aco: allow overflow for some SMEM instructions
[mesa.git] / src / amd / compiler / aco_instruction_selection_setup.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <array>
26 #include <unordered_map>
27 #include "aco_ir.h"
28 #include "nir.h"
29 #include "nir_control_flow.h"
30 #include "vulkan/radv_shader.h"
31 #include "vulkan/radv_descriptor_set.h"
32 #include "vulkan/radv_shader_args.h"
33 #include "sid.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36
37 #include "util/u_math.h"
38
39 #define MAX_INLINE_PUSH_CONSTS 8
40
41 namespace aco {
42
43 struct shader_io_state {
44 uint8_t mask[VARYING_SLOT_MAX];
45 Temp temps[VARYING_SLOT_MAX * 4u];
46
47 shader_io_state() {
48 memset(mask, 0, sizeof(mask));
49 std::fill_n(temps, VARYING_SLOT_MAX * 4u, Temp(0, RegClass::v1));
50 }
51 };
52
53 enum resource_flags {
54 has_glc_vmem_load = 0x1,
55 has_nonglc_vmem_load = 0x2,
56 has_glc_vmem_store = 0x4,
57 has_nonglc_vmem_store = 0x8,
58
59 has_vmem_store = has_glc_vmem_store | has_nonglc_vmem_store,
60 has_vmem_loadstore = has_vmem_store | has_glc_vmem_load | has_nonglc_vmem_load,
61 has_nonglc_vmem_loadstore = has_nonglc_vmem_load | has_nonglc_vmem_store,
62
63 buffer_is_restrict = 0x10,
64 };
65
66 struct isel_context {
67 const struct radv_nir_compiler_options *options;
68 struct radv_shader_args *args;
69 Program *program;
70 nir_shader *shader;
71 uint32_t constant_data_offset;
72 Block *block;
73 std::unique_ptr<Temp[]> allocated;
74 std::unordered_map<unsigned, std::array<Temp,NIR_MAX_VEC_COMPONENTS>> allocated_vec;
75 Stage stage; /* Stage */
76 bool has_gfx10_wave64_bpermute = false;
77 struct {
78 bool has_branch;
79 uint16_t loop_nest_depth = 0;
80 struct {
81 unsigned header_idx;
82 Block* exit;
83 bool has_divergent_continue = false;
84 bool has_divergent_branch = false;
85 } parent_loop;
86 struct {
87 bool is_divergent = false;
88 } parent_if;
89 bool exec_potentially_empty_discard = false; /* set to false when loop_nest_depth==0 && parent_if.is_divergent==false */
90 uint16_t exec_potentially_empty_break_depth = UINT16_MAX;
91 /* Set to false when loop_nest_depth==exec_potentially_empty_break_depth
92 * and parent_if.is_divergent==false. Called _break but it's also used for
93 * loop continues. */
94 bool exec_potentially_empty_break = false;
95 std::unique_ptr<unsigned[]> nir_to_aco; /* NIR block index to ACO block index */
96 } cf_info;
97
98 uint32_t resource_flag_offsets[MAX_SETS];
99 std::vector<uint8_t> buffer_resource_flags;
100
101 Temp arg_temps[AC_MAX_ARGS];
102
103 /* FS inputs */
104 Temp persp_centroid, linear_centroid;
105
106 /* GS inputs */
107 Temp gs_wave_id;
108
109 /* VS output information */
110 bool export_clip_dists;
111 unsigned num_clip_distances;
112 unsigned num_cull_distances;
113
114 /* tessellation information */
115 unsigned tcs_tess_lvl_out_loc;
116 unsigned tcs_tess_lvl_in_loc;
117 uint64_t tcs_temp_only_inputs;
118 uint32_t tcs_num_inputs;
119 uint32_t tcs_num_outputs;
120 uint32_t tcs_num_patch_outputs;
121 uint32_t tcs_num_patches;
122 bool tcs_in_out_eq = false;
123
124 /* I/O information */
125 shader_io_state inputs;
126 shader_io_state outputs;
127 uint8_t output_drv_loc_to_var_slot[MESA_SHADER_COMPUTE][VARYING_SLOT_MAX];
128 uint8_t output_tcs_patch_drv_loc_to_var_slot[VARYING_SLOT_MAX];
129 };
130
131 Temp get_arg(isel_context *ctx, struct ac_arg arg)
132 {
133 assert(arg.used);
134 return ctx->arg_temps[arg.arg_index];
135 }
136
137 unsigned get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp)
138 {
139 switch (interp) {
140 case INTERP_MODE_SMOOTH:
141 case INTERP_MODE_NONE:
142 if (intrin == nir_intrinsic_load_barycentric_pixel ||
143 intrin == nir_intrinsic_load_barycentric_at_sample ||
144 intrin == nir_intrinsic_load_barycentric_at_offset)
145 return S_0286CC_PERSP_CENTER_ENA(1);
146 else if (intrin == nir_intrinsic_load_barycentric_centroid)
147 return S_0286CC_PERSP_CENTROID_ENA(1);
148 else if (intrin == nir_intrinsic_load_barycentric_sample)
149 return S_0286CC_PERSP_SAMPLE_ENA(1);
150 break;
151 case INTERP_MODE_NOPERSPECTIVE:
152 if (intrin == nir_intrinsic_load_barycentric_pixel)
153 return S_0286CC_LINEAR_CENTER_ENA(1);
154 else if (intrin == nir_intrinsic_load_barycentric_centroid)
155 return S_0286CC_LINEAR_CENTROID_ENA(1);
156 else if (intrin == nir_intrinsic_load_barycentric_sample)
157 return S_0286CC_LINEAR_SAMPLE_ENA(1);
158 break;
159 default:
160 break;
161 }
162 return 0;
163 }
164
165 /* If one side of a divergent IF ends in a branch and the other doesn't, we
166 * might have to emit the contents of the side without the branch at the merge
167 * block instead. This is so that we can use any SGPR live-out of the side
168 * without the branch without creating a linear phi in the invert or merge block. */
169 bool
170 sanitize_if(nir_function_impl *impl, nir_if *nif)
171 {
172 //TODO: skip this if the condition is uniform and there are no divergent breaks/continues?
173
174 nir_block *then_block = nir_if_last_then_block(nif);
175 nir_block *else_block = nir_if_last_else_block(nif);
176 bool then_jump = nir_block_ends_in_jump(then_block) || nir_block_is_unreachable(then_block);
177 bool else_jump = nir_block_ends_in_jump(else_block) || nir_block_is_unreachable(else_block);
178 if (then_jump == else_jump)
179 return false;
180
181 /* If the continue from block is empty then return as there is nothing to
182 * move.
183 */
184 if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list))
185 return false;
186
187 /* Even though this if statement has a jump on one side, we may still have
188 * phis afterwards. Single-source phis can be produced by loop unrolling
189 * or dead control-flow passes and are perfectly legal. Run a quick phi
190 * removal on the block after the if to clean up any such phis.
191 */
192 nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
193
194 /* Finally, move the continue from branch after the if-statement. */
195 nir_block *last_continue_from_blk = else_jump ? then_block : else_block;
196 nir_block *first_continue_from_blk = else_jump ?
197 nir_if_first_then_block(nif) : nir_if_first_else_block(nif);
198
199 nir_cf_list tmp;
200 nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
201 nir_after_block(last_continue_from_blk));
202 nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
203
204 /* nir_cf_extract() invalidates dominance metadata, but it should still be
205 * correct because of the specific type of transformation we did. Block
206 * indices are not valid except for block_0's, which is all we care about for
207 * nir_block_is_unreachable(). */
208 impl->valid_metadata =
209 (nir_metadata)(impl->valid_metadata | nir_metadata_dominance | nir_metadata_block_index);
210
211 return true;
212 }
213
214 bool
215 sanitize_cf_list(nir_function_impl *impl, struct exec_list *cf_list)
216 {
217 bool progress = false;
218 foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
219 switch (cf_node->type) {
220 case nir_cf_node_block:
221 break;
222 case nir_cf_node_if: {
223 nir_if *nif = nir_cf_node_as_if(cf_node);
224 progress |= sanitize_cf_list(impl, &nif->then_list);
225 progress |= sanitize_cf_list(impl, &nif->else_list);
226 progress |= sanitize_if(impl, nif);
227 break;
228 }
229 case nir_cf_node_loop: {
230 nir_loop *loop = nir_cf_node_as_loop(cf_node);
231 progress |= sanitize_cf_list(impl, &loop->body);
232 break;
233 }
234 case nir_cf_node_function:
235 unreachable("Invalid cf type");
236 }
237 }
238
239 return progress;
240 }
241
242 void get_buffer_resource_flags(isel_context *ctx, nir_ssa_def *def, unsigned access,
243 uint8_t **flags, uint32_t *count)
244 {
245 int desc_set = -1;
246 unsigned binding = 0;
247
248 if (!def) {
249 /* global resources are considered aliasing with all other buffers and
250 * buffer images */
251 // TODO: only merge flags of resources which can really alias.
252 } else if (def->parent_instr->type == nir_instr_type_intrinsic) {
253 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(def->parent_instr);
254 if (intrin->intrinsic == nir_intrinsic_vulkan_resource_index) {
255 desc_set = nir_intrinsic_desc_set(intrin);
256 binding = nir_intrinsic_binding(intrin);
257 }
258 } else if (def->parent_instr->type == nir_instr_type_deref) {
259 nir_deref_instr *deref = nir_instr_as_deref(def->parent_instr);
260 assert(deref->type->is_image());
261 if (deref->type->sampler_dimensionality != GLSL_SAMPLER_DIM_BUF) {
262 *flags = NULL;
263 *count = 0;
264 return;
265 }
266
267 nir_variable *var = nir_deref_instr_get_variable(deref);
268 desc_set = var->data.descriptor_set;
269 binding = var->data.binding;
270 }
271
272 if (desc_set < 0) {
273 *flags = ctx->buffer_resource_flags.data();
274 *count = ctx->buffer_resource_flags.size();
275 return;
276 }
277
278 unsigned set_offset = ctx->resource_flag_offsets[desc_set];
279
280 if (!(ctx->buffer_resource_flags[set_offset + binding] & buffer_is_restrict)) {
281 /* Non-restrict buffers alias only with other non-restrict buffers.
282 * We reserve flags[0] for these. */
283 *flags = ctx->buffer_resource_flags.data();
284 *count = 1;
285 return;
286 }
287
288 *flags = ctx->buffer_resource_flags.data() + set_offset + binding;
289 *count = 1;
290 }
291
292 uint8_t get_all_buffer_resource_flags(isel_context *ctx, nir_ssa_def *def, unsigned access)
293 {
294 uint8_t *flags;
295 uint32_t count;
296 get_buffer_resource_flags(ctx, def, access, &flags, &count);
297
298 uint8_t res = 0;
299 for (unsigned i = 0; i < count; i++)
300 res |= flags[i];
301 return res;
302 }
303
304 bool can_subdword_ssbo_store_use_smem(nir_intrinsic_instr *intrin)
305 {
306 unsigned wrmask = nir_intrinsic_write_mask(intrin);
307 if (util_last_bit(wrmask) != util_bitcount(wrmask) ||
308 util_bitcount(wrmask) * intrin->src[0].ssa->bit_size % 32 ||
309 util_bitcount(wrmask) != intrin->src[0].ssa->num_components)
310 return false;
311
312 if (nir_intrinsic_align_mul(intrin) % 4 || nir_intrinsic_align_offset(intrin) % 4)
313 return false;
314
315 return true;
316 }
317
318 void fill_desc_set_info(isel_context *ctx, nir_function_impl *impl)
319 {
320 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
321
322 unsigned resource_flag_count = 1; /* +1 to reserve flags[0] for aliased resources */
323 for (unsigned i = 0; i < pipeline_layout->num_sets; i++) {
324 radv_descriptor_set_layout *layout = pipeline_layout->set[i].layout;
325 ctx->resource_flag_offsets[i] = resource_flag_count;
326 resource_flag_count += layout->binding_count;
327 }
328 ctx->buffer_resource_flags = std::vector<uint8_t>(resource_flag_count);
329
330 nir_foreach_variable(var, &impl->function->shader->uniforms) {
331 if (var->data.mode == nir_var_mem_ssbo && (var->data.access & ACCESS_RESTRICT)) {
332 uint32_t offset = ctx->resource_flag_offsets[var->data.descriptor_set];
333 ctx->buffer_resource_flags[offset + var->data.binding] |= buffer_is_restrict;
334 }
335 }
336
337 nir_foreach_block(block, impl) {
338 nir_foreach_instr(instr, block) {
339 if (instr->type != nir_instr_type_intrinsic)
340 continue;
341 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
342 if (!(nir_intrinsic_infos[intrin->intrinsic].index_map[NIR_INTRINSIC_ACCESS]))
343 continue;
344
345 nir_ssa_def *res = NULL;
346 unsigned access = nir_intrinsic_access(intrin);
347 unsigned flags = 0;
348 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
349 switch (intrin->intrinsic) {
350 case nir_intrinsic_load_ssbo: {
351 if (nir_dest_is_divergent(intrin->dest) && (!glc || ctx->program->chip_class >= GFX8))
352 flags |= glc ? has_glc_vmem_load : has_nonglc_vmem_load;
353 res = intrin->src[0].ssa;
354 break;
355 }
356 case nir_intrinsic_ssbo_atomic_add:
357 case nir_intrinsic_ssbo_atomic_imin:
358 case nir_intrinsic_ssbo_atomic_umin:
359 case nir_intrinsic_ssbo_atomic_imax:
360 case nir_intrinsic_ssbo_atomic_umax:
361 case nir_intrinsic_ssbo_atomic_and:
362 case nir_intrinsic_ssbo_atomic_or:
363 case nir_intrinsic_ssbo_atomic_xor:
364 case nir_intrinsic_ssbo_atomic_exchange:
365 case nir_intrinsic_ssbo_atomic_comp_swap:
366 flags |= has_glc_vmem_load | has_glc_vmem_store;
367 res = intrin->src[0].ssa;
368 break;
369 case nir_intrinsic_store_ssbo:
370 if (nir_src_is_divergent(intrin->src[2]) || ctx->program->chip_class < GFX8 ||
371 (intrin->src[0].ssa->bit_size < 32 && !can_subdword_ssbo_store_use_smem(intrin)))
372 flags |= glc ? has_glc_vmem_store : has_nonglc_vmem_store;
373 res = intrin->src[1].ssa;
374 break;
375 case nir_intrinsic_load_global:
376 if (!(access & ACCESS_NON_WRITEABLE))
377 flags |= glc ? has_glc_vmem_load : has_nonglc_vmem_load;
378 break;
379 case nir_intrinsic_store_global:
380 flags |= glc ? has_glc_vmem_store : has_nonglc_vmem_store;
381 break;
382 case nir_intrinsic_global_atomic_add:
383 case nir_intrinsic_global_atomic_imin:
384 case nir_intrinsic_global_atomic_umin:
385 case nir_intrinsic_global_atomic_imax:
386 case nir_intrinsic_global_atomic_umax:
387 case nir_intrinsic_global_atomic_and:
388 case nir_intrinsic_global_atomic_or:
389 case nir_intrinsic_global_atomic_xor:
390 case nir_intrinsic_global_atomic_exchange:
391 case nir_intrinsic_global_atomic_comp_swap:
392 flags |= has_glc_vmem_load | has_glc_vmem_store;
393 break;
394 case nir_intrinsic_image_deref_load:
395 res = intrin->src[0].ssa;
396 flags |= glc ? has_glc_vmem_load : has_nonglc_vmem_load;
397 break;
398 case nir_intrinsic_image_deref_store:
399 res = intrin->src[0].ssa;
400 flags |= (glc || ctx->program->chip_class == GFX6) ? has_glc_vmem_store : has_nonglc_vmem_store;
401 break;
402 case nir_intrinsic_image_deref_atomic_add:
403 case nir_intrinsic_image_deref_atomic_umin:
404 case nir_intrinsic_image_deref_atomic_imin:
405 case nir_intrinsic_image_deref_atomic_umax:
406 case nir_intrinsic_image_deref_atomic_imax:
407 case nir_intrinsic_image_deref_atomic_and:
408 case nir_intrinsic_image_deref_atomic_or:
409 case nir_intrinsic_image_deref_atomic_xor:
410 case nir_intrinsic_image_deref_atomic_exchange:
411 case nir_intrinsic_image_deref_atomic_comp_swap:
412 res = intrin->src[0].ssa;
413 flags |= has_glc_vmem_load | has_glc_vmem_store;
414 break;
415 default:
416 continue;
417 }
418
419 uint8_t *flags_ptr;
420 uint32_t count;
421 get_buffer_resource_flags(ctx, res, access, &flags_ptr, &count);
422
423 for (unsigned i = 0; i < count; i++)
424 flags_ptr[i] |= flags;
425 }
426 }
427 }
428
429 RegClass get_reg_class(isel_context *ctx, RegType type, unsigned components, unsigned bitsize)
430 {
431 if (bitsize == 1)
432 return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components);
433 else
434 return RegClass::get(type, components * bitsize / 8u);
435 }
436
437 void init_context(isel_context *ctx, nir_shader *shader)
438 {
439 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
440 unsigned lane_mask_size = ctx->program->lane_mask.size();
441
442 ctx->shader = shader;
443 nir_divergence_analysis(shader, nir_divergence_view_index_uniform);
444
445 fill_desc_set_info(ctx, impl);
446
447 /* sanitize control flow */
448 nir_metadata_require(impl, nir_metadata_dominance);
449 sanitize_cf_list(impl, &impl->body);
450 nir_metadata_preserve(impl, (nir_metadata)~nir_metadata_block_index);
451
452 /* we'll need this for isel */
453 nir_metadata_require(impl, nir_metadata_block_index);
454
455 if (!(ctx->stage & sw_gs_copy) && ctx->options->dump_preoptir) {
456 fprintf(stderr, "NIR shader before instruction selection:\n");
457 nir_print_shader(shader, stderr);
458 }
459
460 std::unique_ptr<Temp[]> allocated{new Temp[impl->ssa_alloc]()};
461
462 unsigned spi_ps_inputs = 0;
463
464 std::unique_ptr<unsigned[]> nir_to_aco{new unsigned[impl->num_blocks]()};
465
466 /* TODO: make this recursive to improve compile times and merge with fill_desc_set_info() */
467 bool done = false;
468 while (!done) {
469 done = true;
470 nir_foreach_block(block, impl) {
471 nir_foreach_instr(instr, block) {
472 switch(instr->type) {
473 case nir_instr_type_alu: {
474 nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
475 RegType type = RegType::sgpr;
476 switch(alu_instr->op) {
477 case nir_op_fmul:
478 case nir_op_fadd:
479 case nir_op_fsub:
480 case nir_op_fmax:
481 case nir_op_fmin:
482 case nir_op_fmax3:
483 case nir_op_fmin3:
484 case nir_op_fmed3:
485 case nir_op_fneg:
486 case nir_op_fabs:
487 case nir_op_fsat:
488 case nir_op_fsign:
489 case nir_op_frcp:
490 case nir_op_frsq:
491 case nir_op_fsqrt:
492 case nir_op_fexp2:
493 case nir_op_flog2:
494 case nir_op_ffract:
495 case nir_op_ffloor:
496 case nir_op_fceil:
497 case nir_op_ftrunc:
498 case nir_op_fround_even:
499 case nir_op_fsin:
500 case nir_op_fcos:
501 case nir_op_f2f16:
502 case nir_op_f2f16_rtz:
503 case nir_op_f2f16_rtne:
504 case nir_op_f2f32:
505 case nir_op_f2f64:
506 case nir_op_u2f16:
507 case nir_op_u2f32:
508 case nir_op_u2f64:
509 case nir_op_i2f16:
510 case nir_op_i2f32:
511 case nir_op_i2f64:
512 case nir_op_pack_half_2x16:
513 case nir_op_unpack_half_2x16_split_x:
514 case nir_op_unpack_half_2x16_split_y:
515 case nir_op_fddx:
516 case nir_op_fddy:
517 case nir_op_fddx_fine:
518 case nir_op_fddy_fine:
519 case nir_op_fddx_coarse:
520 case nir_op_fddy_coarse:
521 case nir_op_fquantize2f16:
522 case nir_op_ldexp:
523 case nir_op_frexp_sig:
524 case nir_op_frexp_exp:
525 case nir_op_cube_face_index:
526 case nir_op_cube_face_coord:
527 type = RegType::vgpr;
528 break;
529 case nir_op_f2i16:
530 case nir_op_f2u16:
531 case nir_op_f2i32:
532 case nir_op_f2u32:
533 case nir_op_f2i64:
534 case nir_op_f2u64:
535 case nir_op_b2i8:
536 case nir_op_b2i16:
537 case nir_op_b2i32:
538 case nir_op_b2i64:
539 case nir_op_b2b32:
540 case nir_op_b2f16:
541 case nir_op_b2f32:
542 case nir_op_mov:
543 type = nir_dest_is_divergent(alu_instr->dest.dest) ? RegType::vgpr : RegType::sgpr;
544 break;
545 case nir_op_bcsel:
546 type = nir_dest_is_divergent(alu_instr->dest.dest) ? RegType::vgpr : RegType::sgpr;
547 /* fallthrough */
548 default:
549 for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
550 if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
551 type = RegType::vgpr;
552 }
553 break;
554 }
555
556 RegClass rc = get_reg_class(ctx, type, alu_instr->dest.dest.ssa.num_components, alu_instr->dest.dest.ssa.bit_size);
557 allocated[alu_instr->dest.dest.ssa.index] = Temp(0, rc);
558 break;
559 }
560 case nir_instr_type_load_const: {
561 unsigned num_components = nir_instr_as_load_const(instr)->def.num_components;
562 unsigned bit_size = nir_instr_as_load_const(instr)->def.bit_size;
563 RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
564 allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, rc);
565 break;
566 }
567 case nir_instr_type_intrinsic: {
568 nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
569 if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
570 break;
571 RegType type = RegType::sgpr;
572 switch(intrinsic->intrinsic) {
573 case nir_intrinsic_load_push_constant:
574 case nir_intrinsic_load_work_group_id:
575 case nir_intrinsic_load_num_work_groups:
576 case nir_intrinsic_load_subgroup_id:
577 case nir_intrinsic_load_num_subgroups:
578 case nir_intrinsic_load_first_vertex:
579 case nir_intrinsic_load_base_instance:
580 case nir_intrinsic_get_buffer_size:
581 case nir_intrinsic_vote_all:
582 case nir_intrinsic_vote_any:
583 case nir_intrinsic_read_first_invocation:
584 case nir_intrinsic_read_invocation:
585 case nir_intrinsic_first_invocation:
586 case nir_intrinsic_ballot:
587 type = RegType::sgpr;
588 break;
589 case nir_intrinsic_load_sample_id:
590 case nir_intrinsic_load_sample_mask_in:
591 case nir_intrinsic_load_input:
592 case nir_intrinsic_load_output:
593 case nir_intrinsic_load_input_vertex:
594 case nir_intrinsic_load_per_vertex_input:
595 case nir_intrinsic_load_per_vertex_output:
596 case nir_intrinsic_load_vertex_id:
597 case nir_intrinsic_load_vertex_id_zero_base:
598 case nir_intrinsic_load_barycentric_sample:
599 case nir_intrinsic_load_barycentric_pixel:
600 case nir_intrinsic_load_barycentric_model:
601 case nir_intrinsic_load_barycentric_centroid:
602 case nir_intrinsic_load_barycentric_at_sample:
603 case nir_intrinsic_load_barycentric_at_offset:
604 case nir_intrinsic_load_interpolated_input:
605 case nir_intrinsic_load_frag_coord:
606 case nir_intrinsic_load_sample_pos:
607 case nir_intrinsic_load_layer_id:
608 case nir_intrinsic_load_local_invocation_id:
609 case nir_intrinsic_load_local_invocation_index:
610 case nir_intrinsic_load_subgroup_invocation:
611 case nir_intrinsic_load_tess_coord:
612 case nir_intrinsic_write_invocation_amd:
613 case nir_intrinsic_mbcnt_amd:
614 case nir_intrinsic_load_instance_id:
615 case nir_intrinsic_ssbo_atomic_add:
616 case nir_intrinsic_ssbo_atomic_imin:
617 case nir_intrinsic_ssbo_atomic_umin:
618 case nir_intrinsic_ssbo_atomic_imax:
619 case nir_intrinsic_ssbo_atomic_umax:
620 case nir_intrinsic_ssbo_atomic_and:
621 case nir_intrinsic_ssbo_atomic_or:
622 case nir_intrinsic_ssbo_atomic_xor:
623 case nir_intrinsic_ssbo_atomic_exchange:
624 case nir_intrinsic_ssbo_atomic_comp_swap:
625 case nir_intrinsic_global_atomic_add:
626 case nir_intrinsic_global_atomic_imin:
627 case nir_intrinsic_global_atomic_umin:
628 case nir_intrinsic_global_atomic_imax:
629 case nir_intrinsic_global_atomic_umax:
630 case nir_intrinsic_global_atomic_and:
631 case nir_intrinsic_global_atomic_or:
632 case nir_intrinsic_global_atomic_xor:
633 case nir_intrinsic_global_atomic_exchange:
634 case nir_intrinsic_global_atomic_comp_swap:
635 case nir_intrinsic_image_deref_atomic_add:
636 case nir_intrinsic_image_deref_atomic_umin:
637 case nir_intrinsic_image_deref_atomic_imin:
638 case nir_intrinsic_image_deref_atomic_umax:
639 case nir_intrinsic_image_deref_atomic_imax:
640 case nir_intrinsic_image_deref_atomic_and:
641 case nir_intrinsic_image_deref_atomic_or:
642 case nir_intrinsic_image_deref_atomic_xor:
643 case nir_intrinsic_image_deref_atomic_exchange:
644 case nir_intrinsic_image_deref_atomic_comp_swap:
645 case nir_intrinsic_image_deref_size:
646 case nir_intrinsic_shared_atomic_add:
647 case nir_intrinsic_shared_atomic_imin:
648 case nir_intrinsic_shared_atomic_umin:
649 case nir_intrinsic_shared_atomic_imax:
650 case nir_intrinsic_shared_atomic_umax:
651 case nir_intrinsic_shared_atomic_and:
652 case nir_intrinsic_shared_atomic_or:
653 case nir_intrinsic_shared_atomic_xor:
654 case nir_intrinsic_shared_atomic_exchange:
655 case nir_intrinsic_shared_atomic_comp_swap:
656 case nir_intrinsic_load_scratch:
657 case nir_intrinsic_load_invocation_id:
658 case nir_intrinsic_load_primitive_id:
659 type = RegType::vgpr;
660 break;
661 case nir_intrinsic_shuffle:
662 case nir_intrinsic_quad_broadcast:
663 case nir_intrinsic_quad_swap_horizontal:
664 case nir_intrinsic_quad_swap_vertical:
665 case nir_intrinsic_quad_swap_diagonal:
666 case nir_intrinsic_quad_swizzle_amd:
667 case nir_intrinsic_masked_swizzle_amd:
668 case nir_intrinsic_inclusive_scan:
669 case nir_intrinsic_exclusive_scan:
670 case nir_intrinsic_reduce:
671 case nir_intrinsic_load_ubo:
672 case nir_intrinsic_load_ssbo:
673 case nir_intrinsic_load_global:
674 case nir_intrinsic_vulkan_resource_index:
675 case nir_intrinsic_load_shared:
676 type = nir_dest_is_divergent(intrinsic->dest) ? RegType::vgpr : RegType::sgpr;
677 break;
678 case nir_intrinsic_load_view_index:
679 type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
680 break;
681 default:
682 for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) {
683 if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
684 type = RegType::vgpr;
685 }
686 break;
687 }
688 RegClass rc = get_reg_class(ctx, type, intrinsic->dest.ssa.num_components, intrinsic->dest.ssa.bit_size);
689 allocated[intrinsic->dest.ssa.index] = Temp(0, rc);
690
691 switch(intrinsic->intrinsic) {
692 case nir_intrinsic_load_barycentric_sample:
693 case nir_intrinsic_load_barycentric_pixel:
694 case nir_intrinsic_load_barycentric_centroid:
695 case nir_intrinsic_load_barycentric_at_sample:
696 case nir_intrinsic_load_barycentric_at_offset: {
697 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic);
698 spi_ps_inputs |= get_interp_input(intrinsic->intrinsic, mode);
699 break;
700 }
701 case nir_intrinsic_load_barycentric_model:
702 spi_ps_inputs |= S_0286CC_PERSP_PULL_MODEL_ENA(1);
703 break;
704 case nir_intrinsic_load_front_face:
705 spi_ps_inputs |= S_0286CC_FRONT_FACE_ENA(1);
706 break;
707 case nir_intrinsic_load_frag_coord:
708 case nir_intrinsic_load_sample_pos: {
709 uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa);
710 for (unsigned i = 0; i < 4; i++) {
711 if (mask & (1 << i))
712 spi_ps_inputs |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
713
714 }
715 break;
716 }
717 case nir_intrinsic_load_sample_id:
718 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
719 break;
720 case nir_intrinsic_load_sample_mask_in:
721 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
722 spi_ps_inputs |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
723 break;
724 default:
725 break;
726 }
727 break;
728 }
729 case nir_instr_type_tex: {
730 nir_tex_instr* tex = nir_instr_as_tex(instr);
731 unsigned size = tex->dest.ssa.num_components;
732
733 if (tex->dest.ssa.bit_size == 64)
734 size *= 2;
735 if (tex->op == nir_texop_texture_samples) {
736 assert(!tex->dest.ssa.divergent);
737 }
738 if (nir_dest_is_divergent(tex->dest))
739 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size));
740 else
741 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size));
742 break;
743 }
744 case nir_instr_type_parallel_copy: {
745 nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) {
746 allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index];
747 }
748 break;
749 }
750 case nir_instr_type_ssa_undef: {
751 unsigned num_components = nir_instr_as_ssa_undef(instr)->def.num_components;
752 unsigned bit_size = nir_instr_as_ssa_undef(instr)->def.bit_size;
753 RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
754 allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, rc);
755 break;
756 }
757 case nir_instr_type_phi: {
758 nir_phi_instr* phi = nir_instr_as_phi(instr);
759 RegType type;
760 unsigned size = phi->dest.ssa.num_components;
761
762 if (phi->dest.ssa.bit_size == 1) {
763 assert(size == 1 && "multiple components not yet supported on boolean phis.");
764 type = RegType::sgpr;
765 size *= lane_mask_size;
766 allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size));
767 break;
768 }
769
770 if (nir_dest_is_divergent(phi->dest)) {
771 type = RegType::vgpr;
772 } else {
773 type = RegType::sgpr;
774 nir_foreach_phi_src (src, phi) {
775 if (allocated[src->src.ssa->index].type() == RegType::vgpr)
776 type = RegType::vgpr;
777 if (allocated[src->src.ssa->index].type() == RegType::none)
778 done = false;
779 }
780 }
781
782 RegClass rc = get_reg_class(ctx, type, phi->dest.ssa.num_components, phi->dest.ssa.bit_size);
783 if (rc != allocated[phi->dest.ssa.index].regClass()) {
784 done = false;
785 } else {
786 nir_foreach_phi_src(src, phi)
787 assert(allocated[src->src.ssa->index].size() == rc.size());
788 }
789 allocated[phi->dest.ssa.index] = Temp(0, rc);
790 break;
791 }
792 default:
793 break;
794 }
795 }
796 }
797 }
798
799 if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_inputs)) {
800 /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
801 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
802 }
803
804 if (!(spi_ps_inputs & 0x7F)) {
805 /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
806 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
807 }
808
809 ctx->program->config->spi_ps_input_ena = spi_ps_inputs;
810 ctx->program->config->spi_ps_input_addr = spi_ps_inputs;
811
812 for (unsigned i = 0; i < impl->ssa_alloc; i++)
813 allocated[i] = Temp(ctx->program->allocateId(), allocated[i].regClass());
814
815 ctx->allocated.reset(allocated.release());
816 ctx->cf_info.nir_to_aco.reset(nir_to_aco.release());
817 }
818
819 Pseudo_instruction *add_startpgm(struct isel_context *ctx)
820 {
821 unsigned arg_count = ctx->args->ac.arg_count;
822 if (ctx->stage == fragment_fs) {
823 /* LLVM optimizes away unused FS inputs and computes spi_ps_input_addr
824 * itself and then communicates the results back via the ELF binary.
825 * Mirror what LLVM does by re-mapping the VGPR arguments here.
826 *
827 * TODO: If we made the FS input scanning code into a separate pass that
828 * could run before argument setup, then this wouldn't be necessary
829 * anymore.
830 */
831 struct ac_shader_args *args = &ctx->args->ac;
832 arg_count = 0;
833 for (unsigned i = 0, vgpr_arg = 0, vgpr_reg = 0; i < args->arg_count; i++) {
834 if (args->args[i].file != AC_ARG_VGPR) {
835 arg_count++;
836 continue;
837 }
838
839 if (!(ctx->program->config->spi_ps_input_addr & (1 << vgpr_arg))) {
840 args->args[i].skip = true;
841 } else {
842 args->args[i].offset = vgpr_reg;
843 vgpr_reg += args->args[i].size;
844 arg_count++;
845 }
846 vgpr_arg++;
847 }
848 }
849
850 aco_ptr<Pseudo_instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, arg_count + 1)};
851 for (unsigned i = 0, arg = 0; i < ctx->args->ac.arg_count; i++) {
852 if (ctx->args->ac.args[i].skip)
853 continue;
854
855 enum ac_arg_regfile file = ctx->args->ac.args[i].file;
856 unsigned size = ctx->args->ac.args[i].size;
857 unsigned reg = ctx->args->ac.args[i].offset;
858 RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
859 Temp dst = Temp{ctx->program->allocateId(), type};
860 ctx->arg_temps[i] = dst;
861 startpgm->definitions[arg] = Definition(dst);
862 startpgm->definitions[arg].setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
863 arg++;
864 }
865 startpgm->definitions[arg_count] = Definition{ctx->program->allocateId(), exec, ctx->program->lane_mask};
866 Pseudo_instruction *instr = startpgm.get();
867 ctx->block->instructions.push_back(std::move(startpgm));
868
869 /* Stash these in the program so that they can be accessed later when
870 * handling spilling.
871 */
872 ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets);
873 ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset);
874
875 return instr;
876 }
877
878 int
879 type_size(const struct glsl_type *type, bool bindless)
880 {
881 // TODO: don't we need type->std430_base_alignment() here?
882 return glsl_count_attribute_slots(type, false);
883 }
884
885 void
886 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
887 {
888 assert(glsl_type_is_vector_or_scalar(type));
889
890 uint32_t comp_size = glsl_type_is_boolean(type)
891 ? 4 : glsl_get_bit_size(type) / 8;
892 unsigned length = glsl_get_vector_elements(type);
893 *size = comp_size * length,
894 *align = comp_size;
895 }
896
897 static bool
898 mem_vectorize_callback(unsigned align, unsigned bit_size,
899 unsigned num_components, unsigned high_offset,
900 nir_intrinsic_instr *low, nir_intrinsic_instr *high)
901 {
902 if (num_components > 4)
903 return false;
904
905 /* >128 bit loads are split except with SMEM */
906 if (bit_size * num_components > 128)
907 return false;
908
909 switch (low->intrinsic) {
910 case nir_intrinsic_load_global:
911 case nir_intrinsic_store_global:
912 case nir_intrinsic_store_ssbo:
913 case nir_intrinsic_load_ssbo:
914 case nir_intrinsic_load_ubo:
915 case nir_intrinsic_load_push_constant:
916 return align % (bit_size == 8 ? 2 : 4) == 0;
917 case nir_intrinsic_load_deref:
918 case nir_intrinsic_store_deref:
919 assert(nir_src_as_deref(low->src[0])->mode == nir_var_mem_shared);
920 /* fallthrough */
921 case nir_intrinsic_load_shared:
922 case nir_intrinsic_store_shared:
923 if (bit_size * num_components > 64) /* 96 and 128 bit loads require 128 bit alignment and are split otherwise */
924 return align % 16 == 0;
925 else
926 return align % (bit_size == 8 ? 2 : 4) == 0;
927 default:
928 return false;
929 }
930 return false;
931 }
932
933 void
934 setup_vs_output_info(isel_context *ctx, nir_shader *nir,
935 bool export_prim_id, bool export_clip_dists,
936 radv_vs_output_info *outinfo)
937 {
938 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
939 sizeof(outinfo->vs_output_param_offset));
940
941 outinfo->param_exports = 0;
942 int pos_written = 0x1;
943 if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer)
944 pos_written |= 1 << 1;
945
946 uint64_t mask = nir->info.outputs_written;
947 while (mask) {
948 int idx = u_bit_scan64(&mask);
949 if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER ||
950 idx == VARYING_SLOT_PRIMITIVE_ID || idx == VARYING_SLOT_VIEWPORT ||
951 ((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) {
952 if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
953 outinfo->vs_output_param_offset[idx] = outinfo->param_exports++;
954 }
955 }
956 if (outinfo->writes_layer &&
957 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) {
958 /* when ctx->options->key.has_multiview_view_index = true, the layer
959 * variable isn't declared in NIR and it's isel's job to get the layer */
960 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++;
961 }
962
963 if (export_prim_id) {
964 assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED);
965 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
966 }
967
968 ctx->export_clip_dists = export_clip_dists;
969 ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
970 ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
971
972 assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);
973
974 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
975 pos_written |= 1 << 2;
976 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
977 pos_written |= 1 << 3;
978
979 outinfo->pos_exports = util_bitcount(pos_written);
980 }
981
982 void
983 setup_vs_variables(isel_context *ctx, nir_shader *nir)
984 {
985 nir_foreach_variable(variable, &nir->inputs)
986 {
987 variable->data.driver_location = variable->data.location * 4;
988 }
989 nir_foreach_variable(variable, &nir->outputs)
990 {
991 if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs)
992 variable->data.driver_location = variable->data.location * 4;
993
994 assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX);
995 ctx->output_drv_loc_to_var_slot[MESA_SHADER_VERTEX][variable->data.driver_location / 4] = variable->data.location;
996 }
997
998 if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs) {
999 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
1000 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
1001 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
1002 } else if (ctx->stage == vertex_ls) {
1003 ctx->tcs_num_inputs = ctx->program->info->vs.num_linked_outputs;
1004 }
1005
1006 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
1007 /* We need to store the primitive IDs in LDS */
1008 unsigned lds_size = ctx->program->info->ngg_info.esgs_ring_size;
1009 ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
1010 ctx->program->lds_alloc_granule;
1011 }
1012 }
1013
1014 void setup_gs_variables(isel_context *ctx, nir_shader *nir)
1015 {
1016 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
1017 ctx->program->config->lds_size = ctx->program->info->gs_ring_info.lds_size; /* Already in units of the alloc granularity */
1018
1019 nir_foreach_variable(variable, &nir->outputs) {
1020 variable->data.driver_location = variable->data.location * 4;
1021 }
1022
1023 if (ctx->stage == vertex_geometry_gs)
1024 ctx->program->info->gs.es_type = MESA_SHADER_VERTEX;
1025 else if (ctx->stage == tess_eval_geometry_gs)
1026 ctx->program->info->gs.es_type = MESA_SHADER_TESS_EVAL;
1027 }
1028
1029 void
1030 setup_tcs_info(isel_context *ctx, nir_shader *nir, nir_shader *vs)
1031 {
1032 /* When the number of TCS input and output vertices are the same (typically 3):
1033 * - There is an equal amount of LS and HS invocations
1034 * - In case of merged LSHS shaders, the LS and HS halves of the shader
1035 * always process the exact same vertex. We can use this knowledge to optimize them.
1036 *
1037 * We don't set tcs_in_out_eq if the float controls differ because that might
1038 * involve different float modes for the same block and our optimizer
1039 * doesn't handle a instruction dominating another with a different mode.
1040 */
1041 ctx->tcs_in_out_eq =
1042 ctx->stage == vertex_tess_control_hs &&
1043 ctx->args->options->key.tcs.input_vertices == nir->info.tess.tcs_vertices_out &&
1044 vs->info.float_controls_execution_mode == nir->info.float_controls_execution_mode;
1045
1046 if (ctx->tcs_in_out_eq) {
1047 ctx->tcs_temp_only_inputs = ~nir->info.tess.tcs_cross_invocation_inputs_read &
1048 ~nir->info.inputs_read_indirectly &
1049 nir->info.inputs_read;
1050 }
1051
1052 ctx->tcs_num_inputs = ctx->program->info->tcs.num_linked_inputs;
1053 ctx->tcs_num_outputs = ctx->program->info->tcs.num_linked_outputs;
1054 ctx->tcs_num_patch_outputs = ctx->program->info->tcs.num_linked_patch_outputs;
1055
1056 ctx->tcs_num_patches = get_tcs_num_patches(
1057 ctx->args->options->key.tcs.input_vertices,
1058 nir->info.tess.tcs_vertices_out,
1059 ctx->tcs_num_inputs,
1060 ctx->tcs_num_outputs,
1061 ctx->tcs_num_patch_outputs,
1062 ctx->args->options->tess_offchip_block_dw_size,
1063 ctx->args->options->chip_class,
1064 ctx->args->options->family);
1065 unsigned lds_size = calculate_tess_lds_size(
1066 ctx->args->options->key.tcs.input_vertices,
1067 nir->info.tess.tcs_vertices_out,
1068 ctx->tcs_num_inputs,
1069 ctx->tcs_num_patches,
1070 ctx->tcs_num_outputs,
1071 ctx->tcs_num_patch_outputs);
1072
1073 ctx->args->shader_info->tcs.num_patches = ctx->tcs_num_patches;
1074 ctx->args->shader_info->tcs.lds_size = lds_size;
1075 ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
1076 ctx->program->lds_alloc_granule;
1077 }
1078
1079 void
1080 setup_tcs_variables(isel_context *ctx, nir_shader *nir)
1081 {
1082 nir_foreach_variable(variable, &nir->outputs) {
1083 assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX);
1084
1085 if (variable->data.location == VARYING_SLOT_TESS_LEVEL_OUTER)
1086 ctx->tcs_tess_lvl_out_loc = variable->data.driver_location * 4u;
1087 else if (variable->data.location == VARYING_SLOT_TESS_LEVEL_INNER)
1088 ctx->tcs_tess_lvl_in_loc = variable->data.driver_location * 4u;
1089
1090 if (variable->data.patch)
1091 ctx->output_tcs_patch_drv_loc_to_var_slot[variable->data.driver_location / 4] = variable->data.location;
1092 else
1093 ctx->output_drv_loc_to_var_slot[MESA_SHADER_TESS_CTRL][variable->data.driver_location / 4] = variable->data.location;
1094 }
1095 }
1096
1097 void
1098 setup_tes_variables(isel_context *ctx, nir_shader *nir)
1099 {
1100 ctx->tcs_num_patches = ctx->args->options->key.tes.num_patches;
1101 ctx->tcs_num_outputs = ctx->program->info->tes.num_linked_inputs;
1102
1103 nir_foreach_variable(variable, &nir->outputs) {
1104 if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs)
1105 variable->data.driver_location = variable->data.location * 4;
1106 }
1107
1108 if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs) {
1109 radv_vs_output_info *outinfo = &ctx->program->info->tes.outinfo;
1110 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
1111 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
1112 }
1113 }
1114
1115 void
1116 setup_variables(isel_context *ctx, nir_shader *nir)
1117 {
1118 switch (nir->info.stage) {
1119 case MESA_SHADER_FRAGMENT: {
1120 nir_foreach_variable(variable, &nir->outputs)
1121 {
1122 int idx = variable->data.location + variable->data.index;
1123 variable->data.driver_location = idx * 4;
1124 }
1125 break;
1126 }
1127 case MESA_SHADER_COMPUTE: {
1128 ctx->program->config->lds_size = (nir->info.cs.shared_size + ctx->program->lds_alloc_granule - 1) /
1129 ctx->program->lds_alloc_granule;
1130 break;
1131 }
1132 case MESA_SHADER_VERTEX: {
1133 setup_vs_variables(ctx, nir);
1134 break;
1135 }
1136 case MESA_SHADER_GEOMETRY: {
1137 setup_gs_variables(ctx, nir);
1138 break;
1139 }
1140 case MESA_SHADER_TESS_CTRL: {
1141 setup_tcs_variables(ctx, nir);
1142 break;
1143 }
1144 case MESA_SHADER_TESS_EVAL: {
1145 setup_tes_variables(ctx, nir);
1146 break;
1147 }
1148 default:
1149 unreachable("Unhandled shader stage.");
1150 }
1151 }
1152
1153 unsigned
1154 lower_bit_size_callback(const nir_alu_instr *alu, void *_)
1155 {
1156 if (nir_op_is_vec(alu->op))
1157 return 0;
1158
1159 unsigned bit_size = alu->dest.dest.ssa.bit_size;
1160 if (nir_alu_instr_is_comparison(alu))
1161 bit_size = nir_src_bit_size(alu->src[0].src);
1162
1163 if (bit_size >= 32 || bit_size == 1)
1164 return 0;
1165
1166 if (alu->op == nir_op_bcsel)
1167 return 0;
1168
1169 const nir_op_info *info = &nir_op_infos[alu->op];
1170
1171 if (info->is_conversion)
1172 return 0;
1173
1174 bool is_integer = info->output_type & (nir_type_uint | nir_type_int);
1175 for (unsigned i = 0; is_integer && (i < info->num_inputs); i++)
1176 is_integer = info->input_types[i] & (nir_type_uint | nir_type_int);
1177
1178 return is_integer ? 32 : 0;
1179 }
1180
1181 void
1182 setup_nir(isel_context *ctx, nir_shader *nir)
1183 {
1184 Program *program = ctx->program;
1185
1186 /* align and copy constant data */
1187 while (program->constant_data.size() % 4u)
1188 program->constant_data.push_back(0);
1189 ctx->constant_data_offset = program->constant_data.size();
1190 program->constant_data.insert(program->constant_data.end(),
1191 (uint8_t*)nir->constant_data,
1192 (uint8_t*)nir->constant_data + nir->constant_data_size);
1193
1194 /* the variable setup has to be done before lower_io / CSE */
1195 setup_variables(ctx, nir);
1196
1197 /* optimize and lower memory operations */
1198 if (nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global)) {
1199 nir_opt_constant_folding(nir);
1200 nir_opt_cse(nir);
1201 }
1202
1203 bool lower_to_scalar = false;
1204 bool lower_pack = false;
1205 nir_variable_mode robust_modes = (nir_variable_mode)0;
1206
1207 if (ctx->options->robust_buffer_access) {
1208 robust_modes = (nir_variable_mode)(nir_var_mem_ubo |
1209 nir_var_mem_ssbo |
1210 nir_var_mem_global |
1211 nir_var_mem_push_const);
1212 }
1213
1214 if (nir_opt_load_store_vectorize(nir,
1215 (nir_variable_mode)(nir_var_mem_ssbo | nir_var_mem_ubo |
1216 nir_var_mem_push_const | nir_var_mem_shared |
1217 nir_var_mem_global),
1218 mem_vectorize_callback, robust_modes)) {
1219 lower_to_scalar = true;
1220 lower_pack = true;
1221 }
1222 if (nir->info.stage != MESA_SHADER_COMPUTE)
1223 nir_lower_io(nir, (nir_variable_mode)(nir_var_shader_in | nir_var_shader_out), type_size, (nir_lower_io_options)0);
1224
1225 if (lower_to_scalar)
1226 nir_lower_alu_to_scalar(nir, NULL, NULL);
1227 if (lower_pack)
1228 nir_lower_pack(nir);
1229
1230 /* lower ALU operations */
1231 nir_lower_int64(nir, nir->options->lower_int64_options);
1232
1233 if (nir_lower_bit_size(nir, lower_bit_size_callback, NULL))
1234 nir_copy_prop(nir); /* allow nir_opt_idiv_const() to optimize lowered divisions */
1235
1236 nir_opt_idiv_const(nir, 32);
1237 nir_lower_idiv(nir, nir_lower_idiv_precise);
1238
1239 /* optimize the lowered ALU operations */
1240 bool more_algebraic = true;
1241 while (more_algebraic) {
1242 more_algebraic = false;
1243 NIR_PASS_V(nir, nir_copy_prop);
1244 NIR_PASS_V(nir, nir_opt_dce);
1245 NIR_PASS_V(nir, nir_opt_constant_folding);
1246 NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
1247 }
1248
1249 /* Do late algebraic optimization to turn add(a, neg(b)) back into
1250 * subs, then the mandatory cleanup after algebraic. Note that it may
1251 * produce fnegs, and if so then we need to keep running to squash
1252 * fneg(fneg(a)).
1253 */
1254 bool more_late_algebraic = true;
1255 while (more_late_algebraic) {
1256 more_late_algebraic = false;
1257 NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
1258 NIR_PASS_V(nir, nir_opt_constant_folding);
1259 NIR_PASS_V(nir, nir_copy_prop);
1260 NIR_PASS_V(nir, nir_opt_dce);
1261 NIR_PASS_V(nir, nir_opt_cse);
1262 }
1263
1264 /* cleanup passes */
1265 nir_lower_load_const_to_scalar(nir);
1266 nir_opt_shrink_load(nir);
1267 nir_move_options move_opts = (nir_move_options)(
1268 nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
1269 nir_move_comparisons | nir_move_copies);
1270 nir_opt_sink(nir, move_opts);
1271 nir_opt_move(nir, move_opts);
1272 nir_convert_to_lcssa(nir, true, false);
1273 nir_lower_phis_to_scalar(nir);
1274
1275 nir_function_impl *func = nir_shader_get_entrypoint(nir);
1276 nir_index_ssa_defs(func);
1277 }
1278
1279 void
1280 setup_xnack(Program *program)
1281 {
1282 switch (program->family) {
1283 /* GFX8 APUs */
1284 case CHIP_CARRIZO:
1285 case CHIP_STONEY:
1286 /* GFX9 APUS */
1287 case CHIP_RAVEN:
1288 case CHIP_RAVEN2:
1289 case CHIP_RENOIR:
1290 program->xnack_enabled = true;
1291 break;
1292 default:
1293 break;
1294 }
1295 }
1296
1297 isel_context
1298 setup_isel_context(Program* program,
1299 unsigned shader_count,
1300 struct nir_shader *const *shaders,
1301 ac_shader_config* config,
1302 struct radv_shader_args *args,
1303 bool is_gs_copy_shader)
1304 {
1305 program->stage = 0;
1306 for (unsigned i = 0; i < shader_count; i++) {
1307 switch (shaders[i]->info.stage) {
1308 case MESA_SHADER_VERTEX:
1309 program->stage |= sw_vs;
1310 break;
1311 case MESA_SHADER_TESS_CTRL:
1312 program->stage |= sw_tcs;
1313 break;
1314 case MESA_SHADER_TESS_EVAL:
1315 program->stage |= sw_tes;
1316 break;
1317 case MESA_SHADER_GEOMETRY:
1318 program->stage |= is_gs_copy_shader ? sw_gs_copy : sw_gs;
1319 break;
1320 case MESA_SHADER_FRAGMENT:
1321 program->stage |= sw_fs;
1322 break;
1323 case MESA_SHADER_COMPUTE:
1324 program->stage |= sw_cs;
1325 break;
1326 default:
1327 unreachable("Shader stage not implemented");
1328 }
1329 }
1330 bool gfx9_plus = args->options->chip_class >= GFX9;
1331 bool ngg = args->shader_info->is_ngg && args->options->chip_class >= GFX10;
1332 if (program->stage == sw_vs && args->shader_info->vs.as_es && !ngg)
1333 program->stage |= hw_es;
1334 else if (program->stage == sw_vs && !args->shader_info->vs.as_ls && !ngg)
1335 program->stage |= hw_vs;
1336 else if (program->stage == sw_vs && ngg)
1337 program->stage |= hw_ngg_gs; /* GFX10/NGG: VS without GS uses the HW GS stage */
1338 else if (program->stage == sw_gs)
1339 program->stage |= hw_gs;
1340 else if (program->stage == sw_fs)
1341 program->stage |= hw_fs;
1342 else if (program->stage == sw_cs)
1343 program->stage |= hw_cs;
1344 else if (program->stage == sw_gs_copy)
1345 program->stage |= hw_vs;
1346 else if (program->stage == (sw_vs | sw_gs) && gfx9_plus && !ngg)
1347 program->stage |= hw_gs;
1348 else if (program->stage == sw_vs && args->shader_info->vs.as_ls)
1349 program->stage |= hw_ls; /* GFX6-8: VS is a Local Shader, when tessellation is used */
1350 else if (program->stage == sw_tcs)
1351 program->stage |= hw_hs; /* GFX6-8: TCS is a Hull Shader */
1352 else if (program->stage == (sw_vs | sw_tcs))
1353 program->stage |= hw_hs; /* GFX9-10: VS+TCS merged into a Hull Shader */
1354 else if (program->stage == sw_tes && !args->shader_info->tes.as_es && !ngg)
1355 program->stage |= hw_vs; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */
1356 else if (program->stage == sw_tes && !args->shader_info->tes.as_es && ngg)
1357 program->stage |= hw_ngg_gs; /* GFX10/NGG: TES without GS uses the HW GS stage */
1358 else if (program->stage == sw_tes && args->shader_info->tes.as_es && !ngg)
1359 program->stage |= hw_es; /* GFX6-8: TES is an Export Shader */
1360 else if (program->stage == (sw_tes | sw_gs) && gfx9_plus && !ngg)
1361 program->stage |= hw_gs; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */
1362 else
1363 unreachable("Shader stage not implemented");
1364
1365 program->config = config;
1366 program->info = args->shader_info;
1367 program->chip_class = args->options->chip_class;
1368 program->family = args->options->family;
1369 program->wave_size = args->shader_info->wave_size;
1370 program->lane_mask = program->wave_size == 32 ? s1 : s2;
1371
1372 program->lds_alloc_granule = args->options->chip_class >= GFX7 ? 512 : 256;
1373 program->lds_limit = args->options->chip_class >= GFX7 ? 65536 : 32768;
1374 /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
1375 program->has_16bank_lds = args->options->family == CHIP_KABINI || args->options->family == CHIP_STONEY;
1376
1377 program->vgpr_limit = 256;
1378 program->vgpr_alloc_granule = 3;
1379
1380 if (args->options->chip_class >= GFX10) {
1381 program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */
1382 program->sgpr_alloc_granule = 127;
1383 program->sgpr_limit = 106;
1384 program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3;
1385 } else if (program->chip_class >= GFX8) {
1386 program->physical_sgprs = 800;
1387 program->sgpr_alloc_granule = 15;
1388 if (args->options->family == CHIP_TONGA || args->options->family == CHIP_ICELAND)
1389 program->sgpr_limit = 94; /* workaround hardware bug */
1390 else
1391 program->sgpr_limit = 102;
1392 } else {
1393 program->physical_sgprs = 512;
1394 program->sgpr_alloc_granule = 7;
1395 program->sgpr_limit = 104;
1396 }
1397
1398 isel_context ctx = {};
1399 ctx.program = program;
1400 ctx.args = args;
1401 ctx.options = args->options;
1402 ctx.stage = program->stage;
1403
1404 /* TODO: Check if we need to adjust min_waves for unknown workgroup sizes. */
1405 if (program->stage & (hw_vs | hw_fs)) {
1406 /* PS and legacy VS have separate waves, no workgroups */
1407 program->workgroup_size = program->wave_size;
1408 } else if (program->stage == compute_cs) {
1409 /* CS sets the workgroup size explicitly */
1410 unsigned* bsize = program->info->cs.block_size;
1411 program->workgroup_size = bsize[0] * bsize[1] * bsize[2];
1412 } else if ((program->stage & hw_es) || program->stage == geometry_gs) {
1413 /* Unmerged ESGS operate in workgroups if on-chip GS (LDS rings) are enabled on GFX7-8 (not implemented in Mesa) */
1414 program->workgroup_size = program->wave_size;
1415 } else if (program->stage & hw_gs) {
1416 /* If on-chip GS (LDS rings) are enabled on GFX9 or later, merged GS operates in workgroups */
1417 assert(program->chip_class >= GFX9);
1418 uint32_t es_verts_per_subgrp = G_028A44_ES_VERTS_PER_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl);
1419 uint32_t gs_instr_prims_in_subgrp = G_028A44_GS_INST_PRIMS_IN_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl);
1420 uint32_t workgroup_size = MAX2(es_verts_per_subgrp, gs_instr_prims_in_subgrp);
1421 program->workgroup_size = MAX2(MIN2(workgroup_size, 256), 1);
1422 } else if (program->stage == vertex_ls) {
1423 /* Unmerged LS operates in workgroups */
1424 program->workgroup_size = UINT_MAX; /* TODO: probably tcs_num_patches * tcs_vertices_in, but those are not plumbed to ACO for LS */
1425 } else if (program->stage == tess_control_hs) {
1426 /* Unmerged HS operates in workgroups, size is determined by the output vertices */
1427 setup_tcs_info(&ctx, shaders[0], NULL);
1428 program->workgroup_size = ctx.tcs_num_patches * shaders[0]->info.tess.tcs_vertices_out;
1429 } else if (program->stage == vertex_tess_control_hs) {
1430 /* Merged LSHS operates in workgroups, but can still have a different number of LS and HS invocations */
1431 setup_tcs_info(&ctx, shaders[1], shaders[0]);
1432 program->workgroup_size = ctx.tcs_num_patches * MAX2(shaders[1]->info.tess.tcs_vertices_out, ctx.args->options->key.tcs.input_vertices);
1433 } else if (program->stage & hw_ngg_gs) {
1434 /* TODO: Calculate workgroup size of NGG shaders. */
1435 program->workgroup_size = UINT_MAX;
1436 } else {
1437 unreachable("Unsupported shader stage.");
1438 }
1439
1440 calc_min_waves(program);
1441 program->vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
1442 program->sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
1443
1444 unsigned scratch_size = 0;
1445 if (program->stage == gs_copy_vs) {
1446 assert(shader_count == 1);
1447 setup_vs_output_info(&ctx, shaders[0], false, true, &args->shader_info->vs.outinfo);
1448 } else {
1449 for (unsigned i = 0; i < shader_count; i++) {
1450 nir_shader *nir = shaders[i];
1451 setup_nir(&ctx, nir);
1452 }
1453
1454 for (unsigned i = 0; i < shader_count; i++)
1455 scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
1456 }
1457
1458 ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024);
1459
1460 ctx.block = ctx.program->create_and_insert_block();
1461 ctx.block->loop_nest_depth = 0;
1462 ctx.block->kind = block_kind_top_level;
1463
1464 setup_xnack(program);
1465 program->sram_ecc_enabled = args->options->family == CHIP_ARCTURUS;
1466 /* apparently gfx702 also has fast v_fma_f32 but I can't find a family for that */
1467 program->has_fast_fma32 = program->chip_class >= GFX9;
1468 if (args->options->family == CHIP_TAHITI || args->options->family == CHIP_CARRIZO || args->options->family == CHIP_HAWAII)
1469 program->has_fast_fma32 = true;
1470
1471 return ctx;
1472 }
1473
1474 }