aco: rework boolean phi pass
[mesa.git] / src / amd / compiler / aco_lower_phis.cpp
1 /*
2 * Copyright © 2019 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Rhys Perry (pendingchaos02@gmail.com)
25 *
26 */
27
28 #include <map>
29
30 #include "aco_ir.h"
31 #include "aco_builder.h"
32 #include <algorithm>
33
34
35 namespace aco {
36
37 struct ssa_state {
38 bool needs_init;
39 uint64_t cur_undef_operands;
40
41 unsigned phi_block_idx;
42 unsigned loop_nest_depth;
43 std::map<unsigned, unsigned> writes;
44 std::vector<unsigned> latest;
45 };
46
47 Operand get_ssa(Program *program, unsigned block_idx, ssa_state *state, bool before_write)
48 {
49 if (!before_write) {
50 auto it = state->writes.find(block_idx);
51 if (it != state->writes.end())
52 return Operand(Temp(it->second, program->lane_mask));
53 if (state->latest[block_idx])
54 return Operand(Temp(state->latest[block_idx], program->lane_mask));
55 }
56
57 Block& block = program->blocks[block_idx];
58 size_t pred = block.linear_preds.size();
59 if (pred == 0 || block.loop_nest_depth < state->loop_nest_depth) {
60 return Operand(program->lane_mask);
61 } else if (block.loop_nest_depth > state->loop_nest_depth) {
62 Operand op = get_ssa(program, block_idx - 1, state, false);
63 assert(!state->latest[block_idx]);
64 state->latest[block_idx] = op.tempId();
65 return op;
66 } else if (pred == 1 || block.kind & block_kind_loop_exit) {
67 Operand op = get_ssa(program, block.linear_preds[0], state, false);
68 assert(!state->latest[block_idx]);
69 state->latest[block_idx] = op.tempId();
70 return op;
71 } else if (block.kind & block_kind_loop_header &&
72 !(program->blocks[state->phi_block_idx].kind & block_kind_loop_exit)) {
73 return Operand(program->lane_mask);
74 } else {
75 unsigned res = program->allocateId();
76 assert(!state->latest[block_idx]);
77 state->latest[block_idx] = res;
78
79 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, pred, 1)};
80 for (unsigned i = 0; i < pred; i++)
81 phi->operands[i] = get_ssa(program, block.linear_preds[i], state, false);
82 phi->definitions[0] = Definition(Temp{res, program->lane_mask});
83 block.instructions.emplace(block.instructions.begin(), std::move(phi));
84
85 return Operand(Temp(res, program->lane_mask));
86 }
87 }
88
89 void insert_before_logical_end(Block *block, aco_ptr<Instruction> instr)
90 {
91 auto IsLogicalEnd = [] (const aco_ptr<Instruction>& instr) -> bool {
92 return instr->opcode == aco_opcode::p_logical_end;
93 };
94 auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
95
96 if (it == block->instructions.crend()) {
97 assert(block->instructions.back()->format == Format::PSEUDO_BRANCH);
98 block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
99 }
100 else
101 block->instructions.insert(std::prev(it.base()), std::move(instr));
102 }
103
104 void lower_divergent_bool_phi(Program *program, ssa_state *state, Block *block, aco_ptr<Instruction>& phi)
105 {
106 Builder bld(program);
107
108 state->latest.resize(program->blocks.size());
109
110 uint64_t undef_operands = 0;
111 for (unsigned i = 0; i < phi->operands.size(); i++)
112 undef_operands |= phi->operands[i].isUndefined() << i;
113
114 if (state->needs_init || undef_operands != state->cur_undef_operands ||
115 block->logical_preds.size() > 64) {
116 /* this only has to be done once per block unless the set of predecessors
117 * which are undefined changes */
118 state->cur_undef_operands = undef_operands;
119 state->phi_block_idx = block->index;
120 state->loop_nest_depth = block->loop_nest_depth;
121 if (block->kind & block_kind_loop_exit) {
122 state->loop_nest_depth += 1;
123 }
124 state->writes.clear();
125 state->needs_init = false;
126 }
127 std::fill(state->latest.begin(), state->latest.end(), 0);
128
129 for (unsigned i = 0; i < phi->operands.size(); i++) {
130 if (phi->operands[i].isUndefined())
131 continue;
132
133 state->writes[block->logical_preds[i]] = program->allocateId();
134 }
135
136 for (unsigned i = 0; i < phi->operands.size(); i++) {
137 Block *pred = &program->blocks[block->logical_preds[i]];
138
139 if (phi->operands[i].isUndefined())
140 continue;
141
142 Operand cur = get_ssa(program, pred->index, state, true);
143 assert(cur.regClass() == bld.lm);
144 Temp new_cur = {state->writes.at(pred->index), program->lane_mask};
145 assert(new_cur.regClass() == bld.lm);
146
147 if (cur.isUndefined()) {
148 insert_before_logical_end(pred, bld.sop1(aco_opcode::s_mov_b64, Definition(new_cur), phi->operands[i]).get_ptr());
149 } else {
150 Temp tmp1 = bld.tmp(bld.lm), tmp2 = bld.tmp(bld.lm);
151 insert_before_logical_end(pred,
152 bld.sop2(Builder::s_andn2, Definition(tmp1), bld.def(s1, scc),
153 cur, Operand(exec, bld.lm)).get_ptr());
154 insert_before_logical_end(pred,
155 bld.sop2(Builder::s_and, Definition(tmp2), bld.def(s1, scc),
156 phi->operands[i].getTemp(), Operand(exec, bld.lm)).get_ptr());
157 insert_before_logical_end(pred,
158 bld.sop2(Builder::s_or, Definition(new_cur), bld.def(s1, scc),
159 tmp1, tmp2).get_ptr());
160 }
161 }
162
163 unsigned num_preds = block->linear_preds.size();
164 if (phi->operands.size() != num_preds) {
165 Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
166 new_phi->definitions[0] = phi->definitions[0];
167 phi.reset(new_phi);
168 } else {
169 phi->opcode = aco_opcode::p_linear_phi;
170 }
171 assert(phi->operands.size() == num_preds);
172
173 for (unsigned i = 0; i < num_preds; i++)
174 phi->operands[i] = get_ssa(program, block->linear_preds[i], state, false);
175
176 return;
177 }
178
179 void lower_subdword_phis(Program *program, Block *block, aco_ptr<Instruction>& phi)
180 {
181 Builder bld(program);
182 for (unsigned i = 0; i < phi->operands.size(); i++) {
183 if (phi->operands[i].isUndefined())
184 continue;
185 if (phi->operands[i].regClass() == phi->definitions[0].regClass())
186 continue;
187
188 assert(phi->operands[i].isTemp());
189 Block *pred = &program->blocks[block->logical_preds[i]];
190 Temp phi_src = phi->operands[i].getTemp();
191
192 assert(phi_src.regClass().type() == RegType::sgpr);
193 Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size()));
194 insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), phi_src).get_ptr());
195 Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
196 insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector, Definition(new_phi_src), tmp, Operand(0u)).get_ptr());
197
198 phi->operands[i].setTemp(new_phi_src);
199 }
200 return;
201 }
202
203 void lower_phis(Program* program)
204 {
205 ssa_state state;
206
207 for (Block& block : program->blocks) {
208 state.needs_init = true;
209 for (aco_ptr<Instruction>& phi : block.instructions) {
210 if (phi->opcode == aco_opcode::p_phi) {
211 assert(program->wave_size == 64 ? phi->definitions[0].regClass() != s1 : phi->definitions[0].regClass() != s2);
212 if (phi->definitions[0].regClass() == program->lane_mask)
213 lower_divergent_bool_phi(program, &state, &block, phi);
214 else if (phi->definitions[0].regClass().is_subdword())
215 lower_subdword_phis(program, &block, phi);
216 } else if (!is_phi(phi)) {
217 break;
218 }
219 }
220 }
221 }
222
223 }