aco: sign-extend input/identity for 16-bit subgroup ops on GFX6-GFX7
[mesa.git] / src / amd / compiler / aco_lower_to_hw_instr.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <map>
29
30 #include "aco_ir.h"
31 #include "aco_builder.h"
32 #include "util/u_math.h"
33 #include "sid.h"
34 #include "vulkan/radv_shader.h"
35
36
37 namespace aco {
38
39 struct lower_context {
40 Program *program;
41 std::vector<aco_ptr<Instruction>> instructions;
42 };
43
44 aco_opcode get_reduce_opcode(chip_class chip, ReduceOp op) {
45 /* Because some 16-bit instructions are already VOP3 on GFX10, we use the
46 * 32-bit opcodes (VOP2) which allows to remove the tempory VGPR and to use
47 * DPP with the arithmetic instructions. This requires to sign-extend.
48 */
49 switch (op) {
50 case iadd8:
51 case iadd16:
52 if (chip >= GFX10) {
53 return aco_opcode::v_add_u32;
54 } else if (chip >= GFX8) {
55 return aco_opcode::v_add_u16;
56 } else {
57 return aco_opcode::v_add_co_u32;
58 }
59 break;
60 case imul8:
61 case imul16:
62 if (chip >= GFX10) {
63 return aco_opcode::v_mul_lo_u16_e64;
64 } else if (chip >= GFX8) {
65 return aco_opcode::v_mul_lo_u16;
66 } else {
67 return aco_opcode::v_mul_u32_u24;
68 }
69 break;
70 case fadd16: return aco_opcode::v_add_f16;
71 case fmul16: return aco_opcode::v_mul_f16;
72 case imax8:
73 case imax16:
74 if (chip >= GFX10) {
75 return aco_opcode::v_max_i32;
76 } else if (chip >= GFX8) {
77 return aco_opcode::v_max_i16;
78 } else {
79 return aco_opcode::v_max_i32;
80 }
81 break;
82 case imin8:
83 case imin16:
84 if (chip >= GFX10) {
85 return aco_opcode::v_min_i32;
86 } else if (chip >= GFX8) {
87 return aco_opcode::v_min_i16;
88 } else {
89 return aco_opcode::v_min_i32;
90 }
91 break;
92 case umin8:
93 case umin16:
94 if (chip >= GFX10) {
95 return aco_opcode::v_min_u32;
96 } else if (chip >= GFX8) {
97 return aco_opcode::v_min_u16;
98 } else {
99 return aco_opcode::v_min_u32;
100 }
101 break;
102 case umax8:
103 case umax16:
104 if (chip >= GFX10) {
105 return aco_opcode::v_max_u32;
106 } else if (chip >= GFX8) {
107 return aco_opcode::v_max_u16;
108 } else {
109 return aco_opcode::v_max_u32;
110 }
111 break;
112 case fmin16: return aco_opcode::v_min_f16;
113 case fmax16: return aco_opcode::v_max_f16;
114 case iadd32: return chip >= GFX9 ? aco_opcode::v_add_u32 : aco_opcode::v_add_co_u32;
115 case imul32: return aco_opcode::v_mul_lo_u32;
116 case fadd32: return aco_opcode::v_add_f32;
117 case fmul32: return aco_opcode::v_mul_f32;
118 case imax32: return aco_opcode::v_max_i32;
119 case imin32: return aco_opcode::v_min_i32;
120 case umin32: return aco_opcode::v_min_u32;
121 case umax32: return aco_opcode::v_max_u32;
122 case fmin32: return aco_opcode::v_min_f32;
123 case fmax32: return aco_opcode::v_max_f32;
124 case iand8:
125 case iand16:
126 case iand32: return aco_opcode::v_and_b32;
127 case ixor8:
128 case ixor16:
129 case ixor32: return aco_opcode::v_xor_b32;
130 case ior8:
131 case ior16:
132 case ior32: return aco_opcode::v_or_b32;
133 case iadd64: return aco_opcode::num_opcodes;
134 case imul64: return aco_opcode::num_opcodes;
135 case fadd64: return aco_opcode::v_add_f64;
136 case fmul64: return aco_opcode::v_mul_f64;
137 case imin64: return aco_opcode::num_opcodes;
138 case imax64: return aco_opcode::num_opcodes;
139 case umin64: return aco_opcode::num_opcodes;
140 case umax64: return aco_opcode::num_opcodes;
141 case fmin64: return aco_opcode::v_min_f64;
142 case fmax64: return aco_opcode::v_max_f64;
143 case iand64: return aco_opcode::num_opcodes;
144 case ior64: return aco_opcode::num_opcodes;
145 case ixor64: return aco_opcode::num_opcodes;
146 default: return aco_opcode::num_opcodes;
147 }
148 }
149
150 bool is_vop3_reduce_opcode(aco_opcode opcode)
151 {
152 /* 64-bit reductions are VOP3. */
153 if (opcode == aco_opcode::num_opcodes)
154 return true;
155
156 return instr_info.format[(int)opcode] == Format::VOP3;
157 }
158
159 void emit_vadd32(Builder& bld, Definition def, Operand src0, Operand src1)
160 {
161 Instruction *instr = bld.vadd32(def, src0, src1, false, Operand(s2), true);
162 if (instr->definitions.size() >= 2) {
163 assert(instr->definitions[1].regClass() == bld.lm);
164 instr->definitions[1].setFixed(vcc);
165 }
166 }
167
168 void emit_int64_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
169 PhysReg vtmp_reg, ReduceOp op,
170 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
171 Operand *identity=NULL)
172 {
173 Builder bld(ctx->program, &ctx->instructions);
174 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
175 Definition vtmp_def[] = {Definition(vtmp_reg, v1), Definition(PhysReg{vtmp_reg+1}, v1)};
176 Operand src0[] = {Operand(src0_reg, v1), Operand(PhysReg{src0_reg+1}, v1)};
177 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
178 Operand src1_64 = Operand(src1_reg, v2);
179 Operand vtmp_op[] = {Operand(vtmp_reg, v1), Operand(PhysReg{vtmp_reg+1}, v1)};
180 Operand vtmp_op64 = Operand(vtmp_reg, v2);
181 if (op == iadd64) {
182 if (ctx->program->chip_class >= GFX10) {
183 if (identity)
184 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
185 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
186 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
187 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), vtmp_op[0], src1[0]);
188 } else {
189 bld.vop2_dpp(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0],
190 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
191 }
192 bld.vop2_dpp(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm),
193 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
194 } else if (op == iand64) {
195 bld.vop2_dpp(aco_opcode::v_and_b32, dst[0], src0[0], src1[0],
196 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
197 bld.vop2_dpp(aco_opcode::v_and_b32, dst[1], src0[1], src1[1],
198 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
199 } else if (op == ior64) {
200 bld.vop2_dpp(aco_opcode::v_or_b32, dst[0], src0[0], src1[0],
201 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
202 bld.vop2_dpp(aco_opcode::v_or_b32, dst[1], src0[1], src1[1],
203 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
204 } else if (op == ixor64) {
205 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0],
206 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
207 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1],
208 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
209 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
210 aco_opcode cmp = aco_opcode::num_opcodes;
211 switch (op) {
212 case umin64:
213 cmp = aco_opcode::v_cmp_gt_u64;
214 break;
215 case umax64:
216 cmp = aco_opcode::v_cmp_lt_u64;
217 break;
218 case imin64:
219 cmp = aco_opcode::v_cmp_gt_i64;
220 break;
221 case imax64:
222 cmp = aco_opcode::v_cmp_lt_i64;
223 break;
224 default:
225 break;
226 }
227
228 if (identity) {
229 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
230 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[1], identity[1]);
231 }
232 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
233 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
234 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[1], src0[1],
235 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
236
237 bld.vopc(cmp, bld.def(bld.lm, vcc), vtmp_op64, src1_64);
238 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], vtmp_op[0], src1[0], Operand(vcc, bld.lm));
239 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], vtmp_op[1], src1[1], Operand(vcc, bld.lm));
240 } else if (op == imul64) {
241 /* t4 = dpp(x_hi)
242 * t1 = umul_lo(t4, y_lo)
243 * t3 = dpp(x_lo)
244 * t0 = umul_lo(t3, y_hi)
245 * t2 = iadd(t0, t1)
246 * t5 = umul_hi(t3, y_lo)
247 * res_hi = iadd(t2, t5)
248 * res_lo = umul_lo(t3, y_lo)
249 * Requires that res_hi != src0[0] and res_hi != src1[0]
250 * and that vtmp[0] != res_hi.
251 */
252 if (identity)
253 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[1]);
254 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[1],
255 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
256 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[1], vtmp_op[0], src1[0]);
257 if (identity)
258 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
259 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
260 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
261 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[0], vtmp_op[0], src1[1]);
262 emit_vadd32(bld, vtmp_def[1], vtmp_op[0], vtmp_op[1]);
263 if (identity)
264 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
265 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
266 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
267 bld.vop3(aco_opcode::v_mul_hi_u32, vtmp_def[0], vtmp_op[0], src1[0]);
268 emit_vadd32(bld, dst[1], vtmp_op[1], vtmp_op[0]);
269 if (identity)
270 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
271 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
272 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
273 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], vtmp_op[0], src1[0]);
274 }
275 }
276
277 void emit_int64_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, ReduceOp op)
278 {
279 Builder bld(ctx->program, &ctx->instructions);
280 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
281 RegClass src0_rc = src0_reg.reg() >= 256 ? v1 : s1;
282 Operand src0[] = {Operand(src0_reg, src0_rc), Operand(PhysReg{src0_reg+1}, src0_rc)};
283 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
284 Operand src0_64 = Operand(src0_reg, src0_reg.reg() >= 256 ? v2 : s2);
285 Operand src1_64 = Operand(src1_reg, v2);
286
287 if (src0_rc == s1 &&
288 (op == imul64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)) {
289 assert(vtmp.reg() != 0);
290 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), src0[0]);
291 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
292 src0_reg = vtmp;
293 src0[0] = Operand(vtmp, v1);
294 src0[1] = Operand(PhysReg{vtmp+1}, v1);
295 src0_64 = Operand(vtmp, v2);
296 } else if (src0_rc == s1 && op == iadd64) {
297 assert(vtmp.reg() != 0);
298 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
299 src0[1] = Operand(PhysReg{vtmp+1}, v1);
300 }
301
302 if (op == iadd64) {
303 if (ctx->program->chip_class >= GFX10) {
304 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
305 } else {
306 bld.vop2(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
307 }
308 bld.vop2(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm));
309 } else if (op == iand64) {
310 bld.vop2(aco_opcode::v_and_b32, dst[0], src0[0], src1[0]);
311 bld.vop2(aco_opcode::v_and_b32, dst[1], src0[1], src1[1]);
312 } else if (op == ior64) {
313 bld.vop2(aco_opcode::v_or_b32, dst[0], src0[0], src1[0]);
314 bld.vop2(aco_opcode::v_or_b32, dst[1], src0[1], src1[1]);
315 } else if (op == ixor64) {
316 bld.vop2(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0]);
317 bld.vop2(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1]);
318 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
319 aco_opcode cmp = aco_opcode::num_opcodes;
320 switch (op) {
321 case umin64:
322 cmp = aco_opcode::v_cmp_gt_u64;
323 break;
324 case umax64:
325 cmp = aco_opcode::v_cmp_lt_u64;
326 break;
327 case imin64:
328 cmp = aco_opcode::v_cmp_gt_i64;
329 break;
330 case imax64:
331 cmp = aco_opcode::v_cmp_lt_i64;
332 break;
333 default:
334 break;
335 }
336
337 bld.vopc(cmp, bld.def(bld.lm, vcc), src0_64, src1_64);
338 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], src0[0], src1[0], Operand(vcc, bld.lm));
339 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], src0[1], src1[1], Operand(vcc, bld.lm));
340 } else if (op == imul64) {
341 if (src1_reg == dst_reg) {
342 /* it's fine if src0==dst but not if src1==dst */
343 std::swap(src0_reg, src1_reg);
344 std::swap(src0[0], src1[0]);
345 std::swap(src0[1], src1[1]);
346 std::swap(src0_64, src1_64);
347 }
348 assert(!(src0_reg == src1_reg));
349 /* t1 = umul_lo(x_hi, y_lo)
350 * t0 = umul_lo(x_lo, y_hi)
351 * t2 = iadd(t0, t1)
352 * t5 = umul_hi(x_lo, y_lo)
353 * res_hi = iadd(t2, t5)
354 * res_lo = umul_lo(x_lo, y_lo)
355 * assumes that it's ok to modify x_hi/y_hi, since we might not have vtmp
356 */
357 Definition tmp0_def(PhysReg{src0_reg+1}, v1);
358 Definition tmp1_def(PhysReg{src1_reg+1}, v1);
359 Operand tmp0_op = src0[1];
360 Operand tmp1_op = src1[1];
361 bld.vop3(aco_opcode::v_mul_lo_u32, tmp0_def, src0[1], src1[0]);
362 bld.vop3(aco_opcode::v_mul_lo_u32, tmp1_def, src0[0], src1[1]);
363 emit_vadd32(bld, tmp0_def, tmp1_op, tmp0_op);
364 bld.vop3(aco_opcode::v_mul_hi_u32, tmp1_def, src0[0], src1[0]);
365 emit_vadd32(bld, dst[1], tmp0_op, tmp1_op);
366 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], src0[0], src1[0]);
367 }
368 }
369
370 void emit_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
371 PhysReg vtmp, ReduceOp op, unsigned size,
372 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
373 Operand *identity=NULL) /* for VOP3 with sparse writes */
374 {
375 Builder bld(ctx->program, &ctx->instructions);
376 RegClass rc = RegClass(RegType::vgpr, size);
377 Definition dst(dst_reg, rc);
378 Operand src0(src0_reg, rc);
379 Operand src1(src1_reg, rc);
380
381 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
382 bool vop3 = is_vop3_reduce_opcode(opcode);
383
384 if (!vop3) {
385 if (opcode == aco_opcode::v_add_co_u32)
386 bld.vop2_dpp(opcode, dst, bld.def(bld.lm, vcc), src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
387 else
388 bld.vop2_dpp(opcode, dst, src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
389 return;
390 }
391
392 if (opcode == aco_opcode::num_opcodes) {
393 emit_int64_dpp_op(ctx, dst_reg ,src0_reg, src1_reg, vtmp, op,
394 dpp_ctrl, row_mask, bank_mask, bound_ctrl, identity);
395 return;
396 }
397
398 if (identity)
399 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]);
400 if (identity && size >= 2)
401 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), identity[1]);
402
403 for (unsigned i = 0; i < size; i++)
404 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{src0_reg+i}, v1),
405 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
406
407 bld.vop3(opcode, dst, Operand(vtmp, rc), src1);
408 }
409
410 void emit_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
411 PhysReg vtmp, ReduceOp op, unsigned size)
412 {
413 Builder bld(ctx->program, &ctx->instructions);
414 RegClass rc = RegClass(RegType::vgpr, size);
415 Definition dst(dst_reg, rc);
416 Operand src0(src0_reg, RegClass(src0_reg.reg() >= 256 ? RegType::vgpr : RegType::sgpr, size));
417 Operand src1(src1_reg, rc);
418
419 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
420 bool vop3 = is_vop3_reduce_opcode(opcode);
421
422 if (opcode == aco_opcode::num_opcodes) {
423 emit_int64_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op);
424 return;
425 }
426
427 if (vop3) {
428 bld.vop3(opcode, dst, src0, src1);
429 } else if (opcode == aco_opcode::v_add_co_u32) {
430 bld.vop2(opcode, dst, bld.def(bld.lm, vcc), src0, src1);
431 } else {
432 bld.vop2(opcode, dst, src0, src1);
433 }
434 }
435
436 void emit_dpp_mov(lower_context *ctx, PhysReg dst, PhysReg src0, unsigned size,
437 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl)
438 {
439 Builder bld(ctx->program, &ctx->instructions);
440 for (unsigned i = 0; i < size; i++) {
441 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{dst+i}, v1), Operand(PhysReg{src0+i}, v1),
442 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
443 }
444 }
445
446 uint32_t get_reduction_identity(ReduceOp op, unsigned idx)
447 {
448 switch (op) {
449 case iadd8:
450 case iadd16:
451 case iadd32:
452 case iadd64:
453 case fadd16:
454 case fadd32:
455 case fadd64:
456 case ior8:
457 case ior16:
458 case ior32:
459 case ior64:
460 case ixor8:
461 case ixor16:
462 case ixor32:
463 case ixor64:
464 case umax8:
465 case umax16:
466 case umax32:
467 case umax64:
468 return 0;
469 case imul8:
470 case imul16:
471 case imul32:
472 case imul64:
473 return idx ? 0 : 1;
474 case fmul16:
475 return 0x3c00u; /* 1.0 */
476 case fmul32:
477 return 0x3f800000u; /* 1.0 */
478 case fmul64:
479 return idx ? 0x3ff00000u : 0u; /* 1.0 */
480 case imin8:
481 return INT8_MAX;
482 case imin16:
483 return INT16_MAX;
484 case imin32:
485 return INT32_MAX;
486 case imin64:
487 return idx ? 0x7fffffffu : 0xffffffffu;
488 case imax8:
489 return INT8_MIN;
490 case imax16:
491 return INT16_MIN;
492 case imax32:
493 return INT32_MIN;
494 case imax64:
495 return idx ? 0x80000000u : 0;
496 case umin8:
497 case umin16:
498 case iand8:
499 case iand16:
500 return 0xffffffffu;
501 case umin32:
502 case umin64:
503 case iand32:
504 case iand64:
505 return 0xffffffffu;
506 case fmin16:
507 return 0x7c00u; /* infinity */
508 case fmin32:
509 return 0x7f800000u; /* infinity */
510 case fmin64:
511 return idx ? 0x7ff00000u : 0u; /* infinity */
512 case fmax16:
513 return 0xfc00u; /* negative infinity */
514 case fmax32:
515 return 0xff800000u; /* negative infinity */
516 case fmax64:
517 return idx ? 0xfff00000u : 0u; /* negative infinity */
518 default:
519 unreachable("Invalid reduction operation");
520 break;
521 }
522 return 0;
523 }
524
525 void emit_ds_swizzle(Builder bld, PhysReg dst, PhysReg src, unsigned size, unsigned ds_pattern)
526 {
527 for (unsigned i = 0; i < size; i++) {
528 bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{dst+i}, v1),
529 Operand(PhysReg{src+i}, v1), ds_pattern);
530 }
531 }
532
533 void emit_reduction(lower_context *ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, PhysReg tmp,
534 PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst)
535 {
536 assert(cluster_size == ctx->program->wave_size || op == aco_opcode::p_reduce);
537 assert(cluster_size <= ctx->program->wave_size);
538
539 Builder bld(ctx->program, &ctx->instructions);
540
541 Operand identity[2];
542 identity[0] = Operand(get_reduction_identity(reduce_op, 0));
543 identity[1] = Operand(get_reduction_identity(reduce_op, 1));
544 Operand vcndmask_identity[2] = {identity[0], identity[1]};
545
546 /* First, copy the source to tmp and set inactive lanes to the identity */
547 bld.sop1(Builder::s_or_saveexec, Definition(stmp, bld.lm), Definition(scc, s1), Definition(exec, bld.lm), Operand(UINT64_MAX), Operand(exec, bld.lm));
548
549 for (unsigned i = 0; i < src.size(); i++) {
550 /* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32
551 * except on GFX10, where v_writelane_b32 can take a literal. */
552 if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan && ctx->program->chip_class < GFX10) {
553 bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp+i}, s1), identity[i]);
554 identity[i] = Operand(PhysReg{sitmp+i}, s1);
555
556 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
557 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
558 } else if (identity[i].isLiteral()) {
559 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
560 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
561 }
562 }
563
564 for (unsigned i = 0; i < src.size(); i++) {
565 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1),
566 vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1),
567 Operand(stmp, bld.lm));
568 }
569
570 if (src.regClass() == v1b) {
571 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
572 sdwa->operands[0] = Operand(PhysReg{tmp}, v1);
573 sdwa->definitions[0] = Definition(PhysReg{tmp}, v1);
574 if (reduce_op == imin8 || reduce_op == imax8)
575 sdwa->sel[0] = sdwa_sbyte;
576 else
577 sdwa->sel[0] = sdwa_ubyte;
578 sdwa->dst_sel = sdwa_udword;
579 bld.insert(std::move(sdwa));
580 } else if (src.regClass() == v2b) {
581 if (ctx->program->chip_class >= GFX10 &&
582 (reduce_op == iadd16 || reduce_op == imax16 ||
583 reduce_op == imin16 || reduce_op == umin16 || reduce_op == umax16)) {
584 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
585 sdwa->operands[0] = Operand(PhysReg{tmp}, v1);
586 sdwa->definitions[0] = Definition(PhysReg{tmp}, v1);
587 if (reduce_op == imin16 || reduce_op == imax16 || reduce_op == iadd16)
588 sdwa->sel[0] = sdwa_sword;
589 else
590 sdwa->sel[0] = sdwa_uword;
591 sdwa->dst_sel = sdwa_udword;
592 bld.insert(std::move(sdwa));
593 } else if (ctx->program->chip_class == GFX6 || ctx->program->chip_class == GFX7) {
594 bld.vop3(aco_opcode::v_bfe_i32, Definition(PhysReg{tmp}, v1),
595 Operand(PhysReg{tmp}, v1), Operand(0u), Operand(16u));
596 }
597 }
598
599 bool reduction_needs_last_op = false;
600 switch (op) {
601 case aco_opcode::p_reduce:
602 if (cluster_size == 1) break;
603
604 if (ctx->program->chip_class <= GFX7) {
605 reduction_needs_last_op = true;
606 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(1, 0, 3, 2));
607 if (cluster_size == 2) break;
608 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
609 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(2, 3, 0, 1));
610 if (cluster_size == 4) break;
611 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
612 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x04));
613 if (cluster_size == 8) break;
614 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
615 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x08));
616 if (cluster_size == 16) break;
617 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
618 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
619 if (cluster_size == 32) break;
620 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
621 for (unsigned i = 0; i < src.size(); i++)
622 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1), Operand(0u));
623 // TODO: it would be more effective to do the last reduction step on SALU
624 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
625 reduction_needs_last_op = false;
626 break;
627 }
628
629 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(1, 0, 3, 2), 0xf, 0xf, false);
630 if (cluster_size == 2) break;
631 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(2, 3, 0, 1), 0xf, 0xf, false);
632 if (cluster_size == 4) break;
633 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_half_mirror, 0xf, 0xf, false);
634 if (cluster_size == 8) break;
635 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_mirror, 0xf, 0xf, false);
636 if (cluster_size == 16) break;
637
638 if (ctx->program->chip_class >= GFX10) {
639 /* GFX10+ doesn't support row_bcast15 and row_bcast31 */
640 for (unsigned i = 0; i < src.size(); i++)
641 bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1), Operand(0u), Operand(0u));
642
643 if (cluster_size == 32) {
644 reduction_needs_last_op = true;
645 break;
646 }
647
648 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
649 for (unsigned i = 0; i < src.size(); i++)
650 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
651 // TODO: it would be more effective to do the last reduction step on SALU
652 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
653 break;
654 }
655
656 if (cluster_size == 32) {
657 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
658 reduction_needs_last_op = true;
659 break;
660 }
661 assert(cluster_size == 64);
662 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, false);
663 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, false);
664 break;
665 case aco_opcode::p_exclusive_scan:
666 if (ctx->program->chip_class >= GFX10) { /* gfx10 doesn't support wf_sr1, so emulate it */
667 /* shift rows right */
668 emit_dpp_mov(ctx, vtmp, tmp, src.size(), dpp_row_sr(1), 0xf, 0xf, true);
669
670 /* fill in the gaps in rows 1 and 3 */
671 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10000u));
672 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(0x10000u));
673 for (unsigned i = 0; i < src.size(); i++) {
674 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
675 Definition(PhysReg{vtmp+i}, v1),
676 Operand(PhysReg{tmp+i}, v1),
677 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
678 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
679 }
680 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(UINT64_MAX));
681
682 if (ctx->program->wave_size == 64) {
683 /* fill in the gap in row 2 */
684 for (unsigned i = 0; i < src.size(); i++) {
685 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
686 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
687 }
688 }
689 std::swap(tmp, vtmp);
690 } else if (ctx->program->chip_class >= GFX8) {
691 emit_dpp_mov(ctx, tmp, tmp, src.size(), dpp_wf_sr1, 0xf, 0xf, true);
692 } else {
693 // TODO: use LDS on CS with a single write and shifted read
694 /* wavefront shift_right by 1 on SI/CI */
695 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(0, 0, 1, 2));
696 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x07)); /* mirror(8) */
697 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10101010u));
698 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
699 for (unsigned i = 0; i < src.size(); i++)
700 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
701
702 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
703 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x08)); /* swap(8) */
704 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x01000100u));
705 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
706 for (unsigned i = 0; i < src.size(); i++)
707 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
708
709 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
710 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x10)); /* swap(16) */
711 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(1u), Operand(16u));
712 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(1u), Operand(16u));
713 for (unsigned i = 0; i < src.size(); i++)
714 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
715
716 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
717 for (unsigned i = 0; i < src.size(); i++) {
718 bld.writelane(Definition(PhysReg{vtmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{vtmp+i}, v1));
719 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
720 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
721 identity[i] = Operand(0u); /* prevent further uses of identity */
722 }
723 std::swap(tmp, vtmp);
724 }
725
726 for (unsigned i = 0; i < src.size(); i++) {
727 if (!identity[i].isConstant() || identity[i].constantValue()) { /* bound_ctrl should take care of this overwise */
728 if (ctx->program->chip_class < GFX10)
729 assert((identity[i].isConstant() && !identity[i].isLiteral()) || identity[i].physReg() == PhysReg{sitmp+i});
730 bld.writelane(Definition(PhysReg{tmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{tmp+i}, v1));
731 }
732 }
733 /* fall through */
734 case aco_opcode::p_inclusive_scan:
735 assert(cluster_size == ctx->program->wave_size);
736 if (ctx->program->chip_class <= GFX7) {
737 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1e, 0x00, 0x00));
738 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xAAAAAAAAu));
739 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
740 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
741
742 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
743 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1c, 0x01, 0x00));
744 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xCCCCCCCCu));
745 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
746 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
747
748 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
749 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x18, 0x03, 0x00));
750 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xF0F0F0F0u));
751 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
752 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
753
754 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
755 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x10, 0x07, 0x00));
756 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xFF00FF00u));
757 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
758 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
759
760 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
761 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x00, 0x0f, 0x00));
762 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
763 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
764 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
765
766 for (unsigned i = 0; i < src.size(); i++)
767 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
768 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
769 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
770 break;
771 }
772
773 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
774 dpp_row_sr(1), 0xf, 0xf, false, identity);
775 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
776 dpp_row_sr(2), 0xf, 0xf, false, identity);
777 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
778 dpp_row_sr(4), 0xf, 0xf, false, identity);
779 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
780 dpp_row_sr(8), 0xf, 0xf, false, identity);
781 if (ctx->program->chip_class >= GFX10) {
782 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
783 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
784 for (unsigned i = 0; i < src.size(); i++) {
785 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
786 Definition(PhysReg{vtmp+i}, v1),
787 Operand(PhysReg{tmp+i}, v1),
788 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
789 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
790 }
791 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
792
793 if (ctx->program->wave_size == 64) {
794 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
795 for (unsigned i = 0; i < src.size(); i++)
796 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
797 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
798 }
799 } else {
800 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
801 dpp_row_bcast15, 0xa, 0xf, false, identity);
802 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
803 dpp_row_bcast31, 0xc, 0xf, false, identity);
804 }
805 break;
806 default:
807 unreachable("Invalid reduction mode");
808 }
809
810
811 if (op == aco_opcode::p_reduce) {
812 if (reduction_needs_last_op && dst.regClass().type() == RegType::vgpr) {
813 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
814 emit_op(ctx, dst.physReg(), tmp, vtmp, PhysReg{0}, reduce_op, src.size());
815 return;
816 }
817
818 if (reduction_needs_last_op)
819 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
820 }
821
822 /* restore exec */
823 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
824
825 if (dst.regClass().type() == RegType::sgpr) {
826 for (unsigned k = 0; k < src.size(); k++) {
827 bld.readlane(Definition(PhysReg{dst.physReg() + k}, s1),
828 Operand(PhysReg{tmp + k}, v1), Operand(ctx->program->wave_size - 1));
829 }
830 } else if (dst.physReg() != tmp) {
831 for (unsigned k = 0; k < src.size(); k++) {
832 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, v1),
833 Operand(PhysReg{tmp + k}, v1));
834 }
835 }
836 }
837
838 void emit_gfx10_wave64_bpermute(Program *program, aco_ptr<Instruction> &instr, Builder &bld)
839 {
840 /* Emulates proper bpermute on GFX10 in wave64 mode.
841 *
842 * This is necessary because on GFX10 the bpermute instruction only works
843 * on half waves (you can think of it as having a cluster size of 32), so we
844 * manually swap the data between the two halves using two shared VGPRs.
845 */
846
847 assert(program->chip_class >= GFX10);
848 assert(program->info->wave_size == 64);
849
850 unsigned shared_vgpr_reg_0 = align(program->config->num_vgprs, 4) + 256;
851 Definition dst = instr->definitions[0];
852 Definition tmp_exec = instr->definitions[1];
853 Definition clobber_scc = instr->definitions[2];
854 Operand index_x4 = instr->operands[0];
855 Operand input_data = instr->operands[1];
856 Operand same_half = instr->operands[2];
857
858 assert(dst.regClass() == v1);
859 assert(tmp_exec.regClass() == bld.lm);
860 assert(clobber_scc.isFixed() && clobber_scc.physReg() == scc);
861 assert(same_half.regClass() == bld.lm);
862 assert(index_x4.regClass() == v1);
863 assert(input_data.regClass().type() == RegType::vgpr);
864 assert(input_data.bytes() <= 4);
865 assert(dst.physReg() != index_x4.physReg());
866 assert(dst.physReg() != input_data.physReg());
867 assert(tmp_exec.physReg() != same_half.physReg());
868
869 PhysReg shared_vgpr_lo(shared_vgpr_reg_0);
870 PhysReg shared_vgpr_hi(shared_vgpr_reg_0 + 1);
871
872 /* Permute the input within the same half-wave */
873 bld.ds(aco_opcode::ds_bpermute_b32, dst, index_x4, input_data);
874
875 /* HI: Copy data from high lanes 32-63 to shared vgpr */
876 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(shared_vgpr_hi, v1), input_data, dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
877 /* Save EXEC */
878 bld.sop1(aco_opcode::s_mov_b64, tmp_exec, Operand(exec, s2));
879 /* Set EXEC to enable LO lanes only */
880 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(0u));
881 /* LO: Copy data from low lanes 0-31 to shared vgpr */
882 bld.vop1(aco_opcode::v_mov_b32, Definition(shared_vgpr_lo, v1), input_data);
883 /* LO: bpermute shared vgpr (high lanes' data) */
884 bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_hi, v1), index_x4, Operand(shared_vgpr_hi, v1));
885 /* Set EXEC to enable HI lanes only */
886 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
887 /* HI: bpermute shared vgpr (low lanes' data) */
888 bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_lo, v1), index_x4, Operand(shared_vgpr_lo, v1));
889
890 /* Only enable lanes which use the other half's data */
891 bld.sop2(aco_opcode::s_andn2_b64, Definition(exec, s2), clobber_scc, Operand(tmp_exec.physReg(), s2), same_half);
892 /* LO: Copy shared vgpr (high lanes' bpermuted data) to output vgpr */
893 bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_hi, v1), dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false);
894 /* HI: Copy shared vgpr (low lanes' bpermuted data) to output vgpr */
895 bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_lo, v1), dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
896
897 /* Restore saved EXEC */
898 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(tmp_exec.physReg(), s2));
899
900 /* RA assumes that the result is always in the low part of the register, so we have to shift, if it's not there already */
901 if (input_data.physReg().byte()) {
902 unsigned right_shift = input_data.physReg().byte() * 8;
903 bld.vop2(aco_opcode::v_lshrrev_b32, dst, Operand(right_shift), Operand(dst.physReg(), v1));
904 }
905 }
906
907 void emit_gfx6_bpermute(Program *program, aco_ptr<Instruction> &instr, Builder &bld)
908 {
909 /* Emulates bpermute using readlane instructions */
910
911 Operand index = instr->operands[0];
912 Operand input = instr->operands[1];
913 Definition dst = instr->definitions[0];
914 Definition temp_exec = instr->definitions[1];
915 Definition clobber_vcc = instr->definitions[2];
916
917 assert(dst.regClass() == v1);
918 assert(temp_exec.regClass() == bld.lm);
919 assert(clobber_vcc.regClass() == bld.lm);
920 assert(clobber_vcc.physReg() == vcc);
921 assert(index.regClass() == v1);
922 assert(index.physReg() != dst.physReg());
923 assert(input.regClass().type() == RegType::vgpr);
924 assert(input.bytes() <= 4);
925 assert(input.physReg() != dst.physReg());
926
927 /* Save original EXEC */
928 bld.sop1(aco_opcode::s_mov_b64, temp_exec, Operand(exec, s2));
929
930 /* An "unrolled loop" that is executed per each lane.
931 * This takes only a few instructions per lane, as opposed to a "real" loop
932 * with branching, where the branch instruction alone would take 16+ cycles.
933 */
934 for (unsigned n = 0; n < program->wave_size; ++n) {
935 /* Activate the lane which has N for its source index */
936 bld.vopc(aco_opcode::v_cmpx_eq_u32, Definition(exec, bld.lm), clobber_vcc, Operand(n), index);
937 /* Read the data from lane N */
938 bld.readlane(Definition(vcc, s1), input, Operand(n));
939 /* On the active lane, move the data we read from lane N to the destination VGPR */
940 bld.vop1(aco_opcode::v_mov_b32, dst, Operand(vcc, s1));
941 /* Restore original EXEC */
942 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(temp_exec.physReg(), s2));
943 }
944 }
945
946 struct copy_operation {
947 Operand op;
948 Definition def;
949 unsigned bytes;
950 union {
951 uint8_t uses[8];
952 uint64_t is_used = 0;
953 };
954 };
955
956 void split_copy(unsigned offset, Definition *def, Operand *op, const copy_operation& src, bool ignore_uses, unsigned max_size)
957 {
958 PhysReg def_reg = src.def.physReg();
959 PhysReg op_reg = src.op.physReg();
960 def_reg.reg_b += offset;
961 op_reg.reg_b += offset;
962
963 max_size = MIN2(max_size, src.def.regClass().type() == RegType::vgpr ? 4 : 8);
964
965 /* make sure the size is a power of two and reg % bytes == 0 */
966 unsigned bytes = 1;
967 for (; bytes <= max_size; bytes *= 2) {
968 unsigned next = bytes * 2u;
969 bool can_increase = def_reg.reg_b % next == 0 &&
970 offset + next <= src.bytes && next <= max_size;
971 if (!src.op.isConstant() && can_increase)
972 can_increase = op_reg.reg_b % next == 0;
973 for (unsigned i = 0; !ignore_uses && can_increase && (i < bytes); i++)
974 can_increase = (src.uses[offset + bytes + i] == 0) == (src.uses[offset] == 0);
975 if (!can_increase)
976 break;
977 }
978
979 RegClass def_cls = bytes % 4 == 0 ? RegClass(src.def.regClass().type(), bytes / 4u) :
980 RegClass(src.def.regClass().type(), bytes).as_subdword();
981 *def = Definition(src.def.tempId(), def_reg, def_cls);
982 if (src.op.isConstant()) {
983 assert(offset == 0 || (offset == 4 && src.op.bytes() == 8));
984 if (src.op.bytes() == 8 && bytes == 4)
985 *op = Operand(uint32_t(src.op.constantValue64() >> (offset * 8u)));
986 else
987 *op = src.op;
988 } else {
989 RegClass op_cls = bytes % 4 == 0 ? RegClass(src.op.regClass().type(), bytes / 4u) :
990 RegClass(src.op.regClass().type(), bytes).as_subdword();
991 *op = Operand(op_reg, op_cls);
992 op->setTemp(Temp(src.op.tempId(), op_cls));
993 }
994 }
995
996 uint32_t get_intersection_mask(int a_start, int a_size,
997 int b_start, int b_size)
998 {
999 int intersection_start = MAX2(b_start - a_start, 0);
1000 int intersection_end = MAX2(b_start + b_size - a_start, 0);
1001 if (intersection_start >= a_size || intersection_end == 0)
1002 return 0;
1003
1004 uint32_t mask = u_bit_consecutive(0, a_size);
1005 return u_bit_consecutive(intersection_start, intersection_end - intersection_start) & mask;
1006 }
1007
1008 bool do_copy(lower_context* ctx, Builder& bld, const copy_operation& copy, bool *preserve_scc)
1009 {
1010 bool did_copy = false;
1011 for (unsigned offset = 0; offset < copy.bytes;) {
1012 if (copy.uses[offset]) {
1013 offset++;
1014 continue;
1015 }
1016
1017 Definition def;
1018 Operand op;
1019 split_copy(offset, &def, &op, copy, false, 8);
1020
1021 if (def.physReg() == scc) {
1022 bld.sopc(aco_opcode::s_cmp_lg_i32, def, op, Operand(0u));
1023 *preserve_scc = true;
1024 } else if (def.bytes() == 8 && def.getTemp().type() == RegType::sgpr) {
1025 bld.sop1(aco_opcode::s_mov_b64, def, Operand(op.physReg(), s2));
1026 } else {
1027 bld.copy(def, op);
1028 }
1029
1030 ctx->program->statistics[statistic_copies]++;
1031
1032 did_copy = true;
1033 offset += def.bytes();
1034 }
1035 return did_copy;
1036 }
1037
1038 void do_swap(lower_context *ctx, Builder& bld, const copy_operation& copy, bool preserve_scc, Pseudo_instruction *pi)
1039 {
1040 unsigned offset = 0;
1041
1042 if (copy.bytes == 3 && (copy.def.physReg().reg_b % 4 <= 1) &&
1043 (copy.def.physReg().reg_b % 4) == (copy.op.physReg().reg_b % 4)) {
1044 /* instead of doing a 2-byte and 1-byte swap, do a 4-byte swap and then fixup with a 1-byte swap */
1045 PhysReg op = copy.op.physReg();
1046 PhysReg def = copy.def.physReg();
1047 op.reg_b &= ~0x3;
1048 def.reg_b &= ~0x3;
1049
1050 copy_operation tmp;
1051 tmp.op = Operand(op, v1);
1052 tmp.def = Definition(def, v1);
1053 tmp.bytes = 4;
1054 memset(tmp.uses, 1, 4);
1055 do_swap(ctx, bld, tmp, preserve_scc, pi);
1056
1057 op.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
1058 def.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
1059 tmp.op = Operand(op, v1b);
1060 tmp.def = Definition(def, v1b);
1061 tmp.bytes = 1;
1062 tmp.uses[0] = 1;
1063 do_swap(ctx, bld, tmp, preserve_scc, pi);
1064
1065 offset = copy.bytes;
1066 }
1067
1068 for (; offset < copy.bytes;) {
1069 Definition def;
1070 Operand op;
1071 split_copy(offset, &def, &op, copy, true, 8);
1072
1073 assert(op.regClass() == def.regClass());
1074 Operand def_as_op = Operand(def.physReg(), def.regClass());
1075 Definition op_as_def = Definition(op.physReg(), op.regClass());
1076 if (ctx->program->chip_class >= GFX9 && def.regClass() == v1) {
1077 bld.vop1(aco_opcode::v_swap_b32, def, op_as_def, op, def_as_op);
1078 ctx->program->statistics[statistic_copies]++;
1079 } else if (def.regClass() == v1) {
1080 bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1081 bld.vop2(aco_opcode::v_xor_b32, def, op, def_as_op);
1082 bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1083 ctx->program->statistics[statistic_copies] += 3;
1084 } else if (op.physReg() == scc || def.physReg() == scc) {
1085 /* we need to swap scc and another sgpr */
1086 assert(!preserve_scc);
1087
1088 PhysReg other = op.physReg() == scc ? def.physReg() : op.physReg();
1089
1090 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
1091 bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u));
1092 bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
1093 ctx->program->statistics[statistic_copies] += 3;
1094 } else if (def.regClass() == s1) {
1095 if (preserve_scc) {
1096 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), op);
1097 bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
1098 bld.sop1(aco_opcode::s_mov_b32, def, Operand(pi->scratch_sgpr, s1));
1099 } else {
1100 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
1101 bld.sop2(aco_opcode::s_xor_b32, def, Definition(scc, s1), op, def_as_op);
1102 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
1103 }
1104 ctx->program->statistics[statistic_copies] += 3;
1105 } else if (def.regClass() == s2) {
1106 if (preserve_scc)
1107 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
1108 bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
1109 bld.sop2(aco_opcode::s_xor_b64, def, Definition(scc, s1), op, def_as_op);
1110 bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
1111 if (preserve_scc)
1112 bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(pi->scratch_sgpr, s1), Operand(0u));
1113 ctx->program->statistics[statistic_copies] += 3;
1114 } else if (ctx->program->chip_class >= GFX9 && def.bytes() == 2 && def.physReg().reg() == op.physReg().reg()) {
1115 aco_ptr<VOP3P_instruction> vop3p{create_instruction<VOP3P_instruction>(aco_opcode::v_pk_add_u16, Format::VOP3P, 2, 1)};
1116 vop3p->operands[0] = Operand(PhysReg{op.physReg().reg()}, v1);
1117 vop3p->operands[1] = Operand(0u);
1118 vop3p->definitions[0] = Definition(PhysReg{op.physReg().reg()}, v1);
1119 vop3p->opsel_lo = 0x1;
1120 vop3p->opsel_hi = 0x2;
1121 bld.insert(std::move(vop3p));
1122 } else {
1123 assert(def.regClass().is_subdword());
1124 bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1125 bld.vop2_sdwa(aco_opcode::v_xor_b32, def, op, def_as_op);
1126 bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1127 ctx->program->statistics[statistic_copies] += 3;
1128 }
1129
1130 offset += def.bytes();
1131 }
1132
1133 /* fixup in case we swapped bytes we shouldn't have */
1134 copy_operation tmp_copy = copy;
1135 tmp_copy.op.setFixed(copy.def.physReg());
1136 tmp_copy.def.setFixed(copy.op.physReg());
1137 do_copy(ctx, bld, tmp_copy, &preserve_scc);
1138 }
1139
1140 void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi)
1141 {
1142 Builder bld(ctx->program, &ctx->instructions);
1143 aco_ptr<Instruction> mov;
1144 std::map<PhysReg, copy_operation>::iterator it = copy_map.begin();
1145 std::map<PhysReg, copy_operation>::iterator target;
1146 bool writes_scc = false;
1147
1148 /* count the number of uses for each dst reg */
1149 while (it != copy_map.end()) {
1150
1151 if (it->second.def.physReg() == scc)
1152 writes_scc = true;
1153
1154 assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr));
1155
1156 /* if src and dst reg are the same, remove operation */
1157 if (it->first == it->second.op.physReg()) {
1158 it = copy_map.erase(it);
1159 continue;
1160 }
1161
1162 /* split large copies */
1163 if (it->second.bytes > 8) {
1164 assert(!it->second.op.isConstant());
1165 assert(!it->second.def.regClass().is_subdword());
1166 RegClass rc = RegClass(it->second.def.regClass().type(), it->second.def.size() - 2);
1167 Definition hi_def = Definition(PhysReg{it->first + 2}, rc);
1168 rc = RegClass(it->second.op.regClass().type(), it->second.op.size() - 2);
1169 Operand hi_op = Operand(PhysReg{it->second.op.physReg() + 2}, rc);
1170 copy_operation copy = {hi_op, hi_def, it->second.bytes - 8};
1171 copy_map[hi_def.physReg()] = copy;
1172 assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
1173 it->second.op = Operand(it->second.op.physReg(), it->second.op.regClass().type() == RegType::sgpr ? s2 : v2);
1174 it->second.def = Definition(it->second.def.physReg(), it->second.def.regClass().type() == RegType::sgpr ? s2 : v2);
1175 it->second.bytes = 8;
1176 }
1177
1178 /* check if the definition reg is used by another copy operation */
1179 for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
1180 if (copy.second.op.isConstant())
1181 continue;
1182 for (uint16_t i = 0; i < it->second.bytes; i++) {
1183 /* distance might underflow */
1184 unsigned distance = it->first.reg_b + i - copy.second.op.physReg().reg_b;
1185 if (distance < copy.second.bytes)
1186 it->second.uses[i] += 1;
1187 }
1188 }
1189
1190 ++it;
1191 }
1192
1193 /* first, handle paths in the location transfer graph */
1194 bool preserve_scc = pi->tmp_in_scc && !writes_scc;
1195 it = copy_map.begin();
1196 while (it != copy_map.end()) {
1197
1198 /* try to coalesce 32-bit sgpr copies to 64-bit copies */
1199 if (it->second.is_used == 0 &&
1200 it->second.def.getTemp().type() == RegType::sgpr && it->second.bytes == 4 &&
1201 !it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) {
1202
1203 PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1};
1204 PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1};
1205 std::map<PhysReg, copy_operation>::iterator other = copy_map.find(other_def_reg);
1206
1207 if (other != copy_map.end() && !other->second.is_used && other->second.bytes == 4 &&
1208 other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) {
1209 std::map<PhysReg, copy_operation>::iterator to_erase = it->first % 2 ? it : other;
1210 it = it->first % 2 ? other : it;
1211 copy_map.erase(to_erase);
1212 it->second.bytes = 8;
1213 }
1214 }
1215 // TODO: try to coalesce subdword copies
1216
1217 /* find portions where the target reg is not used as operand for any other copy */
1218 if (it->second.is_used) {
1219 if (it->second.op.isConstant()) {
1220 /* we have to skip constants until is_used=0 */
1221 ++it;
1222 continue;
1223 }
1224
1225 unsigned has_zero_use_bytes = 0;
1226 for (unsigned i = 0; i < it->second.bytes; i++)
1227 has_zero_use_bytes |= (it->second.uses[i] == 0) << i;
1228
1229 if (has_zero_use_bytes) {
1230 /* Skipping partial copying and doing a v_swap_b32 and then fixup
1231 * copies is usually beneficial for sub-dword copies, but if doing
1232 * a partial copy allows further copies, it should be done instead. */
1233 bool partial_copy = (has_zero_use_bytes == 0xf) || (has_zero_use_bytes == 0xf0);
1234 for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
1235 if (partial_copy)
1236 break;
1237 for (uint16_t i = 0; i < copy.second.bytes; i++) {
1238 /* distance might underflow */
1239 unsigned distance = copy.first.reg_b + i - it->second.op.physReg().reg_b;
1240 if (distance < it->second.bytes && copy.second.uses[i] == 1 &&
1241 !it->second.uses[distance])
1242 partial_copy = true;
1243 }
1244 }
1245
1246 if (!partial_copy) {
1247 ++it;
1248 continue;
1249 }
1250 } else {
1251 /* full target reg is used: register swapping needed */
1252 ++it;
1253 continue;
1254 }
1255 }
1256
1257 bool did_copy = do_copy(ctx, bld, it->second, &preserve_scc);
1258
1259 std::pair<PhysReg, copy_operation> copy = *it;
1260
1261 if (it->second.is_used == 0) {
1262 /* the target reg is not used as operand for any other copy, so we
1263 * copied to all of it */
1264 copy_map.erase(it);
1265 it = copy_map.begin();
1266 } else {
1267 /* we only performed some portions of this copy, so split it to only
1268 * leave the portions that still need to be done */
1269 copy_operation original = it->second; /* the map insertion below can overwrite this */
1270 copy_map.erase(it);
1271 for (unsigned offset = 0; offset < original.bytes;) {
1272 if (original.uses[offset] == 0) {
1273 offset++;
1274 continue;
1275 }
1276 Definition def;
1277 Operand op;
1278 split_copy(offset, &def, &op, original, false, 8);
1279
1280 copy_operation copy = {op, def, def.bytes()};
1281 for (unsigned i = 0; i < copy.bytes; i++)
1282 copy.uses[i] = original.uses[i + offset];
1283 copy_map[def.physReg()] = copy;
1284
1285 offset += def.bytes();
1286 }
1287
1288 it = copy_map.begin();
1289 }
1290
1291 /* Reduce the number of uses of the operand reg by one. Do this after
1292 * splitting the copy or removing it in case the copy writes to it's own
1293 * operand (for example, v[7:8] = v[8:9]) */
1294 if (did_copy && !copy.second.op.isConstant()) {
1295 for (std::pair<const PhysReg, copy_operation>& other : copy_map) {
1296 for (uint16_t i = 0; i < other.second.bytes; i++) {
1297 /* distance might underflow */
1298 unsigned distance = other.first.reg_b + i - copy.second.op.physReg().reg_b;
1299 if (distance < copy.second.bytes && !copy.second.uses[distance])
1300 other.second.uses[i] -= 1;
1301 }
1302 }
1303 }
1304 }
1305
1306 if (copy_map.empty())
1307 return;
1308
1309 /* all target regs are needed as operand somewhere which means, all entries are part of a cycle */
1310 unsigned largest = 0;
1311 for (const std::pair<const PhysReg, copy_operation>& op : copy_map)
1312 largest = MAX2(largest, op.second.bytes);
1313
1314 while (!copy_map.empty()) {
1315
1316 /* Perform larger swaps first, because larger swaps swaps can make other
1317 * swaps unnecessary. */
1318 auto it = copy_map.begin();
1319 for (auto it2 = copy_map.begin(); it2 != copy_map.end(); ++it2) {
1320 if (it2->second.bytes > it->second.bytes) {
1321 it = it2;
1322 if (it->second.bytes == largest)
1323 break;
1324 }
1325 }
1326
1327 /* should already be done */
1328 assert(!it->second.op.isConstant());
1329
1330 assert(it->second.op.isFixed());
1331 assert(it->second.def.regClass() == it->second.op.regClass());
1332
1333 if (it->first == it->second.op.physReg()) {
1334 copy_map.erase(it);
1335 continue;
1336 }
1337
1338 if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr)
1339 assert(!(it->second.def.physReg() == pi->scratch_sgpr));
1340
1341 /* to resolve the cycle, we have to swap the src reg with the dst reg */
1342 copy_operation swap = it->second;
1343
1344 /* if this is self-intersecting, we have to split it because
1345 * self-intersecting swaps don't make sense */
1346 PhysReg lower = swap.def.physReg();
1347 PhysReg higher = swap.op.physReg();
1348 if (lower.reg_b > higher.reg_b)
1349 std::swap(lower, higher);
1350 if (higher.reg_b - lower.reg_b < (int)swap.bytes) {
1351 unsigned offset = higher.reg_b - lower.reg_b;
1352 RegType type = swap.def.regClass().type();
1353
1354 copy_operation middle;
1355 lower.reg_b += offset;
1356 higher.reg_b += offset;
1357 middle.bytes = swap.bytes - offset * 2;
1358 memcpy(middle.uses, swap.uses + offset, middle.bytes);
1359 middle.op = Operand(lower, RegClass::get(type, middle.bytes));
1360 middle.def = Definition(higher, RegClass::get(type, middle.bytes));
1361 copy_map[higher] = middle;
1362
1363 copy_operation end;
1364 lower.reg_b += middle.bytes;
1365 higher.reg_b += middle.bytes;
1366 end.bytes = swap.bytes - (offset + middle.bytes);
1367 memcpy(end.uses, swap.uses + offset + middle.bytes, end.bytes);
1368 end.op = Operand(lower, RegClass::get(type, end.bytes));
1369 end.def = Definition(higher, RegClass::get(type, end.bytes));
1370 copy_map[higher] = end;
1371
1372 memset(swap.uses + offset, 0, swap.bytes - offset);
1373 swap.bytes = offset;
1374 }
1375
1376 do_swap(ctx, bld, swap, preserve_scc, pi);
1377
1378 /* remove from map */
1379 copy_map.erase(it);
1380
1381 /* change the operand reg of the target's uses and split uses if needed */
1382 target = copy_map.begin();
1383 uint32_t bytes_left = u_bit_consecutive(0, swap.bytes);
1384 for (; target != copy_map.end(); ++target) {
1385 if (target->second.op.physReg() == swap.def.physReg() && swap.bytes == target->second.bytes) {
1386 target->second.op.setFixed(swap.op.physReg());
1387 break;
1388 }
1389
1390 uint32_t imask = get_intersection_mask(swap.def.physReg().reg_b, swap.bytes,
1391 target->second.op.physReg().reg_b, target->second.bytes);
1392
1393 if (!imask)
1394 continue;
1395
1396 assert(target->second.bytes < swap.bytes);
1397
1398 int offset = (int)target->second.op.physReg().reg_b - (int)swap.def.physReg().reg_b;
1399
1400 /* split and update the middle (the portion that reads the swap's
1401 * definition) to read the swap's operand instead */
1402 int target_op_end = target->second.op.physReg().reg_b + target->second.bytes;
1403 int swap_def_end = swap.def.physReg().reg_b + swap.bytes;
1404 int before_bytes = MAX2(-offset, 0);
1405 int after_bytes = MAX2(target_op_end - swap_def_end, 0);
1406 int middle_bytes = target->second.bytes - before_bytes - after_bytes;
1407
1408 if (after_bytes) {
1409 unsigned after_offset = before_bytes + middle_bytes;
1410 assert(after_offset > 0);
1411 copy_operation copy;
1412 copy.bytes = after_bytes;
1413 memcpy(copy.uses, target->second.uses + after_offset, copy.bytes);
1414 RegClass rc = RegClass::get(target->second.op.regClass().type(), after_bytes);
1415 copy.op = Operand(target->second.op.physReg().advance(after_offset), rc);
1416 copy.def = Definition(target->second.def.physReg().advance(after_offset), rc);
1417 copy_map[copy.def.physReg()] = copy;
1418 }
1419
1420 if (middle_bytes) {
1421 copy_operation copy;
1422 copy.bytes = middle_bytes;
1423 memcpy(copy.uses, target->second.uses + before_bytes, copy.bytes);
1424 RegClass rc = RegClass::get(target->second.op.regClass().type(), middle_bytes);
1425 copy.op = Operand(swap.op.physReg().advance(MAX2(offset, 0)), rc);
1426 copy.def = Definition(target->second.def.physReg().advance(before_bytes), rc);
1427 copy_map[copy.def.physReg()] = copy;
1428 }
1429
1430 if (before_bytes) {
1431 copy_operation copy;
1432 target->second.bytes = before_bytes;
1433 RegClass rc = RegClass::get(target->second.op.regClass().type(), before_bytes);
1434 target->second.op = Operand(target->second.op.physReg(), rc);
1435 target->second.def = Definition(target->second.def.physReg(), rc);
1436 memset(target->second.uses + target->second.bytes, 0, 8 - target->second.bytes);
1437 }
1438
1439 /* break early since we know each byte of the swap's definition is used
1440 * at most once */
1441 bytes_left &= ~imask;
1442 if (!bytes_left)
1443 break;
1444 }
1445 }
1446 }
1447
1448 void lower_to_hw_instr(Program* program)
1449 {
1450 Block *discard_block = NULL;
1451
1452 for (size_t i = 0; i < program->blocks.size(); i++)
1453 {
1454 Block *block = &program->blocks[i];
1455 lower_context ctx;
1456 ctx.program = program;
1457 Builder bld(program, &ctx.instructions);
1458
1459 bool set_mode = i == 0 && block->fp_mode.val != program->config->float_mode;
1460 for (unsigned pred : block->linear_preds) {
1461 if (program->blocks[pred].fp_mode.val != block->fp_mode.val) {
1462 set_mode = true;
1463 break;
1464 }
1465 }
1466 if (set_mode) {
1467 /* only allow changing modes at top-level blocks so this doesn't break
1468 * the "jump over empty blocks" optimization */
1469 assert(block->kind & block_kind_top_level);
1470 uint32_t mode = block->fp_mode.val;
1471 /* "((size - 1) << 11) | register" (MODE is encoded as register 1) */
1472 bld.sopk(aco_opcode::s_setreg_imm32_b32, Operand(mode), (7 << 11) | 1);
1473 }
1474
1475 for (size_t j = 0; j < block->instructions.size(); j++) {
1476 aco_ptr<Instruction>& instr = block->instructions[j];
1477 aco_ptr<Instruction> mov;
1478 if (instr->format == Format::PSEUDO) {
1479 Pseudo_instruction *pi = (Pseudo_instruction*)instr.get();
1480
1481 switch (instr->opcode)
1482 {
1483 case aco_opcode::p_extract_vector:
1484 {
1485 PhysReg reg = instr->operands[0].physReg();
1486 Definition& def = instr->definitions[0];
1487 reg.reg_b += instr->operands[1].constantValue() * def.bytes();
1488
1489 if (reg == def.physReg())
1490 break;
1491
1492 RegClass op_rc = def.regClass().is_subdword() ? def.regClass() :
1493 RegClass(instr->operands[0].getTemp().type(), def.size());
1494 std::map<PhysReg, copy_operation> copy_operations;
1495 copy_operations[def.physReg()] = {Operand(reg, op_rc), def, def.bytes()};
1496 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1497 break;
1498 }
1499 case aco_opcode::p_create_vector:
1500 {
1501 std::map<PhysReg, copy_operation> copy_operations;
1502 PhysReg reg = instr->definitions[0].physReg();
1503
1504 for (const Operand& op : instr->operands) {
1505 if (op.isConstant()) {
1506 const Definition def = Definition(reg, RegClass(instr->definitions[0].getTemp().type(), op.size()));
1507 copy_operations[reg] = {op, def, op.bytes()};
1508 reg.reg_b += op.bytes();
1509 continue;
1510 }
1511 if (op.isUndefined()) {
1512 // TODO: coalesce subdword copies if dst byte is 0
1513 reg.reg_b += op.bytes();
1514 continue;
1515 }
1516
1517 RegClass rc_def = op.regClass().is_subdword() ? op.regClass() :
1518 RegClass(instr->definitions[0].getTemp().type(), op.size());
1519 const Definition def = Definition(reg, rc_def);
1520 copy_operations[def.physReg()] = {op, def, op.bytes()};
1521 reg.reg_b += op.bytes();
1522 }
1523 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1524 break;
1525 }
1526 case aco_opcode::p_split_vector:
1527 {
1528 std::map<PhysReg, copy_operation> copy_operations;
1529 PhysReg reg = instr->operands[0].physReg();
1530
1531 for (const Definition& def : instr->definitions) {
1532 RegClass rc_op = def.regClass().is_subdword() ? def.regClass() :
1533 RegClass(instr->operands[0].getTemp().type(), def.size());
1534 const Operand op = Operand(reg, rc_op);
1535 copy_operations[def.physReg()] = {op, def, def.bytes()};
1536 reg.reg_b += def.bytes();
1537 }
1538 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1539 break;
1540 }
1541 case aco_opcode::p_parallelcopy:
1542 case aco_opcode::p_wqm:
1543 {
1544 std::map<PhysReg, copy_operation> copy_operations;
1545 for (unsigned i = 0; i < instr->operands.size(); i++) {
1546 assert(instr->definitions[i].bytes() == instr->operands[i].bytes());
1547 copy_operations[instr->definitions[i].physReg()] = {instr->operands[i], instr->definitions[i], instr->operands[i].bytes()};
1548 }
1549 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1550 break;
1551 }
1552 case aco_opcode::p_exit_early_if:
1553 {
1554 /* don't bother with an early exit near the end of the program */
1555 if ((block->instructions.size() - 1 - j) <= 4 &&
1556 block->instructions.back()->opcode == aco_opcode::s_endpgm) {
1557 unsigned null_exp_dest = (ctx.program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
1558 bool ignore_early_exit = true;
1559
1560 for (unsigned k = j + 1; k < block->instructions.size(); ++k) {
1561 const aco_ptr<Instruction> &instr = block->instructions[k];
1562 if (instr->opcode == aco_opcode::s_endpgm ||
1563 instr->opcode == aco_opcode::p_logical_end)
1564 continue;
1565 else if (instr->opcode == aco_opcode::exp &&
1566 static_cast<Export_instruction *>(instr.get())->dest == null_exp_dest)
1567 continue;
1568 else if (instr->opcode == aco_opcode::p_parallelcopy &&
1569 instr->definitions[0].isFixed() &&
1570 instr->definitions[0].physReg() == exec)
1571 continue;
1572
1573 ignore_early_exit = false;
1574 }
1575
1576 if (ignore_early_exit)
1577 break;
1578 }
1579
1580 if (!discard_block) {
1581 discard_block = program->create_and_insert_block();
1582 block = &program->blocks[i];
1583
1584 bld.reset(discard_block);
1585 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
1586 0, V_008DFC_SQ_EXP_NULL, false, true, true);
1587 if (program->wb_smem_l1_on_end)
1588 bld.smem(aco_opcode::s_dcache_wb);
1589 bld.sopp(aco_opcode::s_endpgm);
1590
1591 bld.reset(&ctx.instructions);
1592 }
1593
1594 //TODO: exec can be zero here with block_kind_discard
1595
1596 assert(instr->operands[0].physReg() == scc);
1597 bld.sopp(aco_opcode::s_cbranch_scc0, instr->operands[0], discard_block->index);
1598
1599 discard_block->linear_preds.push_back(block->index);
1600 block->linear_succs.push_back(discard_block->index);
1601 break;
1602 }
1603 case aco_opcode::p_spill:
1604 {
1605 assert(instr->operands[0].regClass() == v1.as_linear());
1606 for (unsigned i = 0; i < instr->operands[2].size(); i++)
1607 bld.writelane(bld.def(v1, instr->operands[0].physReg()),
1608 Operand(PhysReg{instr->operands[2].physReg() + i}, s1),
1609 Operand(instr->operands[1].constantValue() + i),
1610 instr->operands[0]);
1611 break;
1612 }
1613 case aco_opcode::p_reload:
1614 {
1615 assert(instr->operands[0].regClass() == v1.as_linear());
1616 for (unsigned i = 0; i < instr->definitions[0].size(); i++)
1617 bld.readlane(bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1618 instr->operands[0],
1619 Operand(instr->operands[1].constantValue() + i));
1620 break;
1621 }
1622 case aco_opcode::p_as_uniform:
1623 {
1624 if (instr->operands[0].isConstant() || instr->operands[0].regClass().type() == RegType::sgpr) {
1625 std::map<PhysReg, copy_operation> copy_operations;
1626 copy_operations[instr->definitions[0].physReg()] = {instr->operands[0], instr->definitions[0], instr->definitions[0].bytes()};
1627 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1628 } else {
1629 assert(instr->operands[0].regClass().type() == RegType::vgpr);
1630 assert(instr->definitions[0].regClass().type() == RegType::sgpr);
1631 assert(instr->operands[0].size() == instr->definitions[0].size());
1632 for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
1633 bld.vop1(aco_opcode::v_readfirstlane_b32,
1634 bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1635 Operand(PhysReg{instr->operands[0].physReg() + i}, v1));
1636 }
1637 }
1638 break;
1639 }
1640 case aco_opcode::p_bpermute:
1641 {
1642 if (ctx.program->chip_class <= GFX7)
1643 emit_gfx6_bpermute(program, instr, bld);
1644 else if (ctx.program->chip_class == GFX10 && ctx.program->wave_size == 64)
1645 emit_gfx10_wave64_bpermute(program, instr, bld);
1646 else
1647 unreachable("Current hardware supports ds_bpermute, don't emit p_bpermute.");
1648 }
1649 default:
1650 break;
1651 }
1652 } else if (instr->format == Format::PSEUDO_BRANCH) {
1653 Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(instr.get());
1654 /* check if all blocks from current to target are empty */
1655 bool can_remove = block->index < branch->target[0];
1656 for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) {
1657 if (program->blocks[i].instructions.size())
1658 can_remove = false;
1659 }
1660 if (can_remove)
1661 continue;
1662
1663 switch (instr->opcode) {
1664 case aco_opcode::p_branch:
1665 assert(block->linear_succs[0] == branch->target[0]);
1666 bld.sopp(aco_opcode::s_branch, branch->target[0]);
1667 break;
1668 case aco_opcode::p_cbranch_nz:
1669 assert(block->linear_succs[1] == branch->target[0]);
1670 if (branch->operands[0].physReg() == exec)
1671 bld.sopp(aco_opcode::s_cbranch_execnz, branch->target[0]);
1672 else if (branch->operands[0].physReg() == vcc)
1673 bld.sopp(aco_opcode::s_cbranch_vccnz, branch->target[0]);
1674 else {
1675 assert(branch->operands[0].physReg() == scc);
1676 bld.sopp(aco_opcode::s_cbranch_scc1, branch->target[0]);
1677 }
1678 break;
1679 case aco_opcode::p_cbranch_z:
1680 assert(block->linear_succs[1] == branch->target[0]);
1681 if (branch->operands[0].physReg() == exec)
1682 bld.sopp(aco_opcode::s_cbranch_execz, branch->target[0]);
1683 else if (branch->operands[0].physReg() == vcc)
1684 bld.sopp(aco_opcode::s_cbranch_vccz, branch->target[0]);
1685 else {
1686 assert(branch->operands[0].physReg() == scc);
1687 bld.sopp(aco_opcode::s_cbranch_scc0, branch->target[0]);
1688 }
1689 break;
1690 default:
1691 unreachable("Unknown Pseudo branch instruction!");
1692 }
1693
1694 } else if (instr->format == Format::PSEUDO_REDUCTION) {
1695 Pseudo_reduction_instruction* reduce = static_cast<Pseudo_reduction_instruction*>(instr.get());
1696 emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size,
1697 reduce->operands[1].physReg(), // tmp
1698 reduce->definitions[1].physReg(), // stmp
1699 reduce->operands[2].physReg(), // vtmp
1700 reduce->definitions[2].physReg(), // sitmp
1701 reduce->operands[0], reduce->definitions[0]);
1702 } else {
1703 ctx.instructions.emplace_back(std::move(instr));
1704 }
1705
1706 }
1707 block->instructions.swap(ctx.instructions);
1708 }
1709 }
1710
1711 }