aco: lower subdword shuffles correctly.
[mesa.git] / src / amd / compiler / aco_lower_to_hw_instr.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <map>
29
30 #include "aco_ir.h"
31 #include "aco_builder.h"
32 #include "util/u_math.h"
33 #include "sid.h"
34 #include "vulkan/radv_shader.h"
35
36
37 namespace aco {
38
39 struct lower_context {
40 Program *program;
41 std::vector<aco_ptr<Instruction>> instructions;
42 };
43
44 aco_opcode get_reduce_opcode(chip_class chip, ReduceOp op) {
45 switch (op) {
46 case iadd32: return chip >= GFX9 ? aco_opcode::v_add_u32 : aco_opcode::v_add_co_u32;
47 case imul32: return aco_opcode::v_mul_lo_u32;
48 case fadd32: return aco_opcode::v_add_f32;
49 case fmul32: return aco_opcode::v_mul_f32;
50 case imax32: return aco_opcode::v_max_i32;
51 case imin32: return aco_opcode::v_min_i32;
52 case umin32: return aco_opcode::v_min_u32;
53 case umax32: return aco_opcode::v_max_u32;
54 case fmin32: return aco_opcode::v_min_f32;
55 case fmax32: return aco_opcode::v_max_f32;
56 case iand32: return aco_opcode::v_and_b32;
57 case ixor32: return aco_opcode::v_xor_b32;
58 case ior32: return aco_opcode::v_or_b32;
59 case iadd64: return aco_opcode::num_opcodes;
60 case imul64: return aco_opcode::num_opcodes;
61 case fadd64: return aco_opcode::v_add_f64;
62 case fmul64: return aco_opcode::v_mul_f64;
63 case imin64: return aco_opcode::num_opcodes;
64 case imax64: return aco_opcode::num_opcodes;
65 case umin64: return aco_opcode::num_opcodes;
66 case umax64: return aco_opcode::num_opcodes;
67 case fmin64: return aco_opcode::v_min_f64;
68 case fmax64: return aco_opcode::v_max_f64;
69 case iand64: return aco_opcode::num_opcodes;
70 case ior64: return aco_opcode::num_opcodes;
71 case ixor64: return aco_opcode::num_opcodes;
72 default: return aco_opcode::num_opcodes;
73 }
74 }
75
76 void emit_vadd32(Builder& bld, Definition def, Operand src0, Operand src1)
77 {
78 Instruction *instr = bld.vadd32(def, src0, src1, false, Operand(s2), true);
79 if (instr->definitions.size() >= 2) {
80 assert(instr->definitions[1].regClass() == bld.lm);
81 instr->definitions[1].setFixed(vcc);
82 }
83 }
84
85 void emit_int64_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
86 PhysReg vtmp_reg, ReduceOp op,
87 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
88 Operand *identity=NULL)
89 {
90 Builder bld(ctx->program, &ctx->instructions);
91 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
92 Definition vtmp_def[] = {Definition(vtmp_reg, v1), Definition(PhysReg{vtmp_reg+1}, v1)};
93 Operand src0[] = {Operand(src0_reg, v1), Operand(PhysReg{src0_reg+1}, v1)};
94 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
95 Operand src1_64 = Operand(src1_reg, v2);
96 Operand vtmp_op[] = {Operand(vtmp_reg, v1), Operand(PhysReg{vtmp_reg+1}, v1)};
97 Operand vtmp_op64 = Operand(vtmp_reg, v2);
98 if (op == iadd64) {
99 if (ctx->program->chip_class >= GFX10) {
100 if (identity)
101 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
102 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
103 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
104 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), vtmp_op[0], src1[0]);
105 } else {
106 bld.vop2_dpp(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0],
107 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
108 }
109 bld.vop2_dpp(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm),
110 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
111 } else if (op == iand64) {
112 bld.vop2_dpp(aco_opcode::v_and_b32, dst[0], src0[0], src1[0],
113 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
114 bld.vop2_dpp(aco_opcode::v_and_b32, dst[1], src0[1], src1[1],
115 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
116 } else if (op == ior64) {
117 bld.vop2_dpp(aco_opcode::v_or_b32, dst[0], src0[0], src1[0],
118 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
119 bld.vop2_dpp(aco_opcode::v_or_b32, dst[1], src0[1], src1[1],
120 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
121 } else if (op == ixor64) {
122 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0],
123 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
124 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1],
125 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
126 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
127 aco_opcode cmp = aco_opcode::num_opcodes;
128 switch (op) {
129 case umin64:
130 cmp = aco_opcode::v_cmp_gt_u64;
131 break;
132 case umax64:
133 cmp = aco_opcode::v_cmp_lt_u64;
134 break;
135 case imin64:
136 cmp = aco_opcode::v_cmp_gt_i64;
137 break;
138 case imax64:
139 cmp = aco_opcode::v_cmp_lt_i64;
140 break;
141 default:
142 break;
143 }
144
145 if (identity) {
146 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
147 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[1], identity[1]);
148 }
149 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
150 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
151 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[1], src0[1],
152 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
153
154 bld.vopc(cmp, bld.def(bld.lm, vcc), vtmp_op64, src1_64);
155 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], vtmp_op[0], src1[0], Operand(vcc, bld.lm));
156 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], vtmp_op[1], src1[1], Operand(vcc, bld.lm));
157 } else if (op == imul64) {
158 /* t4 = dpp(x_hi)
159 * t1 = umul_lo(t4, y_lo)
160 * t3 = dpp(x_lo)
161 * t0 = umul_lo(t3, y_hi)
162 * t2 = iadd(t0, t1)
163 * t5 = umul_hi(t3, y_lo)
164 * res_hi = iadd(t2, t5)
165 * res_lo = umul_lo(t3, y_lo)
166 * Requires that res_hi != src0[0] and res_hi != src1[0]
167 * and that vtmp[0] != res_hi.
168 */
169 if (identity)
170 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[1]);
171 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[1],
172 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
173 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[1], vtmp_op[0], src1[0]);
174 if (identity)
175 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
176 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
177 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
178 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[0], vtmp_op[0], src1[1]);
179 emit_vadd32(bld, vtmp_def[1], vtmp_op[0], vtmp_op[1]);
180 if (identity)
181 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
182 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
183 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
184 bld.vop3(aco_opcode::v_mul_hi_u32, vtmp_def[0], vtmp_op[0], src1[0]);
185 emit_vadd32(bld, dst[1], vtmp_op[1], vtmp_op[0]);
186 if (identity)
187 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
188 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
189 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
190 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], vtmp_op[0], src1[0]);
191 }
192 }
193
194 void emit_int64_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, ReduceOp op)
195 {
196 Builder bld(ctx->program, &ctx->instructions);
197 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
198 RegClass src0_rc = src0_reg.reg() >= 256 ? v1 : s1;
199 Operand src0[] = {Operand(src0_reg, src0_rc), Operand(PhysReg{src0_reg+1}, src0_rc)};
200 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
201 Operand src0_64 = Operand(src0_reg, src0_reg.reg() >= 256 ? v2 : s2);
202 Operand src1_64 = Operand(src1_reg, v2);
203
204 if (src0_rc == s1 &&
205 (op == imul64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)) {
206 assert(vtmp.reg() != 0);
207 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), src0[0]);
208 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
209 src0_reg = vtmp;
210 src0[0] = Operand(vtmp, v1);
211 src0[1] = Operand(PhysReg{vtmp+1}, v1);
212 src0_64 = Operand(vtmp, v2);
213 } else if (src0_rc == s1 && op == iadd64) {
214 assert(vtmp.reg() != 0);
215 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
216 src0[1] = Operand(PhysReg{vtmp+1}, v1);
217 }
218
219 if (op == iadd64) {
220 if (ctx->program->chip_class >= GFX10) {
221 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
222 } else {
223 bld.vop2(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
224 }
225 bld.vop2(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm));
226 } else if (op == iand64) {
227 bld.vop2(aco_opcode::v_and_b32, dst[0], src0[0], src1[0]);
228 bld.vop2(aco_opcode::v_and_b32, dst[1], src0[1], src1[1]);
229 } else if (op == ior64) {
230 bld.vop2(aco_opcode::v_or_b32, dst[0], src0[0], src1[0]);
231 bld.vop2(aco_opcode::v_or_b32, dst[1], src0[1], src1[1]);
232 } else if (op == ixor64) {
233 bld.vop2(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0]);
234 bld.vop2(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1]);
235 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
236 aco_opcode cmp = aco_opcode::num_opcodes;
237 switch (op) {
238 case umin64:
239 cmp = aco_opcode::v_cmp_gt_u64;
240 break;
241 case umax64:
242 cmp = aco_opcode::v_cmp_lt_u64;
243 break;
244 case imin64:
245 cmp = aco_opcode::v_cmp_gt_i64;
246 break;
247 case imax64:
248 cmp = aco_opcode::v_cmp_lt_i64;
249 break;
250 default:
251 break;
252 }
253
254 bld.vopc(cmp, bld.def(bld.lm, vcc), src0_64, src1_64);
255 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], src0[0], src1[0], Operand(vcc, bld.lm));
256 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], src0[1], src1[1], Operand(vcc, bld.lm));
257 } else if (op == imul64) {
258 if (src1_reg == dst_reg) {
259 /* it's fine if src0==dst but not if src1==dst */
260 std::swap(src0_reg, src1_reg);
261 std::swap(src0[0], src1[0]);
262 std::swap(src0[1], src1[1]);
263 std::swap(src0_64, src1_64);
264 }
265 assert(!(src0_reg == src1_reg));
266 /* t1 = umul_lo(x_hi, y_lo)
267 * t0 = umul_lo(x_lo, y_hi)
268 * t2 = iadd(t0, t1)
269 * t5 = umul_hi(x_lo, y_lo)
270 * res_hi = iadd(t2, t5)
271 * res_lo = umul_lo(x_lo, y_lo)
272 * assumes that it's ok to modify x_hi/y_hi, since we might not have vtmp
273 */
274 Definition tmp0_def(PhysReg{src0_reg+1}, v1);
275 Definition tmp1_def(PhysReg{src1_reg+1}, v1);
276 Operand tmp0_op = src0[1];
277 Operand tmp1_op = src1[1];
278 bld.vop3(aco_opcode::v_mul_lo_u32, tmp0_def, src0[1], src1[0]);
279 bld.vop3(aco_opcode::v_mul_lo_u32, tmp1_def, src0[0], src1[1]);
280 emit_vadd32(bld, tmp0_def, tmp1_op, tmp0_op);
281 bld.vop3(aco_opcode::v_mul_hi_u32, tmp1_def, src0[0], src1[0]);
282 emit_vadd32(bld, dst[1], tmp0_op, tmp1_op);
283 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], src0[0], src1[0]);
284 }
285 }
286
287 void emit_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
288 PhysReg vtmp, ReduceOp op, unsigned size,
289 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
290 Operand *identity=NULL) /* for VOP3 with sparse writes */
291 {
292 Builder bld(ctx->program, &ctx->instructions);
293 RegClass rc = RegClass(RegType::vgpr, size);
294 Definition dst(dst_reg, rc);
295 Operand src0(src0_reg, rc);
296 Operand src1(src1_reg, rc);
297
298 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
299 bool vop3 = op == imul32 || size == 2;
300
301 if (!vop3) {
302 if (opcode == aco_opcode::v_add_co_u32)
303 bld.vop2_dpp(opcode, dst, bld.def(bld.lm, vcc), src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
304 else
305 bld.vop2_dpp(opcode, dst, src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
306 return;
307 }
308
309 if (opcode == aco_opcode::num_opcodes) {
310 emit_int64_dpp_op(ctx, dst_reg ,src0_reg, src1_reg, vtmp, op,
311 dpp_ctrl, row_mask, bank_mask, bound_ctrl, identity);
312 return;
313 }
314
315 if (identity)
316 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]);
317 if (identity && size >= 2)
318 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), identity[1]);
319
320 for (unsigned i = 0; i < size; i++)
321 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{src0_reg+i}, v1),
322 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
323
324 bld.vop3(opcode, dst, Operand(vtmp, rc), src1);
325 }
326
327 void emit_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
328 PhysReg vtmp, ReduceOp op, unsigned size)
329 {
330 Builder bld(ctx->program, &ctx->instructions);
331 RegClass rc = RegClass(RegType::vgpr, size);
332 Definition dst(dst_reg, rc);
333 Operand src0(src0_reg, RegClass(src0_reg.reg() >= 256 ? RegType::vgpr : RegType::sgpr, size));
334 Operand src1(src1_reg, rc);
335
336 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
337 bool vop3 = op == imul32 || size == 2;
338
339 if (opcode == aco_opcode::num_opcodes) {
340 emit_int64_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op);
341 return;
342 }
343
344 if (vop3) {
345 bld.vop3(opcode, dst, src0, src1);
346 } else if (opcode == aco_opcode::v_add_co_u32) {
347 bld.vop2(opcode, dst, bld.def(bld.lm, vcc), src0, src1);
348 } else {
349 bld.vop2(opcode, dst, src0, src1);
350 }
351 }
352
353 void emit_dpp_mov(lower_context *ctx, PhysReg dst, PhysReg src0, unsigned size,
354 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl)
355 {
356 Builder bld(ctx->program, &ctx->instructions);
357 for (unsigned i = 0; i < size; i++) {
358 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{dst+i}, v1), Operand(PhysReg{src0+i}, v1),
359 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
360 }
361 }
362
363 uint32_t get_reduction_identity(ReduceOp op, unsigned idx)
364 {
365 switch (op) {
366 case iadd32:
367 case iadd64:
368 case fadd32:
369 case fadd64:
370 case ior32:
371 case ior64:
372 case ixor32:
373 case ixor64:
374 case umax32:
375 case umax64:
376 return 0;
377 case imul32:
378 case imul64:
379 return idx ? 0 : 1;
380 case fmul32:
381 return 0x3f800000u; /* 1.0 */
382 case fmul64:
383 return idx ? 0x3ff00000u : 0u; /* 1.0 */
384 case imin32:
385 return INT32_MAX;
386 case imin64:
387 return idx ? 0x7fffffffu : 0xffffffffu;
388 case imax32:
389 return INT32_MIN;
390 case imax64:
391 return idx ? 0x80000000u : 0;
392 case umin32:
393 case umin64:
394 case iand32:
395 case iand64:
396 return 0xffffffffu;
397 case fmin32:
398 return 0x7f800000u; /* infinity */
399 case fmin64:
400 return idx ? 0x7ff00000u : 0u; /* infinity */
401 case fmax32:
402 return 0xff800000u; /* negative infinity */
403 case fmax64:
404 return idx ? 0xfff00000u : 0u; /* negative infinity */
405 default:
406 unreachable("Invalid reduction operation");
407 break;
408 }
409 return 0;
410 }
411
412 void emit_ds_swizzle(Builder bld, PhysReg dst, PhysReg src, unsigned size, unsigned ds_pattern)
413 {
414 for (unsigned i = 0; i < size; i++) {
415 bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{dst+i}, v1),
416 Operand(PhysReg{src+i}, v1), ds_pattern);
417 }
418 }
419
420 void emit_reduction(lower_context *ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, PhysReg tmp,
421 PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst)
422 {
423 assert(cluster_size == ctx->program->wave_size || op == aco_opcode::p_reduce);
424 assert(cluster_size <= ctx->program->wave_size);
425
426 Builder bld(ctx->program, &ctx->instructions);
427
428 Operand identity[2];
429 identity[0] = Operand(get_reduction_identity(reduce_op, 0));
430 identity[1] = Operand(get_reduction_identity(reduce_op, 1));
431 Operand vcndmask_identity[2] = {identity[0], identity[1]};
432
433 /* First, copy the source to tmp and set inactive lanes to the identity */
434 bld.sop1(Builder::s_or_saveexec, Definition(stmp, bld.lm), Definition(scc, s1), Definition(exec, bld.lm), Operand(UINT64_MAX), Operand(exec, bld.lm));
435
436 for (unsigned i = 0; i < src.size(); i++) {
437 /* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32
438 * except on GFX10, where v_writelane_b32 can take a literal. */
439 if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan && ctx->program->chip_class < GFX10) {
440 bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp+i}, s1), identity[i]);
441 identity[i] = Operand(PhysReg{sitmp+i}, s1);
442
443 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
444 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
445 } else if (identity[i].isLiteral()) {
446 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
447 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
448 }
449 }
450
451 for (unsigned i = 0; i < src.size(); i++) {
452 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1),
453 vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1),
454 Operand(stmp, bld.lm));
455 }
456
457 bool reduction_needs_last_op = false;
458 switch (op) {
459 case aco_opcode::p_reduce:
460 if (cluster_size == 1) break;
461
462 if (ctx->program->chip_class <= GFX7) {
463 reduction_needs_last_op = true;
464 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(1, 0, 3, 2));
465 if (cluster_size == 2) break;
466 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
467 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(2, 3, 0, 1));
468 if (cluster_size == 4) break;
469 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
470 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x04));
471 if (cluster_size == 8) break;
472 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
473 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x08));
474 if (cluster_size == 16) break;
475 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
476 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
477 if (cluster_size == 32) break;
478 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
479 for (unsigned i = 0; i < src.size(); i++)
480 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1), Operand(0u));
481 // TODO: it would be more effective to do the last reduction step on SALU
482 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
483 reduction_needs_last_op = false;
484 break;
485 }
486
487 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(1, 0, 3, 2), 0xf, 0xf, false);
488 if (cluster_size == 2) break;
489 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(2, 3, 0, 1), 0xf, 0xf, false);
490 if (cluster_size == 4) break;
491 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_half_mirror, 0xf, 0xf, false);
492 if (cluster_size == 8) break;
493 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_mirror, 0xf, 0xf, false);
494 if (cluster_size == 16) break;
495
496 if (ctx->program->chip_class >= GFX10) {
497 /* GFX10+ doesn't support row_bcast15 and row_bcast31 */
498 for (unsigned i = 0; i < src.size(); i++)
499 bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1), Operand(0u), Operand(0u));
500
501 if (cluster_size == 32) {
502 reduction_needs_last_op = true;
503 break;
504 }
505
506 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
507 for (unsigned i = 0; i < src.size(); i++)
508 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
509 // TODO: it would be more effective to do the last reduction step on SALU
510 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
511 break;
512 }
513
514 if (cluster_size == 32) {
515 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
516 reduction_needs_last_op = true;
517 break;
518 }
519 assert(cluster_size == 64);
520 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, false);
521 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, false);
522 break;
523 case aco_opcode::p_exclusive_scan:
524 if (ctx->program->chip_class >= GFX10) { /* gfx10 doesn't support wf_sr1, so emulate it */
525 /* shift rows right */
526 emit_dpp_mov(ctx, vtmp, tmp, src.size(), dpp_row_sr(1), 0xf, 0xf, true);
527
528 /* fill in the gaps in rows 1 and 3 */
529 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10000u));
530 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(0x10000u));
531 for (unsigned i = 0; i < src.size(); i++) {
532 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
533 Definition(PhysReg{vtmp+i}, v1),
534 Operand(PhysReg{tmp+i}, v1),
535 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
536 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
537 }
538 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(UINT64_MAX));
539
540 if (ctx->program->wave_size == 64) {
541 /* fill in the gap in row 2 */
542 for (unsigned i = 0; i < src.size(); i++) {
543 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
544 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
545 }
546 }
547 std::swap(tmp, vtmp);
548 } else if (ctx->program->chip_class >= GFX8) {
549 emit_dpp_mov(ctx, tmp, tmp, src.size(), dpp_wf_sr1, 0xf, 0xf, true);
550 } else {
551 // TODO: use LDS on CS with a single write and shifted read
552 /* wavefront shift_right by 1 on SI/CI */
553 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(0, 0, 1, 2));
554 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x07)); /* mirror(8) */
555 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10101010u));
556 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
557 for (unsigned i = 0; i < src.size(); i++)
558 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
559
560 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
561 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x08)); /* swap(8) */
562 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x01000100u));
563 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
564 for (unsigned i = 0; i < src.size(); i++)
565 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
566
567 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
568 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x10)); /* swap(16) */
569 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(1u), Operand(16u));
570 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(1u), Operand(16u));
571 for (unsigned i = 0; i < src.size(); i++)
572 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
573
574 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
575 for (unsigned i = 0; i < src.size(); i++) {
576 bld.writelane(Definition(PhysReg{vtmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{vtmp+i}, v1));
577 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
578 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
579 identity[i] = Operand(0u); /* prevent further uses of identity */
580 }
581 std::swap(tmp, vtmp);
582 }
583
584 for (unsigned i = 0; i < src.size(); i++) {
585 if (!identity[i].isConstant() || identity[i].constantValue()) { /* bound_ctrl should take care of this overwise */
586 if (ctx->program->chip_class < GFX10)
587 assert((identity[i].isConstant() && !identity[i].isLiteral()) || identity[i].physReg() == PhysReg{sitmp+i});
588 bld.writelane(Definition(PhysReg{tmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{tmp+i}, v1));
589 }
590 }
591 /* fall through */
592 case aco_opcode::p_inclusive_scan:
593 assert(cluster_size == ctx->program->wave_size);
594 if (ctx->program->chip_class <= GFX7) {
595 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1e, 0x00, 0x00));
596 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xAAAAAAAAu));
597 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
598 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
599
600 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
601 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1c, 0x01, 0x00));
602 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xCCCCCCCCu));
603 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
604 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
605
606 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
607 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x18, 0x03, 0x00));
608 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xF0F0F0F0u));
609 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
610 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
611
612 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
613 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x10, 0x07, 0x00));
614 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xFF00FF00u));
615 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
616 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
617
618 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
619 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x00, 0x0f, 0x00));
620 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
621 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
622 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
623
624 for (unsigned i = 0; i < src.size(); i++)
625 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
626 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
627 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
628 break;
629 }
630
631 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
632 dpp_row_sr(1), 0xf, 0xf, false, identity);
633 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
634 dpp_row_sr(2), 0xf, 0xf, false, identity);
635 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
636 dpp_row_sr(4), 0xf, 0xf, false, identity);
637 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
638 dpp_row_sr(8), 0xf, 0xf, false, identity);
639 if (ctx->program->chip_class >= GFX10) {
640 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
641 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
642 for (unsigned i = 0; i < src.size(); i++) {
643 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
644 Definition(PhysReg{vtmp+i}, v1),
645 Operand(PhysReg{tmp+i}, v1),
646 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
647 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
648 }
649 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
650
651 if (ctx->program->wave_size == 64) {
652 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
653 for (unsigned i = 0; i < src.size(); i++)
654 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
655 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
656 }
657 } else {
658 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
659 dpp_row_bcast15, 0xa, 0xf, false, identity);
660 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
661 dpp_row_bcast31, 0xc, 0xf, false, identity);
662 }
663 break;
664 default:
665 unreachable("Invalid reduction mode");
666 }
667
668
669 if (op == aco_opcode::p_reduce) {
670 if (reduction_needs_last_op && dst.regClass().type() == RegType::vgpr) {
671 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
672 emit_op(ctx, dst.physReg(), tmp, vtmp, PhysReg{0}, reduce_op, src.size());
673 return;
674 }
675
676 if (reduction_needs_last_op)
677 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
678 }
679
680 /* restore exec */
681 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
682
683 if (dst.regClass().type() == RegType::sgpr) {
684 for (unsigned k = 0; k < src.size(); k++) {
685 bld.readlane(Definition(PhysReg{dst.physReg() + k}, s1),
686 Operand(PhysReg{tmp + k}, v1), Operand(ctx->program->wave_size - 1));
687 }
688 } else if (dst.physReg() != tmp) {
689 for (unsigned k = 0; k < src.size(); k++) {
690 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, v1),
691 Operand(PhysReg{tmp + k}, v1));
692 }
693 }
694 }
695
696 struct copy_operation {
697 Operand op;
698 Definition def;
699 unsigned bytes;
700 union {
701 uint8_t uses[8];
702 uint64_t is_used = 0;
703 };
704 };
705
706 void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi)
707 {
708 Builder bld(ctx->program, &ctx->instructions);
709 aco_ptr<Instruction> mov;
710 std::map<PhysReg, copy_operation>::iterator it = copy_map.begin();
711 std::map<PhysReg, copy_operation>::iterator target;
712 bool writes_scc = false;
713
714 /* count the number of uses for each dst reg */
715 while (it != copy_map.end()) {
716
717 if (it->second.def.physReg() == scc)
718 writes_scc = true;
719
720 assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr));
721
722 /* if src and dst reg are the same, remove operation */
723 if (it->first == it->second.op.physReg()) {
724 it = copy_map.erase(it);
725 continue;
726 }
727
728 /* split large copies */
729 if (it->second.bytes > 8) {
730 assert(!it->second.op.isConstant());
731 assert(!it->second.def.regClass().is_subdword());
732 RegClass rc = RegClass(it->second.def.regClass().type(), it->second.def.size() - 2);
733 Definition hi_def = Definition(PhysReg{it->first + 2}, rc);
734 rc = RegClass(it->second.op.regClass().type(), it->second.op.size() - 2);
735 Operand hi_op = Operand(PhysReg{it->second.op.physReg() + 2}, rc);
736 copy_operation copy = {hi_op, hi_def, it->second.bytes - 8};
737 copy_map[hi_def.physReg()] = copy;
738 assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
739 it->second.op = Operand(it->second.op.physReg(), it->second.op.regClass().type() == RegType::sgpr ? s2 : v2);
740 it->second.def = Definition(it->second.def.physReg(), it->second.def.regClass().type() == RegType::sgpr ? s2 : v2);
741 it->second.bytes = 8;
742 }
743
744 /* check if the definition reg is used by another copy operation */
745 for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
746 if (copy.second.op.isConstant())
747 continue;
748 for (uint16_t i = 0; i < it->second.bytes; i++) {
749 /* distance might underflow */
750 unsigned distance = it->first.reg_b + i - copy.second.op.physReg().reg_b;
751 if (distance < copy.second.bytes)
752 it->second.uses[i] += 1;
753 }
754 }
755
756 ++it;
757 }
758
759 /* first, handle paths in the location transfer graph */
760 bool preserve_scc = pi->tmp_in_scc && !writes_scc;
761 it = copy_map.begin();
762 while (it != copy_map.end()) {
763
764 /* split cross half-reg copies: SDWA can only access bytes and shorts */
765 if (it->second.def.regClass().is_subdword()) {
766 PhysReg def_reg = it->second.def.physReg();
767 PhysReg op_reg = it->second.op.physReg();
768 unsigned new_bytes = 0;
769 if (it->second.bytes > 1 && (def_reg.byte() % 2 || op_reg.byte() % 2)) {
770 new_bytes = 1;
771 } else if (it->second.bytes > 2 && (def_reg.byte() || op_reg.byte())) {
772 new_bytes = 2;
773 } else if (it->second.bytes == 3) {
774 new_bytes = 2;
775 } else if (it->second.bytes > 4) {
776 assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
777 new_bytes = 4;
778 }
779 if (new_bytes) {
780 RegClass rc = RegClass(RegType::vgpr, it->second.bytes - new_bytes).as_subdword();
781 def_reg.reg_b += new_bytes;
782 op_reg.reg_b += new_bytes;
783 copy_operation copy = {Operand(op_reg, rc), Definition(def_reg, rc), it->second.bytes - new_bytes};
784 copy.is_used = it->second.is_used >> (8 * new_bytes);
785 copy_map[def_reg] = copy;
786 rc = RegClass(RegType::vgpr, new_bytes).as_subdword();
787 it->second.op = Operand(it->second.op.physReg(), rc);
788 it->second.def = Definition(it->second.def.physReg(), rc);
789 it->second.is_used = it->second.is_used & ((1 << (8 * new_bytes)) - 1);
790 it->second.bytes = new_bytes;
791 }
792
793 /* convert dword moves to normal regclass */
794 if (it->second.bytes == 4) {
795 it->second.op = Operand(it->second.op.physReg(), v1);
796 it->second.def = Definition(it->second.def.physReg(), v1);
797 }
798 }
799
800 /* split multi-reg copies */
801 if (it->second.bytes > 4 && !it->second.op.isConstant()) {
802 assert(!it->second.def.regClass().is_subdword());
803 RegClass rc = RegClass(it->second.def.regClass().type(), it->second.def.size() - 1);
804 Definition hi_def = Definition(PhysReg{it->first + 1}, rc);
805 rc = RegClass(it->second.op.regClass().type(), it->second.op.size() - 1);
806 Operand hi_op = Operand(PhysReg{it->second.op.physReg() + 1}, rc);
807 copy_operation copy = {hi_op, hi_def, it->second.bytes - 4};
808 copy.is_used = it->second.is_used >> 32;
809 copy_map[hi_def.physReg()] = copy;
810 assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
811 it->second.op = Operand(it->second.op.physReg(), it->second.op.regClass().type() == RegType::sgpr ? s1 : v1);
812 it->second.def = Definition(it->second.def.physReg(), it->second.def.regClass().type() == RegType::sgpr ? s1 : v1);
813 it->second.is_used = it->second.is_used & 0xFFFFFFFF;
814 it->second.bytes = 4;
815 }
816
817 /* the target reg is not used as operand for any other copy */
818 if (it->second.is_used == 0) {
819
820 /* try to coalesce 32-bit sgpr copies to 64-bit copies */
821 if (it->second.def.getTemp().type() == RegType::sgpr && it->second.bytes == 4 &&
822 !it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) {
823
824 PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1};
825 PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1};
826 std::map<PhysReg, copy_operation>::iterator other = copy_map.find(other_def_reg);
827
828 if (other != copy_map.end() && !other->second.is_used && other->second.bytes == 4 &&
829 other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) {
830 std::map<PhysReg, copy_operation>::iterator to_erase = it->first % 2 ? it : other;
831 it = it->first % 2 ? other : it;
832 copy_map.erase(to_erase);
833 it->second.bytes = 8;
834 }
835 }
836 // TODO: try to coalesce subdword copies
837
838 if (it->second.def.physReg() == scc) {
839 bld.sopc(aco_opcode::s_cmp_lg_i32, it->second.def, it->second.op, Operand(0u));
840 preserve_scc = true;
841 } else if (it->second.bytes == 8 && it->second.def.getTemp().type() == RegType::sgpr) {
842 bld.sop1(aco_opcode::s_mov_b64, it->second.def, Operand(it->second.op.physReg(), s2));
843 } else if (it->second.bytes == 8 && it->second.op.isConstant()) {
844 uint64_t val = it->second.op.constantValue64();
845 bld.vop1(aco_opcode::v_mov_b32, it->second.def, Operand((uint32_t)val));
846 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{it->second.def.physReg() + 1}, v1),
847 Operand((uint32_t)(val >> 32)));
848 } else {
849 bld.copy(it->second.def, it->second.op);
850 }
851
852 /* reduce the number of uses of the operand reg by one */
853 if (!it->second.op.isConstant()) {
854 for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
855 for (uint16_t i = 0; i < copy.second.bytes; i++) {
856 /* distance might underflow */
857 unsigned distance = copy.first.reg_b + i - it->second.op.physReg().reg_b;
858 if (distance < it->second.bytes)
859 copy.second.uses[i] -= 1;
860 }
861 }
862 }
863
864 copy_map.erase(it);
865 it = copy_map.begin();
866 ctx->program->statistics[statistic_copies]++;
867 continue;
868 } else {
869 /* the target reg is used as operand, check the next entry */
870 ++it;
871 }
872 }
873
874 if (copy_map.empty())
875 return;
876
877 /* all target regs are needed as operand somewhere which means, all entries are part of a cycle */
878 for (it = copy_map.begin(); it != copy_map.end(); ++it) {
879 assert(it->second.op.isFixed());
880 if (it->first == it->second.op.physReg())
881 continue;
882
883 /* should already be done */
884 assert(!it->second.op.isConstant());
885
886 if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr)
887 assert(!(it->second.def.physReg() == pi->scratch_sgpr));
888
889 /* to resolve the cycle, we have to swap the src reg with the dst reg */
890 copy_operation swap = it->second;
891 assert(swap.op.regClass() == swap.def.regClass());
892 Operand def_as_op = Operand(swap.def.physReg(), swap.def.regClass());
893 Definition op_as_def = Definition(swap.op.physReg(), swap.op.regClass());
894 if (chip_class >= GFX9 && swap.def.regClass() == v1) {
895 bld.vop1(aco_opcode::v_swap_b32, swap.def, op_as_def, swap.op, def_as_op);
896 ctx->program->statistics[statistic_copies]++;
897 } else if (swap.def.regClass() == v1) {
898 bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
899 bld.vop2(aco_opcode::v_xor_b32, swap.def, swap.op, def_as_op);
900 bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
901 ctx->program->statistics[statistic_copies] += 3;
902 } else if (swap.op.physReg() == scc || swap.def.physReg() == scc) {
903 /* we need to swap scc and another sgpr */
904 assert(!preserve_scc);
905
906 PhysReg other = swap.op.physReg() == scc ? swap.def.physReg() : swap.op.physReg();
907
908 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
909 bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u));
910 bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
911 ctx->program->statistics[statistic_copies] += 3;
912 } else if (swap.def.regClass() == s1) {
913 if (preserve_scc) {
914 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), swap.op);
915 bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
916 bld.sop1(aco_opcode::s_mov_b32, swap.def, Operand(pi->scratch_sgpr, s1));
917 } else {
918 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op);
919 bld.sop2(aco_opcode::s_xor_b32, swap.def, Definition(scc, s1), swap.op, def_as_op);
920 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op);
921 }
922 ctx->program->statistics[statistic_copies] += 3;
923 } else {
924 bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
925 bld.vop2(aco_opcode::v_xor_b32, swap.def, swap.op, def_as_op);
926 bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
927 ctx->program->statistics[statistic_copies] += 3;
928 assert(swap.def.regClass().is_subdword());
929 assert(false && "Subdword swaps not yet implemented.");
930 }
931
932 /* change the operand reg of the target's use */
933 assert(swap.is_used == 0x01010101lu); // each 1 use per byte
934 target = it;
935 for (++target; target != copy_map.end(); ++target) {
936 if (target->second.op.physReg() == it->first) {
937 target->second.op.setFixed(swap.op.physReg());
938 break;
939 }
940 }
941 }
942 }
943
944 void lower_to_hw_instr(Program* program)
945 {
946 Block *discard_block = NULL;
947
948 for (size_t i = 0; i < program->blocks.size(); i++)
949 {
950 Block *block = &program->blocks[i];
951 lower_context ctx;
952 ctx.program = program;
953 Builder bld(program, &ctx.instructions);
954
955 bool set_mode = i == 0 && block->fp_mode.val != program->config->float_mode;
956 for (unsigned pred : block->linear_preds) {
957 if (program->blocks[pred].fp_mode.val != block->fp_mode.val) {
958 set_mode = true;
959 break;
960 }
961 }
962 if (set_mode) {
963 /* only allow changing modes at top-level blocks so this doesn't break
964 * the "jump over empty blocks" optimization */
965 assert(block->kind & block_kind_top_level);
966 uint32_t mode = block->fp_mode.val;
967 /* "((size - 1) << 11) | register" (MODE is encoded as register 1) */
968 bld.sopk(aco_opcode::s_setreg_imm32_b32, Operand(mode), (7 << 11) | 1);
969 }
970
971 for (size_t j = 0; j < block->instructions.size(); j++) {
972 aco_ptr<Instruction>& instr = block->instructions[j];
973 aco_ptr<Instruction> mov;
974 if (instr->format == Format::PSEUDO) {
975 Pseudo_instruction *pi = (Pseudo_instruction*)instr.get();
976
977 switch (instr->opcode)
978 {
979 case aco_opcode::p_extract_vector:
980 {
981 PhysReg reg = instr->operands[0].physReg();
982 Definition& def = instr->definitions[0];
983 reg.reg_b += instr->operands[1].constantValue() * def.bytes();
984
985 if (reg == def.physReg())
986 break;
987
988 RegClass op_rc = def.regClass().is_subdword() ? def.regClass() :
989 RegClass(instr->operands[0].getTemp().type(), def.size());
990 std::map<PhysReg, copy_operation> copy_operations;
991 copy_operations[def.physReg()] = {Operand(reg, op_rc), def, def.bytes()};
992 handle_operands(copy_operations, &ctx, program->chip_class, pi);
993 break;
994 }
995 case aco_opcode::p_create_vector:
996 {
997 std::map<PhysReg, copy_operation> copy_operations;
998 PhysReg reg = instr->definitions[0].physReg();
999
1000 for (const Operand& op : instr->operands) {
1001 if (op.isConstant()) {
1002 const Definition def = Definition(reg, RegClass(instr->definitions[0].getTemp().type(), op.size()));
1003 copy_operations[reg] = {op, def, op.bytes()};
1004 reg.reg_b += op.bytes();
1005 continue;
1006 }
1007 if (op.isUndefined()) {
1008 // TODO: coalesce subdword copies if dst byte is 0
1009 reg.reg_b += op.bytes();
1010 continue;
1011 }
1012
1013 RegClass rc_def = op.regClass().is_subdword() ? op.regClass() :
1014 RegClass(instr->definitions[0].getTemp().type(), op.size());
1015 const Definition def = Definition(reg, rc_def);
1016 copy_operations[def.physReg()] = {op, def, op.bytes()};
1017 reg.reg_b += op.bytes();
1018 }
1019 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1020 break;
1021 }
1022 case aco_opcode::p_split_vector:
1023 {
1024 std::map<PhysReg, copy_operation> copy_operations;
1025 PhysReg reg = instr->operands[0].physReg();
1026
1027 for (const Definition& def : instr->definitions) {
1028 RegClass rc_op = def.regClass().is_subdword() ? def.regClass() :
1029 RegClass(instr->operands[0].getTemp().type(), def.size());
1030 const Operand op = Operand(reg, rc_op);
1031 copy_operations[def.physReg()] = {op, def, def.bytes()};
1032 reg.reg_b += def.bytes();
1033 }
1034 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1035 break;
1036 }
1037 case aco_opcode::p_parallelcopy:
1038 case aco_opcode::p_wqm:
1039 {
1040 std::map<PhysReg, copy_operation> copy_operations;
1041 for (unsigned i = 0; i < instr->operands.size(); i++) {
1042 assert(instr->definitions[i].bytes() == instr->operands[i].bytes());
1043 copy_operations[instr->definitions[i].physReg()] = {instr->operands[i], instr->definitions[i], instr->operands[i].bytes()};
1044 }
1045 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1046 break;
1047 }
1048 case aco_opcode::p_exit_early_if:
1049 {
1050 /* don't bother with an early exit near the end of the program */
1051 if ((block->instructions.size() - 1 - j) <= 4 &&
1052 block->instructions.back()->opcode == aco_opcode::s_endpgm) {
1053 unsigned null_exp_dest = (ctx.program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
1054 bool ignore_early_exit = true;
1055
1056 for (unsigned k = j + 1; k < block->instructions.size(); ++k) {
1057 const aco_ptr<Instruction> &instr = block->instructions[k];
1058 if (instr->opcode == aco_opcode::s_endpgm ||
1059 instr->opcode == aco_opcode::p_logical_end)
1060 continue;
1061 else if (instr->opcode == aco_opcode::exp &&
1062 static_cast<Export_instruction *>(instr.get())->dest == null_exp_dest)
1063 continue;
1064 else if (instr->opcode == aco_opcode::p_parallelcopy &&
1065 instr->definitions[0].isFixed() &&
1066 instr->definitions[0].physReg() == exec)
1067 continue;
1068
1069 ignore_early_exit = false;
1070 }
1071
1072 if (ignore_early_exit)
1073 break;
1074 }
1075
1076 if (!discard_block) {
1077 discard_block = program->create_and_insert_block();
1078 block = &program->blocks[i];
1079
1080 bld.reset(discard_block);
1081 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
1082 0, V_008DFC_SQ_EXP_NULL, false, true, true);
1083 if (program->wb_smem_l1_on_end)
1084 bld.smem(aco_opcode::s_dcache_wb);
1085 bld.sopp(aco_opcode::s_endpgm);
1086
1087 bld.reset(&ctx.instructions);
1088 }
1089
1090 //TODO: exec can be zero here with block_kind_discard
1091
1092 assert(instr->operands[0].physReg() == scc);
1093 bld.sopp(aco_opcode::s_cbranch_scc0, instr->operands[0], discard_block->index);
1094
1095 discard_block->linear_preds.push_back(block->index);
1096 block->linear_succs.push_back(discard_block->index);
1097 break;
1098 }
1099 case aco_opcode::p_spill:
1100 {
1101 assert(instr->operands[0].regClass() == v1.as_linear());
1102 for (unsigned i = 0; i < instr->operands[2].size(); i++)
1103 bld.writelane(bld.def(v1, instr->operands[0].physReg()),
1104 Operand(PhysReg{instr->operands[2].physReg() + i}, s1),
1105 Operand(instr->operands[1].constantValue() + i),
1106 instr->operands[0]);
1107 break;
1108 }
1109 case aco_opcode::p_reload:
1110 {
1111 assert(instr->operands[0].regClass() == v1.as_linear());
1112 for (unsigned i = 0; i < instr->definitions[0].size(); i++)
1113 bld.readlane(bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1114 instr->operands[0],
1115 Operand(instr->operands[1].constantValue() + i));
1116 break;
1117 }
1118 case aco_opcode::p_as_uniform:
1119 {
1120 if (instr->operands[0].isConstant() || instr->operands[0].regClass().type() == RegType::sgpr) {
1121 std::map<PhysReg, copy_operation> copy_operations;
1122 copy_operations[instr->definitions[0].physReg()] = {instr->operands[0], instr->definitions[0], instr->definitions[0].bytes()};
1123 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1124 } else {
1125 assert(instr->operands[0].regClass().type() == RegType::vgpr);
1126 assert(instr->definitions[0].regClass().type() == RegType::sgpr);
1127 assert(instr->operands[0].size() == instr->definitions[0].size());
1128 for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
1129 bld.vop1(aco_opcode::v_readfirstlane_b32,
1130 bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1131 Operand(PhysReg{instr->operands[0].physReg() + i}, v1));
1132 }
1133 }
1134 break;
1135 }
1136 default:
1137 break;
1138 }
1139 } else if (instr->format == Format::PSEUDO_BRANCH) {
1140 Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(instr.get());
1141 /* check if all blocks from current to target are empty */
1142 bool can_remove = block->index < branch->target[0];
1143 for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) {
1144 if (program->blocks[i].instructions.size())
1145 can_remove = false;
1146 }
1147 if (can_remove)
1148 continue;
1149
1150 switch (instr->opcode) {
1151 case aco_opcode::p_branch:
1152 assert(block->linear_succs[0] == branch->target[0]);
1153 bld.sopp(aco_opcode::s_branch, branch->target[0]);
1154 break;
1155 case aco_opcode::p_cbranch_nz:
1156 assert(block->linear_succs[1] == branch->target[0]);
1157 if (branch->operands[0].physReg() == exec)
1158 bld.sopp(aco_opcode::s_cbranch_execnz, branch->target[0]);
1159 else if (branch->operands[0].physReg() == vcc)
1160 bld.sopp(aco_opcode::s_cbranch_vccnz, branch->target[0]);
1161 else {
1162 assert(branch->operands[0].physReg() == scc);
1163 bld.sopp(aco_opcode::s_cbranch_scc1, branch->target[0]);
1164 }
1165 break;
1166 case aco_opcode::p_cbranch_z:
1167 assert(block->linear_succs[1] == branch->target[0]);
1168 if (branch->operands[0].physReg() == exec)
1169 bld.sopp(aco_opcode::s_cbranch_execz, branch->target[0]);
1170 else if (branch->operands[0].physReg() == vcc)
1171 bld.sopp(aco_opcode::s_cbranch_vccz, branch->target[0]);
1172 else {
1173 assert(branch->operands[0].physReg() == scc);
1174 bld.sopp(aco_opcode::s_cbranch_scc0, branch->target[0]);
1175 }
1176 break;
1177 default:
1178 unreachable("Unknown Pseudo branch instruction!");
1179 }
1180
1181 } else if (instr->format == Format::PSEUDO_REDUCTION) {
1182 Pseudo_reduction_instruction* reduce = static_cast<Pseudo_reduction_instruction*>(instr.get());
1183 if (reduce->reduce_op == gfx10_wave64_bpermute) {
1184 /* Only makes sense on GFX10 wave64 */
1185 assert(program->chip_class >= GFX10);
1186 assert(program->info->wave_size == 64);
1187 assert(instr->definitions[0].regClass() == v1); /* Destination */
1188 assert(instr->definitions[1].regClass() == s2); /* Temp EXEC */
1189 assert(instr->definitions[1].physReg() != vcc);
1190 assert(instr->definitions[2].physReg() == scc); /* SCC clobber */
1191 assert(instr->operands[0].physReg() == vcc); /* Compare */
1192 assert(instr->operands[1].regClass() == v2.as_linear()); /* Temp VGPR pair */
1193 assert(instr->operands[2].regClass() == v1); /* Indices x4 */
1194 assert(instr->operands[3].regClass() == v1); /* Input data */
1195
1196 PhysReg shared_vgpr_reg_lo = PhysReg(align(program->config->num_vgprs, 4) + 256);
1197 PhysReg shared_vgpr_reg_hi = PhysReg(shared_vgpr_reg_lo + 1);
1198 Operand compare = instr->operands[0];
1199 Operand tmp1(instr->operands[1].physReg(), v1);
1200 Operand tmp2(PhysReg(instr->operands[1].physReg() + 1), v1);
1201 Operand index_x4 = instr->operands[2];
1202 Operand input_data = instr->operands[3];
1203 Definition shared_vgpr_lo(shared_vgpr_reg_lo, v1);
1204 Definition shared_vgpr_hi(shared_vgpr_reg_hi, v1);
1205 Definition def_temp1(tmp1.physReg(), v1);
1206 Definition def_temp2(tmp2.physReg(), v1);
1207
1208 /* Save EXEC and set it for all lanes */
1209 bld.sop1(aco_opcode::s_or_saveexec_b64, instr->definitions[1], instr->definitions[2],
1210 Definition(exec, s2), Operand((uint64_t)-1), Operand(exec, s2));
1211
1212 /* HI: Copy data from high lanes 32-63 to shared vgpr */
1213 bld.vop1_dpp(aco_opcode::v_mov_b32, shared_vgpr_hi, input_data, dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
1214
1215 /* LO: Copy data from low lanes 0-31 to shared vgpr */
1216 bld.vop1_dpp(aco_opcode::v_mov_b32, shared_vgpr_lo, input_data, dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false);
1217 /* LO: Copy shared vgpr (high lanes' data) to output vgpr */
1218 bld.vop1_dpp(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_hi, v1), dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false);
1219
1220 /* HI: Copy shared vgpr (low lanes' data) to output vgpr */
1221 bld.vop1_dpp(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_lo, v1), dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
1222
1223 /* Permute the original input */
1224 bld.ds(aco_opcode::ds_bpermute_b32, def_temp2, index_x4, input_data);
1225 /* Permute the swapped input */
1226 bld.ds(aco_opcode::ds_bpermute_b32, def_temp1, index_x4, tmp1);
1227
1228 /* Restore saved EXEC */
1229 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(instr->definitions[1].physReg(), s2));
1230 /* Choose whether to use the original or swapped */
1231 bld.vop2(aco_opcode::v_cndmask_b32, instr->definitions[0], tmp1, tmp2, compare);
1232 } else {
1233 emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size,
1234 reduce->operands[1].physReg(), // tmp
1235 reduce->definitions[1].physReg(), // stmp
1236 reduce->operands[2].physReg(), // vtmp
1237 reduce->definitions[2].physReg(), // sitmp
1238 reduce->operands[0], reduce->definitions[0]);
1239 }
1240 } else {
1241 ctx.instructions.emplace_back(std::move(instr));
1242 }
1243
1244 }
1245 block->instructions.swap(ctx.instructions);
1246 }
1247 }
1248
1249 }