aco: implement 16-bit reduce operations on GFX6-GFX7
[mesa.git] / src / amd / compiler / aco_lower_to_hw_instr.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <map>
29
30 #include "aco_ir.h"
31 #include "aco_builder.h"
32 #include "util/u_math.h"
33 #include "sid.h"
34 #include "vulkan/radv_shader.h"
35
36
37 namespace aco {
38
39 struct lower_context {
40 Program *program;
41 std::vector<aco_ptr<Instruction>> instructions;
42 };
43
44 aco_opcode get_reduce_opcode(chip_class chip, ReduceOp op) {
45 /* Because some 16-bit instructions are already VOP3 on GFX10, we use the
46 * 32-bit opcodes (VOP2) which allows to remove the tempory VGPR and to use
47 * DPP with the arithmetic instructions. This requires to sign-extend.
48 */
49 switch (op) {
50 case iadd8:
51 case iadd16:
52 if (chip >= GFX10) {
53 return aco_opcode::v_add_u32;
54 } else if (chip >= GFX8) {
55 return aco_opcode::v_add_u16;
56 } else {
57 return aco_opcode::v_add_co_u32;
58 }
59 break;
60 case imul8:
61 case imul16:
62 if (chip >= GFX10) {
63 return aco_opcode::v_mul_lo_u16_e64;
64 } else if (chip >= GFX8) {
65 return aco_opcode::v_mul_lo_u16;
66 } else {
67 return aco_opcode::v_mul_u32_u24;
68 }
69 break;
70 case fadd16: return aco_opcode::v_add_f16;
71 case fmul16: return aco_opcode::v_mul_f16;
72 case imax8:
73 case imax16:
74 if (chip >= GFX10) {
75 return aco_opcode::v_max_i32;
76 } else if (chip >= GFX8) {
77 return aco_opcode::v_max_i16;
78 } else {
79 return aco_opcode::v_max_i32;
80 }
81 break;
82 case imin8:
83 case imin16:
84 if (chip >= GFX10) {
85 return aco_opcode::v_min_i32;
86 } else if (chip >= GFX8) {
87 return aco_opcode::v_min_i16;
88 } else {
89 return aco_opcode::v_min_i32;
90 }
91 break;
92 case umin8:
93 case umin16:
94 if (chip >= GFX10) {
95 return aco_opcode::v_min_u32;
96 } else if (chip >= GFX8) {
97 return aco_opcode::v_min_u16;
98 } else {
99 return aco_opcode::v_min_u32;
100 }
101 break;
102 case umax8:
103 case umax16:
104 if (chip >= GFX10) {
105 return aco_opcode::v_max_u32;
106 } else if (chip >= GFX8) {
107 return aco_opcode::v_max_u16;
108 } else {
109 return aco_opcode::v_max_u32;
110 }
111 break;
112 case fmin16: return aco_opcode::v_min_f16;
113 case fmax16: return aco_opcode::v_max_f16;
114 case iadd32: return chip >= GFX9 ? aco_opcode::v_add_u32 : aco_opcode::v_add_co_u32;
115 case imul32: return aco_opcode::v_mul_lo_u32;
116 case fadd32: return aco_opcode::v_add_f32;
117 case fmul32: return aco_opcode::v_mul_f32;
118 case imax32: return aco_opcode::v_max_i32;
119 case imin32: return aco_opcode::v_min_i32;
120 case umin32: return aco_opcode::v_min_u32;
121 case umax32: return aco_opcode::v_max_u32;
122 case fmin32: return aco_opcode::v_min_f32;
123 case fmax32: return aco_opcode::v_max_f32;
124 case iand8:
125 case iand16:
126 case iand32: return aco_opcode::v_and_b32;
127 case ixor8:
128 case ixor16:
129 case ixor32: return aco_opcode::v_xor_b32;
130 case ior8:
131 case ior16:
132 case ior32: return aco_opcode::v_or_b32;
133 case iadd64: return aco_opcode::num_opcodes;
134 case imul64: return aco_opcode::num_opcodes;
135 case fadd64: return aco_opcode::v_add_f64;
136 case fmul64: return aco_opcode::v_mul_f64;
137 case imin64: return aco_opcode::num_opcodes;
138 case imax64: return aco_opcode::num_opcodes;
139 case umin64: return aco_opcode::num_opcodes;
140 case umax64: return aco_opcode::num_opcodes;
141 case fmin64: return aco_opcode::v_min_f64;
142 case fmax64: return aco_opcode::v_max_f64;
143 case iand64: return aco_opcode::num_opcodes;
144 case ior64: return aco_opcode::num_opcodes;
145 case ixor64: return aco_opcode::num_opcodes;
146 default: return aco_opcode::num_opcodes;
147 }
148 }
149
150 bool is_vop3_reduce_opcode(aco_opcode opcode)
151 {
152 /* 64-bit reductions are VOP3. */
153 if (opcode == aco_opcode::num_opcodes)
154 return true;
155
156 return instr_info.format[(int)opcode] == Format::VOP3;
157 }
158
159 void emit_vadd32(Builder& bld, Definition def, Operand src0, Operand src1)
160 {
161 Instruction *instr = bld.vadd32(def, src0, src1, false, Operand(s2), true);
162 if (instr->definitions.size() >= 2) {
163 assert(instr->definitions[1].regClass() == bld.lm);
164 instr->definitions[1].setFixed(vcc);
165 }
166 }
167
168 void emit_int64_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
169 PhysReg vtmp_reg, ReduceOp op,
170 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
171 Operand *identity=NULL)
172 {
173 Builder bld(ctx->program, &ctx->instructions);
174 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
175 Definition vtmp_def[] = {Definition(vtmp_reg, v1), Definition(PhysReg{vtmp_reg+1}, v1)};
176 Operand src0[] = {Operand(src0_reg, v1), Operand(PhysReg{src0_reg+1}, v1)};
177 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
178 Operand src1_64 = Operand(src1_reg, v2);
179 Operand vtmp_op[] = {Operand(vtmp_reg, v1), Operand(PhysReg{vtmp_reg+1}, v1)};
180 Operand vtmp_op64 = Operand(vtmp_reg, v2);
181 if (op == iadd64) {
182 if (ctx->program->chip_class >= GFX10) {
183 if (identity)
184 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
185 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
186 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
187 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), vtmp_op[0], src1[0]);
188 } else {
189 bld.vop2_dpp(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0],
190 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
191 }
192 bld.vop2_dpp(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm),
193 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
194 } else if (op == iand64) {
195 bld.vop2_dpp(aco_opcode::v_and_b32, dst[0], src0[0], src1[0],
196 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
197 bld.vop2_dpp(aco_opcode::v_and_b32, dst[1], src0[1], src1[1],
198 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
199 } else if (op == ior64) {
200 bld.vop2_dpp(aco_opcode::v_or_b32, dst[0], src0[0], src1[0],
201 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
202 bld.vop2_dpp(aco_opcode::v_or_b32, dst[1], src0[1], src1[1],
203 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
204 } else if (op == ixor64) {
205 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0],
206 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
207 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1],
208 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
209 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
210 aco_opcode cmp = aco_opcode::num_opcodes;
211 switch (op) {
212 case umin64:
213 cmp = aco_opcode::v_cmp_gt_u64;
214 break;
215 case umax64:
216 cmp = aco_opcode::v_cmp_lt_u64;
217 break;
218 case imin64:
219 cmp = aco_opcode::v_cmp_gt_i64;
220 break;
221 case imax64:
222 cmp = aco_opcode::v_cmp_lt_i64;
223 break;
224 default:
225 break;
226 }
227
228 if (identity) {
229 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
230 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[1], identity[1]);
231 }
232 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
233 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
234 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[1], src0[1],
235 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
236
237 bld.vopc(cmp, bld.def(bld.lm, vcc), vtmp_op64, src1_64);
238 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], vtmp_op[0], src1[0], Operand(vcc, bld.lm));
239 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], vtmp_op[1], src1[1], Operand(vcc, bld.lm));
240 } else if (op == imul64) {
241 /* t4 = dpp(x_hi)
242 * t1 = umul_lo(t4, y_lo)
243 * t3 = dpp(x_lo)
244 * t0 = umul_lo(t3, y_hi)
245 * t2 = iadd(t0, t1)
246 * t5 = umul_hi(t3, y_lo)
247 * res_hi = iadd(t2, t5)
248 * res_lo = umul_lo(t3, y_lo)
249 * Requires that res_hi != src0[0] and res_hi != src1[0]
250 * and that vtmp[0] != res_hi.
251 */
252 if (identity)
253 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[1]);
254 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[1],
255 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
256 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[1], vtmp_op[0], src1[0]);
257 if (identity)
258 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
259 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
260 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
261 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[0], vtmp_op[0], src1[1]);
262 emit_vadd32(bld, vtmp_def[1], vtmp_op[0], vtmp_op[1]);
263 if (identity)
264 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
265 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
266 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
267 bld.vop3(aco_opcode::v_mul_hi_u32, vtmp_def[0], vtmp_op[0], src1[0]);
268 emit_vadd32(bld, dst[1], vtmp_op[1], vtmp_op[0]);
269 if (identity)
270 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
271 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
272 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
273 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], vtmp_op[0], src1[0]);
274 }
275 }
276
277 void emit_int64_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, ReduceOp op)
278 {
279 Builder bld(ctx->program, &ctx->instructions);
280 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
281 RegClass src0_rc = src0_reg.reg() >= 256 ? v1 : s1;
282 Operand src0[] = {Operand(src0_reg, src0_rc), Operand(PhysReg{src0_reg+1}, src0_rc)};
283 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
284 Operand src0_64 = Operand(src0_reg, src0_reg.reg() >= 256 ? v2 : s2);
285 Operand src1_64 = Operand(src1_reg, v2);
286
287 if (src0_rc == s1 &&
288 (op == imul64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)) {
289 assert(vtmp.reg() != 0);
290 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), src0[0]);
291 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
292 src0_reg = vtmp;
293 src0[0] = Operand(vtmp, v1);
294 src0[1] = Operand(PhysReg{vtmp+1}, v1);
295 src0_64 = Operand(vtmp, v2);
296 } else if (src0_rc == s1 && op == iadd64) {
297 assert(vtmp.reg() != 0);
298 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
299 src0[1] = Operand(PhysReg{vtmp+1}, v1);
300 }
301
302 if (op == iadd64) {
303 if (ctx->program->chip_class >= GFX10) {
304 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
305 } else {
306 bld.vop2(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
307 }
308 bld.vop2(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm));
309 } else if (op == iand64) {
310 bld.vop2(aco_opcode::v_and_b32, dst[0], src0[0], src1[0]);
311 bld.vop2(aco_opcode::v_and_b32, dst[1], src0[1], src1[1]);
312 } else if (op == ior64) {
313 bld.vop2(aco_opcode::v_or_b32, dst[0], src0[0], src1[0]);
314 bld.vop2(aco_opcode::v_or_b32, dst[1], src0[1], src1[1]);
315 } else if (op == ixor64) {
316 bld.vop2(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0]);
317 bld.vop2(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1]);
318 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
319 aco_opcode cmp = aco_opcode::num_opcodes;
320 switch (op) {
321 case umin64:
322 cmp = aco_opcode::v_cmp_gt_u64;
323 break;
324 case umax64:
325 cmp = aco_opcode::v_cmp_lt_u64;
326 break;
327 case imin64:
328 cmp = aco_opcode::v_cmp_gt_i64;
329 break;
330 case imax64:
331 cmp = aco_opcode::v_cmp_lt_i64;
332 break;
333 default:
334 break;
335 }
336
337 bld.vopc(cmp, bld.def(bld.lm, vcc), src0_64, src1_64);
338 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], src0[0], src1[0], Operand(vcc, bld.lm));
339 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], src0[1], src1[1], Operand(vcc, bld.lm));
340 } else if (op == imul64) {
341 if (src1_reg == dst_reg) {
342 /* it's fine if src0==dst but not if src1==dst */
343 std::swap(src0_reg, src1_reg);
344 std::swap(src0[0], src1[0]);
345 std::swap(src0[1], src1[1]);
346 std::swap(src0_64, src1_64);
347 }
348 assert(!(src0_reg == src1_reg));
349 /* t1 = umul_lo(x_hi, y_lo)
350 * t0 = umul_lo(x_lo, y_hi)
351 * t2 = iadd(t0, t1)
352 * t5 = umul_hi(x_lo, y_lo)
353 * res_hi = iadd(t2, t5)
354 * res_lo = umul_lo(x_lo, y_lo)
355 * assumes that it's ok to modify x_hi/y_hi, since we might not have vtmp
356 */
357 Definition tmp0_def(PhysReg{src0_reg+1}, v1);
358 Definition tmp1_def(PhysReg{src1_reg+1}, v1);
359 Operand tmp0_op = src0[1];
360 Operand tmp1_op = src1[1];
361 bld.vop3(aco_opcode::v_mul_lo_u32, tmp0_def, src0[1], src1[0]);
362 bld.vop3(aco_opcode::v_mul_lo_u32, tmp1_def, src0[0], src1[1]);
363 emit_vadd32(bld, tmp0_def, tmp1_op, tmp0_op);
364 bld.vop3(aco_opcode::v_mul_hi_u32, tmp1_def, src0[0], src1[0]);
365 emit_vadd32(bld, dst[1], tmp0_op, tmp1_op);
366 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], src0[0], src1[0]);
367 }
368 }
369
370 void emit_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
371 PhysReg vtmp, ReduceOp op, unsigned size,
372 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
373 Operand *identity=NULL) /* for VOP3 with sparse writes */
374 {
375 Builder bld(ctx->program, &ctx->instructions);
376 RegClass rc = RegClass(RegType::vgpr, size);
377 Definition dst(dst_reg, rc);
378 Operand src0(src0_reg, rc);
379 Operand src1(src1_reg, rc);
380
381 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
382 bool vop3 = is_vop3_reduce_opcode(opcode);
383
384 if (!vop3) {
385 if (opcode == aco_opcode::v_add_co_u32)
386 bld.vop2_dpp(opcode, dst, bld.def(bld.lm, vcc), src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
387 else
388 bld.vop2_dpp(opcode, dst, src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
389 return;
390 }
391
392 if (opcode == aco_opcode::num_opcodes) {
393 emit_int64_dpp_op(ctx, dst_reg ,src0_reg, src1_reg, vtmp, op,
394 dpp_ctrl, row_mask, bank_mask, bound_ctrl, identity);
395 return;
396 }
397
398 if (identity)
399 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]);
400 if (identity && size >= 2)
401 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), identity[1]);
402
403 for (unsigned i = 0; i < size; i++)
404 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{src0_reg+i}, v1),
405 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
406
407 bld.vop3(opcode, dst, Operand(vtmp, rc), src1);
408 }
409
410 void emit_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
411 PhysReg vtmp, ReduceOp op, unsigned size)
412 {
413 Builder bld(ctx->program, &ctx->instructions);
414 RegClass rc = RegClass(RegType::vgpr, size);
415 Definition dst(dst_reg, rc);
416 Operand src0(src0_reg, RegClass(src0_reg.reg() >= 256 ? RegType::vgpr : RegType::sgpr, size));
417 Operand src1(src1_reg, rc);
418
419 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
420 bool vop3 = is_vop3_reduce_opcode(opcode);
421
422 if (opcode == aco_opcode::num_opcodes) {
423 emit_int64_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op);
424 return;
425 }
426
427 if (vop3) {
428 bld.vop3(opcode, dst, src0, src1);
429 } else if (opcode == aco_opcode::v_add_co_u32) {
430 bld.vop2(opcode, dst, bld.def(bld.lm, vcc), src0, src1);
431 } else {
432 bld.vop2(opcode, dst, src0, src1);
433 }
434 }
435
436 void emit_dpp_mov(lower_context *ctx, PhysReg dst, PhysReg src0, unsigned size,
437 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl)
438 {
439 Builder bld(ctx->program, &ctx->instructions);
440 for (unsigned i = 0; i < size; i++) {
441 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{dst+i}, v1), Operand(PhysReg{src0+i}, v1),
442 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
443 }
444 }
445
446 uint32_t get_reduction_identity(ReduceOp op, unsigned idx)
447 {
448 switch (op) {
449 case iadd8:
450 case iadd16:
451 case iadd32:
452 case iadd64:
453 case fadd16:
454 case fadd32:
455 case fadd64:
456 case ior8:
457 case ior16:
458 case ior32:
459 case ior64:
460 case ixor8:
461 case ixor16:
462 case ixor32:
463 case ixor64:
464 case umax8:
465 case umax16:
466 case umax32:
467 case umax64:
468 return 0;
469 case imul8:
470 case imul16:
471 case imul32:
472 case imul64:
473 return idx ? 0 : 1;
474 case fmul16:
475 return 0x3c00u; /* 1.0 */
476 case fmul32:
477 return 0x3f800000u; /* 1.0 */
478 case fmul64:
479 return idx ? 0x3ff00000u : 0u; /* 1.0 */
480 case imin8:
481 return INT8_MAX;
482 case imin16:
483 return INT16_MAX;
484 case imin32:
485 return INT32_MAX;
486 case imin64:
487 return idx ? 0x7fffffffu : 0xffffffffu;
488 case imax8:
489 return INT8_MIN;
490 case imax16:
491 return INT16_MIN;
492 case imax32:
493 return INT32_MIN;
494 case imax64:
495 return idx ? 0x80000000u : 0;
496 case umin8:
497 case umin16:
498 case iand8:
499 case iand16:
500 return 0xffffffffu;
501 case umin32:
502 case umin64:
503 case iand32:
504 case iand64:
505 return 0xffffffffu;
506 case fmin16:
507 return 0x7c00u; /* infinity */
508 case fmin32:
509 return 0x7f800000u; /* infinity */
510 case fmin64:
511 return idx ? 0x7ff00000u : 0u; /* infinity */
512 case fmax16:
513 return 0xfc00u; /* negative infinity */
514 case fmax32:
515 return 0xff800000u; /* negative infinity */
516 case fmax64:
517 return idx ? 0xfff00000u : 0u; /* negative infinity */
518 default:
519 unreachable("Invalid reduction operation");
520 break;
521 }
522 return 0;
523 }
524
525 void emit_ds_swizzle(Builder bld, PhysReg dst, PhysReg src, unsigned size, unsigned ds_pattern)
526 {
527 for (unsigned i = 0; i < size; i++) {
528 bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{dst+i}, v1),
529 Operand(PhysReg{src+i}, v1), ds_pattern);
530 }
531 }
532
533 void emit_reduction(lower_context *ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, PhysReg tmp,
534 PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst)
535 {
536 assert(cluster_size == ctx->program->wave_size || op == aco_opcode::p_reduce);
537 assert(cluster_size <= ctx->program->wave_size);
538
539 Builder bld(ctx->program, &ctx->instructions);
540
541 Operand identity[2];
542 identity[0] = Operand(get_reduction_identity(reduce_op, 0));
543 identity[1] = Operand(get_reduction_identity(reduce_op, 1));
544 Operand vcndmask_identity[2] = {identity[0], identity[1]};
545
546 /* First, copy the source to tmp and set inactive lanes to the identity */
547 bld.sop1(Builder::s_or_saveexec, Definition(stmp, bld.lm), Definition(scc, s1), Definition(exec, bld.lm), Operand(UINT64_MAX), Operand(exec, bld.lm));
548
549 for (unsigned i = 0; i < src.size(); i++) {
550 /* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32
551 * except on GFX10, where v_writelane_b32 can take a literal. */
552 if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan && ctx->program->chip_class < GFX10) {
553 bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp+i}, s1), identity[i]);
554 identity[i] = Operand(PhysReg{sitmp+i}, s1);
555
556 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
557 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
558 } else if (identity[i].isLiteral()) {
559 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
560 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
561 }
562 }
563
564 for (unsigned i = 0; i < src.size(); i++) {
565 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1),
566 vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1),
567 Operand(stmp, bld.lm));
568 }
569
570 if (src.regClass() == v1b) {
571 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
572 sdwa->operands[0] = Operand(PhysReg{tmp}, v1);
573 sdwa->definitions[0] = Definition(PhysReg{tmp}, v1);
574 if (reduce_op == imin8 || reduce_op == imax8)
575 sdwa->sel[0] = sdwa_sbyte;
576 else
577 sdwa->sel[0] = sdwa_ubyte;
578 sdwa->dst_sel = sdwa_udword;
579 bld.insert(std::move(sdwa));
580 } else if (src.regClass() == v2b) {
581 if (ctx->program->chip_class >= GFX10 &&
582 (reduce_op == iadd16 || reduce_op == imax16 ||
583 reduce_op == imin16 || reduce_op == umin16 || reduce_op == umax16)) {
584 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
585 sdwa->operands[0] = Operand(PhysReg{tmp}, v1);
586 sdwa->definitions[0] = Definition(PhysReg{tmp}, v1);
587 if (reduce_op == imin16 || reduce_op == imax16 || reduce_op == iadd16)
588 sdwa->sel[0] = sdwa_sword;
589 else
590 sdwa->sel[0] = sdwa_uword;
591 sdwa->dst_sel = sdwa_udword;
592 bld.insert(std::move(sdwa));
593 }
594 }
595
596 bool reduction_needs_last_op = false;
597 switch (op) {
598 case aco_opcode::p_reduce:
599 if (cluster_size == 1) break;
600
601 if (ctx->program->chip_class <= GFX7) {
602 reduction_needs_last_op = true;
603 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(1, 0, 3, 2));
604 if (cluster_size == 2) break;
605 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
606 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(2, 3, 0, 1));
607 if (cluster_size == 4) break;
608 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
609 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x04));
610 if (cluster_size == 8) break;
611 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
612 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x08));
613 if (cluster_size == 16) break;
614 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
615 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
616 if (cluster_size == 32) break;
617 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
618 for (unsigned i = 0; i < src.size(); i++)
619 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1), Operand(0u));
620 // TODO: it would be more effective to do the last reduction step on SALU
621 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
622 reduction_needs_last_op = false;
623 break;
624 }
625
626 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(1, 0, 3, 2), 0xf, 0xf, false);
627 if (cluster_size == 2) break;
628 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(2, 3, 0, 1), 0xf, 0xf, false);
629 if (cluster_size == 4) break;
630 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_half_mirror, 0xf, 0xf, false);
631 if (cluster_size == 8) break;
632 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_mirror, 0xf, 0xf, false);
633 if (cluster_size == 16) break;
634
635 if (ctx->program->chip_class >= GFX10) {
636 /* GFX10+ doesn't support row_bcast15 and row_bcast31 */
637 for (unsigned i = 0; i < src.size(); i++)
638 bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1), Operand(0u), Operand(0u));
639
640 if (cluster_size == 32) {
641 reduction_needs_last_op = true;
642 break;
643 }
644
645 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
646 for (unsigned i = 0; i < src.size(); i++)
647 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
648 // TODO: it would be more effective to do the last reduction step on SALU
649 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
650 break;
651 }
652
653 if (cluster_size == 32) {
654 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
655 reduction_needs_last_op = true;
656 break;
657 }
658 assert(cluster_size == 64);
659 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, false);
660 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, false);
661 break;
662 case aco_opcode::p_exclusive_scan:
663 if (ctx->program->chip_class >= GFX10) { /* gfx10 doesn't support wf_sr1, so emulate it */
664 /* shift rows right */
665 emit_dpp_mov(ctx, vtmp, tmp, src.size(), dpp_row_sr(1), 0xf, 0xf, true);
666
667 /* fill in the gaps in rows 1 and 3 */
668 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10000u));
669 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(0x10000u));
670 for (unsigned i = 0; i < src.size(); i++) {
671 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
672 Definition(PhysReg{vtmp+i}, v1),
673 Operand(PhysReg{tmp+i}, v1),
674 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
675 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
676 }
677 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(UINT64_MAX));
678
679 if (ctx->program->wave_size == 64) {
680 /* fill in the gap in row 2 */
681 for (unsigned i = 0; i < src.size(); i++) {
682 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
683 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
684 }
685 }
686 std::swap(tmp, vtmp);
687 } else if (ctx->program->chip_class >= GFX8) {
688 emit_dpp_mov(ctx, tmp, tmp, src.size(), dpp_wf_sr1, 0xf, 0xf, true);
689 } else {
690 // TODO: use LDS on CS with a single write and shifted read
691 /* wavefront shift_right by 1 on SI/CI */
692 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(0, 0, 1, 2));
693 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x07)); /* mirror(8) */
694 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10101010u));
695 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
696 for (unsigned i = 0; i < src.size(); i++)
697 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
698
699 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
700 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x08)); /* swap(8) */
701 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x01000100u));
702 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
703 for (unsigned i = 0; i < src.size(); i++)
704 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
705
706 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
707 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x10)); /* swap(16) */
708 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(1u), Operand(16u));
709 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(1u), Operand(16u));
710 for (unsigned i = 0; i < src.size(); i++)
711 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
712
713 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
714 for (unsigned i = 0; i < src.size(); i++) {
715 bld.writelane(Definition(PhysReg{vtmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{vtmp+i}, v1));
716 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
717 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
718 identity[i] = Operand(0u); /* prevent further uses of identity */
719 }
720 std::swap(tmp, vtmp);
721 }
722
723 for (unsigned i = 0; i < src.size(); i++) {
724 if (!identity[i].isConstant() || identity[i].constantValue()) { /* bound_ctrl should take care of this overwise */
725 if (ctx->program->chip_class < GFX10)
726 assert((identity[i].isConstant() && !identity[i].isLiteral()) || identity[i].physReg() == PhysReg{sitmp+i});
727 bld.writelane(Definition(PhysReg{tmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{tmp+i}, v1));
728 }
729 }
730 /* fall through */
731 case aco_opcode::p_inclusive_scan:
732 assert(cluster_size == ctx->program->wave_size);
733 if (ctx->program->chip_class <= GFX7) {
734 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1e, 0x00, 0x00));
735 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xAAAAAAAAu));
736 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
737 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
738
739 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
740 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1c, 0x01, 0x00));
741 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xCCCCCCCCu));
742 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
743 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
744
745 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
746 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x18, 0x03, 0x00));
747 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xF0F0F0F0u));
748 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
749 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
750
751 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
752 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x10, 0x07, 0x00));
753 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xFF00FF00u));
754 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
755 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
756
757 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
758 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x00, 0x0f, 0x00));
759 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
760 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
761 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
762
763 for (unsigned i = 0; i < src.size(); i++)
764 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
765 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
766 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
767 break;
768 }
769
770 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
771 dpp_row_sr(1), 0xf, 0xf, false, identity);
772 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
773 dpp_row_sr(2), 0xf, 0xf, false, identity);
774 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
775 dpp_row_sr(4), 0xf, 0xf, false, identity);
776 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
777 dpp_row_sr(8), 0xf, 0xf, false, identity);
778 if (ctx->program->chip_class >= GFX10) {
779 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
780 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
781 for (unsigned i = 0; i < src.size(); i++) {
782 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
783 Definition(PhysReg{vtmp+i}, v1),
784 Operand(PhysReg{tmp+i}, v1),
785 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
786 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
787 }
788 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
789
790 if (ctx->program->wave_size == 64) {
791 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
792 for (unsigned i = 0; i < src.size(); i++)
793 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
794 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
795 }
796 } else {
797 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
798 dpp_row_bcast15, 0xa, 0xf, false, identity);
799 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
800 dpp_row_bcast31, 0xc, 0xf, false, identity);
801 }
802 break;
803 default:
804 unreachable("Invalid reduction mode");
805 }
806
807
808 if (op == aco_opcode::p_reduce) {
809 if (reduction_needs_last_op && dst.regClass().type() == RegType::vgpr) {
810 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
811 emit_op(ctx, dst.physReg(), tmp, vtmp, PhysReg{0}, reduce_op, src.size());
812 return;
813 }
814
815 if (reduction_needs_last_op)
816 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
817 }
818
819 /* restore exec */
820 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
821
822 if (dst.regClass().type() == RegType::sgpr) {
823 for (unsigned k = 0; k < src.size(); k++) {
824 bld.readlane(Definition(PhysReg{dst.physReg() + k}, s1),
825 Operand(PhysReg{tmp + k}, v1), Operand(ctx->program->wave_size - 1));
826 }
827 } else if (dst.physReg() != tmp) {
828 for (unsigned k = 0; k < src.size(); k++) {
829 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, v1),
830 Operand(PhysReg{tmp + k}, v1));
831 }
832 }
833 }
834
835 void emit_gfx10_wave64_bpermute(Program *program, aco_ptr<Instruction> &instr, Builder &bld)
836 {
837 /* Emulates proper bpermute on GFX10 in wave64 mode.
838 *
839 * This is necessary because on GFX10 the bpermute instruction only works
840 * on half waves (you can think of it as having a cluster size of 32), so we
841 * manually swap the data between the two halves using two shared VGPRs.
842 */
843
844 assert(program->chip_class >= GFX10);
845 assert(program->info->wave_size == 64);
846
847 unsigned shared_vgpr_reg_0 = align(program->config->num_vgprs, 4) + 256;
848 Definition dst = instr->definitions[0];
849 Definition tmp_exec = instr->definitions[1];
850 Definition clobber_scc = instr->definitions[2];
851 Operand index_x4 = instr->operands[0];
852 Operand input_data = instr->operands[1];
853 Operand same_half = instr->operands[2];
854
855 assert(dst.regClass() == v1);
856 assert(tmp_exec.regClass() == bld.lm);
857 assert(clobber_scc.isFixed() && clobber_scc.physReg() == scc);
858 assert(same_half.regClass() == bld.lm);
859 assert(index_x4.regClass() == v1);
860 assert(input_data.regClass().type() == RegType::vgpr);
861 assert(input_data.bytes() <= 4);
862 assert(dst.physReg() != index_x4.physReg());
863 assert(dst.physReg() != input_data.physReg());
864 assert(tmp_exec.physReg() != same_half.physReg());
865
866 PhysReg shared_vgpr_lo(shared_vgpr_reg_0);
867 PhysReg shared_vgpr_hi(shared_vgpr_reg_0 + 1);
868
869 /* Permute the input within the same half-wave */
870 bld.ds(aco_opcode::ds_bpermute_b32, dst, index_x4, input_data);
871
872 /* HI: Copy data from high lanes 32-63 to shared vgpr */
873 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(shared_vgpr_hi, v1), input_data, dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
874 /* Save EXEC */
875 bld.sop1(aco_opcode::s_mov_b64, tmp_exec, Operand(exec, s2));
876 /* Set EXEC to enable LO lanes only */
877 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(0u));
878 /* LO: Copy data from low lanes 0-31 to shared vgpr */
879 bld.vop1(aco_opcode::v_mov_b32, Definition(shared_vgpr_lo, v1), input_data);
880 /* LO: bpermute shared vgpr (high lanes' data) */
881 bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_hi, v1), index_x4, Operand(shared_vgpr_hi, v1));
882 /* Set EXEC to enable HI lanes only */
883 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
884 /* HI: bpermute shared vgpr (low lanes' data) */
885 bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_lo, v1), index_x4, Operand(shared_vgpr_lo, v1));
886
887 /* Only enable lanes which use the other half's data */
888 bld.sop2(aco_opcode::s_andn2_b64, Definition(exec, s2), clobber_scc, Operand(tmp_exec.physReg(), s2), same_half);
889 /* LO: Copy shared vgpr (high lanes' bpermuted data) to output vgpr */
890 bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_hi, v1), dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false);
891 /* HI: Copy shared vgpr (low lanes' bpermuted data) to output vgpr */
892 bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_lo, v1), dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
893
894 /* Restore saved EXEC */
895 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(tmp_exec.physReg(), s2));
896
897 /* RA assumes that the result is always in the low part of the register, so we have to shift, if it's not there already */
898 if (input_data.physReg().byte()) {
899 unsigned right_shift = input_data.physReg().byte() * 8;
900 bld.vop2(aco_opcode::v_lshrrev_b32, dst, Operand(right_shift), Operand(dst.physReg(), v1));
901 }
902 }
903
904 void emit_gfx6_bpermute(Program *program, aco_ptr<Instruction> &instr, Builder &bld)
905 {
906 /* Emulates bpermute using readlane instructions */
907
908 Operand index = instr->operands[0];
909 Operand input = instr->operands[1];
910 Definition dst = instr->definitions[0];
911 Definition temp_exec = instr->definitions[1];
912 Definition clobber_vcc = instr->definitions[2];
913
914 assert(dst.regClass() == v1);
915 assert(temp_exec.regClass() == bld.lm);
916 assert(clobber_vcc.regClass() == bld.lm);
917 assert(clobber_vcc.physReg() == vcc);
918 assert(index.regClass() == v1);
919 assert(index.physReg() != dst.physReg());
920 assert(input.regClass().type() == RegType::vgpr);
921 assert(input.bytes() <= 4);
922 assert(input.physReg() != dst.physReg());
923
924 /* Save original EXEC */
925 bld.sop1(aco_opcode::s_mov_b64, temp_exec, Operand(exec, s2));
926
927 /* An "unrolled loop" that is executed per each lane.
928 * This takes only a few instructions per lane, as opposed to a "real" loop
929 * with branching, where the branch instruction alone would take 16+ cycles.
930 */
931 for (unsigned n = 0; n < program->wave_size; ++n) {
932 /* Activate the lane which has N for its source index */
933 bld.vopc(aco_opcode::v_cmpx_eq_u32, Definition(exec, bld.lm), clobber_vcc, Operand(n), index);
934 /* Read the data from lane N */
935 bld.readlane(Definition(vcc, s1), input, Operand(n));
936 /* On the active lane, move the data we read from lane N to the destination VGPR */
937 bld.vop1(aco_opcode::v_mov_b32, dst, Operand(vcc, s1));
938 /* Restore original EXEC */
939 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(temp_exec.physReg(), s2));
940 }
941 }
942
943 struct copy_operation {
944 Operand op;
945 Definition def;
946 unsigned bytes;
947 union {
948 uint8_t uses[8];
949 uint64_t is_used = 0;
950 };
951 };
952
953 void split_copy(unsigned offset, Definition *def, Operand *op, const copy_operation& src, bool ignore_uses, unsigned max_size)
954 {
955 PhysReg def_reg = src.def.physReg();
956 PhysReg op_reg = src.op.physReg();
957 def_reg.reg_b += offset;
958 op_reg.reg_b += offset;
959
960 max_size = MIN2(max_size, src.def.regClass().type() == RegType::vgpr ? 4 : 8);
961
962 /* make sure the size is a power of two and reg % bytes == 0 */
963 unsigned bytes = 1;
964 for (; bytes <= max_size; bytes *= 2) {
965 unsigned next = bytes * 2u;
966 bool can_increase = def_reg.reg_b % next == 0 &&
967 offset + next <= src.bytes && next <= max_size;
968 if (!src.op.isConstant() && can_increase)
969 can_increase = op_reg.reg_b % next == 0;
970 for (unsigned i = 0; !ignore_uses && can_increase && (i < bytes); i++)
971 can_increase = (src.uses[offset + bytes + i] == 0) == (src.uses[offset] == 0);
972 if (!can_increase)
973 break;
974 }
975
976 RegClass def_cls = bytes % 4 == 0 ? RegClass(src.def.regClass().type(), bytes / 4u) :
977 RegClass(src.def.regClass().type(), bytes).as_subdword();
978 *def = Definition(src.def.tempId(), def_reg, def_cls);
979 if (src.op.isConstant()) {
980 assert(offset == 0 || (offset == 4 && src.op.bytes() == 8));
981 if (src.op.bytes() == 8 && bytes == 4)
982 *op = Operand(uint32_t(src.op.constantValue64() >> (offset * 8u)));
983 else
984 *op = src.op;
985 } else {
986 RegClass op_cls = bytes % 4 == 0 ? RegClass(src.op.regClass().type(), bytes / 4u) :
987 RegClass(src.op.regClass().type(), bytes).as_subdword();
988 *op = Operand(op_reg, op_cls);
989 op->setTemp(Temp(src.op.tempId(), op_cls));
990 }
991 }
992
993 uint32_t get_intersection_mask(int a_start, int a_size,
994 int b_start, int b_size)
995 {
996 int intersection_start = MAX2(b_start - a_start, 0);
997 int intersection_end = MAX2(b_start + b_size - a_start, 0);
998 if (intersection_start >= a_size || intersection_end == 0)
999 return 0;
1000
1001 uint32_t mask = u_bit_consecutive(0, a_size);
1002 return u_bit_consecutive(intersection_start, intersection_end - intersection_start) & mask;
1003 }
1004
1005 bool do_copy(lower_context* ctx, Builder& bld, const copy_operation& copy, bool *preserve_scc)
1006 {
1007 bool did_copy = false;
1008 for (unsigned offset = 0; offset < copy.bytes;) {
1009 if (copy.uses[offset]) {
1010 offset++;
1011 continue;
1012 }
1013
1014 Definition def;
1015 Operand op;
1016 split_copy(offset, &def, &op, copy, false, 8);
1017
1018 if (def.physReg() == scc) {
1019 bld.sopc(aco_opcode::s_cmp_lg_i32, def, op, Operand(0u));
1020 *preserve_scc = true;
1021 } else if (def.bytes() == 8 && def.getTemp().type() == RegType::sgpr) {
1022 bld.sop1(aco_opcode::s_mov_b64, def, Operand(op.physReg(), s2));
1023 } else {
1024 bld.copy(def, op);
1025 }
1026
1027 ctx->program->statistics[statistic_copies]++;
1028
1029 did_copy = true;
1030 offset += def.bytes();
1031 }
1032 return did_copy;
1033 }
1034
1035 void do_swap(lower_context *ctx, Builder& bld, const copy_operation& copy, bool preserve_scc, Pseudo_instruction *pi)
1036 {
1037 unsigned offset = 0;
1038
1039 if (copy.bytes == 3 && (copy.def.physReg().reg_b % 4 <= 1) &&
1040 (copy.def.physReg().reg_b % 4) == (copy.op.physReg().reg_b % 4)) {
1041 /* instead of doing a 2-byte and 1-byte swap, do a 4-byte swap and then fixup with a 1-byte swap */
1042 PhysReg op = copy.op.physReg();
1043 PhysReg def = copy.def.physReg();
1044 op.reg_b &= ~0x3;
1045 def.reg_b &= ~0x3;
1046
1047 copy_operation tmp;
1048 tmp.op = Operand(op, v1);
1049 tmp.def = Definition(def, v1);
1050 tmp.bytes = 4;
1051 memset(tmp.uses, 1, 4);
1052 do_swap(ctx, bld, tmp, preserve_scc, pi);
1053
1054 op.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
1055 def.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
1056 tmp.op = Operand(op, v1b);
1057 tmp.def = Definition(def, v1b);
1058 tmp.bytes = 1;
1059 tmp.uses[0] = 1;
1060 do_swap(ctx, bld, tmp, preserve_scc, pi);
1061
1062 offset = copy.bytes;
1063 }
1064
1065 for (; offset < copy.bytes;) {
1066 Definition def;
1067 Operand op;
1068 split_copy(offset, &def, &op, copy, true, 8);
1069
1070 assert(op.regClass() == def.regClass());
1071 Operand def_as_op = Operand(def.physReg(), def.regClass());
1072 Definition op_as_def = Definition(op.physReg(), op.regClass());
1073 if (ctx->program->chip_class >= GFX9 && def.regClass() == v1) {
1074 bld.vop1(aco_opcode::v_swap_b32, def, op_as_def, op, def_as_op);
1075 ctx->program->statistics[statistic_copies]++;
1076 } else if (def.regClass() == v1) {
1077 bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1078 bld.vop2(aco_opcode::v_xor_b32, def, op, def_as_op);
1079 bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1080 ctx->program->statistics[statistic_copies] += 3;
1081 } else if (op.physReg() == scc || def.physReg() == scc) {
1082 /* we need to swap scc and another sgpr */
1083 assert(!preserve_scc);
1084
1085 PhysReg other = op.physReg() == scc ? def.physReg() : op.physReg();
1086
1087 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
1088 bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u));
1089 bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
1090 ctx->program->statistics[statistic_copies] += 3;
1091 } else if (def.regClass() == s1) {
1092 if (preserve_scc) {
1093 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), op);
1094 bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
1095 bld.sop1(aco_opcode::s_mov_b32, def, Operand(pi->scratch_sgpr, s1));
1096 } else {
1097 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
1098 bld.sop2(aco_opcode::s_xor_b32, def, Definition(scc, s1), op, def_as_op);
1099 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
1100 }
1101 ctx->program->statistics[statistic_copies] += 3;
1102 } else if (def.regClass() == s2) {
1103 if (preserve_scc)
1104 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
1105 bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
1106 bld.sop2(aco_opcode::s_xor_b64, def, Definition(scc, s1), op, def_as_op);
1107 bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
1108 if (preserve_scc)
1109 bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(pi->scratch_sgpr, s1), Operand(0u));
1110 ctx->program->statistics[statistic_copies] += 3;
1111 } else if (ctx->program->chip_class >= GFX9 && def.bytes() == 2 && def.physReg().reg() == op.physReg().reg()) {
1112 aco_ptr<VOP3P_instruction> vop3p{create_instruction<VOP3P_instruction>(aco_opcode::v_pk_add_u16, Format::VOP3P, 2, 1)};
1113 vop3p->operands[0] = Operand(PhysReg{op.physReg().reg()}, v1);
1114 vop3p->operands[1] = Operand(0u);
1115 vop3p->definitions[0] = Definition(PhysReg{op.physReg().reg()}, v1);
1116 vop3p->opsel_lo = 0x1;
1117 vop3p->opsel_hi = 0x2;
1118 bld.insert(std::move(vop3p));
1119 } else {
1120 assert(def.regClass().is_subdword());
1121 bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1122 bld.vop2_sdwa(aco_opcode::v_xor_b32, def, op, def_as_op);
1123 bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1124 ctx->program->statistics[statistic_copies] += 3;
1125 }
1126
1127 offset += def.bytes();
1128 }
1129
1130 /* fixup in case we swapped bytes we shouldn't have */
1131 copy_operation tmp_copy = copy;
1132 tmp_copy.op.setFixed(copy.def.physReg());
1133 tmp_copy.def.setFixed(copy.op.physReg());
1134 do_copy(ctx, bld, tmp_copy, &preserve_scc);
1135 }
1136
1137 void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi)
1138 {
1139 Builder bld(ctx->program, &ctx->instructions);
1140 aco_ptr<Instruction> mov;
1141 std::map<PhysReg, copy_operation>::iterator it = copy_map.begin();
1142 std::map<PhysReg, copy_operation>::iterator target;
1143 bool writes_scc = false;
1144
1145 /* count the number of uses for each dst reg */
1146 while (it != copy_map.end()) {
1147
1148 if (it->second.def.physReg() == scc)
1149 writes_scc = true;
1150
1151 assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr));
1152
1153 /* if src and dst reg are the same, remove operation */
1154 if (it->first == it->second.op.physReg()) {
1155 it = copy_map.erase(it);
1156 continue;
1157 }
1158
1159 /* split large copies */
1160 if (it->second.bytes > 8) {
1161 assert(!it->second.op.isConstant());
1162 assert(!it->second.def.regClass().is_subdword());
1163 RegClass rc = RegClass(it->second.def.regClass().type(), it->second.def.size() - 2);
1164 Definition hi_def = Definition(PhysReg{it->first + 2}, rc);
1165 rc = RegClass(it->second.op.regClass().type(), it->second.op.size() - 2);
1166 Operand hi_op = Operand(PhysReg{it->second.op.physReg() + 2}, rc);
1167 copy_operation copy = {hi_op, hi_def, it->second.bytes - 8};
1168 copy_map[hi_def.physReg()] = copy;
1169 assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
1170 it->second.op = Operand(it->second.op.physReg(), it->second.op.regClass().type() == RegType::sgpr ? s2 : v2);
1171 it->second.def = Definition(it->second.def.physReg(), it->second.def.regClass().type() == RegType::sgpr ? s2 : v2);
1172 it->second.bytes = 8;
1173 }
1174
1175 /* check if the definition reg is used by another copy operation */
1176 for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
1177 if (copy.second.op.isConstant())
1178 continue;
1179 for (uint16_t i = 0; i < it->second.bytes; i++) {
1180 /* distance might underflow */
1181 unsigned distance = it->first.reg_b + i - copy.second.op.physReg().reg_b;
1182 if (distance < copy.second.bytes)
1183 it->second.uses[i] += 1;
1184 }
1185 }
1186
1187 ++it;
1188 }
1189
1190 /* first, handle paths in the location transfer graph */
1191 bool preserve_scc = pi->tmp_in_scc && !writes_scc;
1192 it = copy_map.begin();
1193 while (it != copy_map.end()) {
1194
1195 /* try to coalesce 32-bit sgpr copies to 64-bit copies */
1196 if (it->second.is_used == 0 &&
1197 it->second.def.getTemp().type() == RegType::sgpr && it->second.bytes == 4 &&
1198 !it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) {
1199
1200 PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1};
1201 PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1};
1202 std::map<PhysReg, copy_operation>::iterator other = copy_map.find(other_def_reg);
1203
1204 if (other != copy_map.end() && !other->second.is_used && other->second.bytes == 4 &&
1205 other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) {
1206 std::map<PhysReg, copy_operation>::iterator to_erase = it->first % 2 ? it : other;
1207 it = it->first % 2 ? other : it;
1208 copy_map.erase(to_erase);
1209 it->second.bytes = 8;
1210 }
1211 }
1212 // TODO: try to coalesce subdword copies
1213
1214 /* find portions where the target reg is not used as operand for any other copy */
1215 if (it->second.is_used) {
1216 if (it->second.op.isConstant()) {
1217 /* we have to skip constants until is_used=0 */
1218 ++it;
1219 continue;
1220 }
1221
1222 unsigned has_zero_use_bytes = 0;
1223 for (unsigned i = 0; i < it->second.bytes; i++)
1224 has_zero_use_bytes |= (it->second.uses[i] == 0) << i;
1225
1226 if (has_zero_use_bytes) {
1227 /* Skipping partial copying and doing a v_swap_b32 and then fixup
1228 * copies is usually beneficial for sub-dword copies, but if doing
1229 * a partial copy allows further copies, it should be done instead. */
1230 bool partial_copy = (has_zero_use_bytes == 0xf) || (has_zero_use_bytes == 0xf0);
1231 for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
1232 if (partial_copy)
1233 break;
1234 for (uint16_t i = 0; i < copy.second.bytes; i++) {
1235 /* distance might underflow */
1236 unsigned distance = copy.first.reg_b + i - it->second.op.physReg().reg_b;
1237 if (distance < it->second.bytes && copy.second.uses[i] == 1 &&
1238 !it->second.uses[distance])
1239 partial_copy = true;
1240 }
1241 }
1242
1243 if (!partial_copy) {
1244 ++it;
1245 continue;
1246 }
1247 } else {
1248 /* full target reg is used: register swapping needed */
1249 ++it;
1250 continue;
1251 }
1252 }
1253
1254 bool did_copy = do_copy(ctx, bld, it->second, &preserve_scc);
1255
1256 std::pair<PhysReg, copy_operation> copy = *it;
1257
1258 if (it->second.is_used == 0) {
1259 /* the target reg is not used as operand for any other copy, so we
1260 * copied to all of it */
1261 copy_map.erase(it);
1262 it = copy_map.begin();
1263 } else {
1264 /* we only performed some portions of this copy, so split it to only
1265 * leave the portions that still need to be done */
1266 copy_operation original = it->second; /* the map insertion below can overwrite this */
1267 copy_map.erase(it);
1268 for (unsigned offset = 0; offset < original.bytes;) {
1269 if (original.uses[offset] == 0) {
1270 offset++;
1271 continue;
1272 }
1273 Definition def;
1274 Operand op;
1275 split_copy(offset, &def, &op, original, false, 8);
1276
1277 copy_operation copy = {op, def, def.bytes()};
1278 for (unsigned i = 0; i < copy.bytes; i++)
1279 copy.uses[i] = original.uses[i + offset];
1280 copy_map[def.physReg()] = copy;
1281
1282 offset += def.bytes();
1283 }
1284
1285 it = copy_map.begin();
1286 }
1287
1288 /* Reduce the number of uses of the operand reg by one. Do this after
1289 * splitting the copy or removing it in case the copy writes to it's own
1290 * operand (for example, v[7:8] = v[8:9]) */
1291 if (did_copy && !copy.second.op.isConstant()) {
1292 for (std::pair<const PhysReg, copy_operation>& other : copy_map) {
1293 for (uint16_t i = 0; i < other.second.bytes; i++) {
1294 /* distance might underflow */
1295 unsigned distance = other.first.reg_b + i - copy.second.op.physReg().reg_b;
1296 if (distance < copy.second.bytes && !copy.second.uses[distance])
1297 other.second.uses[i] -= 1;
1298 }
1299 }
1300 }
1301 }
1302
1303 if (copy_map.empty())
1304 return;
1305
1306 /* all target regs are needed as operand somewhere which means, all entries are part of a cycle */
1307 unsigned largest = 0;
1308 for (const std::pair<const PhysReg, copy_operation>& op : copy_map)
1309 largest = MAX2(largest, op.second.bytes);
1310
1311 while (!copy_map.empty()) {
1312
1313 /* Perform larger swaps first, because larger swaps swaps can make other
1314 * swaps unnecessary. */
1315 auto it = copy_map.begin();
1316 for (auto it2 = copy_map.begin(); it2 != copy_map.end(); ++it2) {
1317 if (it2->second.bytes > it->second.bytes) {
1318 it = it2;
1319 if (it->second.bytes == largest)
1320 break;
1321 }
1322 }
1323
1324 /* should already be done */
1325 assert(!it->second.op.isConstant());
1326
1327 assert(it->second.op.isFixed());
1328 assert(it->second.def.regClass() == it->second.op.regClass());
1329
1330 if (it->first == it->second.op.physReg()) {
1331 copy_map.erase(it);
1332 continue;
1333 }
1334
1335 if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr)
1336 assert(!(it->second.def.physReg() == pi->scratch_sgpr));
1337
1338 /* to resolve the cycle, we have to swap the src reg with the dst reg */
1339 copy_operation swap = it->second;
1340
1341 /* if this is self-intersecting, we have to split it because
1342 * self-intersecting swaps don't make sense */
1343 PhysReg lower = swap.def.physReg();
1344 PhysReg higher = swap.op.physReg();
1345 if (lower.reg_b > higher.reg_b)
1346 std::swap(lower, higher);
1347 if (higher.reg_b - lower.reg_b < (int)swap.bytes) {
1348 unsigned offset = higher.reg_b - lower.reg_b;
1349 RegType type = swap.def.regClass().type();
1350
1351 copy_operation middle;
1352 lower.reg_b += offset;
1353 higher.reg_b += offset;
1354 middle.bytes = swap.bytes - offset * 2;
1355 memcpy(middle.uses, swap.uses + offset, middle.bytes);
1356 middle.op = Operand(lower, RegClass::get(type, middle.bytes));
1357 middle.def = Definition(higher, RegClass::get(type, middle.bytes));
1358 copy_map[higher] = middle;
1359
1360 copy_operation end;
1361 lower.reg_b += middle.bytes;
1362 higher.reg_b += middle.bytes;
1363 end.bytes = swap.bytes - (offset + middle.bytes);
1364 memcpy(end.uses, swap.uses + offset + middle.bytes, end.bytes);
1365 end.op = Operand(lower, RegClass::get(type, end.bytes));
1366 end.def = Definition(higher, RegClass::get(type, end.bytes));
1367 copy_map[higher] = end;
1368
1369 memset(swap.uses + offset, 0, swap.bytes - offset);
1370 swap.bytes = offset;
1371 }
1372
1373 do_swap(ctx, bld, swap, preserve_scc, pi);
1374
1375 /* remove from map */
1376 copy_map.erase(it);
1377
1378 /* change the operand reg of the target's uses and split uses if needed */
1379 target = copy_map.begin();
1380 uint32_t bytes_left = u_bit_consecutive(0, swap.bytes);
1381 for (; target != copy_map.end(); ++target) {
1382 if (target->second.op.physReg() == swap.def.physReg() && swap.bytes == target->second.bytes) {
1383 target->second.op.setFixed(swap.op.physReg());
1384 break;
1385 }
1386
1387 uint32_t imask = get_intersection_mask(swap.def.physReg().reg_b, swap.bytes,
1388 target->second.op.physReg().reg_b, target->second.bytes);
1389
1390 if (!imask)
1391 continue;
1392
1393 assert(target->second.bytes < swap.bytes);
1394
1395 int offset = (int)target->second.op.physReg().reg_b - (int)swap.def.physReg().reg_b;
1396
1397 /* split and update the middle (the portion that reads the swap's
1398 * definition) to read the swap's operand instead */
1399 int target_op_end = target->second.op.physReg().reg_b + target->second.bytes;
1400 int swap_def_end = swap.def.physReg().reg_b + swap.bytes;
1401 int before_bytes = MAX2(-offset, 0);
1402 int after_bytes = MAX2(target_op_end - swap_def_end, 0);
1403 int middle_bytes = target->second.bytes - before_bytes - after_bytes;
1404
1405 if (after_bytes) {
1406 unsigned after_offset = before_bytes + middle_bytes;
1407 assert(after_offset > 0);
1408 copy_operation copy;
1409 copy.bytes = after_bytes;
1410 memcpy(copy.uses, target->second.uses + after_offset, copy.bytes);
1411 RegClass rc = RegClass::get(target->second.op.regClass().type(), after_bytes);
1412 copy.op = Operand(target->second.op.physReg().advance(after_offset), rc);
1413 copy.def = Definition(target->second.def.physReg().advance(after_offset), rc);
1414 copy_map[copy.def.physReg()] = copy;
1415 }
1416
1417 if (middle_bytes) {
1418 copy_operation copy;
1419 copy.bytes = middle_bytes;
1420 memcpy(copy.uses, target->second.uses + before_bytes, copy.bytes);
1421 RegClass rc = RegClass::get(target->second.op.regClass().type(), middle_bytes);
1422 copy.op = Operand(swap.op.physReg().advance(MAX2(offset, 0)), rc);
1423 copy.def = Definition(target->second.def.physReg().advance(before_bytes), rc);
1424 copy_map[copy.def.physReg()] = copy;
1425 }
1426
1427 if (before_bytes) {
1428 copy_operation copy;
1429 target->second.bytes = before_bytes;
1430 RegClass rc = RegClass::get(target->second.op.regClass().type(), before_bytes);
1431 target->second.op = Operand(target->second.op.physReg(), rc);
1432 target->second.def = Definition(target->second.def.physReg(), rc);
1433 memset(target->second.uses + target->second.bytes, 0, 8 - target->second.bytes);
1434 }
1435
1436 /* break early since we know each byte of the swap's definition is used
1437 * at most once */
1438 bytes_left &= ~imask;
1439 if (!bytes_left)
1440 break;
1441 }
1442 }
1443 }
1444
1445 void lower_to_hw_instr(Program* program)
1446 {
1447 Block *discard_block = NULL;
1448
1449 for (size_t i = 0; i < program->blocks.size(); i++)
1450 {
1451 Block *block = &program->blocks[i];
1452 lower_context ctx;
1453 ctx.program = program;
1454 Builder bld(program, &ctx.instructions);
1455
1456 bool set_mode = i == 0 && block->fp_mode.val != program->config->float_mode;
1457 for (unsigned pred : block->linear_preds) {
1458 if (program->blocks[pred].fp_mode.val != block->fp_mode.val) {
1459 set_mode = true;
1460 break;
1461 }
1462 }
1463 if (set_mode) {
1464 /* only allow changing modes at top-level blocks so this doesn't break
1465 * the "jump over empty blocks" optimization */
1466 assert(block->kind & block_kind_top_level);
1467 uint32_t mode = block->fp_mode.val;
1468 /* "((size - 1) << 11) | register" (MODE is encoded as register 1) */
1469 bld.sopk(aco_opcode::s_setreg_imm32_b32, Operand(mode), (7 << 11) | 1);
1470 }
1471
1472 for (size_t j = 0; j < block->instructions.size(); j++) {
1473 aco_ptr<Instruction>& instr = block->instructions[j];
1474 aco_ptr<Instruction> mov;
1475 if (instr->format == Format::PSEUDO) {
1476 Pseudo_instruction *pi = (Pseudo_instruction*)instr.get();
1477
1478 switch (instr->opcode)
1479 {
1480 case aco_opcode::p_extract_vector:
1481 {
1482 PhysReg reg = instr->operands[0].physReg();
1483 Definition& def = instr->definitions[0];
1484 reg.reg_b += instr->operands[1].constantValue() * def.bytes();
1485
1486 if (reg == def.physReg())
1487 break;
1488
1489 RegClass op_rc = def.regClass().is_subdword() ? def.regClass() :
1490 RegClass(instr->operands[0].getTemp().type(), def.size());
1491 std::map<PhysReg, copy_operation> copy_operations;
1492 copy_operations[def.physReg()] = {Operand(reg, op_rc), def, def.bytes()};
1493 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1494 break;
1495 }
1496 case aco_opcode::p_create_vector:
1497 {
1498 std::map<PhysReg, copy_operation> copy_operations;
1499 PhysReg reg = instr->definitions[0].physReg();
1500
1501 for (const Operand& op : instr->operands) {
1502 if (op.isConstant()) {
1503 const Definition def = Definition(reg, RegClass(instr->definitions[0].getTemp().type(), op.size()));
1504 copy_operations[reg] = {op, def, op.bytes()};
1505 reg.reg_b += op.bytes();
1506 continue;
1507 }
1508 if (op.isUndefined()) {
1509 // TODO: coalesce subdword copies if dst byte is 0
1510 reg.reg_b += op.bytes();
1511 continue;
1512 }
1513
1514 RegClass rc_def = op.regClass().is_subdword() ? op.regClass() :
1515 RegClass(instr->definitions[0].getTemp().type(), op.size());
1516 const Definition def = Definition(reg, rc_def);
1517 copy_operations[def.physReg()] = {op, def, op.bytes()};
1518 reg.reg_b += op.bytes();
1519 }
1520 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1521 break;
1522 }
1523 case aco_opcode::p_split_vector:
1524 {
1525 std::map<PhysReg, copy_operation> copy_operations;
1526 PhysReg reg = instr->operands[0].physReg();
1527
1528 for (const Definition& def : instr->definitions) {
1529 RegClass rc_op = def.regClass().is_subdword() ? def.regClass() :
1530 RegClass(instr->operands[0].getTemp().type(), def.size());
1531 const Operand op = Operand(reg, rc_op);
1532 copy_operations[def.physReg()] = {op, def, def.bytes()};
1533 reg.reg_b += def.bytes();
1534 }
1535 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1536 break;
1537 }
1538 case aco_opcode::p_parallelcopy:
1539 case aco_opcode::p_wqm:
1540 {
1541 std::map<PhysReg, copy_operation> copy_operations;
1542 for (unsigned i = 0; i < instr->operands.size(); i++) {
1543 assert(instr->definitions[i].bytes() == instr->operands[i].bytes());
1544 copy_operations[instr->definitions[i].physReg()] = {instr->operands[i], instr->definitions[i], instr->operands[i].bytes()};
1545 }
1546 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1547 break;
1548 }
1549 case aco_opcode::p_exit_early_if:
1550 {
1551 /* don't bother with an early exit near the end of the program */
1552 if ((block->instructions.size() - 1 - j) <= 4 &&
1553 block->instructions.back()->opcode == aco_opcode::s_endpgm) {
1554 unsigned null_exp_dest = (ctx.program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
1555 bool ignore_early_exit = true;
1556
1557 for (unsigned k = j + 1; k < block->instructions.size(); ++k) {
1558 const aco_ptr<Instruction> &instr = block->instructions[k];
1559 if (instr->opcode == aco_opcode::s_endpgm ||
1560 instr->opcode == aco_opcode::p_logical_end)
1561 continue;
1562 else if (instr->opcode == aco_opcode::exp &&
1563 static_cast<Export_instruction *>(instr.get())->dest == null_exp_dest)
1564 continue;
1565 else if (instr->opcode == aco_opcode::p_parallelcopy &&
1566 instr->definitions[0].isFixed() &&
1567 instr->definitions[0].physReg() == exec)
1568 continue;
1569
1570 ignore_early_exit = false;
1571 }
1572
1573 if (ignore_early_exit)
1574 break;
1575 }
1576
1577 if (!discard_block) {
1578 discard_block = program->create_and_insert_block();
1579 block = &program->blocks[i];
1580
1581 bld.reset(discard_block);
1582 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
1583 0, V_008DFC_SQ_EXP_NULL, false, true, true);
1584 if (program->wb_smem_l1_on_end)
1585 bld.smem(aco_opcode::s_dcache_wb);
1586 bld.sopp(aco_opcode::s_endpgm);
1587
1588 bld.reset(&ctx.instructions);
1589 }
1590
1591 //TODO: exec can be zero here with block_kind_discard
1592
1593 assert(instr->operands[0].physReg() == scc);
1594 bld.sopp(aco_opcode::s_cbranch_scc0, instr->operands[0], discard_block->index);
1595
1596 discard_block->linear_preds.push_back(block->index);
1597 block->linear_succs.push_back(discard_block->index);
1598 break;
1599 }
1600 case aco_opcode::p_spill:
1601 {
1602 assert(instr->operands[0].regClass() == v1.as_linear());
1603 for (unsigned i = 0; i < instr->operands[2].size(); i++)
1604 bld.writelane(bld.def(v1, instr->operands[0].physReg()),
1605 Operand(PhysReg{instr->operands[2].physReg() + i}, s1),
1606 Operand(instr->operands[1].constantValue() + i),
1607 instr->operands[0]);
1608 break;
1609 }
1610 case aco_opcode::p_reload:
1611 {
1612 assert(instr->operands[0].regClass() == v1.as_linear());
1613 for (unsigned i = 0; i < instr->definitions[0].size(); i++)
1614 bld.readlane(bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1615 instr->operands[0],
1616 Operand(instr->operands[1].constantValue() + i));
1617 break;
1618 }
1619 case aco_opcode::p_as_uniform:
1620 {
1621 if (instr->operands[0].isConstant() || instr->operands[0].regClass().type() == RegType::sgpr) {
1622 std::map<PhysReg, copy_operation> copy_operations;
1623 copy_operations[instr->definitions[0].physReg()] = {instr->operands[0], instr->definitions[0], instr->definitions[0].bytes()};
1624 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1625 } else {
1626 assert(instr->operands[0].regClass().type() == RegType::vgpr);
1627 assert(instr->definitions[0].regClass().type() == RegType::sgpr);
1628 assert(instr->operands[0].size() == instr->definitions[0].size());
1629 for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
1630 bld.vop1(aco_opcode::v_readfirstlane_b32,
1631 bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1632 Operand(PhysReg{instr->operands[0].physReg() + i}, v1));
1633 }
1634 }
1635 break;
1636 }
1637 case aco_opcode::p_bpermute:
1638 {
1639 if (ctx.program->chip_class <= GFX7)
1640 emit_gfx6_bpermute(program, instr, bld);
1641 else if (ctx.program->chip_class == GFX10 && ctx.program->wave_size == 64)
1642 emit_gfx10_wave64_bpermute(program, instr, bld);
1643 else
1644 unreachable("Current hardware supports ds_bpermute, don't emit p_bpermute.");
1645 }
1646 default:
1647 break;
1648 }
1649 } else if (instr->format == Format::PSEUDO_BRANCH) {
1650 Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(instr.get());
1651 /* check if all blocks from current to target are empty */
1652 bool can_remove = block->index < branch->target[0];
1653 for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) {
1654 if (program->blocks[i].instructions.size())
1655 can_remove = false;
1656 }
1657 if (can_remove)
1658 continue;
1659
1660 switch (instr->opcode) {
1661 case aco_opcode::p_branch:
1662 assert(block->linear_succs[0] == branch->target[0]);
1663 bld.sopp(aco_opcode::s_branch, branch->target[0]);
1664 break;
1665 case aco_opcode::p_cbranch_nz:
1666 assert(block->linear_succs[1] == branch->target[0]);
1667 if (branch->operands[0].physReg() == exec)
1668 bld.sopp(aco_opcode::s_cbranch_execnz, branch->target[0]);
1669 else if (branch->operands[0].physReg() == vcc)
1670 bld.sopp(aco_opcode::s_cbranch_vccnz, branch->target[0]);
1671 else {
1672 assert(branch->operands[0].physReg() == scc);
1673 bld.sopp(aco_opcode::s_cbranch_scc1, branch->target[0]);
1674 }
1675 break;
1676 case aco_opcode::p_cbranch_z:
1677 assert(block->linear_succs[1] == branch->target[0]);
1678 if (branch->operands[0].physReg() == exec)
1679 bld.sopp(aco_opcode::s_cbranch_execz, branch->target[0]);
1680 else if (branch->operands[0].physReg() == vcc)
1681 bld.sopp(aco_opcode::s_cbranch_vccz, branch->target[0]);
1682 else {
1683 assert(branch->operands[0].physReg() == scc);
1684 bld.sopp(aco_opcode::s_cbranch_scc0, branch->target[0]);
1685 }
1686 break;
1687 default:
1688 unreachable("Unknown Pseudo branch instruction!");
1689 }
1690
1691 } else if (instr->format == Format::PSEUDO_REDUCTION) {
1692 Pseudo_reduction_instruction* reduce = static_cast<Pseudo_reduction_instruction*>(instr.get());
1693 emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size,
1694 reduce->operands[1].physReg(), // tmp
1695 reduce->definitions[1].physReg(), // stmp
1696 reduce->operands[2].physReg(), // vtmp
1697 reduce->definitions[2].physReg(), // sitmp
1698 reduce->operands[0], reduce->definitions[0]);
1699 } else {
1700 ctx.instructions.emplace_back(std::move(instr));
1701 }
1702
1703 }
1704 block->instructions.swap(ctx.instructions);
1705 }
1706 }
1707
1708 }