aco: prevent invalid loads/stores vectorization if robustness is enabled
[mesa.git] / src / amd / compiler / aco_instruction_selection_setup.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <array>
26 #include <unordered_map>
27 #include "aco_ir.h"
28 #include "nir.h"
29 #include "nir_control_flow.h"
30 #include "vulkan/radv_shader.h"
31 #include "vulkan/radv_descriptor_set.h"
32 #include "vulkan/radv_shader_args.h"
33 #include "sid.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36
37 #include "util/u_math.h"
38
39 #define MAX_INLINE_PUSH_CONSTS 8
40
41 namespace aco {
42
43 struct shader_io_state {
44 uint8_t mask[VARYING_SLOT_MAX];
45 Temp temps[VARYING_SLOT_MAX * 4u];
46
47 shader_io_state() {
48 memset(mask, 0, sizeof(mask));
49 std::fill_n(temps, VARYING_SLOT_MAX * 4u, Temp(0, RegClass::v1));
50 }
51 };
52
53 struct isel_context {
54 const struct radv_nir_compiler_options *options;
55 struct radv_shader_args *args;
56 Program *program;
57 nir_shader *shader;
58 uint32_t constant_data_offset;
59 Block *block;
60 bool *divergent_vals;
61 std::unique_ptr<Temp[]> allocated;
62 std::unordered_map<unsigned, std::array<Temp,NIR_MAX_VEC_COMPONENTS>> allocated_vec;
63 Stage stage; /* Stage */
64 bool has_gfx10_wave64_bpermute = false;
65 struct {
66 bool has_branch;
67 uint16_t loop_nest_depth = 0;
68 struct {
69 unsigned header_idx;
70 Block* exit;
71 bool has_divergent_continue = false;
72 bool has_divergent_branch = false;
73 } parent_loop;
74 struct {
75 bool is_divergent = false;
76 } parent_if;
77 bool exec_potentially_empty_discard = false; /* set to false when loop_nest_depth==0 && parent_if.is_divergent==false */
78 uint16_t exec_potentially_empty_break_depth = UINT16_MAX;
79 /* Set to false when loop_nest_depth==exec_potentially_empty_break_depth
80 * and parent_if.is_divergent==false. Called _break but it's also used for
81 * loop continues. */
82 bool exec_potentially_empty_break = false;
83 std::unique_ptr<unsigned[]> nir_to_aco; /* NIR block index to ACO block index */
84 } cf_info;
85
86 Temp arg_temps[AC_MAX_ARGS];
87
88 /* FS inputs */
89 Temp persp_centroid, linear_centroid;
90
91 /* GS inputs */
92 Temp gs_wave_id;
93
94 /* VS output information */
95 bool export_clip_dists;
96 unsigned num_clip_distances;
97 unsigned num_cull_distances;
98
99 /* tessellation information */
100 unsigned tcs_tess_lvl_out_loc;
101 unsigned tcs_tess_lvl_in_loc;
102 uint64_t tcs_temp_only_inputs;
103 uint32_t tcs_num_inputs;
104 uint32_t tcs_num_outputs;
105 uint32_t tcs_num_patch_outputs;
106 uint32_t tcs_num_patches;
107 bool tcs_in_out_eq = false;
108
109 /* I/O information */
110 shader_io_state inputs;
111 shader_io_state outputs;
112 uint8_t output_drv_loc_to_var_slot[MESA_SHADER_COMPUTE][VARYING_SLOT_MAX];
113 uint8_t output_tcs_patch_drv_loc_to_var_slot[VARYING_SLOT_MAX];
114 };
115
116 Temp get_arg(isel_context *ctx, struct ac_arg arg)
117 {
118 assert(arg.used);
119 return ctx->arg_temps[arg.arg_index];
120 }
121
122 unsigned get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp)
123 {
124 switch (interp) {
125 case INTERP_MODE_SMOOTH:
126 case INTERP_MODE_NONE:
127 if (intrin == nir_intrinsic_load_barycentric_pixel ||
128 intrin == nir_intrinsic_load_barycentric_at_sample ||
129 intrin == nir_intrinsic_load_barycentric_at_offset)
130 return S_0286CC_PERSP_CENTER_ENA(1);
131 else if (intrin == nir_intrinsic_load_barycentric_centroid)
132 return S_0286CC_PERSP_CENTROID_ENA(1);
133 else if (intrin == nir_intrinsic_load_barycentric_sample)
134 return S_0286CC_PERSP_SAMPLE_ENA(1);
135 break;
136 case INTERP_MODE_NOPERSPECTIVE:
137 if (intrin == nir_intrinsic_load_barycentric_pixel)
138 return S_0286CC_LINEAR_CENTER_ENA(1);
139 else if (intrin == nir_intrinsic_load_barycentric_centroid)
140 return S_0286CC_LINEAR_CENTROID_ENA(1);
141 else if (intrin == nir_intrinsic_load_barycentric_sample)
142 return S_0286CC_LINEAR_SAMPLE_ENA(1);
143 break;
144 default:
145 break;
146 }
147 return 0;
148 }
149
150 /* If one side of a divergent IF ends in a branch and the other doesn't, we
151 * might have to emit the contents of the side without the branch at the merge
152 * block instead. This is so that we can use any SGPR live-out of the side
153 * without the branch without creating a linear phi in the invert or merge block. */
154 bool
155 sanitize_if(nir_function_impl *impl, bool *divergent, nir_if *nif)
156 {
157 //TODO: skip this if the condition is uniform and there are no divergent breaks/continues?
158
159 nir_block *then_block = nir_if_last_then_block(nif);
160 nir_block *else_block = nir_if_last_else_block(nif);
161 bool then_jump = nir_block_ends_in_jump(then_block) || nir_block_is_unreachable(then_block);
162 bool else_jump = nir_block_ends_in_jump(else_block) || nir_block_is_unreachable(else_block);
163 if (then_jump == else_jump)
164 return false;
165
166 /* If the continue from block is empty then return as there is nothing to
167 * move.
168 */
169 if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list))
170 return false;
171
172 /* Even though this if statement has a jump on one side, we may still have
173 * phis afterwards. Single-source phis can be produced by loop unrolling
174 * or dead control-flow passes and are perfectly legal. Run a quick phi
175 * removal on the block after the if to clean up any such phis.
176 */
177 nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
178
179 /* Finally, move the continue from branch after the if-statement. */
180 nir_block *last_continue_from_blk = else_jump ? then_block : else_block;
181 nir_block *first_continue_from_blk = else_jump ?
182 nir_if_first_then_block(nif) : nir_if_first_else_block(nif);
183
184 nir_cf_list tmp;
185 nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
186 nir_after_block(last_continue_from_blk));
187 nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
188
189 /* nir_cf_extract() invalidates dominance metadata, but it should still be
190 * correct because of the specific type of transformation we did. Block
191 * indices are not valid except for block_0's, which is all we care about for
192 * nir_block_is_unreachable(). */
193 impl->valid_metadata =
194 (nir_metadata)(impl->valid_metadata | nir_metadata_dominance | nir_metadata_block_index);
195
196 return true;
197 }
198
199 bool
200 sanitize_cf_list(nir_function_impl *impl, bool *divergent, struct exec_list *cf_list)
201 {
202 bool progress = false;
203 foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
204 switch (cf_node->type) {
205 case nir_cf_node_block:
206 break;
207 case nir_cf_node_if: {
208 nir_if *nif = nir_cf_node_as_if(cf_node);
209 progress |= sanitize_cf_list(impl, divergent, &nif->then_list);
210 progress |= sanitize_cf_list(impl, divergent, &nif->else_list);
211 progress |= sanitize_if(impl, divergent, nif);
212 break;
213 }
214 case nir_cf_node_loop: {
215 nir_loop *loop = nir_cf_node_as_loop(cf_node);
216 progress |= sanitize_cf_list(impl, divergent, &loop->body);
217 break;
218 }
219 case nir_cf_node_function:
220 unreachable("Invalid cf type");
221 }
222 }
223
224 return progress;
225 }
226
227 RegClass get_reg_class(isel_context *ctx, RegType type, unsigned components, unsigned bitsize)
228 {
229 if (bitsize == 1)
230 return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components);
231 else
232 return RegClass::get(type, components * bitsize / 8u);
233 }
234
235 void init_context(isel_context *ctx, nir_shader *shader)
236 {
237 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
238 unsigned lane_mask_size = ctx->program->lane_mask.size();
239
240 ctx->shader = shader;
241 ctx->divergent_vals = nir_divergence_analysis(shader, nir_divergence_view_index_uniform);
242
243 /* sanitize control flow */
244 nir_metadata_require(impl, nir_metadata_dominance);
245 sanitize_cf_list(impl, ctx->divergent_vals, &impl->body);
246 nir_metadata_preserve(impl, (nir_metadata)~nir_metadata_block_index);
247
248 /* we'll need this for isel */
249 nir_metadata_require(impl, nir_metadata_block_index);
250
251 if (!(ctx->stage & sw_gs_copy) && ctx->options->dump_preoptir) {
252 fprintf(stderr, "NIR shader before instruction selection:\n");
253 nir_print_shader(shader, stderr);
254 }
255
256 std::unique_ptr<Temp[]> allocated{new Temp[impl->ssa_alloc]()};
257
258 unsigned spi_ps_inputs = 0;
259
260 std::unique_ptr<unsigned[]> nir_to_aco{new unsigned[impl->num_blocks]()};
261
262 bool done = false;
263 while (!done) {
264 done = true;
265 nir_foreach_block(block, impl) {
266 nir_foreach_instr(instr, block) {
267 switch(instr->type) {
268 case nir_instr_type_alu: {
269 nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
270 RegType type = RegType::sgpr;
271 switch(alu_instr->op) {
272 case nir_op_fmul:
273 case nir_op_fadd:
274 case nir_op_fsub:
275 case nir_op_fmax:
276 case nir_op_fmin:
277 case nir_op_fmax3:
278 case nir_op_fmin3:
279 case nir_op_fmed3:
280 case nir_op_fneg:
281 case nir_op_fabs:
282 case nir_op_fsat:
283 case nir_op_fsign:
284 case nir_op_frcp:
285 case nir_op_frsq:
286 case nir_op_fsqrt:
287 case nir_op_fexp2:
288 case nir_op_flog2:
289 case nir_op_ffract:
290 case nir_op_ffloor:
291 case nir_op_fceil:
292 case nir_op_ftrunc:
293 case nir_op_fround_even:
294 case nir_op_fsin:
295 case nir_op_fcos:
296 case nir_op_f2f16:
297 case nir_op_f2f16_rtz:
298 case nir_op_f2f16_rtne:
299 case nir_op_f2f32:
300 case nir_op_f2f64:
301 case nir_op_u2f16:
302 case nir_op_u2f32:
303 case nir_op_u2f64:
304 case nir_op_i2f16:
305 case nir_op_i2f32:
306 case nir_op_i2f64:
307 case nir_op_pack_half_2x16:
308 case nir_op_unpack_half_2x16_split_x:
309 case nir_op_unpack_half_2x16_split_y:
310 case nir_op_fddx:
311 case nir_op_fddy:
312 case nir_op_fddx_fine:
313 case nir_op_fddy_fine:
314 case nir_op_fddx_coarse:
315 case nir_op_fddy_coarse:
316 case nir_op_fquantize2f16:
317 case nir_op_ldexp:
318 case nir_op_frexp_sig:
319 case nir_op_frexp_exp:
320 case nir_op_cube_face_index:
321 case nir_op_cube_face_coord:
322 type = RegType::vgpr;
323 break;
324 case nir_op_f2i16:
325 case nir_op_f2u16:
326 case nir_op_f2i32:
327 case nir_op_f2u32:
328 case nir_op_f2i64:
329 case nir_op_f2u64:
330 case nir_op_b2i32:
331 case nir_op_b2b32:
332 case nir_op_b2f16:
333 case nir_op_b2f32:
334 case nir_op_mov:
335 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
336 break;
337 case nir_op_bcsel:
338 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
339 /* fallthrough */
340 default:
341 for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
342 if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
343 type = RegType::vgpr;
344 }
345 break;
346 }
347
348 RegClass rc = get_reg_class(ctx, type, alu_instr->dest.dest.ssa.num_components, alu_instr->dest.dest.ssa.bit_size);
349 allocated[alu_instr->dest.dest.ssa.index] = Temp(0, rc);
350 break;
351 }
352 case nir_instr_type_load_const: {
353 unsigned num_components = nir_instr_as_load_const(instr)->def.num_components;
354 unsigned bit_size = nir_instr_as_load_const(instr)->def.bit_size;
355 RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
356 allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, rc);
357 break;
358 }
359 case nir_instr_type_intrinsic: {
360 nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
361 if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
362 break;
363 RegType type = RegType::sgpr;
364 switch(intrinsic->intrinsic) {
365 case nir_intrinsic_load_push_constant:
366 case nir_intrinsic_load_work_group_id:
367 case nir_intrinsic_load_num_work_groups:
368 case nir_intrinsic_load_subgroup_id:
369 case nir_intrinsic_load_num_subgroups:
370 case nir_intrinsic_load_first_vertex:
371 case nir_intrinsic_load_base_instance:
372 case nir_intrinsic_get_buffer_size:
373 case nir_intrinsic_vote_all:
374 case nir_intrinsic_vote_any:
375 case nir_intrinsic_read_first_invocation:
376 case nir_intrinsic_read_invocation:
377 case nir_intrinsic_first_invocation:
378 case nir_intrinsic_ballot:
379 type = RegType::sgpr;
380 break;
381 case nir_intrinsic_load_sample_id:
382 case nir_intrinsic_load_sample_mask_in:
383 case nir_intrinsic_load_input:
384 case nir_intrinsic_load_output:
385 case nir_intrinsic_load_input_vertex:
386 case nir_intrinsic_load_per_vertex_input:
387 case nir_intrinsic_load_per_vertex_output:
388 case nir_intrinsic_load_vertex_id:
389 case nir_intrinsic_load_vertex_id_zero_base:
390 case nir_intrinsic_load_barycentric_sample:
391 case nir_intrinsic_load_barycentric_pixel:
392 case nir_intrinsic_load_barycentric_model:
393 case nir_intrinsic_load_barycentric_centroid:
394 case nir_intrinsic_load_barycentric_at_sample:
395 case nir_intrinsic_load_barycentric_at_offset:
396 case nir_intrinsic_load_interpolated_input:
397 case nir_intrinsic_load_frag_coord:
398 case nir_intrinsic_load_sample_pos:
399 case nir_intrinsic_load_layer_id:
400 case nir_intrinsic_load_local_invocation_id:
401 case nir_intrinsic_load_local_invocation_index:
402 case nir_intrinsic_load_subgroup_invocation:
403 case nir_intrinsic_load_tess_coord:
404 case nir_intrinsic_write_invocation_amd:
405 case nir_intrinsic_mbcnt_amd:
406 case nir_intrinsic_load_instance_id:
407 case nir_intrinsic_ssbo_atomic_add:
408 case nir_intrinsic_ssbo_atomic_imin:
409 case nir_intrinsic_ssbo_atomic_umin:
410 case nir_intrinsic_ssbo_atomic_imax:
411 case nir_intrinsic_ssbo_atomic_umax:
412 case nir_intrinsic_ssbo_atomic_and:
413 case nir_intrinsic_ssbo_atomic_or:
414 case nir_intrinsic_ssbo_atomic_xor:
415 case nir_intrinsic_ssbo_atomic_exchange:
416 case nir_intrinsic_ssbo_atomic_comp_swap:
417 case nir_intrinsic_global_atomic_add:
418 case nir_intrinsic_global_atomic_imin:
419 case nir_intrinsic_global_atomic_umin:
420 case nir_intrinsic_global_atomic_imax:
421 case nir_intrinsic_global_atomic_umax:
422 case nir_intrinsic_global_atomic_and:
423 case nir_intrinsic_global_atomic_or:
424 case nir_intrinsic_global_atomic_xor:
425 case nir_intrinsic_global_atomic_exchange:
426 case nir_intrinsic_global_atomic_comp_swap:
427 case nir_intrinsic_image_deref_atomic_add:
428 case nir_intrinsic_image_deref_atomic_umin:
429 case nir_intrinsic_image_deref_atomic_imin:
430 case nir_intrinsic_image_deref_atomic_umax:
431 case nir_intrinsic_image_deref_atomic_imax:
432 case nir_intrinsic_image_deref_atomic_and:
433 case nir_intrinsic_image_deref_atomic_or:
434 case nir_intrinsic_image_deref_atomic_xor:
435 case nir_intrinsic_image_deref_atomic_exchange:
436 case nir_intrinsic_image_deref_atomic_comp_swap:
437 case nir_intrinsic_image_deref_size:
438 case nir_intrinsic_shared_atomic_add:
439 case nir_intrinsic_shared_atomic_imin:
440 case nir_intrinsic_shared_atomic_umin:
441 case nir_intrinsic_shared_atomic_imax:
442 case nir_intrinsic_shared_atomic_umax:
443 case nir_intrinsic_shared_atomic_and:
444 case nir_intrinsic_shared_atomic_or:
445 case nir_intrinsic_shared_atomic_xor:
446 case nir_intrinsic_shared_atomic_exchange:
447 case nir_intrinsic_shared_atomic_comp_swap:
448 case nir_intrinsic_load_scratch:
449 case nir_intrinsic_load_invocation_id:
450 case nir_intrinsic_load_primitive_id:
451 type = RegType::vgpr;
452 break;
453 case nir_intrinsic_shuffle:
454 case nir_intrinsic_quad_broadcast:
455 case nir_intrinsic_quad_swap_horizontal:
456 case nir_intrinsic_quad_swap_vertical:
457 case nir_intrinsic_quad_swap_diagonal:
458 case nir_intrinsic_quad_swizzle_amd:
459 case nir_intrinsic_masked_swizzle_amd:
460 case nir_intrinsic_inclusive_scan:
461 case nir_intrinsic_exclusive_scan:
462 case nir_intrinsic_reduce:
463 case nir_intrinsic_load_ubo:
464 case nir_intrinsic_load_ssbo:
465 case nir_intrinsic_load_global:
466 case nir_intrinsic_vulkan_resource_index:
467 case nir_intrinsic_load_shared:
468 type = ctx->divergent_vals[intrinsic->dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
469 break;
470 case nir_intrinsic_load_view_index:
471 type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
472 break;
473 default:
474 for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) {
475 if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
476 type = RegType::vgpr;
477 }
478 break;
479 }
480 RegClass rc = get_reg_class(ctx, type, intrinsic->dest.ssa.num_components, intrinsic->dest.ssa.bit_size);
481 allocated[intrinsic->dest.ssa.index] = Temp(0, rc);
482
483 switch(intrinsic->intrinsic) {
484 case nir_intrinsic_load_barycentric_sample:
485 case nir_intrinsic_load_barycentric_pixel:
486 case nir_intrinsic_load_barycentric_centroid:
487 case nir_intrinsic_load_barycentric_at_sample:
488 case nir_intrinsic_load_barycentric_at_offset: {
489 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic);
490 spi_ps_inputs |= get_interp_input(intrinsic->intrinsic, mode);
491 break;
492 }
493 case nir_intrinsic_load_barycentric_model:
494 spi_ps_inputs |= S_0286CC_PERSP_PULL_MODEL_ENA(1);
495 break;
496 case nir_intrinsic_load_front_face:
497 spi_ps_inputs |= S_0286CC_FRONT_FACE_ENA(1);
498 break;
499 case nir_intrinsic_load_frag_coord:
500 case nir_intrinsic_load_sample_pos: {
501 uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa);
502 for (unsigned i = 0; i < 4; i++) {
503 if (mask & (1 << i))
504 spi_ps_inputs |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
505
506 }
507 break;
508 }
509 case nir_intrinsic_load_sample_id:
510 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
511 break;
512 case nir_intrinsic_load_sample_mask_in:
513 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
514 spi_ps_inputs |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
515 break;
516 default:
517 break;
518 }
519 break;
520 }
521 case nir_instr_type_tex: {
522 nir_tex_instr* tex = nir_instr_as_tex(instr);
523 unsigned size = tex->dest.ssa.num_components;
524
525 if (tex->dest.ssa.bit_size == 64)
526 size *= 2;
527 if (tex->op == nir_texop_texture_samples)
528 assert(!ctx->divergent_vals[tex->dest.ssa.index]);
529 if (ctx->divergent_vals[tex->dest.ssa.index])
530 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size));
531 else
532 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size));
533 break;
534 }
535 case nir_instr_type_parallel_copy: {
536 nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) {
537 allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index];
538 }
539 break;
540 }
541 case nir_instr_type_ssa_undef: {
542 unsigned num_components = nir_instr_as_ssa_undef(instr)->def.num_components;
543 unsigned bit_size = nir_instr_as_ssa_undef(instr)->def.bit_size;
544 RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
545 allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, rc);
546 break;
547 }
548 case nir_instr_type_phi: {
549 nir_phi_instr* phi = nir_instr_as_phi(instr);
550 RegType type;
551 unsigned size = phi->dest.ssa.num_components;
552
553 if (phi->dest.ssa.bit_size == 1) {
554 assert(size == 1 && "multiple components not yet supported on boolean phis.");
555 type = RegType::sgpr;
556 size *= lane_mask_size;
557 allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size));
558 break;
559 }
560
561 if (ctx->divergent_vals[phi->dest.ssa.index]) {
562 type = RegType::vgpr;
563 } else {
564 type = RegType::sgpr;
565 nir_foreach_phi_src (src, phi) {
566 if (allocated[src->src.ssa->index].type() == RegType::vgpr)
567 type = RegType::vgpr;
568 if (allocated[src->src.ssa->index].type() == RegType::none)
569 done = false;
570 }
571 }
572
573 RegClass rc = get_reg_class(ctx, type, phi->dest.ssa.num_components, phi->dest.ssa.bit_size);
574 if (rc != allocated[phi->dest.ssa.index].regClass()) {
575 done = false;
576 } else {
577 nir_foreach_phi_src(src, phi)
578 assert(allocated[src->src.ssa->index].size() == rc.size());
579 }
580 allocated[phi->dest.ssa.index] = Temp(0, rc);
581 break;
582 }
583 default:
584 break;
585 }
586 }
587 }
588 }
589
590 if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_inputs)) {
591 /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
592 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
593 }
594
595 if (!(spi_ps_inputs & 0x7F)) {
596 /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
597 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
598 }
599
600 ctx->program->config->spi_ps_input_ena = spi_ps_inputs;
601 ctx->program->config->spi_ps_input_addr = spi_ps_inputs;
602
603 for (unsigned i = 0; i < impl->ssa_alloc; i++)
604 allocated[i] = Temp(ctx->program->allocateId(), allocated[i].regClass());
605
606 ctx->allocated.reset(allocated.release());
607 ctx->cf_info.nir_to_aco.reset(nir_to_aco.release());
608 }
609
610 Pseudo_instruction *add_startpgm(struct isel_context *ctx)
611 {
612 unsigned arg_count = ctx->args->ac.arg_count;
613 if (ctx->stage == fragment_fs) {
614 /* LLVM optimizes away unused FS inputs and computes spi_ps_input_addr
615 * itself and then communicates the results back via the ELF binary.
616 * Mirror what LLVM does by re-mapping the VGPR arguments here.
617 *
618 * TODO: If we made the FS input scanning code into a separate pass that
619 * could run before argument setup, then this wouldn't be necessary
620 * anymore.
621 */
622 struct ac_shader_args *args = &ctx->args->ac;
623 arg_count = 0;
624 for (unsigned i = 0, vgpr_arg = 0, vgpr_reg = 0; i < args->arg_count; i++) {
625 if (args->args[i].file != AC_ARG_VGPR) {
626 arg_count++;
627 continue;
628 }
629
630 if (!(ctx->program->config->spi_ps_input_addr & (1 << vgpr_arg))) {
631 args->args[i].skip = true;
632 } else {
633 args->args[i].offset = vgpr_reg;
634 vgpr_reg += args->args[i].size;
635 arg_count++;
636 }
637 vgpr_arg++;
638 }
639 }
640
641 aco_ptr<Pseudo_instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, arg_count + 1)};
642 for (unsigned i = 0, arg = 0; i < ctx->args->ac.arg_count; i++) {
643 if (ctx->args->ac.args[i].skip)
644 continue;
645
646 enum ac_arg_regfile file = ctx->args->ac.args[i].file;
647 unsigned size = ctx->args->ac.args[i].size;
648 unsigned reg = ctx->args->ac.args[i].offset;
649 RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
650 Temp dst = Temp{ctx->program->allocateId(), type};
651 ctx->arg_temps[i] = dst;
652 startpgm->definitions[arg] = Definition(dst);
653 startpgm->definitions[arg].setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
654 arg++;
655 }
656 startpgm->definitions[arg_count] = Definition{ctx->program->allocateId(), exec, ctx->program->lane_mask};
657 Pseudo_instruction *instr = startpgm.get();
658 ctx->block->instructions.push_back(std::move(startpgm));
659
660 /* Stash these in the program so that they can be accessed later when
661 * handling spilling.
662 */
663 ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets);
664 ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset);
665
666 return instr;
667 }
668
669 int
670 type_size(const struct glsl_type *type, bool bindless)
671 {
672 // TODO: don't we need type->std430_base_alignment() here?
673 return glsl_count_attribute_slots(type, false);
674 }
675
676 void
677 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
678 {
679 assert(glsl_type_is_vector_or_scalar(type));
680
681 uint32_t comp_size = glsl_type_is_boolean(type)
682 ? 4 : glsl_get_bit_size(type) / 8;
683 unsigned length = glsl_get_vector_elements(type);
684 *size = comp_size * length,
685 *align = comp_size;
686 }
687
688 static bool
689 mem_vectorize_callback(unsigned align, unsigned bit_size,
690 unsigned num_components, unsigned high_offset,
691 nir_intrinsic_instr *low, nir_intrinsic_instr *high)
692 {
693 if ((bit_size != 32 && bit_size != 64) || num_components > 4)
694 return false;
695
696 /* >128 bit loads are split except with SMEM */
697 if (bit_size * num_components > 128)
698 return false;
699
700 switch (low->intrinsic) {
701 case nir_intrinsic_load_global:
702 case nir_intrinsic_store_global:
703 return align % 4 == 0;
704 case nir_intrinsic_store_ssbo:
705 if (low->src[0].ssa->bit_size < 32 || high->src[0].ssa->bit_size < 32)
706 return false;
707 return align % 4 == 0;
708 case nir_intrinsic_load_ssbo:
709 if (low->dest.ssa.bit_size < 32 || high->dest.ssa.bit_size < 32)
710 return false;
711 case nir_intrinsic_load_ubo:
712 case nir_intrinsic_load_push_constant:
713 return align % 4 == 0;
714 case nir_intrinsic_load_deref:
715 case nir_intrinsic_store_deref:
716 assert(nir_src_as_deref(low->src[0])->mode == nir_var_mem_shared);
717 /* fallthrough */
718 case nir_intrinsic_load_shared:
719 case nir_intrinsic_store_shared:
720 if (bit_size * num_components > 64) /* 96 and 128 bit loads require 128 bit alignment and are split otherwise */
721 return align % 16 == 0;
722 else
723 return align % 4 == 0;
724 default:
725 return false;
726 }
727 return false;
728 }
729
730 void
731 setup_vs_output_info(isel_context *ctx, nir_shader *nir,
732 bool export_prim_id, bool export_clip_dists,
733 radv_vs_output_info *outinfo)
734 {
735 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
736 sizeof(outinfo->vs_output_param_offset));
737
738 outinfo->param_exports = 0;
739 int pos_written = 0x1;
740 if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer)
741 pos_written |= 1 << 1;
742
743 uint64_t mask = nir->info.outputs_written;
744 while (mask) {
745 int idx = u_bit_scan64(&mask);
746 if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER ||
747 idx == VARYING_SLOT_PRIMITIVE_ID || idx == VARYING_SLOT_VIEWPORT ||
748 ((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) {
749 if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
750 outinfo->vs_output_param_offset[idx] = outinfo->param_exports++;
751 }
752 }
753 if (outinfo->writes_layer &&
754 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) {
755 /* when ctx->options->key.has_multiview_view_index = true, the layer
756 * variable isn't declared in NIR and it's isel's job to get the layer */
757 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++;
758 }
759
760 if (export_prim_id) {
761 assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED);
762 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
763 }
764
765 ctx->export_clip_dists = export_clip_dists;
766 ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
767 ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
768
769 assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);
770
771 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
772 pos_written |= 1 << 2;
773 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
774 pos_written |= 1 << 3;
775
776 outinfo->pos_exports = util_bitcount(pos_written);
777 }
778
779 void
780 setup_vs_variables(isel_context *ctx, nir_shader *nir)
781 {
782 nir_foreach_variable(variable, &nir->inputs)
783 {
784 variable->data.driver_location = variable->data.location * 4;
785 }
786 nir_foreach_variable(variable, &nir->outputs)
787 {
788 if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs)
789 variable->data.driver_location = variable->data.location * 4;
790
791 assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX);
792 ctx->output_drv_loc_to_var_slot[MESA_SHADER_VERTEX][variable->data.driver_location / 4] = variable->data.location;
793 }
794
795 if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs) {
796 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
797 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
798 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
799 } else if (ctx->stage == vertex_ls) {
800 ctx->tcs_num_inputs = ctx->program->info->vs.num_linked_outputs;
801 }
802
803 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
804 /* We need to store the primitive IDs in LDS */
805 unsigned lds_size = ctx->program->info->ngg_info.esgs_ring_size;
806 ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
807 ctx->program->lds_alloc_granule;
808 }
809 }
810
811 void setup_gs_variables(isel_context *ctx, nir_shader *nir)
812 {
813 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
814 ctx->program->config->lds_size = ctx->program->info->gs_ring_info.lds_size; /* Already in units of the alloc granularity */
815
816 nir_foreach_variable(variable, &nir->outputs) {
817 variable->data.driver_location = variable->data.location * 4;
818 }
819
820 if (ctx->stage == vertex_geometry_gs)
821 ctx->program->info->gs.es_type = MESA_SHADER_VERTEX;
822 else if (ctx->stage == tess_eval_geometry_gs)
823 ctx->program->info->gs.es_type = MESA_SHADER_TESS_EVAL;
824 }
825
826 void
827 setup_tcs_info(isel_context *ctx, nir_shader *nir)
828 {
829 /* When the number of TCS input and output vertices are the same (typically 3):
830 * - There is an equal amount of LS and HS invocations
831 * - In case of merged LSHS shaders, the LS and HS halves of the shader
832 * always process the exact same vertex. We can use this knowledge to optimize them.
833 */
834 ctx->tcs_in_out_eq =
835 ctx->stage == vertex_tess_control_hs &&
836 ctx->args->options->key.tcs.input_vertices == nir->info.tess.tcs_vertices_out;
837
838 if (ctx->tcs_in_out_eq) {
839 ctx->tcs_temp_only_inputs = ~nir->info.tess.tcs_cross_invocation_inputs_read &
840 ~nir->info.inputs_read_indirectly &
841 nir->info.inputs_read;
842 }
843
844 ctx->tcs_num_inputs = ctx->program->info->tcs.num_linked_inputs;
845 ctx->tcs_num_outputs = ctx->program->info->tcs.num_linked_outputs;
846 ctx->tcs_num_patch_outputs = ctx->program->info->tcs.num_linked_patch_outputs;
847
848 ctx->tcs_num_patches = get_tcs_num_patches(
849 ctx->args->options->key.tcs.input_vertices,
850 nir->info.tess.tcs_vertices_out,
851 ctx->tcs_num_inputs,
852 ctx->tcs_num_outputs,
853 ctx->tcs_num_patch_outputs,
854 ctx->args->options->tess_offchip_block_dw_size,
855 ctx->args->options->chip_class,
856 ctx->args->options->family);
857 unsigned lds_size = calculate_tess_lds_size(
858 ctx->args->options->key.tcs.input_vertices,
859 nir->info.tess.tcs_vertices_out,
860 ctx->tcs_num_inputs,
861 ctx->tcs_num_patches,
862 ctx->tcs_num_outputs,
863 ctx->tcs_num_patch_outputs);
864
865 ctx->args->shader_info->tcs.num_patches = ctx->tcs_num_patches;
866 ctx->args->shader_info->tcs.lds_size = lds_size;
867 ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
868 ctx->program->lds_alloc_granule;
869 }
870
871 void
872 setup_tcs_variables(isel_context *ctx, nir_shader *nir)
873 {
874 nir_foreach_variable(variable, &nir->outputs) {
875 assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX);
876
877 if (variable->data.location == VARYING_SLOT_TESS_LEVEL_OUTER)
878 ctx->tcs_tess_lvl_out_loc = variable->data.driver_location * 4u;
879 else if (variable->data.location == VARYING_SLOT_TESS_LEVEL_INNER)
880 ctx->tcs_tess_lvl_in_loc = variable->data.driver_location * 4u;
881
882 if (variable->data.patch)
883 ctx->output_tcs_patch_drv_loc_to_var_slot[variable->data.driver_location / 4] = variable->data.location;
884 else
885 ctx->output_drv_loc_to_var_slot[MESA_SHADER_TESS_CTRL][variable->data.driver_location / 4] = variable->data.location;
886 }
887 }
888
889 void
890 setup_tes_variables(isel_context *ctx, nir_shader *nir)
891 {
892 ctx->tcs_num_patches = ctx->args->options->key.tes.num_patches;
893 ctx->tcs_num_outputs = ctx->program->info->tes.num_linked_inputs;
894
895 nir_foreach_variable(variable, &nir->outputs) {
896 if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs)
897 variable->data.driver_location = variable->data.location * 4;
898 }
899
900 if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs) {
901 radv_vs_output_info *outinfo = &ctx->program->info->tes.outinfo;
902 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
903 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
904 }
905 }
906
907 void
908 setup_variables(isel_context *ctx, nir_shader *nir)
909 {
910 switch (nir->info.stage) {
911 case MESA_SHADER_FRAGMENT: {
912 nir_foreach_variable(variable, &nir->outputs)
913 {
914 int idx = variable->data.location + variable->data.index;
915 variable->data.driver_location = idx * 4;
916 }
917 break;
918 }
919 case MESA_SHADER_COMPUTE: {
920 ctx->program->config->lds_size = (nir->info.cs.shared_size + ctx->program->lds_alloc_granule - 1) /
921 ctx->program->lds_alloc_granule;
922 break;
923 }
924 case MESA_SHADER_VERTEX: {
925 setup_vs_variables(ctx, nir);
926 break;
927 }
928 case MESA_SHADER_GEOMETRY: {
929 setup_gs_variables(ctx, nir);
930 break;
931 }
932 case MESA_SHADER_TESS_CTRL: {
933 setup_tcs_variables(ctx, nir);
934 break;
935 }
936 case MESA_SHADER_TESS_EVAL: {
937 setup_tes_variables(ctx, nir);
938 break;
939 }
940 default:
941 unreachable("Unhandled shader stage.");
942 }
943 }
944
945 unsigned
946 lower_bit_size_callback(const nir_alu_instr *alu, void *_)
947 {
948 if (nir_op_is_vec(alu->op))
949 return 0;
950
951 unsigned bit_size = alu->dest.dest.ssa.bit_size;
952 if (nir_alu_instr_is_comparison(alu))
953 bit_size = nir_src_bit_size(alu->src[0].src);
954
955 if (bit_size >= 32 || bit_size == 1)
956 return 0;
957
958 if (alu->op == nir_op_bcsel)
959 return 0;
960
961 const nir_op_info *info = &nir_op_infos[alu->op];
962
963 if (info->is_conversion)
964 return 0;
965
966 bool is_integer = info->output_type & (nir_type_uint | nir_type_int);
967 for (unsigned i = 0; is_integer && (i < info->num_inputs); i++)
968 is_integer = info->input_types[i] & (nir_type_uint | nir_type_int);
969
970 return is_integer ? 32 : 0;
971 }
972
973 void
974 setup_nir(isel_context *ctx, nir_shader *nir)
975 {
976 Program *program = ctx->program;
977
978 /* align and copy constant data */
979 while (program->constant_data.size() % 4u)
980 program->constant_data.push_back(0);
981 ctx->constant_data_offset = program->constant_data.size();
982 program->constant_data.insert(program->constant_data.end(),
983 (uint8_t*)nir->constant_data,
984 (uint8_t*)nir->constant_data + nir->constant_data_size);
985
986 /* the variable setup has to be done before lower_io / CSE */
987 setup_variables(ctx, nir);
988
989 /* optimize and lower memory operations */
990 if (nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global)) {
991 nir_opt_constant_folding(nir);
992 nir_opt_cse(nir);
993 }
994
995 bool lower_to_scalar = false;
996 bool lower_pack = false;
997 nir_variable_mode robust_modes = (nir_variable_mode)0;
998
999 if (ctx->options->robust_buffer_access) {
1000 robust_modes = (nir_variable_mode)(nir_var_mem_ubo |
1001 nir_var_mem_ssbo |
1002 nir_var_mem_global |
1003 nir_var_mem_push_const);
1004 }
1005
1006 if (nir_opt_load_store_vectorize(nir,
1007 (nir_variable_mode)(nir_var_mem_ssbo | nir_var_mem_ubo |
1008 nir_var_mem_push_const | nir_var_mem_shared |
1009 nir_var_mem_global),
1010 mem_vectorize_callback, robust_modes)) {
1011 lower_to_scalar = true;
1012 lower_pack = true;
1013 }
1014 if (nir->info.stage != MESA_SHADER_COMPUTE)
1015 nir_lower_io(nir, (nir_variable_mode)(nir_var_shader_in | nir_var_shader_out), type_size, (nir_lower_io_options)0);
1016
1017 if (lower_to_scalar)
1018 nir_lower_alu_to_scalar(nir, NULL, NULL);
1019 if (lower_pack)
1020 nir_lower_pack(nir);
1021
1022 /* lower ALU operations */
1023 // TODO: implement logic64 in aco, it's more effective for sgprs
1024 nir_lower_int64(nir, nir->options->lower_int64_options);
1025
1026 if (nir_lower_bit_size(nir, lower_bit_size_callback, NULL))
1027 nir_copy_prop(nir); /* allow nir_opt_idiv_const() to optimize lowered divisions */
1028
1029 nir_opt_idiv_const(nir, 32);
1030 nir_lower_idiv(nir, nir_lower_idiv_precise);
1031
1032 /* optimize the lowered ALU operations */
1033 bool more_algebraic = true;
1034 while (more_algebraic) {
1035 more_algebraic = false;
1036 NIR_PASS_V(nir, nir_copy_prop);
1037 NIR_PASS_V(nir, nir_opt_dce);
1038 NIR_PASS_V(nir, nir_opt_constant_folding);
1039 NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
1040 }
1041
1042 /* Do late algebraic optimization to turn add(a, neg(b)) back into
1043 * subs, then the mandatory cleanup after algebraic. Note that it may
1044 * produce fnegs, and if so then we need to keep running to squash
1045 * fneg(fneg(a)).
1046 */
1047 bool more_late_algebraic = true;
1048 while (more_late_algebraic) {
1049 more_late_algebraic = false;
1050 NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
1051 NIR_PASS_V(nir, nir_opt_constant_folding);
1052 NIR_PASS_V(nir, nir_copy_prop);
1053 NIR_PASS_V(nir, nir_opt_dce);
1054 NIR_PASS_V(nir, nir_opt_cse);
1055 }
1056
1057 /* cleanup passes */
1058 nir_lower_load_const_to_scalar(nir);
1059 nir_opt_shrink_load(nir);
1060 nir_move_options move_opts = (nir_move_options)(
1061 nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
1062 nir_move_comparisons | nir_move_copies);
1063 nir_opt_sink(nir, move_opts);
1064 nir_opt_move(nir, move_opts);
1065 nir_convert_to_lcssa(nir, true, false);
1066 nir_lower_phis_to_scalar(nir);
1067
1068 nir_function_impl *func = nir_shader_get_entrypoint(nir);
1069 nir_index_ssa_defs(func);
1070 }
1071
1072 void
1073 setup_xnack(Program *program)
1074 {
1075 switch (program->family) {
1076 /* GFX8 APUs */
1077 case CHIP_CARRIZO:
1078 case CHIP_STONEY:
1079 /* GFX9 APUS */
1080 case CHIP_RAVEN:
1081 case CHIP_RAVEN2:
1082 case CHIP_RENOIR:
1083 program->xnack_enabled = true;
1084 break;
1085 default:
1086 break;
1087 }
1088 }
1089
1090 isel_context
1091 setup_isel_context(Program* program,
1092 unsigned shader_count,
1093 struct nir_shader *const *shaders,
1094 ac_shader_config* config,
1095 struct radv_shader_args *args,
1096 bool is_gs_copy_shader)
1097 {
1098 program->stage = 0;
1099 for (unsigned i = 0; i < shader_count; i++) {
1100 switch (shaders[i]->info.stage) {
1101 case MESA_SHADER_VERTEX:
1102 program->stage |= sw_vs;
1103 break;
1104 case MESA_SHADER_TESS_CTRL:
1105 program->stage |= sw_tcs;
1106 break;
1107 case MESA_SHADER_TESS_EVAL:
1108 program->stage |= sw_tes;
1109 break;
1110 case MESA_SHADER_GEOMETRY:
1111 program->stage |= is_gs_copy_shader ? sw_gs_copy : sw_gs;
1112 break;
1113 case MESA_SHADER_FRAGMENT:
1114 program->stage |= sw_fs;
1115 break;
1116 case MESA_SHADER_COMPUTE:
1117 program->stage |= sw_cs;
1118 break;
1119 default:
1120 unreachable("Shader stage not implemented");
1121 }
1122 }
1123 bool gfx9_plus = args->options->chip_class >= GFX9;
1124 bool ngg = args->shader_info->is_ngg && args->options->chip_class >= GFX10;
1125 if (program->stage == sw_vs && args->shader_info->vs.as_es && !ngg)
1126 program->stage |= hw_es;
1127 else if (program->stage == sw_vs && !args->shader_info->vs.as_ls && !ngg)
1128 program->stage |= hw_vs;
1129 else if (program->stage == sw_vs && ngg)
1130 program->stage |= hw_ngg_gs; /* GFX10/NGG: VS without GS uses the HW GS stage */
1131 else if (program->stage == sw_gs)
1132 program->stage |= hw_gs;
1133 else if (program->stage == sw_fs)
1134 program->stage |= hw_fs;
1135 else if (program->stage == sw_cs)
1136 program->stage |= hw_cs;
1137 else if (program->stage == sw_gs_copy)
1138 program->stage |= hw_vs;
1139 else if (program->stage == (sw_vs | sw_gs) && gfx9_plus && !ngg)
1140 program->stage |= hw_gs;
1141 else if (program->stage == sw_vs && args->shader_info->vs.as_ls)
1142 program->stage |= hw_ls; /* GFX6-8: VS is a Local Shader, when tessellation is used */
1143 else if (program->stage == sw_tcs)
1144 program->stage |= hw_hs; /* GFX6-8: TCS is a Hull Shader */
1145 else if (program->stage == (sw_vs | sw_tcs))
1146 program->stage |= hw_hs; /* GFX9-10: VS+TCS merged into a Hull Shader */
1147 else if (program->stage == sw_tes && !args->shader_info->tes.as_es && !ngg)
1148 program->stage |= hw_vs; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */
1149 else if (program->stage == sw_tes && !args->shader_info->tes.as_es && ngg)
1150 program->stage |= hw_ngg_gs; /* GFX10/NGG: TES without GS uses the HW GS stage */
1151 else if (program->stage == sw_tes && args->shader_info->tes.as_es && !ngg)
1152 program->stage |= hw_es; /* GFX6-8: TES is an Export Shader */
1153 else if (program->stage == (sw_tes | sw_gs) && gfx9_plus && !ngg)
1154 program->stage |= hw_gs; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */
1155 else
1156 unreachable("Shader stage not implemented");
1157
1158 program->config = config;
1159 program->info = args->shader_info;
1160 program->chip_class = args->options->chip_class;
1161 program->family = args->options->family;
1162 program->wave_size = args->shader_info->wave_size;
1163 program->lane_mask = program->wave_size == 32 ? s1 : s2;
1164
1165 program->lds_alloc_granule = args->options->chip_class >= GFX7 ? 512 : 256;
1166 program->lds_limit = args->options->chip_class >= GFX7 ? 65536 : 32768;
1167 /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
1168 program->has_16bank_lds = args->options->family == CHIP_KABINI || args->options->family == CHIP_STONEY;
1169
1170 program->vgpr_limit = 256;
1171 program->vgpr_alloc_granule = 3;
1172
1173 if (args->options->chip_class >= GFX10) {
1174 program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */
1175 program->sgpr_alloc_granule = 127;
1176 program->sgpr_limit = 106;
1177 program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3;
1178 } else if (program->chip_class >= GFX8) {
1179 program->physical_sgprs = 800;
1180 program->sgpr_alloc_granule = 15;
1181 if (args->options->family == CHIP_TONGA || args->options->family == CHIP_ICELAND)
1182 program->sgpr_limit = 94; /* workaround hardware bug */
1183 else
1184 program->sgpr_limit = 102;
1185 } else {
1186 program->physical_sgprs = 512;
1187 program->sgpr_alloc_granule = 7;
1188 program->sgpr_limit = 104;
1189 }
1190
1191 isel_context ctx = {};
1192 ctx.program = program;
1193 ctx.args = args;
1194 ctx.options = args->options;
1195 ctx.stage = program->stage;
1196
1197 /* TODO: Check if we need to adjust min_waves for unknown workgroup sizes. */
1198 if (program->stage & (hw_vs | hw_fs)) {
1199 /* PS and legacy VS have separate waves, no workgroups */
1200 program->workgroup_size = program->wave_size;
1201 } else if (program->stage == compute_cs) {
1202 /* CS sets the workgroup size explicitly */
1203 unsigned* bsize = program->info->cs.block_size;
1204 program->workgroup_size = bsize[0] * bsize[1] * bsize[2];
1205 } else if ((program->stage & hw_es) || program->stage == geometry_gs) {
1206 /* Unmerged ESGS operate in workgroups if on-chip GS (LDS rings) are enabled on GFX7-8 (not implemented in Mesa) */
1207 program->workgroup_size = program->wave_size;
1208 } else if (program->stage & hw_gs) {
1209 /* If on-chip GS (LDS rings) are enabled on GFX9 or later, merged GS operates in workgroups */
1210 assert(program->chip_class >= GFX9);
1211 uint32_t es_verts_per_subgrp = G_028A44_ES_VERTS_PER_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl);
1212 uint32_t gs_instr_prims_in_subgrp = G_028A44_GS_INST_PRIMS_IN_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl);
1213 uint32_t workgroup_size = MAX2(es_verts_per_subgrp, gs_instr_prims_in_subgrp);
1214 program->workgroup_size = MAX2(MIN2(workgroup_size, 256), 1);
1215 } else if (program->stage == vertex_ls) {
1216 /* Unmerged LS operates in workgroups */
1217 program->workgroup_size = UINT_MAX; /* TODO: probably tcs_num_patches * tcs_vertices_in, but those are not plumbed to ACO for LS */
1218 } else if (program->stage == tess_control_hs) {
1219 /* Unmerged HS operates in workgroups, size is determined by the output vertices */
1220 setup_tcs_info(&ctx, shaders[0]);
1221 program->workgroup_size = ctx.tcs_num_patches * shaders[0]->info.tess.tcs_vertices_out;
1222 } else if (program->stage == vertex_tess_control_hs) {
1223 /* Merged LSHS operates in workgroups, but can still have a different number of LS and HS invocations */
1224 setup_tcs_info(&ctx, shaders[1]);
1225 program->workgroup_size = ctx.tcs_num_patches * MAX2(shaders[1]->info.tess.tcs_vertices_out, ctx.args->options->key.tcs.input_vertices);
1226 } else if (program->stage & hw_ngg_gs) {
1227 /* TODO: Calculate workgroup size of NGG shaders. */
1228 program->workgroup_size = UINT_MAX;
1229 } else {
1230 unreachable("Unsupported shader stage.");
1231 }
1232
1233 calc_min_waves(program);
1234 program->vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
1235 program->sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
1236
1237 unsigned scratch_size = 0;
1238 if (program->stage == gs_copy_vs) {
1239 assert(shader_count == 1);
1240 setup_vs_output_info(&ctx, shaders[0], false, true, &args->shader_info->vs.outinfo);
1241 } else {
1242 for (unsigned i = 0; i < shader_count; i++) {
1243 nir_shader *nir = shaders[i];
1244 setup_nir(&ctx, nir);
1245 }
1246
1247 for (unsigned i = 0; i < shader_count; i++)
1248 scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
1249 }
1250
1251 ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024);
1252
1253 ctx.block = ctx.program->create_and_insert_block();
1254 ctx.block->loop_nest_depth = 0;
1255 ctx.block->kind = block_kind_top_level;
1256
1257 setup_xnack(program);
1258
1259 return ctx;
1260 }
1261
1262 }