aco: Calculate workgroup size of legacy GS.
[mesa.git] / src / amd / compiler / aco_instruction_selection_setup.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <array>
26 #include <unordered_map>
27 #include "aco_ir.h"
28 #include "nir.h"
29 #include "nir_control_flow.h"
30 #include "vulkan/radv_shader.h"
31 #include "vulkan/radv_descriptor_set.h"
32 #include "vulkan/radv_shader_args.h"
33 #include "sid.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36
37 #include "util/u_math.h"
38
39 #define MAX_INLINE_PUSH_CONSTS 8
40
41 namespace aco {
42
43 struct shader_io_state {
44 uint8_t mask[VARYING_SLOT_MAX];
45 Temp temps[VARYING_SLOT_MAX * 4u];
46
47 shader_io_state() {
48 memset(mask, 0, sizeof(mask));
49 std::fill_n(temps, VARYING_SLOT_MAX * 4u, Temp(0, RegClass::v1));
50 }
51 };
52
53 struct isel_context {
54 const struct radv_nir_compiler_options *options;
55 struct radv_shader_args *args;
56 Program *program;
57 nir_shader *shader;
58 uint32_t constant_data_offset;
59 Block *block;
60 bool *divergent_vals;
61 std::unique_ptr<Temp[]> allocated;
62 std::unordered_map<unsigned, std::array<Temp,NIR_MAX_VEC_COMPONENTS>> allocated_vec;
63 Stage stage; /* Stage */
64 bool has_gfx10_wave64_bpermute = false;
65 struct {
66 bool has_branch;
67 uint16_t loop_nest_depth = 0;
68 struct {
69 unsigned header_idx;
70 Block* exit;
71 bool has_divergent_continue = false;
72 bool has_divergent_branch = false;
73 } parent_loop;
74 struct {
75 bool is_divergent = false;
76 } parent_if;
77 bool exec_potentially_empty_discard = false; /* set to false when loop_nest_depth==0 && parent_if.is_divergent==false */
78 uint16_t exec_potentially_empty_break_depth = UINT16_MAX;
79 /* Set to false when loop_nest_depth==exec_potentially_empty_break_depth
80 * and parent_if.is_divergent==false. Called _break but it's also used for
81 * loop continues. */
82 bool exec_potentially_empty_break = false;
83 std::unique_ptr<unsigned[]> nir_to_aco; /* NIR block index to ACO block index */
84 } cf_info;
85
86 Temp arg_temps[AC_MAX_ARGS];
87
88 /* FS inputs */
89 Temp persp_centroid, linear_centroid;
90
91 /* GS inputs */
92 Temp gs_wave_id;
93
94 /* gathered information */
95 uint64_t input_masks[MESA_SHADER_COMPUTE];
96 uint64_t output_masks[MESA_SHADER_COMPUTE];
97
98 /* VS output information */
99 bool export_clip_dists;
100 unsigned num_clip_distances;
101 unsigned num_cull_distances;
102
103 /* tessellation information */
104 unsigned tcs_tess_lvl_out_loc;
105 unsigned tcs_tess_lvl_in_loc;
106 uint64_t tcs_temp_only_inputs;
107 uint32_t tcs_num_inputs;
108 uint32_t tcs_num_outputs;
109 uint32_t tcs_num_patch_outputs;
110 uint32_t tcs_num_patches;
111 bool tcs_in_out_eq = false;
112
113 /* I/O information */
114 shader_io_state inputs;
115 shader_io_state outputs;
116 uint8_t output_drv_loc_to_var_slot[MESA_SHADER_COMPUTE][VARYING_SLOT_MAX];
117 uint8_t output_tcs_patch_drv_loc_to_var_slot[VARYING_SLOT_MAX];
118 };
119
120 Temp get_arg(isel_context *ctx, struct ac_arg arg)
121 {
122 assert(arg.used);
123 return ctx->arg_temps[arg.arg_index];
124 }
125
126 unsigned get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp)
127 {
128 switch (interp) {
129 case INTERP_MODE_SMOOTH:
130 case INTERP_MODE_NONE:
131 if (intrin == nir_intrinsic_load_barycentric_pixel ||
132 intrin == nir_intrinsic_load_barycentric_at_sample ||
133 intrin == nir_intrinsic_load_barycentric_at_offset)
134 return S_0286CC_PERSP_CENTER_ENA(1);
135 else if (intrin == nir_intrinsic_load_barycentric_centroid)
136 return S_0286CC_PERSP_CENTROID_ENA(1);
137 else if (intrin == nir_intrinsic_load_barycentric_sample)
138 return S_0286CC_PERSP_SAMPLE_ENA(1);
139 break;
140 case INTERP_MODE_NOPERSPECTIVE:
141 if (intrin == nir_intrinsic_load_barycentric_pixel)
142 return S_0286CC_LINEAR_CENTER_ENA(1);
143 else if (intrin == nir_intrinsic_load_barycentric_centroid)
144 return S_0286CC_LINEAR_CENTROID_ENA(1);
145 else if (intrin == nir_intrinsic_load_barycentric_sample)
146 return S_0286CC_LINEAR_SAMPLE_ENA(1);
147 break;
148 default:
149 break;
150 }
151 return 0;
152 }
153
154 /* If one side of a divergent IF ends in a branch and the other doesn't, we
155 * might have to emit the contents of the side without the branch at the merge
156 * block instead. This is so that we can use any SGPR live-out of the side
157 * without the branch without creating a linear phi in the invert or merge block. */
158 bool
159 sanitize_if(nir_function_impl *impl, bool *divergent, nir_if *nif)
160 {
161 //TODO: skip this if the condition is uniform and there are no divergent breaks/continues?
162
163 nir_block *then_block = nir_if_last_then_block(nif);
164 nir_block *else_block = nir_if_last_else_block(nif);
165 bool then_jump = nir_block_ends_in_jump(then_block) || nir_block_is_unreachable(then_block);
166 bool else_jump = nir_block_ends_in_jump(else_block) || nir_block_is_unreachable(else_block);
167 if (then_jump == else_jump)
168 return false;
169
170 /* If the continue from block is empty then return as there is nothing to
171 * move.
172 */
173 if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list))
174 return false;
175
176 /* Even though this if statement has a jump on one side, we may still have
177 * phis afterwards. Single-source phis can be produced by loop unrolling
178 * or dead control-flow passes and are perfectly legal. Run a quick phi
179 * removal on the block after the if to clean up any such phis.
180 */
181 nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
182
183 /* Finally, move the continue from branch after the if-statement. */
184 nir_block *last_continue_from_blk = else_jump ? then_block : else_block;
185 nir_block *first_continue_from_blk = else_jump ?
186 nir_if_first_then_block(nif) : nir_if_first_else_block(nif);
187
188 nir_cf_list tmp;
189 nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
190 nir_after_block(last_continue_from_blk));
191 nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
192
193 /* nir_cf_extract() invalidates dominance metadata, but it should still be
194 * correct because of the specific type of transformation we did. Block
195 * indices are not valid except for block_0's, which is all we care about for
196 * nir_block_is_unreachable(). */
197 impl->valid_metadata =
198 (nir_metadata)(impl->valid_metadata | nir_metadata_dominance | nir_metadata_block_index);
199
200 return true;
201 }
202
203 bool
204 sanitize_cf_list(nir_function_impl *impl, bool *divergent, struct exec_list *cf_list)
205 {
206 bool progress = false;
207 foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
208 switch (cf_node->type) {
209 case nir_cf_node_block:
210 break;
211 case nir_cf_node_if: {
212 nir_if *nif = nir_cf_node_as_if(cf_node);
213 progress |= sanitize_cf_list(impl, divergent, &nif->then_list);
214 progress |= sanitize_cf_list(impl, divergent, &nif->else_list);
215 progress |= sanitize_if(impl, divergent, nif);
216 break;
217 }
218 case nir_cf_node_loop: {
219 nir_loop *loop = nir_cf_node_as_loop(cf_node);
220 progress |= sanitize_cf_list(impl, divergent, &loop->body);
221 break;
222 }
223 case nir_cf_node_function:
224 unreachable("Invalid cf type");
225 }
226 }
227
228 return progress;
229 }
230
231 RegClass get_reg_class(isel_context *ctx, RegType type, unsigned components, unsigned bitsize)
232 {
233 if (bitsize == 1)
234 return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components);
235 else
236 return RegClass::get(type, components * bitsize / 8u);
237 }
238
239 void init_context(isel_context *ctx, nir_shader *shader)
240 {
241 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
242 unsigned lane_mask_size = ctx->program->lane_mask.size();
243
244 ctx->shader = shader;
245 ctx->divergent_vals = nir_divergence_analysis(shader, nir_divergence_view_index_uniform);
246
247 /* sanitize control flow */
248 nir_metadata_require(impl, nir_metadata_dominance);
249 sanitize_cf_list(impl, ctx->divergent_vals, &impl->body);
250 nir_metadata_preserve(impl, (nir_metadata)~nir_metadata_block_index);
251
252 /* we'll need this for isel */
253 nir_metadata_require(impl, nir_metadata_block_index);
254
255 if (!(ctx->stage & sw_gs_copy) && ctx->options->dump_preoptir) {
256 fprintf(stderr, "NIR shader before instruction selection:\n");
257 nir_print_shader(shader, stderr);
258 }
259
260 std::unique_ptr<Temp[]> allocated{new Temp[impl->ssa_alloc]()};
261
262 unsigned spi_ps_inputs = 0;
263
264 std::unique_ptr<unsigned[]> nir_to_aco{new unsigned[impl->num_blocks]()};
265
266 bool done = false;
267 while (!done) {
268 done = true;
269 nir_foreach_block(block, impl) {
270 nir_foreach_instr(instr, block) {
271 switch(instr->type) {
272 case nir_instr_type_alu: {
273 nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
274 RegType type = RegType::sgpr;
275 switch(alu_instr->op) {
276 case nir_op_fmul:
277 case nir_op_fadd:
278 case nir_op_fsub:
279 case nir_op_fmax:
280 case nir_op_fmin:
281 case nir_op_fmax3:
282 case nir_op_fmin3:
283 case nir_op_fmed3:
284 case nir_op_fneg:
285 case nir_op_fabs:
286 case nir_op_fsat:
287 case nir_op_fsign:
288 case nir_op_frcp:
289 case nir_op_frsq:
290 case nir_op_fsqrt:
291 case nir_op_fexp2:
292 case nir_op_flog2:
293 case nir_op_ffract:
294 case nir_op_ffloor:
295 case nir_op_fceil:
296 case nir_op_ftrunc:
297 case nir_op_fround_even:
298 case nir_op_fsin:
299 case nir_op_fcos:
300 case nir_op_f2f16:
301 case nir_op_f2f16_rtz:
302 case nir_op_f2f16_rtne:
303 case nir_op_f2f32:
304 case nir_op_f2f64:
305 case nir_op_u2f16:
306 case nir_op_u2f32:
307 case nir_op_u2f64:
308 case nir_op_i2f16:
309 case nir_op_i2f32:
310 case nir_op_i2f64:
311 case nir_op_pack_half_2x16:
312 case nir_op_unpack_half_2x16_split_x:
313 case nir_op_unpack_half_2x16_split_y:
314 case nir_op_fddx:
315 case nir_op_fddy:
316 case nir_op_fddx_fine:
317 case nir_op_fddy_fine:
318 case nir_op_fddx_coarse:
319 case nir_op_fddy_coarse:
320 case nir_op_fquantize2f16:
321 case nir_op_ldexp:
322 case nir_op_frexp_sig:
323 case nir_op_frexp_exp:
324 case nir_op_cube_face_index:
325 case nir_op_cube_face_coord:
326 type = RegType::vgpr;
327 break;
328 case nir_op_f2i16:
329 case nir_op_f2u16:
330 case nir_op_f2i32:
331 case nir_op_f2u32:
332 case nir_op_f2i64:
333 case nir_op_f2u64:
334 case nir_op_b2i32:
335 case nir_op_b2b32:
336 case nir_op_b2f16:
337 case nir_op_b2f32:
338 case nir_op_mov:
339 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
340 break;
341 case nir_op_bcsel:
342 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
343 /* fallthrough */
344 default:
345 for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
346 if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
347 type = RegType::vgpr;
348 }
349 break;
350 }
351
352 RegClass rc = get_reg_class(ctx, type, alu_instr->dest.dest.ssa.num_components, alu_instr->dest.dest.ssa.bit_size);
353 allocated[alu_instr->dest.dest.ssa.index] = Temp(0, rc);
354 break;
355 }
356 case nir_instr_type_load_const: {
357 unsigned num_components = nir_instr_as_load_const(instr)->def.num_components;
358 unsigned bit_size = nir_instr_as_load_const(instr)->def.bit_size;
359 RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
360 allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, rc);
361 break;
362 }
363 case nir_instr_type_intrinsic: {
364 nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
365 if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
366 break;
367 RegType type = RegType::sgpr;
368 switch(intrinsic->intrinsic) {
369 case nir_intrinsic_load_push_constant:
370 case nir_intrinsic_load_work_group_id:
371 case nir_intrinsic_load_num_work_groups:
372 case nir_intrinsic_load_subgroup_id:
373 case nir_intrinsic_load_num_subgroups:
374 case nir_intrinsic_load_first_vertex:
375 case nir_intrinsic_load_base_instance:
376 case nir_intrinsic_get_buffer_size:
377 case nir_intrinsic_vote_all:
378 case nir_intrinsic_vote_any:
379 case nir_intrinsic_read_first_invocation:
380 case nir_intrinsic_read_invocation:
381 case nir_intrinsic_first_invocation:
382 case nir_intrinsic_ballot:
383 type = RegType::sgpr;
384 break;
385 case nir_intrinsic_load_sample_id:
386 case nir_intrinsic_load_sample_mask_in:
387 case nir_intrinsic_load_input:
388 case nir_intrinsic_load_output:
389 case nir_intrinsic_load_input_vertex:
390 case nir_intrinsic_load_per_vertex_input:
391 case nir_intrinsic_load_per_vertex_output:
392 case nir_intrinsic_load_vertex_id:
393 case nir_intrinsic_load_vertex_id_zero_base:
394 case nir_intrinsic_load_barycentric_sample:
395 case nir_intrinsic_load_barycentric_pixel:
396 case nir_intrinsic_load_barycentric_model:
397 case nir_intrinsic_load_barycentric_centroid:
398 case nir_intrinsic_load_barycentric_at_sample:
399 case nir_intrinsic_load_barycentric_at_offset:
400 case nir_intrinsic_load_interpolated_input:
401 case nir_intrinsic_load_frag_coord:
402 case nir_intrinsic_load_sample_pos:
403 case nir_intrinsic_load_layer_id:
404 case nir_intrinsic_load_local_invocation_id:
405 case nir_intrinsic_load_local_invocation_index:
406 case nir_intrinsic_load_subgroup_invocation:
407 case nir_intrinsic_load_tess_coord:
408 case nir_intrinsic_write_invocation_amd:
409 case nir_intrinsic_mbcnt_amd:
410 case nir_intrinsic_load_instance_id:
411 case nir_intrinsic_ssbo_atomic_add:
412 case nir_intrinsic_ssbo_atomic_imin:
413 case nir_intrinsic_ssbo_atomic_umin:
414 case nir_intrinsic_ssbo_atomic_imax:
415 case nir_intrinsic_ssbo_atomic_umax:
416 case nir_intrinsic_ssbo_atomic_and:
417 case nir_intrinsic_ssbo_atomic_or:
418 case nir_intrinsic_ssbo_atomic_xor:
419 case nir_intrinsic_ssbo_atomic_exchange:
420 case nir_intrinsic_ssbo_atomic_comp_swap:
421 case nir_intrinsic_global_atomic_add:
422 case nir_intrinsic_global_atomic_imin:
423 case nir_intrinsic_global_atomic_umin:
424 case nir_intrinsic_global_atomic_imax:
425 case nir_intrinsic_global_atomic_umax:
426 case nir_intrinsic_global_atomic_and:
427 case nir_intrinsic_global_atomic_or:
428 case nir_intrinsic_global_atomic_xor:
429 case nir_intrinsic_global_atomic_exchange:
430 case nir_intrinsic_global_atomic_comp_swap:
431 case nir_intrinsic_image_deref_atomic_add:
432 case nir_intrinsic_image_deref_atomic_umin:
433 case nir_intrinsic_image_deref_atomic_imin:
434 case nir_intrinsic_image_deref_atomic_umax:
435 case nir_intrinsic_image_deref_atomic_imax:
436 case nir_intrinsic_image_deref_atomic_and:
437 case nir_intrinsic_image_deref_atomic_or:
438 case nir_intrinsic_image_deref_atomic_xor:
439 case nir_intrinsic_image_deref_atomic_exchange:
440 case nir_intrinsic_image_deref_atomic_comp_swap:
441 case nir_intrinsic_image_deref_size:
442 case nir_intrinsic_shared_atomic_add:
443 case nir_intrinsic_shared_atomic_imin:
444 case nir_intrinsic_shared_atomic_umin:
445 case nir_intrinsic_shared_atomic_imax:
446 case nir_intrinsic_shared_atomic_umax:
447 case nir_intrinsic_shared_atomic_and:
448 case nir_intrinsic_shared_atomic_or:
449 case nir_intrinsic_shared_atomic_xor:
450 case nir_intrinsic_shared_atomic_exchange:
451 case nir_intrinsic_shared_atomic_comp_swap:
452 case nir_intrinsic_load_scratch:
453 case nir_intrinsic_load_invocation_id:
454 case nir_intrinsic_load_primitive_id:
455 type = RegType::vgpr;
456 break;
457 case nir_intrinsic_shuffle:
458 case nir_intrinsic_quad_broadcast:
459 case nir_intrinsic_quad_swap_horizontal:
460 case nir_intrinsic_quad_swap_vertical:
461 case nir_intrinsic_quad_swap_diagonal:
462 case nir_intrinsic_quad_swizzle_amd:
463 case nir_intrinsic_masked_swizzle_amd:
464 case nir_intrinsic_inclusive_scan:
465 case nir_intrinsic_exclusive_scan:
466 case nir_intrinsic_reduce:
467 case nir_intrinsic_load_ubo:
468 case nir_intrinsic_load_ssbo:
469 case nir_intrinsic_load_global:
470 case nir_intrinsic_vulkan_resource_index:
471 case nir_intrinsic_load_shared:
472 type = ctx->divergent_vals[intrinsic->dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
473 break;
474 case nir_intrinsic_load_view_index:
475 type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
476 break;
477 default:
478 for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) {
479 if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
480 type = RegType::vgpr;
481 }
482 break;
483 }
484 RegClass rc = get_reg_class(ctx, type, intrinsic->dest.ssa.num_components, intrinsic->dest.ssa.bit_size);
485 allocated[intrinsic->dest.ssa.index] = Temp(0, rc);
486
487 switch(intrinsic->intrinsic) {
488 case nir_intrinsic_load_barycentric_sample:
489 case nir_intrinsic_load_barycentric_pixel:
490 case nir_intrinsic_load_barycentric_centroid:
491 case nir_intrinsic_load_barycentric_at_sample:
492 case nir_intrinsic_load_barycentric_at_offset: {
493 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic);
494 spi_ps_inputs |= get_interp_input(intrinsic->intrinsic, mode);
495 break;
496 }
497 case nir_intrinsic_load_barycentric_model:
498 spi_ps_inputs |= S_0286CC_PERSP_PULL_MODEL_ENA(1);
499 break;
500 case nir_intrinsic_load_front_face:
501 spi_ps_inputs |= S_0286CC_FRONT_FACE_ENA(1);
502 break;
503 case nir_intrinsic_load_frag_coord:
504 case nir_intrinsic_load_sample_pos: {
505 uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa);
506 for (unsigned i = 0; i < 4; i++) {
507 if (mask & (1 << i))
508 spi_ps_inputs |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
509
510 }
511 break;
512 }
513 case nir_intrinsic_load_sample_id:
514 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
515 break;
516 case nir_intrinsic_load_sample_mask_in:
517 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
518 spi_ps_inputs |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
519 break;
520 default:
521 break;
522 }
523 break;
524 }
525 case nir_instr_type_tex: {
526 nir_tex_instr* tex = nir_instr_as_tex(instr);
527 unsigned size = tex->dest.ssa.num_components;
528
529 if (tex->dest.ssa.bit_size == 64)
530 size *= 2;
531 if (tex->op == nir_texop_texture_samples)
532 assert(!ctx->divergent_vals[tex->dest.ssa.index]);
533 if (ctx->divergent_vals[tex->dest.ssa.index])
534 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size));
535 else
536 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size));
537 break;
538 }
539 case nir_instr_type_parallel_copy: {
540 nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) {
541 allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index];
542 }
543 break;
544 }
545 case nir_instr_type_ssa_undef: {
546 unsigned num_components = nir_instr_as_ssa_undef(instr)->def.num_components;
547 unsigned bit_size = nir_instr_as_ssa_undef(instr)->def.bit_size;
548 RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
549 allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, rc);
550 break;
551 }
552 case nir_instr_type_phi: {
553 nir_phi_instr* phi = nir_instr_as_phi(instr);
554 RegType type;
555 unsigned size = phi->dest.ssa.num_components;
556
557 if (phi->dest.ssa.bit_size == 1) {
558 assert(size == 1 && "multiple components not yet supported on boolean phis.");
559 type = RegType::sgpr;
560 size *= lane_mask_size;
561 allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size));
562 break;
563 }
564
565 if (ctx->divergent_vals[phi->dest.ssa.index]) {
566 type = RegType::vgpr;
567 } else {
568 type = RegType::sgpr;
569 nir_foreach_phi_src (src, phi) {
570 if (allocated[src->src.ssa->index].type() == RegType::vgpr)
571 type = RegType::vgpr;
572 if (allocated[src->src.ssa->index].type() == RegType::none)
573 done = false;
574 }
575 }
576
577 RegClass rc = get_reg_class(ctx, type, phi->dest.ssa.num_components, phi->dest.ssa.bit_size);
578 if (rc != allocated[phi->dest.ssa.index].regClass()) {
579 done = false;
580 } else {
581 nir_foreach_phi_src(src, phi)
582 assert(allocated[src->src.ssa->index].size() == rc.size());
583 }
584 allocated[phi->dest.ssa.index] = Temp(0, rc);
585 break;
586 }
587 default:
588 break;
589 }
590 }
591 }
592 }
593
594 if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_inputs)) {
595 /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
596 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
597 }
598
599 if (!(spi_ps_inputs & 0x7F)) {
600 /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
601 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
602 }
603
604 ctx->program->config->spi_ps_input_ena = spi_ps_inputs;
605 ctx->program->config->spi_ps_input_addr = spi_ps_inputs;
606
607 for (unsigned i = 0; i < impl->ssa_alloc; i++)
608 allocated[i] = Temp(ctx->program->allocateId(), allocated[i].regClass());
609
610 ctx->allocated.reset(allocated.release());
611 ctx->cf_info.nir_to_aco.reset(nir_to_aco.release());
612 }
613
614 Pseudo_instruction *add_startpgm(struct isel_context *ctx)
615 {
616 unsigned arg_count = ctx->args->ac.arg_count;
617 if (ctx->stage == fragment_fs) {
618 /* LLVM optimizes away unused FS inputs and computes spi_ps_input_addr
619 * itself and then communicates the results back via the ELF binary.
620 * Mirror what LLVM does by re-mapping the VGPR arguments here.
621 *
622 * TODO: If we made the FS input scanning code into a separate pass that
623 * could run before argument setup, then this wouldn't be necessary
624 * anymore.
625 */
626 struct ac_shader_args *args = &ctx->args->ac;
627 arg_count = 0;
628 for (unsigned i = 0, vgpr_arg = 0, vgpr_reg = 0; i < args->arg_count; i++) {
629 if (args->args[i].file != AC_ARG_VGPR) {
630 arg_count++;
631 continue;
632 }
633
634 if (!(ctx->program->config->spi_ps_input_addr & (1 << vgpr_arg))) {
635 args->args[i].skip = true;
636 } else {
637 args->args[i].offset = vgpr_reg;
638 vgpr_reg += args->args[i].size;
639 arg_count++;
640 }
641 vgpr_arg++;
642 }
643 }
644
645 aco_ptr<Pseudo_instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, arg_count + 1)};
646 for (unsigned i = 0, arg = 0; i < ctx->args->ac.arg_count; i++) {
647 if (ctx->args->ac.args[i].skip)
648 continue;
649
650 enum ac_arg_regfile file = ctx->args->ac.args[i].file;
651 unsigned size = ctx->args->ac.args[i].size;
652 unsigned reg = ctx->args->ac.args[i].offset;
653 RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
654 Temp dst = Temp{ctx->program->allocateId(), type};
655 ctx->arg_temps[i] = dst;
656 startpgm->definitions[arg] = Definition(dst);
657 startpgm->definitions[arg].setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
658 arg++;
659 }
660 startpgm->definitions[arg_count] = Definition{ctx->program->allocateId(), exec, ctx->program->lane_mask};
661 Pseudo_instruction *instr = startpgm.get();
662 ctx->block->instructions.push_back(std::move(startpgm));
663
664 /* Stash these in the program so that they can be accessed later when
665 * handling spilling.
666 */
667 ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets);
668 ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset);
669
670 return instr;
671 }
672
673 int
674 type_size(const struct glsl_type *type, bool bindless)
675 {
676 // TODO: don't we need type->std430_base_alignment() here?
677 return glsl_count_attribute_slots(type, false);
678 }
679
680 void
681 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
682 {
683 assert(glsl_type_is_vector_or_scalar(type));
684
685 uint32_t comp_size = glsl_type_is_boolean(type)
686 ? 4 : glsl_get_bit_size(type) / 8;
687 unsigned length = glsl_get_vector_elements(type);
688 *size = comp_size * length,
689 *align = comp_size;
690 }
691
692 static bool
693 mem_vectorize_callback(unsigned align, unsigned bit_size,
694 unsigned num_components, unsigned high_offset,
695 nir_intrinsic_instr *low, nir_intrinsic_instr *high)
696 {
697 if ((bit_size != 32 && bit_size != 64) || num_components > 4)
698 return false;
699
700 /* >128 bit loads are split except with SMEM */
701 if (bit_size * num_components > 128)
702 return false;
703
704 switch (low->intrinsic) {
705 case nir_intrinsic_load_global:
706 case nir_intrinsic_store_global:
707 return align % 4 == 0;
708 case nir_intrinsic_store_ssbo:
709 if (low->src[0].ssa->bit_size < 32 || high->src[0].ssa->bit_size < 32)
710 return false;
711 return align % 4 == 0;
712 case nir_intrinsic_load_ssbo:
713 if (low->dest.ssa.bit_size < 32 || high->dest.ssa.bit_size < 32)
714 return false;
715 case nir_intrinsic_load_ubo:
716 case nir_intrinsic_load_push_constant:
717 return align % 4 == 0;
718 case nir_intrinsic_load_deref:
719 case nir_intrinsic_store_deref:
720 assert(nir_src_as_deref(low->src[0])->mode == nir_var_mem_shared);
721 /* fallthrough */
722 case nir_intrinsic_load_shared:
723 case nir_intrinsic_store_shared:
724 if (bit_size * num_components > 64) /* 96 and 128 bit loads require 128 bit alignment and are split otherwise */
725 return align % 16 == 0;
726 else
727 return align % 4 == 0;
728 default:
729 return false;
730 }
731 return false;
732 }
733
734 void
735 setup_vs_output_info(isel_context *ctx, nir_shader *nir,
736 bool export_prim_id, bool export_clip_dists,
737 radv_vs_output_info *outinfo)
738 {
739 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
740 sizeof(outinfo->vs_output_param_offset));
741
742 outinfo->param_exports = 0;
743 int pos_written = 0x1;
744 if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer)
745 pos_written |= 1 << 1;
746
747 uint64_t mask = ctx->output_masks[nir->info.stage];
748 while (mask) {
749 int idx = u_bit_scan64(&mask);
750 if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER ||
751 idx == VARYING_SLOT_PRIMITIVE_ID || idx == VARYING_SLOT_VIEWPORT ||
752 ((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) {
753 if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
754 outinfo->vs_output_param_offset[idx] = outinfo->param_exports++;
755 }
756 }
757 if (outinfo->writes_layer &&
758 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) {
759 /* when ctx->options->key.has_multiview_view_index = true, the layer
760 * variable isn't declared in NIR and it's isel's job to get the layer */
761 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++;
762 }
763
764 if (export_prim_id) {
765 assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED);
766 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
767 }
768
769 ctx->export_clip_dists = export_clip_dists;
770 ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
771 ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
772
773 assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);
774
775 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
776 pos_written |= 1 << 2;
777 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
778 pos_written |= 1 << 3;
779
780 outinfo->pos_exports = util_bitcount(pos_written);
781 }
782
783 void
784 setup_vs_variables(isel_context *ctx, nir_shader *nir)
785 {
786 nir_foreach_variable(variable, &nir->inputs)
787 {
788 variable->data.driver_location = variable->data.location * 4;
789 }
790 nir_foreach_variable(variable, &nir->outputs)
791 {
792 if (ctx->stage == vertex_geometry_gs)
793 variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
794 else if (ctx->stage == vertex_es ||
795 ctx->stage == vertex_ls ||
796 ctx->stage == vertex_tess_control_hs)
797 // TODO: make this more compact
798 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
799 else if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs)
800 variable->data.driver_location = variable->data.location * 4;
801 else
802 unreachable("Unsupported VS stage");
803
804 assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX);
805 ctx->output_drv_loc_to_var_slot[MESA_SHADER_VERTEX][variable->data.driver_location / 4] = variable->data.location;
806 }
807
808 if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs) {
809 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
810 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
811 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
812 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == vertex_es) {
813 /* TODO: radv_nir_shader_info_pass() already sets this but it's larger
814 * than it needs to be in order to set it better, we have to improve
815 * radv_nir_shader_info_pass() because gfx9_get_gs_info() uses
816 * esgs_itemsize and has to be done before compilation
817 */
818 /* radv_es_output_info *outinfo = &ctx->program->info->vs.es_info;
819 outinfo->esgs_itemsize = util_bitcount64(ctx->output_masks[nir->info.stage]) * 16u; */
820 } else if (ctx->stage == vertex_ls) {
821 ctx->tcs_num_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
822 }
823
824 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
825 /* We need to store the primitive IDs in LDS */
826 unsigned lds_size = ctx->program->info->ngg_info.esgs_ring_size;
827 ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
828 ctx->program->lds_alloc_granule;
829 }
830 }
831
832 void setup_gs_variables(isel_context *ctx, nir_shader *nir)
833 {
834 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
835 nir_foreach_variable(variable, &nir->inputs) {
836 variable->data.driver_location = util_bitcount64(ctx->input_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
837 }
838 } else if (ctx->stage == geometry_gs) {
839 //TODO: make this more compact
840 nir_foreach_variable(variable, &nir->inputs) {
841 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot)variable->data.location) * 4;
842 }
843 } else {
844 unreachable("Unsupported GS stage.");
845 }
846
847 nir_foreach_variable(variable, &nir->outputs) {
848 variable->data.driver_location = variable->data.location * 4;
849 }
850
851 if (ctx->stage == vertex_geometry_gs)
852 ctx->program->info->gs.es_type = MESA_SHADER_VERTEX;
853 else if (ctx->stage == tess_eval_geometry_gs)
854 ctx->program->info->gs.es_type = MESA_SHADER_TESS_EVAL;
855 }
856
857 void
858 setup_tcs_info(isel_context *ctx, nir_shader *nir)
859 {
860 /* When the number of TCS input and output vertices are the same (typically 3):
861 * - There is an equal amount of LS and HS invocations
862 * - In case of merged LSHS shaders, the LS and HS halves of the shader
863 * always process the exact same vertex. We can use this knowledge to optimize them.
864 */
865 ctx->tcs_in_out_eq =
866 ctx->stage == vertex_tess_control_hs &&
867 ctx->args->options->key.tcs.input_vertices == nir->info.tess.tcs_vertices_out;
868
869 if (ctx->stage == tess_control_hs) {
870 ctx->tcs_num_inputs = ctx->args->options->key.tcs.num_inputs;
871 } else if (ctx->stage == vertex_tess_control_hs) {
872 ctx->tcs_num_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
873
874 if (ctx->tcs_in_out_eq) {
875 ctx->tcs_temp_only_inputs = ~nir->info.tess.tcs_cross_invocation_inputs_read &
876 ~nir->info.inputs_read_indirectly &
877 nir->info.inputs_read;
878 }
879 } else {
880 unreachable("Unsupported TCS shader stage");
881 }
882
883 ctx->tcs_num_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
884 ctx->tcs_num_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
885
886 ctx->tcs_num_patches = get_tcs_num_patches(
887 ctx->args->options->key.tcs.input_vertices,
888 nir->info.tess.tcs_vertices_out,
889 ctx->tcs_num_inputs,
890 ctx->tcs_num_outputs,
891 ctx->tcs_num_patch_outputs,
892 ctx->args->options->tess_offchip_block_dw_size,
893 ctx->args->options->chip_class,
894 ctx->args->options->family);
895 unsigned lds_size = calculate_tess_lds_size(
896 ctx->args->options->key.tcs.input_vertices,
897 nir->info.tess.tcs_vertices_out,
898 ctx->tcs_num_inputs,
899 ctx->tcs_num_patches,
900 ctx->tcs_num_outputs,
901 ctx->tcs_num_patch_outputs);
902
903 ctx->args->shader_info->tcs.num_patches = ctx->tcs_num_patches;
904 ctx->args->shader_info->tcs.lds_size = lds_size;
905 ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
906 ctx->program->lds_alloc_granule;
907 }
908
909 void
910 setup_tcs_variables(isel_context *ctx, nir_shader *nir)
911 {
912 nir_foreach_variable(variable, &nir->inputs) {
913 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
914 }
915
916 nir_foreach_variable(variable, &nir->outputs) {
917 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
918 assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX);
919
920 if (variable->data.patch)
921 ctx->output_tcs_patch_drv_loc_to_var_slot[variable->data.driver_location / 4] = variable->data.location;
922 else
923 ctx->output_drv_loc_to_var_slot[MESA_SHADER_TESS_CTRL][variable->data.driver_location / 4] = variable->data.location;
924 }
925
926 ctx->tcs_tess_lvl_out_loc = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER) * 16u;
927 ctx->tcs_tess_lvl_in_loc = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER) * 16u;
928 }
929
930 void
931 setup_tes_variables(isel_context *ctx, nir_shader *nir)
932 {
933 ctx->tcs_num_patches = ctx->args->options->key.tes.num_patches;
934 ctx->tcs_num_outputs = ctx->args->options->key.tes.tcs_num_outputs;
935
936 nir_foreach_variable(variable, &nir->inputs) {
937 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
938 }
939
940 nir_foreach_variable(variable, &nir->outputs) {
941 if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs)
942 variable->data.driver_location = variable->data.location * 4;
943 else if (ctx->stage == tess_eval_es)
944 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
945 else if (ctx->stage == tess_eval_geometry_gs)
946 variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
947 else
948 unreachable("Unsupported TES shader stage");
949 }
950
951 if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs) {
952 radv_vs_output_info *outinfo = &ctx->program->info->tes.outinfo;
953 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
954 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
955 }
956 }
957
958 void
959 setup_variables(isel_context *ctx, nir_shader *nir)
960 {
961 switch (nir->info.stage) {
962 case MESA_SHADER_FRAGMENT: {
963 nir_foreach_variable(variable, &nir->outputs)
964 {
965 int idx = variable->data.location + variable->data.index;
966 variable->data.driver_location = idx * 4;
967 }
968 break;
969 }
970 case MESA_SHADER_COMPUTE: {
971 ctx->program->config->lds_size = (nir->info.cs.shared_size + ctx->program->lds_alloc_granule - 1) /
972 ctx->program->lds_alloc_granule;
973 break;
974 }
975 case MESA_SHADER_VERTEX: {
976 setup_vs_variables(ctx, nir);
977 break;
978 }
979 case MESA_SHADER_GEOMETRY: {
980 setup_gs_variables(ctx, nir);
981 break;
982 }
983 case MESA_SHADER_TESS_CTRL: {
984 setup_tcs_variables(ctx, nir);
985 break;
986 }
987 case MESA_SHADER_TESS_EVAL: {
988 setup_tes_variables(ctx, nir);
989 break;
990 }
991 default:
992 unreachable("Unhandled shader stage.");
993 }
994 }
995
996 void
997 get_io_masks(isel_context *ctx, unsigned shader_count, struct nir_shader *const *shaders)
998 {
999 for (unsigned i = 0; i < shader_count; i++) {
1000 nir_shader *nir = shaders[i];
1001 if (nir->info.stage == MESA_SHADER_COMPUTE)
1002 continue;
1003
1004 uint64_t output_mask = 0;
1005 nir_foreach_variable(variable, &nir->outputs) {
1006 const glsl_type *type = variable->type;
1007 if (nir_is_per_vertex_io(variable, nir->info.stage))
1008 type = type->fields.array;
1009 unsigned slots = type->count_attribute_slots(false);
1010 if (variable->data.compact) {
1011 unsigned component_count = variable->data.location_frac + type->length;
1012 slots = (component_count + 3) / 4;
1013 }
1014 output_mask |= ((1ull << slots) - 1) << variable->data.location;
1015 }
1016
1017 uint64_t input_mask = 0;
1018 nir_foreach_variable(variable, &nir->inputs) {
1019 const glsl_type *type = variable->type;
1020 if (nir_is_per_vertex_io(variable, nir->info.stage))
1021 type = type->fields.array;
1022 unsigned slots = type->count_attribute_slots(false);
1023 if (variable->data.compact) {
1024 unsigned component_count = variable->data.location_frac + type->length;
1025 slots = (component_count + 3) / 4;
1026 }
1027 input_mask |= ((1ull << slots) - 1) << variable->data.location;
1028 }
1029
1030 ctx->output_masks[nir->info.stage] |= output_mask;
1031 if (i + 1 < shader_count)
1032 ctx->input_masks[shaders[i + 1]->info.stage] |= output_mask;
1033
1034 ctx->input_masks[nir->info.stage] |= input_mask;
1035 if (i)
1036 ctx->output_masks[shaders[i - 1]->info.stage] |= input_mask;
1037 }
1038 }
1039
1040 unsigned
1041 lower_bit_size_callback(const nir_alu_instr *alu, void *_)
1042 {
1043 if (nir_op_is_vec(alu->op))
1044 return 0;
1045
1046 unsigned bit_size = alu->dest.dest.ssa.bit_size;
1047 if (nir_alu_instr_is_comparison(alu))
1048 bit_size = nir_src_bit_size(alu->src[0].src);
1049
1050 if (bit_size >= 32 || bit_size == 1)
1051 return 0;
1052
1053 if (alu->op == nir_op_bcsel)
1054 return 0;
1055
1056 const nir_op_info *info = &nir_op_infos[alu->op];
1057
1058 if (info->is_conversion)
1059 return 0;
1060
1061 bool is_integer = info->output_type & (nir_type_uint | nir_type_int);
1062 for (unsigned i = 0; is_integer && (i < info->num_inputs); i++)
1063 is_integer = info->input_types[i] & (nir_type_uint | nir_type_int);
1064
1065 return is_integer ? 32 : 0;
1066 }
1067
1068 void
1069 setup_nir(isel_context *ctx, nir_shader *nir)
1070 {
1071 Program *program = ctx->program;
1072
1073 /* align and copy constant data */
1074 while (program->constant_data.size() % 4u)
1075 program->constant_data.push_back(0);
1076 ctx->constant_data_offset = program->constant_data.size();
1077 program->constant_data.insert(program->constant_data.end(),
1078 (uint8_t*)nir->constant_data,
1079 (uint8_t*)nir->constant_data + nir->constant_data_size);
1080
1081 /* the variable setup has to be done before lower_io / CSE */
1082 setup_variables(ctx, nir);
1083
1084 /* optimize and lower memory operations */
1085 if (nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global)) {
1086 nir_opt_constant_folding(nir);
1087 nir_opt_cse(nir);
1088 }
1089
1090 bool lower_to_scalar = false;
1091 bool lower_pack = false;
1092 if (nir_opt_load_store_vectorize(nir,
1093 (nir_variable_mode)(nir_var_mem_ssbo | nir_var_mem_ubo |
1094 nir_var_mem_push_const | nir_var_mem_shared |
1095 nir_var_mem_global),
1096 mem_vectorize_callback)) {
1097 lower_to_scalar = true;
1098 lower_pack = true;
1099 }
1100 if (nir->info.stage != MESA_SHADER_COMPUTE)
1101 nir_lower_io(nir, (nir_variable_mode)(nir_var_shader_in | nir_var_shader_out), type_size, (nir_lower_io_options)0);
1102
1103 if (lower_to_scalar)
1104 nir_lower_alu_to_scalar(nir, NULL, NULL);
1105 if (lower_pack)
1106 nir_lower_pack(nir);
1107
1108 /* lower ALU operations */
1109 // TODO: implement logic64 in aco, it's more effective for sgprs
1110 nir_lower_int64(nir, nir->options->lower_int64_options);
1111
1112 if (nir_lower_bit_size(nir, lower_bit_size_callback, NULL))
1113 nir_copy_prop(nir); /* allow nir_opt_idiv_const() to optimize lowered divisions */
1114
1115 nir_opt_idiv_const(nir, 32);
1116 nir_lower_idiv(nir, nir_lower_idiv_precise);
1117
1118 /* optimize the lowered ALU operations */
1119 bool more_algebraic = true;
1120 while (more_algebraic) {
1121 more_algebraic = false;
1122 NIR_PASS_V(nir, nir_copy_prop);
1123 NIR_PASS_V(nir, nir_opt_dce);
1124 NIR_PASS_V(nir, nir_opt_constant_folding);
1125 NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
1126 }
1127
1128 /* Do late algebraic optimization to turn add(a, neg(b)) back into
1129 * subs, then the mandatory cleanup after algebraic. Note that it may
1130 * produce fnegs, and if so then we need to keep running to squash
1131 * fneg(fneg(a)).
1132 */
1133 bool more_late_algebraic = true;
1134 while (more_late_algebraic) {
1135 more_late_algebraic = false;
1136 NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
1137 NIR_PASS_V(nir, nir_opt_constant_folding);
1138 NIR_PASS_V(nir, nir_copy_prop);
1139 NIR_PASS_V(nir, nir_opt_dce);
1140 NIR_PASS_V(nir, nir_opt_cse);
1141 }
1142
1143 /* cleanup passes */
1144 nir_lower_load_const_to_scalar(nir);
1145 nir_opt_shrink_load(nir);
1146 nir_move_options move_opts = (nir_move_options)(
1147 nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
1148 nir_move_comparisons | nir_move_copies);
1149 nir_opt_sink(nir, move_opts);
1150 nir_opt_move(nir, move_opts);
1151 nir_convert_to_lcssa(nir, true, false);
1152 nir_lower_phis_to_scalar(nir);
1153
1154 nir_function_impl *func = nir_shader_get_entrypoint(nir);
1155 nir_index_ssa_defs(func);
1156 }
1157
1158 void
1159 setup_xnack(Program *program)
1160 {
1161 switch (program->family) {
1162 /* GFX8 APUs */
1163 case CHIP_CARRIZO:
1164 case CHIP_STONEY:
1165 /* GFX9 APUS */
1166 case CHIP_RAVEN:
1167 case CHIP_RAVEN2:
1168 case CHIP_RENOIR:
1169 program->xnack_enabled = true;
1170 break;
1171 default:
1172 break;
1173 }
1174 }
1175
1176 isel_context
1177 setup_isel_context(Program* program,
1178 unsigned shader_count,
1179 struct nir_shader *const *shaders,
1180 ac_shader_config* config,
1181 struct radv_shader_args *args,
1182 bool is_gs_copy_shader)
1183 {
1184 program->stage = 0;
1185 for (unsigned i = 0; i < shader_count; i++) {
1186 switch (shaders[i]->info.stage) {
1187 case MESA_SHADER_VERTEX:
1188 program->stage |= sw_vs;
1189 break;
1190 case MESA_SHADER_TESS_CTRL:
1191 program->stage |= sw_tcs;
1192 break;
1193 case MESA_SHADER_TESS_EVAL:
1194 program->stage |= sw_tes;
1195 break;
1196 case MESA_SHADER_GEOMETRY:
1197 program->stage |= is_gs_copy_shader ? sw_gs_copy : sw_gs;
1198 break;
1199 case MESA_SHADER_FRAGMENT:
1200 program->stage |= sw_fs;
1201 break;
1202 case MESA_SHADER_COMPUTE:
1203 program->stage |= sw_cs;
1204 break;
1205 default:
1206 unreachable("Shader stage not implemented");
1207 }
1208 }
1209 bool gfx9_plus = args->options->chip_class >= GFX9;
1210 bool ngg = args->shader_info->is_ngg && args->options->chip_class >= GFX10;
1211 if (program->stage == sw_vs && args->shader_info->vs.as_es && !ngg)
1212 program->stage |= hw_es;
1213 else if (program->stage == sw_vs && !args->shader_info->vs.as_ls && !ngg)
1214 program->stage |= hw_vs;
1215 else if (program->stage == sw_vs && ngg)
1216 program->stage |= hw_ngg_gs; /* GFX10/NGG: VS without GS uses the HW GS stage */
1217 else if (program->stage == sw_gs)
1218 program->stage |= hw_gs;
1219 else if (program->stage == sw_fs)
1220 program->stage |= hw_fs;
1221 else if (program->stage == sw_cs)
1222 program->stage |= hw_cs;
1223 else if (program->stage == sw_gs_copy)
1224 program->stage |= hw_vs;
1225 else if (program->stage == (sw_vs | sw_gs) && gfx9_plus && !ngg)
1226 program->stage |= hw_gs;
1227 else if (program->stage == sw_vs && args->shader_info->vs.as_ls)
1228 program->stage |= hw_ls; /* GFX6-8: VS is a Local Shader, when tessellation is used */
1229 else if (program->stage == sw_tcs)
1230 program->stage |= hw_hs; /* GFX6-8: TCS is a Hull Shader */
1231 else if (program->stage == (sw_vs | sw_tcs))
1232 program->stage |= hw_hs; /* GFX9-10: VS+TCS merged into a Hull Shader */
1233 else if (program->stage == sw_tes && !args->shader_info->tes.as_es && !ngg)
1234 program->stage |= hw_vs; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */
1235 else if (program->stage == sw_tes && !args->shader_info->tes.as_es && ngg)
1236 program->stage |= hw_ngg_gs; /* GFX10/NGG: TES without GS uses the HW GS stage */
1237 else if (program->stage == sw_tes && args->shader_info->tes.as_es && !ngg)
1238 program->stage |= hw_es; /* GFX6-8: TES is an Export Shader */
1239 else if (program->stage == (sw_tes | sw_gs) && gfx9_plus && !ngg)
1240 program->stage |= hw_gs; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */
1241 else
1242 unreachable("Shader stage not implemented");
1243
1244 program->config = config;
1245 program->info = args->shader_info;
1246 program->chip_class = args->options->chip_class;
1247 program->family = args->options->family;
1248 program->wave_size = args->shader_info->wave_size;
1249 program->lane_mask = program->wave_size == 32 ? s1 : s2;
1250
1251 program->lds_alloc_granule = args->options->chip_class >= GFX7 ? 512 : 256;
1252 program->lds_limit = args->options->chip_class >= GFX7 ? 65536 : 32768;
1253 /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
1254 program->has_16bank_lds = args->options->family == CHIP_KABINI || args->options->family == CHIP_STONEY;
1255
1256 program->vgpr_limit = 256;
1257 program->vgpr_alloc_granule = 3;
1258
1259 if (args->options->chip_class >= GFX10) {
1260 program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */
1261 program->sgpr_alloc_granule = 127;
1262 program->sgpr_limit = 106;
1263 program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3;
1264 } else if (program->chip_class >= GFX8) {
1265 program->physical_sgprs = 800;
1266 program->sgpr_alloc_granule = 15;
1267 if (args->options->family == CHIP_TONGA || args->options->family == CHIP_ICELAND)
1268 program->sgpr_limit = 94; /* workaround hardware bug */
1269 else
1270 program->sgpr_limit = 102;
1271 } else {
1272 program->physical_sgprs = 512;
1273 program->sgpr_alloc_granule = 7;
1274 program->sgpr_limit = 104;
1275 }
1276
1277 isel_context ctx = {};
1278 ctx.program = program;
1279 ctx.args = args;
1280 ctx.options = args->options;
1281 ctx.stage = program->stage;
1282
1283 /* TODO: Check if we need to adjust min_waves for unknown workgroup sizes. */
1284 if (program->stage & (hw_vs | hw_fs)) {
1285 /* PS and legacy VS have separate waves, no workgroups */
1286 program->workgroup_size = program->wave_size;
1287 } else if (program->stage == compute_cs) {
1288 /* CS sets the workgroup size explicitly */
1289 unsigned* bsize = program->info->cs.block_size;
1290 program->workgroup_size = bsize[0] * bsize[1] * bsize[2];
1291 } else if ((program->stage & hw_es) || program->stage == geometry_gs) {
1292 /* Unmerged ESGS operate in workgroups if on-chip GS (LDS rings) are enabled on GFX7-8 (not implemented in Mesa) */
1293 program->workgroup_size = program->wave_size;
1294 } else if (program->stage & hw_gs) {
1295 /* If on-chip GS (LDS rings) are enabled on GFX9 or later, merged GS operates in workgroups */
1296 assert(program->chip_class >= GFX9);
1297 uint32_t es_verts_per_subgrp = G_028A44_ES_VERTS_PER_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl);
1298 uint32_t gs_instr_prims_in_subgrp = G_028A44_GS_INST_PRIMS_IN_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl);
1299 uint32_t workgroup_size = MAX2(es_verts_per_subgrp, gs_instr_prims_in_subgrp);
1300 program->workgroup_size = MAX2(MIN2(workgroup_size, 256), 1);
1301 } else if (program->stage == vertex_ls) {
1302 /* Unmerged LS operates in workgroups */
1303 program->workgroup_size = UINT_MAX; /* TODO: probably tcs_num_patches * tcs_vertices_in, but those are not plumbed to ACO for LS */
1304 } else if (program->stage == tess_control_hs) {
1305 /* Unmerged HS operates in workgroups, size is determined by the output vertices */
1306 setup_tcs_info(&ctx, shaders[0]);
1307 program->workgroup_size = ctx.tcs_num_patches * shaders[0]->info.tess.tcs_vertices_out;
1308 } else if (program->stage == vertex_tess_control_hs) {
1309 /* Merged LSHS operates in workgroups, but can still have a different number of LS and HS invocations */
1310 setup_tcs_info(&ctx, shaders[1]);
1311 program->workgroup_size = ctx.tcs_num_patches * MAX2(shaders[1]->info.tess.tcs_vertices_out, ctx.args->options->key.tcs.input_vertices);
1312 } else if (program->stage & hw_ngg_gs) {
1313 /* TODO: Calculate workgroup size of NGG shaders. */
1314 program->workgroup_size = UINT_MAX;
1315 } else {
1316 unreachable("Unsupported shader stage.");
1317 }
1318
1319 calc_min_waves(program);
1320 program->vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
1321 program->sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
1322
1323 get_io_masks(&ctx, shader_count, shaders);
1324
1325 unsigned scratch_size = 0;
1326 if (program->stage == gs_copy_vs) {
1327 assert(shader_count == 1);
1328 setup_vs_output_info(&ctx, shaders[0], false, true, &args->shader_info->vs.outinfo);
1329 } else {
1330 for (unsigned i = 0; i < shader_count; i++) {
1331 nir_shader *nir = shaders[i];
1332 setup_nir(&ctx, nir);
1333 }
1334
1335 for (unsigned i = 0; i < shader_count; i++)
1336 scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
1337 }
1338
1339 ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024);
1340
1341 ctx.block = ctx.program->create_and_insert_block();
1342 ctx.block->loop_nest_depth = 0;
1343 ctx.block->kind = block_kind_top_level;
1344
1345 setup_xnack(program);
1346
1347 return ctx;
1348 }
1349
1350 }