aco: rework barriers and replace can_reorder
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else if (ctx->program->chip_class <= GFX7) {
140 Temp thread_id_hi = bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 } else {
143 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, dst, mask_hi, thread_id_lo);
144 return thread_id_hi;
145 }
146 }
147
148 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
149 {
150 Builder bld(ctx->program, ctx->block);
151
152 if (!dst.id())
153 dst = bld.tmp(src.regClass());
154
155 assert(src.size() == dst.size());
156
157 if (ctx->stage != fragment_fs) {
158 if (!dst.id())
159 return src;
160
161 bld.copy(Definition(dst), src);
162 return dst;
163 }
164
165 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
166 ctx->program->needs_wqm |= program_needs_wqm;
167 return dst;
168 }
169
170 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
171 {
172 if (index.regClass() == s1)
173 return bld.readlane(bld.def(s1), data, index);
174
175 if (ctx->options->chip_class <= GFX7) {
176 /* GFX6-7: there is no bpermute instruction */
177 Operand index_op(index);
178 Operand input_data(data);
179 index_op.setLateKill(true);
180 input_data.setLateKill(true);
181
182 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
183 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
184 /* GFX10 wave64 mode: emulate full-wave bpermute */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
192 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
193 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
194 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
195 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
196 Operand input_data(data);
197
198 index_x4.setLateKill(true);
199 input_data.setLateKill(true);
200 same_half.setLateKill(true);
201
202 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
203 } else {
204 /* GFX8-9 or GFX10 wave32: bpermute works normally */
205 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
206 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
207 }
208 }
209
210 static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
211 {
212 if (ctx->options->chip_class >= GFX8) {
213 unsigned and_mask = mask & 0x1f;
214 unsigned or_mask = (mask >> 5) & 0x1f;
215 unsigned xor_mask = (mask >> 10) & 0x1f;
216
217 uint16_t dpp_ctrl = 0xffff;
218
219 // TODO: we could use DPP8 for some swizzles
220 if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
221 unsigned res[4] = {0, 1, 2, 3};
222 for (unsigned i = 0; i < 4; i++)
223 res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
224 dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
225 } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
226 dpp_ctrl = dpp_row_rr(8);
227 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
228 dpp_ctrl = dpp_row_mirror;
229 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
230 dpp_ctrl = dpp_row_half_mirror;
231 }
232
233 if (dpp_ctrl != 0xffff)
234 return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
235 }
236
237 return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
238 }
239
240 Temp as_vgpr(isel_context *ctx, Temp val)
241 {
242 if (val.type() == RegType::sgpr) {
243 Builder bld(ctx->program, ctx->block);
244 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
245 }
246 assert(val.type() == RegType::vgpr);
247 return val;
248 }
249
250 //assumes a != 0xffffffff
251 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
252 {
253 assert(b != 0);
254 Builder bld(ctx->program, ctx->block);
255
256 if (util_is_power_of_two_or_zero(b)) {
257 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
258 return;
259 }
260
261 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
262
263 assert(info.multiplier <= 0xffffffff);
264
265 bool pre_shift = info.pre_shift != 0;
266 bool increment = info.increment != 0;
267 bool multiply = true;
268 bool post_shift = info.post_shift != 0;
269
270 if (!pre_shift && !increment && !multiply && !post_shift) {
271 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
272 return;
273 }
274
275 Temp pre_shift_dst = a;
276 if (pre_shift) {
277 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
278 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
279 }
280
281 Temp increment_dst = pre_shift_dst;
282 if (increment) {
283 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
284 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
285 }
286
287 Temp multiply_dst = increment_dst;
288 if (multiply) {
289 multiply_dst = post_shift ? bld.tmp(v1) : dst;
290 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
291 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
292 }
293
294 if (post_shift) {
295 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
296 }
297 }
298
299 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
300 {
301 Builder bld(ctx->program, ctx->block);
302 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
303 }
304
305
306 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
307 {
308 /* no need to extract the whole vector */
309 if (src.regClass() == dst_rc) {
310 assert(idx == 0);
311 return src;
312 }
313
314 assert(src.bytes() > (idx * dst_rc.bytes()));
315 Builder bld(ctx->program, ctx->block);
316 auto it = ctx->allocated_vec.find(src.id());
317 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
318 if (it->second[idx].regClass() == dst_rc) {
319 return it->second[idx];
320 } else {
321 assert(!dst_rc.is_subdword());
322 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
323 return bld.copy(bld.def(dst_rc), it->second[idx]);
324 }
325 }
326
327 if (dst_rc.is_subdword())
328 src = as_vgpr(ctx, src);
329
330 if (src.bytes() == dst_rc.bytes()) {
331 assert(idx == 0);
332 return bld.copy(bld.def(dst_rc), src);
333 } else {
334 Temp dst = bld.tmp(dst_rc);
335 emit_extract_vector(ctx, src, idx, dst);
336 return dst;
337 }
338 }
339
340 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
341 {
342 if (num_components == 1)
343 return;
344 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
345 return;
346 RegClass rc;
347 if (num_components > vec_src.size()) {
348 if (vec_src.type() == RegType::sgpr) {
349 /* should still help get_alu_src() */
350 emit_split_vector(ctx, vec_src, vec_src.size());
351 return;
352 }
353 /* sub-dword split */
354 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
355 } else {
356 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
357 }
358 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
359 split->operands[0] = Operand(vec_src);
360 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
361 for (unsigned i = 0; i < num_components; i++) {
362 elems[i] = {ctx->program->allocateId(), rc};
363 split->definitions[i] = Definition(elems[i]);
364 }
365 ctx->block->instructions.emplace_back(std::move(split));
366 ctx->allocated_vec.emplace(vec_src.id(), elems);
367 }
368
369 /* This vector expansion uses a mask to determine which elements in the new vector
370 * come from the original vector. The other elements are undefined. */
371 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
372 {
373 emit_split_vector(ctx, vec_src, util_bitcount(mask));
374
375 if (vec_src == dst)
376 return;
377
378 Builder bld(ctx->program, ctx->block);
379 if (num_components == 1) {
380 if (dst.type() == RegType::sgpr)
381 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
382 else
383 bld.copy(Definition(dst), vec_src);
384 return;
385 }
386
387 unsigned component_size = dst.size() / num_components;
388 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
389
390 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
391 vec->definitions[0] = Definition(dst);
392 unsigned k = 0;
393 for (unsigned i = 0; i < num_components; i++) {
394 if (mask & (1 << i)) {
395 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
396 if (dst.type() == RegType::sgpr)
397 src = bld.as_uniform(src);
398 vec->operands[i] = Operand(src);
399 } else {
400 vec->operands[i] = Operand(0u);
401 }
402 elems[i] = vec->operands[i].getTemp();
403 }
404 ctx->block->instructions.emplace_back(std::move(vec));
405 ctx->allocated_vec.emplace(dst.id(), elems);
406 }
407
408 /* adjust misaligned small bit size loads */
409 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
410 {
411 Builder bld(ctx->program, ctx->block);
412 Operand shift;
413 Temp select = Temp();
414 if (offset.isConstant()) {
415 assert(offset.constantValue() && offset.constantValue() < 4);
416 shift = Operand(offset.constantValue() * 8);
417 } else {
418 /* bit_offset = 8 * (offset & 0x3) */
419 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
420 select = bld.tmp(s1);
421 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
422 }
423
424 if (vec.size() == 1) {
425 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
426 } else if (vec.size() == 2) {
427 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
428 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
429 if (tmp == dst)
430 emit_split_vector(ctx, dst, 2);
431 else
432 emit_extract_vector(ctx, tmp, 0, dst);
433 } else if (vec.size() == 4) {
434 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
435 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
436 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
437 if (select != Temp())
438 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
439 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
440 Temp mid = bld.tmp(s1);
441 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
442 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
443 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
444 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
445 emit_split_vector(ctx, dst, 2);
446 }
447 }
448
449 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
450 {
451 Builder bld(ctx->program, ctx->block);
452 if (offset.isTemp()) {
453 Temp tmp[4] = {vec, vec, vec, vec};
454
455 if (vec.size() == 4) {
456 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
457 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
458 } else if (vec.size() == 3) {
459 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
460 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
461 } else if (vec.size() == 2) {
462 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
463 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
464 }
465 for (unsigned i = 0; i < dst.size(); i++)
466 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
467
468 vec = tmp[0];
469 if (dst.size() == 2)
470 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
471
472 offset = Operand(0u);
473 }
474
475 unsigned num_components = vec.bytes() / component_size;
476 if (vec.regClass() == dst.regClass()) {
477 assert(offset.constantValue() == 0);
478 bld.copy(Definition(dst), vec);
479 emit_split_vector(ctx, dst, num_components);
480 return;
481 }
482
483 emit_split_vector(ctx, vec, num_components);
484 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
485 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
486
487 assert(offset.constantValue() % component_size == 0);
488 unsigned skip = offset.constantValue() / component_size;
489 for (unsigned i = skip; i < num_components; i++)
490 elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
491
492 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
493 if (dst.type() == RegType::vgpr) {
494 num_components = dst.bytes() / component_size;
495 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
496 for (unsigned i = 0; i < num_components; i++)
497 create_vec->operands[i] = Operand(elems[i]);
498 create_vec->definitions[0] = Definition(dst);
499 bld.insert(std::move(create_vec));
500
501 /* if dst is sgpr - split the src, but move the original to sgpr. */
502 } else if (skip) {
503 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
504 byte_align_scalar(ctx, vec, offset, dst);
505 } else {
506 assert(dst.size() == vec.size());
507 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
508 }
509
510 ctx->allocated_vec.emplace(dst.id(), elems);
511 }
512
513 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
514 {
515 Builder bld(ctx->program, ctx->block);
516 if (!dst.id())
517 dst = bld.tmp(bld.lm);
518
519 assert(val.regClass() == s1);
520 assert(dst.regClass() == bld.lm);
521
522 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
523 }
524
525 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
526 {
527 Builder bld(ctx->program, ctx->block);
528 if (!dst.id())
529 dst = bld.tmp(s1);
530
531 assert(val.regClass() == bld.lm);
532 assert(dst.regClass() == s1);
533
534 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
535 Temp tmp = bld.tmp(s1);
536 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
537 return emit_wqm(ctx, tmp, dst);
538 }
539
540 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
541 {
542 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
543 return get_ssa_temp(ctx, src.src.ssa);
544
545 if (src.src.ssa->num_components == size) {
546 bool identity_swizzle = true;
547 for (unsigned i = 0; identity_swizzle && i < size; i++) {
548 if (src.swizzle[i] != i)
549 identity_swizzle = false;
550 }
551 if (identity_swizzle)
552 return get_ssa_temp(ctx, src.src.ssa);
553 }
554
555 Temp vec = get_ssa_temp(ctx, src.src.ssa);
556 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
557 assert(elem_size > 0);
558 assert(vec.bytes() % elem_size == 0);
559
560 if (elem_size < 4 && vec.type() == RegType::sgpr) {
561 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
562 assert(size == 1);
563 unsigned swizzle = src.swizzle[0];
564 if (vec.size() > 1) {
565 assert(src.src.ssa->bit_size == 16);
566 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
567 swizzle = swizzle & 1;
568 }
569 if (swizzle == 0)
570 return vec;
571
572 Temp dst{ctx->program->allocateId(), s1};
573 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 2)};
574 bfe->operands[0] = Operand(vec);
575 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
576 bfe->definitions[0] = Definition(dst);
577 bfe->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
578 ctx->block->instructions.emplace_back(std::move(bfe));
579 return dst;
580 }
581
582 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
583 if (size == 1) {
584 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
585 } else {
586 assert(size <= 4);
587 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
588 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
589 for (unsigned i = 0; i < size; ++i) {
590 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
591 vec_instr->operands[i] = Operand{elems[i]};
592 }
593 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
594 vec_instr->definitions[0] = Definition(dst);
595 ctx->block->instructions.emplace_back(std::move(vec_instr));
596 ctx->allocated_vec.emplace(dst.id(), elems);
597 return dst;
598 }
599 }
600
601 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
602 {
603 if (ptr.size() == 2)
604 return ptr;
605 Builder bld(ctx->program, ctx->block);
606 if (ptr.type() == RegType::vgpr)
607 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
608 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
609 ptr, Operand((unsigned)ctx->options->address32_hi));
610 }
611
612 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
613 {
614 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
615 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
616 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
617 sop2->definitions[0] = Definition(dst);
618 if (instr->no_unsigned_wrap)
619 sop2->definitions[0].setNUW(true);
620 if (writes_scc)
621 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
622 ctx->block->instructions.emplace_back(std::move(sop2));
623 }
624
625 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
626 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
627 {
628 Builder bld(ctx->program, ctx->block);
629 bld.is_precise = instr->exact;
630
631 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
632 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
633 if (src1.type() == RegType::sgpr) {
634 if (commutative && src0.type() == RegType::vgpr) {
635 Temp t = src0;
636 src0 = src1;
637 src1 = t;
638 } else {
639 src1 = as_vgpr(ctx, src1);
640 }
641 }
642
643 if (flush_denorms && ctx->program->chip_class < GFX9) {
644 assert(dst.size() == 1);
645 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
646 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
647 } else {
648 bld.vop2(op, Definition(dst), src0, src1);
649 }
650 }
651
652 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
653 aco_opcode op, Temp dst)
654 {
655 Builder bld(ctx->program, ctx->block);
656 bld.is_precise = instr->exact;
657
658 Temp src0 = get_alu_src(ctx, instr->src[0]);
659 Temp src1 = get_alu_src(ctx, instr->src[1]);
660
661 if (src1.type() == RegType::sgpr) {
662 assert(src0.type() == RegType::vgpr);
663 std::swap(src0, src1);
664 }
665
666 Temp src00 = bld.tmp(src0.type(), 1);
667 Temp src01 = bld.tmp(src0.type(), 1);
668 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
669 Temp src10 = bld.tmp(v1);
670 Temp src11 = bld.tmp(v1);
671 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
672 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
673 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
674 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
675 }
676
677 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
678 bool flush_denorms = false)
679 {
680 Temp src0 = get_alu_src(ctx, instr->src[0]);
681 Temp src1 = get_alu_src(ctx, instr->src[1]);
682 Temp src2 = get_alu_src(ctx, instr->src[2]);
683
684 /* ensure that the instruction has at most 1 sgpr operand
685 * The optimizer will inline constants for us */
686 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
687 src0 = as_vgpr(ctx, src0);
688 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
689 src1 = as_vgpr(ctx, src1);
690 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
691 src2 = as_vgpr(ctx, src2);
692
693 Builder bld(ctx->program, ctx->block);
694 bld.is_precise = instr->exact;
695 if (flush_denorms && ctx->program->chip_class < GFX9) {
696 assert(dst.size() == 1);
697 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
698 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
699 } else {
700 bld.vop3(op, Definition(dst), src0, src1, src2);
701 }
702 }
703
704 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
705 {
706 Builder bld(ctx->program, ctx->block);
707 bld.is_precise = instr->exact;
708 if (dst.type() == RegType::sgpr)
709 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
710 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
711 else
712 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
713 }
714
715 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
716 {
717 Temp src0 = get_alu_src(ctx, instr->src[0]);
718 Temp src1 = get_alu_src(ctx, instr->src[1]);
719 assert(src0.size() == src1.size());
720
721 aco_ptr<Instruction> vopc;
722 if (src1.type() == RegType::sgpr) {
723 if (src0.type() == RegType::vgpr) {
724 /* to swap the operands, we might also have to change the opcode */
725 switch (op) {
726 case aco_opcode::v_cmp_lt_f16:
727 op = aco_opcode::v_cmp_gt_f16;
728 break;
729 case aco_opcode::v_cmp_ge_f16:
730 op = aco_opcode::v_cmp_le_f16;
731 break;
732 case aco_opcode::v_cmp_lt_i16:
733 op = aco_opcode::v_cmp_gt_i16;
734 break;
735 case aco_opcode::v_cmp_ge_i16:
736 op = aco_opcode::v_cmp_le_i16;
737 break;
738 case aco_opcode::v_cmp_lt_u16:
739 op = aco_opcode::v_cmp_gt_u16;
740 break;
741 case aco_opcode::v_cmp_ge_u16:
742 op = aco_opcode::v_cmp_le_u16;
743 break;
744 case aco_opcode::v_cmp_lt_f32:
745 op = aco_opcode::v_cmp_gt_f32;
746 break;
747 case aco_opcode::v_cmp_ge_f32:
748 op = aco_opcode::v_cmp_le_f32;
749 break;
750 case aco_opcode::v_cmp_lt_i32:
751 op = aco_opcode::v_cmp_gt_i32;
752 break;
753 case aco_opcode::v_cmp_ge_i32:
754 op = aco_opcode::v_cmp_le_i32;
755 break;
756 case aco_opcode::v_cmp_lt_u32:
757 op = aco_opcode::v_cmp_gt_u32;
758 break;
759 case aco_opcode::v_cmp_ge_u32:
760 op = aco_opcode::v_cmp_le_u32;
761 break;
762 case aco_opcode::v_cmp_lt_f64:
763 op = aco_opcode::v_cmp_gt_f64;
764 break;
765 case aco_opcode::v_cmp_ge_f64:
766 op = aco_opcode::v_cmp_le_f64;
767 break;
768 case aco_opcode::v_cmp_lt_i64:
769 op = aco_opcode::v_cmp_gt_i64;
770 break;
771 case aco_opcode::v_cmp_ge_i64:
772 op = aco_opcode::v_cmp_le_i64;
773 break;
774 case aco_opcode::v_cmp_lt_u64:
775 op = aco_opcode::v_cmp_gt_u64;
776 break;
777 case aco_opcode::v_cmp_ge_u64:
778 op = aco_opcode::v_cmp_le_u64;
779 break;
780 default: /* eq and ne are commutative */
781 break;
782 }
783 Temp t = src0;
784 src0 = src1;
785 src1 = t;
786 } else {
787 src1 = as_vgpr(ctx, src1);
788 }
789 }
790
791 Builder bld(ctx->program, ctx->block);
792 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
793 }
794
795 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
796 {
797 Temp src0 = get_alu_src(ctx, instr->src[0]);
798 Temp src1 = get_alu_src(ctx, instr->src[1]);
799 Builder bld(ctx->program, ctx->block);
800
801 assert(dst.regClass() == bld.lm);
802 assert(src0.type() == RegType::sgpr);
803 assert(src1.type() == RegType::sgpr);
804 assert(src0.regClass() == src1.regClass());
805
806 /* Emit the SALU comparison instruction */
807 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
808 /* Turn the result into a per-lane bool */
809 bool_to_vector_condition(ctx, cmp, dst);
810 }
811
812 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
813 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
814 {
815 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
816 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
817 bool use_valu = s_op == aco_opcode::num_opcodes ||
818 nir_dest_is_divergent(instr->dest.dest) ||
819 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
820 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
821 aco_opcode op = use_valu ? v_op : s_op;
822 assert(op != aco_opcode::num_opcodes);
823 assert(dst.regClass() == ctx->program->lane_mask);
824
825 if (use_valu)
826 emit_vopc_instruction(ctx, instr, op, dst);
827 else
828 emit_sopc_instruction(ctx, instr, op, dst);
829 }
830
831 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
832 {
833 Builder bld(ctx->program, ctx->block);
834 Temp src0 = get_alu_src(ctx, instr->src[0]);
835 Temp src1 = get_alu_src(ctx, instr->src[1]);
836
837 assert(dst.regClass() == bld.lm);
838 assert(src0.regClass() == bld.lm);
839 assert(src1.regClass() == bld.lm);
840
841 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
842 }
843
844 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
845 {
846 Builder bld(ctx->program, ctx->block);
847 Temp cond = get_alu_src(ctx, instr->src[0]);
848 Temp then = get_alu_src(ctx, instr->src[1]);
849 Temp els = get_alu_src(ctx, instr->src[2]);
850
851 assert(cond.regClass() == bld.lm);
852
853 if (dst.type() == RegType::vgpr) {
854 aco_ptr<Instruction> bcsel;
855 if (dst.size() == 1) {
856 then = as_vgpr(ctx, then);
857 els = as_vgpr(ctx, els);
858
859 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
860 } else if (dst.size() == 2) {
861 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
862 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
863 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
864 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
865
866 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
867 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
868
869 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
870 } else {
871 fprintf(stderr, "Unimplemented NIR instr bit size: ");
872 nir_print_instr(&instr->instr, stderr);
873 fprintf(stderr, "\n");
874 }
875 return;
876 }
877
878 if (instr->dest.dest.ssa.bit_size == 1) {
879 assert(dst.regClass() == bld.lm);
880 assert(then.regClass() == bld.lm);
881 assert(els.regClass() == bld.lm);
882 }
883
884 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
885 if (dst.regClass() == s1 || dst.regClass() == s2) {
886 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
887 assert(dst.size() == then.size());
888 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
889 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
890 } else {
891 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
892 nir_print_instr(&instr->instr, stderr);
893 fprintf(stderr, "\n");
894 }
895 return;
896 }
897
898 /* divergent boolean bcsel
899 * this implements bcsel on bools: dst = s0 ? s1 : s2
900 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
901 assert(instr->dest.dest.ssa.bit_size == 1);
902
903 if (cond.id() != then.id())
904 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
905
906 if (cond.id() == els.id())
907 bld.sop1(Builder::s_mov, Definition(dst), then);
908 else
909 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
910 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
911 }
912
913 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
914 aco_opcode op, uint32_t undo)
915 {
916 /* multiply by 16777216 to handle denormals */
917 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
918 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
919 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
920 scaled = bld.vop1(op, bld.def(v1), scaled);
921 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
922
923 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
924
925 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
926 }
927
928 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
929 {
930 if (ctx->block->fp_mode.denorm32 == 0) {
931 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
932 return;
933 }
934
935 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
936 }
937
938 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
939 {
940 if (ctx->block->fp_mode.denorm32 == 0) {
941 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
942 return;
943 }
944
945 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
946 }
947
948 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
949 {
950 if (ctx->block->fp_mode.denorm32 == 0) {
951 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
952 return;
953 }
954
955 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
956 }
957
958 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
959 {
960 if (ctx->block->fp_mode.denorm32 == 0) {
961 bld.vop1(aco_opcode::v_log_f32, dst, val);
962 return;
963 }
964
965 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
966 }
967
968 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
969 {
970 if (ctx->options->chip_class >= GFX7)
971 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
972
973 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
974 /* TODO: create more efficient code! */
975 if (val.type() == RegType::sgpr)
976 val = as_vgpr(ctx, val);
977
978 /* Split the input value. */
979 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
980 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
981
982 /* Extract the exponent and compute the unbiased value. */
983 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
984 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
985
986 /* Extract the fractional part. */
987 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
988 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
989
990 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
991 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
992
993 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
994 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
995 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
996 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
997 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
998
999 /* Get the sign bit. */
1000 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
1001
1002 /* Decide the operation to apply depending on the unbiased exponent. */
1003 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
1004 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
1005 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
1006 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
1007 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
1008 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
1009
1010 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
1011 }
1012
1013 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1014 {
1015 if (ctx->options->chip_class >= GFX7)
1016 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
1017
1018 /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
1019 * lowered at NIR level for precision reasons). */
1020 Temp src0 = as_vgpr(ctx, val);
1021
1022 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
1023 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
1024
1025 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
1026 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
1027 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
1028
1029 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
1030 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
1031 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
1032 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
1033
1034 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
1035 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
1036
1037 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1038
1039 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1040 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1041
1042 return add->definitions[0].getTemp();
1043 }
1044
1045 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
1046 if (!dst.id()) {
1047 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
1048 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
1049 else
1050 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
1051 }
1052
1053 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
1054 return bld.copy(Definition(dst), src);
1055 else if (dst.bytes() < src.bytes())
1056 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
1057
1058 Temp tmp = dst;
1059 if (dst_bits == 64)
1060 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
1061
1062 if (tmp == src) {
1063 } else if (src.regClass() == s1) {
1064 if (is_signed)
1065 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
1066 else
1067 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
1068 } else if (ctx->options->chip_class >= GFX8) {
1069 assert(src_bits != 8 || src.regClass() == v1b);
1070 assert(src_bits != 16 || src.regClass() == v2b);
1071 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
1072 sdwa->operands[0] = Operand(src);
1073 sdwa->definitions[0] = Definition(tmp);
1074 if (is_signed)
1075 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
1076 else
1077 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
1078 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
1079 bld.insert(std::move(sdwa));
1080 } else {
1081 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
1082 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
1083 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
1084 }
1085
1086 if (dst_bits == 64) {
1087 if (is_signed && dst.regClass() == s2) {
1088 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
1089 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1090 } else if (is_signed && dst.regClass() == v2) {
1091 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
1092 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1093 } else {
1094 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
1095 }
1096 }
1097
1098 return dst;
1099 }
1100
1101 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1102 {
1103 if (!instr->dest.dest.is_ssa) {
1104 fprintf(stderr, "nir alu dst not in ssa: ");
1105 nir_print_instr(&instr->instr, stderr);
1106 fprintf(stderr, "\n");
1107 abort();
1108 }
1109 Builder bld(ctx->program, ctx->block);
1110 bld.is_precise = instr->exact;
1111 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1112 switch(instr->op) {
1113 case nir_op_vec2:
1114 case nir_op_vec3:
1115 case nir_op_vec4: {
1116 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1117 unsigned num = instr->dest.dest.ssa.num_components;
1118 for (unsigned i = 0; i < num; ++i)
1119 elems[i] = get_alu_src(ctx, instr->src[i]);
1120
1121 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1122 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1123 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1124 for (unsigned i = 0; i < num; ++i) {
1125 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1126 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1127 else
1128 vec->operands[i] = Operand{elems[i]};
1129 }
1130 vec->definitions[0] = Definition(dst);
1131 ctx->block->instructions.emplace_back(std::move(vec));
1132 ctx->allocated_vec.emplace(dst.id(), elems);
1133 } else {
1134 // TODO: that is a bit suboptimal..
1135 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1136 for (unsigned i = 0; i < num - 1; ++i)
1137 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1138 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1139 for (unsigned i = 0; i < num; ++i) {
1140 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1141 if (bit % 32 == 0) {
1142 elems[bit / 32] = elems[i];
1143 } else {
1144 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1145 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1146 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1147 }
1148 }
1149 if (dst.size() == 1)
1150 bld.copy(Definition(dst), elems[0]);
1151 else
1152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1153 }
1154 break;
1155 }
1156 case nir_op_mov: {
1157 Temp src = get_alu_src(ctx, instr->src[0]);
1158 aco_ptr<Instruction> mov;
1159 if (dst.type() == RegType::sgpr) {
1160 if (src.type() == RegType::vgpr)
1161 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1162 else if (src.regClass() == s1)
1163 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1164 else if (src.regClass() == s2)
1165 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1166 else
1167 unreachable("wrong src register class for nir_op_imov");
1168 } else {
1169 if (dst.regClass() == v1)
1170 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1171 else if (dst.regClass() == v1b ||
1172 dst.regClass() == v2b ||
1173 dst.regClass() == v2)
1174 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1175 else
1176 unreachable("wrong src register class for nir_op_imov");
1177 }
1178 break;
1179 }
1180 case nir_op_inot: {
1181 Temp src = get_alu_src(ctx, instr->src[0]);
1182 if (instr->dest.dest.ssa.bit_size == 1) {
1183 assert(src.regClass() == bld.lm);
1184 assert(dst.regClass() == bld.lm);
1185 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1186 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1187 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1188 } else if (dst.regClass() == v1) {
1189 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1190 } else if (dst.regClass() == v2) {
1191 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1192 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1193 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1194 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1195 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1196 } else if (dst.type() == RegType::sgpr) {
1197 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1198 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1199 } else {
1200 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1201 nir_print_instr(&instr->instr, stderr);
1202 fprintf(stderr, "\n");
1203 }
1204 break;
1205 }
1206 case nir_op_ineg: {
1207 Temp src = get_alu_src(ctx, instr->src[0]);
1208 if (dst.regClass() == v1) {
1209 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1210 } else if (dst.regClass() == s1) {
1211 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1212 } else if (dst.size() == 2) {
1213 Temp src0 = bld.tmp(dst.type(), 1);
1214 Temp src1 = bld.tmp(dst.type(), 1);
1215 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1216
1217 if (dst.regClass() == s2) {
1218 Temp carry = bld.tmp(s1);
1219 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1220 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1221 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1222 } else {
1223 Temp lower = bld.tmp(v1);
1224 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1225 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1227 }
1228 } else {
1229 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1230 nir_print_instr(&instr->instr, stderr);
1231 fprintf(stderr, "\n");
1232 }
1233 break;
1234 }
1235 case nir_op_iabs: {
1236 if (dst.regClass() == s1) {
1237 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1238 } else if (dst.regClass() == v1) {
1239 Temp src = get_alu_src(ctx, instr->src[0]);
1240 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1241 } else {
1242 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1243 nir_print_instr(&instr->instr, stderr);
1244 fprintf(stderr, "\n");
1245 }
1246 break;
1247 }
1248 case nir_op_isign: {
1249 Temp src = get_alu_src(ctx, instr->src[0]);
1250 if (dst.regClass() == s1) {
1251 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1252 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1253 } else if (dst.regClass() == s2) {
1254 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1255 Temp neqz;
1256 if (ctx->program->chip_class >= GFX8)
1257 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1258 else
1259 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1260 /* SCC gets zero-extended to 64 bit */
1261 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1262 } else if (dst.regClass() == v1) {
1263 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1264 } else if (dst.regClass() == v2) {
1265 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1266 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1267 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1268 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1269 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1270 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1271 } else {
1272 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1273 nir_print_instr(&instr->instr, stderr);
1274 fprintf(stderr, "\n");
1275 }
1276 break;
1277 }
1278 case nir_op_imax: {
1279 if (dst.regClass() == v1) {
1280 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1281 } else if (dst.regClass() == s1) {
1282 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1283 } else {
1284 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1285 nir_print_instr(&instr->instr, stderr);
1286 fprintf(stderr, "\n");
1287 }
1288 break;
1289 }
1290 case nir_op_umax: {
1291 if (dst.regClass() == v1) {
1292 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1293 } else if (dst.regClass() == s1) {
1294 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1295 } else {
1296 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1297 nir_print_instr(&instr->instr, stderr);
1298 fprintf(stderr, "\n");
1299 }
1300 break;
1301 }
1302 case nir_op_imin: {
1303 if (dst.regClass() == v1) {
1304 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1305 } else if (dst.regClass() == s1) {
1306 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1307 } else {
1308 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1309 nir_print_instr(&instr->instr, stderr);
1310 fprintf(stderr, "\n");
1311 }
1312 break;
1313 }
1314 case nir_op_umin: {
1315 if (dst.regClass() == v1) {
1316 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1317 } else if (dst.regClass() == s1) {
1318 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1319 } else {
1320 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1321 nir_print_instr(&instr->instr, stderr);
1322 fprintf(stderr, "\n");
1323 }
1324 break;
1325 }
1326 case nir_op_ior: {
1327 if (instr->dest.dest.ssa.bit_size == 1) {
1328 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1329 } else if (dst.regClass() == v1) {
1330 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1331 } else if (dst.regClass() == v2) {
1332 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1333 } else if (dst.regClass() == s1) {
1334 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1335 } else if (dst.regClass() == s2) {
1336 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1337 } else {
1338 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1339 nir_print_instr(&instr->instr, stderr);
1340 fprintf(stderr, "\n");
1341 }
1342 break;
1343 }
1344 case nir_op_iand: {
1345 if (instr->dest.dest.ssa.bit_size == 1) {
1346 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1347 } else if (dst.regClass() == v1) {
1348 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1349 } else if (dst.regClass() == v2) {
1350 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1353 } else if (dst.regClass() == s2) {
1354 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1355 } else {
1356 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1357 nir_print_instr(&instr->instr, stderr);
1358 fprintf(stderr, "\n");
1359 }
1360 break;
1361 }
1362 case nir_op_ixor: {
1363 if (instr->dest.dest.ssa.bit_size == 1) {
1364 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1365 } else if (dst.regClass() == v1) {
1366 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1367 } else if (dst.regClass() == v2) {
1368 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1369 } else if (dst.regClass() == s1) {
1370 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1371 } else if (dst.regClass() == s2) {
1372 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1373 } else {
1374 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1375 nir_print_instr(&instr->instr, stderr);
1376 fprintf(stderr, "\n");
1377 }
1378 break;
1379 }
1380 case nir_op_ushr: {
1381 if (dst.regClass() == v1) {
1382 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1383 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1384 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1385 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1386 } else if (dst.regClass() == v2) {
1387 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1388 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1389 } else if (dst.regClass() == s2) {
1390 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1391 } else if (dst.regClass() == s1) {
1392 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1393 } else {
1394 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1395 nir_print_instr(&instr->instr, stderr);
1396 fprintf(stderr, "\n");
1397 }
1398 break;
1399 }
1400 case nir_op_ishl: {
1401 if (dst.regClass() == v1) {
1402 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1403 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1404 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1405 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1406 } else if (dst.regClass() == v2) {
1407 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1408 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1409 } else if (dst.regClass() == s1) {
1410 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1411 } else if (dst.regClass() == s2) {
1412 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1413 } else {
1414 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1415 nir_print_instr(&instr->instr, stderr);
1416 fprintf(stderr, "\n");
1417 }
1418 break;
1419 }
1420 case nir_op_ishr: {
1421 if (dst.regClass() == v1) {
1422 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1423 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1424 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1425 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1426 } else if (dst.regClass() == v2) {
1427 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1429 } else if (dst.regClass() == s1) {
1430 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1431 } else if (dst.regClass() == s2) {
1432 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1433 } else {
1434 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1435 nir_print_instr(&instr->instr, stderr);
1436 fprintf(stderr, "\n");
1437 }
1438 break;
1439 }
1440 case nir_op_find_lsb: {
1441 Temp src = get_alu_src(ctx, instr->src[0]);
1442 if (src.regClass() == s1) {
1443 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1444 } else if (src.regClass() == v1) {
1445 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1446 } else if (src.regClass() == s2) {
1447 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1448 } else {
1449 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1450 nir_print_instr(&instr->instr, stderr);
1451 fprintf(stderr, "\n");
1452 }
1453 break;
1454 }
1455 case nir_op_ufind_msb:
1456 case nir_op_ifind_msb: {
1457 Temp src = get_alu_src(ctx, instr->src[0]);
1458 if (src.regClass() == s1 || src.regClass() == s2) {
1459 aco_opcode op = src.regClass() == s2 ?
1460 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1461 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1462 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1463
1464 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1465 Operand(src.size() * 32u - 1u), msb_rev);
1466 Temp msb = sub.def(0).getTemp();
1467 Temp carry = sub.def(1).getTemp();
1468
1469 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1470 } else if (src.regClass() == v1) {
1471 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1472 Temp msb_rev = bld.tmp(v1);
1473 emit_vop1_instruction(ctx, instr, op, msb_rev);
1474 Temp msb = bld.tmp(v1);
1475 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1476 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1477 } else {
1478 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1479 nir_print_instr(&instr->instr, stderr);
1480 fprintf(stderr, "\n");
1481 }
1482 break;
1483 }
1484 case nir_op_bitfield_reverse: {
1485 if (dst.regClass() == s1) {
1486 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1487 } else if (dst.regClass() == v1) {
1488 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1489 } else {
1490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1491 nir_print_instr(&instr->instr, stderr);
1492 fprintf(stderr, "\n");
1493 }
1494 break;
1495 }
1496 case nir_op_iadd: {
1497 if (dst.regClass() == s1) {
1498 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1499 break;
1500 }
1501
1502 Temp src0 = get_alu_src(ctx, instr->src[0]);
1503 Temp src1 = get_alu_src(ctx, instr->src[1]);
1504 if (dst.regClass() == v1) {
1505 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1506 break;
1507 }
1508
1509 assert(src0.size() == 2 && src1.size() == 2);
1510 Temp src00 = bld.tmp(src0.type(), 1);
1511 Temp src01 = bld.tmp(dst.type(), 1);
1512 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1513 Temp src10 = bld.tmp(src1.type(), 1);
1514 Temp src11 = bld.tmp(dst.type(), 1);
1515 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1516
1517 if (dst.regClass() == s2) {
1518 Temp carry = bld.tmp(s1);
1519 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1520 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1521 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1522 } else if (dst.regClass() == v2) {
1523 Temp dst0 = bld.tmp(v1);
1524 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1525 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1526 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1527 } else {
1528 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1529 nir_print_instr(&instr->instr, stderr);
1530 fprintf(stderr, "\n");
1531 }
1532 break;
1533 }
1534 case nir_op_uadd_sat: {
1535 Temp src0 = get_alu_src(ctx, instr->src[0]);
1536 Temp src1 = get_alu_src(ctx, instr->src[1]);
1537 if (dst.regClass() == s1) {
1538 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1539 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1540 src0, src1);
1541 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1542 } else if (dst.regClass() == v1) {
1543 if (ctx->options->chip_class >= GFX9) {
1544 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1545 add->operands[0] = Operand(src0);
1546 add->operands[1] = Operand(src1);
1547 add->definitions[0] = Definition(dst);
1548 add->clamp = 1;
1549 ctx->block->instructions.emplace_back(std::move(add));
1550 } else {
1551 if (src1.regClass() != v1)
1552 std::swap(src0, src1);
1553 assert(src1.regClass() == v1);
1554 Temp tmp = bld.tmp(v1);
1555 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1556 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1557 }
1558 } else {
1559 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1560 nir_print_instr(&instr->instr, stderr);
1561 fprintf(stderr, "\n");
1562 }
1563 break;
1564 }
1565 case nir_op_uadd_carry: {
1566 Temp src0 = get_alu_src(ctx, instr->src[0]);
1567 Temp src1 = get_alu_src(ctx, instr->src[1]);
1568 if (dst.regClass() == s1) {
1569 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1570 break;
1571 }
1572 if (dst.regClass() == v1) {
1573 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1574 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1575 break;
1576 }
1577
1578 Temp src00 = bld.tmp(src0.type(), 1);
1579 Temp src01 = bld.tmp(dst.type(), 1);
1580 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1581 Temp src10 = bld.tmp(src1.type(), 1);
1582 Temp src11 = bld.tmp(dst.type(), 1);
1583 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1584 if (dst.regClass() == s2) {
1585 Temp carry = bld.tmp(s1);
1586 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1587 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1589 } else if (dst.regClass() == v2) {
1590 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1591 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1592 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1593 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1594 } else {
1595 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1596 nir_print_instr(&instr->instr, stderr);
1597 fprintf(stderr, "\n");
1598 }
1599 break;
1600 }
1601 case nir_op_isub: {
1602 if (dst.regClass() == s1) {
1603 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1604 break;
1605 }
1606
1607 Temp src0 = get_alu_src(ctx, instr->src[0]);
1608 Temp src1 = get_alu_src(ctx, instr->src[1]);
1609 if (dst.regClass() == v1) {
1610 bld.vsub32(Definition(dst), src0, src1);
1611 break;
1612 }
1613
1614 Temp src00 = bld.tmp(src0.type(), 1);
1615 Temp src01 = bld.tmp(dst.type(), 1);
1616 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1617 Temp src10 = bld.tmp(src1.type(), 1);
1618 Temp src11 = bld.tmp(dst.type(), 1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1620 if (dst.regClass() == s2) {
1621 Temp carry = bld.tmp(s1);
1622 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1623 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1624 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1625 } else if (dst.regClass() == v2) {
1626 Temp lower = bld.tmp(v1);
1627 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1628 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1629 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1630 } else {
1631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1632 nir_print_instr(&instr->instr, stderr);
1633 fprintf(stderr, "\n");
1634 }
1635 break;
1636 }
1637 case nir_op_usub_borrow: {
1638 Temp src0 = get_alu_src(ctx, instr->src[0]);
1639 Temp src1 = get_alu_src(ctx, instr->src[1]);
1640 if (dst.regClass() == s1) {
1641 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1642 break;
1643 } else if (dst.regClass() == v1) {
1644 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1645 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1646 break;
1647 }
1648
1649 Temp src00 = bld.tmp(src0.type(), 1);
1650 Temp src01 = bld.tmp(dst.type(), 1);
1651 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1652 Temp src10 = bld.tmp(src1.type(), 1);
1653 Temp src11 = bld.tmp(dst.type(), 1);
1654 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1655 if (dst.regClass() == s2) {
1656 Temp borrow = bld.tmp(s1);
1657 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1658 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1659 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1660 } else if (dst.regClass() == v2) {
1661 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1662 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1663 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1664 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1665 } else {
1666 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1667 nir_print_instr(&instr->instr, stderr);
1668 fprintf(stderr, "\n");
1669 }
1670 break;
1671 }
1672 case nir_op_imul: {
1673 if (dst.regClass() == v1) {
1674 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1675 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1676 } else if (dst.regClass() == s1) {
1677 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1678 } else {
1679 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1680 nir_print_instr(&instr->instr, stderr);
1681 fprintf(stderr, "\n");
1682 }
1683 break;
1684 }
1685 case nir_op_umul_high: {
1686 if (dst.regClass() == v1) {
1687 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1688 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1689 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1690 } else if (dst.regClass() == s1) {
1691 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1692 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1693 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1694 } else {
1695 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1696 nir_print_instr(&instr->instr, stderr);
1697 fprintf(stderr, "\n");
1698 }
1699 break;
1700 }
1701 case nir_op_imul_high: {
1702 if (dst.regClass() == v1) {
1703 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1704 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1705 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1706 } else if (dst.regClass() == s1) {
1707 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1708 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1709 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1710 } else {
1711 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1712 nir_print_instr(&instr->instr, stderr);
1713 fprintf(stderr, "\n");
1714 }
1715 break;
1716 }
1717 case nir_op_fmul: {
1718 Temp src0 = get_alu_src(ctx, instr->src[0]);
1719 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1720 if (dst.regClass() == v2b) {
1721 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1722 } else if (dst.regClass() == v1) {
1723 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1724 } else if (dst.regClass() == v2) {
1725 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1726 } else {
1727 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1728 nir_print_instr(&instr->instr, stderr);
1729 fprintf(stderr, "\n");
1730 }
1731 break;
1732 }
1733 case nir_op_fadd: {
1734 Temp src0 = get_alu_src(ctx, instr->src[0]);
1735 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1736 if (dst.regClass() == v2b) {
1737 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1738 } else if (dst.regClass() == v1) {
1739 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1740 } else if (dst.regClass() == v2) {
1741 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1742 } else {
1743 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1744 nir_print_instr(&instr->instr, stderr);
1745 fprintf(stderr, "\n");
1746 }
1747 break;
1748 }
1749 case nir_op_fsub: {
1750 Temp src0 = get_alu_src(ctx, instr->src[0]);
1751 Temp src1 = get_alu_src(ctx, instr->src[1]);
1752 if (dst.regClass() == v2b) {
1753 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1754 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1755 else
1756 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1757 } else if (dst.regClass() == v1) {
1758 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1759 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1760 else
1761 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1762 } else if (dst.regClass() == v2) {
1763 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1764 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1765 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1766 sub->neg[1] = true;
1767 } else {
1768 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1769 nir_print_instr(&instr->instr, stderr);
1770 fprintf(stderr, "\n");
1771 }
1772 break;
1773 }
1774 case nir_op_fmax: {
1775 Temp src0 = get_alu_src(ctx, instr->src[0]);
1776 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1777 if (dst.regClass() == v2b) {
1778 // TODO: check fp_mode.must_flush_denorms16_64
1779 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1780 } else if (dst.regClass() == v1) {
1781 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1782 } else if (dst.regClass() == v2) {
1783 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1784 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1785 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1786 } else {
1787 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1788 }
1789 } else {
1790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1791 nir_print_instr(&instr->instr, stderr);
1792 fprintf(stderr, "\n");
1793 }
1794 break;
1795 }
1796 case nir_op_fmin: {
1797 Temp src0 = get_alu_src(ctx, instr->src[0]);
1798 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1799 if (dst.regClass() == v2b) {
1800 // TODO: check fp_mode.must_flush_denorms16_64
1801 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1802 } else if (dst.regClass() == v1) {
1803 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1804 } else if (dst.regClass() == v2) {
1805 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1806 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1807 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1808 } else {
1809 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1810 }
1811 } else {
1812 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1813 nir_print_instr(&instr->instr, stderr);
1814 fprintf(stderr, "\n");
1815 }
1816 break;
1817 }
1818 case nir_op_fmax3: {
1819 if (dst.regClass() == v2b) {
1820 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, dst, false);
1821 } else if (dst.regClass() == v1) {
1822 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1823 } else {
1824 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1825 nir_print_instr(&instr->instr, stderr);
1826 fprintf(stderr, "\n");
1827 }
1828 break;
1829 }
1830 case nir_op_fmin3: {
1831 if (dst.regClass() == v2b) {
1832 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, dst, false);
1833 } else if (dst.regClass() == v1) {
1834 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1835 } else {
1836 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1837 nir_print_instr(&instr->instr, stderr);
1838 fprintf(stderr, "\n");
1839 }
1840 break;
1841 }
1842 case nir_op_fmed3: {
1843 if (dst.regClass() == v2b) {
1844 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, dst, false);
1845 } else if (dst.regClass() == v1) {
1846 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1847 } else {
1848 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1849 nir_print_instr(&instr->instr, stderr);
1850 fprintf(stderr, "\n");
1851 }
1852 break;
1853 }
1854 case nir_op_umax3: {
1855 if (dst.size() == 1) {
1856 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1857 } else {
1858 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1859 nir_print_instr(&instr->instr, stderr);
1860 fprintf(stderr, "\n");
1861 }
1862 break;
1863 }
1864 case nir_op_umin3: {
1865 if (dst.size() == 1) {
1866 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1867 } else {
1868 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1869 nir_print_instr(&instr->instr, stderr);
1870 fprintf(stderr, "\n");
1871 }
1872 break;
1873 }
1874 case nir_op_umed3: {
1875 if (dst.size() == 1) {
1876 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1877 } else {
1878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1879 nir_print_instr(&instr->instr, stderr);
1880 fprintf(stderr, "\n");
1881 }
1882 break;
1883 }
1884 case nir_op_imax3: {
1885 if (dst.size() == 1) {
1886 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1887 } else {
1888 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1889 nir_print_instr(&instr->instr, stderr);
1890 fprintf(stderr, "\n");
1891 }
1892 break;
1893 }
1894 case nir_op_imin3: {
1895 if (dst.size() == 1) {
1896 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1897 } else {
1898 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1899 nir_print_instr(&instr->instr, stderr);
1900 fprintf(stderr, "\n");
1901 }
1902 break;
1903 }
1904 case nir_op_imed3: {
1905 if (dst.size() == 1) {
1906 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1907 } else {
1908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1909 nir_print_instr(&instr->instr, stderr);
1910 fprintf(stderr, "\n");
1911 }
1912 break;
1913 }
1914 case nir_op_cube_face_coord: {
1915 Temp in = get_alu_src(ctx, instr->src[0], 3);
1916 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1917 emit_extract_vector(ctx, in, 1, v1),
1918 emit_extract_vector(ctx, in, 2, v1) };
1919 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1920 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1921 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1922 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1923 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1924 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1925 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1926 break;
1927 }
1928 case nir_op_cube_face_index: {
1929 Temp in = get_alu_src(ctx, instr->src[0], 3);
1930 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1931 emit_extract_vector(ctx, in, 1, v1),
1932 emit_extract_vector(ctx, in, 2, v1) };
1933 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1934 break;
1935 }
1936 case nir_op_bcsel: {
1937 emit_bcsel(ctx, instr, dst);
1938 break;
1939 }
1940 case nir_op_frsq: {
1941 Temp src = get_alu_src(ctx, instr->src[0]);
1942 if (dst.regClass() == v2b) {
1943 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1944 } else if (dst.regClass() == v1) {
1945 emit_rsq(ctx, bld, Definition(dst), src);
1946 } else if (dst.regClass() == v2) {
1947 /* Lowered at NIR level for precision reasons. */
1948 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1949 } else {
1950 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1951 nir_print_instr(&instr->instr, stderr);
1952 fprintf(stderr, "\n");
1953 }
1954 break;
1955 }
1956 case nir_op_fneg: {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 if (dst.regClass() == v2b) {
1959 if (ctx->block->fp_mode.must_flush_denorms16_64)
1960 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1961 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1962 } else if (dst.regClass() == v1) {
1963 if (ctx->block->fp_mode.must_flush_denorms32)
1964 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1965 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1966 } else if (dst.regClass() == v2) {
1967 if (ctx->block->fp_mode.must_flush_denorms16_64)
1968 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1969 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1970 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1971 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1972 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1973 } else {
1974 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1975 nir_print_instr(&instr->instr, stderr);
1976 fprintf(stderr, "\n");
1977 }
1978 break;
1979 }
1980 case nir_op_fabs: {
1981 Temp src = get_alu_src(ctx, instr->src[0]);
1982 if (dst.regClass() == v2b) {
1983 if (ctx->block->fp_mode.must_flush_denorms16_64)
1984 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1985 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1986 } else if (dst.regClass() == v1) {
1987 if (ctx->block->fp_mode.must_flush_denorms32)
1988 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1989 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1990 } else if (dst.regClass() == v2) {
1991 if (ctx->block->fp_mode.must_flush_denorms16_64)
1992 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1993 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1994 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1995 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1996 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1997 } else {
1998 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1999 nir_print_instr(&instr->instr, stderr);
2000 fprintf(stderr, "\n");
2001 }
2002 break;
2003 }
2004 case nir_op_fsat: {
2005 Temp src = get_alu_src(ctx, instr->src[0]);
2006 if (dst.regClass() == v2b) {
2007 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
2008 } else if (dst.regClass() == v1) {
2009 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2010 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
2011 // TODO: confirm that this holds under any circumstances
2012 } else if (dst.regClass() == v2) {
2013 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
2014 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
2015 vop3->clamp = true;
2016 } else {
2017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2018 nir_print_instr(&instr->instr, stderr);
2019 fprintf(stderr, "\n");
2020 }
2021 break;
2022 }
2023 case nir_op_flog2: {
2024 Temp src = get_alu_src(ctx, instr->src[0]);
2025 if (dst.regClass() == v2b) {
2026 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
2027 } else if (dst.regClass() == v1) {
2028 emit_log2(ctx, bld, Definition(dst), src);
2029 } else {
2030 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2031 nir_print_instr(&instr->instr, stderr);
2032 fprintf(stderr, "\n");
2033 }
2034 break;
2035 }
2036 case nir_op_frcp: {
2037 Temp src = get_alu_src(ctx, instr->src[0]);
2038 if (dst.regClass() == v2b) {
2039 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
2040 } else if (dst.regClass() == v1) {
2041 emit_rcp(ctx, bld, Definition(dst), src);
2042 } else if (dst.regClass() == v2) {
2043 /* Lowered at NIR level for precision reasons. */
2044 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
2045 } else {
2046 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2047 nir_print_instr(&instr->instr, stderr);
2048 fprintf(stderr, "\n");
2049 }
2050 break;
2051 }
2052 case nir_op_fexp2: {
2053 if (dst.regClass() == v2b) {
2054 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
2055 } else if (dst.regClass() == v1) {
2056 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
2057 } else {
2058 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2059 nir_print_instr(&instr->instr, stderr);
2060 fprintf(stderr, "\n");
2061 }
2062 break;
2063 }
2064 case nir_op_fsqrt: {
2065 Temp src = get_alu_src(ctx, instr->src[0]);
2066 if (dst.regClass() == v2b) {
2067 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
2068 } else if (dst.regClass() == v1) {
2069 emit_sqrt(ctx, bld, Definition(dst), src);
2070 } else if (dst.regClass() == v2) {
2071 /* Lowered at NIR level for precision reasons. */
2072 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
2073 } else {
2074 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2075 nir_print_instr(&instr->instr, stderr);
2076 fprintf(stderr, "\n");
2077 }
2078 break;
2079 }
2080 case nir_op_ffract: {
2081 if (dst.regClass() == v2b) {
2082 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
2083 } else if (dst.regClass() == v1) {
2084 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
2085 } else if (dst.regClass() == v2) {
2086 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_ffloor: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (dst.regClass() == v2b) {
2097 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
2098 } else if (dst.regClass() == v1) {
2099 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
2100 } else if (dst.regClass() == v2) {
2101 emit_floor_f64(ctx, bld, Definition(dst), src);
2102 } else {
2103 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2104 nir_print_instr(&instr->instr, stderr);
2105 fprintf(stderr, "\n");
2106 }
2107 break;
2108 }
2109 case nir_op_fceil: {
2110 Temp src0 = get_alu_src(ctx, instr->src[0]);
2111 if (dst.regClass() == v2b) {
2112 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
2113 } else if (dst.regClass() == v1) {
2114 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2115 } else if (dst.regClass() == v2) {
2116 if (ctx->options->chip_class >= GFX7) {
2117 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2118 } else {
2119 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2120 /* trunc = trunc(src0)
2121 * if (src0 > 0.0 && src0 != trunc)
2122 * trunc += 1.0
2123 */
2124 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2125 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2126 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2127 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2128 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2129 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2130 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2131 }
2132 } else {
2133 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2134 nir_print_instr(&instr->instr, stderr);
2135 fprintf(stderr, "\n");
2136 }
2137 break;
2138 }
2139 case nir_op_ftrunc: {
2140 Temp src = get_alu_src(ctx, instr->src[0]);
2141 if (dst.regClass() == v2b) {
2142 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2143 } else if (dst.regClass() == v1) {
2144 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2145 } else if (dst.regClass() == v2) {
2146 emit_trunc_f64(ctx, bld, Definition(dst), src);
2147 } else {
2148 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2149 nir_print_instr(&instr->instr, stderr);
2150 fprintf(stderr, "\n");
2151 }
2152 break;
2153 }
2154 case nir_op_fround_even: {
2155 Temp src0 = get_alu_src(ctx, instr->src[0]);
2156 if (dst.regClass() == v2b) {
2157 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2158 } else if (dst.regClass() == v1) {
2159 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2160 } else if (dst.regClass() == v2) {
2161 if (ctx->options->chip_class >= GFX7) {
2162 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2163 } else {
2164 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2165 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2166 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2167
2168 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2169 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2170 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2171 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2172 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2173 tmp = sub->definitions[0].getTemp();
2174
2175 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2176 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2177 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2178 Temp cond = vop3->definitions[0].getTemp();
2179
2180 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2181 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2182 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2183 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2184
2185 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2186 }
2187 } else {
2188 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2189 nir_print_instr(&instr->instr, stderr);
2190 fprintf(stderr, "\n");
2191 }
2192 break;
2193 }
2194 case nir_op_fsin:
2195 case nir_op_fcos: {
2196 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2197 aco_ptr<Instruction> norm;
2198 if (dst.regClass() == v2b) {
2199 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2200 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2201 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2202 bld.vop1(opcode, Definition(dst), tmp);
2203 } else if (dst.regClass() == v1) {
2204 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2205 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2206
2207 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2208 if (ctx->options->chip_class < GFX9)
2209 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2210
2211 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2212 bld.vop1(opcode, Definition(dst), tmp);
2213 } else {
2214 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2215 nir_print_instr(&instr->instr, stderr);
2216 fprintf(stderr, "\n");
2217 }
2218 break;
2219 }
2220 case nir_op_ldexp: {
2221 Temp src0 = get_alu_src(ctx, instr->src[0]);
2222 Temp src1 = get_alu_src(ctx, instr->src[1]);
2223 if (dst.regClass() == v2b) {
2224 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2225 } else if (dst.regClass() == v1) {
2226 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2227 } else if (dst.regClass() == v2) {
2228 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2229 } else {
2230 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2231 nir_print_instr(&instr->instr, stderr);
2232 fprintf(stderr, "\n");
2233 }
2234 break;
2235 }
2236 case nir_op_frexp_sig: {
2237 Temp src = get_alu_src(ctx, instr->src[0]);
2238 if (dst.regClass() == v2b) {
2239 bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
2240 } else if (dst.regClass() == v1) {
2241 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2242 } else if (dst.regClass() == v2) {
2243 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2244 } else {
2245 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2246 nir_print_instr(&instr->instr, stderr);
2247 fprintf(stderr, "\n");
2248 }
2249 break;
2250 }
2251 case nir_op_frexp_exp: {
2252 Temp src = get_alu_src(ctx, instr->src[0]);
2253 if (instr->src[0].src.ssa->bit_size == 16) {
2254 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2255 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2256 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2257 } else if (instr->src[0].src.ssa->bit_size == 32) {
2258 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2259 } else if (instr->src[0].src.ssa->bit_size == 64) {
2260 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2261 } else {
2262 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2263 nir_print_instr(&instr->instr, stderr);
2264 fprintf(stderr, "\n");
2265 }
2266 break;
2267 }
2268 case nir_op_fsign: {
2269 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2270 if (dst.regClass() == v2b) {
2271 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2272 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2273 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2274 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2275 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2276 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
2277 } else if (dst.regClass() == v1) {
2278 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2279 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2280 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2281 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2282 } else if (dst.regClass() == v2) {
2283 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2284 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2285 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2286
2287 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2288 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2289 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2290
2291 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2292 } else {
2293 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2294 nir_print_instr(&instr->instr, stderr);
2295 fprintf(stderr, "\n");
2296 }
2297 break;
2298 }
2299 case nir_op_f2f16:
2300 case nir_op_f2f16_rtne: {
2301 Temp src = get_alu_src(ctx, instr->src[0]);
2302 if (instr->src[0].src.ssa->bit_size == 64)
2303 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2304 if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
2305 /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
2306 * keep value numbering and the scheduler simpler.
2307 */
2308 bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
2309 else
2310 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2311 break;
2312 }
2313 case nir_op_f2f16_rtz: {
2314 Temp src = get_alu_src(ctx, instr->src[0]);
2315 if (instr->src[0].src.ssa->bit_size == 64)
2316 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2317 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
2318 break;
2319 }
2320 case nir_op_f2f32: {
2321 if (instr->src[0].src.ssa->bit_size == 16) {
2322 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2323 } else if (instr->src[0].src.ssa->bit_size == 64) {
2324 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2325 } else {
2326 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2327 nir_print_instr(&instr->instr, stderr);
2328 fprintf(stderr, "\n");
2329 }
2330 break;
2331 }
2332 case nir_op_f2f64: {
2333 Temp src = get_alu_src(ctx, instr->src[0]);
2334 if (instr->src[0].src.ssa->bit_size == 16)
2335 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2336 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2337 break;
2338 }
2339 case nir_op_i2f16: {
2340 assert(dst.regClass() == v2b);
2341 Temp src = get_alu_src(ctx, instr->src[0]);
2342 if (instr->src[0].src.ssa->bit_size == 8)
2343 src = convert_int(ctx, bld, src, 8, 16, true);
2344 else if (instr->src[0].src.ssa->bit_size == 64)
2345 src = convert_int(ctx, bld, src, 64, 32, false);
2346 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2347 break;
2348 }
2349 case nir_op_i2f32: {
2350 assert(dst.size() == 1);
2351 Temp src = get_alu_src(ctx, instr->src[0]);
2352 if (instr->src[0].src.ssa->bit_size <= 16)
2353 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2354 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2355 break;
2356 }
2357 case nir_op_i2f64: {
2358 if (instr->src[0].src.ssa->bit_size <= 32) {
2359 Temp src = get_alu_src(ctx, instr->src[0]);
2360 if (instr->src[0].src.ssa->bit_size <= 16)
2361 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2362 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2363 } else if (instr->src[0].src.ssa->bit_size == 64) {
2364 Temp src = get_alu_src(ctx, instr->src[0]);
2365 RegClass rc = RegClass(src.type(), 1);
2366 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2367 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2368 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2369 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2370 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2371 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2372
2373 } else {
2374 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2375 nir_print_instr(&instr->instr, stderr);
2376 fprintf(stderr, "\n");
2377 }
2378 break;
2379 }
2380 case nir_op_u2f16: {
2381 assert(dst.regClass() == v2b);
2382 Temp src = get_alu_src(ctx, instr->src[0]);
2383 if (instr->src[0].src.ssa->bit_size == 8)
2384 src = convert_int(ctx, bld, src, 8, 16, false);
2385 else if (instr->src[0].src.ssa->bit_size == 64)
2386 src = convert_int(ctx, bld, src, 64, 32, false);
2387 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2388 break;
2389 }
2390 case nir_op_u2f32: {
2391 assert(dst.size() == 1);
2392 Temp src = get_alu_src(ctx, instr->src[0]);
2393 if (instr->src[0].src.ssa->bit_size == 8) {
2394 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2395 } else {
2396 if (instr->src[0].src.ssa->bit_size == 16)
2397 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2398 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2399 }
2400 break;
2401 }
2402 case nir_op_u2f64: {
2403 if (instr->src[0].src.ssa->bit_size <= 32) {
2404 Temp src = get_alu_src(ctx, instr->src[0]);
2405 if (instr->src[0].src.ssa->bit_size <= 16)
2406 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2407 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2408 } else if (instr->src[0].src.ssa->bit_size == 64) {
2409 Temp src = get_alu_src(ctx, instr->src[0]);
2410 RegClass rc = RegClass(src.type(), 1);
2411 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2412 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2413 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2414 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2415 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2416 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2417 } else {
2418 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2419 nir_print_instr(&instr->instr, stderr);
2420 fprintf(stderr, "\n");
2421 }
2422 break;
2423 }
2424 case nir_op_f2i8:
2425 case nir_op_f2i16: {
2426 if (instr->src[0].src.ssa->bit_size == 16)
2427 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2428 else if (instr->src[0].src.ssa->bit_size == 32)
2429 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2430 else
2431 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2432 break;
2433 }
2434 case nir_op_f2u8:
2435 case nir_op_f2u16: {
2436 if (instr->src[0].src.ssa->bit_size == 16)
2437 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2438 else if (instr->src[0].src.ssa->bit_size == 32)
2439 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2440 else
2441 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2442 break;
2443 }
2444 case nir_op_f2i32: {
2445 Temp src = get_alu_src(ctx, instr->src[0]);
2446 if (instr->src[0].src.ssa->bit_size == 16) {
2447 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2448 if (dst.type() == RegType::vgpr) {
2449 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2450 } else {
2451 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2452 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2453 }
2454 } else if (instr->src[0].src.ssa->bit_size == 32) {
2455 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2456 } else if (instr->src[0].src.ssa->bit_size == 64) {
2457 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2458 } else {
2459 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2460 nir_print_instr(&instr->instr, stderr);
2461 fprintf(stderr, "\n");
2462 }
2463 break;
2464 }
2465 case nir_op_f2u32: {
2466 Temp src = get_alu_src(ctx, instr->src[0]);
2467 if (instr->src[0].src.ssa->bit_size == 16) {
2468 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2469 if (dst.type() == RegType::vgpr) {
2470 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2471 } else {
2472 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2473 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2474 }
2475 } else if (instr->src[0].src.ssa->bit_size == 32) {
2476 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2477 } else if (instr->src[0].src.ssa->bit_size == 64) {
2478 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2479 } else {
2480 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2481 nir_print_instr(&instr->instr, stderr);
2482 fprintf(stderr, "\n");
2483 }
2484 break;
2485 }
2486 case nir_op_f2i64: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (instr->src[0].src.ssa->bit_size == 16)
2489 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2490
2491 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2492 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2493 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2494 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2495 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2496 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2497 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2498 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2499 Temp new_exponent = bld.tmp(v1);
2500 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2501 if (ctx->program->chip_class >= GFX8)
2502 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2503 else
2504 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2505 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2506 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2507 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2508 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2509 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2510 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2511 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2512 Temp new_lower = bld.tmp(v1);
2513 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2514 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2515 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2516
2517 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2518 if (src.type() == RegType::vgpr)
2519 src = bld.as_uniform(src);
2520 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2521 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2522 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2523 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2524 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2525 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2526 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2527 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2528 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2529 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2530 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2531 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2532 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2533 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2534 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2535 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2536 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2537 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2538 Temp borrow = bld.tmp(s1);
2539 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2540 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2541 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2542
2543 } else if (instr->src[0].src.ssa->bit_size == 64) {
2544 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2545 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2546 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2547 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2548 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2549 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2550 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2551 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2552 if (dst.type() == RegType::sgpr) {
2553 lower = bld.as_uniform(lower);
2554 upper = bld.as_uniform(upper);
2555 }
2556 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2557
2558 } else {
2559 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2560 nir_print_instr(&instr->instr, stderr);
2561 fprintf(stderr, "\n");
2562 }
2563 break;
2564 }
2565 case nir_op_f2u64: {
2566 Temp src = get_alu_src(ctx, instr->src[0]);
2567 if (instr->src[0].src.ssa->bit_size == 16)
2568 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2569
2570 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2571 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2572 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2573 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2574 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2575 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2576 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2577 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2578 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2579 Temp new_exponent = bld.tmp(v1);
2580 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2581 if (ctx->program->chip_class >= GFX8)
2582 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2583 else
2584 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2585 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2586 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2587 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2588 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2589 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2590 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2591 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2592
2593 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2594 if (src.type() == RegType::vgpr)
2595 src = bld.as_uniform(src);
2596 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2597 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2598 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2599 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2600 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2601 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2602 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2603 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2604 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2605 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2606 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2607 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2608 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2609 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2610 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2611 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2612 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2613 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2614
2615 } else if (instr->src[0].src.ssa->bit_size == 64) {
2616 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2617 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2618 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2619 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2620 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2621 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2622 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2623 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2624 if (dst.type() == RegType::sgpr) {
2625 lower = bld.as_uniform(lower);
2626 upper = bld.as_uniform(upper);
2627 }
2628 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2629
2630 } else {
2631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2632 nir_print_instr(&instr->instr, stderr);
2633 fprintf(stderr, "\n");
2634 }
2635 break;
2636 }
2637 case nir_op_b2f16: {
2638 Temp src = get_alu_src(ctx, instr->src[0]);
2639 assert(src.regClass() == bld.lm);
2640
2641 if (dst.regClass() == s1) {
2642 src = bool_to_scalar_condition(ctx, src);
2643 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2644 } else if (dst.regClass() == v2b) {
2645 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2646 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2647 } else {
2648 unreachable("Wrong destination register class for nir_op_b2f16.");
2649 }
2650 break;
2651 }
2652 case nir_op_b2f32: {
2653 Temp src = get_alu_src(ctx, instr->src[0]);
2654 assert(src.regClass() == bld.lm);
2655
2656 if (dst.regClass() == s1) {
2657 src = bool_to_scalar_condition(ctx, src);
2658 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2659 } else if (dst.regClass() == v1) {
2660 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2661 } else {
2662 unreachable("Wrong destination register class for nir_op_b2f32.");
2663 }
2664 break;
2665 }
2666 case nir_op_b2f64: {
2667 Temp src = get_alu_src(ctx, instr->src[0]);
2668 assert(src.regClass() == bld.lm);
2669
2670 if (dst.regClass() == s2) {
2671 src = bool_to_scalar_condition(ctx, src);
2672 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2673 } else if (dst.regClass() == v2) {
2674 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2675 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2676 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2677 } else {
2678 unreachable("Wrong destination register class for nir_op_b2f64.");
2679 }
2680 break;
2681 }
2682 case nir_op_i2i8:
2683 case nir_op_i2i16:
2684 case nir_op_i2i32:
2685 case nir_op_i2i64: {
2686 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2687 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2688 break;
2689 }
2690 case nir_op_u2u8:
2691 case nir_op_u2u16:
2692 case nir_op_u2u32:
2693 case nir_op_u2u64: {
2694 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2695 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2696 break;
2697 }
2698 case nir_op_b2b32:
2699 case nir_op_b2i8:
2700 case nir_op_b2i16:
2701 case nir_op_b2i32:
2702 case nir_op_b2i64: {
2703 Temp src = get_alu_src(ctx, instr->src[0]);
2704 assert(src.regClass() == bld.lm);
2705
2706 Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst;
2707 if (tmp.regClass() == s1) {
2708 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2709 bool_to_scalar_condition(ctx, src, tmp);
2710 } else if (tmp.type() == RegType::vgpr) {
2711 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src);
2712 } else {
2713 unreachable("Invalid register class for b2i32");
2714 }
2715
2716 if (tmp != dst)
2717 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
2718 break;
2719 }
2720 case nir_op_b2b1:
2721 case nir_op_i2b1: {
2722 Temp src = get_alu_src(ctx, instr->src[0]);
2723 assert(dst.regClass() == bld.lm);
2724
2725 if (src.type() == RegType::vgpr) {
2726 assert(src.regClass() == v1 || src.regClass() == v2);
2727 assert(dst.regClass() == bld.lm);
2728 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2729 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2730 } else {
2731 assert(src.regClass() == s1 || src.regClass() == s2);
2732 Temp tmp;
2733 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2734 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2735 } else {
2736 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2737 bld.scc(bld.def(s1)), Operand(0u), src);
2738 }
2739 bool_to_vector_condition(ctx, tmp, dst);
2740 }
2741 break;
2742 }
2743 case nir_op_pack_64_2x32_split: {
2744 Temp src0 = get_alu_src(ctx, instr->src[0]);
2745 Temp src1 = get_alu_src(ctx, instr->src[1]);
2746
2747 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2748 break;
2749 }
2750 case nir_op_unpack_64_2x32_split_x:
2751 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2752 break;
2753 case nir_op_unpack_64_2x32_split_y:
2754 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2755 break;
2756 case nir_op_unpack_32_2x16_split_x:
2757 if (dst.type() == RegType::vgpr) {
2758 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2759 } else {
2760 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2761 }
2762 break;
2763 case nir_op_unpack_32_2x16_split_y:
2764 if (dst.type() == RegType::vgpr) {
2765 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2766 } else {
2767 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2768 }
2769 break;
2770 case nir_op_pack_32_2x16_split: {
2771 Temp src0 = get_alu_src(ctx, instr->src[0]);
2772 Temp src1 = get_alu_src(ctx, instr->src[1]);
2773 if (dst.regClass() == v1) {
2774 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2775 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2776 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2777 } else {
2778 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2779 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2780 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2781 }
2782 break;
2783 }
2784 case nir_op_pack_half_2x16: {
2785 Temp src = get_alu_src(ctx, instr->src[0], 2);
2786
2787 if (dst.regClass() == v1) {
2788 Temp src0 = bld.tmp(v1);
2789 Temp src1 = bld.tmp(v1);
2790 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2791 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2792 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2793 else
2794 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2795 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2796 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2797 } else {
2798 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2799 nir_print_instr(&instr->instr, stderr);
2800 fprintf(stderr, "\n");
2801 }
2802 break;
2803 }
2804 case nir_op_unpack_half_2x16_split_x: {
2805 if (dst.regClass() == v1) {
2806 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2807 } else {
2808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2809 nir_print_instr(&instr->instr, stderr);
2810 fprintf(stderr, "\n");
2811 }
2812 break;
2813 }
2814 case nir_op_unpack_half_2x16_split_y: {
2815 if (dst.regClass() == v1) {
2816 /* TODO: use SDWA here */
2817 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2818 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2819 } else {
2820 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2821 nir_print_instr(&instr->instr, stderr);
2822 fprintf(stderr, "\n");
2823 }
2824 break;
2825 }
2826 case nir_op_fquantize2f16: {
2827 Temp src = get_alu_src(ctx, instr->src[0]);
2828 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2829 Temp f32, cmp_res;
2830
2831 if (ctx->program->chip_class >= GFX8) {
2832 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2833 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2834 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2835 } else {
2836 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2837 * so compare the result and flush to 0 if it's smaller.
2838 */
2839 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2840 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2841 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2842 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2843 cmp_res = vop3->definitions[0].getTemp();
2844 }
2845
2846 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2847 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2848 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2849 } else {
2850 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2851 }
2852 break;
2853 }
2854 case nir_op_bfm: {
2855 Temp bits = get_alu_src(ctx, instr->src[0]);
2856 Temp offset = get_alu_src(ctx, instr->src[1]);
2857
2858 if (dst.regClass() == s1) {
2859 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2860 } else if (dst.regClass() == v1) {
2861 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2862 } else {
2863 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2864 nir_print_instr(&instr->instr, stderr);
2865 fprintf(stderr, "\n");
2866 }
2867 break;
2868 }
2869 case nir_op_bitfield_select: {
2870 /* (mask & insert) | (~mask & base) */
2871 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2872 Temp insert = get_alu_src(ctx, instr->src[1]);
2873 Temp base = get_alu_src(ctx, instr->src[2]);
2874
2875 /* dst = (insert & bitmask) | (base & ~bitmask) */
2876 if (dst.regClass() == s1) {
2877 aco_ptr<Instruction> sop2;
2878 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2879 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2880 Operand lhs;
2881 if (const_insert && const_bitmask) {
2882 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2883 } else {
2884 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2885 lhs = Operand(insert);
2886 }
2887
2888 Operand rhs;
2889 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2890 if (const_base && const_bitmask) {
2891 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2892 } else {
2893 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2894 rhs = Operand(base);
2895 }
2896
2897 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2898
2899 } else if (dst.regClass() == v1) {
2900 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2901 base = as_vgpr(ctx, base);
2902 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2903 insert = as_vgpr(ctx, insert);
2904
2905 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2906
2907 } else {
2908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2909 nir_print_instr(&instr->instr, stderr);
2910 fprintf(stderr, "\n");
2911 }
2912 break;
2913 }
2914 case nir_op_ubfe:
2915 case nir_op_ibfe: {
2916 Temp base = get_alu_src(ctx, instr->src[0]);
2917 Temp offset = get_alu_src(ctx, instr->src[1]);
2918 Temp bits = get_alu_src(ctx, instr->src[2]);
2919
2920 if (dst.type() == RegType::sgpr) {
2921 Operand extract;
2922 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2923 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2924 if (const_offset && const_bits) {
2925 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2926 extract = Operand(const_extract);
2927 } else {
2928 Operand width;
2929 if (const_bits) {
2930 width = Operand(const_bits->u32 << 16);
2931 } else {
2932 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2933 }
2934 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2935 }
2936
2937 aco_opcode opcode;
2938 if (dst.regClass() == s1) {
2939 if (instr->op == nir_op_ubfe)
2940 opcode = aco_opcode::s_bfe_u32;
2941 else
2942 opcode = aco_opcode::s_bfe_i32;
2943 } else if (dst.regClass() == s2) {
2944 if (instr->op == nir_op_ubfe)
2945 opcode = aco_opcode::s_bfe_u64;
2946 else
2947 opcode = aco_opcode::s_bfe_i64;
2948 } else {
2949 unreachable("Unsupported BFE bit size");
2950 }
2951
2952 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2953
2954 } else {
2955 aco_opcode opcode;
2956 if (dst.regClass() == v1) {
2957 if (instr->op == nir_op_ubfe)
2958 opcode = aco_opcode::v_bfe_u32;
2959 else
2960 opcode = aco_opcode::v_bfe_i32;
2961 } else {
2962 unreachable("Unsupported BFE bit size");
2963 }
2964
2965 emit_vop3a_instruction(ctx, instr, opcode, dst);
2966 }
2967 break;
2968 }
2969 case nir_op_bit_count: {
2970 Temp src = get_alu_src(ctx, instr->src[0]);
2971 if (src.regClass() == s1) {
2972 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2973 } else if (src.regClass() == v1) {
2974 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2975 } else if (src.regClass() == v2) {
2976 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2977 emit_extract_vector(ctx, src, 1, v1),
2978 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2979 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2980 } else if (src.regClass() == s2) {
2981 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2982 } else {
2983 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2984 nir_print_instr(&instr->instr, stderr);
2985 fprintf(stderr, "\n");
2986 }
2987 break;
2988 }
2989 case nir_op_flt: {
2990 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2991 break;
2992 }
2993 case nir_op_fge: {
2994 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2995 break;
2996 }
2997 case nir_op_feq: {
2998 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2999 break;
3000 }
3001 case nir_op_fne: {
3002 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
3003 break;
3004 }
3005 case nir_op_ilt: {
3006 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
3007 break;
3008 }
3009 case nir_op_ige: {
3010 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
3011 break;
3012 }
3013 case nir_op_ieq: {
3014 if (instr->src[0].src.ssa->bit_size == 1)
3015 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
3016 else
3017 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
3018 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
3019 break;
3020 }
3021 case nir_op_ine: {
3022 if (instr->src[0].src.ssa->bit_size == 1)
3023 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
3024 else
3025 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
3026 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
3027 break;
3028 }
3029 case nir_op_ult: {
3030 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
3031 break;
3032 }
3033 case nir_op_uge: {
3034 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
3035 break;
3036 }
3037 case nir_op_fddx:
3038 case nir_op_fddy:
3039 case nir_op_fddx_fine:
3040 case nir_op_fddy_fine:
3041 case nir_op_fddx_coarse:
3042 case nir_op_fddy_coarse: {
3043 Temp src = get_alu_src(ctx, instr->src[0]);
3044 uint16_t dpp_ctrl1, dpp_ctrl2;
3045 if (instr->op == nir_op_fddx_fine) {
3046 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
3047 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
3048 } else if (instr->op == nir_op_fddy_fine) {
3049 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
3050 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
3051 } else {
3052 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
3053 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
3054 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
3055 else
3056 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
3057 }
3058
3059 Temp tmp;
3060 if (ctx->program->chip_class >= GFX8) {
3061 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
3062 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
3063 } else {
3064 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
3065 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
3066 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
3067 }
3068 emit_wqm(ctx, tmp, dst, true);
3069 break;
3070 }
3071 default:
3072 fprintf(stderr, "Unknown NIR ALU instr: ");
3073 nir_print_instr(&instr->instr, stderr);
3074 fprintf(stderr, "\n");
3075 }
3076 }
3077
3078 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3079 {
3080 Temp dst = get_ssa_temp(ctx, &instr->def);
3081
3082 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3083 // which get truncated the lsb if double and msb if int
3084 // for now, we only use s_mov_b64 with 64bit inline constants
3085 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3086 assert(dst.type() == RegType::sgpr);
3087
3088 Builder bld(ctx->program, ctx->block);
3089
3090 if (instr->def.bit_size == 1) {
3091 assert(dst.regClass() == bld.lm);
3092 int val = instr->value[0].b ? -1 : 0;
3093 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3094 bld.sop1(Builder::s_mov, Definition(dst), op);
3095 } else if (instr->def.bit_size == 8) {
3096 /* ensure that the value is correctly represented in the low byte of the register */
3097 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3098 } else if (instr->def.bit_size == 16) {
3099 /* ensure that the value is correctly represented in the low half of the register */
3100 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3101 } else if (dst.size() == 1) {
3102 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3103 } else {
3104 assert(dst.size() != 1);
3105 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3106 if (instr->def.bit_size == 64)
3107 for (unsigned i = 0; i < dst.size(); i++)
3108 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3109 else {
3110 for (unsigned i = 0; i < dst.size(); i++)
3111 vec->operands[i] = Operand{instr->value[i].u32};
3112 }
3113 vec->definitions[0] = Definition(dst);
3114 ctx->block->instructions.emplace_back(std::move(vec));
3115 }
3116 }
3117
3118 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3119 {
3120 uint32_t new_mask = 0;
3121 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3122 if (mask & (1u << i))
3123 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3124 return new_mask;
3125 }
3126
3127 struct LoadEmitInfo {
3128 Operand offset;
3129 Temp dst;
3130 unsigned num_components;
3131 unsigned component_size;
3132 Temp resource = Temp(0, s1);
3133 unsigned component_stride = 0;
3134 unsigned const_offset = 0;
3135 unsigned align_mul = 0;
3136 unsigned align_offset = 0;
3137
3138 bool glc = false;
3139 unsigned swizzle_component_size = 0;
3140 memory_sync_info sync;
3141 Temp soffset = Temp(0, s1);
3142 };
3143
3144 using LoadCallback = Temp(*)(
3145 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3146 unsigned align, unsigned const_offset, Temp dst_hint);
3147
3148 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3149 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3150 {
3151 unsigned load_size = info->num_components * info->component_size;
3152 unsigned component_size = info->component_size;
3153
3154 unsigned num_vals = 0;
3155 Temp vals[info->dst.bytes()];
3156
3157 unsigned const_offset = info->const_offset;
3158
3159 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3160 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3161
3162 unsigned bytes_read = 0;
3163 while (bytes_read < load_size) {
3164 unsigned bytes_needed = load_size - bytes_read;
3165
3166 /* add buffer for unaligned loads */
3167 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3168
3169 if (byte_align) {
3170 if ((bytes_needed > 2 ||
3171 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
3172 !supports_8bit_16bit_loads) && byte_align_loads) {
3173 if (info->component_stride) {
3174 assert(supports_8bit_16bit_loads && "unimplemented");
3175 bytes_needed = 2;
3176 byte_align = 0;
3177 } else {
3178 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3179 bytes_needed = align(bytes_needed, 4);
3180 }
3181 } else {
3182 byte_align = 0;
3183 }
3184 }
3185
3186 if (info->swizzle_component_size)
3187 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3188 if (info->component_stride)
3189 bytes_needed = MIN2(bytes_needed, info->component_size);
3190
3191 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3192
3193 /* reduce constant offset */
3194 Operand offset = info->offset;
3195 unsigned reduced_const_offset = const_offset;
3196 bool remove_const_offset_completely = need_to_align_offset;
3197 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3198 unsigned to_add = const_offset;
3199 if (remove_const_offset_completely) {
3200 reduced_const_offset = 0;
3201 } else {
3202 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3203 reduced_const_offset %= max_const_offset_plus_one;
3204 }
3205 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3206 if (offset.isConstant()) {
3207 offset = Operand(offset.constantValue() + to_add);
3208 } else if (offset_tmp.regClass() == s1) {
3209 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3210 offset_tmp, Operand(to_add));
3211 } else if (offset_tmp.regClass() == v1) {
3212 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3213 } else {
3214 Temp lo = bld.tmp(offset_tmp.type(), 1);
3215 Temp hi = bld.tmp(offset_tmp.type(), 1);
3216 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3217
3218 if (offset_tmp.regClass() == s2) {
3219 Temp carry = bld.tmp(s1);
3220 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3221 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3222 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3223 } else {
3224 Temp new_lo = bld.tmp(v1);
3225 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3226 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3227 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3228 }
3229 }
3230 }
3231
3232 /* align offset down if needed */
3233 Operand aligned_offset = offset;
3234 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3235 if (need_to_align_offset) {
3236 align = 4;
3237 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3238 if (offset.isConstant()) {
3239 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3240 } else if (offset_tmp.regClass() == s1) {
3241 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3242 } else if (offset_tmp.regClass() == s2) {
3243 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3244 } else if (offset_tmp.regClass() == v1) {
3245 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3246 } else if (offset_tmp.regClass() == v2) {
3247 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3248 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3249 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3250 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3251 }
3252 }
3253 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3254 bld.copy(bld.def(s1), aligned_offset);
3255
3256 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3257 reduced_const_offset, byte_align ? Temp() : info->dst);
3258
3259 /* the callback wrote directly to dst */
3260 if (val == info->dst) {
3261 assert(num_vals == 0);
3262 emit_split_vector(ctx, info->dst, info->num_components);
3263 return;
3264 }
3265
3266 /* shift result right if needed */
3267 if (info->component_size < 4 && byte_align_loads) {
3268 Operand align((uint32_t)byte_align);
3269 if (byte_align == -1) {
3270 if (offset.isConstant())
3271 align = Operand(offset.constantValue() % 4u);
3272 else if (offset.size() == 2)
3273 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3274 else
3275 align = offset;
3276 }
3277
3278 assert(val.bytes() >= load_size && "unimplemented");
3279 if (val.type() == RegType::sgpr)
3280 byte_align_scalar(ctx, val, align, info->dst);
3281 else
3282 byte_align_vector(ctx, val, align, info->dst, component_size);
3283 return;
3284 }
3285
3286 /* add result to list and advance */
3287 if (info->component_stride) {
3288 assert(val.bytes() == info->component_size && "unimplemented");
3289 const_offset += info->component_stride;
3290 align_offset = (align_offset + info->component_stride) % align_mul;
3291 } else {
3292 const_offset += val.bytes();
3293 align_offset = (align_offset + val.bytes()) % align_mul;
3294 }
3295 bytes_read += val.bytes();
3296 vals[num_vals++] = val;
3297 }
3298
3299 /* create array of components */
3300 unsigned components_split = 0;
3301 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3302 bool has_vgprs = false;
3303 for (unsigned i = 0; i < num_vals;) {
3304 Temp tmp[num_vals];
3305 unsigned num_tmps = 0;
3306 unsigned tmp_size = 0;
3307 RegType reg_type = RegType::sgpr;
3308 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3309 if (vals[i].type() == RegType::vgpr)
3310 reg_type = RegType::vgpr;
3311 tmp_size += vals[i].bytes();
3312 tmp[num_tmps++] = vals[i++];
3313 }
3314 if (num_tmps > 1) {
3315 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3316 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3317 for (unsigned i = 0; i < num_tmps; i++)
3318 vec->operands[i] = Operand(tmp[i]);
3319 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3320 vec->definitions[0] = Definition(tmp[0]);
3321 bld.insert(std::move(vec));
3322 }
3323
3324 if (tmp[0].bytes() % component_size) {
3325 /* trim tmp[0] */
3326 assert(i == num_vals);
3327 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3328 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3329 }
3330
3331 RegClass elem_rc = RegClass::get(reg_type, component_size);
3332
3333 unsigned start = components_split;
3334
3335 if (tmp_size == elem_rc.bytes()) {
3336 allocated_vec[components_split++] = tmp[0];
3337 } else {
3338 assert(tmp_size % elem_rc.bytes() == 0);
3339 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3340 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3341 for (unsigned i = 0; i < split->definitions.size(); i++) {
3342 Temp component = bld.tmp(elem_rc);
3343 allocated_vec[components_split++] = component;
3344 split->definitions[i] = Definition(component);
3345 }
3346 split->operands[0] = Operand(tmp[0]);
3347 bld.insert(std::move(split));
3348 }
3349
3350 /* try to p_as_uniform early so we can create more optimizable code and
3351 * also update allocated_vec */
3352 for (unsigned j = start; j < components_split; j++) {
3353 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3354 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3355 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3356 }
3357 }
3358
3359 /* concatenate components and p_as_uniform() result if needed */
3360 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3361 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3362
3363 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3364
3365 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3366 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3367 for (unsigned i = 0; i < info->num_components; i++)
3368 vec->operands[i] = Operand(allocated_vec[i]);
3369 if (padding_bytes)
3370 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3371 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3372 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3373 vec->definitions[0] = Definition(tmp);
3374 bld.insert(std::move(vec));
3375 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3376 } else {
3377 vec->definitions[0] = Definition(info->dst);
3378 bld.insert(std::move(vec));
3379 }
3380 }
3381
3382 Operand load_lds_size_m0(Builder& bld)
3383 {
3384 /* TODO: m0 does not need to be initialized on GFX9+ */
3385 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3386 }
3387
3388 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3389 Temp offset, unsigned bytes_needed,
3390 unsigned align, unsigned const_offset,
3391 Temp dst_hint)
3392 {
3393 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3394
3395 Operand m = load_lds_size_m0(bld);
3396
3397 bool large_ds_read = bld.program->chip_class >= GFX7;
3398 bool usable_read2 = bld.program->chip_class >= GFX7;
3399
3400 bool read2 = false;
3401 unsigned size = 0;
3402 aco_opcode op;
3403 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3404 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3405 size = 16;
3406 op = aco_opcode::ds_read_b128;
3407 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3408 size = 16;
3409 read2 = true;
3410 op = aco_opcode::ds_read2_b64;
3411 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3412 size = 12;
3413 op = aco_opcode::ds_read_b96;
3414 } else if (bytes_needed >= 8 && align % 8 == 0) {
3415 size = 8;
3416 op = aco_opcode::ds_read_b64;
3417 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3418 size = 8;
3419 read2 = true;
3420 op = aco_opcode::ds_read2_b32;
3421 } else if (bytes_needed >= 4 && align % 4 == 0) {
3422 size = 4;
3423 op = aco_opcode::ds_read_b32;
3424 } else if (bytes_needed >= 2 && align % 2 == 0) {
3425 size = 2;
3426 op = aco_opcode::ds_read_u16;
3427 } else {
3428 size = 1;
3429 op = aco_opcode::ds_read_u8;
3430 }
3431
3432 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3433 if (const_offset >= max_offset_plus_one) {
3434 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3435 const_offset %= max_offset_plus_one;
3436 }
3437
3438 if (read2)
3439 const_offset /= (size / 2u);
3440
3441 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3442 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3443 Instruction *instr;
3444 if (read2)
3445 instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3446 else
3447 instr = bld.ds(op, Definition(val), offset, m, const_offset);
3448 static_cast<DS_instruction *>(instr)->sync = info->sync;
3449
3450 if (size < 4)
3451 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3452
3453 return val;
3454 }
3455
3456 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3457
3458 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3459 Temp offset, unsigned bytes_needed,
3460 unsigned align, unsigned const_offset,
3461 Temp dst_hint)
3462 {
3463 unsigned size = 0;
3464 aco_opcode op;
3465 if (bytes_needed <= 4) {
3466 size = 1;
3467 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3468 } else if (bytes_needed <= 8) {
3469 size = 2;
3470 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3471 } else if (bytes_needed <= 16) {
3472 size = 4;
3473 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3474 } else if (bytes_needed <= 32) {
3475 size = 8;
3476 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3477 } else {
3478 size = 16;
3479 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3480 }
3481 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3482 if (info->resource.id()) {
3483 load->operands[0] = Operand(info->resource);
3484 load->operands[1] = Operand(offset);
3485 } else {
3486 load->operands[0] = Operand(offset);
3487 load->operands[1] = Operand(0u);
3488 }
3489 RegClass rc(RegType::sgpr, size);
3490 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3491 load->definitions[0] = Definition(val);
3492 load->glc = info->glc;
3493 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3494 load->sync = info->sync;
3495 bld.insert(std::move(load));
3496 return val;
3497 }
3498
3499 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3500
3501 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3502 Temp offset, unsigned bytes_needed,
3503 unsigned align_, unsigned const_offset,
3504 Temp dst_hint)
3505 {
3506 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3507 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3508
3509 if (info->soffset.id()) {
3510 if (soffset.isTemp())
3511 vaddr = bld.copy(bld.def(v1), soffset);
3512 soffset = Operand(info->soffset);
3513 }
3514
3515 unsigned bytes_size = 0;
3516 aco_opcode op;
3517 if (bytes_needed == 1 || align_ % 2) {
3518 bytes_size = 1;
3519 op = aco_opcode::buffer_load_ubyte;
3520 } else if (bytes_needed == 2 || align_ % 4) {
3521 bytes_size = 2;
3522 op = aco_opcode::buffer_load_ushort;
3523 } else if (bytes_needed <= 4) {
3524 bytes_size = 4;
3525 op = aco_opcode::buffer_load_dword;
3526 } else if (bytes_needed <= 8) {
3527 bytes_size = 8;
3528 op = aco_opcode::buffer_load_dwordx2;
3529 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3530 bytes_size = 12;
3531 op = aco_opcode::buffer_load_dwordx3;
3532 } else {
3533 bytes_size = 16;
3534 op = aco_opcode::buffer_load_dwordx4;
3535 }
3536 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3537 mubuf->operands[0] = Operand(info->resource);
3538 mubuf->operands[1] = vaddr;
3539 mubuf->operands[2] = soffset;
3540 mubuf->offen = (offset.type() == RegType::vgpr);
3541 mubuf->glc = info->glc;
3542 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3543 mubuf->sync = info->sync;
3544 mubuf->offset = const_offset;
3545 mubuf->swizzled = info->swizzle_component_size != 0;
3546 RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
3547 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3548 mubuf->definitions[0] = Definition(val);
3549 bld.insert(std::move(mubuf));
3550
3551 return val;
3552 }
3553
3554 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3555 static auto emit_scratch_load = emit_load<mubuf_load_callback, false, true, 4096>;
3556
3557 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3558 {
3559 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3560 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3561
3562 if (addr.type() == RegType::vgpr)
3563 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3564 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3565 }
3566
3567 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3568 Temp offset, unsigned bytes_needed,
3569 unsigned align_, unsigned const_offset,
3570 Temp dst_hint)
3571 {
3572 unsigned bytes_size = 0;
3573 bool mubuf = bld.program->chip_class == GFX6;
3574 bool global = bld.program->chip_class >= GFX9;
3575 aco_opcode op;
3576 if (bytes_needed == 1) {
3577 bytes_size = 1;
3578 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3579 } else if (bytes_needed == 2) {
3580 bytes_size = 2;
3581 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3582 } else if (bytes_needed <= 4) {
3583 bytes_size = 4;
3584 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3585 } else if (bytes_needed <= 8) {
3586 bytes_size = 8;
3587 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3588 } else if (bytes_needed <= 12 && !mubuf) {
3589 bytes_size = 12;
3590 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3591 } else {
3592 bytes_size = 16;
3593 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3594 }
3595 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3596 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3597 if (mubuf) {
3598 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3599 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3600 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3601 mubuf->operands[2] = Operand(0u);
3602 mubuf->glc = info->glc;
3603 mubuf->dlc = false;
3604 mubuf->offset = 0;
3605 mubuf->addr64 = offset.type() == RegType::vgpr;
3606 mubuf->disable_wqm = false;
3607 mubuf->sync = info->sync;
3608 mubuf->definitions[0] = Definition(val);
3609 bld.insert(std::move(mubuf));
3610 } else {
3611 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3612
3613 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3614 flat->operands[0] = Operand(offset);
3615 flat->operands[1] = Operand(s1);
3616 flat->glc = info->glc;
3617 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3618 flat->sync = info->sync;
3619 flat->offset = 0u;
3620 flat->definitions[0] = Definition(val);
3621 bld.insert(std::move(flat));
3622 }
3623
3624 return val;
3625 }
3626
3627 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3628
3629 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3630 Temp address, unsigned base_offset, unsigned align)
3631 {
3632 assert(util_is_power_of_two_nonzero(align));
3633
3634 Builder bld(ctx->program, ctx->block);
3635
3636 unsigned num_components = dst.bytes() / elem_size_bytes;
3637 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3638 info.align_mul = align;
3639 info.align_offset = 0;
3640 info.sync = memory_sync_info(storage_shared);
3641 info.const_offset = base_offset;
3642 emit_lds_load(ctx, bld, &info);
3643
3644 return dst;
3645 }
3646
3647 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3648 {
3649 if (!count)
3650 return;
3651
3652 Builder bld(ctx->program, ctx->block);
3653
3654 ASSERTED bool is_subdword = false;
3655 for (unsigned i = 0; i < count; i++)
3656 is_subdword |= offsets[i] % 4;
3657 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3658 assert(!is_subdword || dst_type == RegType::vgpr);
3659
3660 /* count == 1 fast path */
3661 if (count == 1) {
3662 if (dst_type == RegType::sgpr)
3663 dst[0] = bld.as_uniform(src);
3664 else
3665 dst[0] = as_vgpr(ctx, src);
3666 return;
3667 }
3668
3669 for (unsigned i = 0; i < count - 1; i++)
3670 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3671 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3672
3673 if (is_subdword && src.type() == RegType::sgpr) {
3674 src = as_vgpr(ctx, src);
3675 } else {
3676 /* use allocated_vec if possible */
3677 auto it = ctx->allocated_vec.find(src.id());
3678 if (it != ctx->allocated_vec.end()) {
3679 if (!it->second[0].id())
3680 goto split;
3681 unsigned elem_size = it->second[0].bytes();
3682 assert(src.bytes() % elem_size == 0);
3683
3684 for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
3685 if (!it->second[i].id())
3686 goto split;
3687 }
3688
3689 for (unsigned i = 0; i < count; i++) {
3690 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3691 goto split;
3692 }
3693
3694 for (unsigned i = 0; i < count; i++) {
3695 unsigned start_idx = offsets[i] / elem_size;
3696 unsigned op_count = dst[i].bytes() / elem_size;
3697 if (op_count == 1) {
3698 if (dst_type == RegType::sgpr)
3699 dst[i] = bld.as_uniform(it->second[start_idx]);
3700 else
3701 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3702 continue;
3703 }
3704
3705 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3706 for (unsigned j = 0; j < op_count; j++) {
3707 Temp tmp = it->second[start_idx + j];
3708 if (dst_type == RegType::sgpr)
3709 tmp = bld.as_uniform(tmp);
3710 vec->operands[j] = Operand(tmp);
3711 }
3712 vec->definitions[0] = Definition(dst[i]);
3713 bld.insert(std::move(vec));
3714 }
3715 return;
3716 }
3717 }
3718
3719 split:
3720
3721 if (dst_type == RegType::sgpr)
3722 src = bld.as_uniform(src);
3723
3724 /* just split it */
3725 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3726 split->operands[0] = Operand(src);
3727 for (unsigned i = 0; i < count; i++)
3728 split->definitions[i] = Definition(dst[i]);
3729 bld.insert(std::move(split));
3730 }
3731
3732 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3733 int *start, int *count)
3734 {
3735 unsigned start_elem = ffs(todo_mask) - 1;
3736 bool skip = !(mask & (1 << start_elem));
3737 if (skip)
3738 mask = ~mask & todo_mask;
3739
3740 mask &= todo_mask;
3741
3742 u_bit_scan_consecutive_range(&mask, start, count);
3743
3744 return !skip;
3745 }
3746
3747 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3748 {
3749 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3750 }
3751
3752 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3753 Temp address, unsigned base_offset, unsigned align)
3754 {
3755 assert(util_is_power_of_two_nonzero(align));
3756 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3757
3758 Builder bld(ctx->program, ctx->block);
3759 bool large_ds_write = ctx->options->chip_class >= GFX7;
3760 bool usable_write2 = ctx->options->chip_class >= GFX7;
3761
3762 unsigned write_count = 0;
3763 Temp write_datas[32];
3764 unsigned offsets[32];
3765 aco_opcode opcodes[32];
3766
3767 wrmask = widen_mask(wrmask, elem_size_bytes);
3768
3769 uint32_t todo = u_bit_consecutive(0, data.bytes());
3770 while (todo) {
3771 int offset, bytes;
3772 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3773 offsets[write_count] = offset;
3774 opcodes[write_count] = aco_opcode::num_opcodes;
3775 write_count++;
3776 advance_write_mask(&todo, offset, bytes);
3777 continue;
3778 }
3779
3780 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3781 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3782 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3783 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3784
3785 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3786 aco_opcode op = aco_opcode::num_opcodes;
3787 if (bytes >= 16 && aligned16 && large_ds_write) {
3788 op = aco_opcode::ds_write_b128;
3789 bytes = 16;
3790 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3791 op = aco_opcode::ds_write_b96;
3792 bytes = 12;
3793 } else if (bytes >= 8 && aligned8) {
3794 op = aco_opcode::ds_write_b64;
3795 bytes = 8;
3796 } else if (bytes >= 4 && aligned4) {
3797 op = aco_opcode::ds_write_b32;
3798 bytes = 4;
3799 } else if (bytes >= 2 && aligned2) {
3800 op = aco_opcode::ds_write_b16;
3801 bytes = 2;
3802 } else if (bytes >= 1) {
3803 op = aco_opcode::ds_write_b8;
3804 bytes = 1;
3805 } else {
3806 assert(false);
3807 }
3808
3809 offsets[write_count] = offset;
3810 opcodes[write_count] = op;
3811 write_count++;
3812 advance_write_mask(&todo, offset, bytes);
3813 }
3814
3815 Operand m = load_lds_size_m0(bld);
3816
3817 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3818
3819 for (unsigned i = 0; i < write_count; i++) {
3820 aco_opcode op = opcodes[i];
3821 if (op == aco_opcode::num_opcodes)
3822 continue;
3823
3824 Temp data = write_datas[i];
3825
3826 unsigned second = write_count;
3827 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3828 for (second = i + 1; second < write_count; second++) {
3829 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3830 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3831 opcodes[second] = aco_opcode::num_opcodes;
3832 break;
3833 }
3834 }
3835 }
3836
3837 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3838 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3839
3840 unsigned inline_offset = base_offset + offsets[i];
3841 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3842 Temp address_offset = address;
3843 if (inline_offset > max_offset) {
3844 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3845 inline_offset = offsets[i];
3846 }
3847 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3848
3849 Instruction *instr;
3850 if (write2) {
3851 Temp second_data = write_datas[second];
3852 inline_offset /= data.bytes();
3853 instr = bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3854 } else {
3855 instr = bld.ds(op, address_offset, data, m, inline_offset);
3856 }
3857 static_cast<DS_instruction *>(instr)->sync =
3858 memory_sync_info(storage_shared);
3859 }
3860 }
3861
3862 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3863 {
3864 unsigned align = 16;
3865 if (const_offset)
3866 align = std::min(align, 1u << (ffs(const_offset) - 1));
3867
3868 return align;
3869 }
3870
3871
3872 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3873 {
3874 switch (bytes) {
3875 case 1:
3876 assert(!smem);
3877 return aco_opcode::buffer_store_byte;
3878 case 2:
3879 assert(!smem);
3880 return aco_opcode::buffer_store_short;
3881 case 4:
3882 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3883 case 8:
3884 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3885 case 12:
3886 assert(!smem);
3887 return aco_opcode::buffer_store_dwordx3;
3888 case 16:
3889 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3890 }
3891 unreachable("Unexpected store size");
3892 return aco_opcode::num_opcodes;
3893 }
3894
3895 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3896 Temp data, unsigned writemask, int swizzle_element_size,
3897 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3898 {
3899 unsigned write_count_with_skips = 0;
3900 bool skips[16];
3901
3902 /* determine how to split the data */
3903 unsigned todo = u_bit_consecutive(0, data.bytes());
3904 while (todo) {
3905 int offset, bytes;
3906 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3907 offsets[write_count_with_skips] = offset;
3908 if (skips[write_count_with_skips]) {
3909 advance_write_mask(&todo, offset, bytes);
3910 write_count_with_skips++;
3911 continue;
3912 }
3913
3914 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3915 * larger than swizzle_element_size */
3916 bytes = MIN2(bytes, swizzle_element_size);
3917 if (bytes % 4)
3918 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3919
3920 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3921 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3922 bytes = 8;
3923
3924 /* dword or larger stores have to be dword-aligned */
3925 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3926 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3927 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3928 if (!dword_aligned)
3929 bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3930
3931 advance_write_mask(&todo, offset, bytes);
3932 write_count_with_skips++;
3933 }
3934
3935 /* actually split data */
3936 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3937
3938 /* remove skips */
3939 for (unsigned i = 0; i < write_count_with_skips; i++) {
3940 if (skips[i])
3941 continue;
3942 write_datas[*write_count] = write_datas[i];
3943 offsets[*write_count] = offsets[i];
3944 (*write_count)++;
3945 }
3946 }
3947
3948 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3949 unsigned split_cnt = 0u, Temp dst = Temp())
3950 {
3951 Builder bld(ctx->program, ctx->block);
3952 unsigned dword_size = elem_size_bytes / 4;
3953
3954 if (!dst.id())
3955 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3956
3957 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3958 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3959 instr->definitions[0] = Definition(dst);
3960
3961 for (unsigned i = 0; i < cnt; ++i) {
3962 if (arr[i].id()) {
3963 assert(arr[i].size() == dword_size);
3964 allocated_vec[i] = arr[i];
3965 instr->operands[i] = Operand(arr[i]);
3966 } else {
3967 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3968 allocated_vec[i] = zero;
3969 instr->operands[i] = Operand(zero);
3970 }
3971 }
3972
3973 bld.insert(std::move(instr));
3974
3975 if (split_cnt)
3976 emit_split_vector(ctx, dst, split_cnt);
3977 else
3978 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3979
3980 return dst;
3981 }
3982
3983 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3984 {
3985 if (const_offset >= 4096) {
3986 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3987 const_offset %= 4096u;
3988
3989 if (!voffset.id())
3990 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3991 else if (unlikely(voffset.regClass() == s1))
3992 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3993 else if (likely(voffset.regClass() == v1))
3994 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3995 else
3996 unreachable("Unsupported register class of voffset");
3997 }
3998
3999 return const_offset;
4000 }
4001
4002 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
4003 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false,
4004 bool swizzled = false)
4005 {
4006 assert(vdata.id());
4007 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
4008 assert(vdata.size() >= 1 && vdata.size() <= 4);
4009
4010 Builder bld(ctx->program, ctx->block);
4011 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
4012 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
4013
4014 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
4015 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
4016 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
4017 /* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled,
4018 /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true,
4019 /* dlc*/ false, /* slc */ slc);
4020
4021 if (!allow_reorder)
4022 static_cast<MUBUF_instruction *>(r.instr)->sync = memory_sync_info(storage_buffer, semantic_private);
4023 }
4024
4025 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
4026 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
4027 bool allow_combining = true, bool reorder = true, bool slc = false)
4028 {
4029 Builder bld(ctx->program, ctx->block);
4030 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
4031 assert(write_mask);
4032 write_mask = widen_mask(write_mask, elem_size_bytes);
4033
4034 unsigned write_count = 0;
4035 Temp write_datas[32];
4036 unsigned offsets[32];
4037 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
4038 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
4039
4040 for (unsigned i = 0; i < write_count; i++) {
4041 unsigned const_offset = offsets[i] + base_const_offset;
4042 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, reorder, slc, !allow_combining);
4043 }
4044 }
4045
4046 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
4047 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
4048 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
4049 {
4050 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
4051 assert((num_components * elem_size_bytes) == dst.bytes());
4052 assert(!!stride != allow_combining);
4053
4054 Builder bld(ctx->program, ctx->block);
4055
4056 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
4057 info.component_stride = allow_combining ? 0 : stride;
4058 info.glc = true;
4059 info.swizzle_component_size = allow_combining ? 0 : 4;
4060 info.align_mul = MIN2(elem_size_bytes, 4);
4061 info.align_offset = 0;
4062 info.soffset = soffset;
4063 info.const_offset = base_const_offset;
4064 emit_mubuf_load(ctx, bld, &info);
4065 }
4066
4067 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
4068 {
4069 Builder bld(ctx->program, ctx->block);
4070 Temp offset = base_offset.first;
4071 unsigned const_offset = base_offset.second;
4072
4073 if (!nir_src_is_const(*off_src)) {
4074 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
4075 Temp with_stride;
4076
4077 /* Calculate indirect offset with stride */
4078 if (likely(indirect_offset_arg.regClass() == v1))
4079 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
4080 else if (indirect_offset_arg.regClass() == s1)
4081 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
4082 else
4083 unreachable("Unsupported register class of indirect offset");
4084
4085 /* Add to the supplied base offset */
4086 if (offset.id() == 0)
4087 offset = with_stride;
4088 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
4089 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
4090 else if (offset.size() == 1 && with_stride.size() == 1)
4091 offset = bld.vadd32(bld.def(v1), with_stride, offset);
4092 else
4093 unreachable("Unsupported register class of indirect offset");
4094 } else {
4095 unsigned const_offset_arg = nir_src_as_uint(*off_src);
4096 const_offset += const_offset_arg * stride;
4097 }
4098
4099 return std::make_pair(offset, const_offset);
4100 }
4101
4102 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
4103 {
4104 Builder bld(ctx->program, ctx->block);
4105 Temp offset;
4106
4107 if (off1.first.id() && off2.first.id()) {
4108 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
4109 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
4110 else if (off1.first.size() == 1 && off2.first.size() == 1)
4111 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
4112 else
4113 unreachable("Unsupported register class of indirect offset");
4114 } else {
4115 offset = off1.first.id() ? off1.first : off2.first;
4116 }
4117
4118 return std::make_pair(offset, off1.second + off2.second);
4119 }
4120
4121 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
4122 {
4123 Builder bld(ctx->program, ctx->block);
4124 unsigned const_offset = offs.second * multiplier;
4125
4126 if (!offs.first.id())
4127 return std::make_pair(offs.first, const_offset);
4128
4129 Temp offset = unlikely(offs.first.regClass() == s1)
4130 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
4131 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
4132
4133 return std::make_pair(offset, const_offset);
4134 }
4135
4136 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
4137 {
4138 Builder bld(ctx->program, ctx->block);
4139
4140 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
4141 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
4142 /* component is in bytes */
4143 const_offset += nir_intrinsic_component(instr) * component_stride;
4144
4145 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
4146 nir_src *off_src = nir_get_io_offset_src(instr);
4147 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
4148 }
4149
4150 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
4151 {
4152 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
4153 }
4154
4155 Temp get_tess_rel_patch_id(isel_context *ctx)
4156 {
4157 Builder bld(ctx->program, ctx->block);
4158
4159 switch (ctx->shader->info.stage) {
4160 case MESA_SHADER_TESS_CTRL:
4161 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
4162 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
4163 case MESA_SHADER_TESS_EVAL:
4164 return get_arg(ctx, ctx->args->tes_rel_patch_id);
4165 default:
4166 unreachable("Unsupported stage in get_tess_rel_patch_id");
4167 }
4168 }
4169
4170 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4171 {
4172 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4173 Builder bld(ctx->program, ctx->block);
4174
4175 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4176 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4177
4178 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4179
4180 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4181 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4182
4183 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4184 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4185 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4186
4187 return offset_mul(ctx, offs, 4u);
4188 }
4189
4190 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4191 {
4192 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4193 Builder bld(ctx->program, ctx->block);
4194
4195 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4196 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4197 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4198 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4199
4200 std::pair<Temp, unsigned> offs = instr
4201 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4202 : std::make_pair(Temp(), 0u);
4203
4204 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4205 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4206
4207 if (per_vertex) {
4208 assert(instr);
4209
4210 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4211 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4212
4213 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4214 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4215 } else {
4216 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4217 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4218 }
4219
4220 return offs;
4221 }
4222
4223 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4224 {
4225 Builder bld(ctx->program, ctx->block);
4226
4227 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4228 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4229
4230 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4231
4232 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4233 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4234 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4235
4236 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4237 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4238
4239 return offs;
4240 }
4241
4242 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4243 {
4244 Builder bld(ctx->program, ctx->block);
4245
4246 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4247 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4248 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4249 unsigned attr_stride = ctx->tcs_num_patches;
4250
4251 std::pair<Temp, unsigned> offs = instr
4252 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4253 : std::make_pair(Temp(), 0u);
4254
4255 if (const_base_offset)
4256 offs.second += const_base_offset * attr_stride;
4257
4258 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4259 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4260 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4261
4262 return offs;
4263 }
4264
4265 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4266 {
4267 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4268
4269 if (mask == 0)
4270 return false;
4271
4272 unsigned drv_loc = nir_intrinsic_base(instr);
4273 nir_src *off_src = nir_get_io_offset_src(instr);
4274
4275 if (!nir_src_is_const(*off_src)) {
4276 *indirect = true;
4277 return false;
4278 }
4279
4280 *indirect = false;
4281 uint64_t slot = per_vertex
4282 ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
4283 : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
4284 return (((uint64_t) 1) << slot) & mask;
4285 }
4286
4287 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4288 {
4289 unsigned write_mask = nir_intrinsic_write_mask(instr);
4290 unsigned component = nir_intrinsic_component(instr);
4291 unsigned idx = nir_intrinsic_base(instr) + component;
4292
4293 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4294 if (off_instr->type != nir_instr_type_load_const)
4295 return false;
4296
4297 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4298 idx += nir_src_as_uint(instr->src[1]) * 4u;
4299
4300 if (instr->src[0].ssa->bit_size == 64)
4301 write_mask = widen_mask(write_mask, 2);
4302
4303 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4304
4305 for (unsigned i = 0; i < 8; ++i) {
4306 if (write_mask & (1 << i)) {
4307 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4308 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4309 }
4310 idx++;
4311 }
4312
4313 return true;
4314 }
4315
4316 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4317 {
4318 /* Only TCS per-vertex inputs are supported by this function.
4319 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4320 */
4321 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4322 return false;
4323
4324 nir_src *off_src = nir_get_io_offset_src(instr);
4325 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4326 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4327 bool can_use_temps = nir_src_is_const(*off_src) &&
4328 vertex_index_instr->type == nir_instr_type_intrinsic &&
4329 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4330
4331 if (!can_use_temps)
4332 return false;
4333
4334 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4335 Temp *src = &ctx->inputs.temps[idx];
4336 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4337
4338 return true;
4339 }
4340
4341 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4342 {
4343 Builder bld(ctx->program, ctx->block);
4344
4345 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4346 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4347 bool indirect_write;
4348 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4349 if (temp_only_input && !indirect_write)
4350 return;
4351 }
4352
4353 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4354 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4355 unsigned write_mask = nir_intrinsic_write_mask(instr);
4356 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4357
4358 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4359 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4360 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4361 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4362 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
4363 } else {
4364 Temp lds_base;
4365
4366 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4367 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4368 unsigned itemsize = ctx->stage == vertex_geometry_gs
4369 ? ctx->program->info->vs.es_info.esgs_itemsize
4370 : ctx->program->info->tes.es_info.esgs_itemsize;
4371 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4372 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4373 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4374 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4375 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4376 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4377 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4378 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4379 */
4380 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4381 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4382 } else {
4383 unreachable("Invalid LS or ES stage");
4384 }
4385
4386 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4387 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4388 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4389 }
4390 }
4391
4392 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4393 {
4394 if (per_vertex)
4395 return false;
4396
4397 unsigned off = nir_intrinsic_base(instr) * 4u;
4398 return off == ctx->tcs_tess_lvl_out_loc ||
4399 off == ctx->tcs_tess_lvl_in_loc;
4400
4401 }
4402
4403 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4404 {
4405 uint64_t mask = per_vertex
4406 ? ctx->program->info->tcs.tes_inputs_read
4407 : ctx->program->info->tcs.tes_patch_inputs_read;
4408
4409 bool indirect_write = false;
4410 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4411 return indirect_write || output_read_by_tes;
4412 }
4413
4414 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4415 {
4416 uint64_t mask = per_vertex
4417 ? ctx->shader->info.outputs_read
4418 : ctx->shader->info.patch_outputs_read;
4419
4420 bool indirect_write = false;
4421 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4422 return indirect_write || output_read;
4423 }
4424
4425 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4426 {
4427 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4428 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4429
4430 Builder bld(ctx->program, ctx->block);
4431
4432 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4433 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4434 unsigned write_mask = nir_intrinsic_write_mask(instr);
4435
4436 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4437 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4438 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4439
4440 if (write_to_vmem) {
4441 std::pair<Temp, unsigned> vmem_offs = per_vertex
4442 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4443 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4444
4445 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4446 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4447 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
4448 }
4449
4450 if (write_to_lds) {
4451 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4452 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4453 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4454 }
4455 }
4456
4457 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4458 {
4459 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4460 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4461
4462 Builder bld(ctx->program, ctx->block);
4463
4464 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4465 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4466 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4467 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4468
4469 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4470 }
4471
4472 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4473 {
4474 if (ctx->stage == vertex_vs ||
4475 ctx->stage == tess_eval_vs ||
4476 ctx->stage == fragment_fs ||
4477 ctx->stage == ngg_vertex_gs ||
4478 ctx->stage == ngg_tess_eval_gs ||
4479 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4480 bool stored_to_temps = store_output_to_temps(ctx, instr);
4481 if (!stored_to_temps) {
4482 fprintf(stderr, "Unimplemented output offset instruction:\n");
4483 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
4484 fprintf(stderr, "\n");
4485 abort();
4486 }
4487 } else if (ctx->stage == vertex_es ||
4488 ctx->stage == vertex_ls ||
4489 ctx->stage == tess_eval_es ||
4490 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4491 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4492 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4493 visit_store_ls_or_es_output(ctx, instr);
4494 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4495 visit_store_tcs_output(ctx, instr, false);
4496 } else {
4497 unreachable("Shader stage not implemented");
4498 }
4499 }
4500
4501 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4502 {
4503 visit_load_tcs_output(ctx, instr, false);
4504 }
4505
4506 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4507 {
4508 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4509 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4510
4511 Builder bld(ctx->program, ctx->block);
4512
4513 if (dst.regClass() == v2b) {
4514 if (ctx->program->has_16bank_lds) {
4515 assert(ctx->options->chip_class <= GFX8);
4516 Builder::Result interp_p1 =
4517 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4518 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4519 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4520 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4521 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4522 bld.m0(prim_mask), interp_p1, idx, component);
4523 } else {
4524 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4525
4526 if (ctx->options->chip_class == GFX8)
4527 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4528
4529 Builder::Result interp_p1 =
4530 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4531 coord1, bld.m0(prim_mask), idx, component);
4532 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4533 interp_p1, idx, component);
4534 }
4535 } else {
4536 Builder::Result interp_p1 =
4537 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4538 bld.m0(prim_mask), idx, component);
4539
4540 if (ctx->program->has_16bank_lds)
4541 interp_p1.instr->operands[0].setLateKill(true);
4542
4543 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4544 bld.m0(prim_mask), interp_p1, idx, component);
4545 }
4546 }
4547
4548 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4549 {
4550 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4551 for (unsigned i = 0; i < num_components; i++)
4552 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4553 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4554 assert(num_components == 4);
4555 Builder bld(ctx->program, ctx->block);
4556 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4557 }
4558
4559 for (Operand& op : vec->operands)
4560 op = op.isUndefined() ? Operand(0u) : op;
4561
4562 vec->definitions[0] = Definition(dst);
4563 ctx->block->instructions.emplace_back(std::move(vec));
4564 emit_split_vector(ctx, dst, num_components);
4565 return;
4566 }
4567
4568 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4569 {
4570 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4571 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4572 unsigned idx = nir_intrinsic_base(instr);
4573 unsigned component = nir_intrinsic_component(instr);
4574 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4575
4576 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4577 if (offset) {
4578 assert(offset->u32 == 0);
4579 } else {
4580 /* the lower 15bit of the prim_mask contain the offset into LDS
4581 * while the upper bits contain the number of prims */
4582 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4583 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4584 Builder bld(ctx->program, ctx->block);
4585 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4586 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4587 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4588 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4589 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4590 }
4591
4592 if (instr->dest.ssa.num_components == 1) {
4593 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4594 } else {
4595 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4596 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4597 {
4598 Temp tmp = {ctx->program->allocateId(), v1};
4599 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4600 vec->operands[i] = Operand(tmp);
4601 }
4602 vec->definitions[0] = Definition(dst);
4603 ctx->block->instructions.emplace_back(std::move(vec));
4604 }
4605 }
4606
4607 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4608 unsigned offset, unsigned stride, unsigned channels)
4609 {
4610 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4611 if (vtx_info->chan_byte_size != 4 && channels == 3)
4612 return false;
4613 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4614 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4615 }
4616
4617 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4618 unsigned offset, unsigned stride, unsigned *channels)
4619 {
4620 if (!vtx_info->chan_byte_size) {
4621 *channels = vtx_info->num_channels;
4622 return vtx_info->chan_format;
4623 }
4624
4625 unsigned num_channels = *channels;
4626 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4627 unsigned new_channels = num_channels + 1;
4628 /* first, assume more loads is worse and try using a larger data format */
4629 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4630 new_channels++;
4631 /* don't make the attribute potentially out-of-bounds */
4632 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4633 new_channels = 5;
4634 }
4635
4636 if (new_channels == 5) {
4637 /* then try decreasing load size (at the cost of more loads) */
4638 new_channels = *channels;
4639 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4640 new_channels--;
4641 }
4642
4643 if (new_channels < *channels)
4644 *channels = new_channels;
4645 num_channels = new_channels;
4646 }
4647
4648 switch (vtx_info->chan_format) {
4649 case V_008F0C_BUF_DATA_FORMAT_8:
4650 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4651 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4652 case V_008F0C_BUF_DATA_FORMAT_16:
4653 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4654 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4655 case V_008F0C_BUF_DATA_FORMAT_32:
4656 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4657 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4658 }
4659 unreachable("shouldn't reach here");
4660 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4661 }
4662
4663 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4664 * so we may need to fix it up. */
4665 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4666 {
4667 Builder bld(ctx->program, ctx->block);
4668
4669 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4670 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4671
4672 /* For the integer-like cases, do a natural sign extension.
4673 *
4674 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4675 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4676 * exponent.
4677 */
4678 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4679 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4680
4681 /* Convert back to the right type. */
4682 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4683 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4684 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4685 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4686 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4687 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4688 }
4689
4690 return alpha;
4691 }
4692
4693 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4694 {
4695 Builder bld(ctx->program, ctx->block);
4696 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4697 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4698
4699 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4700 if (off_instr->type != nir_instr_type_load_const) {
4701 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4702 nir_print_instr(off_instr, stderr);
4703 fprintf(stderr, "\n");
4704 }
4705 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4706
4707 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4708
4709 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4710 unsigned component = nir_intrinsic_component(instr);
4711 unsigned bitsize = instr->dest.ssa.bit_size;
4712 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4713 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4714 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4715 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4716
4717 unsigned dfmt = attrib_format & 0xf;
4718 unsigned nfmt = (attrib_format >> 4) & 0x7;
4719 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4720
4721 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4722 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4723 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4724 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4725 if (post_shuffle)
4726 num_channels = MAX2(num_channels, 3);
4727
4728 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4729 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4730
4731 Temp index;
4732 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4733 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4734 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4735 if (divisor) {
4736 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4737 if (divisor != 1) {
4738 Temp divided = bld.tmp(v1);
4739 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4740 index = bld.vadd32(bld.def(v1), start_instance, divided);
4741 } else {
4742 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4743 }
4744 } else {
4745 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4746 }
4747 } else {
4748 index = bld.vadd32(bld.def(v1),
4749 get_arg(ctx, ctx->args->ac.base_vertex),
4750 get_arg(ctx, ctx->args->ac.vertex_id));
4751 }
4752
4753 Temp channels[num_channels];
4754 unsigned channel_start = 0;
4755 bool direct_fetch = false;
4756
4757 /* skip unused channels at the start */
4758 if (vtx_info->chan_byte_size && !post_shuffle) {
4759 channel_start = ffs(mask) - 1;
4760 for (unsigned i = 0; i < channel_start; i++)
4761 channels[i] = Temp(0, s1);
4762 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4763 num_channels = 3 - (ffs(mask) - 1);
4764 }
4765
4766 /* load channels */
4767 while (channel_start < num_channels) {
4768 unsigned fetch_component = num_channels - channel_start;
4769 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4770 bool expanded = false;
4771
4772 /* use MUBUF when possible to avoid possible alignment issues */
4773 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4774 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4775 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4776 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4777 vtx_info->chan_byte_size == 4;
4778 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4779 if (!use_mubuf) {
4780 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4781 } else {
4782 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4783 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4784 fetch_component = 4;
4785 expanded = true;
4786 }
4787 }
4788
4789 unsigned fetch_bytes = fetch_component * bitsize / 8;
4790
4791 Temp fetch_index = index;
4792 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4793 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4794 fetch_offset = fetch_offset % attrib_stride;
4795 }
4796
4797 Operand soffset(0u);
4798 if (fetch_offset >= 4096) {
4799 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4800 fetch_offset %= 4096;
4801 }
4802
4803 aco_opcode opcode;
4804 switch (fetch_bytes) {
4805 case 2:
4806 assert(!use_mubuf && bitsize == 16);
4807 opcode = aco_opcode::tbuffer_load_format_d16_x;
4808 break;
4809 case 4:
4810 if (bitsize == 16) {
4811 assert(!use_mubuf);
4812 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4813 } else {
4814 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4815 }
4816 break;
4817 case 6:
4818 assert(!use_mubuf && bitsize == 16);
4819 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4820 break;
4821 case 8:
4822 if (bitsize == 16) {
4823 assert(!use_mubuf);
4824 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4825 } else {
4826 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4827 }
4828 break;
4829 case 12:
4830 assert(ctx->options->chip_class >= GFX7 ||
4831 (!use_mubuf && ctx->options->chip_class == GFX6));
4832 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4833 break;
4834 case 16:
4835 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4836 break;
4837 default:
4838 unreachable("Unimplemented load_input vector size");
4839 }
4840
4841 Temp fetch_dst;
4842 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4843 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4844 num_channels <= 3)) {
4845 direct_fetch = true;
4846 fetch_dst = dst;
4847 } else {
4848 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4849 }
4850
4851 if (use_mubuf) {
4852 bld.mubuf(opcode,
4853 Definition(fetch_dst), list, fetch_index, soffset,
4854 fetch_offset, false, false, true).instr;
4855 } else {
4856 bld.mtbuf(opcode,
4857 Definition(fetch_dst), list, fetch_index, soffset,
4858 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4859 }
4860
4861 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4862
4863 if (fetch_component == 1) {
4864 channels[channel_start] = fetch_dst;
4865 } else {
4866 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4867 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4868 bitsize == 16 ? v2b : v1);
4869 }
4870
4871 channel_start += fetch_component;
4872 }
4873
4874 if (!direct_fetch) {
4875 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4876 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4877
4878 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4879 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4880 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4881
4882 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4883 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4884 unsigned num_temp = 0;
4885 for (unsigned i = 0; i < dst.size(); i++) {
4886 unsigned idx = i + component;
4887 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4888 Temp channel = channels[swizzle[idx]];
4889 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4890 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4891 vec->operands[i] = Operand(channel);
4892
4893 num_temp++;
4894 elems[i] = channel;
4895 } else if (is_float && idx == 3) {
4896 vec->operands[i] = Operand(0x3f800000u);
4897 } else if (!is_float && idx == 3) {
4898 vec->operands[i] = Operand(1u);
4899 } else {
4900 vec->operands[i] = Operand(0u);
4901 }
4902 }
4903 vec->definitions[0] = Definition(dst);
4904 ctx->block->instructions.emplace_back(std::move(vec));
4905 emit_split_vector(ctx, dst, dst.size());
4906
4907 if (num_temp == dst.size())
4908 ctx->allocated_vec.emplace(dst.id(), elems);
4909 }
4910 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4911 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4912 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4913 if (off_instr->type != nir_instr_type_load_const ||
4914 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4915 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4916 nir_print_instr(off_instr, stderr);
4917 fprintf(stderr, "\n");
4918 }
4919
4920 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4921 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4922 if (offset) {
4923 assert(offset->u32 == 0);
4924 } else {
4925 /* the lower 15bit of the prim_mask contain the offset into LDS
4926 * while the upper bits contain the number of prims */
4927 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4928 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4929 Builder bld(ctx->program, ctx->block);
4930 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4931 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4932 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4933 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4934 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4935 }
4936
4937 unsigned idx = nir_intrinsic_base(instr);
4938 unsigned component = nir_intrinsic_component(instr);
4939 unsigned vertex_id = 2; /* P0 */
4940
4941 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4942 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4943 switch (src0->u32) {
4944 case 0:
4945 vertex_id = 2; /* P0 */
4946 break;
4947 case 1:
4948 vertex_id = 0; /* P10 */
4949 break;
4950 case 2:
4951 vertex_id = 1; /* P20 */
4952 break;
4953 default:
4954 unreachable("invalid vertex index");
4955 }
4956 }
4957
4958 if (dst.size() == 1) {
4959 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4960 } else {
4961 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4962 for (unsigned i = 0; i < dst.size(); i++)
4963 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4964 vec->definitions[0] = Definition(dst);
4965 bld.insert(std::move(vec));
4966 }
4967
4968 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4969 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4970 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4971 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4972 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4973
4974 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4975 } else {
4976 unreachable("Shader stage not implemented");
4977 }
4978 }
4979
4980 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4981 {
4982 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4983
4984 Builder bld(ctx->program, ctx->block);
4985 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4986 Temp vertex_offset;
4987
4988 if (!nir_src_is_const(*vertex_src)) {
4989 /* better code could be created, but this case probably doesn't happen
4990 * much in practice */
4991 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4992 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4993 Temp elem;
4994
4995 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4996 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4997 if (i % 2u)
4998 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4999 } else {
5000 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
5001 }
5002
5003 if (vertex_offset.id()) {
5004 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
5005 Operand(i), indirect_vertex);
5006 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
5007 } else {
5008 vertex_offset = elem;
5009 }
5010 }
5011
5012 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
5013 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
5014 } else {
5015 unsigned vertex = nir_src_as_uint(*vertex_src);
5016 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
5017 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5018 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
5019 Operand((vertex % 2u) * 16u), Operand(16u));
5020 else
5021 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
5022 }
5023
5024 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
5025 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
5026 return offset_mul(ctx, offs, 4u);
5027 }
5028
5029 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5030 {
5031 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
5032
5033 Builder bld(ctx->program, ctx->block);
5034 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5035 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5036
5037 if (ctx->stage == geometry_gs) {
5038 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
5039 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
5040 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
5041 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
5042 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
5043 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
5044 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
5045 } else {
5046 unreachable("Unsupported GS stage.");
5047 }
5048 }
5049
5050 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5051 {
5052 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5053
5054 Builder bld(ctx->program, ctx->block);
5055 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5056
5057 if (load_input_from_temps(ctx, instr, dst))
5058 return;
5059
5060 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
5061 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5062 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
5063
5064 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
5065 }
5066
5067 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5068 {
5069 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5070
5071 Builder bld(ctx->program, ctx->block);
5072
5073 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
5074 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
5075 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5076
5077 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5078 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
5079
5080 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
5081 }
5082
5083 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5084 {
5085 switch (ctx->shader->info.stage) {
5086 case MESA_SHADER_GEOMETRY:
5087 visit_load_gs_per_vertex_input(ctx, instr);
5088 break;
5089 case MESA_SHADER_TESS_CTRL:
5090 visit_load_tcs_per_vertex_input(ctx, instr);
5091 break;
5092 case MESA_SHADER_TESS_EVAL:
5093 visit_load_tes_per_vertex_input(ctx, instr);
5094 break;
5095 default:
5096 unreachable("Unimplemented shader stage");
5097 }
5098 }
5099
5100 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5101 {
5102 visit_load_tcs_output(ctx, instr, true);
5103 }
5104
5105 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5106 {
5107 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
5108 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5109
5110 visit_store_tcs_output(ctx, instr, true);
5111 }
5112
5113 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
5114 {
5115 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5116
5117 Builder bld(ctx->program, ctx->block);
5118 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5119
5120 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
5121 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
5122 Operand tes_w(0u);
5123
5124 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
5125 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
5126 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
5127 tes_w = Operand(tmp);
5128 }
5129
5130 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
5131 emit_split_vector(ctx, tess_coord, 3);
5132 }
5133
5134 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
5135 {
5136 if (ctx->program->info->need_indirect_descriptor_sets) {
5137 Builder bld(ctx->program, ctx->block);
5138 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
5139 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
5140 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
5141 }
5142
5143 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
5144 }
5145
5146
5147 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
5148 {
5149 Builder bld(ctx->program, ctx->block);
5150 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
5151 if (!nir_dest_is_divergent(instr->dest))
5152 index = bld.as_uniform(index);
5153 unsigned desc_set = nir_intrinsic_desc_set(instr);
5154 unsigned binding = nir_intrinsic_binding(instr);
5155
5156 Temp desc_ptr;
5157 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
5158 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
5159 unsigned offset = layout->binding[binding].offset;
5160 unsigned stride;
5161 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
5162 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
5163 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
5164 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
5165 offset = pipeline_layout->push_constant_size + 16 * idx;
5166 stride = 16;
5167 } else {
5168 desc_ptr = load_desc_ptr(ctx, desc_set);
5169 stride = layout->binding[binding].size;
5170 }
5171
5172 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
5173 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
5174 if (stride != 1) {
5175 if (nir_const_index) {
5176 const_index = const_index * stride;
5177 } else if (index.type() == RegType::vgpr) {
5178 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
5179 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
5180 } else {
5181 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5182 }
5183 }
5184 if (offset) {
5185 if (nir_const_index) {
5186 const_index = const_index + offset;
5187 } else if (index.type() == RegType::vgpr) {
5188 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5189 } else {
5190 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5191 }
5192 }
5193
5194 if (nir_const_index && const_index == 0) {
5195 index = desc_ptr;
5196 } else if (index.type() == RegType::vgpr) {
5197 index = bld.vadd32(bld.def(v1),
5198 nir_const_index ? Operand(const_index) : Operand(index),
5199 Operand(desc_ptr));
5200 } else {
5201 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5202 nir_const_index ? Operand(const_index) : Operand(index),
5203 Operand(desc_ptr));
5204 }
5205
5206 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5207 }
5208
5209 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5210 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5211 bool glc=false, bool allow_smem=true, memory_sync_info sync=memory_sync_info())
5212 {
5213 Builder bld(ctx->program, ctx->block);
5214
5215 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5216 if (use_smem)
5217 offset = bld.as_uniform(offset);
5218
5219 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5220 info.glc = glc;
5221 info.sync = sync;
5222 info.align_mul = align_mul;
5223 info.align_offset = align_offset;
5224 if (use_smem)
5225 emit_smem_load(ctx, bld, &info);
5226 else
5227 emit_mubuf_load(ctx, bld, &info);
5228 }
5229
5230 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5231 {
5232 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5233 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5234
5235 Builder bld(ctx->program, ctx->block);
5236
5237 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5238 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5239 unsigned binding = nir_intrinsic_binding(idx_instr);
5240 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5241
5242 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5243 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5244 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5245 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5246 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5247 if (ctx->options->chip_class >= GFX10) {
5248 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5249 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5250 S_008F0C_RESOURCE_LEVEL(1);
5251 } else {
5252 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5253 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5254 }
5255 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5256 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5257 Operand(0xFFFFFFFFu),
5258 Operand(desc_type));
5259 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5260 rsrc, upper_dwords);
5261 } else {
5262 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5263 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5264 }
5265 unsigned size = instr->dest.ssa.bit_size / 8;
5266 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5267 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5268 }
5269
5270 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5271 {
5272 Builder bld(ctx->program, ctx->block);
5273 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5274 unsigned offset = nir_intrinsic_base(instr);
5275 unsigned count = instr->dest.ssa.num_components;
5276 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5277
5278 if (index_cv && instr->dest.ssa.bit_size == 32) {
5279 unsigned start = (offset + index_cv->u32) / 4u;
5280 start -= ctx->args->ac.base_inline_push_consts;
5281 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5282 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5283 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5284 for (unsigned i = 0; i < count; ++i) {
5285 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5286 vec->operands[i] = Operand{elems[i]};
5287 }
5288 vec->definitions[0] = Definition(dst);
5289 ctx->block->instructions.emplace_back(std::move(vec));
5290 ctx->allocated_vec.emplace(dst.id(), elems);
5291 return;
5292 }
5293 }
5294
5295 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5296 if (offset != 0) // TODO check if index != 0 as well
5297 index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5298 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5299 Temp vec = dst;
5300 bool trim = false;
5301 bool aligned = true;
5302
5303 if (instr->dest.ssa.bit_size == 8) {
5304 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5305 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5306 if (!aligned)
5307 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5308 } else if (instr->dest.ssa.bit_size == 16) {
5309 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5310 if (!aligned)
5311 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5312 }
5313
5314 aco_opcode op;
5315
5316 switch (vec.size()) {
5317 case 1:
5318 op = aco_opcode::s_load_dword;
5319 break;
5320 case 2:
5321 op = aco_opcode::s_load_dwordx2;
5322 break;
5323 case 3:
5324 vec = bld.tmp(s4);
5325 trim = true;
5326 case 4:
5327 op = aco_opcode::s_load_dwordx4;
5328 break;
5329 case 6:
5330 vec = bld.tmp(s8);
5331 trim = true;
5332 case 8:
5333 op = aco_opcode::s_load_dwordx8;
5334 break;
5335 default:
5336 unreachable("unimplemented or forbidden load_push_constant.");
5337 }
5338
5339 static_cast<SMEM_instruction*>(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true;
5340
5341 if (!aligned) {
5342 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5343 byte_align_scalar(ctx, vec, byte_offset, dst);
5344 return;
5345 }
5346
5347 if (trim) {
5348 emit_split_vector(ctx, vec, 4);
5349 RegClass rc = dst.size() == 3 ? s1 : s2;
5350 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5351 emit_extract_vector(ctx, vec, 0, rc),
5352 emit_extract_vector(ctx, vec, 1, rc),
5353 emit_extract_vector(ctx, vec, 2, rc));
5354
5355 }
5356 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5357 }
5358
5359 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5360 {
5361 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5362
5363 Builder bld(ctx->program, ctx->block);
5364
5365 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5366 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5367 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5368 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5369 if (ctx->options->chip_class >= GFX10) {
5370 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5371 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5372 S_008F0C_RESOURCE_LEVEL(1);
5373 } else {
5374 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5375 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5376 }
5377
5378 unsigned base = nir_intrinsic_base(instr);
5379 unsigned range = nir_intrinsic_range(instr);
5380
5381 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5382 if (base && offset.type() == RegType::sgpr)
5383 offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5384 else if (base && offset.type() == RegType::vgpr)
5385 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5386
5387 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5388 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5389 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5390 Operand(desc_type));
5391 unsigned size = instr->dest.ssa.bit_size / 8;
5392 // TODO: get alignment information for subdword constants
5393 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5394 }
5395
5396 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5397 {
5398 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5399 ctx->cf_info.exec_potentially_empty_discard = true;
5400
5401 ctx->program->needs_exact = true;
5402
5403 // TODO: optimize uniform conditions
5404 Builder bld(ctx->program, ctx->block);
5405 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5406 assert(src.regClass() == bld.lm);
5407 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5408 bld.pseudo(aco_opcode::p_discard_if, src);
5409 ctx->block->kind |= block_kind_uses_discard_if;
5410 return;
5411 }
5412
5413 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5414 {
5415 Builder bld(ctx->program, ctx->block);
5416
5417 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5418 ctx->cf_info.exec_potentially_empty_discard = true;
5419
5420 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5421 ctx->cf_info.parent_loop.has_divergent_continue;
5422
5423 if (ctx->block->loop_nest_depth &&
5424 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5425 /* we handle discards the same way as jump instructions */
5426 append_logical_end(ctx->block);
5427
5428 /* in loops, discard behaves like break */
5429 Block *linear_target = ctx->cf_info.parent_loop.exit;
5430 ctx->block->kind |= block_kind_discard;
5431
5432 if (!divergent) {
5433 /* uniform discard - loop ends here */
5434 assert(nir_instr_is_last(&instr->instr));
5435 ctx->block->kind |= block_kind_uniform;
5436 ctx->cf_info.has_branch = true;
5437 bld.branch(aco_opcode::p_branch);
5438 add_linear_edge(ctx->block->index, linear_target);
5439 return;
5440 }
5441
5442 /* we add a break right behind the discard() instructions */
5443 ctx->block->kind |= block_kind_break;
5444 unsigned idx = ctx->block->index;
5445
5446 ctx->cf_info.parent_loop.has_divergent_branch = true;
5447 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5448
5449 /* remove critical edges from linear CFG */
5450 bld.branch(aco_opcode::p_branch);
5451 Block* break_block = ctx->program->create_and_insert_block();
5452 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5453 break_block->kind |= block_kind_uniform;
5454 add_linear_edge(idx, break_block);
5455 add_linear_edge(break_block->index, linear_target);
5456 bld.reset(break_block);
5457 bld.branch(aco_opcode::p_branch);
5458
5459 Block* continue_block = ctx->program->create_and_insert_block();
5460 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5461 add_linear_edge(idx, continue_block);
5462 append_logical_start(continue_block);
5463 ctx->block = continue_block;
5464
5465 return;
5466 }
5467
5468 /* it can currently happen that NIR doesn't remove the unreachable code */
5469 if (!nir_instr_is_last(&instr->instr)) {
5470 ctx->program->needs_exact = true;
5471 /* save exec somewhere temporarily so that it doesn't get
5472 * overwritten before the discard from outer exec masks */
5473 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5474 bld.pseudo(aco_opcode::p_discard_if, cond);
5475 ctx->block->kind |= block_kind_uses_discard_if;
5476 return;
5477 }
5478
5479 /* This condition is incorrect for uniformly branched discards in a loop
5480 * predicated by a divergent condition, but the above code catches that case
5481 * and the discard would end up turning into a discard_if.
5482 * For example:
5483 * if (divergent) {
5484 * while (...) {
5485 * if (uniform) {
5486 * discard;
5487 * }
5488 * }
5489 * }
5490 */
5491 if (!ctx->cf_info.parent_if.is_divergent) {
5492 /* program just ends here */
5493 ctx->block->kind |= block_kind_uniform;
5494 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5495 0 /* enabled mask */, 9 /* dest */,
5496 false /* compressed */, true/* done */, true /* valid mask */);
5497 bld.sopp(aco_opcode::s_endpgm);
5498 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5499 } else {
5500 ctx->block->kind |= block_kind_discard;
5501 /* branch and linear edge is added by visit_if() */
5502 }
5503 }
5504
5505 enum aco_descriptor_type {
5506 ACO_DESC_IMAGE,
5507 ACO_DESC_FMASK,
5508 ACO_DESC_SAMPLER,
5509 ACO_DESC_BUFFER,
5510 ACO_DESC_PLANE_0,
5511 ACO_DESC_PLANE_1,
5512 ACO_DESC_PLANE_2,
5513 };
5514
5515 static bool
5516 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5517 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5518 return false;
5519 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5520 return dim == ac_image_cube ||
5521 dim == ac_image_1darray ||
5522 dim == ac_image_2darray ||
5523 dim == ac_image_2darraymsaa;
5524 }
5525
5526 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5527 enum aco_descriptor_type desc_type,
5528 const nir_tex_instr *tex_instr, bool image, bool write)
5529 {
5530 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5531 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5532 if (it != ctx->tex_desc.end())
5533 return it->second;
5534 */
5535 Temp index = Temp();
5536 bool index_set = false;
5537 unsigned constant_index = 0;
5538 unsigned descriptor_set;
5539 unsigned base_index;
5540 Builder bld(ctx->program, ctx->block);
5541
5542 if (!deref_instr) {
5543 assert(tex_instr && !image);
5544 descriptor_set = 0;
5545 base_index = tex_instr->sampler_index;
5546 } else {
5547 while(deref_instr->deref_type != nir_deref_type_var) {
5548 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5549 if (!array_size)
5550 array_size = 1;
5551
5552 assert(deref_instr->deref_type == nir_deref_type_array);
5553 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5554 if (const_value) {
5555 constant_index += array_size * const_value->u32;
5556 } else {
5557 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5558 if (indirect.type() == RegType::vgpr)
5559 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5560
5561 if (array_size != 1)
5562 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5563
5564 if (!index_set) {
5565 index = indirect;
5566 index_set = true;
5567 } else {
5568 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5569 }
5570 }
5571
5572 deref_instr = nir_src_as_deref(deref_instr->parent);
5573 }
5574 descriptor_set = deref_instr->var->data.descriptor_set;
5575 base_index = deref_instr->var->data.binding;
5576 }
5577
5578 Temp list = load_desc_ptr(ctx, descriptor_set);
5579 list = convert_pointer_to_64_bit(ctx, list);
5580
5581 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5582 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5583 unsigned offset = binding->offset;
5584 unsigned stride = binding->size;
5585 aco_opcode opcode;
5586 RegClass type;
5587
5588 assert(base_index < layout->binding_count);
5589
5590 switch (desc_type) {
5591 case ACO_DESC_IMAGE:
5592 type = s8;
5593 opcode = aco_opcode::s_load_dwordx8;
5594 break;
5595 case ACO_DESC_FMASK:
5596 type = s8;
5597 opcode = aco_opcode::s_load_dwordx8;
5598 offset += 32;
5599 break;
5600 case ACO_DESC_SAMPLER:
5601 type = s4;
5602 opcode = aco_opcode::s_load_dwordx4;
5603 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5604 offset += radv_combined_image_descriptor_sampler_offset(binding);
5605 break;
5606 case ACO_DESC_BUFFER:
5607 type = s4;
5608 opcode = aco_opcode::s_load_dwordx4;
5609 break;
5610 case ACO_DESC_PLANE_0:
5611 case ACO_DESC_PLANE_1:
5612 type = s8;
5613 opcode = aco_opcode::s_load_dwordx8;
5614 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5615 break;
5616 case ACO_DESC_PLANE_2:
5617 type = s4;
5618 opcode = aco_opcode::s_load_dwordx4;
5619 offset += 64;
5620 break;
5621 default:
5622 unreachable("invalid desc_type\n");
5623 }
5624
5625 offset += constant_index * stride;
5626
5627 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5628 (!index_set || binding->immutable_samplers_equal)) {
5629 if (binding->immutable_samplers_equal)
5630 constant_index = 0;
5631
5632 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5633 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5634 Operand(samplers[constant_index * 4 + 0]),
5635 Operand(samplers[constant_index * 4 + 1]),
5636 Operand(samplers[constant_index * 4 + 2]),
5637 Operand(samplers[constant_index * 4 + 3]));
5638 }
5639
5640 Operand off;
5641 if (!index_set) {
5642 off = bld.copy(bld.def(s1), Operand(offset));
5643 } else {
5644 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5645 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5646 }
5647
5648 Temp res = bld.smem(opcode, bld.def(type), list, off);
5649
5650 if (desc_type == ACO_DESC_PLANE_2) {
5651 Temp components[8];
5652 for (unsigned i = 0; i < 8; i++)
5653 components[i] = bld.tmp(s1);
5654 bld.pseudo(aco_opcode::p_split_vector,
5655 Definition(components[0]),
5656 Definition(components[1]),
5657 Definition(components[2]),
5658 Definition(components[3]),
5659 res);
5660
5661 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5662 bld.pseudo(aco_opcode::p_split_vector,
5663 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5664 Definition(components[4]),
5665 Definition(components[5]),
5666 Definition(components[6]),
5667 Definition(components[7]),
5668 desc2);
5669
5670 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5671 components[0], components[1], components[2], components[3],
5672 components[4], components[5], components[6], components[7]);
5673 }
5674
5675 return res;
5676 }
5677
5678 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5679 {
5680 switch (dim) {
5681 case GLSL_SAMPLER_DIM_BUF:
5682 return 1;
5683 case GLSL_SAMPLER_DIM_1D:
5684 return array ? 2 : 1;
5685 case GLSL_SAMPLER_DIM_2D:
5686 return array ? 3 : 2;
5687 case GLSL_SAMPLER_DIM_MS:
5688 return array ? 4 : 3;
5689 case GLSL_SAMPLER_DIM_3D:
5690 case GLSL_SAMPLER_DIM_CUBE:
5691 return 3;
5692 case GLSL_SAMPLER_DIM_RECT:
5693 case GLSL_SAMPLER_DIM_SUBPASS:
5694 return 2;
5695 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5696 return 3;
5697 default:
5698 break;
5699 }
5700 return 0;
5701 }
5702
5703
5704 /* Adjust the sample index according to FMASK.
5705 *
5706 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5707 * which is the identity mapping. Each nibble says which physical sample
5708 * should be fetched to get that sample.
5709 *
5710 * For example, 0x11111100 means there are only 2 samples stored and
5711 * the second sample covers 3/4 of the pixel. When reading samples 0
5712 * and 1, return physical sample 0 (determined by the first two 0s
5713 * in FMASK), otherwise return physical sample 1.
5714 *
5715 * The sample index should be adjusted as follows:
5716 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5717 */
5718 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5719 {
5720 Builder bld(ctx->program, ctx->block);
5721 Temp fmask = bld.tmp(v1);
5722 unsigned dim = ctx->options->chip_class >= GFX10
5723 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5724 : 0;
5725
5726 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5727 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5728 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5729 load->operands[0] = Operand(fmask_desc_ptr);
5730 load->operands[1] = Operand(s4); /* no sampler */
5731 load->operands[2] = Operand(coord);
5732 load->definitions[0] = Definition(fmask);
5733 load->glc = false;
5734 load->dlc = false;
5735 load->dmask = 0x1;
5736 load->unrm = true;
5737 load->da = da;
5738 load->dim = dim;
5739 ctx->block->instructions.emplace_back(std::move(load));
5740
5741 Operand sample_index4;
5742 if (sample_index.isConstant()) {
5743 if (sample_index.constantValue() < 16) {
5744 sample_index4 = Operand(sample_index.constantValue() << 2);
5745 } else {
5746 sample_index4 = Operand(0u);
5747 }
5748 } else if (sample_index.regClass() == s1) {
5749 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5750 } else {
5751 assert(sample_index.regClass() == v1);
5752 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5753 }
5754
5755 Temp final_sample;
5756 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5757 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5758 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5759 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5760 else
5761 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5762
5763 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5764 * resource descriptor is 0 (invalid),
5765 */
5766 Temp compare = bld.tmp(bld.lm);
5767 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5768 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5769
5770 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5771
5772 /* Replace the MSAA sample index. */
5773 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5774 }
5775
5776 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5777 {
5778
5779 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5780 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5781 bool is_array = glsl_sampler_type_is_array(type);
5782 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5783 assert(!add_frag_pos && "Input attachments should be lowered.");
5784 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5785 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5786 int count = image_type_to_components_count(dim, is_array);
5787 std::vector<Temp> coords(count);
5788 Builder bld(ctx->program, ctx->block);
5789
5790 if (is_ms) {
5791 count--;
5792 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5793 /* get sample index */
5794 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5795 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5796 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5797 std::vector<Temp> fmask_load_address;
5798 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5799 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5800
5801 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5802 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5803 } else {
5804 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5805 }
5806 }
5807
5808 if (gfx9_1d) {
5809 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5810 coords.resize(coords.size() + 1);
5811 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5812 if (is_array)
5813 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5814 } else {
5815 for (int i = 0; i < count; i++)
5816 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5817 }
5818
5819 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5820 instr->intrinsic == nir_intrinsic_image_deref_store) {
5821 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5822 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5823
5824 if (!level_zero)
5825 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5826 }
5827
5828 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5829 for (unsigned i = 0; i < coords.size(); i++)
5830 vec->operands[i] = Operand(coords[i]);
5831 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5832 vec->definitions[0] = Definition(res);
5833 ctx->block->instructions.emplace_back(std::move(vec));
5834 return res;
5835 }
5836
5837
5838 memory_sync_info get_memory_sync_info(nir_intrinsic_instr *instr, storage_class storage, unsigned semantics)
5839 {
5840 /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */
5841 if (semantics & semantic_atomicrmw)
5842 return memory_sync_info(storage, semantics);
5843
5844 unsigned access = nir_intrinsic_access(instr);
5845
5846 if (access & ACCESS_VOLATILE)
5847 semantics |= semantic_volatile;
5848 if (access & ACCESS_CAN_REORDER)
5849 semantics |= semantic_can_reorder | semantic_private;
5850
5851 return memory_sync_info(storage, semantics);
5852 }
5853
5854 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5855 {
5856 Builder bld(ctx->program, ctx->block);
5857 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5858 const struct glsl_type *type = glsl_without_array(var->type);
5859 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5860 bool is_array = glsl_sampler_type_is_array(type);
5861 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5862
5863 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5864
5865 if (dim == GLSL_SAMPLER_DIM_BUF) {
5866 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5867 unsigned num_channels = util_last_bit(mask);
5868 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5869 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5870
5871 aco_opcode opcode;
5872 switch (num_channels) {
5873 case 1:
5874 opcode = aco_opcode::buffer_load_format_x;
5875 break;
5876 case 2:
5877 opcode = aco_opcode::buffer_load_format_xy;
5878 break;
5879 case 3:
5880 opcode = aco_opcode::buffer_load_format_xyz;
5881 break;
5882 case 4:
5883 opcode = aco_opcode::buffer_load_format_xyzw;
5884 break;
5885 default:
5886 unreachable(">4 channel buffer image load");
5887 }
5888 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5889 load->operands[0] = Operand(rsrc);
5890 load->operands[1] = Operand(vindex);
5891 load->operands[2] = Operand((uint32_t) 0);
5892 Temp tmp;
5893 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5894 tmp = dst;
5895 else
5896 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5897 load->definitions[0] = Definition(tmp);
5898 load->idxen = true;
5899 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5900 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5901 load->sync = sync;
5902 ctx->block->instructions.emplace_back(std::move(load));
5903
5904 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5905 return;
5906 }
5907
5908 Temp coords = get_image_coords(ctx, instr, type);
5909 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5910
5911 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5912 unsigned num_components = util_bitcount(dmask);
5913 Temp tmp;
5914 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5915 tmp = dst;
5916 else
5917 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5918
5919 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5920 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5921
5922 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5923 load->operands[0] = Operand(resource);
5924 load->operands[1] = Operand(s4); /* no sampler */
5925 load->operands[2] = Operand(coords);
5926 load->definitions[0] = Definition(tmp);
5927 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5928 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5929 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5930 load->dmask = dmask;
5931 load->unrm = true;
5932 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5933 load->sync = sync;
5934 ctx->block->instructions.emplace_back(std::move(load));
5935
5936 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5937 return;
5938 }
5939
5940 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5941 {
5942 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5943 const struct glsl_type *type = glsl_without_array(var->type);
5944 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5945 bool is_array = glsl_sampler_type_is_array(type);
5946 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5947
5948 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5949 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5950
5951 if (dim == GLSL_SAMPLER_DIM_BUF) {
5952 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5953 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5954 aco_opcode opcode;
5955 switch (data.size()) {
5956 case 1:
5957 opcode = aco_opcode::buffer_store_format_x;
5958 break;
5959 case 2:
5960 opcode = aco_opcode::buffer_store_format_xy;
5961 break;
5962 case 3:
5963 opcode = aco_opcode::buffer_store_format_xyz;
5964 break;
5965 case 4:
5966 opcode = aco_opcode::buffer_store_format_xyzw;
5967 break;
5968 default:
5969 unreachable(">4 channel buffer image store");
5970 }
5971 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5972 store->operands[0] = Operand(rsrc);
5973 store->operands[1] = Operand(vindex);
5974 store->operands[2] = Operand((uint32_t) 0);
5975 store->operands[3] = Operand(data);
5976 store->idxen = true;
5977 store->glc = glc;
5978 store->dlc = false;
5979 store->disable_wqm = true;
5980 store->sync = sync;
5981 ctx->program->needs_exact = true;
5982 ctx->block->instructions.emplace_back(std::move(store));
5983 return;
5984 }
5985
5986 assert(data.type() == RegType::vgpr);
5987 Temp coords = get_image_coords(ctx, instr, type);
5988 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5989
5990 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5991 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5992
5993 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5994 store->operands[0] = Operand(resource);
5995 store->operands[1] = Operand(data);
5996 store->operands[2] = Operand(coords);
5997 store->glc = glc;
5998 store->dlc = false;
5999 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6000 store->dmask = (1 << data.size()) - 1;
6001 store->unrm = true;
6002 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6003 store->disable_wqm = true;
6004 store->sync = sync;
6005 ctx->program->needs_exact = true;
6006 ctx->block->instructions.emplace_back(std::move(store));
6007 return;
6008 }
6009
6010 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6011 {
6012 /* return the previous value if dest is ever used */
6013 bool return_previous = false;
6014 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6015 return_previous = true;
6016 break;
6017 }
6018 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6019 return_previous = true;
6020 break;
6021 }
6022
6023 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6024 const struct glsl_type *type = glsl_without_array(var->type);
6025 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6026 bool is_array = glsl_sampler_type_is_array(type);
6027 Builder bld(ctx->program, ctx->block);
6028
6029 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
6030 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
6031
6032 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
6033 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
6034
6035 aco_opcode buf_op, image_op;
6036 switch (instr->intrinsic) {
6037 case nir_intrinsic_image_deref_atomic_add:
6038 buf_op = aco_opcode::buffer_atomic_add;
6039 image_op = aco_opcode::image_atomic_add;
6040 break;
6041 case nir_intrinsic_image_deref_atomic_umin:
6042 buf_op = aco_opcode::buffer_atomic_umin;
6043 image_op = aco_opcode::image_atomic_umin;
6044 break;
6045 case nir_intrinsic_image_deref_atomic_imin:
6046 buf_op = aco_opcode::buffer_atomic_smin;
6047 image_op = aco_opcode::image_atomic_smin;
6048 break;
6049 case nir_intrinsic_image_deref_atomic_umax:
6050 buf_op = aco_opcode::buffer_atomic_umax;
6051 image_op = aco_opcode::image_atomic_umax;
6052 break;
6053 case nir_intrinsic_image_deref_atomic_imax:
6054 buf_op = aco_opcode::buffer_atomic_smax;
6055 image_op = aco_opcode::image_atomic_smax;
6056 break;
6057 case nir_intrinsic_image_deref_atomic_and:
6058 buf_op = aco_opcode::buffer_atomic_and;
6059 image_op = aco_opcode::image_atomic_and;
6060 break;
6061 case nir_intrinsic_image_deref_atomic_or:
6062 buf_op = aco_opcode::buffer_atomic_or;
6063 image_op = aco_opcode::image_atomic_or;
6064 break;
6065 case nir_intrinsic_image_deref_atomic_xor:
6066 buf_op = aco_opcode::buffer_atomic_xor;
6067 image_op = aco_opcode::image_atomic_xor;
6068 break;
6069 case nir_intrinsic_image_deref_atomic_exchange:
6070 buf_op = aco_opcode::buffer_atomic_swap;
6071 image_op = aco_opcode::image_atomic_swap;
6072 break;
6073 case nir_intrinsic_image_deref_atomic_comp_swap:
6074 buf_op = aco_opcode::buffer_atomic_cmpswap;
6075 image_op = aco_opcode::image_atomic_cmpswap;
6076 break;
6077 default:
6078 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
6079 }
6080
6081 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6082 memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw);
6083
6084 if (dim == GLSL_SAMPLER_DIM_BUF) {
6085 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
6086 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
6087 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
6088 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6089 mubuf->operands[0] = Operand(resource);
6090 mubuf->operands[1] = Operand(vindex);
6091 mubuf->operands[2] = Operand((uint32_t)0);
6092 mubuf->operands[3] = Operand(data);
6093 if (return_previous)
6094 mubuf->definitions[0] = Definition(dst);
6095 mubuf->offset = 0;
6096 mubuf->idxen = true;
6097 mubuf->glc = return_previous;
6098 mubuf->dlc = false; /* Not needed for atomics */
6099 mubuf->disable_wqm = true;
6100 mubuf->sync = sync;
6101 ctx->program->needs_exact = true;
6102 ctx->block->instructions.emplace_back(std::move(mubuf));
6103 return;
6104 }
6105
6106 Temp coords = get_image_coords(ctx, instr, type);
6107 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
6108 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
6109 mimg->operands[0] = Operand(resource);
6110 mimg->operands[1] = Operand(data);
6111 mimg->operands[2] = Operand(coords);
6112 if (return_previous)
6113 mimg->definitions[0] = Definition(dst);
6114 mimg->glc = return_previous;
6115 mimg->dlc = false; /* Not needed for atomics */
6116 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6117 mimg->dmask = (1 << data.size()) - 1;
6118 mimg->unrm = true;
6119 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6120 mimg->disable_wqm = true;
6121 mimg->sync = sync;
6122 ctx->program->needs_exact = true;
6123 ctx->block->instructions.emplace_back(std::move(mimg));
6124 return;
6125 }
6126
6127 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
6128 {
6129 if (in_elements && ctx->options->chip_class == GFX8) {
6130 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
6131 Builder bld(ctx->program, ctx->block);
6132
6133 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6134
6135 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6136 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
6137
6138 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6139 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6140
6141 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6142 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6143
6144 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6145 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6146 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6147 if (dst.type() == RegType::vgpr)
6148 bld.copy(Definition(dst), shr_dst);
6149
6150 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6151 } else {
6152 emit_extract_vector(ctx, desc, 2, dst);
6153 }
6154 }
6155
6156 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6157 {
6158 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6159 const struct glsl_type *type = glsl_without_array(var->type);
6160 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6161 bool is_array = glsl_sampler_type_is_array(type);
6162 Builder bld(ctx->program, ctx->block);
6163
6164 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6165 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6166 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6167 }
6168
6169 /* LOD */
6170 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6171
6172 /* Resource */
6173 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6174
6175 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6176
6177 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6178 mimg->operands[0] = Operand(resource);
6179 mimg->operands[1] = Operand(s4); /* no sampler */
6180 mimg->operands[2] = Operand(lod);
6181 uint8_t& dmask = mimg->dmask;
6182 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6183 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6184 mimg->da = glsl_sampler_type_is_array(type);
6185 Definition& def = mimg->definitions[0];
6186 ctx->block->instructions.emplace_back(std::move(mimg));
6187
6188 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6189 glsl_sampler_type_is_array(type)) {
6190
6191 assert(instr->dest.ssa.num_components == 3);
6192 Temp tmp = {ctx->program->allocateId(), v3};
6193 def = Definition(tmp);
6194 emit_split_vector(ctx, tmp, 3);
6195
6196 /* divide 3rd value by 6 by multiplying with magic number */
6197 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6198 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6199
6200 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6201 emit_extract_vector(ctx, tmp, 0, v1),
6202 emit_extract_vector(ctx, tmp, 1, v1),
6203 by_6);
6204
6205 } else if (ctx->options->chip_class == GFX9 &&
6206 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6207 glsl_sampler_type_is_array(type)) {
6208 assert(instr->dest.ssa.num_components == 2);
6209 def = Definition(dst);
6210 dmask = 0x5;
6211 } else {
6212 def = Definition(dst);
6213 }
6214
6215 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6216 }
6217
6218 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6219 {
6220 Builder bld(ctx->program, ctx->block);
6221 unsigned num_components = instr->num_components;
6222
6223 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6224 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6225 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6226
6227 unsigned access = nir_intrinsic_access(instr);
6228 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6229 unsigned size = instr->dest.ssa.bit_size / 8;
6230
6231 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6232 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6233 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6234 */
6235 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6236 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6237
6238 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6239 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem,
6240 get_memory_sync_info(instr, storage_buffer, 0));
6241 }
6242
6243 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6244 {
6245 Builder bld(ctx->program, ctx->block);
6246 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6247 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6248 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6249 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6250
6251 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6252 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6253
6254 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6255 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6256 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6257 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6258 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6259 */
6260 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6261
6262 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6263 ctx->options->chip_class >= GFX8 &&
6264 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6265 allow_smem;
6266 if (smem)
6267 offset = bld.as_uniform(offset);
6268 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6269
6270 unsigned write_count = 0;
6271 Temp write_datas[32];
6272 unsigned offsets[32];
6273 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6274 data, writemask, 16, &write_count, write_datas, offsets);
6275
6276 for (unsigned i = 0; i < write_count; i++) {
6277 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6278 if (smem && ctx->stage == fragment_fs)
6279 op = aco_opcode::p_fs_buffer_store_smem;
6280
6281 if (smem) {
6282 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6283 store->operands[0] = Operand(rsrc);
6284 if (offsets[i]) {
6285 Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6286 offset, Operand(offsets[i]));
6287 store->operands[1] = Operand(off);
6288 } else {
6289 store->operands[1] = Operand(offset);
6290 }
6291 if (op != aco_opcode::p_fs_buffer_store_smem)
6292 store->operands[1].setFixed(m0);
6293 store->operands[2] = Operand(write_datas[i]);
6294 store->glc = glc;
6295 store->dlc = false;
6296 store->disable_wqm = true;
6297 store->sync = sync;
6298 ctx->block->instructions.emplace_back(std::move(store));
6299 ctx->program->wb_smem_l1_on_end = true;
6300 if (op == aco_opcode::p_fs_buffer_store_smem) {
6301 ctx->block->kind |= block_kind_needs_lowering;
6302 ctx->program->needs_exact = true;
6303 }
6304 } else {
6305 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6306 store->operands[0] = Operand(rsrc);
6307 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6308 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6309 store->operands[3] = Operand(write_datas[i]);
6310 store->offset = offsets[i];
6311 store->offen = (offset.type() == RegType::vgpr);
6312 store->glc = glc;
6313 store->dlc = false;
6314 store->disable_wqm = true;
6315 store->sync = sync;
6316 ctx->program->needs_exact = true;
6317 ctx->block->instructions.emplace_back(std::move(store));
6318 }
6319 }
6320 }
6321
6322 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6323 {
6324 /* return the previous value if dest is ever used */
6325 bool return_previous = false;
6326 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6327 return_previous = true;
6328 break;
6329 }
6330 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6331 return_previous = true;
6332 break;
6333 }
6334
6335 Builder bld(ctx->program, ctx->block);
6336 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6337
6338 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6339 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6340 get_ssa_temp(ctx, instr->src[3].ssa), data);
6341
6342 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6343 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6344 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6345
6346 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6347
6348 aco_opcode op32, op64;
6349 switch (instr->intrinsic) {
6350 case nir_intrinsic_ssbo_atomic_add:
6351 op32 = aco_opcode::buffer_atomic_add;
6352 op64 = aco_opcode::buffer_atomic_add_x2;
6353 break;
6354 case nir_intrinsic_ssbo_atomic_imin:
6355 op32 = aco_opcode::buffer_atomic_smin;
6356 op64 = aco_opcode::buffer_atomic_smin_x2;
6357 break;
6358 case nir_intrinsic_ssbo_atomic_umin:
6359 op32 = aco_opcode::buffer_atomic_umin;
6360 op64 = aco_opcode::buffer_atomic_umin_x2;
6361 break;
6362 case nir_intrinsic_ssbo_atomic_imax:
6363 op32 = aco_opcode::buffer_atomic_smax;
6364 op64 = aco_opcode::buffer_atomic_smax_x2;
6365 break;
6366 case nir_intrinsic_ssbo_atomic_umax:
6367 op32 = aco_opcode::buffer_atomic_umax;
6368 op64 = aco_opcode::buffer_atomic_umax_x2;
6369 break;
6370 case nir_intrinsic_ssbo_atomic_and:
6371 op32 = aco_opcode::buffer_atomic_and;
6372 op64 = aco_opcode::buffer_atomic_and_x2;
6373 break;
6374 case nir_intrinsic_ssbo_atomic_or:
6375 op32 = aco_opcode::buffer_atomic_or;
6376 op64 = aco_opcode::buffer_atomic_or_x2;
6377 break;
6378 case nir_intrinsic_ssbo_atomic_xor:
6379 op32 = aco_opcode::buffer_atomic_xor;
6380 op64 = aco_opcode::buffer_atomic_xor_x2;
6381 break;
6382 case nir_intrinsic_ssbo_atomic_exchange:
6383 op32 = aco_opcode::buffer_atomic_swap;
6384 op64 = aco_opcode::buffer_atomic_swap_x2;
6385 break;
6386 case nir_intrinsic_ssbo_atomic_comp_swap:
6387 op32 = aco_opcode::buffer_atomic_cmpswap;
6388 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6389 break;
6390 default:
6391 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6392 }
6393 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6394 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6395 mubuf->operands[0] = Operand(rsrc);
6396 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6397 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6398 mubuf->operands[3] = Operand(data);
6399 if (return_previous)
6400 mubuf->definitions[0] = Definition(dst);
6401 mubuf->offset = 0;
6402 mubuf->offen = (offset.type() == RegType::vgpr);
6403 mubuf->glc = return_previous;
6404 mubuf->dlc = false; /* Not needed for atomics */
6405 mubuf->disable_wqm = true;
6406 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6407 ctx->program->needs_exact = true;
6408 ctx->block->instructions.emplace_back(std::move(mubuf));
6409 }
6410
6411 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6412
6413 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6414 Builder bld(ctx->program, ctx->block);
6415 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6416 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6417 }
6418
6419 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6420 {
6421 Builder bld(ctx->program, ctx->block);
6422 unsigned num_components = instr->num_components;
6423 unsigned component_size = instr->dest.ssa.bit_size / 8;
6424
6425 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6426 get_ssa_temp(ctx, &instr->dest.ssa),
6427 num_components, component_size};
6428 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6429 info.align_mul = nir_intrinsic_align_mul(instr);
6430 info.align_offset = nir_intrinsic_align_offset(instr);
6431 info.sync = get_memory_sync_info(instr, storage_buffer, 0);
6432 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6433 * it's safe to use SMEM */
6434 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6435 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6436 emit_global_load(ctx, bld, &info);
6437 } else {
6438 info.offset = Operand(bld.as_uniform(info.offset));
6439 emit_smem_load(ctx, bld, &info);
6440 }
6441 }
6442
6443 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6444 {
6445 Builder bld(ctx->program, ctx->block);
6446 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6447 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6448
6449 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6450 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6451 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6452 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6453
6454 if (ctx->options->chip_class >= GFX7)
6455 addr = as_vgpr(ctx, addr);
6456
6457 unsigned write_count = 0;
6458 Temp write_datas[32];
6459 unsigned offsets[32];
6460 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6461 16, &write_count, write_datas, offsets);
6462
6463 for (unsigned i = 0; i < write_count; i++) {
6464 if (ctx->options->chip_class >= GFX7) {
6465 unsigned offset = offsets[i];
6466 Temp store_addr = addr;
6467 if (offset > 0 && ctx->options->chip_class < GFX9) {
6468 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6469 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6470 Temp carry = bld.tmp(bld.lm);
6471 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6472
6473 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6474 Operand(offset), addr0);
6475 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6476 Operand(0u), addr1,
6477 carry).def(1).setHint(vcc);
6478
6479 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6480
6481 offset = 0;
6482 }
6483
6484 bool global = ctx->options->chip_class >= GFX9;
6485 aco_opcode op;
6486 switch (write_datas[i].bytes()) {
6487 case 1:
6488 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6489 break;
6490 case 2:
6491 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6492 break;
6493 case 4:
6494 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6495 break;
6496 case 8:
6497 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6498 break;
6499 case 12:
6500 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6501 break;
6502 case 16:
6503 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6504 break;
6505 default:
6506 unreachable("store_global not implemented for this size.");
6507 }
6508
6509 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6510 flat->operands[0] = Operand(store_addr);
6511 flat->operands[1] = Operand(s1);
6512 flat->operands[2] = Operand(write_datas[i]);
6513 flat->glc = glc;
6514 flat->dlc = false;
6515 flat->offset = offset;
6516 flat->disable_wqm = true;
6517 flat->sync = sync;
6518 ctx->program->needs_exact = true;
6519 ctx->block->instructions.emplace_back(std::move(flat));
6520 } else {
6521 assert(ctx->options->chip_class == GFX6);
6522
6523 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6524
6525 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6526
6527 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6528 mubuf->operands[0] = Operand(rsrc);
6529 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6530 mubuf->operands[2] = Operand(0u);
6531 mubuf->operands[3] = Operand(write_datas[i]);
6532 mubuf->glc = glc;
6533 mubuf->dlc = false;
6534 mubuf->offset = offsets[i];
6535 mubuf->addr64 = addr.type() == RegType::vgpr;
6536 mubuf->disable_wqm = true;
6537 mubuf->sync = sync;
6538 ctx->program->needs_exact = true;
6539 ctx->block->instructions.emplace_back(std::move(mubuf));
6540 }
6541 }
6542 }
6543
6544 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6545 {
6546 /* return the previous value if dest is ever used */
6547 bool return_previous = false;
6548 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6549 return_previous = true;
6550 break;
6551 }
6552 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6553 return_previous = true;
6554 break;
6555 }
6556
6557 Builder bld(ctx->program, ctx->block);
6558 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6559 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6560
6561 if (ctx->options->chip_class >= GFX7)
6562 addr = as_vgpr(ctx, addr);
6563
6564 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6565 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6566 get_ssa_temp(ctx, instr->src[2].ssa), data);
6567
6568 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6569
6570 aco_opcode op32, op64;
6571
6572 if (ctx->options->chip_class >= GFX7) {
6573 bool global = ctx->options->chip_class >= GFX9;
6574 switch (instr->intrinsic) {
6575 case nir_intrinsic_global_atomic_add:
6576 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6577 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6578 break;
6579 case nir_intrinsic_global_atomic_imin:
6580 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6581 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6582 break;
6583 case nir_intrinsic_global_atomic_umin:
6584 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6585 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6586 break;
6587 case nir_intrinsic_global_atomic_imax:
6588 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6589 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6590 break;
6591 case nir_intrinsic_global_atomic_umax:
6592 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6593 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6594 break;
6595 case nir_intrinsic_global_atomic_and:
6596 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6597 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6598 break;
6599 case nir_intrinsic_global_atomic_or:
6600 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6601 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6602 break;
6603 case nir_intrinsic_global_atomic_xor:
6604 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6605 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6606 break;
6607 case nir_intrinsic_global_atomic_exchange:
6608 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6609 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6610 break;
6611 case nir_intrinsic_global_atomic_comp_swap:
6612 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6613 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6614 break;
6615 default:
6616 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6617 }
6618
6619 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6620 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6621 flat->operands[0] = Operand(addr);
6622 flat->operands[1] = Operand(s1);
6623 flat->operands[2] = Operand(data);
6624 if (return_previous)
6625 flat->definitions[0] = Definition(dst);
6626 flat->glc = return_previous;
6627 flat->dlc = false; /* Not needed for atomics */
6628 flat->offset = 0;
6629 flat->disable_wqm = true;
6630 flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6631 ctx->program->needs_exact = true;
6632 ctx->block->instructions.emplace_back(std::move(flat));
6633 } else {
6634 assert(ctx->options->chip_class == GFX6);
6635
6636 switch (instr->intrinsic) {
6637 case nir_intrinsic_global_atomic_add:
6638 op32 = aco_opcode::buffer_atomic_add;
6639 op64 = aco_opcode::buffer_atomic_add_x2;
6640 break;
6641 case nir_intrinsic_global_atomic_imin:
6642 op32 = aco_opcode::buffer_atomic_smin;
6643 op64 = aco_opcode::buffer_atomic_smin_x2;
6644 break;
6645 case nir_intrinsic_global_atomic_umin:
6646 op32 = aco_opcode::buffer_atomic_umin;
6647 op64 = aco_opcode::buffer_atomic_umin_x2;
6648 break;
6649 case nir_intrinsic_global_atomic_imax:
6650 op32 = aco_opcode::buffer_atomic_smax;
6651 op64 = aco_opcode::buffer_atomic_smax_x2;
6652 break;
6653 case nir_intrinsic_global_atomic_umax:
6654 op32 = aco_opcode::buffer_atomic_umax;
6655 op64 = aco_opcode::buffer_atomic_umax_x2;
6656 break;
6657 case nir_intrinsic_global_atomic_and:
6658 op32 = aco_opcode::buffer_atomic_and;
6659 op64 = aco_opcode::buffer_atomic_and_x2;
6660 break;
6661 case nir_intrinsic_global_atomic_or:
6662 op32 = aco_opcode::buffer_atomic_or;
6663 op64 = aco_opcode::buffer_atomic_or_x2;
6664 break;
6665 case nir_intrinsic_global_atomic_xor:
6666 op32 = aco_opcode::buffer_atomic_xor;
6667 op64 = aco_opcode::buffer_atomic_xor_x2;
6668 break;
6669 case nir_intrinsic_global_atomic_exchange:
6670 op32 = aco_opcode::buffer_atomic_swap;
6671 op64 = aco_opcode::buffer_atomic_swap_x2;
6672 break;
6673 case nir_intrinsic_global_atomic_comp_swap:
6674 op32 = aco_opcode::buffer_atomic_cmpswap;
6675 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6676 break;
6677 default:
6678 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6679 }
6680
6681 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6682
6683 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6684
6685 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6686 mubuf->operands[0] = Operand(rsrc);
6687 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6688 mubuf->operands[2] = Operand(0u);
6689 mubuf->operands[3] = Operand(data);
6690 if (return_previous)
6691 mubuf->definitions[0] = Definition(dst);
6692 mubuf->glc = return_previous;
6693 mubuf->dlc = false;
6694 mubuf->offset = 0;
6695 mubuf->addr64 = addr.type() == RegType::vgpr;
6696 mubuf->disable_wqm = true;
6697 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6698 ctx->program->needs_exact = true;
6699 ctx->block->instructions.emplace_back(std::move(mubuf));
6700 }
6701 }
6702
6703 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6704 Builder bld(ctx->program, ctx->block);
6705 storage_class all_mem = (storage_class)(storage_buffer | storage_image | storage_atomic_counter | storage_shared);
6706 switch(instr->intrinsic) {
6707 case nir_intrinsic_group_memory_barrier:
6708 bld.barrier(aco_opcode::p_barrier,
6709 memory_sync_info(all_mem, semantic_acqrel, scope_workgroup));
6710 break;
6711 case nir_intrinsic_memory_barrier:
6712 bld.barrier(aco_opcode::p_barrier,
6713 memory_sync_info(all_mem, semantic_acqrel, scope_device));
6714 break;
6715 case nir_intrinsic_memory_barrier_buffer:
6716 case nir_intrinsic_memory_barrier_image:
6717 /* since NIR splits barriers, we have to unify buffer and image barriers
6718 * for now so dEQP-VK.memory_model.message_passing.core11.u32.coherent.
6719 * fence_fence.atomicwrite.device.payload_nonlocal.buffer.guard_nonlocal.image.comp
6720 * passes
6721 */
6722 bld.barrier(aco_opcode::p_barrier,
6723 memory_sync_info((storage_class)(storage_buffer | storage_image), semantic_acqrel, scope_device));
6724 break;
6725 case nir_intrinsic_memory_barrier_tcs_patch:
6726 case nir_intrinsic_memory_barrier_shared:
6727 bld.barrier(aco_opcode::p_barrier,
6728 memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup));
6729 break;
6730 default:
6731 unreachable("Unimplemented memory barrier intrinsic");
6732 break;
6733 }
6734 }
6735
6736 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6737 {
6738 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6739 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6740 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6741 Builder bld(ctx->program, ctx->block);
6742
6743 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6744 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6745 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6746 }
6747
6748 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6749 {
6750 unsigned writemask = nir_intrinsic_write_mask(instr);
6751 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6752 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6753 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6754
6755 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6756 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6757 }
6758
6759 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6760 {
6761 unsigned offset = nir_intrinsic_base(instr);
6762 Builder bld(ctx->program, ctx->block);
6763 Operand m = load_lds_size_m0(bld);
6764 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6765 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6766
6767 unsigned num_operands = 3;
6768 aco_opcode op32, op64, op32_rtn, op64_rtn;
6769 switch(instr->intrinsic) {
6770 case nir_intrinsic_shared_atomic_add:
6771 op32 = aco_opcode::ds_add_u32;
6772 op64 = aco_opcode::ds_add_u64;
6773 op32_rtn = aco_opcode::ds_add_rtn_u32;
6774 op64_rtn = aco_opcode::ds_add_rtn_u64;
6775 break;
6776 case nir_intrinsic_shared_atomic_imin:
6777 op32 = aco_opcode::ds_min_i32;
6778 op64 = aco_opcode::ds_min_i64;
6779 op32_rtn = aco_opcode::ds_min_rtn_i32;
6780 op64_rtn = aco_opcode::ds_min_rtn_i64;
6781 break;
6782 case nir_intrinsic_shared_atomic_umin:
6783 op32 = aco_opcode::ds_min_u32;
6784 op64 = aco_opcode::ds_min_u64;
6785 op32_rtn = aco_opcode::ds_min_rtn_u32;
6786 op64_rtn = aco_opcode::ds_min_rtn_u64;
6787 break;
6788 case nir_intrinsic_shared_atomic_imax:
6789 op32 = aco_opcode::ds_max_i32;
6790 op64 = aco_opcode::ds_max_i64;
6791 op32_rtn = aco_opcode::ds_max_rtn_i32;
6792 op64_rtn = aco_opcode::ds_max_rtn_i64;
6793 break;
6794 case nir_intrinsic_shared_atomic_umax:
6795 op32 = aco_opcode::ds_max_u32;
6796 op64 = aco_opcode::ds_max_u64;
6797 op32_rtn = aco_opcode::ds_max_rtn_u32;
6798 op64_rtn = aco_opcode::ds_max_rtn_u64;
6799 break;
6800 case nir_intrinsic_shared_atomic_and:
6801 op32 = aco_opcode::ds_and_b32;
6802 op64 = aco_opcode::ds_and_b64;
6803 op32_rtn = aco_opcode::ds_and_rtn_b32;
6804 op64_rtn = aco_opcode::ds_and_rtn_b64;
6805 break;
6806 case nir_intrinsic_shared_atomic_or:
6807 op32 = aco_opcode::ds_or_b32;
6808 op64 = aco_opcode::ds_or_b64;
6809 op32_rtn = aco_opcode::ds_or_rtn_b32;
6810 op64_rtn = aco_opcode::ds_or_rtn_b64;
6811 break;
6812 case nir_intrinsic_shared_atomic_xor:
6813 op32 = aco_opcode::ds_xor_b32;
6814 op64 = aco_opcode::ds_xor_b64;
6815 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6816 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6817 break;
6818 case nir_intrinsic_shared_atomic_exchange:
6819 op32 = aco_opcode::ds_write_b32;
6820 op64 = aco_opcode::ds_write_b64;
6821 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6822 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6823 break;
6824 case nir_intrinsic_shared_atomic_comp_swap:
6825 op32 = aco_opcode::ds_cmpst_b32;
6826 op64 = aco_opcode::ds_cmpst_b64;
6827 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6828 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6829 num_operands = 4;
6830 break;
6831 case nir_intrinsic_shared_atomic_fadd:
6832 op32 = aco_opcode::ds_add_f32;
6833 op32_rtn = aco_opcode::ds_add_rtn_f32;
6834 op64 = aco_opcode::num_opcodes;
6835 op64_rtn = aco_opcode::num_opcodes;
6836 break;
6837 default:
6838 unreachable("Unhandled shared atomic intrinsic");
6839 }
6840
6841 /* return the previous value if dest is ever used */
6842 bool return_previous = false;
6843 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6844 return_previous = true;
6845 break;
6846 }
6847 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6848 return_previous = true;
6849 break;
6850 }
6851
6852 aco_opcode op;
6853 if (data.size() == 1) {
6854 assert(instr->dest.ssa.bit_size == 32);
6855 op = return_previous ? op32_rtn : op32;
6856 } else {
6857 assert(instr->dest.ssa.bit_size == 64);
6858 op = return_previous ? op64_rtn : op64;
6859 }
6860
6861 if (offset > 65535) {
6862 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6863 offset = 0;
6864 }
6865
6866 aco_ptr<DS_instruction> ds;
6867 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6868 ds->operands[0] = Operand(address);
6869 ds->operands[1] = Operand(data);
6870 if (num_operands == 4)
6871 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6872 ds->operands[num_operands - 1] = m;
6873 ds->offset0 = offset;
6874 if (return_previous)
6875 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6876 ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw);
6877 ctx->block->instructions.emplace_back(std::move(ds));
6878 }
6879
6880 Temp get_scratch_resource(isel_context *ctx)
6881 {
6882 Builder bld(ctx->program, ctx->block);
6883 Temp scratch_addr = ctx->program->private_segment_buffer;
6884 if (ctx->stage != compute_cs)
6885 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6886
6887 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6888 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
6889
6890 if (ctx->program->chip_class >= GFX10) {
6891 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6892 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6893 S_008F0C_RESOURCE_LEVEL(1);
6894 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6895 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6896 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6897 }
6898
6899 /* older generations need element size = 4 bytes. element size removed in GFX9 */
6900 if (ctx->program->chip_class <= GFX8)
6901 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
6902
6903 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6904 }
6905
6906 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6907 Builder bld(ctx->program, ctx->block);
6908 Temp rsrc = get_scratch_resource(ctx);
6909 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6910 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6911
6912 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6913 instr->dest.ssa.bit_size / 8u, rsrc};
6914 info.align_mul = nir_intrinsic_align_mul(instr);
6915 info.align_offset = nir_intrinsic_align_offset(instr);
6916 info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0;
6917 info.sync = memory_sync_info(storage_buffer, semantic_private);
6918 info.soffset = ctx->program->scratch_offset;
6919 emit_scratch_load(ctx, bld, &info);
6920 }
6921
6922 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6923 Builder bld(ctx->program, ctx->block);
6924 Temp rsrc = get_scratch_resource(ctx);
6925 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6926 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6927
6928 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6929 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6930
6931 unsigned write_count = 0;
6932 Temp write_datas[32];
6933 unsigned offsets[32];
6934 unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16;
6935 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6936 swizzle_component_size, &write_count, write_datas, offsets);
6937
6938 for (unsigned i = 0; i < write_count; i++) {
6939 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6940 Instruction *instr = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true);
6941 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_buffer, semantic_private);
6942 }
6943 }
6944
6945 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6946 uint8_t log2_ps_iter_samples;
6947 if (ctx->program->info->ps.force_persample) {
6948 log2_ps_iter_samples =
6949 util_logbase2(ctx->options->key.fs.num_samples);
6950 } else {
6951 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6952 }
6953
6954 /* The bit pattern matches that used by fixed function fragment
6955 * processing. */
6956 static const unsigned ps_iter_masks[] = {
6957 0xffff, /* not used */
6958 0x5555,
6959 0x1111,
6960 0x0101,
6961 0x0001,
6962 };
6963 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6964
6965 Builder bld(ctx->program, ctx->block);
6966
6967 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6968 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6969 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6970 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6971 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6972 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6973 }
6974
6975 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6976 Builder bld(ctx->program, ctx->block);
6977
6978 unsigned stream = nir_intrinsic_stream_id(instr);
6979 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6980 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6981 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6982
6983 /* get GSVS ring */
6984 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6985
6986 unsigned num_components =
6987 ctx->program->info->gs.num_stream_output_components[stream];
6988 assert(num_components);
6989
6990 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6991 unsigned stream_offset = 0;
6992 for (unsigned i = 0; i < stream; i++) {
6993 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6994 stream_offset += prev_stride * ctx->program->wave_size;
6995 }
6996
6997 /* Limit on the stride field for <= GFX7. */
6998 assert(stride < (1 << 14));
6999
7000 Temp gsvs_dwords[4];
7001 for (unsigned i = 0; i < 4; i++)
7002 gsvs_dwords[i] = bld.tmp(s1);
7003 bld.pseudo(aco_opcode::p_split_vector,
7004 Definition(gsvs_dwords[0]),
7005 Definition(gsvs_dwords[1]),
7006 Definition(gsvs_dwords[2]),
7007 Definition(gsvs_dwords[3]),
7008 gsvs_ring);
7009
7010 if (stream_offset) {
7011 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
7012
7013 Temp carry = bld.tmp(s1);
7014 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
7015 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
7016 }
7017
7018 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
7019 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
7020
7021 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7022 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
7023
7024 unsigned offset = 0;
7025 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
7026 if (ctx->program->info->gs.output_streams[i] != stream)
7027 continue;
7028
7029 for (unsigned j = 0; j < 4; j++) {
7030 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
7031 continue;
7032
7033 if (ctx->outputs.mask[i] & (1 << j)) {
7034 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
7035 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
7036 if (const_offset >= 4096u) {
7037 if (vaddr_offset.isUndefined())
7038 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
7039 else
7040 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
7041 const_offset %= 4096u;
7042 }
7043
7044 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
7045 mtbuf->operands[0] = Operand(gsvs_ring);
7046 mtbuf->operands[1] = vaddr_offset;
7047 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
7048 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
7049 mtbuf->offen = !vaddr_offset.isUndefined();
7050 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
7051 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
7052 mtbuf->offset = const_offset;
7053 mtbuf->glc = true;
7054 mtbuf->slc = true;
7055 mtbuf->sync = memory_sync_info(storage_vmem_output, semantic_can_reorder);
7056 bld.insert(std::move(mtbuf));
7057 }
7058
7059 offset += ctx->shader->info.gs.vertices_out;
7060 }
7061
7062 /* outputs for the next vertex are undefined and keeping them around can
7063 * create invalid IR with control flow */
7064 ctx->outputs.mask[i] = 0;
7065 }
7066
7067 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
7068 }
7069
7070 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
7071 {
7072 Builder bld(ctx->program, ctx->block);
7073
7074 if (cluster_size == 1) {
7075 return src;
7076 } if (op == nir_op_iand && cluster_size == 4) {
7077 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7078 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7079 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7080 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7081 } else if (op == nir_op_ior && cluster_size == 4) {
7082 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7083 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7084 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7085 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7086 //subgroupAnd(val) -> (exec & ~val) == 0
7087 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7088 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7089 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7090 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7091 //subgroupOr(val) -> (val & exec) != 0
7092 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7093 return bool_to_vector_condition(ctx, tmp);
7094 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7095 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7096 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7097 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7098 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7099 return bool_to_vector_condition(ctx, tmp);
7100 } else {
7101 //subgroupClustered{And,Or,Xor}(val, n) ->
7102 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7103 //cluster_offset = ~(n - 1) & lane_id
7104 //cluster_mask = ((1 << n) - 1)
7105 //subgroupClusteredAnd():
7106 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7107 //subgroupClusteredOr():
7108 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7109 //subgroupClusteredXor():
7110 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7111 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7112 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7113
7114 Temp tmp;
7115 if (op == nir_op_iand)
7116 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7117 else
7118 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7119
7120 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7121
7122 if (ctx->program->chip_class <= GFX7)
7123 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7124 else if (ctx->program->wave_size == 64)
7125 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7126 else
7127 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7128 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7129 if (cluster_mask != 0xffffffff)
7130 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7131
7132 Definition cmp_def = Definition();
7133 if (op == nir_op_iand) {
7134 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7135 } else if (op == nir_op_ior) {
7136 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7137 } else if (op == nir_op_ixor) {
7138 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7139 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7140 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7141 }
7142 cmp_def.setHint(vcc);
7143 return cmp_def.getTemp();
7144 }
7145 }
7146
7147 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7148 {
7149 Builder bld(ctx->program, ctx->block);
7150
7151 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7152 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7153 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7154 Temp tmp;
7155 if (op == nir_op_iand)
7156 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7157 else
7158 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7159
7160 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7161 Temp lo = lohi.def(0).getTemp();
7162 Temp hi = lohi.def(1).getTemp();
7163 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7164
7165 Definition cmp_def = Definition();
7166 if (op == nir_op_iand)
7167 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7168 else if (op == nir_op_ior)
7169 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7170 else if (op == nir_op_ixor)
7171 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7172 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7173 cmp_def.setHint(vcc);
7174 return cmp_def.getTemp();
7175 }
7176
7177 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7178 {
7179 Builder bld(ctx->program, ctx->block);
7180
7181 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7182 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7183 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7184 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7185 if (op == nir_op_iand)
7186 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7187 else if (op == nir_op_ior)
7188 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7189 else if (op == nir_op_ixor)
7190 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7191
7192 assert(false);
7193 return Temp();
7194 }
7195
7196 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7197 {
7198 Builder bld(ctx->program, ctx->block);
7199 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7200 if (src.regClass().type() == RegType::vgpr) {
7201 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7202 } else if (src.regClass() == s1) {
7203 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7204 } else if (src.regClass() == s2) {
7205 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7206 } else {
7207 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7208 nir_print_instr(&instr->instr, stderr);
7209 fprintf(stderr, "\n");
7210 }
7211 }
7212
7213 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7214 {
7215 Builder bld(ctx->program, ctx->block);
7216 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7217 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7218 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7219
7220 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7221 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7222 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7223 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7224
7225 /* Build DD X/Y */
7226 if (ctx->program->chip_class >= GFX8) {
7227 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7228 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7229 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7230 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7231 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7232 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7233 } else {
7234 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7235 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7236 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7237 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7238 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7239 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7240 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7241 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7242 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7243 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7244 }
7245
7246 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7247 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7248 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7249 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7250 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7251 Temp wqm1 = bld.tmp(v1);
7252 emit_wqm(ctx, tmp1, wqm1, true);
7253 Temp wqm2 = bld.tmp(v1);
7254 emit_wqm(ctx, tmp2, wqm2, true);
7255 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7256 return;
7257 }
7258
7259 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7260 {
7261 Builder bld(ctx->program, ctx->block);
7262 switch(instr->intrinsic) {
7263 case nir_intrinsic_load_barycentric_sample:
7264 case nir_intrinsic_load_barycentric_pixel:
7265 case nir_intrinsic_load_barycentric_centroid: {
7266 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7267 Temp bary = Temp(0, s2);
7268 switch (mode) {
7269 case INTERP_MODE_SMOOTH:
7270 case INTERP_MODE_NONE:
7271 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7272 bary = get_arg(ctx, ctx->args->ac.persp_center);
7273 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7274 bary = ctx->persp_centroid;
7275 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7276 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7277 break;
7278 case INTERP_MODE_NOPERSPECTIVE:
7279 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7280 bary = get_arg(ctx, ctx->args->ac.linear_center);
7281 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7282 bary = ctx->linear_centroid;
7283 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7284 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7285 break;
7286 default:
7287 break;
7288 }
7289 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7290 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7291 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7292 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7293 Operand(p1), Operand(p2));
7294 emit_split_vector(ctx, dst, 2);
7295 break;
7296 }
7297 case nir_intrinsic_load_barycentric_model: {
7298 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7299
7300 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7301 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7302 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7303 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7305 Operand(p1), Operand(p2), Operand(p3));
7306 emit_split_vector(ctx, dst, 3);
7307 break;
7308 }
7309 case nir_intrinsic_load_barycentric_at_sample: {
7310 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7311 switch (ctx->options->key.fs.num_samples) {
7312 case 2: sample_pos_offset += 1 << 3; break;
7313 case 4: sample_pos_offset += 3 << 3; break;
7314 case 8: sample_pos_offset += 7 << 3; break;
7315 default: break;
7316 }
7317 Temp sample_pos;
7318 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7319 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7320 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7321 //TODO: bounds checking?
7322 if (addr.type() == RegType::sgpr) {
7323 Operand offset;
7324 if (const_addr) {
7325 sample_pos_offset += const_addr->u32 << 3;
7326 offset = Operand(sample_pos_offset);
7327 } else if (ctx->options->chip_class >= GFX9) {
7328 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7329 } else {
7330 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7331 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7332 }
7333
7334 Operand off = bld.copy(bld.def(s1), Operand(offset));
7335 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7336
7337 } else if (ctx->options->chip_class >= GFX9) {
7338 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7339 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7340 } else if (ctx->options->chip_class >= GFX7) {
7341 /* addr += private_segment_buffer + sample_pos_offset */
7342 Temp tmp0 = bld.tmp(s1);
7343 Temp tmp1 = bld.tmp(s1);
7344 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7345 Definition scc_tmp = bld.def(s1, scc);
7346 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7347 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7348 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7349 Temp pck0 = bld.tmp(v1);
7350 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7351 tmp1 = as_vgpr(ctx, tmp1);
7352 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7353 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7354
7355 /* sample_pos = flat_load_dwordx2 addr */
7356 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7357 } else {
7358 assert(ctx->options->chip_class == GFX6);
7359
7360 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7361 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7362 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7363
7364 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7365 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7366
7367 sample_pos = bld.tmp(v2);
7368
7369 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7370 load->definitions[0] = Definition(sample_pos);
7371 load->operands[0] = Operand(rsrc);
7372 load->operands[1] = Operand(addr);
7373 load->operands[2] = Operand(0u);
7374 load->offset = sample_pos_offset;
7375 load->offen = 0;
7376 load->addr64 = true;
7377 load->glc = false;
7378 load->dlc = false;
7379 load->disable_wqm = false;
7380 ctx->block->instructions.emplace_back(std::move(load));
7381 }
7382
7383 /* sample_pos -= 0.5 */
7384 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7385 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7386 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7387 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7388 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7389
7390 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7391 break;
7392 }
7393 case nir_intrinsic_load_barycentric_at_offset: {
7394 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7395 RegClass rc = RegClass(offset.type(), 1);
7396 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7397 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7398 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7399 break;
7400 }
7401 case nir_intrinsic_load_front_face: {
7402 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7403 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7404 break;
7405 }
7406 case nir_intrinsic_load_view_index: {
7407 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7408 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7409 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7410 break;
7411 }
7412
7413 /* fallthrough */
7414 }
7415 case nir_intrinsic_load_layer_id: {
7416 unsigned idx = nir_intrinsic_base(instr);
7417 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7418 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7419 break;
7420 }
7421 case nir_intrinsic_load_frag_coord: {
7422 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7423 break;
7424 }
7425 case nir_intrinsic_load_sample_pos: {
7426 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7427 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7428 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7429 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7430 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7431 break;
7432 }
7433 case nir_intrinsic_load_tess_coord:
7434 visit_load_tess_coord(ctx, instr);
7435 break;
7436 case nir_intrinsic_load_interpolated_input:
7437 visit_load_interpolated_input(ctx, instr);
7438 break;
7439 case nir_intrinsic_store_output:
7440 visit_store_output(ctx, instr);
7441 break;
7442 case nir_intrinsic_load_input:
7443 case nir_intrinsic_load_input_vertex:
7444 visit_load_input(ctx, instr);
7445 break;
7446 case nir_intrinsic_load_output:
7447 visit_load_output(ctx, instr);
7448 break;
7449 case nir_intrinsic_load_per_vertex_input:
7450 visit_load_per_vertex_input(ctx, instr);
7451 break;
7452 case nir_intrinsic_load_per_vertex_output:
7453 visit_load_per_vertex_output(ctx, instr);
7454 break;
7455 case nir_intrinsic_store_per_vertex_output:
7456 visit_store_per_vertex_output(ctx, instr);
7457 break;
7458 case nir_intrinsic_load_ubo:
7459 visit_load_ubo(ctx, instr);
7460 break;
7461 case nir_intrinsic_load_push_constant:
7462 visit_load_push_constant(ctx, instr);
7463 break;
7464 case nir_intrinsic_load_constant:
7465 visit_load_constant(ctx, instr);
7466 break;
7467 case nir_intrinsic_vulkan_resource_index:
7468 visit_load_resource(ctx, instr);
7469 break;
7470 case nir_intrinsic_discard:
7471 visit_discard(ctx, instr);
7472 break;
7473 case nir_intrinsic_discard_if:
7474 visit_discard_if(ctx, instr);
7475 break;
7476 case nir_intrinsic_load_shared:
7477 visit_load_shared(ctx, instr);
7478 break;
7479 case nir_intrinsic_store_shared:
7480 visit_store_shared(ctx, instr);
7481 break;
7482 case nir_intrinsic_shared_atomic_add:
7483 case nir_intrinsic_shared_atomic_imin:
7484 case nir_intrinsic_shared_atomic_umin:
7485 case nir_intrinsic_shared_atomic_imax:
7486 case nir_intrinsic_shared_atomic_umax:
7487 case nir_intrinsic_shared_atomic_and:
7488 case nir_intrinsic_shared_atomic_or:
7489 case nir_intrinsic_shared_atomic_xor:
7490 case nir_intrinsic_shared_atomic_exchange:
7491 case nir_intrinsic_shared_atomic_comp_swap:
7492 case nir_intrinsic_shared_atomic_fadd:
7493 visit_shared_atomic(ctx, instr);
7494 break;
7495 case nir_intrinsic_image_deref_load:
7496 visit_image_load(ctx, instr);
7497 break;
7498 case nir_intrinsic_image_deref_store:
7499 visit_image_store(ctx, instr);
7500 break;
7501 case nir_intrinsic_image_deref_atomic_add:
7502 case nir_intrinsic_image_deref_atomic_umin:
7503 case nir_intrinsic_image_deref_atomic_imin:
7504 case nir_intrinsic_image_deref_atomic_umax:
7505 case nir_intrinsic_image_deref_atomic_imax:
7506 case nir_intrinsic_image_deref_atomic_and:
7507 case nir_intrinsic_image_deref_atomic_or:
7508 case nir_intrinsic_image_deref_atomic_xor:
7509 case nir_intrinsic_image_deref_atomic_exchange:
7510 case nir_intrinsic_image_deref_atomic_comp_swap:
7511 visit_image_atomic(ctx, instr);
7512 break;
7513 case nir_intrinsic_image_deref_size:
7514 visit_image_size(ctx, instr);
7515 break;
7516 case nir_intrinsic_load_ssbo:
7517 visit_load_ssbo(ctx, instr);
7518 break;
7519 case nir_intrinsic_store_ssbo:
7520 visit_store_ssbo(ctx, instr);
7521 break;
7522 case nir_intrinsic_load_global:
7523 visit_load_global(ctx, instr);
7524 break;
7525 case nir_intrinsic_store_global:
7526 visit_store_global(ctx, instr);
7527 break;
7528 case nir_intrinsic_global_atomic_add:
7529 case nir_intrinsic_global_atomic_imin:
7530 case nir_intrinsic_global_atomic_umin:
7531 case nir_intrinsic_global_atomic_imax:
7532 case nir_intrinsic_global_atomic_umax:
7533 case nir_intrinsic_global_atomic_and:
7534 case nir_intrinsic_global_atomic_or:
7535 case nir_intrinsic_global_atomic_xor:
7536 case nir_intrinsic_global_atomic_exchange:
7537 case nir_intrinsic_global_atomic_comp_swap:
7538 visit_global_atomic(ctx, instr);
7539 break;
7540 case nir_intrinsic_ssbo_atomic_add:
7541 case nir_intrinsic_ssbo_atomic_imin:
7542 case nir_intrinsic_ssbo_atomic_umin:
7543 case nir_intrinsic_ssbo_atomic_imax:
7544 case nir_intrinsic_ssbo_atomic_umax:
7545 case nir_intrinsic_ssbo_atomic_and:
7546 case nir_intrinsic_ssbo_atomic_or:
7547 case nir_intrinsic_ssbo_atomic_xor:
7548 case nir_intrinsic_ssbo_atomic_exchange:
7549 case nir_intrinsic_ssbo_atomic_comp_swap:
7550 visit_atomic_ssbo(ctx, instr);
7551 break;
7552 case nir_intrinsic_load_scratch:
7553 visit_load_scratch(ctx, instr);
7554 break;
7555 case nir_intrinsic_store_scratch:
7556 visit_store_scratch(ctx, instr);
7557 break;
7558 case nir_intrinsic_get_buffer_size:
7559 visit_get_buffer_size(ctx, instr);
7560 break;
7561 case nir_intrinsic_control_barrier: {
7562 bld.barrier(aco_opcode::p_barrier, memory_sync_info(0, 0, scope_invocation), scope_workgroup);
7563 break;
7564 }
7565 case nir_intrinsic_memory_barrier_tcs_patch:
7566 case nir_intrinsic_group_memory_barrier:
7567 case nir_intrinsic_memory_barrier:
7568 case nir_intrinsic_memory_barrier_buffer:
7569 case nir_intrinsic_memory_barrier_image:
7570 case nir_intrinsic_memory_barrier_shared:
7571 emit_memory_barrier(ctx, instr);
7572 break;
7573 case nir_intrinsic_load_num_work_groups: {
7574 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7575 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7576 emit_split_vector(ctx, dst, 3);
7577 break;
7578 }
7579 case nir_intrinsic_load_local_invocation_id: {
7580 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7581 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7582 emit_split_vector(ctx, dst, 3);
7583 break;
7584 }
7585 case nir_intrinsic_load_work_group_id: {
7586 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7587 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7589 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7590 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7591 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7592 emit_split_vector(ctx, dst, 3);
7593 break;
7594 }
7595 case nir_intrinsic_load_local_invocation_index: {
7596 Temp id = emit_mbcnt(ctx, bld.def(v1));
7597
7598 /* The tg_size bits [6:11] contain the subgroup id,
7599 * we need this multiplied by the wave size, and then OR the thread id to it.
7600 */
7601 if (ctx->program->wave_size == 64) {
7602 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7603 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7604 get_arg(ctx, ctx->args->ac.tg_size));
7605 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7606 } else {
7607 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7608 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7609 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7610 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7611 }
7612 break;
7613 }
7614 case nir_intrinsic_load_subgroup_id: {
7615 if (ctx->stage == compute_cs) {
7616 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7617 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7618 } else {
7619 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7620 }
7621 break;
7622 }
7623 case nir_intrinsic_load_subgroup_invocation: {
7624 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7625 break;
7626 }
7627 case nir_intrinsic_load_num_subgroups: {
7628 if (ctx->stage == compute_cs)
7629 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7630 get_arg(ctx, ctx->args->ac.tg_size));
7631 else
7632 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7633 break;
7634 }
7635 case nir_intrinsic_ballot: {
7636 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7637 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7638 Definition tmp = bld.def(dst.regClass());
7639 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7640 if (instr->src[0].ssa->bit_size == 1) {
7641 assert(src.regClass() == bld.lm);
7642 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7643 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7644 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7645 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7646 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7647 } else {
7648 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7649 nir_print_instr(&instr->instr, stderr);
7650 fprintf(stderr, "\n");
7651 }
7652 if (dst.size() != bld.lm.size()) {
7653 /* Wave32 with ballot size set to 64 */
7654 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7655 }
7656 emit_wqm(ctx, tmp.getTemp(), dst);
7657 break;
7658 }
7659 case nir_intrinsic_shuffle:
7660 case nir_intrinsic_read_invocation: {
7661 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7662 if (!nir_src_is_divergent(instr->src[0])) {
7663 emit_uniform_subgroup(ctx, instr, src);
7664 } else {
7665 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7666 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7667 tid = bld.as_uniform(tid);
7668 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7669 if (src.regClass() == v1b || src.regClass() == v2b) {
7670 Temp tmp = bld.tmp(v1);
7671 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7672 if (dst.type() == RegType::vgpr)
7673 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7674 else
7675 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7676 } else if (src.regClass() == v1) {
7677 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7678 } else if (src.regClass() == v2) {
7679 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7680 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7681 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7682 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7683 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7684 emit_split_vector(ctx, dst, 2);
7685 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7686 assert(src.regClass() == bld.lm);
7687 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7688 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7689 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7690 assert(src.regClass() == bld.lm);
7691 Temp tmp;
7692 if (ctx->program->chip_class <= GFX7)
7693 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7694 else if (ctx->program->wave_size == 64)
7695 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7696 else
7697 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7698 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7699 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7700 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7701 } else {
7702 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7703 nir_print_instr(&instr->instr, stderr);
7704 fprintf(stderr, "\n");
7705 }
7706 }
7707 break;
7708 }
7709 case nir_intrinsic_load_sample_id: {
7710 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7711 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7712 break;
7713 }
7714 case nir_intrinsic_load_sample_mask_in: {
7715 visit_load_sample_mask_in(ctx, instr);
7716 break;
7717 }
7718 case nir_intrinsic_read_first_invocation: {
7719 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7720 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7721 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7722 emit_wqm(ctx,
7723 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7724 dst);
7725 } else if (src.regClass() == v2) {
7726 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7727 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7728 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7729 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7730 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7731 emit_split_vector(ctx, dst, 2);
7732 } else if (instr->dest.ssa.bit_size == 1) {
7733 assert(src.regClass() == bld.lm);
7734 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7735 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7736 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7737 } else if (src.regClass() == s1) {
7738 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7739 } else if (src.regClass() == s2) {
7740 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7741 } else {
7742 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7743 nir_print_instr(&instr->instr, stderr);
7744 fprintf(stderr, "\n");
7745 }
7746 break;
7747 }
7748 case nir_intrinsic_vote_all: {
7749 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7750 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7751 assert(src.regClass() == bld.lm);
7752 assert(dst.regClass() == bld.lm);
7753
7754 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7755 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7756 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7757 break;
7758 }
7759 case nir_intrinsic_vote_any: {
7760 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7761 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7762 assert(src.regClass() == bld.lm);
7763 assert(dst.regClass() == bld.lm);
7764
7765 Temp tmp = bool_to_scalar_condition(ctx, src);
7766 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7767 break;
7768 }
7769 case nir_intrinsic_reduce:
7770 case nir_intrinsic_inclusive_scan:
7771 case nir_intrinsic_exclusive_scan: {
7772 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7773 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7774 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7775 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7776 nir_intrinsic_cluster_size(instr) : 0;
7777 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7778
7779 if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
7780 emit_uniform_subgroup(ctx, instr, src);
7781 } else if (instr->dest.ssa.bit_size == 1) {
7782 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7783 op = nir_op_iand;
7784 else if (op == nir_op_iadd)
7785 op = nir_op_ixor;
7786 else if (op == nir_op_umax || op == nir_op_imax)
7787 op = nir_op_ior;
7788 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7789
7790 switch (instr->intrinsic) {
7791 case nir_intrinsic_reduce:
7792 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7793 break;
7794 case nir_intrinsic_exclusive_scan:
7795 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7796 break;
7797 case nir_intrinsic_inclusive_scan:
7798 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7799 break;
7800 default:
7801 assert(false);
7802 }
7803 } else if (cluster_size == 1) {
7804 bld.copy(Definition(dst), src);
7805 } else {
7806 unsigned bit_size = instr->src[0].ssa->bit_size;
7807
7808 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
7809
7810 ReduceOp reduce_op;
7811 switch (op) {
7812 #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
7813 #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
7814 CASEI(iadd)
7815 CASEI(imul)
7816 CASEI(imin)
7817 CASEI(umin)
7818 CASEI(imax)
7819 CASEI(umax)
7820 CASEI(iand)
7821 CASEI(ior)
7822 CASEI(ixor)
7823 CASEF(fadd)
7824 CASEF(fmul)
7825 CASEF(fmin)
7826 CASEF(fmax)
7827 default:
7828 unreachable("unknown reduction op");
7829 #undef CASEI
7830 #undef CASEF
7831 }
7832
7833 aco_opcode aco_op;
7834 switch (instr->intrinsic) {
7835 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7836 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7837 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7838 default:
7839 unreachable("unknown reduce intrinsic");
7840 }
7841
7842 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7843 reduce->operands[0] = Operand(src);
7844 // filled in by aco_reduce_assign.cpp, used internally as part of the
7845 // reduce sequence
7846 assert(dst.size() == 1 || dst.size() == 2);
7847 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7848 reduce->operands[2] = Operand(v1.as_linear());
7849
7850 Temp tmp_dst = bld.tmp(dst.regClass());
7851 reduce->definitions[0] = Definition(tmp_dst);
7852 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7853 reduce->definitions[2] = Definition();
7854 reduce->definitions[3] = Definition(scc, s1);
7855 reduce->definitions[4] = Definition();
7856 reduce->reduce_op = reduce_op;
7857 reduce->cluster_size = cluster_size;
7858 ctx->block->instructions.emplace_back(std::move(reduce));
7859
7860 emit_wqm(ctx, tmp_dst, dst);
7861 }
7862 break;
7863 }
7864 case nir_intrinsic_quad_broadcast: {
7865 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7866 if (!nir_dest_is_divergent(instr->dest)) {
7867 emit_uniform_subgroup(ctx, instr, src);
7868 } else {
7869 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7870 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7871 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7872
7873 if (instr->dest.ssa.bit_size == 1) {
7874 assert(src.regClass() == bld.lm);
7875 assert(dst.regClass() == bld.lm);
7876 uint32_t half_mask = 0x11111111u << lane;
7877 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7878 Temp tmp = bld.tmp(bld.lm);
7879 bld.sop1(Builder::s_wqm, Definition(tmp),
7880 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7881 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7882 emit_wqm(ctx, tmp, dst);
7883 } else if (instr->dest.ssa.bit_size == 8) {
7884 Temp tmp = bld.tmp(v1);
7885 if (ctx->program->chip_class >= GFX8)
7886 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7887 else
7888 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7889 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7890 } else if (instr->dest.ssa.bit_size == 16) {
7891 Temp tmp = bld.tmp(v1);
7892 if (ctx->program->chip_class >= GFX8)
7893 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7894 else
7895 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7896 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7897 } else if (instr->dest.ssa.bit_size == 32) {
7898 if (ctx->program->chip_class >= GFX8)
7899 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7900 else
7901 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7902 } else if (instr->dest.ssa.bit_size == 64) {
7903 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7904 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7905 if (ctx->program->chip_class >= GFX8) {
7906 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7907 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7908 } else {
7909 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7910 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7911 }
7912 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7913 emit_split_vector(ctx, dst, 2);
7914 } else {
7915 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7916 nir_print_instr(&instr->instr, stderr);
7917 fprintf(stderr, "\n");
7918 }
7919 }
7920 break;
7921 }
7922 case nir_intrinsic_quad_swap_horizontal:
7923 case nir_intrinsic_quad_swap_vertical:
7924 case nir_intrinsic_quad_swap_diagonal:
7925 case nir_intrinsic_quad_swizzle_amd: {
7926 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7927 if (!nir_dest_is_divergent(instr->dest)) {
7928 emit_uniform_subgroup(ctx, instr, src);
7929 break;
7930 }
7931 uint16_t dpp_ctrl = 0;
7932 switch (instr->intrinsic) {
7933 case nir_intrinsic_quad_swap_horizontal:
7934 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7935 break;
7936 case nir_intrinsic_quad_swap_vertical:
7937 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7938 break;
7939 case nir_intrinsic_quad_swap_diagonal:
7940 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7941 break;
7942 case nir_intrinsic_quad_swizzle_amd:
7943 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7944 break;
7945 default:
7946 break;
7947 }
7948 if (ctx->program->chip_class < GFX8)
7949 dpp_ctrl |= (1 << 15);
7950
7951 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7952 if (instr->dest.ssa.bit_size == 1) {
7953 assert(src.regClass() == bld.lm);
7954 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7955 if (ctx->program->chip_class >= GFX8)
7956 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7957 else
7958 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7959 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7960 emit_wqm(ctx, tmp, dst);
7961 } else if (instr->dest.ssa.bit_size == 8) {
7962 Temp tmp = bld.tmp(v1);
7963 if (ctx->program->chip_class >= GFX8)
7964 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7965 else
7966 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7967 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7968 } else if (instr->dest.ssa.bit_size == 16) {
7969 Temp tmp = bld.tmp(v1);
7970 if (ctx->program->chip_class >= GFX8)
7971 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7972 else
7973 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7974 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7975 } else if (instr->dest.ssa.bit_size == 32) {
7976 Temp tmp;
7977 if (ctx->program->chip_class >= GFX8)
7978 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7979 else
7980 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7981 emit_wqm(ctx, tmp, dst);
7982 } else if (instr->dest.ssa.bit_size == 64) {
7983 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7984 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7985 if (ctx->program->chip_class >= GFX8) {
7986 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7987 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7988 } else {
7989 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7990 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7991 }
7992 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7993 emit_split_vector(ctx, dst, 2);
7994 } else {
7995 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7996 nir_print_instr(&instr->instr, stderr);
7997 fprintf(stderr, "\n");
7998 }
7999 break;
8000 }
8001 case nir_intrinsic_masked_swizzle_amd: {
8002 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8003 if (!nir_dest_is_divergent(instr->dest)) {
8004 emit_uniform_subgroup(ctx, instr, src);
8005 break;
8006 }
8007 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8008 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
8009 if (instr->dest.ssa.bit_size == 1) {
8010 assert(src.regClass() == bld.lm);
8011 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
8012 src = emit_masked_swizzle(ctx, bld, src, mask);
8013 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
8014 emit_wqm(ctx, tmp, dst);
8015 } else if (dst.regClass() == v1b) {
8016 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
8017 emit_extract_vector(ctx, tmp, 0, dst);
8018 } else if (dst.regClass() == v2b) {
8019 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
8020 emit_extract_vector(ctx, tmp, 0, dst);
8021 } else if (dst.regClass() == v1) {
8022 emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
8023 } else if (dst.regClass() == v2) {
8024 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8025 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8026 lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
8027 hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
8028 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8029 emit_split_vector(ctx, dst, 2);
8030 } else {
8031 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8032 nir_print_instr(&instr->instr, stderr);
8033 fprintf(stderr, "\n");
8034 }
8035 break;
8036 }
8037 case nir_intrinsic_write_invocation_amd: {
8038 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
8039 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
8040 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
8041 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8042 if (dst.regClass() == v1) {
8043 /* src2 is ignored for writelane. RA assigns the same reg for dst */
8044 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
8045 } else if (dst.regClass() == v2) {
8046 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
8047 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
8048 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
8049 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
8050 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
8051 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
8052 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8053 emit_split_vector(ctx, dst, 2);
8054 } else {
8055 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8056 nir_print_instr(&instr->instr, stderr);
8057 fprintf(stderr, "\n");
8058 }
8059 break;
8060 }
8061 case nir_intrinsic_mbcnt_amd: {
8062 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8063 RegClass rc = RegClass(src.type(), 1);
8064 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
8065 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
8066 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8067 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
8068 emit_wqm(ctx, wqm_tmp, dst);
8069 break;
8070 }
8071 case nir_intrinsic_load_helper_invocation: {
8072 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8073 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
8074 ctx->block->kind |= block_kind_needs_lowering;
8075 ctx->program->needs_exact = true;
8076 break;
8077 }
8078 case nir_intrinsic_is_helper_invocation: {
8079 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8080 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
8081 ctx->block->kind |= block_kind_needs_lowering;
8082 ctx->program->needs_exact = true;
8083 break;
8084 }
8085 case nir_intrinsic_demote:
8086 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
8087
8088 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8089 ctx->cf_info.exec_potentially_empty_discard = true;
8090 ctx->block->kind |= block_kind_uses_demote;
8091 ctx->program->needs_exact = true;
8092 break;
8093 case nir_intrinsic_demote_if: {
8094 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8095 assert(src.regClass() == bld.lm);
8096 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
8097 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
8098
8099 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8100 ctx->cf_info.exec_potentially_empty_discard = true;
8101 ctx->block->kind |= block_kind_uses_demote;
8102 ctx->program->needs_exact = true;
8103 break;
8104 }
8105 case nir_intrinsic_first_invocation: {
8106 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
8107 get_ssa_temp(ctx, &instr->dest.ssa));
8108 break;
8109 }
8110 case nir_intrinsic_shader_clock: {
8111 aco_opcode opcode =
8112 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
8113 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
8114 bld.smem(opcode, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), memory_sync_info(0, semantic_volatile));
8115 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
8116 break;
8117 }
8118 case nir_intrinsic_load_vertex_id_zero_base: {
8119 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8120 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8121 break;
8122 }
8123 case nir_intrinsic_load_first_vertex: {
8124 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8125 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8126 break;
8127 }
8128 case nir_intrinsic_load_base_instance: {
8129 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8130 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8131 break;
8132 }
8133 case nir_intrinsic_load_instance_id: {
8134 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8135 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8136 break;
8137 }
8138 case nir_intrinsic_load_draw_id: {
8139 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8140 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8141 break;
8142 }
8143 case nir_intrinsic_load_invocation_id: {
8144 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8145
8146 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8147 if (ctx->options->chip_class >= GFX10)
8148 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8149 else
8150 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8151 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8152 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8153 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8154 } else {
8155 unreachable("Unsupported stage for load_invocation_id");
8156 }
8157
8158 break;
8159 }
8160 case nir_intrinsic_load_primitive_id: {
8161 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8162
8163 switch (ctx->shader->info.stage) {
8164 case MESA_SHADER_GEOMETRY:
8165 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8166 break;
8167 case MESA_SHADER_TESS_CTRL:
8168 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8169 break;
8170 case MESA_SHADER_TESS_EVAL:
8171 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8172 break;
8173 default:
8174 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8175 }
8176
8177 break;
8178 }
8179 case nir_intrinsic_load_patch_vertices_in: {
8180 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8181 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8182
8183 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8184 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8185 break;
8186 }
8187 case nir_intrinsic_emit_vertex_with_counter: {
8188 visit_emit_vertex_with_counter(ctx, instr);
8189 break;
8190 }
8191 case nir_intrinsic_end_primitive_with_counter: {
8192 unsigned stream = nir_intrinsic_stream_id(instr);
8193 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8194 break;
8195 }
8196 case nir_intrinsic_set_vertex_count: {
8197 /* unused, the HW keeps track of this for us */
8198 break;
8199 }
8200 default:
8201 fprintf(stderr, "Unimplemented intrinsic instr: ");
8202 nir_print_instr(&instr->instr, stderr);
8203 fprintf(stderr, "\n");
8204 abort();
8205
8206 break;
8207 }
8208 }
8209
8210
8211 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8212 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8213 enum glsl_base_type *stype)
8214 {
8215 nir_deref_instr *texture_deref_instr = NULL;
8216 nir_deref_instr *sampler_deref_instr = NULL;
8217 int plane = -1;
8218
8219 for (unsigned i = 0; i < instr->num_srcs; i++) {
8220 switch (instr->src[i].src_type) {
8221 case nir_tex_src_texture_deref:
8222 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8223 break;
8224 case nir_tex_src_sampler_deref:
8225 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8226 break;
8227 case nir_tex_src_plane:
8228 plane = nir_src_as_int(instr->src[i].src);
8229 break;
8230 default:
8231 break;
8232 }
8233 }
8234
8235 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8236
8237 if (!sampler_deref_instr)
8238 sampler_deref_instr = texture_deref_instr;
8239
8240 if (plane >= 0) {
8241 assert(instr->op != nir_texop_txf_ms &&
8242 instr->op != nir_texop_samples_identical);
8243 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8244 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8245 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8246 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8247 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8248 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8249 } else {
8250 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8251 }
8252 if (samp_ptr) {
8253 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8254
8255 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8256 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8257 Builder bld(ctx->program, ctx->block);
8258
8259 /* to avoid unnecessary moves, we split and recombine sampler and image */
8260 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8261 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8262 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8263 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8264 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8265 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8266 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8267 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8268
8269 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8270 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8271 img[0], img[1], img[2], img[3],
8272 img[4], img[5], img[6], img[7]);
8273 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8274 samp[0], samp[1], samp[2], samp[3]);
8275 }
8276 }
8277 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8278 instr->op == nir_texop_samples_identical))
8279 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8280 }
8281
8282 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8283 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8284 {
8285 Builder bld(ctx->program, ctx->block);
8286
8287 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8288 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8289 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8290
8291 Operand neg_one(0xbf800000u);
8292 Operand one(0x3f800000u);
8293 Operand two(0x40000000u);
8294 Operand four(0x40800000u);
8295
8296 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8297 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8298 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8299
8300 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8301 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8302 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8303 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8304
8305 // select sc
8306 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8307 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8308 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8309 one, is_ma_y);
8310 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8311
8312 // select tc
8313 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8314 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8315 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8316
8317 // select ma
8318 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8319 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8320 deriv_z, is_ma_z);
8321 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8322 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8323 }
8324
8325 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8326 {
8327 Builder bld(ctx->program, ctx->block);
8328 Temp ma, tc, sc, id;
8329
8330 if (is_array) {
8331 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8332
8333 // see comment in ac_prepare_cube_coords()
8334 if (ctx->options->chip_class <= GFX8)
8335 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8336 }
8337
8338 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8339
8340 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8341 vop3a->operands[0] = Operand(ma);
8342 vop3a->abs[0] = true;
8343 Temp invma = bld.tmp(v1);
8344 vop3a->definitions[0] = Definition(invma);
8345 ctx->block->instructions.emplace_back(std::move(vop3a));
8346
8347 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8348 if (!is_deriv)
8349 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8350
8351 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8352 if (!is_deriv)
8353 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8354
8355 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8356
8357 if (is_deriv) {
8358 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8359 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8360
8361 for (unsigned i = 0; i < 2; i++) {
8362 // see comment in ac_prepare_cube_coords()
8363 Temp deriv_ma;
8364 Temp deriv_sc, deriv_tc;
8365 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8366 &deriv_ma, &deriv_sc, &deriv_tc);
8367
8368 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8369
8370 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8371 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8372 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8373 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8374 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8375 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8376 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8377 }
8378
8379 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8380 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8381 }
8382
8383 if (is_array)
8384 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8385 coords.resize(3);
8386 coords[0] = sc;
8387 coords[1] = tc;
8388 coords[2] = id;
8389 }
8390
8391 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8392 {
8393 if (vec->parent_instr->type != nir_instr_type_alu)
8394 return;
8395 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8396 if (vec_instr->op != nir_op_vec(vec->num_components))
8397 return;
8398
8399 for (unsigned i = 0; i < vec->num_components; i++) {
8400 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8401 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8402 }
8403 }
8404
8405 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8406 {
8407 Builder bld(ctx->program, ctx->block);
8408 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8409 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8410 has_clamped_lod = false;
8411 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8412 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8413 clamped_lod = Temp();
8414 std::vector<Temp> coords;
8415 std::vector<Temp> derivs;
8416 nir_const_value *sample_index_cv = NULL;
8417 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8418 enum glsl_base_type stype;
8419 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8420
8421 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8422 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8423 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8424 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8425
8426 for (unsigned i = 0; i < instr->num_srcs; i++) {
8427 switch (instr->src[i].src_type) {
8428 case nir_tex_src_coord: {
8429 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8430 for (unsigned i = 0; i < coord.size(); i++)
8431 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8432 break;
8433 }
8434 case nir_tex_src_bias:
8435 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8436 has_bias = true;
8437 break;
8438 case nir_tex_src_lod: {
8439 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8440
8441 if (val && val->f32 <= 0.0) {
8442 level_zero = true;
8443 } else {
8444 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8445 has_lod = true;
8446 }
8447 break;
8448 }
8449 case nir_tex_src_min_lod:
8450 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8451 has_clamped_lod = true;
8452 break;
8453 case nir_tex_src_comparator:
8454 if (instr->is_shadow) {
8455 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8456 has_compare = true;
8457 }
8458 break;
8459 case nir_tex_src_offset:
8460 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8461 get_const_vec(instr->src[i].src.ssa, const_offset);
8462 has_offset = true;
8463 break;
8464 case nir_tex_src_ddx:
8465 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8466 has_ddx = true;
8467 break;
8468 case nir_tex_src_ddy:
8469 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8470 has_ddy = true;
8471 break;
8472 case nir_tex_src_ms_index:
8473 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8474 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8475 has_sample_index = true;
8476 break;
8477 case nir_tex_src_texture_offset:
8478 case nir_tex_src_sampler_offset:
8479 default:
8480 break;
8481 }
8482 }
8483
8484 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8485 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8486
8487 if (instr->op == nir_texop_texture_samples) {
8488 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8489
8490 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8491 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8492 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8493
8494 Operand default_sample = Operand(1u);
8495 if (ctx->options->robust_buffer_access) {
8496 /* Extract the second dword of the descriptor, if it's
8497 * all zero, then it's a null descriptor.
8498 */
8499 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8500 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8501 default_sample = Operand(is_non_null_descriptor);
8502 }
8503
8504 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8505 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8506 samples, default_sample, bld.scc(is_msaa));
8507 return;
8508 }
8509
8510 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8511 aco_ptr<Instruction> tmp_instr;
8512 Temp acc, pack = Temp();
8513
8514 uint32_t pack_const = 0;
8515 for (unsigned i = 0; i < offset.size(); i++) {
8516 if (!const_offset[i])
8517 continue;
8518 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8519 }
8520
8521 if (offset.type() == RegType::sgpr) {
8522 for (unsigned i = 0; i < offset.size(); i++) {
8523 if (const_offset[i])
8524 continue;
8525
8526 acc = emit_extract_vector(ctx, offset, i, s1);
8527 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8528
8529 if (i) {
8530 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8531 }
8532
8533 if (pack == Temp()) {
8534 pack = acc;
8535 } else {
8536 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8537 }
8538 }
8539
8540 if (pack_const && pack != Temp())
8541 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8542 } else {
8543 for (unsigned i = 0; i < offset.size(); i++) {
8544 if (const_offset[i])
8545 continue;
8546
8547 acc = emit_extract_vector(ctx, offset, i, v1);
8548 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8549
8550 if (i) {
8551 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8552 }
8553
8554 if (pack == Temp()) {
8555 pack = acc;
8556 } else {
8557 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8558 }
8559 }
8560
8561 if (pack_const && pack != Temp())
8562 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8563 }
8564 if (pack_const && pack == Temp())
8565 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8566 else if (pack == Temp())
8567 has_offset = false;
8568 else
8569 offset = pack;
8570 }
8571
8572 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8573 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8574
8575 /* pack derivatives */
8576 if (has_ddx || has_ddy) {
8577 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8578 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8579 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8580 derivs = {ddx, zero, ddy, zero};
8581 } else {
8582 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8583 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8584 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8585 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8586 }
8587 has_derivs = true;
8588 }
8589
8590 if (instr->coord_components > 1 &&
8591 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8592 instr->is_array &&
8593 instr->op != nir_texop_txf)
8594 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8595
8596 if (instr->coord_components > 2 &&
8597 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8598 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8599 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8600 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8601 instr->is_array &&
8602 instr->op != nir_texop_txf &&
8603 instr->op != nir_texop_txf_ms &&
8604 instr->op != nir_texop_fragment_fetch &&
8605 instr->op != nir_texop_fragment_mask_fetch)
8606 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8607
8608 if (ctx->options->chip_class == GFX9 &&
8609 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8610 instr->op != nir_texop_lod && instr->coord_components) {
8611 assert(coords.size() > 0 && coords.size() < 3);
8612
8613 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8614 Operand((uint32_t) 0) :
8615 Operand((uint32_t) 0x3f000000)));
8616 }
8617
8618 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8619
8620 if (instr->op == nir_texop_samples_identical)
8621 resource = fmask_ptr;
8622
8623 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8624 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8625 instr->op != nir_texop_txs &&
8626 instr->op != nir_texop_fragment_fetch &&
8627 instr->op != nir_texop_fragment_mask_fetch) {
8628 assert(has_sample_index);
8629 Operand op(sample_index);
8630 if (sample_index_cv)
8631 op = Operand(sample_index_cv->u32);
8632 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8633 }
8634
8635 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8636 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8637 Temp off = emit_extract_vector(ctx, offset, i, v1);
8638 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8639 }
8640 has_offset = false;
8641 }
8642
8643 /* Build tex instruction */
8644 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8645 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8646 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8647 : 0;
8648 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8649 Temp tmp_dst = dst;
8650
8651 /* gather4 selects the component by dmask and always returns vec4 */
8652 if (instr->op == nir_texop_tg4) {
8653 assert(instr->dest.ssa.num_components == 4);
8654 if (instr->is_shadow)
8655 dmask = 1;
8656 else
8657 dmask = 1 << instr->component;
8658 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8659 tmp_dst = bld.tmp(v4);
8660 } else if (instr->op == nir_texop_samples_identical) {
8661 tmp_dst = bld.tmp(v1);
8662 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8663 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8664 }
8665
8666 aco_ptr<MIMG_instruction> tex;
8667 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8668 if (!has_lod)
8669 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8670
8671 bool div_by_6 = instr->op == nir_texop_txs &&
8672 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8673 instr->is_array &&
8674 (dmask & (1 << 2));
8675 if (tmp_dst.id() == dst.id() && div_by_6)
8676 tmp_dst = bld.tmp(tmp_dst.regClass());
8677
8678 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8679 tex->operands[0] = Operand(resource);
8680 tex->operands[1] = Operand(s4); /* no sampler */
8681 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8682 if (ctx->options->chip_class == GFX9 &&
8683 instr->op == nir_texop_txs &&
8684 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8685 instr->is_array) {
8686 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8687 } else if (instr->op == nir_texop_query_levels) {
8688 tex->dmask = 1 << 3;
8689 } else {
8690 tex->dmask = dmask;
8691 }
8692 tex->da = da;
8693 tex->definitions[0] = Definition(tmp_dst);
8694 tex->dim = dim;
8695 ctx->block->instructions.emplace_back(std::move(tex));
8696
8697 if (div_by_6) {
8698 /* divide 3rd value by 6 by multiplying with magic number */
8699 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8700 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8701 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8702 assert(instr->dest.ssa.num_components == 3);
8703 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8704 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8705 emit_extract_vector(ctx, tmp_dst, 0, v1),
8706 emit_extract_vector(ctx, tmp_dst, 1, v1),
8707 by_6);
8708
8709 }
8710
8711 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8712 return;
8713 }
8714
8715 Temp tg4_compare_cube_wa64 = Temp();
8716
8717 if (tg4_integer_workarounds) {
8718 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8719 tex->operands[0] = Operand(resource);
8720 tex->operands[1] = Operand(s4); /* no sampler */
8721 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8722 tex->dim = dim;
8723 tex->dmask = 0x3;
8724 tex->da = da;
8725 Temp size = bld.tmp(v2);
8726 tex->definitions[0] = Definition(size);
8727 ctx->block->instructions.emplace_back(std::move(tex));
8728 emit_split_vector(ctx, size, size.size());
8729
8730 Temp half_texel[2];
8731 for (unsigned i = 0; i < 2; i++) {
8732 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8733 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8734 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8735 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8736 }
8737
8738 Temp new_coords[2] = {
8739 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8740 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8741 };
8742
8743 if (tg4_integer_cube_workaround) {
8744 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8745 Temp desc[resource.size()];
8746 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8747 Format::PSEUDO, 1, resource.size())};
8748 split->operands[0] = Operand(resource);
8749 for (unsigned i = 0; i < resource.size(); i++) {
8750 desc[i] = bld.tmp(s1);
8751 split->definitions[i] = Definition(desc[i]);
8752 }
8753 ctx->block->instructions.emplace_back(std::move(split));
8754
8755 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8756 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8757 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8758
8759 Temp nfmt;
8760 if (stype == GLSL_TYPE_UINT) {
8761 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8762 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8763 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8764 bld.scc(compare_cube_wa));
8765 } else {
8766 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8767 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8768 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8769 bld.scc(compare_cube_wa));
8770 }
8771 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8772 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8773
8774 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8775
8776 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8777 Operand((uint32_t)C_008F14_NUM_FORMAT));
8778 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8779
8780 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8781 Format::PSEUDO, resource.size(), 1)};
8782 for (unsigned i = 0; i < resource.size(); i++)
8783 vec->operands[i] = Operand(desc[i]);
8784 resource = bld.tmp(resource.regClass());
8785 vec->definitions[0] = Definition(resource);
8786 ctx->block->instructions.emplace_back(std::move(vec));
8787
8788 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8789 new_coords[0], coords[0], tg4_compare_cube_wa64);
8790 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8791 new_coords[1], coords[1], tg4_compare_cube_wa64);
8792 }
8793 coords[0] = new_coords[0];
8794 coords[1] = new_coords[1];
8795 }
8796
8797 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8798 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8799
8800 assert(coords.size() == 1);
8801 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8802 aco_opcode op;
8803 switch (last_bit) {
8804 case 1:
8805 op = aco_opcode::buffer_load_format_x; break;
8806 case 2:
8807 op = aco_opcode::buffer_load_format_xy; break;
8808 case 3:
8809 op = aco_opcode::buffer_load_format_xyz; break;
8810 case 4:
8811 op = aco_opcode::buffer_load_format_xyzw; break;
8812 default:
8813 unreachable("Tex instruction loads more than 4 components.");
8814 }
8815
8816 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8817 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8818 tmp_dst = dst;
8819 else
8820 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8821
8822 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8823 mubuf->operands[0] = Operand(resource);
8824 mubuf->operands[1] = Operand(coords[0]);
8825 mubuf->operands[2] = Operand((uint32_t) 0);
8826 mubuf->definitions[0] = Definition(tmp_dst);
8827 mubuf->idxen = true;
8828 ctx->block->instructions.emplace_back(std::move(mubuf));
8829
8830 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8831 return;
8832 }
8833
8834 /* gather MIMG address components */
8835 std::vector<Temp> args;
8836 if (has_offset)
8837 args.emplace_back(offset);
8838 if (has_bias)
8839 args.emplace_back(bias);
8840 if (has_compare)
8841 args.emplace_back(compare);
8842 if (has_derivs)
8843 args.insert(args.end(), derivs.begin(), derivs.end());
8844
8845 args.insert(args.end(), coords.begin(), coords.end());
8846 if (has_sample_index)
8847 args.emplace_back(sample_index);
8848 if (has_lod)
8849 args.emplace_back(lod);
8850 if (has_clamped_lod)
8851 args.emplace_back(clamped_lod);
8852
8853 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8854 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8855 vec->definitions[0] = Definition(arg);
8856 for (unsigned i = 0; i < args.size(); i++)
8857 vec->operands[i] = Operand(args[i]);
8858 ctx->block->instructions.emplace_back(std::move(vec));
8859
8860
8861 if (instr->op == nir_texop_txf ||
8862 instr->op == nir_texop_txf_ms ||
8863 instr->op == nir_texop_samples_identical ||
8864 instr->op == nir_texop_fragment_fetch ||
8865 instr->op == nir_texop_fragment_mask_fetch) {
8866 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8867 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8868 tex->operands[0] = Operand(resource);
8869 tex->operands[1] = Operand(s4); /* no sampler */
8870 tex->operands[2] = Operand(arg);
8871 tex->dim = dim;
8872 tex->dmask = dmask;
8873 tex->unrm = true;
8874 tex->da = da;
8875 tex->definitions[0] = Definition(tmp_dst);
8876 ctx->block->instructions.emplace_back(std::move(tex));
8877
8878 if (instr->op == nir_texop_samples_identical) {
8879 assert(dmask == 1 && dst.regClass() == v1);
8880 assert(dst.id() != tmp_dst.id());
8881
8882 Temp tmp = bld.tmp(bld.lm);
8883 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8884 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8885
8886 } else {
8887 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8888 }
8889 return;
8890 }
8891
8892 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8893 aco_opcode opcode = aco_opcode::image_sample;
8894 if (has_offset) { /* image_sample_*_o */
8895 if (has_clamped_lod) {
8896 if (has_compare) {
8897 opcode = aco_opcode::image_sample_c_cl_o;
8898 if (has_derivs)
8899 opcode = aco_opcode::image_sample_c_d_cl_o;
8900 if (has_bias)
8901 opcode = aco_opcode::image_sample_c_b_cl_o;
8902 } else {
8903 opcode = aco_opcode::image_sample_cl_o;
8904 if (has_derivs)
8905 opcode = aco_opcode::image_sample_d_cl_o;
8906 if (has_bias)
8907 opcode = aco_opcode::image_sample_b_cl_o;
8908 }
8909 } else if (has_compare) {
8910 opcode = aco_opcode::image_sample_c_o;
8911 if (has_derivs)
8912 opcode = aco_opcode::image_sample_c_d_o;
8913 if (has_bias)
8914 opcode = aco_opcode::image_sample_c_b_o;
8915 if (level_zero)
8916 opcode = aco_opcode::image_sample_c_lz_o;
8917 if (has_lod)
8918 opcode = aco_opcode::image_sample_c_l_o;
8919 } else {
8920 opcode = aco_opcode::image_sample_o;
8921 if (has_derivs)
8922 opcode = aco_opcode::image_sample_d_o;
8923 if (has_bias)
8924 opcode = aco_opcode::image_sample_b_o;
8925 if (level_zero)
8926 opcode = aco_opcode::image_sample_lz_o;
8927 if (has_lod)
8928 opcode = aco_opcode::image_sample_l_o;
8929 }
8930 } else if (has_clamped_lod) { /* image_sample_*_cl */
8931 if (has_compare) {
8932 opcode = aco_opcode::image_sample_c_cl;
8933 if (has_derivs)
8934 opcode = aco_opcode::image_sample_c_d_cl;
8935 if (has_bias)
8936 opcode = aco_opcode::image_sample_c_b_cl;
8937 } else {
8938 opcode = aco_opcode::image_sample_cl;
8939 if (has_derivs)
8940 opcode = aco_opcode::image_sample_d_cl;
8941 if (has_bias)
8942 opcode = aco_opcode::image_sample_b_cl;
8943 }
8944 } else { /* no offset */
8945 if (has_compare) {
8946 opcode = aco_opcode::image_sample_c;
8947 if (has_derivs)
8948 opcode = aco_opcode::image_sample_c_d;
8949 if (has_bias)
8950 opcode = aco_opcode::image_sample_c_b;
8951 if (level_zero)
8952 opcode = aco_opcode::image_sample_c_lz;
8953 if (has_lod)
8954 opcode = aco_opcode::image_sample_c_l;
8955 } else {
8956 opcode = aco_opcode::image_sample;
8957 if (has_derivs)
8958 opcode = aco_opcode::image_sample_d;
8959 if (has_bias)
8960 opcode = aco_opcode::image_sample_b;
8961 if (level_zero)
8962 opcode = aco_opcode::image_sample_lz;
8963 if (has_lod)
8964 opcode = aco_opcode::image_sample_l;
8965 }
8966 }
8967
8968 if (instr->op == nir_texop_tg4) {
8969 if (has_offset) { /* image_gather4_*_o */
8970 if (has_compare) {
8971 opcode = aco_opcode::image_gather4_c_lz_o;
8972 if (has_lod)
8973 opcode = aco_opcode::image_gather4_c_l_o;
8974 if (has_bias)
8975 opcode = aco_opcode::image_gather4_c_b_o;
8976 } else {
8977 opcode = aco_opcode::image_gather4_lz_o;
8978 if (has_lod)
8979 opcode = aco_opcode::image_gather4_l_o;
8980 if (has_bias)
8981 opcode = aco_opcode::image_gather4_b_o;
8982 }
8983 } else {
8984 if (has_compare) {
8985 opcode = aco_opcode::image_gather4_c_lz;
8986 if (has_lod)
8987 opcode = aco_opcode::image_gather4_c_l;
8988 if (has_bias)
8989 opcode = aco_opcode::image_gather4_c_b;
8990 } else {
8991 opcode = aco_opcode::image_gather4_lz;
8992 if (has_lod)
8993 opcode = aco_opcode::image_gather4_l;
8994 if (has_bias)
8995 opcode = aco_opcode::image_gather4_b;
8996 }
8997 }
8998 } else if (instr->op == nir_texop_lod) {
8999 opcode = aco_opcode::image_get_lod;
9000 }
9001
9002 /* we don't need the bias, sample index, compare value or offset to be
9003 * computed in WQM but if the p_create_vector copies the coordinates, then it
9004 * needs to be in WQM */
9005 if (ctx->stage == fragment_fs &&
9006 !has_derivs && !has_lod && !level_zero &&
9007 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
9008 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
9009 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
9010
9011 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
9012 tex->operands[0] = Operand(resource);
9013 tex->operands[1] = Operand(sampler);
9014 tex->operands[2] = Operand(arg);
9015 tex->dim = dim;
9016 tex->dmask = dmask;
9017 tex->da = da;
9018 tex->definitions[0] = Definition(tmp_dst);
9019 ctx->block->instructions.emplace_back(std::move(tex));
9020
9021 if (tg4_integer_cube_workaround) {
9022 assert(tmp_dst.id() != dst.id());
9023 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
9024
9025 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
9026 Temp val[4];
9027 for (unsigned i = 0; i < dst.size(); i++) {
9028 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
9029 Temp cvt_val;
9030 if (stype == GLSL_TYPE_UINT)
9031 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
9032 else
9033 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
9034 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
9035 }
9036 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
9037 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
9038 val[0], val[1], val[2], val[3]);
9039 }
9040 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
9041 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
9042
9043 }
9044
9045
9046 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
9047 {
9048 Temp tmp = get_ssa_temp(ctx, ssa);
9049 if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
9050 return Operand(rc);
9051 } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
9052 if (ctx->program->wave_size == 64)
9053 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
9054 else
9055 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
9056 } else {
9057 return Operand(tmp);
9058 }
9059 }
9060
9061 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
9062 {
9063 aco_ptr<Pseudo_instruction> phi;
9064 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
9065 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
9066
9067 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
9068 logical |= ctx->block->kind & block_kind_merge;
9069 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
9070
9071 /* we want a sorted list of sources, since the predecessor list is also sorted */
9072 std::map<unsigned, nir_ssa_def*> phi_src;
9073 nir_foreach_phi_src(src, instr)
9074 phi_src[src->pred->index] = src->src.ssa;
9075
9076 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
9077 unsigned num_operands = 0;
9078 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
9079 unsigned num_defined = 0;
9080 unsigned cur_pred_idx = 0;
9081 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
9082 if (cur_pred_idx < preds.size()) {
9083 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
9084 unsigned block = ctx->cf_info.nir_to_aco[src.first];
9085 unsigned skipped = 0;
9086 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
9087 skipped++;
9088 if (cur_pred_idx + skipped < preds.size()) {
9089 for (unsigned i = 0; i < skipped; i++)
9090 operands[num_operands++] = Operand(dst.regClass());
9091 cur_pred_idx += skipped;
9092 } else {
9093 continue;
9094 }
9095 }
9096 /* Handle missing predecessors at the end. This shouldn't happen with loop
9097 * headers and we can't ignore these sources for loop header phis. */
9098 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
9099 continue;
9100 cur_pred_idx++;
9101 Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
9102 operands[num_operands++] = op;
9103 num_defined += !op.isUndefined();
9104 }
9105 /* handle block_kind_continue_or_break at loop exit blocks */
9106 while (cur_pred_idx++ < preds.size())
9107 operands[num_operands++] = Operand(dst.regClass());
9108
9109 /* If the loop ends with a break, still add a linear continue edge in case
9110 * that break is divergent or continue_or_break is used. We'll either remove
9111 * this operand later in visit_loop() if it's not necessary or replace the
9112 * undef with something correct. */
9113 if (!logical && ctx->block->kind & block_kind_loop_header) {
9114 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
9115 nir_block *last = nir_loop_last_block(loop);
9116 if (last->successors[0] != instr->instr.block)
9117 operands[num_operands++] = Operand(RegClass());
9118 }
9119
9120 if (num_defined == 0) {
9121 Builder bld(ctx->program, ctx->block);
9122 if (dst.regClass() == s1) {
9123 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
9124 } else if (dst.regClass() == v1) {
9125 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
9126 } else {
9127 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9128 for (unsigned i = 0; i < dst.size(); i++)
9129 vec->operands[i] = Operand(0u);
9130 vec->definitions[0] = Definition(dst);
9131 ctx->block->instructions.emplace_back(std::move(vec));
9132 }
9133 return;
9134 }
9135
9136 /* we can use a linear phi in some cases if one src is undef */
9137 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
9138 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
9139
9140 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
9141 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
9142 assert(invert->kind & block_kind_invert);
9143
9144 unsigned then_block = invert->linear_preds[0];
9145
9146 Block* insert_block = NULL;
9147 for (unsigned i = 0; i < num_operands; i++) {
9148 Operand op = operands[i];
9149 if (op.isUndefined())
9150 continue;
9151 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
9152 phi->operands[0] = op;
9153 break;
9154 }
9155 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
9156 phi->operands[1] = Operand(dst.regClass());
9157 phi->definitions[0] = Definition(dst);
9158 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
9159 return;
9160 }
9161
9162 /* try to scalarize vector phis */
9163 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
9164 // TODO: scalarize linear phis on divergent ifs
9165 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
9166 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
9167 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
9168 Operand src = operands[i];
9169 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
9170 can_scalarize = false;
9171 }
9172 if (can_scalarize) {
9173 unsigned num_components = instr->dest.ssa.num_components;
9174 assert(dst.size() % num_components == 0);
9175 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
9176
9177 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9178 for (unsigned k = 0; k < num_components; k++) {
9179 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9180 for (unsigned i = 0; i < num_operands; i++) {
9181 Operand src = operands[i];
9182 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9183 }
9184 Temp phi_dst = {ctx->program->allocateId(), rc};
9185 phi->definitions[0] = Definition(phi_dst);
9186 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9187 new_vec[k] = phi_dst;
9188 vec->operands[k] = Operand(phi_dst);
9189 }
9190 vec->definitions[0] = Definition(dst);
9191 ctx->block->instructions.emplace_back(std::move(vec));
9192 ctx->allocated_vec.emplace(dst.id(), new_vec);
9193 return;
9194 }
9195 }
9196
9197 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9198 for (unsigned i = 0; i < num_operands; i++)
9199 phi->operands[i] = operands[i];
9200 phi->definitions[0] = Definition(dst);
9201 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9202 }
9203
9204
9205 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9206 {
9207 Temp dst = get_ssa_temp(ctx, &instr->def);
9208
9209 assert(dst.type() == RegType::sgpr);
9210
9211 if (dst.size() == 1) {
9212 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9213 } else {
9214 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9215 for (unsigned i = 0; i < dst.size(); i++)
9216 vec->operands[i] = Operand(0u);
9217 vec->definitions[0] = Definition(dst);
9218 ctx->block->instructions.emplace_back(std::move(vec));
9219 }
9220 }
9221
9222 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9223 {
9224 Builder bld(ctx->program, ctx->block);
9225 Block *logical_target;
9226 append_logical_end(ctx->block);
9227 unsigned idx = ctx->block->index;
9228
9229 switch (instr->type) {
9230 case nir_jump_break:
9231 logical_target = ctx->cf_info.parent_loop.exit;
9232 add_logical_edge(idx, logical_target);
9233 ctx->block->kind |= block_kind_break;
9234
9235 if (!ctx->cf_info.parent_if.is_divergent &&
9236 !ctx->cf_info.parent_loop.has_divergent_continue) {
9237 /* uniform break - directly jump out of the loop */
9238 ctx->block->kind |= block_kind_uniform;
9239 ctx->cf_info.has_branch = true;
9240 bld.branch(aco_opcode::p_branch);
9241 add_linear_edge(idx, logical_target);
9242 return;
9243 }
9244 ctx->cf_info.parent_loop.has_divergent_branch = true;
9245 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9246 break;
9247 case nir_jump_continue:
9248 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9249 add_logical_edge(idx, logical_target);
9250 ctx->block->kind |= block_kind_continue;
9251
9252 if (ctx->cf_info.parent_if.is_divergent) {
9253 /* for potential uniform breaks after this continue,
9254 we must ensure that they are handled correctly */
9255 ctx->cf_info.parent_loop.has_divergent_continue = true;
9256 ctx->cf_info.parent_loop.has_divergent_branch = true;
9257 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9258 } else {
9259 /* uniform continue - directly jump to the loop header */
9260 ctx->block->kind |= block_kind_uniform;
9261 ctx->cf_info.has_branch = true;
9262 bld.branch(aco_opcode::p_branch);
9263 add_linear_edge(idx, logical_target);
9264 return;
9265 }
9266 break;
9267 default:
9268 fprintf(stderr, "Unknown NIR jump instr: ");
9269 nir_print_instr(&instr->instr, stderr);
9270 fprintf(stderr, "\n");
9271 abort();
9272 }
9273
9274 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9275 ctx->cf_info.exec_potentially_empty_break = true;
9276 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9277 }
9278
9279 /* remove critical edges from linear CFG */
9280 bld.branch(aco_opcode::p_branch);
9281 Block* break_block = ctx->program->create_and_insert_block();
9282 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9283 break_block->kind |= block_kind_uniform;
9284 add_linear_edge(idx, break_block);
9285 /* the loop_header pointer might be invalidated by this point */
9286 if (instr->type == nir_jump_continue)
9287 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9288 add_linear_edge(break_block->index, logical_target);
9289 bld.reset(break_block);
9290 bld.branch(aco_opcode::p_branch);
9291
9292 Block* continue_block = ctx->program->create_and_insert_block();
9293 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9294 add_linear_edge(idx, continue_block);
9295 append_logical_start(continue_block);
9296 ctx->block = continue_block;
9297 return;
9298 }
9299
9300 void visit_block(isel_context *ctx, nir_block *block)
9301 {
9302 nir_foreach_instr(instr, block) {
9303 switch (instr->type) {
9304 case nir_instr_type_alu:
9305 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9306 break;
9307 case nir_instr_type_load_const:
9308 visit_load_const(ctx, nir_instr_as_load_const(instr));
9309 break;
9310 case nir_instr_type_intrinsic:
9311 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9312 break;
9313 case nir_instr_type_tex:
9314 visit_tex(ctx, nir_instr_as_tex(instr));
9315 break;
9316 case nir_instr_type_phi:
9317 visit_phi(ctx, nir_instr_as_phi(instr));
9318 break;
9319 case nir_instr_type_ssa_undef:
9320 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9321 break;
9322 case nir_instr_type_deref:
9323 break;
9324 case nir_instr_type_jump:
9325 visit_jump(ctx, nir_instr_as_jump(instr));
9326 break;
9327 default:
9328 fprintf(stderr, "Unknown NIR instr type: ");
9329 nir_print_instr(instr, stderr);
9330 fprintf(stderr, "\n");
9331 //abort();
9332 }
9333 }
9334
9335 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9336 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9337 }
9338
9339
9340
9341 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9342 aco_ptr<Instruction>& header_phi, Operand *vals)
9343 {
9344 vals[0] = Operand(header_phi->definitions[0].getTemp());
9345 RegClass rc = vals[0].regClass();
9346
9347 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9348
9349 unsigned next_pred = 1;
9350
9351 for (unsigned idx = first + 1; idx <= last; idx++) {
9352 Block& block = ctx->program->blocks[idx];
9353 if (block.loop_nest_depth != loop_nest_depth) {
9354 vals[idx - first] = vals[idx - 1 - first];
9355 continue;
9356 }
9357
9358 if (block.kind & block_kind_continue) {
9359 vals[idx - first] = header_phi->operands[next_pred];
9360 next_pred++;
9361 continue;
9362 }
9363
9364 bool all_same = true;
9365 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9366 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9367
9368 Operand val;
9369 if (all_same) {
9370 val = vals[block.linear_preds[0] - first];
9371 } else {
9372 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9373 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9374 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9375 phi->operands[i] = vals[block.linear_preds[i] - first];
9376 val = Operand(Temp(ctx->program->allocateId(), rc));
9377 phi->definitions[0] = Definition(val.getTemp());
9378 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9379 }
9380 vals[idx - first] = val;
9381 }
9382
9383 return vals[last - first];
9384 }
9385
9386 static void visit_loop(isel_context *ctx, nir_loop *loop)
9387 {
9388 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9389 append_logical_end(ctx->block);
9390 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9391 Builder bld(ctx->program, ctx->block);
9392 bld.branch(aco_opcode::p_branch);
9393 unsigned loop_preheader_idx = ctx->block->index;
9394
9395 Block loop_exit = Block();
9396 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9397 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9398
9399 Block* loop_header = ctx->program->create_and_insert_block();
9400 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9401 loop_header->kind |= block_kind_loop_header;
9402 add_edge(loop_preheader_idx, loop_header);
9403 ctx->block = loop_header;
9404
9405 /* emit loop body */
9406 unsigned loop_header_idx = loop_header->index;
9407 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9408 append_logical_start(ctx->block);
9409 bool unreachable = visit_cf_list(ctx, &loop->body);
9410
9411 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9412 if (!ctx->cf_info.has_branch) {
9413 append_logical_end(ctx->block);
9414 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9415 /* Discards can result in code running with an empty exec mask.
9416 * This would result in divergent breaks not ever being taken. As a
9417 * workaround, break the loop when the loop mask is empty instead of
9418 * always continuing. */
9419 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9420 unsigned block_idx = ctx->block->index;
9421
9422 /* create helper blocks to avoid critical edges */
9423 Block *break_block = ctx->program->create_and_insert_block();
9424 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9425 break_block->kind = block_kind_uniform;
9426 bld.reset(break_block);
9427 bld.branch(aco_opcode::p_branch);
9428 add_linear_edge(block_idx, break_block);
9429 add_linear_edge(break_block->index, &loop_exit);
9430
9431 Block *continue_block = ctx->program->create_and_insert_block();
9432 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9433 continue_block->kind = block_kind_uniform;
9434 bld.reset(continue_block);
9435 bld.branch(aco_opcode::p_branch);
9436 add_linear_edge(block_idx, continue_block);
9437 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9438
9439 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9440 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9441 ctx->block = &ctx->program->blocks[block_idx];
9442 } else {
9443 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9444 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9445 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9446 else
9447 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9448 }
9449
9450 bld.reset(ctx->block);
9451 bld.branch(aco_opcode::p_branch);
9452 }
9453
9454 /* Fixup phis in loop header from unreachable blocks.
9455 * has_branch/has_divergent_branch also indicates if the loop ends with a
9456 * break/continue instruction, but we don't emit those if unreachable=true */
9457 if (unreachable) {
9458 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9459 bool linear = ctx->cf_info.has_branch;
9460 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9461 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9462 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9463 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9464 /* the last operand should be the one that needs to be removed */
9465 instr->operands.pop_back();
9466 } else if (!is_phi(instr)) {
9467 break;
9468 }
9469 }
9470 }
9471
9472 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9473 * and the previous one shouldn't both happen at once because a break in the
9474 * merge block would get CSE'd */
9475 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9476 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9477 Operand vals[num_vals];
9478 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9479 if (instr->opcode == aco_opcode::p_linear_phi) {
9480 if (ctx->cf_info.has_branch)
9481 instr->operands.pop_back();
9482 else
9483 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9484 } else if (!is_phi(instr)) {
9485 break;
9486 }
9487 }
9488 }
9489
9490 ctx->cf_info.has_branch = false;
9491
9492 // TODO: if the loop has not a single exit, we must add one °°
9493 /* emit loop successor block */
9494 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9495 append_logical_start(ctx->block);
9496
9497 #if 0
9498 // TODO: check if it is beneficial to not branch on continues
9499 /* trim linear phis in loop header */
9500 for (auto&& instr : loop_entry->instructions) {
9501 if (instr->opcode == aco_opcode::p_linear_phi) {
9502 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9503 new_phi->definitions[0] = instr->definitions[0];
9504 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9505 new_phi->operands[i] = instr->operands[i];
9506 /* check that the remaining operands are all the same */
9507 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9508 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9509 instr.swap(new_phi);
9510 } else if (instr->opcode == aco_opcode::p_phi) {
9511 continue;
9512 } else {
9513 break;
9514 }
9515 }
9516 #endif
9517 }
9518
9519 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9520 {
9521 ic->cond = cond;
9522
9523 append_logical_end(ctx->block);
9524 ctx->block->kind |= block_kind_branch;
9525
9526 /* branch to linear then block */
9527 assert(cond.regClass() == ctx->program->lane_mask);
9528 aco_ptr<Pseudo_branch_instruction> branch;
9529 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9530 branch->operands[0] = Operand(cond);
9531 ctx->block->instructions.push_back(std::move(branch));
9532
9533 ic->BB_if_idx = ctx->block->index;
9534 ic->BB_invert = Block();
9535 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9536 /* Invert blocks are intentionally not marked as top level because they
9537 * are not part of the logical cfg. */
9538 ic->BB_invert.kind |= block_kind_invert;
9539 ic->BB_endif = Block();
9540 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9541 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9542
9543 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9544 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9545 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9546 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9547 ctx->cf_info.parent_if.is_divergent = true;
9548
9549 /* divergent branches use cbranch_execz */
9550 ctx->cf_info.exec_potentially_empty_discard = false;
9551 ctx->cf_info.exec_potentially_empty_break = false;
9552 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9553
9554 /** emit logical then block */
9555 Block* BB_then_logical = ctx->program->create_and_insert_block();
9556 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9557 add_edge(ic->BB_if_idx, BB_then_logical);
9558 ctx->block = BB_then_logical;
9559 append_logical_start(BB_then_logical);
9560 }
9561
9562 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9563 {
9564 Block *BB_then_logical = ctx->block;
9565 append_logical_end(BB_then_logical);
9566 /* branch from logical then block to invert block */
9567 aco_ptr<Pseudo_branch_instruction> branch;
9568 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9569 BB_then_logical->instructions.emplace_back(std::move(branch));
9570 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9571 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9572 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9573 BB_then_logical->kind |= block_kind_uniform;
9574 assert(!ctx->cf_info.has_branch);
9575 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9576 ctx->cf_info.parent_loop.has_divergent_branch = false;
9577
9578 /** emit linear then block */
9579 Block* BB_then_linear = ctx->program->create_and_insert_block();
9580 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9581 BB_then_linear->kind |= block_kind_uniform;
9582 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9583 /* branch from linear then block to invert block */
9584 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9585 BB_then_linear->instructions.emplace_back(std::move(branch));
9586 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9587
9588 /** emit invert merge block */
9589 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9590 ic->invert_idx = ctx->block->index;
9591
9592 /* branch to linear else block (skip else) */
9593 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9594 branch->operands[0] = Operand(ic->cond);
9595 ctx->block->instructions.push_back(std::move(branch));
9596
9597 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9598 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9599 ic->exec_potentially_empty_break_depth_old =
9600 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9601 /* divergent branches use cbranch_execz */
9602 ctx->cf_info.exec_potentially_empty_discard = false;
9603 ctx->cf_info.exec_potentially_empty_break = false;
9604 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9605
9606 /** emit logical else block */
9607 Block* BB_else_logical = ctx->program->create_and_insert_block();
9608 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9609 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9610 add_linear_edge(ic->invert_idx, BB_else_logical);
9611 ctx->block = BB_else_logical;
9612 append_logical_start(BB_else_logical);
9613 }
9614
9615 static void end_divergent_if(isel_context *ctx, if_context *ic)
9616 {
9617 Block *BB_else_logical = ctx->block;
9618 append_logical_end(BB_else_logical);
9619
9620 /* branch from logical else block to endif block */
9621 aco_ptr<Pseudo_branch_instruction> branch;
9622 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9623 BB_else_logical->instructions.emplace_back(std::move(branch));
9624 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9625 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9626 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9627 BB_else_logical->kind |= block_kind_uniform;
9628
9629 assert(!ctx->cf_info.has_branch);
9630 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9631
9632
9633 /** emit linear else block */
9634 Block* BB_else_linear = ctx->program->create_and_insert_block();
9635 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9636 BB_else_linear->kind |= block_kind_uniform;
9637 add_linear_edge(ic->invert_idx, BB_else_linear);
9638
9639 /* branch from linear else block to endif block */
9640 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9641 BB_else_linear->instructions.emplace_back(std::move(branch));
9642 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9643
9644
9645 /** emit endif merge block */
9646 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9647 append_logical_start(ctx->block);
9648
9649
9650 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9651 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9652 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9653 ctx->cf_info.exec_potentially_empty_break_depth =
9654 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9655 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9656 !ctx->cf_info.parent_if.is_divergent) {
9657 ctx->cf_info.exec_potentially_empty_break = false;
9658 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9659 }
9660 /* uniform control flow never has an empty exec-mask */
9661 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9662 ctx->cf_info.exec_potentially_empty_discard = false;
9663 ctx->cf_info.exec_potentially_empty_break = false;
9664 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9665 }
9666 }
9667
9668 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9669 {
9670 assert(cond.regClass() == s1);
9671
9672 append_logical_end(ctx->block);
9673 ctx->block->kind |= block_kind_uniform;
9674
9675 aco_ptr<Pseudo_branch_instruction> branch;
9676 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9677 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9678 branch->operands[0] = Operand(cond);
9679 branch->operands[0].setFixed(scc);
9680 ctx->block->instructions.emplace_back(std::move(branch));
9681
9682 ic->BB_if_idx = ctx->block->index;
9683 ic->BB_endif = Block();
9684 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9685 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9686
9687 ctx->cf_info.has_branch = false;
9688 ctx->cf_info.parent_loop.has_divergent_branch = false;
9689
9690 /** emit then block */
9691 Block* BB_then = ctx->program->create_and_insert_block();
9692 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9693 add_edge(ic->BB_if_idx, BB_then);
9694 append_logical_start(BB_then);
9695 ctx->block = BB_then;
9696 }
9697
9698 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9699 {
9700 Block *BB_then = ctx->block;
9701
9702 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9703 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9704
9705 if (!ic->uniform_has_then_branch) {
9706 append_logical_end(BB_then);
9707 /* branch from then block to endif block */
9708 aco_ptr<Pseudo_branch_instruction> branch;
9709 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9710 BB_then->instructions.emplace_back(std::move(branch));
9711 add_linear_edge(BB_then->index, &ic->BB_endif);
9712 if (!ic->then_branch_divergent)
9713 add_logical_edge(BB_then->index, &ic->BB_endif);
9714 BB_then->kind |= block_kind_uniform;
9715 }
9716
9717 ctx->cf_info.has_branch = false;
9718 ctx->cf_info.parent_loop.has_divergent_branch = false;
9719
9720 /** emit else block */
9721 Block* BB_else = ctx->program->create_and_insert_block();
9722 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9723 add_edge(ic->BB_if_idx, BB_else);
9724 append_logical_start(BB_else);
9725 ctx->block = BB_else;
9726 }
9727
9728 static void end_uniform_if(isel_context *ctx, if_context *ic)
9729 {
9730 Block *BB_else = ctx->block;
9731
9732 if (!ctx->cf_info.has_branch) {
9733 append_logical_end(BB_else);
9734 /* branch from then block to endif block */
9735 aco_ptr<Pseudo_branch_instruction> branch;
9736 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9737 BB_else->instructions.emplace_back(std::move(branch));
9738 add_linear_edge(BB_else->index, &ic->BB_endif);
9739 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9740 add_logical_edge(BB_else->index, &ic->BB_endif);
9741 BB_else->kind |= block_kind_uniform;
9742 }
9743
9744 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9745 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9746
9747 /** emit endif merge block */
9748 if (!ctx->cf_info.has_branch) {
9749 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9750 append_logical_start(ctx->block);
9751 }
9752 }
9753
9754 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9755 {
9756 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9757 Builder bld(ctx->program, ctx->block);
9758 aco_ptr<Pseudo_branch_instruction> branch;
9759 if_context ic;
9760
9761 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
9762 /**
9763 * Uniform conditionals are represented in the following way*) :
9764 *
9765 * The linear and logical CFG:
9766 * BB_IF
9767 * / \
9768 * BB_THEN (logical) BB_ELSE (logical)
9769 * \ /
9770 * BB_ENDIF
9771 *
9772 * *) Exceptions may be due to break and continue statements within loops
9773 * If a break/continue happens within uniform control flow, it branches
9774 * to the loop exit/entry block. Otherwise, it branches to the next
9775 * merge block.
9776 **/
9777
9778 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9779 assert(cond.regClass() == ctx->program->lane_mask);
9780 cond = bool_to_scalar_condition(ctx, cond);
9781
9782 begin_uniform_if_then(ctx, &ic, cond);
9783 visit_cf_list(ctx, &if_stmt->then_list);
9784
9785 begin_uniform_if_else(ctx, &ic);
9786 visit_cf_list(ctx, &if_stmt->else_list);
9787
9788 end_uniform_if(ctx, &ic);
9789 } else { /* non-uniform condition */
9790 /**
9791 * To maintain a logical and linear CFG without critical edges,
9792 * non-uniform conditionals are represented in the following way*) :
9793 *
9794 * The linear CFG:
9795 * BB_IF
9796 * / \
9797 * BB_THEN (logical) BB_THEN (linear)
9798 * \ /
9799 * BB_INVERT (linear)
9800 * / \
9801 * BB_ELSE (logical) BB_ELSE (linear)
9802 * \ /
9803 * BB_ENDIF
9804 *
9805 * The logical CFG:
9806 * BB_IF
9807 * / \
9808 * BB_THEN (logical) BB_ELSE (logical)
9809 * \ /
9810 * BB_ENDIF
9811 *
9812 * *) Exceptions may be due to break and continue statements within loops
9813 **/
9814
9815 begin_divergent_if_then(ctx, &ic, cond);
9816 visit_cf_list(ctx, &if_stmt->then_list);
9817
9818 begin_divergent_if_else(ctx, &ic);
9819 visit_cf_list(ctx, &if_stmt->else_list);
9820
9821 end_divergent_if(ctx, &ic);
9822 }
9823
9824 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9825 }
9826
9827 static bool visit_cf_list(isel_context *ctx,
9828 struct exec_list *list)
9829 {
9830 foreach_list_typed(nir_cf_node, node, node, list) {
9831 switch (node->type) {
9832 case nir_cf_node_block:
9833 visit_block(ctx, nir_cf_node_as_block(node));
9834 break;
9835 case nir_cf_node_if:
9836 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9837 return true;
9838 break;
9839 case nir_cf_node_loop:
9840 visit_loop(ctx, nir_cf_node_as_loop(node));
9841 break;
9842 default:
9843 unreachable("unimplemented cf list type");
9844 }
9845 }
9846 return false;
9847 }
9848
9849 static void create_null_export(isel_context *ctx)
9850 {
9851 /* Some shader stages always need to have exports.
9852 * So when there is none, we need to add a null export.
9853 */
9854
9855 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9856 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9857 Builder bld(ctx->program, ctx->block);
9858 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9859 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9860 }
9861
9862 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9863 {
9864 assert(ctx->stage == vertex_vs ||
9865 ctx->stage == tess_eval_vs ||
9866 ctx->stage == gs_copy_vs ||
9867 ctx->stage == ngg_vertex_gs ||
9868 ctx->stage == ngg_tess_eval_gs);
9869
9870 int offset = (ctx->stage & sw_tes)
9871 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9872 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9873 uint64_t mask = ctx->outputs.mask[slot];
9874 if (!is_pos && !mask)
9875 return false;
9876 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9877 return false;
9878 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9879 exp->enabled_mask = mask;
9880 for (unsigned i = 0; i < 4; ++i) {
9881 if (mask & (1 << i))
9882 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9883 else
9884 exp->operands[i] = Operand(v1);
9885 }
9886 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9887 * Setting valid_mask=1 prevents it and has no other effect.
9888 */
9889 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9890 exp->done = false;
9891 exp->compressed = false;
9892 if (is_pos)
9893 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9894 else
9895 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9896 ctx->block->instructions.emplace_back(std::move(exp));
9897
9898 return true;
9899 }
9900
9901 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9902 {
9903 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9904 exp->enabled_mask = 0;
9905 for (unsigned i = 0; i < 4; ++i)
9906 exp->operands[i] = Operand(v1);
9907 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9908 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9909 exp->enabled_mask |= 0x1;
9910 }
9911 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9912 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9913 exp->enabled_mask |= 0x4;
9914 }
9915 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9916 if (ctx->options->chip_class < GFX9) {
9917 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9918 exp->enabled_mask |= 0x8;
9919 } else {
9920 Builder bld(ctx->program, ctx->block);
9921
9922 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9923 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9924 if (exp->operands[2].isTemp())
9925 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9926
9927 exp->operands[2] = Operand(out);
9928 exp->enabled_mask |= 0x4;
9929 }
9930 }
9931 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9932 exp->done = false;
9933 exp->compressed = false;
9934 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9935 ctx->block->instructions.emplace_back(std::move(exp));
9936 }
9937
9938 static void create_export_phis(isel_context *ctx)
9939 {
9940 /* Used when exports are needed, but the output temps are defined in a preceding block.
9941 * This function will set up phis in order to access the outputs in the next block.
9942 */
9943
9944 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9945 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9946 ctx->block->instructions.pop_back();
9947
9948 Builder bld(ctx->program, ctx->block);
9949
9950 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9951 uint64_t mask = ctx->outputs.mask[slot];
9952 for (unsigned i = 0; i < 4; ++i) {
9953 if (!(mask & (1 << i)))
9954 continue;
9955
9956 Temp old = ctx->outputs.temps[slot * 4 + i];
9957 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9958 ctx->outputs.temps[slot * 4 + i] = phi;
9959 }
9960 }
9961
9962 bld.insert(std::move(logical_start));
9963 }
9964
9965 static void create_vs_exports(isel_context *ctx)
9966 {
9967 assert(ctx->stage == vertex_vs ||
9968 ctx->stage == tess_eval_vs ||
9969 ctx->stage == gs_copy_vs ||
9970 ctx->stage == ngg_vertex_gs ||
9971 ctx->stage == ngg_tess_eval_gs);
9972
9973 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9974 ? &ctx->program->info->tes.outinfo
9975 : &ctx->program->info->vs.outinfo;
9976
9977 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9978 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9979 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9980 }
9981
9982 if (ctx->options->key.has_multiview_view_index) {
9983 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9984 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9985 }
9986
9987 /* the order these position exports are created is important */
9988 int next_pos = 0;
9989 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9990 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9991 export_vs_psiz_layer_viewport(ctx, &next_pos);
9992 exported_pos = true;
9993 }
9994 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9995 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9996 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9997 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9998
9999 if (ctx->export_clip_dists) {
10000 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
10001 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
10002 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
10003 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
10004 }
10005
10006 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10007 if (i < VARYING_SLOT_VAR0 &&
10008 i != VARYING_SLOT_LAYER &&
10009 i != VARYING_SLOT_PRIMITIVE_ID &&
10010 i != VARYING_SLOT_VIEWPORT)
10011 continue;
10012
10013 export_vs_varying(ctx, i, false, NULL);
10014 }
10015
10016 if (!exported_pos)
10017 create_null_export(ctx);
10018 }
10019
10020 static bool export_fs_mrt_z(isel_context *ctx)
10021 {
10022 Builder bld(ctx->program, ctx->block);
10023 unsigned enabled_channels = 0;
10024 bool compr = false;
10025 Operand values[4];
10026
10027 for (unsigned i = 0; i < 4; ++i) {
10028 values[i] = Operand(v1);
10029 }
10030
10031 /* Both stencil and sample mask only need 16-bits. */
10032 if (!ctx->program->info->ps.writes_z &&
10033 (ctx->program->info->ps.writes_stencil ||
10034 ctx->program->info->ps.writes_sample_mask)) {
10035 compr = true; /* COMPR flag */
10036
10037 if (ctx->program->info->ps.writes_stencil) {
10038 /* Stencil should be in X[23:16]. */
10039 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10040 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
10041 enabled_channels |= 0x3;
10042 }
10043
10044 if (ctx->program->info->ps.writes_sample_mask) {
10045 /* SampleMask should be in Y[15:0]. */
10046 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10047 enabled_channels |= 0xc;
10048 }
10049 } else {
10050 if (ctx->program->info->ps.writes_z) {
10051 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
10052 enabled_channels |= 0x1;
10053 }
10054
10055 if (ctx->program->info->ps.writes_stencil) {
10056 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10057 enabled_channels |= 0x2;
10058 }
10059
10060 if (ctx->program->info->ps.writes_sample_mask) {
10061 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10062 enabled_channels |= 0x4;
10063 }
10064 }
10065
10066 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
10067 * writemask component.
10068 */
10069 if (ctx->options->chip_class == GFX6 &&
10070 ctx->options->family != CHIP_OLAND &&
10071 ctx->options->family != CHIP_HAINAN) {
10072 enabled_channels |= 0x1;
10073 }
10074
10075 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10076 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
10077
10078 return true;
10079 }
10080
10081 static bool export_fs_mrt_color(isel_context *ctx, int slot)
10082 {
10083 Builder bld(ctx->program, ctx->block);
10084 unsigned write_mask = ctx->outputs.mask[slot];
10085 Operand values[4];
10086
10087 for (unsigned i = 0; i < 4; ++i) {
10088 if (write_mask & (1 << i)) {
10089 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
10090 } else {
10091 values[i] = Operand(v1);
10092 }
10093 }
10094
10095 unsigned target, col_format;
10096 unsigned enabled_channels = 0;
10097 aco_opcode compr_op = (aco_opcode)0;
10098
10099 slot -= FRAG_RESULT_DATA0;
10100 target = V_008DFC_SQ_EXP_MRT + slot;
10101 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
10102
10103 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
10104 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
10105 bool is_16bit = values[0].regClass() == v2b;
10106
10107 switch (col_format)
10108 {
10109 case V_028714_SPI_SHADER_ZERO:
10110 enabled_channels = 0; /* writemask */
10111 target = V_008DFC_SQ_EXP_NULL;
10112 break;
10113
10114 case V_028714_SPI_SHADER_32_R:
10115 enabled_channels = 1;
10116 break;
10117
10118 case V_028714_SPI_SHADER_32_GR:
10119 enabled_channels = 0x3;
10120 break;
10121
10122 case V_028714_SPI_SHADER_32_AR:
10123 if (ctx->options->chip_class >= GFX10) {
10124 /* Special case: on GFX10, the outputs are different for 32_AR */
10125 enabled_channels = 0x3;
10126 values[1] = values[3];
10127 values[3] = Operand(v1);
10128 } else {
10129 enabled_channels = 0x9;
10130 }
10131 break;
10132
10133 case V_028714_SPI_SHADER_FP16_ABGR:
10134 enabled_channels = 0x5;
10135 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
10136 if (is_16bit) {
10137 if (ctx->options->chip_class >= GFX9) {
10138 /* Pack the FP16 values together instead of converting them to
10139 * FP32 and back to FP16.
10140 * TODO: use p_create_vector and let the compiler optimizes.
10141 */
10142 compr_op = aco_opcode::v_pack_b32_f16;
10143 } else {
10144 for (unsigned i = 0; i < 4; i++) {
10145 if ((write_mask >> i) & 1)
10146 values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
10147 }
10148 }
10149 }
10150 break;
10151
10152 case V_028714_SPI_SHADER_UNORM16_ABGR:
10153 enabled_channels = 0x5;
10154 if (is_16bit && ctx->options->chip_class >= GFX9) {
10155 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
10156 } else {
10157 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
10158 }
10159 break;
10160
10161 case V_028714_SPI_SHADER_SNORM16_ABGR:
10162 enabled_channels = 0x5;
10163 if (is_16bit && ctx->options->chip_class >= GFX9) {
10164 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
10165 } else {
10166 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10167 }
10168 break;
10169
10170 case V_028714_SPI_SHADER_UINT16_ABGR: {
10171 enabled_channels = 0x5;
10172 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10173 if (is_int8 || is_int10) {
10174 /* clamp */
10175 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10176 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10177
10178 for (unsigned i = 0; i < 4; i++) {
10179 if ((write_mask >> i) & 1) {
10180 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10181 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10182 values[i]);
10183 }
10184 }
10185 } else if (is_16bit) {
10186 for (unsigned i = 0; i < 4; i++) {
10187 if ((write_mask >> i) & 1) {
10188 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10189 values[i] = Operand(tmp);
10190 }
10191 }
10192 }
10193 break;
10194 }
10195
10196 case V_028714_SPI_SHADER_SINT16_ABGR:
10197 enabled_channels = 0x5;
10198 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10199 if (is_int8 || is_int10) {
10200 /* clamp */
10201 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10202 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10203 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10204 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10205
10206 for (unsigned i = 0; i < 4; i++) {
10207 if ((write_mask >> i) & 1) {
10208 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10209 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10210 values[i]);
10211 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10212 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10213 values[i]);
10214 }
10215 }
10216 } else if (is_16bit) {
10217 for (unsigned i = 0; i < 4; i++) {
10218 if ((write_mask >> i) & 1) {
10219 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10220 values[i] = Operand(tmp);
10221 }
10222 }
10223 }
10224 break;
10225
10226 case V_028714_SPI_SHADER_32_ABGR:
10227 enabled_channels = 0xF;
10228 break;
10229
10230 default:
10231 break;
10232 }
10233
10234 if (target == V_008DFC_SQ_EXP_NULL)
10235 return false;
10236
10237 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10238 if (ctx->options->enable_mrt_output_nan_fixup &&
10239 !is_16bit &&
10240 (col_format == V_028714_SPI_SHADER_32_R ||
10241 col_format == V_028714_SPI_SHADER_32_GR ||
10242 col_format == V_028714_SPI_SHADER_32_AR ||
10243 col_format == V_028714_SPI_SHADER_32_ABGR ||
10244 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10245 for (int i = 0; i < 4; i++) {
10246 if (!(write_mask & (1 << i)))
10247 continue;
10248
10249 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10250 bld.hint_vcc(bld.def(bld.lm)), values[i],
10251 bld.copy(bld.def(v1), Operand(3u)));
10252 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10253 bld.copy(bld.def(v1), Operand(0u)), isnan);
10254 }
10255 }
10256
10257 if ((bool) compr_op) {
10258 for (int i = 0; i < 2; i++) {
10259 /* check if at least one of the values to be compressed is enabled */
10260 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10261 if (enabled) {
10262 enabled_channels |= enabled << (i*2);
10263 values[i] = bld.vop3(compr_op, bld.def(v1),
10264 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10265 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10266 } else {
10267 values[i] = Operand(v1);
10268 }
10269 }
10270 values[2] = Operand(v1);
10271 values[3] = Operand(v1);
10272 } else {
10273 for (int i = 0; i < 4; i++)
10274 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10275 }
10276
10277 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10278 enabled_channels, target, (bool) compr_op);
10279 return true;
10280 }
10281
10282 static void create_fs_exports(isel_context *ctx)
10283 {
10284 bool exported = false;
10285
10286 /* Export depth, stencil and sample mask. */
10287 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10288 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10289 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10290 exported |= export_fs_mrt_z(ctx);
10291
10292 /* Export all color render targets. */
10293 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10294 if (ctx->outputs.mask[i])
10295 exported |= export_fs_mrt_color(ctx, i);
10296
10297 if (!exported)
10298 create_null_export(ctx);
10299 }
10300
10301 static void create_workgroup_barrier(Builder& bld)
10302 {
10303 bld.barrier(aco_opcode::p_barrier,
10304 memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup),
10305 scope_workgroup);
10306 }
10307
10308 static void write_tcs_tess_factors(isel_context *ctx)
10309 {
10310 unsigned outer_comps;
10311 unsigned inner_comps;
10312
10313 switch (ctx->args->options->key.tcs.primitive_mode) {
10314 case GL_ISOLINES:
10315 outer_comps = 2;
10316 inner_comps = 0;
10317 break;
10318 case GL_TRIANGLES:
10319 outer_comps = 3;
10320 inner_comps = 1;
10321 break;
10322 case GL_QUADS:
10323 outer_comps = 4;
10324 inner_comps = 2;
10325 break;
10326 default:
10327 return;
10328 }
10329
10330 Builder bld(ctx->program, ctx->block);
10331
10332 create_workgroup_barrier(bld);
10333
10334 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10335 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10336
10337 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10338 if_context ic_invocation_id_is_zero;
10339 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10340 bld.reset(ctx->block);
10341
10342 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10343
10344 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10345 unsigned stride = inner_comps + outer_comps;
10346 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10347 Temp tf_inner_vec;
10348 Temp tf_outer_vec;
10349 Temp out[6];
10350 assert(stride <= (sizeof(out) / sizeof(Temp)));
10351
10352 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10353 // LINES reversal
10354 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10355 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10356 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10357 } else {
10358 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10359 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10360
10361 for (unsigned i = 0; i < outer_comps; ++i)
10362 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10363 for (unsigned i = 0; i < inner_comps; ++i)
10364 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10365 }
10366
10367 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10368 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10369 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10370 unsigned tf_const_offset = 0;
10371
10372 if (ctx->program->chip_class <= GFX8) {
10373 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10374 if_context ic_rel_patch_id_is_zero;
10375 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10376 bld.reset(ctx->block);
10377
10378 /* Store the dynamic HS control word. */
10379 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10380 bld.mubuf(aco_opcode::buffer_store_dword,
10381 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10382 /* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false,
10383 /* addr64 */ false, /* disable_wqm */ false, /* glc */ true);
10384 tf_const_offset += 4;
10385
10386 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10387 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10388 bld.reset(ctx->block);
10389 }
10390
10391 assert(stride == 2 || stride == 4 || stride == 6);
10392 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10393 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10394
10395 /* Store to offchip for TES to read - only if TES reads them */
10396 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10397 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10398 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10399
10400 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10401 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10402
10403 if (likely(inner_comps)) {
10404 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10405 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10406 }
10407 }
10408
10409 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10410 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10411 }
10412
10413 static void emit_stream_output(isel_context *ctx,
10414 Temp const *so_buffers,
10415 Temp const *so_write_offset,
10416 const struct radv_stream_output *output)
10417 {
10418 unsigned num_comps = util_bitcount(output->component_mask);
10419 unsigned writemask = (1 << num_comps) - 1;
10420 unsigned loc = output->location;
10421 unsigned buf = output->buffer;
10422
10423 assert(num_comps && num_comps <= 4);
10424 if (!num_comps || num_comps > 4)
10425 return;
10426
10427 unsigned start = ffs(output->component_mask) - 1;
10428
10429 Temp out[4];
10430 bool all_undef = true;
10431 assert(ctx->stage & hw_vs);
10432 for (unsigned i = 0; i < num_comps; i++) {
10433 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10434 all_undef = all_undef && !out[i].id();
10435 }
10436 if (all_undef)
10437 return;
10438
10439 while (writemask) {
10440 int start, count;
10441 u_bit_scan_consecutive_range(&writemask, &start, &count);
10442 if (count == 3 && ctx->options->chip_class == GFX6) {
10443 /* GFX6 doesn't support storing vec3, split it. */
10444 writemask |= 1u << (start + 2);
10445 count = 2;
10446 }
10447
10448 unsigned offset = output->offset + start * 4;
10449
10450 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10451 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10452 for (int i = 0; i < count; ++i)
10453 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10454 vec->definitions[0] = Definition(write_data);
10455 ctx->block->instructions.emplace_back(std::move(vec));
10456
10457 aco_opcode opcode;
10458 switch (count) {
10459 case 1:
10460 opcode = aco_opcode::buffer_store_dword;
10461 break;
10462 case 2:
10463 opcode = aco_opcode::buffer_store_dwordx2;
10464 break;
10465 case 3:
10466 opcode = aco_opcode::buffer_store_dwordx3;
10467 break;
10468 case 4:
10469 opcode = aco_opcode::buffer_store_dwordx4;
10470 break;
10471 default:
10472 unreachable("Unsupported dword count.");
10473 }
10474
10475 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10476 store->operands[0] = Operand(so_buffers[buf]);
10477 store->operands[1] = Operand(so_write_offset[buf]);
10478 store->operands[2] = Operand((uint32_t) 0);
10479 store->operands[3] = Operand(write_data);
10480 if (offset > 4095) {
10481 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10482 Builder bld(ctx->program, ctx->block);
10483 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10484 } else {
10485 store->offset = offset;
10486 }
10487 store->offen = true;
10488 store->glc = true;
10489 store->dlc = false;
10490 store->slc = true;
10491 ctx->block->instructions.emplace_back(std::move(store));
10492 }
10493 }
10494
10495 static void emit_streamout(isel_context *ctx, unsigned stream)
10496 {
10497 Builder bld(ctx->program, ctx->block);
10498
10499 Temp so_buffers[4];
10500 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10501 for (unsigned i = 0; i < 4; i++) {
10502 unsigned stride = ctx->program->info->so.strides[i];
10503 if (!stride)
10504 continue;
10505
10506 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10507 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10508 }
10509
10510 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10511 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10512
10513 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10514
10515 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10516
10517 if_context ic;
10518 begin_divergent_if_then(ctx, &ic, can_emit);
10519
10520 bld.reset(ctx->block);
10521
10522 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10523
10524 Temp so_write_offset[4];
10525
10526 for (unsigned i = 0; i < 4; i++) {
10527 unsigned stride = ctx->program->info->so.strides[i];
10528 if (!stride)
10529 continue;
10530
10531 if (stride == 1) {
10532 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10533 get_arg(ctx, ctx->args->streamout_write_idx),
10534 get_arg(ctx, ctx->args->streamout_offset[i]));
10535 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10536
10537 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10538 } else {
10539 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10540 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10541 get_arg(ctx, ctx->args->streamout_offset[i]));
10542 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10543 }
10544 }
10545
10546 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10547 struct radv_stream_output *output =
10548 &ctx->program->info->so.outputs[i];
10549 if (stream != output->stream)
10550 continue;
10551
10552 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10553 }
10554
10555 begin_divergent_if_else(ctx, &ic);
10556 end_divergent_if(ctx, &ic);
10557 }
10558
10559 } /* end namespace */
10560
10561 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10562 {
10563 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10564 Builder bld(ctx->program, ctx->block);
10565 constexpr unsigned hs_idx = 1u;
10566 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10567 get_arg(ctx, ctx->args->merged_wave_info),
10568 Operand((8u << 16) | (hs_idx * 8u)));
10569 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10570
10571 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10572
10573 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10574 get_arg(ctx, ctx->args->rel_auto_id),
10575 get_arg(ctx, ctx->args->ac.instance_id),
10576 ls_has_nonzero_hs_threads);
10577 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10578 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10579 get_arg(ctx, ctx->args->rel_auto_id),
10580 ls_has_nonzero_hs_threads);
10581 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10582 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10583 get_arg(ctx, ctx->args->ac.vertex_id),
10584 ls_has_nonzero_hs_threads);
10585
10586 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10587 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10588 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10589 }
10590
10591 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10592 {
10593 /* Split all arguments except for the first (ring_offsets) and the last
10594 * (exec) so that the dead channels don't stay live throughout the program.
10595 */
10596 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10597 if (startpgm->definitions[i].regClass().size() > 1) {
10598 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10599 startpgm->definitions[i].regClass().size());
10600 }
10601 }
10602 }
10603
10604 void handle_bc_optimize(isel_context *ctx)
10605 {
10606 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10607 Builder bld(ctx->program, ctx->block);
10608 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10609 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10610 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10611 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10612 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10613 if (uses_center && uses_centroid) {
10614 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10615 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10616
10617 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10618 Temp new_coord[2];
10619 for (unsigned i = 0; i < 2; i++) {
10620 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10621 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10622 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10623 persp_centroid, persp_center, sel);
10624 }
10625 ctx->persp_centroid = bld.tmp(v2);
10626 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10627 Operand(new_coord[0]), Operand(new_coord[1]));
10628 emit_split_vector(ctx, ctx->persp_centroid, 2);
10629 }
10630
10631 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10632 Temp new_coord[2];
10633 for (unsigned i = 0; i < 2; i++) {
10634 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10635 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10636 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10637 linear_centroid, linear_center, sel);
10638 }
10639 ctx->linear_centroid = bld.tmp(v2);
10640 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10641 Operand(new_coord[0]), Operand(new_coord[1]));
10642 emit_split_vector(ctx, ctx->linear_centroid, 2);
10643 }
10644 }
10645 }
10646
10647 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10648 {
10649 Program *program = ctx->program;
10650
10651 unsigned float_controls = shader->info.float_controls_execution_mode;
10652
10653 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10654 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10655 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10656 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10657 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10658
10659 program->next_fp_mode.must_flush_denorms32 =
10660 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10661 program->next_fp_mode.must_flush_denorms16_64 =
10662 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10663 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10664
10665 program->next_fp_mode.care_about_round32 =
10666 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10667
10668 program->next_fp_mode.care_about_round16_64 =
10669 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10670 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10671
10672 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
10673 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
10674 if (program->next_fp_mode.must_flush_denorms16_64)
10675 program->next_fp_mode.denorm16_64 = 0;
10676 else
10677 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10678
10679 /* preserving fp32 denorms is expensive, so only do it if asked */
10680 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10681 program->next_fp_mode.denorm32 = fp_denorm_keep;
10682 else
10683 program->next_fp_mode.denorm32 = 0;
10684
10685 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10686 program->next_fp_mode.round32 = fp_round_tz;
10687 else
10688 program->next_fp_mode.round32 = fp_round_ne;
10689
10690 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10691 program->next_fp_mode.round16_64 = fp_round_tz;
10692 else
10693 program->next_fp_mode.round16_64 = fp_round_ne;
10694
10695 ctx->block->fp_mode = program->next_fp_mode;
10696 }
10697
10698 void cleanup_cfg(Program *program)
10699 {
10700 /* create linear_succs/logical_succs */
10701 for (Block& BB : program->blocks) {
10702 for (unsigned idx : BB.linear_preds)
10703 program->blocks[idx].linear_succs.emplace_back(BB.index);
10704 for (unsigned idx : BB.logical_preds)
10705 program->blocks[idx].logical_succs.emplace_back(BB.index);
10706 }
10707 }
10708
10709 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10710 {
10711 Builder bld(ctx->program, ctx->block);
10712
10713 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10714 Temp count = i == 0
10715 ? get_arg(ctx, ctx->args->merged_wave_info)
10716 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10717 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10718
10719 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10720 Temp cond;
10721
10722 if (ctx->program->wave_size == 64) {
10723 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10724 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10725 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10726 } else {
10727 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10728 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10729 }
10730
10731 return cond;
10732 }
10733
10734 bool ngg_early_prim_export(isel_context *ctx)
10735 {
10736 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10737 return true;
10738 }
10739
10740 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10741 {
10742 Builder bld(ctx->program, ctx->block);
10743
10744 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10745 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10746
10747 /* Get the id of the current wave within the threadgroup (workgroup) */
10748 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10749 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10750
10751 /* Execute the following code only on the first wave (wave id 0),
10752 * use the SCC def to tell if the wave id is zero or not.
10753 */
10754 Temp cond = wave_id_in_tg.def(1).getTemp();
10755 if_context ic;
10756 begin_uniform_if_then(ctx, &ic, cond);
10757 begin_uniform_if_else(ctx, &ic);
10758 bld.reset(ctx->block);
10759
10760 /* Number of vertices output by VS/TES */
10761 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10762 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10763 /* Number of primitives output by VS/TES */
10764 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10765 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10766
10767 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10768 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10769 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10770
10771 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10772 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10773
10774 end_uniform_if(ctx, &ic);
10775
10776 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10777 bld.reset(ctx->block);
10778 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10779 }
10780
10781 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10782 {
10783 Builder bld(ctx->program, ctx->block);
10784
10785 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10786 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10787 }
10788
10789 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10790 Temp tmp;
10791
10792 for (unsigned i = 0; i < num_vertices; ++i) {
10793 assert(vtxindex[i].id());
10794
10795 if (i)
10796 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10797 else
10798 tmp = vtxindex[i];
10799
10800 /* The initial edge flag is always false in tess eval shaders. */
10801 if (ctx->stage == ngg_vertex_gs) {
10802 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10803 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10804 }
10805 }
10806
10807 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10808
10809 return tmp;
10810 }
10811
10812 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10813 {
10814 Builder bld(ctx->program, ctx->block);
10815 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10816
10817 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10818 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10819 false /* compressed */, true/* done */, false /* valid mask */);
10820 }
10821
10822 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10823 {
10824 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10825 * These must always come before VS exports.
10826 *
10827 * It is recommended to do these as early as possible. They can be at the beginning when
10828 * there is no SW GS and the shader doesn't write edge flags.
10829 */
10830
10831 if_context ic;
10832 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10833 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10834
10835 Builder bld(ctx->program, ctx->block);
10836 constexpr unsigned max_vertices_per_primitive = 3;
10837 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10838
10839 if (ctx->stage == ngg_vertex_gs) {
10840 /* TODO: optimize for points & lines */
10841 } else if (ctx->stage == ngg_tess_eval_gs) {
10842 if (ctx->shader->info.tess.point_mode)
10843 num_vertices_per_primitive = 1;
10844 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10845 num_vertices_per_primitive = 2;
10846 } else {
10847 unreachable("Unsupported NGG shader stage");
10848 }
10849
10850 Temp vtxindex[max_vertices_per_primitive];
10851 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10852 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10853 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10854 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10855 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10856 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10857 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10858 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10859
10860 /* Export primitive data to the index buffer. */
10861 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10862
10863 /* Export primitive ID. */
10864 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10865 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10866 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10867 Temp provoking_vtx_index = vtxindex[0];
10868 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10869
10870 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10871 }
10872
10873 begin_divergent_if_else(ctx, &ic);
10874 end_divergent_if(ctx, &ic);
10875 }
10876
10877 void ngg_emit_nogs_output(isel_context *ctx)
10878 {
10879 /* Emits NGG GS output, for stages that don't have SW GS. */
10880
10881 if_context ic;
10882 Builder bld(ctx->program, ctx->block);
10883 bool late_prim_export = !ngg_early_prim_export(ctx);
10884
10885 /* NGG streamout is currently disabled by default. */
10886 assert(!ctx->args->shader_info->so.num_outputs);
10887
10888 if (late_prim_export) {
10889 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10890 create_export_phis(ctx);
10891 /* Do what we need to do in the GS threads. */
10892 ngg_emit_nogs_gsthreads(ctx);
10893
10894 /* What comes next should be executed on ES threads. */
10895 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10896 begin_divergent_if_then(ctx, &ic, is_es_thread);
10897 bld.reset(ctx->block);
10898 }
10899
10900 /* Export VS outputs */
10901 ctx->block->kind |= block_kind_export_end;
10902 create_vs_exports(ctx);
10903
10904 /* Export primitive ID */
10905 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10906 Temp prim_id;
10907
10908 if (ctx->stage == ngg_vertex_gs) {
10909 /* Wait for GS threads to store primitive ID in LDS. */
10910 create_workgroup_barrier(bld);
10911
10912 /* Calculate LDS address where the GS threads stored the primitive ID. */
10913 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10914 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10915 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10916 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10917 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10918 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10919
10920 /* Load primitive ID from LDS. */
10921 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10922 } else if (ctx->stage == ngg_tess_eval_gs) {
10923 /* TES: Just use the patch ID as the primitive ID. */
10924 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10925 } else {
10926 unreachable("unsupported NGG shader stage.");
10927 }
10928
10929 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10930 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10931
10932 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10933 }
10934
10935 if (late_prim_export) {
10936 begin_divergent_if_else(ctx, &ic);
10937 end_divergent_if(ctx, &ic);
10938 bld.reset(ctx->block);
10939 }
10940 }
10941
10942 void select_program(Program *program,
10943 unsigned shader_count,
10944 struct nir_shader *const *shaders,
10945 ac_shader_config* config,
10946 struct radv_shader_args *args)
10947 {
10948 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10949 if_context ic_merged_wave_info;
10950 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10951
10952 for (unsigned i = 0; i < shader_count; i++) {
10953 nir_shader *nir = shaders[i];
10954 init_context(&ctx, nir);
10955
10956 setup_fp_mode(&ctx, nir);
10957
10958 if (!i) {
10959 /* needs to be after init_context() for FS */
10960 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10961 append_logical_start(ctx.block);
10962
10963 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10964 fix_ls_vgpr_init_bug(&ctx, startpgm);
10965
10966 split_arguments(&ctx, startpgm);
10967 }
10968
10969 if (ngg_no_gs) {
10970 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10971
10972 if (ngg_early_prim_export(&ctx))
10973 ngg_emit_nogs_gsthreads(&ctx);
10974 }
10975
10976 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10977 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10978 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10979 ((nir->info.stage == MESA_SHADER_VERTEX &&
10980 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10981 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10982 ctx.stage == tess_eval_geometry_gs));
10983
10984 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10985 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10986 if (check_merged_wave_info) {
10987 Temp cond = merged_wave_info_to_mask(&ctx, i);
10988 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10989 }
10990
10991 if (i) {
10992 Builder bld(ctx.program, ctx.block);
10993
10994 create_workgroup_barrier(bld);
10995
10996 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10997 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10998 }
10999 } else if (ctx.stage == geometry_gs)
11000 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
11001
11002 if (ctx.stage == fragment_fs)
11003 handle_bc_optimize(&ctx);
11004
11005 visit_cf_list(&ctx, &func->body);
11006
11007 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
11008 emit_streamout(&ctx, 0);
11009
11010 if (ctx.stage & hw_vs) {
11011 create_vs_exports(&ctx);
11012 ctx.block->kind |= block_kind_export_end;
11013 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
11014 ngg_emit_nogs_output(&ctx);
11015 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
11016 Builder bld(ctx.program, ctx.block);
11017 bld.barrier(aco_opcode::p_barrier,
11018 memory_sync_info(storage_vmem_output, semantic_release, scope_device));
11019 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
11020 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
11021 write_tcs_tess_factors(&ctx);
11022 }
11023
11024 if (ctx.stage == fragment_fs) {
11025 create_fs_exports(&ctx);
11026 ctx.block->kind |= block_kind_export_end;
11027 }
11028
11029 if (endif_merged_wave_info) {
11030 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
11031 end_divergent_if(&ctx, &ic_merged_wave_info);
11032 }
11033
11034 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
11035 ngg_emit_nogs_output(&ctx);
11036
11037 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
11038 /* Outputs of the previous stage are inputs to the next stage */
11039 ctx.inputs = ctx.outputs;
11040 ctx.outputs = shader_io_state();
11041 }
11042 }
11043
11044 program->config->float_mode = program->blocks[0].fp_mode.val;
11045
11046 append_logical_end(ctx.block);
11047 ctx.block->kind |= block_kind_uniform;
11048 Builder bld(ctx.program, ctx.block);
11049 if (ctx.program->wb_smem_l1_on_end)
11050 bld.smem(aco_opcode::s_dcache_wb, memory_sync_info(storage_buffer, semantic_volatile));
11051 bld.sopp(aco_opcode::s_endpgm);
11052
11053 cleanup_cfg(program);
11054 }
11055
11056 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
11057 ac_shader_config* config,
11058 struct radv_shader_args *args)
11059 {
11060 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
11061
11062 ctx.block->fp_mode = program->next_fp_mode;
11063
11064 add_startpgm(&ctx);
11065 append_logical_start(ctx.block);
11066
11067 Builder bld(ctx.program, ctx.block);
11068
11069 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
11070
11071 Operand stream_id(0u);
11072 if (args->shader_info->so.num_outputs)
11073 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11074 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
11075
11076 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
11077
11078 std::stack<Block> endif_blocks;
11079
11080 for (unsigned stream = 0; stream < 4; stream++) {
11081 if (stream_id.isConstant() && stream != stream_id.constantValue())
11082 continue;
11083
11084 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
11085 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
11086 continue;
11087
11088 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
11089
11090 unsigned BB_if_idx = ctx.block->index;
11091 Block BB_endif = Block();
11092 if (!stream_id.isConstant()) {
11093 /* begin IF */
11094 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
11095 append_logical_end(ctx.block);
11096 ctx.block->kind |= block_kind_uniform;
11097 bld.branch(aco_opcode::p_cbranch_z, cond);
11098
11099 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
11100
11101 ctx.block = ctx.program->create_and_insert_block();
11102 add_edge(BB_if_idx, ctx.block);
11103 bld.reset(ctx.block);
11104 append_logical_start(ctx.block);
11105 }
11106
11107 unsigned offset = 0;
11108 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
11109 if (args->shader_info->gs.output_streams[i] != stream)
11110 continue;
11111
11112 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
11113 unsigned length = util_last_bit(output_usage_mask);
11114 for (unsigned j = 0; j < length; ++j) {
11115 if (!(output_usage_mask & (1 << j)))
11116 continue;
11117
11118 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
11119 Temp voffset = vtx_offset;
11120 if (const_offset >= 4096u) {
11121 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
11122 const_offset %= 4096u;
11123 }
11124
11125 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
11126 mubuf->definitions[0] = bld.def(v1);
11127 mubuf->operands[0] = Operand(gsvs_ring);
11128 mubuf->operands[1] = Operand(voffset);
11129 mubuf->operands[2] = Operand(0u);
11130 mubuf->offen = true;
11131 mubuf->offset = const_offset;
11132 mubuf->glc = true;
11133 mubuf->slc = true;
11134 mubuf->dlc = args->options->chip_class >= GFX10;
11135
11136 ctx.outputs.mask[i] |= 1 << j;
11137 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
11138
11139 bld.insert(std::move(mubuf));
11140
11141 offset++;
11142 }
11143 }
11144
11145 if (args->shader_info->so.num_outputs) {
11146 emit_streamout(&ctx, stream);
11147 bld.reset(ctx.block);
11148 }
11149
11150 if (stream == 0) {
11151 create_vs_exports(&ctx);
11152 ctx.block->kind |= block_kind_export_end;
11153 }
11154
11155 if (!stream_id.isConstant()) {
11156 append_logical_end(ctx.block);
11157
11158 /* branch from then block to endif block */
11159 bld.branch(aco_opcode::p_branch);
11160 add_edge(ctx.block->index, &BB_endif);
11161 ctx.block->kind |= block_kind_uniform;
11162
11163 /* emit else block */
11164 ctx.block = ctx.program->create_and_insert_block();
11165 add_edge(BB_if_idx, ctx.block);
11166 bld.reset(ctx.block);
11167 append_logical_start(ctx.block);
11168
11169 endif_blocks.push(std::move(BB_endif));
11170 }
11171 }
11172
11173 while (!endif_blocks.empty()) {
11174 Block BB_endif = std::move(endif_blocks.top());
11175 endif_blocks.pop();
11176
11177 Block *BB_else = ctx.block;
11178
11179 append_logical_end(BB_else);
11180 /* branch from else block to endif block */
11181 bld.branch(aco_opcode::p_branch);
11182 add_edge(BB_else->index, &BB_endif);
11183 BB_else->kind |= block_kind_uniform;
11184
11185 /** emit endif merge block */
11186 ctx.block = program->insert_block(std::move(BB_endif));
11187 bld.reset(ctx.block);
11188 append_logical_start(ctx.block);
11189 }
11190
11191 program->config->float_mode = program->blocks[0].fp_mode.val;
11192
11193 append_logical_end(ctx.block);
11194 ctx.block->kind |= block_kind_uniform;
11195 bld.sopp(aco_opcode::s_endpgm);
11196
11197 cleanup_cfg(program);
11198 }
11199 }