {
7809 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7810 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7811 } else {
7812 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7813 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7814 }
7815 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7816 emit_split_vector(ctx, dst, 2);
7817 } else {
7818 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7819 nir_print_instr(&instr->instr, stderr);
7820 fprintf(stderr, "\n");
7821 }
7822 }
7823 break;
7824 }
7825 case nir_intrinsic_quad_swap_horizontal:
7826 case nir_intrinsic_quad_swap_vertical:
7827 case nir_intrinsic_quad_swap_diagonal:
7828 case nir_intrinsic_quad_swizzle_amd: {
7829 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7830 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7831 emit_uniform_subgroup(ctx, instr, src);
7832 break;
7833 }
7834 uint16_t dpp_ctrl = 0;
7835 switch (instr->intrinsic) {
7836 case nir_intrinsic_quad_swap_horizontal:
7837 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7838 break;
7839 case nir_intrinsic_quad_swap_vertical:
7840 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7841 break;
7842 case nir_intrinsic_quad_swap_diagonal:
7843 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7844 break;
7845 case nir_intrinsic_quad_swizzle_amd:
7846 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7847 break;
7848 default:
7849 break;
7850 }
7851 if (ctx->program->chip_class < GFX8)
7852 dpp_ctrl |= (1 << 15);
7853
7854 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7855 if (instr->dest.ssa.bit_size == 1) {
7856 assert(src.regClass() == bld.lm);
7857 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7858 if (ctx->program->chip_class >= GFX8)
7859 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7860 else
7861 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7862 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7863 emit_wqm(ctx, tmp, dst);
7864 } else if (instr->dest.ssa.bit_size == 32) {
7865 Temp tmp;
7866 if (ctx->program->chip_class >= GFX8)
7867 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7868 else
7869 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7870 emit_wqm(ctx, tmp, dst);
7871 } else if (instr->dest.ssa.bit_size == 64) {
7872 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7873 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7874 if (ctx->program->chip_class >= GFX8) {
7875 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7876 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7877 } else {
7878 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7879 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7880 }
7881 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7882 emit_split_vector(ctx, dst, 2);
7883 } else {
7884 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7885 nir_print_instr(&instr->instr, stderr);
7886 fprintf(stderr, "\n");
7887 }
7888 break;
7889 }
7890 case nir_intrinsic_masked_swizzle_amd: {
7891 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7892 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7893 emit_uniform_subgroup(ctx, instr, src);
7894 break;
7895 }
7896 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7897 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7898 if (dst.regClass() == v1) {
7899 emit_wqm(ctx,
7900 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7901 dst);
7902 } else if (dst.regClass() == v2) {
7903 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7904 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7905 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7906 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7907 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7908 emit_split_vector(ctx, dst, 2);
7909 } else {
7910 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7911 nir_print_instr(&instr->instr, stderr);
7912 fprintf(stderr, "\n");
7913 }
7914 break;
7915 }
7916 case nir_intrinsic_write_invocation_amd: {
7917 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7918 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7919 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7920 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7921 if (dst.regClass() == v1) {
7922 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7923 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7924 } else if (dst.regClass() == v2) {
7925 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7926 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7927 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7928 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7929 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7930 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7931 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7932 emit_split_vector(ctx, dst, 2);
7933 } else {
7934 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7935 nir_print_instr(&instr->instr, stderr);
7936 fprintf(stderr, "\n");
7937 }
7938 break;
7939 }
7940 case nir_intrinsic_mbcnt_amd: {
7941 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7942 RegClass rc = RegClass(src.type(), 1);
7943 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7944 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7945 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7946 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7947 emit_wqm(ctx, wqm_tmp, dst);
7948 break;
7949 }
7950 case nir_intrinsic_load_helper_invocation: {
7951 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7952 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7953 ctx->block->kind |= block_kind_needs_lowering;
7954 ctx->program->needs_exact = true;
7955 break;
7956 }
7957 case nir_intrinsic_is_helper_invocation: {
7958 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7959 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7960 ctx->block->kind |= block_kind_needs_lowering;
7961 ctx->program->needs_exact = true;
7962 break;
7963 }
7964 case nir_intrinsic_demote:
7965 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7966
7967 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7968 ctx->cf_info.exec_potentially_empty_discard = true;
7969 ctx->block->kind |= block_kind_uses_demote;
7970 ctx->program->needs_exact = true;
7971 break;
7972 case nir_intrinsic_demote_if: {
7973 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7974 assert(src.regClass() == bld.lm);
7975 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7976 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7977
7978 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7979 ctx->cf_info.exec_potentially_empty_discard = true;
7980 ctx->block->kind |= block_kind_uses_demote;
7981 ctx->program->needs_exact = true;
7982 break;
7983 }
7984 case nir_intrinsic_first_invocation: {
7985 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7986 get_ssa_temp(ctx, &instr->dest.ssa));
7987 break;
7988 }
7989 case nir_intrinsic_shader_clock:
7990 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7991 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7992 break;
7993 case nir_intrinsic_load_vertex_id_zero_base: {
7994 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7995 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7996 break;
7997 }
7998 case nir_intrinsic_load_first_vertex: {
7999 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8000 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8001 break;
8002 }
8003 case nir_intrinsic_load_base_instance: {
8004 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8005 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8006 break;
8007 }
8008 case nir_intrinsic_load_instance_id: {
8009 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8010 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8011 break;
8012 }
8013 case nir_intrinsic_load_draw_id: {
8014 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8015 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8016 break;
8017 }
8018 case nir_intrinsic_load_invocation_id: {
8019 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8020
8021 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8022 if (ctx->options->chip_class >= GFX10)
8023 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8024 else
8025 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8026 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8027 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8028 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8029 } else {
8030 unreachable("Unsupported stage for load_invocation_id");
8031 }
8032
8033 break;
8034 }
8035 case nir_intrinsic_load_primitive_id: {
8036 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8037
8038 switch (ctx->shader->info.stage) {
8039 case MESA_SHADER_GEOMETRY:
8040 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8041 break;
8042 case MESA_SHADER_TESS_CTRL:
8043 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8044 break;
8045 case MESA_SHADER_TESS_EVAL:
8046 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8047 break;
8048 default:
8049 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8050 }
8051
8052 break;
8053 }
8054 case nir_intrinsic_load_patch_vertices_in: {
8055 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8056 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8057
8058 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8059 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8060 break;
8061 }
8062 case nir_intrinsic_emit_vertex_with_counter: {
8063 visit_emit_vertex_with_counter(ctx, instr);
8064 break;
8065 }
8066 case nir_intrinsic_end_primitive_with_counter: {
8067 unsigned stream = nir_intrinsic_stream_id(instr);
8068 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8069 break;
8070 }
8071 case nir_intrinsic_set_vertex_count: {
8072 /* unused, the HW keeps track of this for us */
8073 break;
8074 }
8075 default:
8076 fprintf(stderr, "Unimplemented intrinsic instr: ");
8077 nir_print_instr(&instr->instr, stderr);
8078 fprintf(stderr, "\n");
8079 abort();
8080
8081 break;
8082 }
8083 }
8084
8085
8086 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8087 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8088 enum glsl_base_type *stype)
8089 {
8090 nir_deref_instr *texture_deref_instr = NULL;
8091 nir_deref_instr *sampler_deref_instr = NULL;
8092 int plane = -1;
8093
8094 for (unsigned i = 0; i < instr->num_srcs; i++) {
8095 switch (instr->src[i].src_type) {
8096 case nir_tex_src_texture_deref:
8097 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8098 break;
8099 case nir_tex_src_sampler_deref:
8100 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8101 break;
8102 case nir_tex_src_plane:
8103 plane = nir_src_as_int(instr->src[i].src);
8104 break;
8105 default:
8106 break;
8107 }
8108 }
8109
8110 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8111
8112 if (!sampler_deref_instr)
8113 sampler_deref_instr = texture_deref_instr;
8114
8115 if (plane >= 0) {
8116 assert(instr->op != nir_texop_txf_ms &&
8117 instr->op != nir_texop_samples_identical);
8118 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8119 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8120 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8121 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8122 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8123 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8124 } else {
8125 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8126 }
8127 if (samp_ptr) {
8128 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8129
8130 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8131 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8132 Builder bld(ctx->program, ctx->block);
8133
8134 /* to avoid unnecessary moves, we split and recombine sampler and image */
8135 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8136 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8137 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8138 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8139 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8140 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8141 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8142 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8143
8144 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8145 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8146 img[0], img[1], img[2], img[3],
8147 img[4], img[5], img[6], img[7]);
8148 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8149 samp[0], samp[1], samp[2], samp[3]);
8150 }
8151 }
8152 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8153 instr->op == nir_texop_samples_identical))
8154 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8155 }
8156
8157 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8158 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8159 {
8160 Builder bld(ctx->program, ctx->block);
8161
8162 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8163 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8164 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8165
8166 Operand neg_one(0xbf800000u);
8167 Operand one(0x3f800000u);
8168 Operand two(0x40000000u);
8169 Operand four(0x40800000u);
8170
8171 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8172 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8173 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8174
8175 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8176 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8177 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8178 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8179
8180 // select sc
8181 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8182 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8183 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8184 one, is_ma_y);
8185 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8186
8187 // select tc
8188 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8189 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8190 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8191
8192 // select ma
8193 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8194 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8195 deriv_z, is_ma_z);
8196 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8197 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8198 }
8199
8200 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8201 {
8202 Builder bld(ctx->program, ctx->block);
8203 Temp ma, tc, sc, id;
8204
8205 if (is_array) {
8206 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8207
8208 // see comment in ac_prepare_cube_coords()
8209 if (ctx->options->chip_class <= GFX8)
8210 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8211 }
8212
8213 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8214
8215 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8216 vop3a->operands[0] = Operand(ma);
8217 vop3a->abs[0] = true;
8218 Temp invma = bld.tmp(v1);
8219 vop3a->definitions[0] = Definition(invma);
8220 ctx->block->instructions.emplace_back(std::move(vop3a));
8221
8222 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8223 if (!is_deriv)
8224 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8225
8226 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8227 if (!is_deriv)
8228 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8229
8230 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8231
8232 if (is_deriv) {
8233 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8234 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8235
8236 for (unsigned i = 0; i < 2; i++) {
8237 // see comment in ac_prepare_cube_coords()
8238 Temp deriv_ma;
8239 Temp deriv_sc, deriv_tc;
8240 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8241 &deriv_ma, &deriv_sc, &deriv_tc);
8242
8243 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8244
8245 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8246 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8247 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8248 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8249 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8250 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8251 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8252 }
8253
8254 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8255 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8256 }
8257
8258 if (is_array)
8259 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8260 coords.resize(3);
8261 coords[0] = sc;
8262 coords[1] = tc;
8263 coords[2] = id;
8264 }
8265
8266 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8267 {
8268 if (vec->parent_instr->type != nir_instr_type_alu)
8269 return;
8270 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8271 if (vec_instr->op != nir_op_vec(vec->num_components))
8272 return;
8273
8274 for (unsigned i = 0; i < vec->num_components; i++) {
8275 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8276 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8277 }
8278 }
8279
8280 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8281 {
8282 Builder bld(ctx->program, ctx->block);
8283 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8284 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8285 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8286 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8287 std::vector<Temp> coords;
8288 std::vector<Temp> derivs;
8289 nir_const_value *sample_index_cv = NULL;
8290 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8291 enum glsl_base_type stype;
8292 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8293
8294 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8295 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8296 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8297 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8298
8299 for (unsigned i = 0; i < instr->num_srcs; i++) {
8300 switch (instr->src[i].src_type) {
8301 case nir_tex_src_coord: {
8302 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8303 for (unsigned i = 0; i < coord.size(); i++)
8304 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8305 break;
8306 }
8307 case nir_tex_src_bias:
8308 if (instr->op == nir_texop_txb) {
8309 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8310 has_bias = true;
8311 }
8312 break;
8313 case nir_tex_src_lod: {
8314 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8315
8316 if (val && val->f32 <= 0.0) {
8317 level_zero = true;
8318 } else {
8319 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8320 has_lod = true;
8321 }
8322 break;
8323 }
8324 case nir_tex_src_comparator:
8325 if (instr->is_shadow) {
8326 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8327 has_compare = true;
8328 }
8329 break;
8330 case nir_tex_src_offset:
8331 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8332 get_const_vec(instr->src[i].src.ssa, const_offset);
8333 has_offset = true;
8334 break;
8335 case nir_tex_src_ddx:
8336 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8337 has_ddx = true;
8338 break;
8339 case nir_tex_src_ddy:
8340 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8341 has_ddy = true;
8342 break;
8343 case nir_tex_src_ms_index:
8344 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8345 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8346 has_sample_index = true;
8347 break;
8348 case nir_tex_src_texture_offset:
8349 case nir_tex_src_sampler_offset:
8350 default:
8351 break;
8352 }
8353 }
8354
8355 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8356 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8357
8358 if (instr->op == nir_texop_texture_samples) {
8359 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8360
8361 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8362 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8363 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8364 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8365
8366 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8367 samples, Operand(1u), bld.scc(is_msaa));
8368 return;
8369 }
8370
8371 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8372 aco_ptr<Instruction> tmp_instr;
8373 Temp acc, pack = Temp();
8374
8375 uint32_t pack_const = 0;
8376 for (unsigned i = 0; i < offset.size(); i++) {
8377 if (!const_offset[i])
8378 continue;
8379 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8380 }
8381
8382 if (offset.type() == RegType::sgpr) {
8383 for (unsigned i = 0; i < offset.size(); i++) {
8384 if (const_offset[i])
8385 continue;
8386
8387 acc = emit_extract_vector(ctx, offset, i, s1);
8388 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8389
8390 if (i) {
8391 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8392 }
8393
8394 if (pack == Temp()) {
8395 pack = acc;
8396 } else {
8397 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8398 }
8399 }
8400
8401 if (pack_const && pack != Temp())
8402 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8403 } else {
8404 for (unsigned i = 0; i < offset.size(); i++) {
8405 if (const_offset[i])
8406 continue;
8407
8408 acc = emit_extract_vector(ctx, offset, i, v1);
8409 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8410
8411 if (i) {
8412 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8413 }
8414
8415 if (pack == Temp()) {
8416 pack = acc;
8417 } else {
8418 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8419 }
8420 }
8421
8422 if (pack_const && pack != Temp())
8423 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8424 }
8425 if (pack_const && pack == Temp())
8426 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8427 else if (pack == Temp())
8428 has_offset = false;
8429 else
8430 offset = pack;
8431 }
8432
8433 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8434 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8435
8436 /* pack derivatives */
8437 if (has_ddx || has_ddy) {
8438 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8439 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8440 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8441 derivs = {ddx, zero, ddy, zero};
8442 } else {
8443 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8444 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8445 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8446 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8447 }
8448 has_derivs = true;
8449 }
8450
8451 if (instr->coord_components > 1 &&
8452 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8453 instr->is_array &&
8454 instr->op != nir_texop_txf)
8455 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8456
8457 if (instr->coord_components > 2 &&
8458 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8459 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8460 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8461 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8462 instr->is_array &&
8463 instr->op != nir_texop_txf &&
8464 instr->op != nir_texop_txf_ms &&
8465 instr->op != nir_texop_fragment_fetch &&
8466 instr->op != nir_texop_fragment_mask_fetch)
8467 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8468
8469 if (ctx->options->chip_class == GFX9 &&
8470 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8471 instr->op != nir_texop_lod && instr->coord_components) {
8472 assert(coords.size() > 0 && coords.size() < 3);
8473
8474 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8475 Operand((uint32_t) 0) :
8476 Operand((uint32_t) 0x3f000000)));
8477 }
8478
8479 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8480
8481 if (instr->op == nir_texop_samples_identical)
8482 resource = fmask_ptr;
8483
8484 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8485 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8486 instr->op != nir_texop_txs &&
8487 instr->op != nir_texop_fragment_fetch &&
8488 instr->op != nir_texop_fragment_mask_fetch) {
8489 assert(has_sample_index);
8490 Operand op(sample_index);
8491 if (sample_index_cv)
8492 op = Operand(sample_index_cv->u32);
8493 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8494 }
8495
8496 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8497 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8498 Temp off = emit_extract_vector(ctx, offset, i, v1);
8499 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8500 }
8501 has_offset = false;
8502 }
8503
8504 /* Build tex instruction */
8505 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8506 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8507 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8508 : 0;
8509 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8510 Temp tmp_dst = dst;
8511
8512 /* gather4 selects the component by dmask and always returns vec4 */
8513 if (instr->op == nir_texop_tg4) {
8514 assert(instr->dest.ssa.num_components == 4);
8515 if (instr->is_shadow)
8516 dmask = 1;
8517 else
8518 dmask = 1 << instr->component;
8519 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8520 tmp_dst = bld.tmp(v4);
8521 } else if (instr->op == nir_texop_samples_identical) {
8522 tmp_dst = bld.tmp(v1);
8523 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8524 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8525 }
8526
8527 aco_ptr<MIMG_instruction> tex;
8528 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8529 if (!has_lod)
8530 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8531
8532 bool div_by_6 = instr->op == nir_texop_txs &&
8533 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8534 instr->is_array &&
8535 (dmask & (1 << 2));
8536 if (tmp_dst.id() == dst.id() && div_by_6)
8537 tmp_dst = bld.tmp(tmp_dst.regClass());
8538
8539 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8540 tex->operands[0] = Operand(resource);
8541 tex->operands[1] = Operand(s4); /* no sampler */
8542 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8543 if (ctx->options->chip_class == GFX9 &&
8544 instr->op == nir_texop_txs &&
8545 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8546 instr->is_array) {
8547 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8548 } else if (instr->op == nir_texop_query_levels) {
8549 tex->dmask = 1 << 3;
8550 } else {
8551 tex->dmask = dmask;
8552 }
8553 tex->da = da;
8554 tex->definitions[0] = Definition(tmp_dst);
8555 tex->dim = dim;
8556 tex->can_reorder = true;
8557 ctx->block->instructions.emplace_back(std::move(tex));
8558
8559 if (div_by_6) {
8560 /* divide 3rd value by 6 by multiplying with magic number */
8561 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8562 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8563 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8564 assert(instr->dest.ssa.num_components == 3);
8565 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8566 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8567 emit_extract_vector(ctx, tmp_dst, 0, v1),
8568 emit_extract_vector(ctx, tmp_dst, 1, v1),
8569 by_6);
8570
8571 }
8572
8573 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8574 return;
8575 }
8576
8577 Temp tg4_compare_cube_wa64 = Temp();
8578
8579 if (tg4_integer_workarounds) {
8580 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8581 tex->operands[0] = Operand(resource);
8582 tex->operands[1] = Operand(s4); /* no sampler */
8583 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8584 tex->dim = dim;
8585 tex->dmask = 0x3;
8586 tex->da = da;
8587 Temp size = bld.tmp(v2);
8588 tex->definitions[0] = Definition(size);
8589 tex->can_reorder = true;
8590 ctx->block->instructions.emplace_back(std::move(tex));
8591 emit_split_vector(ctx, size, size.size());
8592
8593 Temp half_texel[2];
8594 for (unsigned i = 0; i < 2; i++) {
8595 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8596 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8597 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8598 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8599 }
8600
8601 Temp new_coords[2] = {
8602 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8603 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8604 };
8605
8606 if (tg4_integer_cube_workaround) {
8607 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8608 Temp desc[resource.size()];
8609 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8610 Format::PSEUDO, 1, resource.size())};
8611 split->operands[0] = Operand(resource);
8612 for (unsigned i = 0; i < resource.size(); i++) {
8613 desc[i] = bld.tmp(s1);
8614 split->definitions[i] = Definition(desc[i]);
8615 }
8616 ctx->block->instructions.emplace_back(std::move(split));
8617
8618 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8619 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8620 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8621
8622 Temp nfmt;
8623 if (stype == GLSL_TYPE_UINT) {
8624 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8625 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8626 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8627 bld.scc(compare_cube_wa));
8628 } else {
8629 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8630 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8631 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8632 bld.scc(compare_cube_wa));
8633 }
8634 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8635 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8636
8637 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8638
8639 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8640 Operand((uint32_t)C_008F14_NUM_FORMAT));
8641 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8642
8643 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8644 Format::PSEUDO, resource.size(), 1)};
8645 for (unsigned i = 0; i < resource.size(); i++)
8646 vec->operands[i] = Operand(desc[i]);
8647 resource = bld.tmp(resource.regClass());
8648 vec->definitions[0] = Definition(resource);
8649 ctx->block->instructions.emplace_back(std::move(vec));
8650
8651 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8652 new_coords[0], coords[0], tg4_compare_cube_wa64);
8653 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8654 new_coords[1], coords[1], tg4_compare_cube_wa64);
8655 }
8656 coords[0] = new_coords[0];
8657 coords[1] = new_coords[1];
8658 }
8659
8660 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8661 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8662
8663 assert(coords.size() == 1);
8664 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8665 aco_opcode op;
8666 switch (last_bit) {
8667 case 1:
8668 op = aco_opcode::buffer_load_format_x; break;
8669 case 2:
8670 op = aco_opcode::buffer_load_format_xy; break;
8671 case 3:
8672 op = aco_opcode::buffer_load_format_xyz; break;
8673 case 4:
8674 op = aco_opcode::buffer_load_format_xyzw; break;
8675 default:
8676 unreachable("Tex instruction loads more than 4 components.");
8677 }
8678
8679 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8680 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8681 tmp_dst = dst;
8682 else
8683 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8684
8685 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8686 mubuf->operands[0] = Operand(resource);
8687 mubuf->operands[1] = Operand(coords[0]);
8688 mubuf->operands[2] = Operand((uint32_t) 0);
8689 mubuf->definitions[0] = Definition(tmp_dst);
8690 mubuf->idxen = true;
8691 mubuf->can_reorder = true;
8692 ctx->block->instructions.emplace_back(std::move(mubuf));
8693
8694 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8695 return;
8696 }
8697
8698 /* gather MIMG address components */
8699 std::vector<Temp> args;
8700 if (has_offset)
8701 args.emplace_back(offset);
8702 if (has_bias)
8703 args.emplace_back(bias);
8704 if (has_compare)
8705 args.emplace_back(compare);
8706 if (has_derivs)
8707 args.insert(args.end(), derivs.begin(), derivs.end());
8708
8709 args.insert(args.end(), coords.begin(), coords.end());
8710 if (has_sample_index)
8711 args.emplace_back(sample_index);
8712 if (has_lod)
8713 args.emplace_back(lod);
8714
8715 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8716 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8717 vec->definitions[0] = Definition(arg);
8718 for (unsigned i = 0; i < args.size(); i++)
8719 vec->operands[i] = Operand(args[i]);
8720 ctx->block->instructions.emplace_back(std::move(vec));
8721
8722
8723 if (instr->op == nir_texop_txf ||
8724 instr->op == nir_texop_txf_ms ||
8725 instr->op == nir_texop_samples_identical ||
8726 instr->op == nir_texop_fragment_fetch ||
8727 instr->op == nir_texop_fragment_mask_fetch) {
8728 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8729 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8730 tex->operands[0] = Operand(resource);
8731 tex->operands[1] = Operand(s4); /* no sampler */
8732 tex->operands[2] = Operand(arg);
8733 tex->dim = dim;
8734 tex->dmask = dmask;
8735 tex->unrm = true;
8736 tex->da = da;
8737 tex->definitions[0] = Definition(tmp_dst);
8738 tex->can_reorder = true;
8739 ctx->block->instructions.emplace_back(std::move(tex));
8740
8741 if (instr->op == nir_texop_samples_identical) {
8742 assert(dmask == 1 && dst.regClass() == v1);
8743 assert(dst.id() != tmp_dst.id());
8744
8745 Temp tmp = bld.tmp(bld.lm);
8746 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8747 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8748
8749 } else {
8750 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8751 }
8752 return;
8753 }
8754
8755 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8756 aco_opcode opcode = aco_opcode::image_sample;
8757 if (has_offset) { /* image_sample_*_o */
8758 if (has_compare) {
8759 opcode = aco_opcode::image_sample_c_o;
8760 if (has_derivs)
8761 opcode = aco_opcode::image_sample_c_d_o;
8762 if (has_bias)
8763 opcode = aco_opcode::image_sample_c_b_o;
8764 if (level_zero)
8765 opcode = aco_opcode::image_sample_c_lz_o;
8766 if (has_lod)
8767 opcode = aco_opcode::image_sample_c_l_o;
8768 } else {
8769 opcode = aco_opcode::image_sample_o;
8770 if (has_derivs)
8771 opcode = aco_opcode::image_sample_d_o;
8772 if (has_bias)
8773 opcode = aco_opcode::image_sample_b_o;
8774 if (level_zero)
8775 opcode = aco_opcode::image_sample_lz_o;
8776 if (has_lod)
8777 opcode = aco_opcode::image_sample_l_o;
8778 }
8779 } else { /* no offset */
8780 if (has_compare) {
8781 opcode = aco_opcode::image_sample_c;
8782 if (has_derivs)
8783 opcode = aco_opcode::image_sample_c_d;
8784 if (has_bias)
8785 opcode = aco_opcode::image_sample_c_b;
8786 if (level_zero)
8787 opcode = aco_opcode::image_sample_c_lz;
8788 if (has_lod)
8789 opcode = aco_opcode::image_sample_c_l;
8790 } else {
8791 opcode = aco_opcode::image_sample;
8792 if (has_derivs)
8793 opcode = aco_opcode::image_sample_d;
8794 if (has_bias)
8795 opcode = aco_opcode::image_sample_b;
8796 if (level_zero)
8797 opcode = aco_opcode::image_sample_lz;
8798 if (has_lod)
8799 opcode = aco_opcode::image_sample_l;
8800 }
8801 }
8802
8803 if (instr->op == nir_texop_tg4) {
8804 if (has_offset) {
8805 opcode = aco_opcode::image_gather4_lz_o;
8806 if (has_compare)
8807 opcode = aco_opcode::image_gather4_c_lz_o;
8808 } else {
8809 opcode = aco_opcode::image_gather4_lz;
8810 if (has_compare)
8811 opcode = aco_opcode::image_gather4_c_lz;
8812 }
8813 } else if (instr->op == nir_texop_lod) {
8814 opcode = aco_opcode::image_get_lod;
8815 }
8816
8817 /* we don't need the bias, sample index, compare value or offset to be
8818 * computed in WQM but if the p_create_vector copies the coordinates, then it
8819 * needs to be in WQM */
8820 if (ctx->stage == fragment_fs &&
8821 !has_derivs && !has_lod && !level_zero &&
8822 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8823 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8824 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8825
8826 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8827 tex->operands[0] = Operand(resource);
8828 tex->operands[1] = Operand(sampler);
8829 tex->operands[2] = Operand(arg);
8830 tex->dim = dim;
8831 tex->dmask = dmask;
8832 tex->da = da;
8833 tex->definitions[0] = Definition(tmp_dst);
8834 tex->can_reorder = true;
8835 ctx->block->instructions.emplace_back(std::move(tex));
8836
8837 if (tg4_integer_cube_workaround) {
8838 assert(tmp_dst.id() != dst.id());
8839 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8840
8841 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8842 Temp val[4];
8843 for (unsigned i = 0; i < dst.size(); i++) {
8844 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8845 Temp cvt_val;
8846 if (stype == GLSL_TYPE_UINT)
8847 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8848 else
8849 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8850 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8851 }
8852 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8853 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8854 val[0], val[1], val[2], val[3]);
8855 }
8856 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8857 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8858
8859 }
8860
8861
8862 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8863 {
8864 Temp tmp = get_ssa_temp(ctx, ssa);
8865 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8866 return Operand(tmp.regClass());
8867 else
8868 return Operand(tmp);
8869 }
8870
8871 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8872 {
8873 aco_ptr<Pseudo_instruction> phi;
8874 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8875 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8876
8877 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8878 logical |= ctx->block->kind & block_kind_merge;
8879 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8880
8881 /* we want a sorted list of sources, since the predecessor list is also sorted */
8882 std::map<unsigned, nir_ssa_def*> phi_src;
8883 nir_foreach_phi_src(src, instr)
8884 phi_src[src->pred->index] = src->src.ssa;
8885
8886 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8887 unsigned num_operands = 0;
8888 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8889 unsigned num_defined = 0;
8890 unsigned cur_pred_idx = 0;
8891 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8892 if (cur_pred_idx < preds.size()) {
8893 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8894 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8895 unsigned skipped = 0;
8896 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8897 skipped++;
8898 if (cur_pred_idx + skipped < preds.size()) {
8899 for (unsigned i = 0; i < skipped; i++)
8900 operands[num_operands++] = Operand(dst.regClass());
8901 cur_pred_idx += skipped;
8902 } else {
8903 continue;
8904 }
8905 }
8906 /* Handle missing predecessors at the end. This shouldn't happen with loop
8907 * headers and we can't ignore these sources for loop header phis. */
8908 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8909 continue;
8910 cur_pred_idx++;
8911 Operand op = get_phi_operand(ctx, src.second);
8912 operands[num_operands++] = op;
8913 num_defined += !op.isUndefined();
8914 }
8915 /* handle block_kind_continue_or_break at loop exit blocks */
8916 while (cur_pred_idx++ < preds.size())
8917 operands[num_operands++] = Operand(dst.regClass());
8918
8919 /* If the loop ends with a break, still add a linear continue edge in case
8920 * that break is divergent or continue_or_break is used. We'll either remove
8921 * this operand later in visit_loop() if it's not necessary or replace the
8922 * undef with something correct. */
8923 if (!logical && ctx->block->kind & block_kind_loop_header) {
8924 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8925 nir_block *last = nir_loop_last_block(loop);
8926 if (last->successors[0] != instr->instr.block)
8927 operands[num_operands++] = Operand(RegClass());
8928 }
8929
8930 if (num_defined == 0) {
8931 Builder bld(ctx->program, ctx->block);
8932 if (dst.regClass() == s1) {
8933 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8934 } else if (dst.regClass() == v1) {
8935 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8936 } else {
8937 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8938 for (unsigned i = 0; i < dst.size(); i++)
8939 vec->operands[i] = Operand(0u);
8940 vec->definitions[0] = Definition(dst);
8941 ctx->block->instructions.emplace_back(std::move(vec));
8942 }
8943 return;
8944 }
8945
8946 /* we can use a linear phi in some cases if one src is undef */
8947 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8948 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8949
8950 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8951 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8952 assert(invert->kind & block_kind_invert);
8953
8954 unsigned then_block = invert->linear_preds[0];
8955
8956 Block* insert_block = NULL;
8957 for (unsigned i = 0; i < num_operands; i++) {
8958 Operand op = operands[i];
8959 if (op.isUndefined())
8960 continue;
8961 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8962 phi->operands[0] = op;
8963 break;
8964 }
8965 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8966 phi->operands[1] = Operand(dst.regClass());
8967 phi->definitions[0] = Definition(dst);
8968 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8969 return;
8970 }
8971
8972 /* try to scalarize vector phis */
8973 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8974 // TODO: scalarize linear phis on divergent ifs
8975 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8976 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8977 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8978 Operand src = operands[i];
8979 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8980 can_scalarize = false;
8981 }
8982 if (can_scalarize) {
8983 unsigned num_components = instr->dest.ssa.num_components;
8984 assert(dst.size() % num_components == 0);
8985 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8986
8987 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8988 for (unsigned k = 0; k < num_components; k++) {
8989 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8990 for (unsigned i = 0; i < num_operands; i++) {
8991 Operand src = operands[i];
8992 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8993 }
8994 Temp phi_dst = {ctx->program->allocateId(), rc};
8995 phi->definitions[0] = Definition(phi_dst);
8996 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8997 new_vec[k] = phi_dst;
8998 vec->operands[k] = Operand(phi_dst);
8999 }
9000 vec->definitions[0] = Definition(dst);
9001 ctx->block->instructions.emplace_back(std::move(vec));
9002 ctx->allocated_vec.emplace(dst.id(), new_vec);
9003 return;
9004 }
9005 }
9006
9007 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9008 for (unsigned i = 0; i < num_operands; i++)
9009 phi->operands[i] = operands[i];
9010 phi->definitions[0] = Definition(dst);
9011 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9012 }
9013
9014
9015 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9016 {
9017 Temp dst = get_ssa_temp(ctx, &instr->def);
9018
9019 assert(dst.type() == RegType::sgpr);
9020
9021 if (dst.size() == 1) {
9022 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9023 } else {
9024 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9025 for (unsigned i = 0; i < dst.size(); i++)
9026 vec->operands[i] = Operand(0u);
9027 vec->definitions[0] = Definition(dst);
9028 ctx->block->instructions.emplace_back(std::move(vec));
9029 }
9030 }
9031
9032 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9033 {
9034 Builder bld(ctx->program, ctx->block);
9035 Block *logical_target;
9036 append_logical_end(ctx->block);
9037 unsigned idx = ctx->block->index;
9038
9039 switch (instr->type) {
9040 case nir_jump_break:
9041 logical_target = ctx->cf_info.parent_loop.exit;
9042 add_logical_edge(idx, logical_target);
9043 ctx->block->kind |= block_kind_break;
9044
9045 if (!ctx->cf_info.parent_if.is_divergent &&
9046 !ctx->cf_info.parent_loop.has_divergent_continue) {
9047 /* uniform break - directly jump out of the loop */
9048 ctx->block->kind |= block_kind_uniform;
9049 ctx->cf_info.has_branch = true;
9050 bld.branch(aco_opcode::p_branch);
9051 add_linear_edge(idx, logical_target);
9052 return;
9053 }
9054 ctx->cf_info.parent_loop.has_divergent_branch = true;
9055 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9056 break;
9057 case nir_jump_continue:
9058 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9059 add_logical_edge(idx, logical_target);
9060 ctx->block->kind |= block_kind_continue;
9061
9062 if (ctx->cf_info.parent_if.is_divergent) {
9063 /* for potential uniform breaks after this continue,
9064 we must ensure that they are handled correctly */
9065 ctx->cf_info.parent_loop.has_divergent_continue = true;
9066 ctx->cf_info.parent_loop.has_divergent_branch = true;
9067 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9068 } else {
9069 /* uniform continue - directly jump to the loop header */
9070 ctx->block->kind |= block_kind_uniform;
9071 ctx->cf_info.has_branch = true;
9072 bld.branch(aco_opcode::p_branch);
9073 add_linear_edge(idx, logical_target);
9074 return;
9075 }
9076 break;
9077 default:
9078 fprintf(stderr, "Unknown NIR jump instr: ");
9079 nir_print_instr(&instr->instr, stderr);
9080 fprintf(stderr, "\n");
9081 abort();
9082 }
9083
9084 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9085 ctx->cf_info.exec_potentially_empty_break = true;
9086 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9087 }
9088
9089 /* remove critical edges from linear CFG */
9090 bld.branch(aco_opcode::p_branch);
9091 Block* break_block = ctx->program->create_and_insert_block();
9092 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9093 break_block->kind |= block_kind_uniform;
9094 add_linear_edge(idx, break_block);
9095 /* the loop_header pointer might be invalidated by this point */
9096 if (instr->type == nir_jump_continue)
9097 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9098 add_linear_edge(break_block->index, logical_target);
9099 bld.reset(break_block);
9100 bld.branch(aco_opcode::p_branch);
9101
9102 Block* continue_block = ctx->program->create_and_insert_block();
9103 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9104 add_linear_edge(idx, continue_block);
9105 append_logical_start(continue_block);
9106 ctx->block = continue_block;
9107 return;
9108 }
9109
9110 void visit_block(isel_context *ctx, nir_block *block)
9111 {
9112 nir_foreach_instr(instr, block) {
9113 switch (instr->type) {
9114 case nir_instr_type_alu:
9115 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9116 break;
9117 case nir_instr_type_load_const:
9118 visit_load_const(ctx, nir_instr_as_load_const(instr));
9119 break;
9120 case nir_instr_type_intrinsic:
9121 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9122 break;
9123 case nir_instr_type_tex:
9124 visit_tex(ctx, nir_instr_as_tex(instr));
9125 break;
9126 case nir_instr_type_phi:
9127 visit_phi(ctx, nir_instr_as_phi(instr));
9128 break;
9129 case nir_instr_type_ssa_undef:
9130 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9131 break;
9132 case nir_instr_type_deref:
9133 break;
9134 case nir_instr_type_jump:
9135 visit_jump(ctx, nir_instr_as_jump(instr));
9136 break;
9137 default:
9138 fprintf(stderr, "Unknown NIR instr type: ");
9139 nir_print_instr(instr, stderr);
9140 fprintf(stderr, "\n");
9141 //abort();
9142 }
9143 }
9144
9145 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9146 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9147 }
9148
9149
9150
9151 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9152 aco_ptr<Instruction>& header_phi, Operand *vals)
9153 {
9154 vals[0] = Operand(header_phi->definitions[0].getTemp());
9155 RegClass rc = vals[0].regClass();
9156
9157 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9158
9159 unsigned next_pred = 1;
9160
9161 for (unsigned idx = first + 1; idx <= last; idx++) {
9162 Block& block = ctx->program->blocks[idx];
9163 if (block.loop_nest_depth != loop_nest_depth) {
9164 vals[idx - first] = vals[idx - 1 - first];
9165 continue;
9166 }
9167
9168 if (block.kind & block_kind_continue) {
9169 vals[idx - first] = header_phi->operands[next_pred];
9170 next_pred++;
9171 continue;
9172 }
9173
9174 bool all_same = true;
9175 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9176 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9177
9178 Operand val;
9179 if (all_same) {
9180 val = vals[block.linear_preds[0] - first];
9181 } else {
9182 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9183 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9184 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9185 phi->operands[i] = vals[block.linear_preds[i] - first];
9186 val = Operand(Temp(ctx->program->allocateId(), rc));
9187 phi->definitions[0] = Definition(val.getTemp());
9188 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9189 }
9190 vals[idx - first] = val;
9191 }
9192
9193 return vals[last - first];
9194 }
9195
9196 static void visit_loop(isel_context *ctx, nir_loop *loop)
9197 {
9198 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9199 append_logical_end(ctx->block);
9200 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9201 Builder bld(ctx->program, ctx->block);
9202 bld.branch(aco_opcode::p_branch);
9203 unsigned loop_preheader_idx = ctx->block->index;
9204
9205 Block loop_exit = Block();
9206 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9207 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9208
9209 Block* loop_header = ctx->program->create_and_insert_block();
9210 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9211 loop_header->kind |= block_kind_loop_header;
9212 add_edge(loop_preheader_idx, loop_header);
9213 ctx->block = loop_header;
9214
9215 /* emit loop body */
9216 unsigned loop_header_idx = loop_header->index;
9217 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9218 append_logical_start(ctx->block);
9219 bool unreachable = visit_cf_list(ctx, &loop->body);
9220
9221 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9222 if (!ctx->cf_info.has_branch) {
9223 append_logical_end(ctx->block);
9224 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9225 /* Discards can result in code running with an empty exec mask.
9226 * This would result in divergent breaks not ever being taken. As a
9227 * workaround, break the loop when the loop mask is empty instead of
9228 * always continuing. */
9229 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9230 unsigned block_idx = ctx->block->index;
9231
9232 /* create helper blocks to avoid critical edges */
9233 Block *break_block = ctx->program->create_and_insert_block();
9234 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9235 break_block->kind = block_kind_uniform;
9236 bld.reset(break_block);
9237 bld.branch(aco_opcode::p_branch);
9238 add_linear_edge(block_idx, break_block);
9239 add_linear_edge(break_block->index, &loop_exit);
9240
9241 Block *continue_block = ctx->program->create_and_insert_block();
9242 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9243 continue_block->kind = block_kind_uniform;
9244 bld.reset(continue_block);
9245 bld.branch(aco_opcode::p_branch);
9246 add_linear_edge(block_idx, continue_block);
9247 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9248
9249 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9250 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9251 ctx->block = &ctx->program->blocks[block_idx];
9252 } else {
9253 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9254 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9255 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9256 else
9257 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9258 }
9259
9260 bld.reset(ctx->block);
9261 bld.branch(aco_opcode::p_branch);
9262 }
9263
9264 /* Fixup phis in loop header from unreachable blocks.
9265 * has_branch/has_divergent_branch also indicates if the loop ends with a
9266 * break/continue instruction, but we don't emit those if unreachable=true */
9267 if (unreachable) {
9268 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9269 bool linear = ctx->cf_info.has_branch;
9270 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9271 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9272 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9273 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9274 /* the last operand should be the one that needs to be removed */
9275 instr->operands.pop_back();
9276 } else if (!is_phi(instr)) {
9277 break;
9278 }
9279 }
9280 }
9281
9282 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9283 * and the previous one shouldn't both happen at once because a break in the
9284 * merge block would get CSE'd */
9285 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9286 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9287 Operand vals[num_vals];
9288 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9289 if (instr->opcode == aco_opcode::p_linear_phi) {
9290 if (ctx->cf_info.has_branch)
9291 instr->operands.pop_back();
9292 else
9293 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9294 } else if (!is_phi(instr)) {
9295 break;
9296 }
9297 }
9298 }
9299
9300 ctx->cf_info.has_branch = false;
9301
9302 // TODO: if the loop has not a single exit, we must add one °°
9303 /* emit loop successor block */
9304 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9305 append_logical_start(ctx->block);
9306
9307 #if 0
9308 // TODO: check if it is beneficial to not branch on continues
9309 /* trim linear phis in loop header */
9310 for (auto&& instr : loop_entry->instructions) {
9311 if (instr->opcode == aco_opcode::p_linear_phi) {
9312 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9313 new_phi->definitions[0] = instr->definitions[0];
9314 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9315 new_phi->operands[i] = instr->operands[i];
9316 /* check that the remaining operands are all the same */
9317 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9318 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9319 instr.swap(new_phi);
9320 } else if (instr->opcode == aco_opcode::p_phi) {
9321 continue;
9322 } else {
9323 break;
9324 }
9325 }
9326 #endif
9327 }
9328
9329 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9330 {
9331 ic->cond = cond;
9332
9333 append_logical_end(ctx->block);
9334 ctx->block->kind |= block_kind_branch;
9335
9336 /* branch to linear then block */
9337 assert(cond.regClass() == ctx->program->lane_mask);
9338 aco_ptr<Pseudo_branch_instruction> branch;
9339 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9340 branch->operands[0] = Operand(cond);
9341 ctx->block->instructions.push_back(std::move(branch));
9342
9343 ic->BB_if_idx = ctx->block->index;
9344 ic->BB_invert = Block();
9345 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9346 /* Invert blocks are intentionally not marked as top level because they
9347 * are not part of the logical cfg. */
9348 ic->BB_invert.kind |= block_kind_invert;
9349 ic->BB_endif = Block();
9350 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9351 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9352
9353 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9354 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9355 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9356 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9357 ctx->cf_info.parent_if.is_divergent = true;
9358
9359 /* divergent branches use cbranch_execz */
9360 ctx->cf_info.exec_potentially_empty_discard = false;
9361 ctx->cf_info.exec_potentially_empty_break = false;
9362 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9363
9364 /** emit logical then block */
9365 Block* BB_then_logical = ctx->program->create_and_insert_block();
9366 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9367 add_edge(ic->BB_if_idx, BB_then_logical);
9368 ctx->block = BB_then_logical;
9369 append_logical_start(BB_then_logical);
9370 }
9371
9372 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9373 {
9374 Block *BB_then_logical = ctx->block;
9375 append_logical_end(BB_then_logical);
9376 /* branch from logical then block to invert block */
9377 aco_ptr<Pseudo_branch_instruction> branch;
9378 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9379 BB_then_logical->instructions.emplace_back(std::move(branch));
9380 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9381 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9382 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9383 BB_then_logical->kind |= block_kind_uniform;
9384 assert(!ctx->cf_info.has_branch);
9385 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9386 ctx->cf_info.parent_loop.has_divergent_branch = false;
9387
9388 /** emit linear then block */
9389 Block* BB_then_linear = ctx->program->create_and_insert_block();
9390 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9391 BB_then_linear->kind |= block_kind_uniform;
9392 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9393 /* branch from linear then block to invert block */
9394 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9395 BB_then_linear->instructions.emplace_back(std::move(branch));
9396 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9397
9398 /** emit invert merge block */
9399 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9400 ic->invert_idx = ctx->block->index;
9401
9402 /* branch to linear else block (skip else) */
9403 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9404 branch->operands[0] = Operand(ic->cond);
9405 ctx->block->instructions.push_back(std::move(branch));
9406
9407 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9408 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9409 ic->exec_potentially_empty_break_depth_old =
9410 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9411 /* divergent branches use cbranch_execz */
9412 ctx->cf_info.exec_potentially_empty_discard = false;
9413 ctx->cf_info.exec_potentially_empty_break = false;
9414 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9415
9416 /** emit logical else block */
9417 Block* BB_else_logical = ctx->program->create_and_insert_block();
9418 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9419 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9420 add_linear_edge(ic->invert_idx, BB_else_logical);
9421 ctx->block = BB_else_logical;
9422 append_logical_start(BB_else_logical);
9423 }
9424
9425 static void end_divergent_if(isel_context *ctx, if_context *ic)
9426 {
9427 Block *BB_else_logical = ctx->block;
9428 append_logical_end(BB_else_logical);
9429
9430 /* branch from logical else block to endif block */
9431 aco_ptr<Pseudo_branch_instruction> branch;
9432 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9433 BB_else_logical->instructions.emplace_back(std::move(branch));
9434 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9435 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9436 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9437 BB_else_logical->kind |= block_kind_uniform;
9438
9439 assert(!ctx->cf_info.has_branch);
9440 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9441
9442
9443 /** emit linear else block */
9444 Block* BB_else_linear = ctx->program->create_and_insert_block();
9445 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9446 BB_else_linear->kind |= block_kind_uniform;
9447 add_linear_edge(ic->invert_idx, BB_else_linear);
9448
9449 /* branch from linear else block to endif block */
9450 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9451 BB_else_linear->instructions.emplace_back(std::move(branch));
9452 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9453
9454
9455 /** emit endif merge block */
9456 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9457 append_logical_start(ctx->block);
9458
9459
9460 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9461 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9462 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9463 ctx->cf_info.exec_potentially_empty_break_depth =
9464 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9465 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9466 !ctx->cf_info.parent_if.is_divergent) {
9467 ctx->cf_info.exec_potentially_empty_break = false;
9468 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9469 }
9470 /* uniform control flow never has an empty exec-mask */
9471 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9472 ctx->cf_info.exec_potentially_empty_discard = false;
9473 ctx->cf_info.exec_potentially_empty_break = false;
9474 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9475 }
9476 }
9477
9478 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9479 {
9480 assert(cond.regClass() == s1);
9481
9482 append_logical_end(ctx->block);
9483 ctx->block->kind |= block_kind_uniform;
9484
9485 aco_ptr<Pseudo_branch_instruction> branch;
9486 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9487 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9488 branch->operands[0] = Operand(cond);
9489 branch->operands[0].setFixed(scc);
9490 ctx->block->instructions.emplace_back(std::move(branch));
9491
9492 ic->BB_if_idx = ctx->block->index;
9493 ic->BB_endif = Block();
9494 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9495 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9496
9497 ctx->cf_info.has_branch = false;
9498 ctx->cf_info.parent_loop.has_divergent_branch = false;
9499
9500 /** emit then block */
9501 Block* BB_then = ctx->program->create_and_insert_block();
9502 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9503 add_edge(ic->BB_if_idx, BB_then);
9504 append_logical_start(BB_then);
9505 ctx->block = BB_then;
9506 }
9507
9508 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9509 {
9510 Block *BB_then = ctx->block;
9511
9512 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9513 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9514
9515 if (!ic->uniform_has_then_branch) {
9516 append_logical_end(BB_then);
9517 /* branch from then block to endif block */
9518 aco_ptr<Pseudo_branch_instruction> branch;
9519 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9520 BB_then->instructions.emplace_back(std::move(branch));
9521 add_linear_edge(BB_then->index, &ic->BB_endif);
9522 if (!ic->then_branch_divergent)
9523 add_logical_edge(BB_then->index, &ic->BB_endif);
9524 BB_then->kind |= block_kind_uniform;
9525 }
9526
9527 ctx->cf_info.has_branch = false;
9528 ctx->cf_info.parent_loop.has_divergent_branch = false;
9529
9530 /** emit else block */
9531 Block* BB_else = ctx->program->create_and_insert_block();
9532 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9533 add_edge(ic->BB_if_idx, BB_else);
9534 append_logical_start(BB_else);
9535 ctx->block = BB_else;
9536 }
9537
9538 static void end_uniform_if(isel_context *ctx, if_context *ic)
9539 {
9540 Block *BB_else = ctx->block;
9541
9542 if (!ctx->cf_info.has_branch) {
9543 append_logical_end(BB_else);
9544 /* branch from then block to endif block */
9545 aco_ptr<Pseudo_branch_instruction> branch;
9546 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9547 BB_else->instructions.emplace_back(std::move(branch));
9548 add_linear_edge(BB_else->index, &ic->BB_endif);
9549 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9550 add_logical_edge(BB_else->index, &ic->BB_endif);
9551 BB_else->kind |= block_kind_uniform;
9552 }
9553
9554 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9555 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9556
9557 /** emit endif merge block */
9558 if (!ctx->cf_info.has_branch) {
9559 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9560 append_logical_start(ctx->block);
9561 }
9562 }
9563
9564 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9565 {
9566 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9567 Builder bld(ctx->program, ctx->block);
9568 aco_ptr<Pseudo_branch_instruction> branch;
9569 if_context ic;
9570
9571 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9572 /**
9573 * Uniform conditionals are represented in the following way*) :
9574 *
9575 * The linear and logical CFG:
9576 * BB_IF
9577 * / \
9578 * BB_THEN (logical) BB_ELSE (logical)
9579 * \ /
9580 * BB_ENDIF
9581 *
9582 * *) Exceptions may be due to break and continue statements within loops
9583 * If a break/continue happens within uniform control flow, it branches
9584 * to the loop exit/entry block. Otherwise, it branches to the next
9585 * merge block.
9586 **/
9587
9588 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9589 assert(cond.regClass() == ctx->program->lane_mask);
9590 cond = bool_to_scalar_condition(ctx, cond);
9591
9592 begin_uniform_if_then(ctx, &ic, cond);
9593 visit_cf_list(ctx, &if_stmt->then_list);
9594
9595 begin_uniform_if_else(ctx, &ic);
9596 visit_cf_list(ctx, &if_stmt->else_list);
9597
9598 end_uniform_if(ctx, &ic);
9599
9600 return !ctx->cf_info.has_branch;
9601 } else { /* non-uniform condition */
9602 /**
9603 * To maintain a logical and linear CFG without critical edges,
9604 * non-uniform conditionals are represented in the following way*) :
9605 *
9606 * The linear CFG:
9607 * BB_IF
9608 * / \
9609 * BB_THEN (logical) BB_THEN (linear)
9610 * \ /
9611 * BB_INVERT (linear)
9612 * / \
9613 * BB_ELSE (logical) BB_ELSE (linear)
9614 * \ /
9615 * BB_ENDIF
9616 *
9617 * The logical CFG:
9618 * BB_IF
9619 * / \
9620 * BB_THEN (logical) BB_ELSE (logical)
9621 * \ /
9622 * BB_ENDIF
9623 *
9624 * *) Exceptions may be due to break and continue statements within loops
9625 **/
9626
9627 begin_divergent_if_then(ctx, &ic, cond);
9628 visit_cf_list(ctx, &if_stmt->then_list);
9629
9630 begin_divergent_if_else(ctx, &ic);
9631 visit_cf_list(ctx, &if_stmt->else_list);
9632
9633 end_divergent_if(ctx, &ic);
9634
9635 return true;
9636 }
9637 }
9638
9639 static bool visit_cf_list(isel_context *ctx,
9640 struct exec_list *list)
9641 {
9642 foreach_list_typed(nir_cf_node, node, node, list) {
9643 switch (node->type) {
9644 case nir_cf_node_block:
9645 visit_block(ctx, nir_cf_node_as_block(node));
9646 break;
9647 case nir_cf_node_if:
9648 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9649 return true;
9650 break;
9651 case nir_cf_node_loop:
9652 visit_loop(ctx, nir_cf_node_as_loop(node));
9653 break;
9654 default:
9655 unreachable("unimplemented cf list type");
9656 }
9657 }
9658 return false;
9659 }
9660
9661 static void create_null_export(isel_context *ctx)
9662 {
9663 /* Some shader stages always need to have exports.
9664 * So when there is none, we need to add a null export.
9665 */
9666
9667 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9668 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9669 Builder bld(ctx->program, ctx->block);
9670 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9671 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9672 }
9673
9674 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9675 {
9676 assert(ctx->stage == vertex_vs ||
9677 ctx->stage == tess_eval_vs ||
9678 ctx->stage == gs_copy_vs ||
9679 ctx->stage == ngg_vertex_gs ||
9680 ctx->stage == ngg_tess_eval_gs);
9681
9682 int offset = (ctx->stage & sw_tes)
9683 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9684 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9685 uint64_t mask = ctx->outputs.mask[slot];
9686 if (!is_pos && !mask)
9687 return false;
9688 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9689 return false;
9690 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9691 exp->enabled_mask = mask;
9692 for (unsigned i = 0; i < 4; ++i) {
9693 if (mask & (1 << i))
9694 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9695 else
9696 exp->operands[i] = Operand(v1);
9697 }
9698 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9699 * Setting valid_mask=1 prevents it and has no other effect.
9700 */
9701 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9702 exp->done = false;
9703 exp->compressed = false;
9704 if (is_pos)
9705 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9706 else
9707 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9708 ctx->block->instructions.emplace_back(std::move(exp));
9709
9710 return true;
9711 }
9712
9713 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9714 {
9715 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9716 exp->enabled_mask = 0;
9717 for (unsigned i = 0; i < 4; ++i)
9718 exp->operands[i] = Operand(v1);
9719 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9720 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9721 exp->enabled_mask |= 0x1;
9722 }
9723 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9724 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9725 exp->enabled_mask |= 0x4;
9726 }
9727 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9728 if (ctx->options->chip_class < GFX9) {
9729 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9730 exp->enabled_mask |= 0x8;
9731 } else {
9732 Builder bld(ctx->program, ctx->block);
9733
9734 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9735 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9736 if (exp->operands[2].isTemp())
9737 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9738
9739 exp->operands[2] = Operand(out);
9740 exp->enabled_mask |= 0x4;
9741 }
9742 }
9743 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9744 exp->done = false;
9745 exp->compressed = false;
9746 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9747 ctx->block->instructions.emplace_back(std::move(exp));
9748 }
9749
9750 static void create_export_phis(isel_context *ctx)
9751 {
9752 /* Used when exports are needed, but the output temps are defined in a preceding block.
9753 * This function will set up phis in order to access the outputs in the next block.
9754 */
9755
9756 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9757 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9758 ctx->block->instructions.pop_back();
9759
9760 Builder bld(ctx->program, ctx->block);
9761
9762 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9763 uint64_t mask = ctx->outputs.mask[slot];
9764 for (unsigned i = 0; i < 4; ++i) {
9765 if (!(mask & (1 << i)))
9766 continue;
9767
9768 Temp old = ctx->outputs.temps[slot * 4 + i];
9769 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9770 ctx->outputs.temps[slot * 4 + i] = phi;
9771 }
9772 }
9773
9774 bld.insert(std::move(logical_start));
9775 }
9776
9777 static void create_vs_exports(isel_context *ctx)
9778 {
9779 assert(ctx->stage == vertex_vs ||
9780 ctx->stage == tess_eval_vs ||
9781 ctx->stage == gs_copy_vs ||
9782 ctx->stage == ngg_vertex_gs ||
9783 ctx->stage == ngg_tess_eval_gs);
9784
9785 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9786 ? &ctx->program->info->tes.outinfo
9787 : &ctx->program->info->vs.outinfo;
9788
9789 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9790 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9791 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9792 }
9793
9794 if (ctx->options->key.has_multiview_view_index) {
9795 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9796 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9797 }
9798
9799 /* the order these position exports are created is important */
9800 int next_pos = 0;
9801 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9802 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9803 export_vs_psiz_layer_viewport(ctx, &next_pos);
9804 exported_pos = true;
9805 }
9806 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9807 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9808 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9809 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9810
9811 if (ctx->export_clip_dists) {
9812 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9813 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9814 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9815 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9816 }
9817
9818 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9819 if (i < VARYING_SLOT_VAR0 &&
9820 i != VARYING_SLOT_LAYER &&
9821 i != VARYING_SLOT_PRIMITIVE_ID &&
9822 i != VARYING_SLOT_VIEWPORT)
9823 continue;
9824
9825 export_vs_varying(ctx, i, false, NULL);
9826 }
9827
9828 if (!exported_pos)
9829 create_null_export(ctx);
9830 }
9831
9832 static bool export_fs_mrt_z(isel_context *ctx)
9833 {
9834 Builder bld(ctx->program, ctx->block);
9835 unsigned enabled_channels = 0;
9836 bool compr = false;
9837 Operand values[4];
9838
9839 for (unsigned i = 0; i < 4; ++i) {
9840 values[i] = Operand(v1);
9841 }
9842
9843 /* Both stencil and sample mask only need 16-bits. */
9844 if (!ctx->program->info->ps.writes_z &&
9845 (ctx->program->info->ps.writes_stencil ||
9846 ctx->program->info->ps.writes_sample_mask)) {
9847 compr = true; /* COMPR flag */
9848
9849 if (ctx->program->info->ps.writes_stencil) {
9850 /* Stencil should be in X[23:16]. */
9851 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9852 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9853 enabled_channels |= 0x3;
9854 }
9855
9856 if (ctx->program->info->ps.writes_sample_mask) {
9857 /* SampleMask should be in Y[15:0]. */
9858 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9859 enabled_channels |= 0xc;
9860 }
9861 } else {
9862 if (ctx->program->info->ps.writes_z) {
9863 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9864 enabled_channels |= 0x1;
9865 }
9866
9867 if (ctx->program->info->ps.writes_stencil) {
9868 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9869 enabled_channels |= 0x2;
9870 }
9871
9872 if (ctx->program->info->ps.writes_sample_mask) {
9873 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9874 enabled_channels |= 0x4;
9875 }
9876 }
9877
9878 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9879 * writemask component.
9880 */
9881 if (ctx->options->chip_class == GFX6 &&
9882 ctx->options->family != CHIP_OLAND &&
9883 ctx->options->family != CHIP_HAINAN) {
9884 enabled_channels |= 0x1;
9885 }
9886
9887 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9888 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9889
9890 return true;
9891 }
9892
9893 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9894 {
9895 Builder bld(ctx->program, ctx->block);
9896 unsigned write_mask = ctx->outputs.mask[slot];
9897 Operand values[4];
9898
9899 for (unsigned i = 0; i < 4; ++i) {
9900 if (write_mask & (1 << i)) {
9901 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9902 } else {
9903 values[i] = Operand(v1);
9904 }
9905 }
9906
9907 unsigned target, col_format;
9908 unsigned enabled_channels = 0;
9909 aco_opcode compr_op = (aco_opcode)0;
9910
9911 slot -= FRAG_RESULT_DATA0;
9912 target = V_008DFC_SQ_EXP_MRT + slot;
9913 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9914
9915 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9916 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9917
9918 switch (col_format)
9919 {
9920 case V_028714_SPI_SHADER_ZERO:
9921 enabled_channels = 0; /* writemask */
9922 target = V_008DFC_SQ_EXP_NULL;
9923 break;
9924
9925 case V_028714_SPI_SHADER_32_R:
9926 enabled_channels = 1;
9927 break;
9928
9929 case V_028714_SPI_SHADER_32_GR:
9930 enabled_channels = 0x3;
9931 break;
9932
9933 case V_028714_SPI_SHADER_32_AR:
9934 if (ctx->options->chip_class >= GFX10) {
9935 /* Special case: on GFX10, the outputs are different for 32_AR */
9936 enabled_channels = 0x3;
9937 values[1] = values[3];
9938 values[3] = Operand(v1);
9939 } else {
9940 enabled_channels = 0x9;
9941 }
9942 break;
9943
9944 case V_028714_SPI_SHADER_FP16_ABGR:
9945 enabled_channels = 0x5;
9946 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9947 break;
9948
9949 case V_028714_SPI_SHADER_UNORM16_ABGR:
9950 enabled_channels = 0x5;
9951 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9952 break;
9953
9954 case V_028714_SPI_SHADER_SNORM16_ABGR:
9955 enabled_channels = 0x5;
9956 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9957 break;
9958
9959 case V_028714_SPI_SHADER_UINT16_ABGR: {
9960 enabled_channels = 0x5;
9961 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9962 if (is_int8 || is_int10) {
9963 /* clamp */
9964 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9965 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9966
9967 for (unsigned i = 0; i < 4; i++) {
9968 if ((write_mask >> i) & 1) {
9969 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9970 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9971 values[i]);
9972 }
9973 }
9974 }
9975 break;
9976 }
9977
9978 case V_028714_SPI_SHADER_SINT16_ABGR:
9979 enabled_channels = 0x5;
9980 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9981 if (is_int8 || is_int10) {
9982 /* clamp */
9983 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9984 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9985 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9986 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9987
9988 for (unsigned i = 0; i < 4; i++) {
9989 if ((write_mask >> i) & 1) {
9990 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9991 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9992 values[i]);
9993 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9994 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9995 values[i]);
9996 }
9997 }
9998 }
9999 break;
10000
10001 case V_028714_SPI_SHADER_32_ABGR:
10002 enabled_channels = 0xF;
10003 break;
10004
10005 default:
10006 break;
10007 }
10008
10009 if (target == V_008DFC_SQ_EXP_NULL)
10010 return false;
10011
10012 if ((bool) compr_op) {
10013 for (int i = 0; i < 2; i++) {
10014 /* check if at least one of the values to be compressed is enabled */
10015 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10016 if (enabled) {
10017 enabled_channels |= enabled << (i*2);
10018 values[i] = bld.vop3(compr_op, bld.def(v1),
10019 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10020 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10021 } else {
10022 values[i] = Operand(v1);
10023 }
10024 }
10025 values[2] = Operand(v1);
10026 values[3] = Operand(v1);
10027 } else {
10028 for (int i = 0; i < 4; i++)
10029 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10030 }
10031
10032 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10033 enabled_channels, target, (bool) compr_op);
10034 return true;
10035 }
10036
10037 static void create_fs_exports(isel_context *ctx)
10038 {
10039 bool exported = false;
10040
10041 /* Export depth, stencil and sample mask. */
10042 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10043 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10044 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10045 exported |= export_fs_mrt_z(ctx);
10046
10047 /* Export all color render targets. */
10048 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10049 if (ctx->outputs.mask[i])
10050 exported |= export_fs_mrt_color(ctx, i);
10051
10052 if (!exported)
10053 create_null_export(ctx);
10054 }
10055
10056 static void write_tcs_tess_factors(isel_context *ctx)
10057 {
10058 unsigned outer_comps;
10059 unsigned inner_comps;
10060
10061 switch (ctx->args->options->key.tcs.primitive_mode) {
10062 case GL_ISOLINES:
10063 outer_comps = 2;
10064 inner_comps = 0;
10065 break;
10066 case GL_TRIANGLES:
10067 outer_comps = 3;
10068 inner_comps = 1;
10069 break;
10070 case GL_QUADS:
10071 outer_comps = 4;
10072 inner_comps = 2;
10073 break;
10074 default:
10075 return;
10076 }
10077
10078 Builder bld(ctx->program, ctx->block);
10079
10080 bld.barrier(aco_opcode::p_memory_barrier_shared);
10081 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10082 bld.sopp(aco_opcode::s_barrier);
10083
10084 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10085 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10086
10087 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10088 if_context ic_invocation_id_is_zero;
10089 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10090 bld.reset(ctx->block);
10091
10092 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10093
10094 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10095 unsigned stride = inner_comps + outer_comps;
10096 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10097 Temp tf_inner_vec;
10098 Temp tf_outer_vec;
10099 Temp out[6];
10100 assert(stride <= (sizeof(out) / sizeof(Temp)));
10101
10102 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10103 // LINES reversal
10104 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10105 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10106 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10107 } else {
10108 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10109 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10110
10111 for (unsigned i = 0; i < outer_comps; ++i)
10112 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10113 for (unsigned i = 0; i < inner_comps; ++i)
10114 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10115 }
10116
10117 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10118 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10119 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10120 unsigned tf_const_offset = 0;
10121
10122 if (ctx->program->chip_class <= GFX8) {
10123 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10124 if_context ic_rel_patch_id_is_zero;
10125 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10126 bld.reset(ctx->block);
10127
10128 /* Store the dynamic HS control word. */
10129 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10130 bld.mubuf(aco_opcode::buffer_store_dword,
10131 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10132 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10133 /* disable_wqm */ false, /* glc */ true);
10134 tf_const_offset += 4;
10135
10136 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10137 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10138 bld.reset(ctx->block);
10139 }
10140
10141 assert(stride == 2 || stride == 4 || stride == 6);
10142 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10143 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10144
10145 /* Store to offchip for TES to read - only if TES reads them */
10146 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10147 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10148 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10149
10150 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10151 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10152
10153 if (likely(inner_comps)) {
10154 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10155 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10156 }
10157 }
10158
10159 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10160 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10161 }
10162
10163 static void emit_stream_output(isel_context *ctx,
10164 Temp const *so_buffers,
10165 Temp const *so_write_offset,
10166 const struct radv_stream_output *output)
10167 {
10168 unsigned num_comps = util_bitcount(output->component_mask);
10169 unsigned writemask = (1 << num_comps) - 1;
10170 unsigned loc = output->location;
10171 unsigned buf = output->buffer;
10172
10173 assert(num_comps && num_comps <= 4);
10174 if (!num_comps || num_comps > 4)
10175 return;
10176
10177 unsigned start = ffs(output->component_mask) - 1;
10178
10179 Temp out[4];
10180 bool all_undef = true;
10181 assert(ctx->stage & hw_vs);
10182 for (unsigned i = 0; i < num_comps; i++) {
10183 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10184 all_undef = all_undef && !out[i].id();
10185 }
10186 if (all_undef)
10187 return;
10188
10189 while (writemask) {
10190 int start, count;
10191 u_bit_scan_consecutive_range(&writemask, &start, &count);
10192 if (count == 3 && ctx->options->chip_class == GFX6) {
10193 /* GFX6 doesn't support storing vec3, split it. */
10194 writemask |= 1u << (start + 2);
10195 count = 2;
10196 }
10197
10198 unsigned offset = output->offset + start * 4;
10199
10200 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10201 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10202 for (int i = 0; i < count; ++i)
10203 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10204 vec->definitions[0] = Definition(write_data);
10205 ctx->block->instructions.emplace_back(std::move(vec));
10206
10207 aco_opcode opcode;
10208 switch (count) {
10209 case 1:
10210 opcode = aco_opcode::buffer_store_dword;
10211 break;
10212 case 2:
10213 opcode = aco_opcode::buffer_store_dwordx2;
10214 break;
10215 case 3:
10216 opcode = aco_opcode::buffer_store_dwordx3;
10217 break;
10218 case 4:
10219 opcode = aco_opcode::buffer_store_dwordx4;
10220 break;
10221 default:
10222 unreachable("Unsupported dword count.");
10223 }
10224
10225 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10226 store->operands[0] = Operand(so_buffers[buf]);
10227 store->operands[1] = Operand(so_write_offset[buf]);
10228 store->operands[2] = Operand((uint32_t) 0);
10229 store->operands[3] = Operand(write_data);
10230 if (offset > 4095) {
10231 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10232 Builder bld(ctx->program, ctx->block);
10233 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10234 } else {
10235 store->offset = offset;
10236 }
10237 store->offen = true;
10238 store->glc = true;
10239 store->dlc = false;
10240 store->slc = true;
10241 store->can_reorder = true;
10242 ctx->block->instructions.emplace_back(std::move(store));
10243 }
10244 }
10245
10246 static void emit_streamout(isel_context *ctx, unsigned stream)
10247 {
10248 Builder bld(ctx->program, ctx->block);
10249
10250 Temp so_buffers[4];
10251 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10252 for (unsigned i = 0; i < 4; i++) {
10253 unsigned stride = ctx->program->info->so.strides[i];
10254 if (!stride)
10255 continue;
10256
10257 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10258 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10259 }
10260
10261 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10262 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10263
10264 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10265
10266 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10267
10268 if_context ic;
10269 begin_divergent_if_then(ctx, &ic, can_emit);
10270
10271 bld.reset(ctx->block);
10272
10273 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10274
10275 Temp so_write_offset[4];
10276
10277 for (unsigned i = 0; i < 4; i++) {
10278 unsigned stride = ctx->program->info->so.strides[i];
10279 if (!stride)
10280 continue;
10281
10282 if (stride == 1) {
10283 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10284 get_arg(ctx, ctx->args->streamout_write_idx),
10285 get_arg(ctx, ctx->args->streamout_offset[i]));
10286 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10287
10288 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10289 } else {
10290 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10291 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10292 get_arg(ctx, ctx->args->streamout_offset[i]));
10293 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10294 }
10295 }
10296
10297 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10298 struct radv_stream_output *output =
10299 &ctx->program->info->so.outputs[i];
10300 if (stream != output->stream)
10301 continue;
10302
10303 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10304 }
10305
10306 begin_divergent_if_else(ctx, &ic);
10307 end_divergent_if(ctx, &ic);
10308 }
10309
10310 } /* end namespace */
10311
10312 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10313 {
10314 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10315 Builder bld(ctx->program, ctx->block);
10316 constexpr unsigned hs_idx = 1u;
10317 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10318 get_arg(ctx, ctx->args->merged_wave_info),
10319 Operand((8u << 16) | (hs_idx * 8u)));
10320 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10321
10322 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10323
10324 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10325 get_arg(ctx, ctx->args->rel_auto_id),
10326 get_arg(ctx, ctx->args->ac.instance_id),
10327 ls_has_nonzero_hs_threads);
10328 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10329 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10330 get_arg(ctx, ctx->args->rel_auto_id),
10331 ls_has_nonzero_hs_threads);
10332 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10333 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10334 get_arg(ctx, ctx->args->ac.vertex_id),
10335 ls_has_nonzero_hs_threads);
10336
10337 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10338 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10339 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10340 }
10341
10342 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10343 {
10344 /* Split all arguments except for the first (ring_offsets) and the last
10345 * (exec) so that the dead channels don't stay live throughout the program.
10346 */
10347 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10348 if (startpgm->definitions[i].regClass().size() > 1) {
10349 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10350 startpgm->definitions[i].regClass().size());
10351 }
10352 }
10353 }
10354
10355 void handle_bc_optimize(isel_context *ctx)
10356 {
10357 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10358 Builder bld(ctx->program, ctx->block);
10359 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10360 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10361 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10362 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10363 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10364 if (uses_center && uses_centroid) {
10365 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10366 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10367
10368 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10369 Temp new_coord[2];
10370 for (unsigned i = 0; i < 2; i++) {
10371 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10372 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10373 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10374 persp_centroid, persp_center, sel);
10375 }
10376 ctx->persp_centroid = bld.tmp(v2);
10377 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10378 Operand(new_coord[0]), Operand(new_coord[1]));
10379 emit_split_vector(ctx, ctx->persp_centroid, 2);
10380 }
10381
10382 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10383 Temp new_coord[2];
10384 for (unsigned i = 0; i < 2; i++) {
10385 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10386 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10387 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10388 linear_centroid, linear_center, sel);
10389 }
10390 ctx->linear_centroid = bld.tmp(v2);
10391 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10392 Operand(new_coord[0]), Operand(new_coord[1]));
10393 emit_split_vector(ctx, ctx->linear_centroid, 2);
10394 }
10395 }
10396 }
10397
10398 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10399 {
10400 Program *program = ctx->program;
10401
10402 unsigned float_controls = shader->info.float_controls_execution_mode;
10403
10404 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10405 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10406 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10407 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10408 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10409
10410 program->next_fp_mode.must_flush_denorms32 =
10411 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10412 program->next_fp_mode.must_flush_denorms16_64 =
10413 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10414 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10415
10416 program->next_fp_mode.care_about_round32 =
10417 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10418
10419 program->next_fp_mode.care_about_round16_64 =
10420 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10421 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10422
10423 /* default to preserving fp16 and fp64 denorms, since it's free */
10424 if (program->next_fp_mode.must_flush_denorms16_64)
10425 program->next_fp_mode.denorm16_64 = 0;
10426 else
10427 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10428
10429 /* preserving fp32 denorms is expensive, so only do it if asked */
10430 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10431 program->next_fp_mode.denorm32 = fp_denorm_keep;
10432 else
10433 program->next_fp_mode.denorm32 = 0;
10434
10435 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10436 program->next_fp_mode.round32 = fp_round_tz;
10437 else
10438 program->next_fp_mode.round32 = fp_round_ne;
10439
10440 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10441 program->next_fp_mode.round16_64 = fp_round_tz;
10442 else
10443 program->next_fp_mode.round16_64 = fp_round_ne;
10444
10445 ctx->block->fp_mode = program->next_fp_mode;
10446 }
10447
10448 void cleanup_cfg(Program *program)
10449 {
10450 /* create linear_succs/logical_succs */
10451 for (Block& BB : program->blocks) {
10452 for (unsigned idx : BB.linear_preds)
10453 program->blocks[idx].linear_succs.emplace_back(BB.index);
10454 for (unsigned idx : BB.logical_preds)
10455 program->blocks[idx].logical_succs.emplace_back(BB.index);
10456 }
10457 }
10458
10459 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10460 {
10461 Builder bld(ctx->program, ctx->block);
10462
10463 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10464 Temp count = i == 0
10465 ? get_arg(ctx, ctx->args->merged_wave_info)
10466 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10467 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10468
10469 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10470 Temp cond;
10471
10472 if (ctx->program->wave_size == 64) {
10473 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10474 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10475 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10476 } else {
10477 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10478 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10479 }
10480
10481 return cond;
10482 }
10483
10484 bool ngg_early_prim_export(isel_context *ctx)
10485 {
10486 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10487 return true;
10488 }
10489
10490 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10491 {
10492 Builder bld(ctx->program, ctx->block);
10493
10494 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10495 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10496
10497 /* Get the id of the current wave within the threadgroup (workgroup) */
10498 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10499 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10500
10501 /* Execute the following code only on the first wave (wave id 0),
10502 * use the SCC def to tell if the wave id is zero or not.
10503 */
10504 Temp cond = wave_id_in_tg.def(1).getTemp();
10505 if_context ic;
10506 begin_uniform_if_then(ctx, &ic, cond);
10507 begin_uniform_if_else(ctx, &ic);
10508 bld.reset(ctx->block);
10509
10510 /* Number of vertices output by VS/TES */
10511 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10512 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10513 /* Number of primitives output by VS/TES */
10514 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10515 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10516
10517 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10518 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10519 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10520
10521 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10522 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10523
10524 end_uniform_if(ctx, &ic);
10525
10526 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10527 bld.reset(ctx->block);
10528 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10529 }
10530
10531 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10532 {
10533 Builder bld(ctx->program, ctx->block);
10534
10535 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10536 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10537 }
10538
10539 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10540 Temp tmp;
10541
10542 for (unsigned i = 0; i < num_vertices; ++i) {
10543 assert(vtxindex[i].id());
10544
10545 if (i)
10546 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10547 else
10548 tmp = vtxindex[i];
10549
10550 /* The initial edge flag is always false in tess eval shaders. */
10551 if (ctx->stage == ngg_vertex_gs) {
10552 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10553 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10554 }
10555 }
10556
10557 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10558
10559 return tmp;
10560 }
10561
10562 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10563 {
10564 Builder bld(ctx->program, ctx->block);
10565 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10566
10567 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10568 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10569 false /* compressed */, true/* done */, false /* valid mask */);
10570 }
10571
10572 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10573 {
10574 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10575 * These must always come before VS exports.
10576 *
10577 * It is recommended to do these as early as possible. They can be at the beginning when
10578 * there is no SW GS and the shader doesn't write edge flags.
10579 */
10580
10581 if_context ic;
10582 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10583 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10584
10585 Builder bld(ctx->program, ctx->block);
10586 constexpr unsigned max_vertices_per_primitive = 3;
10587 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10588
10589 if (ctx->stage == ngg_vertex_gs) {
10590 /* TODO: optimize for points & lines */
10591 } else if (ctx->stage == ngg_tess_eval_gs) {
10592 if (ctx->shader->info.tess.point_mode)
10593 num_vertices_per_primitive = 1;
10594 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10595 num_vertices_per_primitive = 2;
10596 } else {
10597 unreachable("Unsupported NGG shader stage");
10598 }
10599
10600 Temp vtxindex[max_vertices_per_primitive];
10601 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10602 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10603 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10604 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10605 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10606 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10607 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10608 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10609
10610 /* Export primitive data to the index buffer. */
10611 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10612
10613 /* Export primitive ID. */
10614 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10615 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10616 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10617 Temp provoking_vtx_index = vtxindex[0];
10618 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10619
10620 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10621 }
10622
10623 begin_divergent_if_else(ctx, &ic);
10624 end_divergent_if(ctx, &ic);
10625 }
10626
10627 void ngg_emit_nogs_output(isel_context *ctx)
10628 {
10629 /* Emits NGG GS output, for stages that don't have SW GS. */
10630
10631 if_context ic;
10632 Builder bld(ctx->program, ctx->block);
10633 bool late_prim_export = !ngg_early_prim_export(ctx);
10634
10635 /* NGG streamout is currently disabled by default. */
10636 assert(!ctx->args->shader_info->so.num_outputs);
10637
10638 if (late_prim_export) {
10639 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10640 create_export_phis(ctx);
10641 /* Do what we need to do in the GS threads. */
10642 ngg_emit_nogs_gsthreads(ctx);
10643
10644 /* What comes next should be executed on ES threads. */
10645 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10646 begin_divergent_if_then(ctx, &ic, is_es_thread);
10647 bld.reset(ctx->block);
10648 }
10649
10650 /* Export VS outputs */
10651 ctx->block->kind |= block_kind_export_end;
10652 create_vs_exports(ctx);
10653
10654 /* Export primitive ID */
10655 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10656 Temp prim_id;
10657
10658 if (ctx->stage == ngg_vertex_gs) {
10659 /* Wait for GS threads to store primitive ID in LDS. */
10660 bld.barrier(aco_opcode::p_memory_barrier_shared);
10661 bld.sopp(aco_opcode::s_barrier);
10662
10663 /* Calculate LDS address where the GS threads stored the primitive ID. */
10664 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10665 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10666 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10667 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10668 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10669 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10670
10671 /* Load primitive ID from LDS. */
10672 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10673 } else if (ctx->stage == ngg_tess_eval_gs) {
10674 /* TES: Just use the patch ID as the primitive ID. */
10675 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10676 } else {
10677 unreachable("unsupported NGG shader stage.");
10678 }
10679
10680 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10681 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10682
10683 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10684 }
10685
10686 if (late_prim_export) {
10687 begin_divergent_if_else(ctx, &ic);
10688 end_divergent_if(ctx, &ic);
10689 bld.reset(ctx->block);
10690 }
10691 }
10692
10693 void select_program(Program *program,
10694 unsigned shader_count,
10695 struct nir_shader *const *shaders,
10696 ac_shader_config* config,
10697 struct radv_shader_args *args)
10698 {
10699 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10700 if_context ic_merged_wave_info;
10701 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10702
10703 for (unsigned i = 0; i < shader_count; i++) {
10704 nir_shader *nir = shaders[i];
10705 init_context(&ctx, nir);
10706
10707 setup_fp_mode(&ctx, nir);
10708
10709 if (!i) {
10710 /* needs to be after init_context() for FS */
10711 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10712 append_logical_start(ctx.block);
10713
10714 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10715 fix_ls_vgpr_init_bug(&ctx, startpgm);
10716
10717 split_arguments(&ctx, startpgm);
10718 }
10719
10720 if (ngg_no_gs) {
10721 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10722
10723 if (ngg_early_prim_export(&ctx))
10724 ngg_emit_nogs_gsthreads(&ctx);
10725 }
10726
10727 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10728 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10729 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10730 ((nir->info.stage == MESA_SHADER_VERTEX &&
10731 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10732 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10733 ctx.stage == tess_eval_geometry_gs));
10734
10735 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10736 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10737 if (check_merged_wave_info) {
10738 Temp cond = merged_wave_info_to_mask(&ctx, i);
10739 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10740 }
10741
10742 if (i) {
10743 Builder bld(ctx.program, ctx.block);
10744
10745 bld.barrier(aco_opcode::p_memory_barrier_shared);
10746 bld.sopp(aco_opcode::s_barrier);
10747
10748 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10749 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10750 }
10751 } else if (ctx.stage == geometry_gs)
10752 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10753
10754 if (ctx.stage == fragment_fs)
10755 handle_bc_optimize(&ctx);
10756
10757 visit_cf_list(&ctx, &func->body);
10758
10759 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10760 emit_streamout(&ctx, 0);
10761
10762 if (ctx.stage & hw_vs) {
10763 create_vs_exports(&ctx);
10764 ctx.block->kind |= block_kind_export_end;
10765 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10766 ngg_emit_nogs_output(&ctx);
10767 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10768 Builder bld(ctx.program, ctx.block);
10769 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10770 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10771 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10772 write_tcs_tess_factors(&ctx);
10773 }
10774
10775 if (ctx.stage == fragment_fs) {
10776 create_fs_exports(&ctx);
10777 ctx.block->kind |= block_kind_export_end;
10778 }
10779
10780 if (endif_merged_wave_info) {
10781 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10782 end_divergent_if(&ctx, &ic_merged_wave_info);
10783 }
10784
10785 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10786 ngg_emit_nogs_output(&ctx);
10787
10788 ralloc_free(ctx.divergent_vals);
10789
10790 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10791 /* Outputs of the previous stage are inputs to the next stage */
10792 ctx.inputs = ctx.outputs;
10793 ctx.outputs = shader_io_state();
10794 }
10795 }
10796
10797 program->config->float_mode = program->blocks[0].fp_mode.val;
10798
10799 append_logical_end(ctx.block);
10800 ctx.block->kind |= block_kind_uniform;
10801 Builder bld(ctx.program, ctx.block);
10802 if (ctx.program->wb_smem_l1_on_end)
10803 bld.smem(aco_opcode::s_dcache_wb, false);
10804 bld.sopp(aco_opcode::s_endpgm);
10805
10806 cleanup_cfg(program);
10807 }
10808
10809 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10810 ac_shader_config* config,
10811 struct radv_shader_args *args)
10812 {
10813 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10814
10815 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10816 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10817 program->next_fp_mode.must_flush_denorms32 = false;
10818 program->next_fp_mode.must_flush_denorms16_64 = false;
10819 program->next_fp_mode.care_about_round32 = false;
10820 program->next_fp_mode.care_about_round16_64 = false;
10821 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10822 program->next_fp_mode.denorm32 = 0;
10823 program->next_fp_mode.round32 = fp_round_ne;
10824 program->next_fp_mode.round16_64 = fp_round_ne;
10825 ctx.block->fp_mode = program->next_fp_mode;
10826
10827 add_startpgm(&ctx);
10828 append_logical_start(ctx.block);
10829
10830 Builder bld(ctx.program, ctx.block);
10831
10832 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10833
10834 Operand stream_id(0u);
10835 if (args->shader_info->so.num_outputs)
10836 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10837 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10838
10839 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10840
10841 std::stack<Block> endif_blocks;
10842
10843 for (unsigned stream = 0; stream < 4; stream++) {
10844 if (stream_id.isConstant() && stream != stream_id.constantValue())
10845 continue;
10846
10847 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10848 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10849 continue;
10850
10851 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10852
10853 unsigned BB_if_idx = ctx.block->index;
10854 Block BB_endif = Block();
10855 if (!stream_id.isConstant()) {
10856 /* begin IF */
10857 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10858 append_logical_end(ctx.block);
10859 ctx.block->kind |= block_kind_uniform;
10860 bld.branch(aco_opcode::p_cbranch_z, cond);
10861
10862 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10863
10864 ctx.block = ctx.program->create_and_insert_block();
10865 add_edge(BB_if_idx, ctx.block);
10866 bld.reset(ctx.block);
10867 append_logical_start(ctx.block);
10868 }
10869
10870 unsigned offset = 0;
10871 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10872 if (args->shader_info->gs.output_streams[i] != stream)
10873 continue;
10874
10875 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10876 unsigned length = util_last_bit(output_usage_mask);
10877 for (unsigned j = 0; j < length; ++j) {
10878 if (!(output_usage_mask & (1 << j)))
10879 continue;
10880
10881 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10882 Temp voffset = vtx_offset;
10883 if (const_offset >= 4096u) {
10884 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10885 const_offset %= 4096u;
10886 }
10887
10888 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10889 mubuf->definitions[0] = bld.def(v1);
10890 mubuf->operands[0] = Operand(gsvs_ring);
10891 mubuf->operands[1] = Operand(voffset);
10892 mubuf->operands[2] = Operand(0u);
10893 mubuf->offen = true;
10894 mubuf->offset = const_offset;
10895 mubuf->glc = true;
10896 mubuf->slc = true;
10897 mubuf->dlc = args->options->chip_class >= GFX10;
10898 mubuf->barrier = barrier_none;
10899 mubuf->can_reorder = true;
10900
10901 ctx.outputs.mask[i] |= 1 << j;
10902 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10903
10904 bld.insert(std::move(mubuf));
10905
10906 offset++;
10907 }
10908 }
10909
10910 if (args->shader_info->so.num_outputs) {
10911 emit_streamout(&ctx, stream);
10912 bld.reset(ctx.block);
10913 }
10914
10915 if (stream == 0) {
10916 create_vs_exports(&ctx);
10917 ctx.block->kind |= block_kind_export_end;
10918 }
10919
10920 if (!stream_id.isConstant()) {
10921 append_logical_end(ctx.block);
10922
10923 /* branch from then block to endif block */
10924 bld.branch(aco_opcode::p_branch);
10925 add_edge(ctx.block->index, &BB_endif);
10926 ctx.block->kind |= block_kind_uniform;
10927
10928 /* emit else block */
10929 ctx.block = ctx.program->create_and_insert_block();
10930 add_edge(BB_if_idx, ctx.block);
10931 bld.reset(ctx.block);
10932 append_logical_start(ctx.block);
10933
10934 endif_blocks.push(std::move(BB_endif));
10935 }
10936 }
10937
10938 while (!endif_blocks.empty()) {
10939 Block BB_endif = std::move(endif_blocks.top());
10940 endif_blocks.pop();
10941
10942 Block *BB_else = ctx.block;
10943
10944 append_logical_end(BB_else);
10945 /* branch from else block to endif block */
10946 bld.branch(aco_opcode::p_branch);
10947 add_edge(BB_else->index, &BB_endif);
10948 BB_else->kind |= block_kind_uniform;
10949
10950 /** emit endif merge block */
10951 ctx.block = program->insert_block(std::move(BB_endif));
10952 bld.reset(ctx.block);
10953 append_logical_start(ctx.block);
10954 }
10955
10956 program->config->float_mode = program->blocks[0].fp_mode.val;
10957
10958 append_logical_end(ctx.block);
10959 ctx.block->kind |= block_kind_uniform;
10960 bld.sopp(aco_opcode::s_endpgm);
10961
10962 cleanup_cfg(program);
10963 }
10964 }