aco: fix waitcnt insertion on GFX10.3
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint16_t literal_idx;
56 bool check_literal;
57
58 mad_info(aco_ptr<Instruction> instr, uint32_t id)
59 : add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
60 };
61
62 enum Label {
63 label_vec = 1 << 0,
64 label_constant_32bit = 1 << 1,
65 /* label_{abs,neg,mul,omod2,omod4,omod5,clamp} are used for both 16 and
66 * 32-bit operations but this shouldn't cause any issues because we don't
67 * look through any conversions */
68 label_abs = 1 << 2,
69 label_neg = 1 << 3,
70 label_mul = 1 << 4,
71 label_temp = 1 << 5,
72 label_literal = 1 << 6,
73 label_mad = 1 << 7,
74 label_omod2 = 1 << 8,
75 label_omod4 = 1 << 9,
76 label_omod5 = 1 << 10,
77 label_omod_success = 1 << 11,
78 label_clamp = 1 << 12,
79 label_clamp_success = 1 << 13,
80 label_undefined = 1 << 14,
81 label_vcc = 1 << 15,
82 label_b2f = 1 << 16,
83 label_add_sub = 1 << 17,
84 label_bitwise = 1 << 18,
85 label_minmax = 1 << 19,
86 label_vopc = 1 << 20,
87 label_uniform_bool = 1 << 21,
88 label_constant_64bit = 1 << 22,
89 label_uniform_bitwise = 1 << 23,
90 label_scc_invert = 1 << 24,
91 label_vcc_hint = 1 << 25,
92 label_scc_needed = 1 << 26,
93 label_b2i = 1 << 27,
94 label_constant_16bit = 1 << 29,
95 };
96
97 static constexpr uint64_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
98 label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_vopc;
99 static constexpr uint64_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
100 label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert | label_b2i;
101 static constexpr uint32_t val_labels = label_constant_32bit | label_constant_64bit | label_constant_16bit | label_literal;
102
103 struct ssa_info {
104 uint64_t label;
105 union {
106 uint32_t val;
107 Temp temp;
108 Instruction* instr;
109 };
110
111 ssa_info() : label(0) {}
112
113 void add_label(Label new_label)
114 {
115 /* Since all labels which use "instr" use it for the same thing
116 * (indicating the defining instruction), there is no need to clear
117 * any other instr labels. */
118 if (new_label & instr_labels)
119 label &= ~(temp_labels | val_labels); /* instr, temp and val alias */
120
121 if (new_label & temp_labels) {
122 label &= ~temp_labels;
123 label &= ~(instr_labels | val_labels); /* instr, temp and val alias */
124 }
125
126 uint32_t const_labels = label_literal | label_constant_32bit | label_constant_64bit | label_constant_16bit;
127 if (new_label & const_labels) {
128 label &= ~val_labels | const_labels;
129 label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */
130 } else if (new_label & val_labels) {
131 label &= ~val_labels;
132 label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */
133 }
134
135 label |= new_label;
136 }
137
138 void set_vec(Instruction* vec)
139 {
140 add_label(label_vec);
141 instr = vec;
142 }
143
144 bool is_vec()
145 {
146 return label & label_vec;
147 }
148
149 void set_constant(chip_class chip, uint64_t constant)
150 {
151 Operand op16((uint16_t)constant);
152 Operand op32((uint32_t)constant);
153 add_label(label_literal);
154 val = constant;
155
156 if (chip >= GFX8 && !op16.isLiteral())
157 add_label(label_constant_16bit);
158
159 if (!op32.isLiteral() || ((uint32_t)constant == 0x3e22f983 && chip >= GFX8))
160 add_label(label_constant_32bit);
161
162 if (constant <= 64) {
163 add_label(label_constant_64bit);
164 } else if (constant >= 0xFFFFFFFFFFFFFFF0) { /* [-16 .. -1] */
165 add_label(label_constant_64bit);
166 } else if (constant == 0x3FE0000000000000) { /* 0.5 */
167 add_label(label_constant_64bit);
168 } else if (constant == 0xBFE0000000000000) { /* -0.5 */
169 add_label(label_constant_64bit);
170 } else if (constant == 0x3FF0000000000000) { /* 1.0 */
171 add_label(label_constant_64bit);
172 } else if (constant == 0xBFF0000000000000) { /* -1.0 */
173 add_label(label_constant_64bit);
174 } else if (constant == 0x4000000000000000) { /* 2.0 */
175 add_label(label_constant_64bit);
176 } else if (constant == 0xC000000000000000) { /* -2.0 */
177 add_label(label_constant_64bit);
178 } else if (constant == 0x4010000000000000) { /* 4.0 */
179 add_label(label_constant_64bit);
180 } else if (constant == 0xC010000000000000) { /* -4.0 */
181 add_label(label_constant_64bit);
182 }
183
184 if (label & label_constant_64bit) {
185 val = Operand(constant).constantValue();
186 if (val != constant)
187 label &= ~(label_literal | label_constant_16bit | label_constant_32bit);
188 }
189 }
190
191 bool is_constant(unsigned bits)
192 {
193 switch (bits) {
194 case 8:
195 return label & label_literal;
196 case 16:
197 return label & label_constant_16bit;
198 case 32:
199 return label & label_constant_32bit;
200 case 64:
201 return label & label_constant_64bit;
202 }
203 return false;
204 }
205
206 bool is_literal(unsigned bits)
207 {
208 bool is_lit = label & label_literal;
209 switch (bits) {
210 case 8:
211 return false;
212 case 16:
213 return is_lit && ~(label & label_constant_16bit);
214 case 32:
215 return is_lit && ~(label & label_constant_32bit);
216 case 64:
217 return false;
218 }
219 return false;
220 }
221
222 bool is_constant_or_literal(unsigned bits)
223 {
224 if (bits == 64)
225 return label & label_constant_64bit;
226 else
227 return label & label_literal;
228 }
229
230 void set_abs(Temp abs_temp)
231 {
232 add_label(label_abs);
233 temp = abs_temp;
234 }
235
236 bool is_abs()
237 {
238 return label & label_abs;
239 }
240
241 void set_neg(Temp neg_temp)
242 {
243 add_label(label_neg);
244 temp = neg_temp;
245 }
246
247 bool is_neg()
248 {
249 return label & label_neg;
250 }
251
252 void set_neg_abs(Temp neg_abs_temp)
253 {
254 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
255 temp = neg_abs_temp;
256 }
257
258 void set_mul(Instruction* mul)
259 {
260 add_label(label_mul);
261 instr = mul;
262 }
263
264 bool is_mul()
265 {
266 return label & label_mul;
267 }
268
269 void set_temp(Temp tmp)
270 {
271 add_label(label_temp);
272 temp = tmp;
273 }
274
275 bool is_temp()
276 {
277 return label & label_temp;
278 }
279
280 void set_mad(Instruction* mad, uint32_t mad_info_idx)
281 {
282 add_label(label_mad);
283 mad->pass_flags = mad_info_idx;
284 instr = mad;
285 }
286
287 bool is_mad()
288 {
289 return label & label_mad;
290 }
291
292 void set_omod2(Temp def)
293 {
294 add_label(label_omod2);
295 temp = def;
296 }
297
298 bool is_omod2()
299 {
300 return label & label_omod2;
301 }
302
303 void set_omod4(Temp def)
304 {
305 add_label(label_omod4);
306 temp = def;
307 }
308
309 bool is_omod4()
310 {
311 return label & label_omod4;
312 }
313
314 void set_omod5(Temp def)
315 {
316 add_label(label_omod5);
317 temp = def;
318 }
319
320 bool is_omod5()
321 {
322 return label & label_omod5;
323 }
324
325 void set_omod_success(Instruction* omod_instr)
326 {
327 add_label(label_omod_success);
328 instr = omod_instr;
329 }
330
331 bool is_omod_success()
332 {
333 return label & label_omod_success;
334 }
335
336 void set_clamp(Temp def)
337 {
338 add_label(label_clamp);
339 temp = def;
340 }
341
342 bool is_clamp()
343 {
344 return label & label_clamp;
345 }
346
347 void set_clamp_success(Instruction* clamp_instr)
348 {
349 add_label(label_clamp_success);
350 instr = clamp_instr;
351 }
352
353 bool is_clamp_success()
354 {
355 return label & label_clamp_success;
356 }
357
358 void set_undefined()
359 {
360 add_label(label_undefined);
361 }
362
363 bool is_undefined()
364 {
365 return label & label_undefined;
366 }
367
368 void set_vcc(Temp vcc)
369 {
370 add_label(label_vcc);
371 temp = vcc;
372 }
373
374 bool is_vcc()
375 {
376 return label & label_vcc;
377 }
378
379 void set_b2f(Temp val)
380 {
381 add_label(label_b2f);
382 temp = val;
383 }
384
385 bool is_b2f()
386 {
387 return label & label_b2f;
388 }
389
390 void set_add_sub(Instruction *add_sub_instr)
391 {
392 add_label(label_add_sub);
393 instr = add_sub_instr;
394 }
395
396 bool is_add_sub()
397 {
398 return label & label_add_sub;
399 }
400
401 void set_bitwise(Instruction *bitwise_instr)
402 {
403 add_label(label_bitwise);
404 instr = bitwise_instr;
405 }
406
407 bool is_bitwise()
408 {
409 return label & label_bitwise;
410 }
411
412 void set_uniform_bitwise()
413 {
414 add_label(label_uniform_bitwise);
415 }
416
417 bool is_uniform_bitwise()
418 {
419 return label & label_uniform_bitwise;
420 }
421
422 void set_minmax(Instruction *minmax_instr)
423 {
424 add_label(label_minmax);
425 instr = minmax_instr;
426 }
427
428 bool is_minmax()
429 {
430 return label & label_minmax;
431 }
432
433 void set_vopc(Instruction *vopc_instr)
434 {
435 add_label(label_vopc);
436 instr = vopc_instr;
437 }
438
439 bool is_vopc()
440 {
441 return label & label_vopc;
442 }
443
444 void set_scc_needed()
445 {
446 add_label(label_scc_needed);
447 }
448
449 bool is_scc_needed()
450 {
451 return label & label_scc_needed;
452 }
453
454 void set_scc_invert(Temp scc_inv)
455 {
456 add_label(label_scc_invert);
457 temp = scc_inv;
458 }
459
460 bool is_scc_invert()
461 {
462 return label & label_scc_invert;
463 }
464
465 void set_uniform_bool(Temp uniform_bool)
466 {
467 add_label(label_uniform_bool);
468 temp = uniform_bool;
469 }
470
471 bool is_uniform_bool()
472 {
473 return label & label_uniform_bool;
474 }
475
476 void set_vcc_hint()
477 {
478 add_label(label_vcc_hint);
479 }
480
481 bool is_vcc_hint()
482 {
483 return label & label_vcc_hint;
484 }
485
486 void set_b2i(Temp val)
487 {
488 add_label(label_b2i);
489 temp = val;
490 }
491
492 bool is_b2i()
493 {
494 return label & label_b2i;
495 }
496
497 };
498
499 struct opt_ctx {
500 Program* program;
501 std::vector<aco_ptr<Instruction>> instructions;
502 ssa_info* info;
503 std::pair<uint32_t,Temp> last_literal;
504 std::vector<mad_info> mad_infos;
505 std::vector<uint16_t> uses;
506 };
507
508 struct CmpInfo {
509 aco_opcode ordered;
510 aco_opcode unordered;
511 aco_opcode ordered_swapped;
512 aco_opcode unordered_swapped;
513 aco_opcode inverse;
514 aco_opcode f32;
515 unsigned size;
516 };
517
518 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info);
519
520 bool can_swap_operands(aco_ptr<Instruction>& instr)
521 {
522 if (instr->operands[0].isConstant() ||
523 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
524 return false;
525
526 switch (instr->opcode) {
527 case aco_opcode::v_add_u32:
528 case aco_opcode::v_add_co_u32:
529 case aco_opcode::v_add_co_u32_e64:
530 case aco_opcode::v_add_i32:
531 case aco_opcode::v_add_f16:
532 case aco_opcode::v_add_f32:
533 case aco_opcode::v_mul_f16:
534 case aco_opcode::v_mul_f32:
535 case aco_opcode::v_or_b32:
536 case aco_opcode::v_and_b32:
537 case aco_opcode::v_xor_b32:
538 case aco_opcode::v_max_f16:
539 case aco_opcode::v_max_f32:
540 case aco_opcode::v_min_f16:
541 case aco_opcode::v_min_f32:
542 case aco_opcode::v_max_i32:
543 case aco_opcode::v_min_i32:
544 case aco_opcode::v_max_u32:
545 case aco_opcode::v_min_u32:
546 case aco_opcode::v_max_i16:
547 case aco_opcode::v_min_i16:
548 case aco_opcode::v_max_u16:
549 case aco_opcode::v_min_u16:
550 case aco_opcode::v_max_i16_e64:
551 case aco_opcode::v_min_i16_e64:
552 case aco_opcode::v_max_u16_e64:
553 case aco_opcode::v_min_u16_e64:
554 return true;
555 case aco_opcode::v_sub_f16:
556 instr->opcode = aco_opcode::v_subrev_f16;
557 return true;
558 case aco_opcode::v_sub_f32:
559 instr->opcode = aco_opcode::v_subrev_f32;
560 return true;
561 case aco_opcode::v_sub_co_u32:
562 instr->opcode = aco_opcode::v_subrev_co_u32;
563 return true;
564 case aco_opcode::v_sub_u16:
565 instr->opcode = aco_opcode::v_subrev_u16;
566 return true;
567 case aco_opcode::v_sub_u32:
568 instr->opcode = aco_opcode::v_subrev_u32;
569 return true;
570 default: {
571 CmpInfo info;
572 get_cmp_info(instr->opcode, &info);
573 if (info.ordered == instr->opcode) {
574 instr->opcode = info.ordered_swapped;
575 return true;
576 }
577 if (info.unordered == instr->opcode) {
578 instr->opcode = info.unordered_swapped;
579 return true;
580 }
581 return false;
582 }
583 }
584 }
585
586 bool can_use_VOP3(opt_ctx& ctx, const aco_ptr<Instruction>& instr)
587 {
588 if (instr->isVOP3())
589 return true;
590
591 if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
592 return false;
593
594 if (instr->isDPP() || instr->isSDWA())
595 return false;
596
597 return instr->opcode != aco_opcode::v_madmk_f32 &&
598 instr->opcode != aco_opcode::v_madak_f32 &&
599 instr->opcode != aco_opcode::v_madmk_f16 &&
600 instr->opcode != aco_opcode::v_madak_f16 &&
601 instr->opcode != aco_opcode::v_fmamk_f32 &&
602 instr->opcode != aco_opcode::v_fmaak_f32 &&
603 instr->opcode != aco_opcode::v_fmamk_f16 &&
604 instr->opcode != aco_opcode::v_fmaak_f16 &&
605 instr->opcode != aco_opcode::v_readlane_b32 &&
606 instr->opcode != aco_opcode::v_writelane_b32 &&
607 instr->opcode != aco_opcode::v_readfirstlane_b32;
608 }
609
610 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
611 {
612 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
613 instr->opcode != aco_opcode::v_readlane_b32 &&
614 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
615 instr->opcode != aco_opcode::v_writelane_b32 &&
616 instr->opcode != aco_opcode::v_writelane_b32_e64;
617 }
618
619 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
620 {
621 if (instr->isVOP3())
622 return;
623
624 aco_ptr<Instruction> tmp = std::move(instr);
625 Format format = asVOP3(tmp->format);
626 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
627 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
628 for (unsigned i = 0; i < instr->definitions.size(); i++) {
629 instr->definitions[i] = tmp->definitions[i];
630 if (instr->definitions[i].isTemp()) {
631 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
632 if (info.label & instr_labels && info.instr == tmp.get())
633 info.instr = instr.get();
634 }
635 }
636 }
637
638 /* only covers special cases */
639 bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
640 {
641 switch (opcode) {
642 case aco_opcode::v_interp_p2_f32:
643 case aco_opcode::v_mac_f32:
644 case aco_opcode::v_writelane_b32:
645 case aco_opcode::v_writelane_b32_e64:
646 case aco_opcode::v_cndmask_b32:
647 return operand != 2;
648 case aco_opcode::s_addk_i32:
649 case aco_opcode::s_mulk_i32:
650 case aco_opcode::p_wqm:
651 case aco_opcode::p_extract_vector:
652 case aco_opcode::p_split_vector:
653 case aco_opcode::v_readlane_b32:
654 case aco_opcode::v_readlane_b32_e64:
655 case aco_opcode::v_readfirstlane_b32:
656 return operand != 0;
657 default:
658 return true;
659 }
660 }
661
662 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
663 {
664 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
665 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
666 return operand != 1;
667 return true;
668 }
669
670 /* check constant bus and literal limitations */
671 bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
672 {
673 int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
674 Operand literal32(s1);
675 Operand literal64(s2);
676 unsigned num_sgprs = 0;
677 unsigned sgpr[] = {0, 0};
678
679 for (unsigned i = 0; i < num_operands; i++) {
680 Operand op = operands[i];
681
682 if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
683 /* two reads of the same SGPR count as 1 to the limit */
684 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
685 if (num_sgprs < 2)
686 sgpr[num_sgprs++] = op.tempId();
687 limit--;
688 if (limit < 0)
689 return false;
690 }
691 } else if (op.isLiteral()) {
692 if (ctx.program->chip_class < GFX10)
693 return false;
694
695 if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
696 return false;
697 if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
698 return false;
699
700 /* Any number of 32-bit literals counts as only 1 to the limit. Same
701 * (but separately) for 64-bit literals. */
702 if (op.size() == 1 && literal32.isUndefined()) {
703 limit--;
704 literal32 = op;
705 } else if (op.size() == 2 && literal64.isUndefined()) {
706 limit--;
707 literal64 = op;
708 }
709
710 if (limit < 0)
711 return false;
712 }
713 }
714
715 return true;
716 }
717
718 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset, bool prevent_overflow)
719 {
720 Operand op = instr->operands[op_index];
721
722 if (!op.isTemp())
723 return false;
724 Temp tmp = op.getTemp();
725 if (!ctx.info[tmp.id()].is_add_sub())
726 return false;
727
728 Instruction *add_instr = ctx.info[tmp.id()].instr;
729
730 switch (add_instr->opcode) {
731 case aco_opcode::v_add_u32:
732 case aco_opcode::v_add_co_u32:
733 case aco_opcode::v_add_co_u32_e64:
734 case aco_opcode::s_add_i32:
735 case aco_opcode::s_add_u32:
736 break;
737 default:
738 return false;
739 }
740 if (prevent_overflow && !add_instr->definitions[0].isNUW())
741 return false;
742
743 if (add_instr->usesModifiers())
744 return false;
745
746 for (unsigned i = 0; i < 2; i++) {
747 if (add_instr->operands[i].isConstant()) {
748 *offset = add_instr->operands[i].constantValue();
749 } else if (add_instr->operands[i].isTemp() &&
750 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal(32)) {
751 *offset = ctx.info[add_instr->operands[i].tempId()].val;
752 } else {
753 continue;
754 }
755 if (!add_instr->operands[!i].isTemp())
756 continue;
757
758 uint32_t offset2 = 0;
759 if (parse_base_offset(ctx, add_instr, !i, base, &offset2, prevent_overflow)) {
760 *offset += offset2;
761 } else {
762 *base = add_instr->operands[!i].getTemp();
763 }
764 return true;
765 }
766
767 return false;
768 }
769
770 unsigned get_operand_size(aco_ptr<Instruction>& instr, unsigned index)
771 {
772 if (instr->format == Format::PSEUDO)
773 return instr->operands[index].bytes() * 8u;
774 else if (instr->opcode == aco_opcode::v_mad_u64_u32 || instr->opcode == aco_opcode::v_mad_i64_i32)
775 return index == 2 ? 64 : 32;
776 else if (instr->isVALU() || instr->isSALU())
777 return instr_info.operand_size[(int)instr->opcode];
778 else
779 return 0;
780 }
781
782 Operand get_constant_op(opt_ctx &ctx, ssa_info info, uint32_t bits)
783 {
784 if (bits == 8)
785 return Operand((uint8_t)info.val);
786 if (bits == 16)
787 return Operand((uint16_t)info.val);
788 // TODO: this functions shouldn't be needed if we store Operand instead of value.
789 Operand op(info.val, bits == 64);
790 if (info.is_literal(32) && info.val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
791 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
792 return op;
793 }
794
795 bool fixed_to_exec(Operand op)
796 {
797 return op.isFixed() && op.physReg() == exec;
798 }
799
800 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
801 {
802 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
803 ASSERTED bool all_const = false;
804 for (Operand& op : instr->operands)
805 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal(32));
806 perfwarn(all_const, "All instruction operands are constant", instr.get());
807 }
808
809 for (unsigned i = 0; i < instr->operands.size(); i++)
810 {
811 if (!instr->operands[i].isTemp())
812 continue;
813
814 ssa_info info = ctx.info[instr->operands[i].tempId()];
815 /* propagate undef */
816 if (info.is_undefined() && is_phi(instr))
817 instr->operands[i] = Operand(instr->operands[i].regClass());
818 /* propagate reg->reg of same type */
819 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
820 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
821 info = ctx.info[info.temp.id()];
822 }
823
824 /* SALU / PSEUDO: propagate inline constants */
825 if (instr->isSALU() || instr->format == Format::PSEUDO) {
826 bool is_subdword = false;
827 // TODO: optimize SGPR propagation for subdword pseudo instructions on gfx9+
828 if (instr->format == Format::PSEUDO) {
829 is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
830 [] (const Definition& def) { return def.regClass().is_subdword();});
831 is_subdword = is_subdword || std::any_of(instr->operands.begin(), instr->operands.end(),
832 [] (const Operand& op) { return op.hasRegClass() && op.regClass().is_subdword();});
833 if (is_subdword && ctx.program->chip_class < GFX9)
834 continue;
835 }
836
837 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
838 instr->operands[i].setTemp(info.temp);
839 info = ctx.info[info.temp.id()];
840 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
841 /* propagate vgpr if it can take it */
842 switch (instr->opcode) {
843 case aco_opcode::p_create_vector:
844 case aco_opcode::p_split_vector:
845 case aco_opcode::p_extract_vector:
846 case aco_opcode::p_phi: {
847 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
848 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
849 if (all_vgpr) {
850 instr->operands[i] = Operand(info.temp);
851 info = ctx.info[info.temp.id()];
852 }
853 break;
854 }
855 default:
856 break;
857 }
858 }
859 unsigned bits = get_operand_size(instr, i);
860 if ((info.is_constant(bits) || (!is_subdword && info.is_literal(bits) && instr->format == Format::PSEUDO)) &&
861 !instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
862 instr->operands[i] = get_constant_op(ctx, info, bits);
863 continue;
864 }
865 }
866
867 /* VALU: propagate neg, abs & inline constants */
868 else if (instr->isVALU()) {
869 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
870 instr->operands[i].setTemp(info.temp);
871 info = ctx.info[info.temp.id()];
872 }
873
874 /* for instructions other than v_cndmask_b32, the size of the instruction should match the operand size */
875 unsigned can_use_mod = instr->opcode != aco_opcode::v_cndmask_b32 || instr->operands[i].getTemp().bytes() == 4;
876 can_use_mod = can_use_mod && instr_info.can_use_input_modifiers[(int)instr->opcode];
877
878 if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) {
879 if (!instr->isDPP())
880 to_VOP3(ctx, instr);
881 instr->operands[i] = Operand(info.temp);
882 if (instr->isDPP())
883 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
884 else
885 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
886 }
887 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
888 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
889 instr->operands[i].setTemp(info.temp);
890 continue;
891 } else if (info.is_neg() && instr->opcode == aco_opcode::v_add_f16) {
892 instr->opcode = i ? aco_opcode::v_sub_f16 : aco_opcode::v_subrev_f16;
893 instr->operands[i].setTemp(info.temp);
894 continue;
895 } else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) {
896 if (!instr->isDPP())
897 to_VOP3(ctx, instr);
898 instr->operands[i].setTemp(info.temp);
899 if (instr->isDPP())
900 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
901 else
902 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
903 continue;
904 }
905 unsigned bits = get_operand_size(instr, i);
906 if (info.is_constant(bits) && alu_can_accept_constant(instr->opcode, i)) {
907 Operand op = get_constant_op(ctx, info, bits);
908 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
909 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
910 instr->operands[i] = op;
911 continue;
912 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
913 instr->operands[i] = instr->operands[0];
914 instr->operands[0] = op;
915 continue;
916 } else if (can_use_VOP3(ctx, instr)) {
917 to_VOP3(ctx, instr);
918 instr->operands[i] = op;
919 continue;
920 }
921 }
922 }
923
924 /* MUBUF: propagate constants and combine additions */
925 else if (instr->format == Format::MUBUF) {
926 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
927 Temp base;
928 uint32_t offset;
929 while (info.is_temp())
930 info = ctx.info[info.temp.id()];
931
932 /* According to AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(), vaddr
933 * overflow for scratch accesses works only on GFX9+ and saddr overflow
934 * never works. Since swizzling is the only thing that separates
935 * scratch accesses and other accesses and swizzling changing how
936 * addressing works significantly, this probably applies to swizzled
937 * MUBUF accesses. */
938 bool vaddr_prevent_overflow = mubuf->swizzled && ctx.program->chip_class < GFX9;
939 bool saddr_prevent_overflow = mubuf->swizzled;
940
941 if (mubuf->offen && i == 1 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
942 assert(!mubuf->idxen);
943 instr->operands[1] = Operand(v1);
944 mubuf->offset += info.val;
945 mubuf->offen = false;
946 continue;
947 } else if (i == 2 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
948 instr->operands[2] = Operand((uint32_t) 0);
949 mubuf->offset += info.val;
950 continue;
951 } else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, vaddr_prevent_overflow) &&
952 base.regClass() == v1 && mubuf->offset + offset < 4096) {
953 assert(!mubuf->idxen);
954 instr->operands[1].setTemp(base);
955 mubuf->offset += offset;
956 continue;
957 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset, saddr_prevent_overflow) &&
958 base.regClass() == s1 && mubuf->offset + offset < 4096) {
959 instr->operands[i].setTemp(base);
960 mubuf->offset += offset;
961 continue;
962 }
963 }
964
965 /* DS: combine additions */
966 else if (instr->format == Format::DS) {
967
968 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
969 Temp base;
970 uint32_t offset;
971 bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
972 if (has_usable_ds_offset &&
973 i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset, false) &&
974 base.regClass() == instr->operands[i].regClass() &&
975 instr->opcode != aco_opcode::ds_swizzle_b32) {
976 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
977 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
978 unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
979 unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
980
981 if ((offset & mask) == 0 &&
982 ds->offset0 + (offset >> shifts) <= 255 &&
983 ds->offset1 + (offset >> shifts) <= 255) {
984 instr->operands[i].setTemp(base);
985 ds->offset0 += offset >> shifts;
986 ds->offset1 += offset >> shifts;
987 }
988 } else {
989 if (ds->offset0 + offset <= 65535) {
990 instr->operands[i].setTemp(base);
991 ds->offset0 += offset;
992 }
993 }
994 }
995 }
996
997 /* SMEM: propagate constants and combine additions */
998 else if (instr->format == Format::SMEM) {
999
1000 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
1001 Temp base;
1002 uint32_t offset;
1003 bool prevent_overflow = smem->operands[0].size() > 2 || smem->prevent_overflow;
1004 if (i == 1 && info.is_constant_or_literal(32) &&
1005 ((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
1006 (ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
1007 (ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
1008 instr->operands[i] = Operand(info.val);
1009 continue;
1010 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset, prevent_overflow) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
1011 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
1012 if (soe &&
1013 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal(32) ||
1014 ctx.info[smem->operands.back().tempId()].val != 0)) {
1015 continue;
1016 }
1017 if (soe) {
1018 smem->operands[1] = Operand(offset);
1019 smem->operands.back() = Operand(base);
1020 } else {
1021 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
1022 new_instr->operands[0] = smem->operands[0];
1023 new_instr->operands[1] = Operand(offset);
1024 if (smem->definitions.empty())
1025 new_instr->operands[2] = smem->operands[2];
1026 new_instr->operands.back() = Operand(base);
1027 if (!smem->definitions.empty())
1028 new_instr->definitions[0] = smem->definitions[0];
1029 new_instr->sync = smem->sync;
1030 new_instr->glc = smem->glc;
1031 new_instr->dlc = smem->dlc;
1032 new_instr->nv = smem->nv;
1033 new_instr->disable_wqm = smem->disable_wqm;
1034 instr.reset(new_instr);
1035 smem = static_cast<SMEM_instruction *>(instr.get());
1036 }
1037 continue;
1038 }
1039 }
1040
1041 else if (instr->format == Format::PSEUDO_BRANCH) {
1042 if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1043 /* Flip the branch instruction to get rid of the scc_invert instruction */
1044 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
1045 instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
1046 }
1047 }
1048 }
1049
1050 /* if this instruction doesn't define anything, return */
1051 if (instr->definitions.empty())
1052 return;
1053
1054 if ((uint16_t) instr->format & (uint16_t) Format::VOPC) {
1055 ctx.info[instr->definitions[0].tempId()].set_vopc(instr.get());
1056 return;
1057 }
1058
1059 switch (instr->opcode) {
1060 case aco_opcode::p_create_vector: {
1061 bool copy_prop = instr->operands.size() == 1 && instr->operands[0].isTemp() &&
1062 instr->operands[0].regClass() == instr->definitions[0].regClass();
1063 if (copy_prop) {
1064 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1065 break;
1066 }
1067
1068 unsigned num_ops = instr->operands.size();
1069 for (const Operand& op : instr->operands) {
1070 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
1071 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
1072 }
1073 if (num_ops != instr->operands.size()) {
1074 aco_ptr<Instruction> old_vec = std::move(instr);
1075 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
1076 instr->definitions[0] = old_vec->definitions[0];
1077 unsigned k = 0;
1078 for (Operand& old_op : old_vec->operands) {
1079 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
1080 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
1081 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
1082 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
1083 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
1084 op.setTemp(ctx.info[op.tempId()].temp);
1085 instr->operands[k++] = op;
1086 }
1087 } else {
1088 instr->operands[k++] = old_op;
1089 }
1090 }
1091 assert(k == num_ops);
1092 }
1093
1094 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
1095 break;
1096 }
1097 case aco_opcode::p_split_vector: {
1098 ssa_info& info = ctx.info[instr->operands[0].tempId()];
1099
1100 if (info.is_constant_or_literal(32)) {
1101 uint32_t val = info.val;
1102 for (Definition def : instr->definitions) {
1103 uint32_t mask = u_bit_consecutive(0, def.bytes() * 8u);
1104 ctx.info[def.tempId()].set_constant(ctx.program->chip_class, val & mask);
1105 val >>= def.bytes() * 8u;
1106 }
1107 break;
1108 } else if (!info.is_vec()) {
1109 break;
1110 }
1111
1112 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
1113 unsigned split_offset = 0;
1114 unsigned vec_offset = 0;
1115 unsigned vec_index = 0;
1116 for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) {
1117 while (vec_offset < split_offset && vec_index < vec->operands.size())
1118 vec_offset += vec->operands[vec_index++].bytes();
1119
1120 if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes())
1121 continue;
1122
1123 Operand vec_op = vec->operands[vec_index];
1124 if (vec_op.isConstant()) {
1125 ctx.info[instr->definitions[i].tempId()].set_constant(ctx.program->chip_class, vec_op.constantValue64());
1126 } else if (vec_op.isUndefined()) {
1127 ctx.info[instr->definitions[i].tempId()].set_undefined();
1128 } else {
1129 assert(vec_op.isTemp());
1130 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
1131 }
1132 }
1133 break;
1134 }
1135 case aco_opcode::p_extract_vector: { /* mov */
1136 ssa_info& info = ctx.info[instr->operands[0].tempId()];
1137 const unsigned index = instr->operands[1].constantValue();
1138 const unsigned dst_offset = index * instr->definitions[0].bytes();
1139
1140 if (info.is_constant_or_literal(32)) {
1141 uint32_t mask = u_bit_consecutive(0, instr->definitions[0].bytes() * 8u);
1142 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, (info.val >> (dst_offset * 8u)) & mask);
1143 break;
1144 } else if (!info.is_vec()) {
1145 break;
1146 }
1147
1148 /* check if we index directly into a vector element */
1149 Instruction* vec = info.instr;
1150 unsigned offset = 0;
1151
1152 for (const Operand& op : vec->operands) {
1153 if (offset < dst_offset) {
1154 offset += op.bytes();
1155 continue;
1156 } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) {
1157 break;
1158 }
1159
1160 /* convert this extract into a copy instruction */
1161 instr->opcode = aco_opcode::p_parallelcopy;
1162 instr->operands.pop_back();
1163 instr->operands[0] = op;
1164
1165 if (op.isConstant()) {
1166 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, op.constantValue64());
1167 } else if (op.isUndefined()) {
1168 ctx.info[instr->definitions[0].tempId()].set_undefined();
1169 } else {
1170 assert(op.isTemp());
1171 ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp());
1172 }
1173 break;
1174 }
1175 break;
1176 }
1177 case aco_opcode::s_mov_b32: /* propagate */
1178 case aco_opcode::s_mov_b64:
1179 case aco_opcode::v_mov_b32:
1180 case aco_opcode::p_as_uniform:
1181 if (instr->definitions[0].isFixed()) {
1182 /* don't copy-propagate copies into fixed registers */
1183 } else if (instr->usesModifiers()) {
1184 // TODO
1185 } else if (instr->operands[0].isConstant()) {
1186 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, instr->operands[0].constantValue64());
1187 } else if (instr->operands[0].isTemp()) {
1188 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1189 } else {
1190 assert(instr->operands[0].isFixed());
1191 }
1192 break;
1193 case aco_opcode::p_is_helper:
1194 if (!ctx.program->needs_wqm)
1195 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, 0u);
1196 break;
1197 case aco_opcode::s_movk_i32: {
1198 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
1199 v = v & 0x8000 ? (v | 0xffff0000) : v;
1200 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
1201 break;
1202 }
1203 case aco_opcode::v_bfrev_b32:
1204 case aco_opcode::s_brev_b32: {
1205 if (instr->operands[0].isConstant()) {
1206 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
1207 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
1208 }
1209 break;
1210 }
1211 case aco_opcode::s_bfm_b32: {
1212 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
1213 unsigned size = instr->operands[0].constantValue() & 0x1f;
1214 unsigned start = instr->operands[1].constantValue() & 0x1f;
1215 uint32_t v = ((1u << size) - 1u) << start;
1216 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
1217 }
1218 break;
1219 }
1220 case aco_opcode::v_mul_f16:
1221 case aco_opcode::v_mul_f32: { /* omod */
1222 /* TODO: try to move the negate/abs modifier to the consumer instead */
1223 if (instr->usesModifiers())
1224 break;
1225
1226 bool fp16 = instr->opcode == aco_opcode::v_mul_f16;
1227
1228 for (unsigned i = 0; i < 2; i++) {
1229 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
1230 if (instr->operands[!i].constantValue() == (fp16 ? 0x4000 : 0x40000000)) { /* 2.0 */
1231 ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp());
1232 } else if (instr->operands[!i].constantValue() == (fp16 ? 0x4400 : 0x40800000)) { /* 4.0 */
1233 ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp());
1234 } else if (instr->operands[!i].constantValue() == (fp16 ? 0xb800 : 0x3f000000)) { /* 0.5 */
1235 ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp());
1236 } else if (instr->operands[!i].constantValue() == (fp16 ? 0x3c00 : 0x3f800000) &&
1237 !(fp16 ? block.fp_mode.must_flush_denorms16_64 : block.fp_mode.must_flush_denorms32)) { /* 1.0 */
1238 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
1239 } else {
1240 continue;
1241 }
1242 break;
1243 }
1244 }
1245 break;
1246 }
1247 case aco_opcode::v_and_b32: { /* abs */
1248 if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
1249 instr->operands[1].getTemp().type() == RegType::vgpr &&
1250 ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x7FFFFFFFu)) ||
1251 (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x7FFFu))))
1252 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
1253 else
1254 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1255 break;
1256 }
1257 case aco_opcode::v_xor_b32: { /* neg */
1258 if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
1259 ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x80000000u)) ||
1260 (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x8000u)))) {
1261 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
1262 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1263 } else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
1264 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
1265 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
1266 instr->opcode = aco_opcode::v_or_b32;
1267 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
1268 } else {
1269 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
1270 }
1271 }
1272 } else {
1273 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1274 }
1275 break;
1276 }
1277 case aco_opcode::v_med3_f16:
1278 case aco_opcode::v_med3_f32: { /* clamp */
1279 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
1280 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
1281 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
1282 vop3->omod != 0 || vop3->opsel != 0)
1283 break;
1284
1285 unsigned idx = 0;
1286 bool found_zero = false, found_one = false;
1287 bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16;
1288 for (unsigned i = 0; i < 3; i++)
1289 {
1290 if (instr->operands[i].constantEquals(0))
1291 found_zero = true;
1292 else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */
1293 found_one = true;
1294 else
1295 idx = i;
1296 }
1297 if (found_zero && found_one && instr->operands[idx].isTemp()) {
1298 ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp());
1299 }
1300 break;
1301 }
1302 case aco_opcode::v_cndmask_b32:
1303 if (instr->operands[0].constantEquals(0) &&
1304 instr->operands[1].constantEquals(0xFFFFFFFF))
1305 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
1306 else if (instr->operands[0].constantEquals(0) &&
1307 instr->operands[1].constantEquals(0x3f800000u))
1308 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
1309 else if (instr->operands[0].constantEquals(0) &&
1310 instr->operands[1].constantEquals(1))
1311 ctx.info[instr->definitions[0].tempId()].set_b2i(instr->operands[2].getTemp());
1312
1313 ctx.info[instr->operands[2].tempId()].set_vcc_hint();
1314 break;
1315 case aco_opcode::v_cmp_lg_u32:
1316 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
1317 instr->operands[0].constantEquals(0) &&
1318 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
1319 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1320 break;
1321 case aco_opcode::p_phi:
1322 case aco_opcode::p_linear_phi: {
1323 /* lower_bool_phis() can create phis like this */
1324 bool all_same_temp = instr->operands[0].isTemp();
1325 /* this check is needed when moving uniform loop counters out of a divergent loop */
1326 if (all_same_temp)
1327 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
1328 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
1329 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
1330 all_same_temp = false;
1331 }
1332 if (all_same_temp) {
1333 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1334 } else {
1335 bool all_undef = instr->operands[0].isUndefined();
1336 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1337 if (!instr->operands[i].isUndefined())
1338 all_undef = false;
1339 }
1340 if (all_undef)
1341 ctx.info[instr->definitions[0].tempId()].set_undefined();
1342 }
1343 break;
1344 }
1345 case aco_opcode::v_add_u32:
1346 case aco_opcode::v_add_co_u32:
1347 case aco_opcode::v_add_co_u32_e64:
1348 case aco_opcode::s_add_i32:
1349 case aco_opcode::s_add_u32:
1350 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1351 break;
1352 case aco_opcode::s_not_b32:
1353 case aco_opcode::s_not_b64:
1354 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1355 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1356 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
1357 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1358 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1359 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1360 }
1361 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1362 break;
1363 case aco_opcode::s_and_b32:
1364 case aco_opcode::s_and_b64:
1365 if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
1366 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1367 /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
1368 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1369 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
1370 break;
1371 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1372 /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
1373 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1374 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1375 break;
1376 } else if (ctx.info[instr->operands[0].tempId()].is_vopc()) {
1377 Instruction* vopc_instr = ctx.info[instr->operands[0].tempId()].instr;
1378 /* Remove superfluous s_and when the VOPC instruction uses the same exec and thus already produces the same result */
1379 if (vopc_instr->pass_flags == instr->pass_flags) {
1380 assert(instr->pass_flags > 0);
1381 ctx.info[instr->definitions[0].tempId()].set_temp(vopc_instr->definitions[0].getTemp());
1382 break;
1383 }
1384 }
1385 }
1386 /* fallthrough */
1387 case aco_opcode::s_or_b32:
1388 case aco_opcode::s_or_b64:
1389 case aco_opcode::s_xor_b32:
1390 case aco_opcode::s_xor_b64:
1391 if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
1392 return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
1393 })) {
1394 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1395 }
1396 /* fallthrough */
1397 case aco_opcode::s_lshl_b32:
1398 case aco_opcode::v_or_b32:
1399 case aco_opcode::v_lshlrev_b32:
1400 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1401 break;
1402 case aco_opcode::v_min_f32:
1403 case aco_opcode::v_min_f16:
1404 case aco_opcode::v_min_u32:
1405 case aco_opcode::v_min_i32:
1406 case aco_opcode::v_min_u16:
1407 case aco_opcode::v_min_i16:
1408 case aco_opcode::v_max_f32:
1409 case aco_opcode::v_max_f16:
1410 case aco_opcode::v_max_u32:
1411 case aco_opcode::v_max_i32:
1412 case aco_opcode::v_max_u16:
1413 case aco_opcode::v_max_i16:
1414 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1415 break;
1416 case aco_opcode::s_cselect_b64:
1417 case aco_opcode::s_cselect_b32:
1418 if (instr->operands[0].constantEquals((unsigned) -1) &&
1419 instr->operands[1].constantEquals(0)) {
1420 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1421 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1422 }
1423 if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
1424 /* Flip the operands to get rid of the scc_invert instruction */
1425 std::swap(instr->operands[0], instr->operands[1]);
1426 instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
1427 }
1428 break;
1429 case aco_opcode::p_wqm:
1430 if (instr->operands[0].isTemp() &&
1431 ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1432 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1433 }
1434 break;
1435 default:
1436 break;
1437 }
1438 }
1439
1440 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info)
1441 {
1442 info->ordered = aco_opcode::num_opcodes;
1443 info->unordered = aco_opcode::num_opcodes;
1444 info->ordered_swapped = aco_opcode::num_opcodes;
1445 info->unordered_swapped = aco_opcode::num_opcodes;
1446 switch (op) {
1447 #define CMP2(ord, unord, ord_swap, unord_swap, sz) \
1448 case aco_opcode::v_cmp_##ord##_f##sz:\
1449 case aco_opcode::v_cmp_n##unord##_f##sz:\
1450 info->ordered = aco_opcode::v_cmp_##ord##_f##sz;\
1451 info->unordered = aco_opcode::v_cmp_n##unord##_f##sz;\
1452 info->ordered_swapped = aco_opcode::v_cmp_##ord_swap##_f##sz;\
1453 info->unordered_swapped = aco_opcode::v_cmp_n##unord_swap##_f##sz;\
1454 info->inverse = op == aco_opcode::v_cmp_n##unord##_f##sz ? aco_opcode::v_cmp_##unord##_f##sz : aco_opcode::v_cmp_n##ord##_f##sz;\
1455 info->f32 = op == aco_opcode::v_cmp_##ord##_f##sz ? aco_opcode::v_cmp_##ord##_f32 : aco_opcode::v_cmp_n##unord##_f32;\
1456 info->size = sz;\
1457 return true;
1458 #define CMP(ord, unord, ord_swap, unord_swap) \
1459 CMP2(ord, unord, ord_swap, unord_swap, 16)\
1460 CMP2(ord, unord, ord_swap, unord_swap, 32)\
1461 CMP2(ord, unord, ord_swap, unord_swap, 64)
1462 CMP(lt, /*n*/ge, gt, /*n*/le)
1463 CMP(eq, /*n*/lg, eq, /*n*/lg)
1464 CMP(le, /*n*/gt, ge, /*n*/lt)
1465 CMP(gt, /*n*/le, lt, /*n*/le)
1466 CMP(lg, /*n*/eq, lg, /*n*/eq)
1467 CMP(ge, /*n*/lt, le, /*n*/gt)
1468 #undef CMP
1469 #undef CMP2
1470 #define ORD_TEST(sz) \
1471 case aco_opcode::v_cmp_u_f##sz:\
1472 info->f32 = aco_opcode::v_cmp_u_f32;\
1473 info->inverse = aco_opcode::v_cmp_o_f##sz;\
1474 info->size = sz;\
1475 return true;\
1476 case aco_opcode::v_cmp_o_f##sz:\
1477 info->f32 = aco_opcode::v_cmp_o_f32;\
1478 info->inverse = aco_opcode::v_cmp_u_f##sz;\
1479 info->size = sz;\
1480 return true;
1481 ORD_TEST(16)
1482 ORD_TEST(32)
1483 ORD_TEST(64)
1484 #undef ORD_TEST
1485 default:
1486 return false;
1487 }
1488 }
1489
1490 aco_opcode get_ordered(aco_opcode op)
1491 {
1492 CmpInfo info;
1493 return get_cmp_info(op, &info) ? info.ordered : aco_opcode::num_opcodes;
1494 }
1495
1496 aco_opcode get_unordered(aco_opcode op)
1497 {
1498 CmpInfo info;
1499 return get_cmp_info(op, &info) ? info.unordered : aco_opcode::num_opcodes;
1500 }
1501
1502 aco_opcode get_inverse(aco_opcode op)
1503 {
1504 CmpInfo info;
1505 return get_cmp_info(op, &info) ? info.inverse : aco_opcode::num_opcodes;
1506 }
1507
1508 aco_opcode get_f32_cmp(aco_opcode op)
1509 {
1510 CmpInfo info;
1511 return get_cmp_info(op, &info) ? info.f32 : aco_opcode::num_opcodes;
1512 }
1513
1514 unsigned get_cmp_bitsize(aco_opcode op)
1515 {
1516 CmpInfo info;
1517 return get_cmp_info(op, &info) ? info.size : 0;
1518 }
1519
1520 bool is_cmp(aco_opcode op)
1521 {
1522 CmpInfo info;
1523 return get_cmp_info(op, &info) && info.ordered != aco_opcode::num_opcodes;
1524 }
1525
1526 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1527 {
1528 if (ctx.info[tmp.id()].is_temp())
1529 return ctx.info[tmp.id()].temp.id();
1530 else
1531 return tmp.id();
1532 }
1533
1534 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1535 {
1536 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1537 for (const Operand& op : instr->operands) {
1538 if (op.isTemp())
1539 ctx.uses[op.tempId()]--;
1540 }
1541 }
1542 }
1543
1544 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1545 {
1546 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1547 return nullptr;
1548 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1549 return nullptr;
1550
1551 Instruction *instr = ctx.info[op.tempId()].instr;
1552
1553 if (instr->definitions.size() == 2) {
1554 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1555 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1556 return nullptr;
1557 }
1558
1559 return instr;
1560 }
1561
1562 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1563 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1564 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1565 {
1566 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1567 return false;
1568 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1569 return false;
1570
1571 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1572
1573 bool neg[2] = {false, false};
1574 bool abs[2] = {false, false};
1575 uint8_t opsel = 0;
1576 Instruction *op_instr[2];
1577 Temp op[2];
1578
1579 unsigned bitsize = 0;
1580 for (unsigned i = 0; i < 2; i++) {
1581 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1582 if (!op_instr[i])
1583 return false;
1584
1585 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1586 unsigned op_bitsize = get_cmp_bitsize(op_instr[i]->opcode);
1587
1588 if (get_f32_cmp(op_instr[i]->opcode) != expected_cmp)
1589 return false;
1590 if (bitsize && op_bitsize != bitsize)
1591 return false;
1592 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1593 return false;
1594
1595 if (op_instr[i]->isVOP3()) {
1596 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1597 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1598 return false;
1599 neg[i] = vop3->neg[0];
1600 abs[i] = vop3->abs[0];
1601 opsel |= (vop3->opsel & 1) << i;
1602 }
1603
1604 Temp op0 = op_instr[i]->operands[0].getTemp();
1605 Temp op1 = op_instr[i]->operands[1].getTemp();
1606 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1607 return false;
1608
1609 op[i] = op1;
1610 bitsize = op_bitsize;
1611 }
1612
1613 if (op[1].type() == RegType::sgpr)
1614 std::swap(op[0], op[1]);
1615 unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
1616 if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
1617 return false;
1618
1619 ctx.uses[op[0].id()]++;
1620 ctx.uses[op[1].id()]++;
1621 decrease_uses(ctx, op_instr[0]);
1622 decrease_uses(ctx, op_instr[1]);
1623
1624 aco_opcode new_op = aco_opcode::num_opcodes;
1625 switch (bitsize) {
1626 case 16:
1627 new_op = is_or ? aco_opcode::v_cmp_u_f16 : aco_opcode::v_cmp_o_f16;
1628 break;
1629 case 32:
1630 new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1631 break;
1632 case 64:
1633 new_op = is_or ? aco_opcode::v_cmp_u_f64 : aco_opcode::v_cmp_o_f64;
1634 break;
1635 }
1636 Instruction *new_instr;
1637 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
1638 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1639 for (unsigned i = 0; i < 2; i++) {
1640 vop3->neg[i] = neg[i];
1641 vop3->abs[i] = abs[i];
1642 }
1643 vop3->opsel = opsel;
1644 new_instr = static_cast<Instruction *>(vop3);
1645 } else {
1646 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1647 }
1648 new_instr->operands[0] = Operand(op[0]);
1649 new_instr->operands[1] = Operand(op[1]);
1650 new_instr->definitions[0] = instr->definitions[0];
1651
1652 ctx.info[instr->definitions[0].tempId()].label = 0;
1653 ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
1654
1655 instr.reset(new_instr);
1656
1657 return true;
1658 }
1659
1660 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1661 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1662 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1663 {
1664 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1665 return false;
1666 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1667 return false;
1668
1669 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1670 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1671
1672 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1673 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1674 if (!nan_test || !cmp)
1675 return false;
1676
1677 if (get_f32_cmp(cmp->opcode) == expected_nan_test)
1678 std::swap(nan_test, cmp);
1679 else if (get_f32_cmp(nan_test->opcode) != expected_nan_test)
1680 return false;
1681
1682 if (!is_cmp(cmp->opcode) || get_cmp_bitsize(cmp->opcode) != get_cmp_bitsize(nan_test->opcode))
1683 return false;
1684
1685 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1686 return false;
1687 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1688 return false;
1689
1690 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1691 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1692 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1693 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1694 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1695 return false;
1696 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1697 return false;
1698
1699 ctx.uses[cmp->operands[0].tempId()]++;
1700 ctx.uses[cmp->operands[1].tempId()]++;
1701 decrease_uses(ctx, nan_test);
1702 decrease_uses(ctx, cmp);
1703
1704 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1705 Instruction *new_instr;
1706 if (cmp->isVOP3()) {
1707 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1708 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1709 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1710 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1711 new_vop3->clamp = cmp_vop3->clamp;
1712 new_vop3->omod = cmp_vop3->omod;
1713 new_vop3->opsel = cmp_vop3->opsel;
1714 new_instr = new_vop3;
1715 } else {
1716 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1717 }
1718 new_instr->operands[0] = cmp->operands[0];
1719 new_instr->operands[1] = cmp->operands[1];
1720 new_instr->definitions[0] = instr->definitions[0];
1721
1722 ctx.info[instr->definitions[0].tempId()].label = 0;
1723 ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
1724
1725 instr.reset(new_instr);
1726
1727 return true;
1728 }
1729
1730 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1731 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1732 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1733 {
1734 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1735 return false;
1736 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1737 return false;
1738
1739 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1740
1741 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1742 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1743
1744 if (!nan_test || !cmp)
1745 return false;
1746
1747 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1748 if (get_f32_cmp(cmp->opcode) == expected_nan_test)
1749 std::swap(nan_test, cmp);
1750 else if (get_f32_cmp(nan_test->opcode) != expected_nan_test)
1751 return false;
1752
1753 if (!is_cmp(cmp->opcode) || get_cmp_bitsize(cmp->opcode) != get_cmp_bitsize(nan_test->opcode))
1754 return false;
1755
1756 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1757 return false;
1758 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1759 return false;
1760
1761 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1762 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1763 if (prop_nan0 != prop_nan1)
1764 return false;
1765
1766 if (nan_test->isVOP3()) {
1767 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
1768 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1769 return false;
1770 }
1771
1772 int constant_operand = -1;
1773 for (unsigned i = 0; i < 2; i++) {
1774 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1775 constant_operand = !i;
1776 break;
1777 }
1778 }
1779 if (constant_operand == -1)
1780 return false;
1781
1782 uint32_t constant;
1783 if (cmp->operands[constant_operand].isConstant()) {
1784 constant = cmp->operands[constant_operand].constantValue();
1785 } else if (cmp->operands[constant_operand].isTemp()) {
1786 Temp tmp = cmp->operands[constant_operand].getTemp();
1787 unsigned id = original_temp_id(ctx, tmp);
1788 if (!ctx.info[id].is_constant_or_literal(32))
1789 return false;
1790 constant = ctx.info[id].val;
1791 } else {
1792 return false;
1793 }
1794
1795 float constantf;
1796 memcpy(&constantf, &constant, 4);
1797 if (isnan(constantf))
1798 return false;
1799
1800 if (cmp->operands[0].isTemp())
1801 ctx.uses[cmp->operands[0].tempId()]++;
1802 if (cmp->operands[1].isTemp())
1803 ctx.uses[cmp->operands[1].tempId()]++;
1804 decrease_uses(ctx, nan_test);
1805 decrease_uses(ctx, cmp);
1806
1807 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1808 Instruction *new_instr;
1809 if (cmp->isVOP3()) {
1810 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1811 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1812 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1813 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1814 new_vop3->clamp = cmp_vop3->clamp;
1815 new_vop3->omod = cmp_vop3->omod;
1816 new_vop3->opsel = cmp_vop3->opsel;
1817 new_instr = new_vop3;
1818 } else {
1819 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1820 }
1821 new_instr->operands[0] = cmp->operands[0];
1822 new_instr->operands[1] = cmp->operands[1];
1823 new_instr->definitions[0] = instr->definitions[0];
1824
1825 ctx.info[instr->definitions[0].tempId()].label = 0;
1826 ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
1827
1828 instr.reset(new_instr);
1829
1830 return true;
1831 }
1832
1833 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1834 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1835 {
1836 if (instr->opcode != aco_opcode::s_not_b64)
1837 return false;
1838 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1839 return false;
1840 if (!instr->operands[0].isTemp())
1841 return false;
1842
1843 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1844 if (!cmp)
1845 return false;
1846
1847 aco_opcode new_opcode = get_inverse(cmp->opcode);
1848 if (new_opcode == aco_opcode::num_opcodes)
1849 return false;
1850
1851 if (cmp->operands[0].isTemp())
1852 ctx.uses[cmp->operands[0].tempId()]++;
1853 if (cmp->operands[1].isTemp())
1854 ctx.uses[cmp->operands[1].tempId()]++;
1855 decrease_uses(ctx, cmp);
1856
1857 Instruction *new_instr;
1858 if (cmp->isVOP3()) {
1859 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1860 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1861 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1862 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1863 new_vop3->clamp = cmp_vop3->clamp;
1864 new_vop3->omod = cmp_vop3->omod;
1865 new_vop3->opsel = cmp_vop3->opsel;
1866 new_instr = new_vop3;
1867 } else {
1868 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1869 }
1870 new_instr->operands[0] = cmp->operands[0];
1871 new_instr->operands[1] = cmp->operands[1];
1872 new_instr->definitions[0] = instr->definitions[0];
1873
1874 ctx.info[instr->definitions[0].tempId()].label = 0;
1875 ctx.info[instr->definitions[0].tempId()].set_vopc(new_instr);
1876
1877 instr.reset(new_instr);
1878
1879 return true;
1880 }
1881
1882 /* op1(op2(1, 2), 0) if swap = false
1883 * op1(0, op2(1, 2)) if swap = true */
1884 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1885 Instruction* op1_instr, bool swap, const char *shuffle_str,
1886 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1887 bool *op1_clamp, uint8_t *op1_omod,
1888 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1889 {
1890 /* checks */
1891 if (op1_instr->opcode != op1)
1892 return false;
1893
1894 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1895 if (!op2_instr || op2_instr->opcode != op2)
1896 return false;
1897 if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
1898 return false;
1899
1900 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1901 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1902
1903 /* don't support inbetween clamp/omod */
1904 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1905 return false;
1906
1907 /* get operands and modifiers and check inbetween modifiers */
1908 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1909 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1910
1911 if (inbetween_neg)
1912 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1913 else if (op1_vop3 && op1_vop3->neg[swap])
1914 return false;
1915
1916 if (inbetween_abs)
1917 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1918 else if (op1_vop3 && op1_vop3->abs[swap])
1919 return false;
1920
1921 if (inbetween_opsel)
1922 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
1923 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
1924 return false;
1925
1926 int shuffle[3];
1927 shuffle[shuffle_str[0] - '0'] = 0;
1928 shuffle[shuffle_str[1] - '0'] = 1;
1929 shuffle[shuffle_str[2] - '0'] = 2;
1930
1931 operands[shuffle[0]] = op1_instr->operands[!swap];
1932 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1933 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1934 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
1935 *opsel |= 1 << shuffle[0];
1936
1937 for (unsigned i = 0; i < 2; i++) {
1938 operands[shuffle[i + 1]] = op2_instr->operands[i];
1939 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1940 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1941 if (op2_vop3 && op2_vop3->opsel & (1 << i))
1942 *opsel |= 1 << shuffle[i + 1];
1943 }
1944
1945 /* check operands */
1946 if (!check_vop3_operands(ctx, 3, operands))
1947 return false;
1948
1949 return true;
1950 }
1951
1952 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1953 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
1954 bool clamp, unsigned omod)
1955 {
1956 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1957 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1958 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1959 new_instr->clamp = clamp;
1960 new_instr->omod = omod;
1961 new_instr->opsel = opsel;
1962 new_instr->operands[0] = operands[0];
1963 new_instr->operands[1] = operands[1];
1964 new_instr->operands[2] = operands[2];
1965 new_instr->definitions[0] = instr->definitions[0];
1966 ctx.info[instr->definitions[0].tempId()].label = 0;
1967
1968 instr.reset(new_instr);
1969 }
1970
1971 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1972 {
1973 uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1974 (label_omod_success | label_clamp_success);
1975
1976 for (unsigned swap = 0; swap < 2; swap++) {
1977 if (!((1 << swap) & ops))
1978 continue;
1979
1980 Operand operands[3];
1981 bool neg[3], abs[3], clamp;
1982 uint8_t opsel = 0, omod = 0;
1983 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1984 instr.get(), swap, shuffle,
1985 operands, neg, abs, &opsel,
1986 &clamp, &omod, NULL, NULL, NULL)) {
1987 ctx.uses[instr->operands[swap].tempId()]--;
1988 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1989 if (omod_clamp & label_omod_success)
1990 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1991 if (omod_clamp & label_clamp_success)
1992 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1993 return true;
1994 }
1995 }
1996 return false;
1997 }
1998
1999 bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
2000 {
2001 if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
2002 return true;
2003
2004 uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
2005 (label_omod_success | label_clamp_success);
2006
2007 /* min(-max(a, b), c) -> min3(-a, -b, c) *
2008 * max(-min(a, b), c) -> max3(-a, -b, c) */
2009 for (unsigned swap = 0; swap < 2; swap++) {
2010 Operand operands[3];
2011 bool neg[3], abs[3], clamp;
2012 uint8_t opsel = 0, omod = 0;
2013 bool inbetween_neg;
2014 if (match_op3_for_vop3(ctx, instr->opcode, opposite,
2015 instr.get(), swap, "012",
2016 operands, neg, abs, &opsel,
2017 &clamp, &omod, &inbetween_neg, NULL, NULL) &&
2018 inbetween_neg) {
2019 ctx.uses[instr->operands[swap].tempId()]--;
2020 neg[1] = true;
2021 neg[2] = true;
2022 create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
2023 if (omod_clamp & label_omod_success)
2024 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2025 if (omod_clamp & label_clamp_success)
2026 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2027 return true;
2028 }
2029 }
2030 return false;
2031 }
2032
2033 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
2034 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
2035 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
2036 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
2037 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
2038 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
2039 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2040 {
2041 /* checks */
2042 if (!instr->operands[0].isTemp())
2043 return false;
2044 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
2045 return false;
2046
2047 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
2048 if (!op2_instr)
2049 return false;
2050 switch (op2_instr->opcode) {
2051 case aco_opcode::s_and_b32:
2052 case aco_opcode::s_or_b32:
2053 case aco_opcode::s_xor_b32:
2054 case aco_opcode::s_and_b64:
2055 case aco_opcode::s_or_b64:
2056 case aco_opcode::s_xor_b64:
2057 break;
2058 default:
2059 return false;
2060 }
2061
2062 /* create instruction */
2063 std::swap(instr->definitions[0], op2_instr->definitions[0]);
2064 std::swap(instr->definitions[1], op2_instr->definitions[1]);
2065 ctx.uses[instr->operands[0].tempId()]--;
2066 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
2067
2068 switch (op2_instr->opcode) {
2069 case aco_opcode::s_and_b32:
2070 op2_instr->opcode = aco_opcode::s_nand_b32;
2071 break;
2072 case aco_opcode::s_or_b32:
2073 op2_instr->opcode = aco_opcode::s_nor_b32;
2074 break;
2075 case aco_opcode::s_xor_b32:
2076 op2_instr->opcode = aco_opcode::s_xnor_b32;
2077 break;
2078 case aco_opcode::s_and_b64:
2079 op2_instr->opcode = aco_opcode::s_nand_b64;
2080 break;
2081 case aco_opcode::s_or_b64:
2082 op2_instr->opcode = aco_opcode::s_nor_b64;
2083 break;
2084 case aco_opcode::s_xor_b64:
2085 op2_instr->opcode = aco_opcode::s_xnor_b64;
2086 break;
2087 default:
2088 break;
2089 }
2090
2091 return true;
2092 }
2093
2094 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
2095 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
2096 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
2097 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
2098 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2099 {
2100 if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
2101 return false;
2102
2103 for (unsigned i = 0; i < 2; i++) {
2104 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
2105 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
2106 continue;
2107 if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
2108 continue;
2109
2110 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
2111 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
2112 continue;
2113
2114 ctx.uses[instr->operands[i].tempId()]--;
2115 instr->operands[0] = instr->operands[!i];
2116 instr->operands[1] = op2_instr->operands[0];
2117 ctx.info[instr->definitions[0].tempId()].label = 0;
2118
2119 switch (instr->opcode) {
2120 case aco_opcode::s_and_b32:
2121 instr->opcode = aco_opcode::s_andn2_b32;
2122 break;
2123 case aco_opcode::s_or_b32:
2124 instr->opcode = aco_opcode::s_orn2_b32;
2125 break;
2126 case aco_opcode::s_and_b64:
2127 instr->opcode = aco_opcode::s_andn2_b64;
2128 break;
2129 case aco_opcode::s_or_b64:
2130 instr->opcode = aco_opcode::s_orn2_b64;
2131 break;
2132 default:
2133 break;
2134 }
2135
2136 return true;
2137 }
2138 return false;
2139 }
2140
2141 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
2142 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2143 {
2144 if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
2145 return false;
2146
2147 for (unsigned i = 0; i < 2; i++) {
2148 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
2149 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
2150 ctx.uses[op2_instr->definitions[1].tempId()])
2151 continue;
2152 if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
2153 continue;
2154
2155 uint32_t shift = op2_instr->operands[1].constantValue();
2156 if (shift < 1 || shift > 4)
2157 continue;
2158
2159 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
2160 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
2161 continue;
2162
2163 ctx.uses[instr->operands[i].tempId()]--;
2164 instr->operands[1] = instr->operands[!i];
2165 instr->operands[0] = op2_instr->operands[0];
2166 ctx.info[instr->definitions[0].tempId()].label = 0;
2167
2168 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
2169 aco_opcode::s_lshl2_add_u32,
2170 aco_opcode::s_lshl3_add_u32,
2171 aco_opcode::s_lshl4_add_u32})[shift - 1];
2172
2173 return true;
2174 }
2175 return false;
2176 }
2177
2178 bool combine_add_sub_b2i(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode new_op, uint8_t ops)
2179 {
2180 if (instr->usesModifiers())
2181 return false;
2182
2183 for (unsigned i = 0; i < 2; i++) {
2184 if (!((1 << i) & ops))
2185 continue;
2186 if (instr->operands[i].isTemp() &&
2187 ctx.info[instr->operands[i].tempId()].is_b2i() &&
2188 ctx.uses[instr->operands[i].tempId()] == 1) {
2189
2190 aco_ptr<Instruction> new_instr;
2191 if (instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2192 new_instr.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 2));
2193 } else if (ctx.program->chip_class >= GFX10 ||
2194 (instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) {
2195 new_instr.reset(create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOP2), 3, 2));
2196 } else {
2197 return false;
2198 }
2199 ctx.uses[instr->operands[i].tempId()]--;
2200 new_instr->definitions[0] = instr->definitions[0];
2201 new_instr->definitions[1] = instr->definitions.size() == 2 ? instr->definitions[1] :
2202 Definition(ctx.program->allocateId(), ctx.program->lane_mask);
2203 new_instr->definitions[1].setHint(vcc);
2204 new_instr->operands[0] = Operand(0u);
2205 new_instr->operands[1] = instr->operands[!i];
2206 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2207 instr = std::move(new_instr);
2208 ctx.info[instr->definitions[0].tempId()].label = 0;
2209 return true;
2210 }
2211 }
2212
2213 return false;
2214 }
2215
2216 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
2217 {
2218 switch (op) {
2219 #define MINMAX(type, gfx9) \
2220 case aco_opcode::v_min_##type:\
2221 case aco_opcode::v_max_##type:\
2222 case aco_opcode::v_med3_##type:\
2223 *min = aco_opcode::v_min_##type;\
2224 *max = aco_opcode::v_max_##type;\
2225 *med3 = aco_opcode::v_med3_##type;\
2226 *min3 = aco_opcode::v_min3_##type;\
2227 *max3 = aco_opcode::v_max3_##type;\
2228 *some_gfx9_only = gfx9;\
2229 return true;
2230 MINMAX(f32, false)
2231 MINMAX(u32, false)
2232 MINMAX(i32, false)
2233 MINMAX(f16, true)
2234 MINMAX(u16, true)
2235 MINMAX(i16, true)
2236 #undef MINMAX
2237 default:
2238 return false;
2239 }
2240 }
2241
2242 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
2243 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
2244 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
2245 aco_opcode min, aco_opcode max, aco_opcode med)
2246 {
2247 /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
2248 * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
2249 * minVal > maxVal, which means we can always select it to a v_med3_f32 */
2250 aco_opcode other_op;
2251 if (instr->opcode == min)
2252 other_op = max;
2253 else if (instr->opcode == max)
2254 other_op = min;
2255 else
2256 return false;
2257
2258 uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
2259 (label_omod_success | label_clamp_success);
2260
2261 for (unsigned swap = 0; swap < 2; swap++) {
2262 Operand operands[3];
2263 bool neg[3], abs[3], clamp;
2264 uint8_t opsel = 0, omod = 0;
2265 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
2266 "012", operands, neg, abs, &opsel,
2267 &clamp, &omod, NULL, NULL, NULL)) {
2268 int const0_idx = -1, const1_idx = -1;
2269 uint32_t const0 = 0, const1 = 0;
2270 for (int i = 0; i < 3; i++) {
2271 uint32_t val;
2272 if (operands[i].isConstant()) {
2273 val = operands[i].constantValue();
2274 } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal(32)) {
2275 val = ctx.info[operands[i].tempId()].val;
2276 } else {
2277 continue;
2278 }
2279 if (const0_idx >= 0) {
2280 const1_idx = i;
2281 const1 = val;
2282 } else {
2283 const0_idx = i;
2284 const0 = val;
2285 }
2286 }
2287 if (const0_idx < 0 || const1_idx < 0)
2288 continue;
2289
2290 if (opsel & (1 << const0_idx))
2291 const0 >>= 16;
2292 if (opsel & (1 << const1_idx))
2293 const1 >>= 16;
2294
2295 int lower_idx = const0_idx;
2296 switch (min) {
2297 case aco_opcode::v_min_f32:
2298 case aco_opcode::v_min_f16: {
2299 float const0_f, const1_f;
2300 if (min == aco_opcode::v_min_f32) {
2301 memcpy(&const0_f, &const0, 4);
2302 memcpy(&const1_f, &const1, 4);
2303 } else {
2304 const0_f = _mesa_half_to_float(const0);
2305 const1_f = _mesa_half_to_float(const1);
2306 }
2307 if (abs[const0_idx]) const0_f = fabsf(const0_f);
2308 if (abs[const1_idx]) const1_f = fabsf(const1_f);
2309 if (neg[const0_idx]) const0_f = -const0_f;
2310 if (neg[const1_idx]) const1_f = -const1_f;
2311 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
2312 break;
2313 }
2314 case aco_opcode::v_min_u32: {
2315 lower_idx = const0 < const1 ? const0_idx : const1_idx;
2316 break;
2317 }
2318 case aco_opcode::v_min_u16: {
2319 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
2320 break;
2321 }
2322 case aco_opcode::v_min_i32: {
2323 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
2324 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
2325 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2326 break;
2327 }
2328 case aco_opcode::v_min_i16: {
2329 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
2330 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
2331 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2332 break;
2333 }
2334 default:
2335 break;
2336 }
2337 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
2338
2339 if (instr->opcode == min) {
2340 if (upper_idx != 0 || lower_idx == 0)
2341 return false;
2342 } else {
2343 if (upper_idx == 0 || lower_idx != 0)
2344 return false;
2345 }
2346
2347 ctx.uses[instr->operands[swap].tempId()]--;
2348 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
2349 if (omod_clamp & label_omod_success)
2350 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2351 if (omod_clamp & label_clamp_success)
2352 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2353
2354 return true;
2355 }
2356 }
2357
2358 return false;
2359 }
2360
2361
2362 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2363 {
2364 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2365 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2366 instr->opcode == aco_opcode::v_ashrrev_i64;
2367
2368 /* find candidates and create the set of sgprs already read */
2369 unsigned sgpr_ids[2] = {0, 0};
2370 uint32_t operand_mask = 0;
2371 bool has_literal = false;
2372 for (unsigned i = 0; i < instr->operands.size(); i++) {
2373 if (instr->operands[i].isLiteral())
2374 has_literal = true;
2375 if (!instr->operands[i].isTemp())
2376 continue;
2377 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2378 if (instr->operands[i].tempId() != sgpr_ids[0])
2379 sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
2380 }
2381 ssa_info& info = ctx.info[instr->operands[i].tempId()];
2382 if (info.is_temp() && info.temp.type() == RegType::sgpr)
2383 operand_mask |= 1u << i;
2384 }
2385 unsigned max_sgprs = 1;
2386 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2387 max_sgprs = 2;
2388 if (has_literal)
2389 max_sgprs--;
2390
2391 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2392
2393 /* keep on applying sgprs until there is nothing left to be done */
2394 while (operand_mask) {
2395 uint32_t sgpr_idx = 0;
2396 uint32_t sgpr_info_id = 0;
2397 uint32_t mask = operand_mask;
2398 /* choose a sgpr */
2399 while (mask) {
2400 unsigned i = u_bit_scan(&mask);
2401 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
2402 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
2403 sgpr_idx = i;
2404 sgpr_info_id = instr->operands[i].tempId();
2405 }
2406 }
2407 operand_mask &= ~(1u << sgpr_idx);
2408
2409 /* Applying two sgprs require making it VOP3, so don't do it unless it's
2410 * definitively beneficial.
2411 * TODO: this is too conservative because later the use count could be reduced to 1 */
2412 if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3())
2413 break;
2414
2415 Temp sgpr = ctx.info[sgpr_info_id].temp;
2416 bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
2417 if (new_sgpr && num_sgprs >= max_sgprs)
2418 continue;
2419
2420 if (sgpr_idx == 0 || instr->isVOP3()) {
2421 instr->operands[sgpr_idx] = Operand(sgpr);
2422 } else if (can_swap_operands(instr)) {
2423 instr->operands[sgpr_idx] = instr->operands[0];
2424 instr->operands[0] = Operand(sgpr);
2425 /* swap bits using a 4-entry LUT */
2426 uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
2427 operand_mask = (operand_mask & ~0x3) | swapped;
2428 } else if (can_use_VOP3(ctx, instr)) {
2429 to_VOP3(ctx, instr);
2430 instr->operands[sgpr_idx] = Operand(sgpr);
2431 } else {
2432 continue;
2433 }
2434
2435 if (new_sgpr)
2436 sgpr_ids[num_sgprs++] = sgpr.id();
2437 ctx.uses[sgpr_info_id]--;
2438 ctx.uses[sgpr.id()]++;
2439 }
2440 }
2441
2442 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2443 {
2444 /* check if we could apply omod on predecessor */
2445 if (instr->opcode == aco_opcode::v_mul_f32 || instr->opcode == aco_opcode::v_mul_f16) {
2446 bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
2447 bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
2448 if (op0 || op1) {
2449 unsigned idx = op0 ? 0 : 1;
2450 /* omod was successfully applied */
2451 /* if the omod instruction is v_mad, we also have to change the original add */
2452 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2453 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].instr->pass_flags].add_instr.get();
2454 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
2455 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
2456 add_instr->definitions[0] = instr->definitions[0];
2457 }
2458
2459 Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
2460 /* check if we have an additional clamp modifier */
2461 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2462 ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) {
2463 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
2464 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
2465 }
2466 /* change definition ssa-id of modified instruction */
2467 omod_instr->definitions[0] = instr->definitions[0];
2468
2469 /* change the definition of instr to something unused, e.g. the original omod def */
2470 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2471 ctx.uses[instr->definitions[0].tempId()] = 0;
2472 return true;
2473 }
2474 if (!ctx.info[instr->definitions[0].tempId()].label) {
2475 /* in all other cases, label this instruction as option for multiply-add */
2476 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2477 }
2478 }
2479
2480 /* check if we could apply clamp on predecessor */
2481 if (instr->opcode == aco_opcode::v_med3_f32 || instr->opcode == aco_opcode::v_med3_f16) {
2482 bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16;
2483 unsigned idx = 0;
2484 bool found_zero = false, found_one = false;
2485 for (unsigned i = 0; i < 3; i++)
2486 {
2487 if (instr->operands[i].constantEquals(0))
2488 found_zero = true;
2489 else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */
2490 found_one = true;
2491 else
2492 idx = i;
2493 }
2494 if (found_zero && found_one && instr->operands[idx].isTemp() &&
2495 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
2496 /* clamp was successfully applied */
2497 /* if the clamp instruction is v_mad, we also have to change the original add */
2498 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2499 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].instr->pass_flags].add_instr.get();
2500 add_instr->definitions[0] = instr->definitions[0];
2501 }
2502 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
2503 /* change definition ssa-id of modified instruction */
2504 clamp_instr->definitions[0] = instr->definitions[0];
2505
2506 /* change the definition of instr to something unused, e.g. the original omod def */
2507 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2508 ctx.uses[instr->definitions[0].tempId()] = 0;
2509 return true;
2510 }
2511 }
2512
2513 /* omod has no effect if denormals are enabled */
2514 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
2515 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2516 can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
2517 bool can_use_omod = (instr->definitions[0].bytes() == 4 ? block.fp_mode.denorm32 : block.fp_mode.denorm16_64) == 0;
2518 ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
2519 if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) {
2520 to_VOP3(ctx, instr);
2521 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
2522 def_info.set_omod_success(instr.get());
2523 } else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) {
2524 to_VOP3(ctx, instr);
2525 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
2526 def_info.set_omod_success(instr.get());
2527 } else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) {
2528 to_VOP3(ctx, instr);
2529 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2530 def_info.set_omod_success(instr.get());
2531 } else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) {
2532 to_VOP3(ctx, instr);
2533 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2534 def_info.set_clamp_success(instr.get());
2535 }
2536 }
2537
2538 return false;
2539 }
2540
2541 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2542 // this would mean that we'd have to fix the instruction uses while value propagation
2543
2544 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2545 {
2546 if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
2547 return;
2548
2549 if (instr->isVALU()) {
2550 if (can_apply_sgprs(instr))
2551 apply_sgprs(ctx, instr);
2552 if (apply_omod_clamp(ctx, block, instr))
2553 return;
2554 }
2555
2556 if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
2557 instr->definitions[0].setHint(vcc);
2558 }
2559
2560 /* TODO: There are still some peephole optimizations that could be done:
2561 * - abs(a - b) -> s_absdiff_i32
2562 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2563 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2564 * These aren't probably too interesting though.
2565 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2566 * probably more useful than the previously mentioned optimizations.
2567 * The various comparison optimizations also currently only work with 32-bit
2568 * floats. */
2569
2570 /* neg(mul(a, b)) -> mul(neg(a), b) */
2571 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2572 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2573
2574 if (!ctx.info[val.id()].is_mul())
2575 return;
2576
2577 Instruction* mul_instr = ctx.info[val.id()].instr;
2578
2579 if (mul_instr->operands[0].isLiteral())
2580 return;
2581 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2582 return;
2583
2584 /* convert to mul(neg(a), b) */
2585 ctx.uses[mul_instr->definitions[0].tempId()]--;
2586 Definition def = instr->definitions[0];
2587 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2588 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2589 instr.reset(create_instruction<VOP3A_instruction>(mul_instr->opcode, asVOP3(Format::VOP2), 2, 1));
2590 instr->operands[0] = mul_instr->operands[0];
2591 instr->operands[1] = mul_instr->operands[1];
2592 instr->definitions[0] = def;
2593 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2594 if (mul_instr->isVOP3()) {
2595 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2596 new_mul->neg[0] = mul->neg[0] && !is_abs;
2597 new_mul->neg[1] = mul->neg[1] && !is_abs;
2598 new_mul->abs[0] = mul->abs[0] || is_abs;
2599 new_mul->abs[1] = mul->abs[1] || is_abs;
2600 new_mul->omod = mul->omod;
2601 }
2602 new_mul->neg[0] ^= true;
2603 new_mul->clamp = false;
2604
2605 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2606 return;
2607 }
2608
2609 /* combine mul+add -> mad */
2610 bool mad32 = instr->opcode == aco_opcode::v_add_f32 ||
2611 instr->opcode == aco_opcode::v_sub_f32 ||
2612 instr->opcode == aco_opcode::v_subrev_f32;
2613 bool mad16 = instr->opcode == aco_opcode::v_add_f16 ||
2614 instr->opcode == aco_opcode::v_sub_f16 ||
2615 instr->opcode == aco_opcode::v_subrev_f16;
2616 if (mad16 || mad32) {
2617 bool need_fma = mad32 ? block.fp_mode.denorm32 != 0 :
2618 (block.fp_mode.denorm16_64 != 0 || ctx.program->chip_class >= GFX10);
2619 if (need_fma && instr->definitions[0].isPrecise())
2620 return;
2621 if (need_fma && mad32 && !ctx.program->has_fast_fma32)
2622 return;
2623
2624 uint32_t uses_src0 = UINT32_MAX;
2625 uint32_t uses_src1 = UINT32_MAX;
2626 Instruction* mul_instr = nullptr;
2627 unsigned add_op_idx;
2628 /* check if any of the operands is a multiplication */
2629 ssa_info *op0_info = instr->operands[0].isTemp() ? &ctx.info[instr->operands[0].tempId()] : NULL;
2630 ssa_info *op1_info = instr->operands[1].isTemp() ? &ctx.info[instr->operands[1].tempId()] : NULL;
2631 if (op0_info && op0_info->is_mul() && (!need_fma || !op0_info->instr->definitions[0].isPrecise()))
2632 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2633 if (op1_info && op1_info->is_mul() && (!need_fma || !op1_info->instr->definitions[0].isPrecise()))
2634 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2635
2636 /* find the 'best' mul instruction to combine with the add */
2637 if (uses_src0 < uses_src1) {
2638 mul_instr = op0_info->instr;
2639 add_op_idx = 1;
2640 } else if (uses_src1 < uses_src0) {
2641 mul_instr = op1_info->instr;
2642 add_op_idx = 0;
2643 } else if (uses_src0 != UINT32_MAX) {
2644 /* tiebreaker: quite random what to pick */
2645 if (op0_info->instr->operands[0].isLiteral()) {
2646 mul_instr = op1_info->instr;
2647 add_op_idx = 0;
2648 } else {
2649 mul_instr = op0_info->instr;
2650 add_op_idx = 1;
2651 }
2652 }
2653 if (mul_instr) {
2654 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2655 bool neg[3] = {false, false, false};
2656 bool abs[3] = {false, false, false};
2657 unsigned omod = 0;
2658 bool clamp = false;
2659 op[0] = mul_instr->operands[0];
2660 op[1] = mul_instr->operands[1];
2661 op[2] = instr->operands[add_op_idx];
2662 // TODO: would be better to check this before selecting a mul instr?
2663 if (!check_vop3_operands(ctx, 3, op))
2664 return;
2665
2666 if (mul_instr->isVOP3()) {
2667 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2668 neg[0] = vop3->neg[0];
2669 neg[1] = vop3->neg[1];
2670 abs[0] = vop3->abs[0];
2671 abs[1] = vop3->abs[1];
2672 /* we cannot use these modifiers between mul and add */
2673 if (vop3->clamp || vop3->omod)
2674 return;
2675 }
2676
2677 /* convert to mad */
2678 ctx.uses[mul_instr->definitions[0].tempId()]--;
2679 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2680 if (op[0].isTemp())
2681 ctx.uses[op[0].tempId()]++;
2682 if (op[1].isTemp())
2683 ctx.uses[op[1].tempId()]++;
2684 }
2685
2686 if (instr->isVOP3()) {
2687 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2688 neg[2] = vop3->neg[add_op_idx];
2689 abs[2] = vop3->abs[add_op_idx];
2690 omod = vop3->omod;
2691 clamp = vop3->clamp;
2692 /* abs of the multiplication result */
2693 if (vop3->abs[1 - add_op_idx]) {
2694 neg[0] = false;
2695 neg[1] = false;
2696 abs[0] = true;
2697 abs[1] = true;
2698 }
2699 /* neg of the multiplication result */
2700 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2701 }
2702 if (instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_sub_f16)
2703 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2704 else if (instr->opcode == aco_opcode::v_subrev_f32 || instr->opcode == aco_opcode::v_subrev_f16)
2705 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2706
2707 aco_opcode mad_op = need_fma ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
2708 if (mad16)
2709 mad_op = need_fma ? (ctx.program->chip_class == GFX8 ? aco_opcode::v_fma_legacy_f16 : aco_opcode::v_fma_f16) :
2710 (ctx.program->chip_class == GFX8 ? aco_opcode::v_mad_legacy_f16 : aco_opcode::v_mad_f16);
2711
2712 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(mad_op, Format::VOP3A, 3, 1)};
2713 for (unsigned i = 0; i < 3; i++)
2714 {
2715 mad->operands[i] = op[i];
2716 mad->neg[i] = neg[i];
2717 mad->abs[i] = abs[i];
2718 }
2719 mad->omod = omod;
2720 mad->clamp = clamp;
2721 mad->definitions[0] = instr->definitions[0];
2722
2723 /* mark this ssa_def to be re-checked for profitability and literals */
2724 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
2725 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2726 instr.reset(mad.release());
2727 return;
2728 }
2729 }
2730 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2731 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2732 for (unsigned i = 0; i < 2; i++) {
2733 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2734 ctx.uses[instr->operands[i].tempId()] == 1 &&
2735 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2736 ctx.uses[instr->operands[i].tempId()]--;
2737 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2738
2739 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2740 new_instr->operands[0] = Operand(0u);
2741 new_instr->operands[1] = instr->operands[!i];
2742 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2743 new_instr->definitions[0] = instr->definitions[0];
2744 instr.reset(new_instr.release());
2745 ctx.info[instr->definitions[0].tempId()].label = 0;
2746 return;
2747 }
2748 }
2749 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2750 if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2751 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2752 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2753 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2754 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_or_b32, "120", 1 | 2)) ;
2755 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2756 } else if (instr->opcode == aco_opcode::v_xor_b32 && ctx.program->chip_class >= GFX10) {
2757 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2)) ;
2758 else combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2);
2759 } else if (instr->opcode == aco_opcode::v_add_u32) {
2760 if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) ;
2761 else if (ctx.program->chip_class >= GFX9) {
2762 if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2763 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2764 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2765 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2766 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2767 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_add_u32, "120", 1 | 2)) ;
2768 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2769 }
2770 } else if (instr->opcode == aco_opcode::v_add_co_u32 ||
2771 instr->opcode == aco_opcode::v_add_co_u32_e64) {
2772 combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2);
2773 } else if (instr->opcode == aco_opcode::v_sub_u32 ||
2774 instr->opcode == aco_opcode::v_sub_co_u32 ||
2775 instr->opcode == aco_opcode::v_sub_co_u32_e64) {
2776 combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 2);
2777 } else if (instr->opcode == aco_opcode::v_subrev_u32 ||
2778 instr->opcode == aco_opcode::v_subrev_co_u32 ||
2779 instr->opcode == aco_opcode::v_subrev_co_u32_e64) {
2780 combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 1);
2781 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2782 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2783 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2784 combine_salu_lshl_add(ctx, instr);
2785 } else if (instr->opcode == aco_opcode::s_not_b32) {
2786 combine_salu_not_bitwise(ctx, instr);
2787 } else if (instr->opcode == aco_opcode::s_not_b64) {
2788 if (combine_inverse_comparison(ctx, instr)) ;
2789 else combine_salu_not_bitwise(ctx, instr);
2790 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2791 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2792 if (combine_ordering_test(ctx, instr)) ;
2793 else if (combine_comparison_ordering(ctx, instr)) ;
2794 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2795 else combine_salu_n2(ctx, instr);
2796 } else {
2797 aco_opcode min, max, min3, max3, med3;
2798 bool some_gfx9_only;
2799 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2800 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2801 if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
2802 else combine_clamp(ctx, instr, min, max, med3);
2803 }
2804 }
2805 }
2806
2807 bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
2808 {
2809 switch (instr->opcode) {
2810 case aco_opcode::s_and_b32:
2811 case aco_opcode::s_and_b64:
2812 instr->opcode = aco_opcode::s_and_b32;
2813 break;
2814 case aco_opcode::s_or_b32:
2815 case aco_opcode::s_or_b64:
2816 instr->opcode = aco_opcode::s_or_b32;
2817 break;
2818 case aco_opcode::s_xor_b32:
2819 case aco_opcode::s_xor_b64:
2820 instr->opcode = aco_opcode::s_absdiff_i32;
2821 break;
2822 default:
2823 /* Don't transform other instructions. They are very unlikely to appear here. */
2824 return false;
2825 }
2826
2827 for (Operand &op : instr->operands) {
2828 ctx.uses[op.tempId()]--;
2829
2830 if (ctx.info[op.tempId()].is_uniform_bool()) {
2831 /* Just use the uniform boolean temp. */
2832 op.setTemp(ctx.info[op.tempId()].temp);
2833 } else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
2834 /* Use the SCC definition of the predecessor instruction.
2835 * This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
2836 * and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
2837 */
2838 Instruction *pred_instr = ctx.info[op.tempId()].instr;
2839 assert(pred_instr->definitions.size() >= 2);
2840 assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
2841 op.setTemp(pred_instr->definitions[1].getTemp());
2842 } else {
2843 unreachable("Invalid operand on uniform bitwise instruction.");
2844 }
2845
2846 ctx.uses[op.tempId()]++;
2847 }
2848
2849 instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
2850 assert(instr->operands[0].regClass() == s1);
2851 assert(instr->operands[1].regClass() == s1);
2852 return true;
2853 }
2854
2855 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2856 {
2857 const uint32_t threshold = 4;
2858
2859 if (is_dead(ctx.uses, instr.get())) {
2860 instr.reset();
2861 return;
2862 }
2863
2864 /* convert split_vector into a copy or extract_vector if only one definition is ever used */
2865 if (instr->opcode == aco_opcode::p_split_vector) {
2866 unsigned num_used = 0;
2867 unsigned idx = 0;
2868 unsigned split_offset = 0;
2869 for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) {
2870 if (ctx.uses[instr->definitions[i].tempId()]) {
2871 num_used++;
2872 idx = i;
2873 split_offset = offset;
2874 }
2875 }
2876 bool done = false;
2877 if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
2878 ctx.uses[instr->operands[0].tempId()] == 1) {
2879 Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
2880
2881 unsigned off = 0;
2882 Operand op;
2883 for (Operand& vec_op : vec->operands) {
2884 if (off == split_offset) {
2885 op = vec_op;
2886 break;
2887 }
2888 off += vec_op.bytes();
2889 }
2890 if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) {
2891 ctx.uses[instr->operands[0].tempId()]--;
2892 for (Operand& vec_op : vec->operands) {
2893 if (vec_op.isTemp())
2894 ctx.uses[vec_op.tempId()]--;
2895 }
2896 if (op.isTemp())
2897 ctx.uses[op.tempId()]++;
2898
2899 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
2900 extract->operands[0] = op;
2901 extract->definitions[0] = instr->definitions[idx];
2902 instr.reset(extract.release());
2903
2904 done = true;
2905 }
2906 }
2907
2908 if (!done && num_used == 1 &&
2909 instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 &&
2910 split_offset % instr->definitions[idx].bytes() == 0) {
2911 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2912 extract->operands[0] = instr->operands[0];
2913 extract->operands[1] = Operand((uint32_t) split_offset / instr->definitions[idx].bytes());
2914 extract->definitions[0] = instr->definitions[idx];
2915 instr.reset(extract.release());
2916 }
2917 }
2918
2919 mad_info* mad_info = NULL;
2920 if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2921 mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags];
2922 /* re-check mad instructions */
2923 if (ctx.uses[mad_info->mul_temp_id]) {
2924 ctx.uses[mad_info->mul_temp_id]++;
2925 if (instr->operands[0].isTemp())
2926 ctx.uses[instr->operands[0].tempId()]--;
2927 if (instr->operands[1].isTemp())
2928 ctx.uses[instr->operands[1].tempId()]--;
2929 instr.swap(mad_info->add_instr);
2930 mad_info = NULL;
2931 }
2932 /* check literals */
2933 else if (!instr->usesModifiers()) {
2934 /* FMA can only take literals on GFX10+ */
2935 if ((instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) &&
2936 ctx.program->chip_class < GFX10)
2937 return;
2938
2939 bool sgpr_used = false;
2940 uint32_t literal_idx = 0;
2941 uint32_t literal_uses = UINT32_MAX;
2942 for (unsigned i = 0; i < instr->operands.size(); i++)
2943 {
2944 if (instr->operands[i].isConstant() && i > 0) {
2945 literal_uses = UINT32_MAX;
2946 break;
2947 }
2948 if (!instr->operands[i].isTemp())
2949 continue;
2950 unsigned bits = get_operand_size(instr, i);
2951 /* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
2952 if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
2953 if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal(bits)) {
2954 literal_uses = ctx.uses[instr->operands[i].tempId()];
2955 literal_idx = i;
2956 } else {
2957 literal_uses = UINT32_MAX;
2958 }
2959 sgpr_used = true;
2960 /* don't break because we still need to check constants */
2961 } else if (!sgpr_used &&
2962 ctx.info[instr->operands[i].tempId()].is_literal(bits) &&
2963 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2964 literal_uses = ctx.uses[instr->operands[i].tempId()];
2965 literal_idx = i;
2966 }
2967 }
2968
2969 /* Limit the number of literals to apply to not increase the code
2970 * size too much, but always apply literals for v_mad->v_madak
2971 * because both instructions are 64-bit and this doesn't increase
2972 * code size.
2973 * TODO: try to apply the literals earlier to lower the number of
2974 * uses below threshold
2975 */
2976 if (literal_uses < threshold || literal_idx == 2) {
2977 ctx.uses[instr->operands[literal_idx].tempId()]--;
2978 mad_info->check_literal = true;
2979 mad_info->literal_idx = literal_idx;
2980 return;
2981 }
2982 }
2983 }
2984
2985 /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
2986 if (instr->format == Format::PSEUDO_BRANCH &&
2987 instr->operands.size() &&
2988 instr->operands[0].isTemp()) {
2989 ctx.info[instr->operands[0].tempId()].set_scc_needed();
2990 return;
2991 } else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
2992 instr->opcode == aco_opcode::s_cselect_b32) &&
2993 instr->operands[2].isTemp()) {
2994 ctx.info[instr->operands[2].tempId()].set_scc_needed();
2995 }
2996
2997 /* check for literals */
2998 if (!instr->isSALU() && !instr->isVALU())
2999 return;
3000
3001 /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
3002 if (instr->definitions.size() &&
3003 ctx.uses[instr->definitions[0].tempId()] == 0 &&
3004 ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
3005 bool transform_done = to_uniform_bool_instr(ctx, instr);
3006
3007 if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
3008 /* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
3009 uint32_t def0_id = instr->definitions[0].getTemp().id();
3010 uint32_t def1_id = instr->definitions[1].getTemp().id();
3011 instr->definitions[0].setTemp(Temp(def1_id, s1));
3012 instr->definitions[1].setTemp(Temp(def0_id, s1));
3013 }
3014
3015 return;
3016 }
3017
3018 if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
3019 return; /* some encodings can't ever take literals */
3020
3021 /* we do not apply the literals yet as we don't know if it is profitable */
3022 Operand current_literal(s1);
3023
3024 unsigned literal_id = 0;
3025 unsigned literal_uses = UINT32_MAX;
3026 Operand literal(s1);
3027 unsigned num_operands = 1;
3028 if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
3029 num_operands = instr->operands.size();
3030 /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
3031 else if (instr->isVALU() && instr->operands.size() >= 3)
3032 return;
3033
3034 unsigned sgpr_ids[2] = {0, 0};
3035 bool is_literal_sgpr = false;
3036 uint32_t mask = 0;
3037
3038 /* choose a literal to apply */
3039 for (unsigned i = 0; i < num_operands; i++) {
3040 Operand op = instr->operands[i];
3041 unsigned bits = get_operand_size(instr, i);
3042
3043 if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
3044 op.tempId() != sgpr_ids[0])
3045 sgpr_ids[!!sgpr_ids[0]] = op.tempId();
3046
3047 if (op.isLiteral()) {
3048 current_literal = op;
3049 continue;
3050 } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal(bits)) {
3051 continue;
3052 }
3053
3054 if (!alu_can_accept_constant(instr->opcode, i))
3055 continue;
3056
3057 if (ctx.uses[op.tempId()] < literal_uses) {
3058 is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
3059 mask = 0;
3060 literal = Operand(ctx.info[op.tempId()].val);
3061 literal_uses = ctx.uses[op.tempId()];
3062 literal_id = op.tempId();
3063 }
3064
3065 mask |= (op.tempId() == literal_id) << i;
3066 }
3067
3068
3069 /* don't go over the constant bus limit */
3070 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
3071 instr->opcode == aco_opcode::v_lshrrev_b64 ||
3072 instr->opcode == aco_opcode::v_ashrrev_i64;
3073 unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
3074 if (ctx.program->chip_class >= GFX10 && !is_shift64)
3075 const_bus_limit = 2;
3076
3077 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
3078 if (num_sgprs == const_bus_limit && !is_literal_sgpr)
3079 return;
3080
3081 if (literal_id && literal_uses < threshold &&
3082 (current_literal.isUndefined() ||
3083 (current_literal.size() == literal.size() &&
3084 current_literal.constantValue() == literal.constantValue()))) {
3085 /* mark the literal to be applied */
3086 while (mask) {
3087 unsigned i = u_bit_scan(&mask);
3088 if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
3089 ctx.uses[instr->operands[i].tempId()]--;
3090 }
3091 }
3092 }
3093
3094
3095 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
3096 {
3097 /* Cleanup Dead Instructions */
3098 if (!instr)
3099 return;
3100
3101 /* apply literals on MAD */
3102 if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
3103 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags];
3104 if (info->check_literal &&
3105 (ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
3106 aco_ptr<Instruction> new_mad;
3107
3108 aco_opcode new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f32 : aco_opcode::v_madmk_f32;
3109 if (instr->opcode == aco_opcode::v_fma_f32)
3110 new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32;
3111 else if (instr->opcode == aco_opcode::v_mad_f16 || instr->opcode == aco_opcode::v_mad_legacy_f16)
3112 new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f16 : aco_opcode::v_madmk_f16;
3113 else if (instr->opcode == aco_opcode::v_fma_f16)
3114 new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f16 : aco_opcode::v_fmamk_f16;
3115
3116 new_mad.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 1));
3117 if (info->literal_idx == 2) { /* add literal -> madak */
3118 new_mad->operands[0] = instr->operands[0];
3119 new_mad->operands[1] = instr->operands[1];
3120 } else { /* mul literal -> madmk */
3121 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
3122 new_mad->operands[1] = instr->operands[2];
3123 }
3124 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
3125 new_mad->definitions[0] = instr->definitions[0];
3126 ctx.instructions.emplace_back(std::move(new_mad));
3127 return;
3128 }
3129 }
3130
3131 /* apply literals on other SALU/VALU */
3132 if (instr->isSALU() || instr->isVALU()) {
3133 for (unsigned i = 0; i < instr->operands.size(); i++) {
3134 Operand op = instr->operands[i];
3135 unsigned bits = get_operand_size(instr, i);
3136 if (op.isTemp() && ctx.info[op.tempId()].is_literal(bits) && ctx.uses[op.tempId()] == 0) {
3137 Operand literal(ctx.info[op.tempId()].val);
3138 if (instr->isVALU() && i > 0)
3139 to_VOP3(ctx, instr);
3140 instr->operands[i] = literal;
3141 }
3142 }
3143 }
3144
3145 ctx.instructions.emplace_back(std::move(instr));
3146 }
3147
3148
3149 void optimize(Program* program)
3150 {
3151 opt_ctx ctx;
3152 ctx.program = program;
3153 std::vector<ssa_info> info(program->peekAllocationId());
3154 ctx.info = info.data();
3155
3156 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
3157 for (Block& block : program->blocks) {
3158 for (aco_ptr<Instruction>& instr : block.instructions)
3159 label_instruction(ctx, block, instr);
3160 }
3161
3162 ctx.uses = dead_code_analysis(program);
3163
3164 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
3165 for (Block& block : program->blocks) {
3166 for (aco_ptr<Instruction>& instr : block.instructions)
3167 combine_instruction(ctx, block, instr);
3168 }
3169
3170 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
3171 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
3172 Block* block = &(*it);
3173 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
3174 select_instruction(ctx, *it);
3175 }
3176
3177 /* 4. Add literals to instructions */
3178 for (Block& block : program->blocks) {
3179 ctx.instructions.clear();
3180 for (aco_ptr<Instruction>& instr : block.instructions)
3181 apply_literals(ctx, instr);
3182 block.instructions.swap(ctx.instructions);
3183 }
3184
3185 }
3186
3187 }