ac: declare an enum for the OOB select field on GFX10
[mesa.git] / src / amd / compiler / aco_spill.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include "aco_ir.h"
27 #include "aco_builder.h"
28 #include "sid.h"
29
30 #include <map>
31 #include <stack>
32
33 /*
34 * Implements the spilling algorithm on SSA-form from
35 * "Register Spilling and Live-Range Splitting for SSA-Form Programs"
36 * by Matthias Braun and Sebastian Hack.
37 */
38
39 namespace aco {
40
41 namespace {
42
43 struct remat_info {
44 Instruction *instr;
45 };
46
47 struct spill_ctx {
48 RegisterDemand target_pressure;
49 Program* program;
50 std::vector<std::vector<RegisterDemand>> register_demand;
51 std::vector<std::map<Temp, Temp>> renames;
52 std::vector<std::map<Temp, uint32_t>> spills_entry;
53 std::vector<std::map<Temp, uint32_t>> spills_exit;
54 std::vector<bool> processed;
55 std::stack<Block*> loop_header;
56 std::vector<std::map<Temp, std::pair<uint32_t, uint32_t>>> next_use_distances_start;
57 std::vector<std::map<Temp, std::pair<uint32_t, uint32_t>>> next_use_distances_end;
58 std::vector<std::pair<RegClass, std::set<uint32_t>>> interferences;
59 std::vector<std::vector<uint32_t>> affinities;
60 std::vector<bool> is_reloaded;
61 std::map<Temp, remat_info> remat;
62 std::map<Instruction *, bool> remat_used;
63 unsigned wave_size;
64
65 spill_ctx(const RegisterDemand target_pressure, Program* program,
66 std::vector<std::vector<RegisterDemand>> register_demand)
67 : target_pressure(target_pressure), program(program),
68 register_demand(register_demand), renames(program->blocks.size()),
69 spills_entry(program->blocks.size()), spills_exit(program->blocks.size()),
70 processed(program->blocks.size(), false), wave_size(program->wave_size) {}
71
72 void add_affinity(uint32_t first, uint32_t second)
73 {
74 unsigned found_first = affinities.size();
75 unsigned found_second = affinities.size();
76 for (unsigned i = 0; i < affinities.size(); i++) {
77 std::vector<uint32_t>& vec = affinities[i];
78 for (uint32_t entry : vec) {
79 if (entry == first)
80 found_first = i;
81 else if (entry == second)
82 found_second = i;
83 }
84 }
85 if (found_first == affinities.size() && found_second == affinities.size()) {
86 affinities.emplace_back(std::vector<uint32_t>({first, second}));
87 } else if (found_first < affinities.size() && found_second == affinities.size()) {
88 affinities[found_first].push_back(second);
89 } else if (found_second < affinities.size() && found_first == affinities.size()) {
90 affinities[found_second].push_back(first);
91 } else if (found_first != found_second) {
92 /* merge second into first */
93 affinities[found_first].insert(affinities[found_first].end(), affinities[found_second].begin(), affinities[found_second].end());
94 affinities.erase(std::next(affinities.begin(), found_second));
95 } else {
96 assert(found_first == found_second);
97 }
98 }
99
100 uint32_t allocate_spill_id(RegClass rc)
101 {
102 interferences.emplace_back(rc, std::set<uint32_t>());
103 is_reloaded.push_back(false);
104 return next_spill_id++;
105 }
106
107 uint32_t next_spill_id = 0;
108 };
109
110 int32_t get_dominator(int idx_a, int idx_b, Program* program, bool is_linear)
111 {
112
113 if (idx_a == -1)
114 return idx_b;
115 if (idx_b == -1)
116 return idx_a;
117 if (is_linear) {
118 while (idx_a != idx_b) {
119 if (idx_a > idx_b)
120 idx_a = program->blocks[idx_a].linear_idom;
121 else
122 idx_b = program->blocks[idx_b].linear_idom;
123 }
124 } else {
125 while (idx_a != idx_b) {
126 if (idx_a > idx_b)
127 idx_a = program->blocks[idx_a].logical_idom;
128 else
129 idx_b = program->blocks[idx_b].logical_idom;
130 }
131 }
132 assert(idx_a != -1);
133 return idx_a;
134 }
135
136 void next_uses_per_block(spill_ctx& ctx, unsigned block_idx, std::set<uint32_t>& worklist)
137 {
138 Block* block = &ctx.program->blocks[block_idx];
139 std::map<Temp, std::pair<uint32_t, uint32_t>> next_uses = ctx.next_use_distances_end[block_idx];
140
141 /* to compute the next use distance at the beginning of the block, we have to add the block's size */
142 for (std::map<Temp, std::pair<uint32_t, uint32_t>>::iterator it = next_uses.begin(); it != next_uses.end(); ++it)
143 it->second.second = it->second.second + block->instructions.size();
144
145 int idx = block->instructions.size() - 1;
146 while (idx >= 0) {
147 aco_ptr<Instruction>& instr = block->instructions[idx];
148
149 if (instr->opcode == aco_opcode::p_linear_phi ||
150 instr->opcode == aco_opcode::p_phi)
151 break;
152
153 for (const Definition& def : instr->definitions) {
154 if (def.isTemp())
155 next_uses.erase(def.getTemp());
156 }
157
158 for (const Operand& op : instr->operands) {
159 /* omit exec mask */
160 if (op.isFixed() && op.physReg() == exec)
161 continue;
162 if (op.regClass().type() == RegType::vgpr && op.regClass().is_linear())
163 continue;
164 if (op.isTemp())
165 next_uses[op.getTemp()] = {block_idx, idx};
166 }
167 idx--;
168 }
169
170 assert(block_idx != 0 || next_uses.empty());
171 ctx.next_use_distances_start[block_idx] = next_uses;
172 while (idx >= 0) {
173 aco_ptr<Instruction>& instr = block->instructions[idx];
174 assert(instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi);
175
176 for (unsigned i = 0; i < instr->operands.size(); i++) {
177 unsigned pred_idx = instr->opcode == aco_opcode::p_phi ?
178 block->logical_preds[i] :
179 block->linear_preds[i];
180 if (instr->operands[i].isTemp()) {
181 if (instr->operands[i].getTemp() == ctx.program->blocks[pred_idx].live_out_exec)
182 continue;
183 if (ctx.next_use_distances_end[pred_idx].find(instr->operands[i].getTemp()) == ctx.next_use_distances_end[pred_idx].end() ||
184 ctx.next_use_distances_end[pred_idx][instr->operands[i].getTemp()] != std::pair<uint32_t, uint32_t>{block_idx, 0})
185 worklist.insert(pred_idx);
186 ctx.next_use_distances_end[pred_idx][instr->operands[i].getTemp()] = {block_idx, 0};
187 }
188 }
189 next_uses.erase(instr->definitions[0].getTemp());
190 idx--;
191 }
192
193 /* all remaining live vars must be live-out at the predecessors */
194 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : next_uses) {
195 Temp temp = pair.first;
196 uint32_t distance = pair.second.second;
197 uint32_t dom = pair.second.first;
198 std::vector<unsigned>& preds = temp.is_linear() ? block->linear_preds : block->logical_preds;
199 for (unsigned pred_idx : preds) {
200 if (temp == ctx.program->blocks[pred_idx].live_out_exec)
201 continue;
202 if (ctx.program->blocks[pred_idx].loop_nest_depth > block->loop_nest_depth)
203 distance += 0xFFFF;
204 if (ctx.next_use_distances_end[pred_idx].find(temp) != ctx.next_use_distances_end[pred_idx].end()) {
205 dom = get_dominator(dom, ctx.next_use_distances_end[pred_idx][temp].first, ctx.program, temp.is_linear());
206 distance = std::min(ctx.next_use_distances_end[pred_idx][temp].second, distance);
207 }
208 if (ctx.next_use_distances_end[pred_idx][temp] != std::pair<uint32_t, uint32_t>{dom, distance})
209 worklist.insert(pred_idx);
210 ctx.next_use_distances_end[pred_idx][temp] = {dom, distance};
211 }
212 }
213
214 }
215
216 void compute_global_next_uses(spill_ctx& ctx, std::vector<std::set<Temp>>& live_out)
217 {
218 ctx.next_use_distances_start.resize(ctx.program->blocks.size());
219 ctx.next_use_distances_end.resize(ctx.program->blocks.size());
220 std::set<uint32_t> worklist;
221 for (Block& block : ctx.program->blocks)
222 worklist.insert(block.index);
223
224 while (!worklist.empty()) {
225 std::set<unsigned>::reverse_iterator b_it = worklist.rbegin();
226 unsigned block_idx = *b_it;
227 worklist.erase(block_idx);
228 next_uses_per_block(ctx, block_idx, worklist);
229 }
230 }
231
232 bool should_rematerialize(aco_ptr<Instruction>& instr)
233 {
234 /* TODO: rematerialization is only supported for VOP1, SOP1 and PSEUDO */
235 if (instr->format != Format::VOP1 && instr->format != Format::SOP1 && instr->format != Format::PSEUDO && instr->format != Format::SOPK)
236 return false;
237 /* TODO: pseudo-instruction rematerialization is only supported for p_create_vector */
238 if (instr->format == Format::PSEUDO && instr->opcode != aco_opcode::p_create_vector)
239 return false;
240 if (instr->format == Format::SOPK && instr->opcode != aco_opcode::s_movk_i32)
241 return false;
242
243 for (const Operand& op : instr->operands) {
244 /* TODO: rematerialization using temporaries isn't yet supported */
245 if (op.isTemp())
246 return false;
247 }
248
249 /* TODO: rematerialization with multiple definitions isn't yet supported */
250 if (instr->definitions.size() > 1)
251 return false;
252
253 return true;
254 }
255
256 aco_ptr<Instruction> do_reload(spill_ctx& ctx, Temp tmp, Temp new_name, uint32_t spill_id)
257 {
258 std::map<Temp, remat_info>::iterator remat = ctx.remat.find(tmp);
259 if (remat != ctx.remat.end()) {
260 Instruction *instr = remat->second.instr;
261 assert((instr->format == Format::VOP1 || instr->format == Format::SOP1 || instr->format == Format::PSEUDO || instr->format == Format::SOPK) && "unsupported");
262 assert((instr->format != Format::PSEUDO || instr->opcode == aco_opcode::p_create_vector) && "unsupported");
263 assert(instr->definitions.size() == 1 && "unsupported");
264
265 aco_ptr<Instruction> res;
266 if (instr->format == Format::VOP1) {
267 res.reset(create_instruction<VOP1_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
268 } else if (instr->format == Format::SOP1) {
269 res.reset(create_instruction<SOP1_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
270 } else if (instr->format == Format::PSEUDO) {
271 res.reset(create_instruction<Pseudo_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
272 } else if (instr->format == Format::SOPK) {
273 res.reset(create_instruction<SOPK_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
274 static_cast<SOPK_instruction*>(res.get())->imm = static_cast<SOPK_instruction*>(instr)->imm;
275 }
276 for (unsigned i = 0; i < instr->operands.size(); i++) {
277 res->operands[i] = instr->operands[i];
278 if (instr->operands[i].isTemp()) {
279 assert(false && "unsupported");
280 if (ctx.remat.count(instr->operands[i].getTemp()))
281 ctx.remat_used[ctx.remat[instr->operands[i].getTemp()].instr] = true;
282 }
283 }
284 res->definitions[0] = Definition(new_name);
285 return res;
286 } else {
287 aco_ptr<Pseudo_instruction> reload{create_instruction<Pseudo_instruction>(aco_opcode::p_reload, Format::PSEUDO, 1, 1)};
288 reload->operands[0] = Operand(spill_id);
289 reload->definitions[0] = Definition(new_name);
290 ctx.is_reloaded[spill_id] = true;
291 return reload;
292 }
293 }
294
295 void get_rematerialize_info(spill_ctx& ctx)
296 {
297 for (Block& block : ctx.program->blocks) {
298 bool logical = false;
299 for (aco_ptr<Instruction>& instr : block.instructions) {
300 if (instr->opcode == aco_opcode::p_logical_start)
301 logical = true;
302 else if (instr->opcode == aco_opcode::p_logical_end)
303 logical = false;
304 if (logical && should_rematerialize(instr)) {
305 for (const Definition& def : instr->definitions) {
306 if (def.isTemp()) {
307 ctx.remat[def.getTemp()] = (remat_info){instr.get()};
308 ctx.remat_used[instr.get()] = false;
309 }
310 }
311 }
312 }
313 }
314 }
315
316 std::vector<std::map<Temp, uint32_t>> local_next_uses(spill_ctx& ctx, Block* block)
317 {
318 std::vector<std::map<Temp, uint32_t>> local_next_uses(block->instructions.size());
319
320 std::map<Temp, uint32_t> next_uses;
321 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_end[block->index])
322 next_uses[pair.first] = pair.second.second + block->instructions.size();
323
324 for (int idx = block->instructions.size() - 1; idx >= 0; idx--) {
325 aco_ptr<Instruction>& instr = block->instructions[idx];
326 if (!instr)
327 break;
328 if (instr->opcode == aco_opcode::p_phi || instr->opcode == aco_opcode::p_linear_phi)
329 break;
330
331 for (const Operand& op : instr->operands) {
332 if (op.isFixed() && op.physReg() == exec)
333 continue;
334 if (op.regClass().type() == RegType::vgpr && op.regClass().is_linear())
335 continue;
336 if (op.isTemp())
337 next_uses[op.getTemp()] = idx;
338 }
339 for (const Definition& def : instr->definitions) {
340 if (def.isTemp())
341 next_uses.erase(def.getTemp());
342 }
343 local_next_uses[idx] = next_uses;
344 }
345 return local_next_uses;
346 }
347
348
349 RegisterDemand init_live_in_vars(spill_ctx& ctx, Block* block, unsigned block_idx)
350 {
351 RegisterDemand spilled_registers;
352
353 /* first block, nothing was spilled before */
354 if (block_idx == 0)
355 return {0, 0};
356
357 /* loop header block */
358 if (block->loop_nest_depth > ctx.program->blocks[block_idx - 1].loop_nest_depth) {
359 assert(block->linear_preds[0] == block_idx - 1);
360 assert(block->logical_preds[0] == block_idx - 1);
361
362 /* create new loop_info */
363 ctx.loop_header.emplace(block);
364
365 /* check how many live-through variables should be spilled */
366 RegisterDemand new_demand;
367 unsigned i = block_idx;
368 while (ctx.program->blocks[i].loop_nest_depth >= block->loop_nest_depth) {
369 assert(ctx.program->blocks.size() > i);
370 new_demand.update(ctx.program->blocks[i].register_demand);
371 i++;
372 }
373 unsigned loop_end = i;
374
375 /* select live-through vgpr variables */
376 while (new_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr) {
377 unsigned distance = 0;
378 Temp to_spill;
379 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_end[block_idx - 1]) {
380 if (pair.first.type() == RegType::vgpr &&
381 pair.second.first >= loop_end &&
382 pair.second.second > distance &&
383 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
384 to_spill = pair.first;
385 distance = pair.second.second;
386 }
387 }
388 if (distance == 0)
389 break;
390
391 uint32_t spill_id;
392 if (ctx.spills_exit[block_idx - 1].find(to_spill) == ctx.spills_exit[block_idx - 1].end()) {
393 spill_id = ctx.allocate_spill_id(to_spill.regClass());
394 } else {
395 spill_id = ctx.spills_exit[block_idx - 1][to_spill];
396 }
397
398 ctx.spills_entry[block_idx][to_spill] = spill_id;
399 spilled_registers.vgpr += to_spill.size();
400 }
401
402 /* select live-through sgpr variables */
403 while (new_demand.sgpr - spilled_registers.sgpr > ctx.target_pressure.sgpr) {
404 unsigned distance = 0;
405 Temp to_spill;
406 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_end[block_idx - 1]) {
407 if (pair.first.type() == RegType::sgpr &&
408 pair.second.first >= loop_end &&
409 pair.second.second > distance &&
410 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
411 to_spill = pair.first;
412 distance = pair.second.second;
413 }
414 }
415 if (distance == 0)
416 break;
417
418 uint32_t spill_id;
419 if (ctx.spills_exit[block_idx - 1].find(to_spill) == ctx.spills_exit[block_idx - 1].end()) {
420 spill_id = ctx.allocate_spill_id(to_spill.regClass());
421 } else {
422 spill_id = ctx.spills_exit[block_idx - 1][to_spill];
423 }
424
425 ctx.spills_entry[block_idx][to_spill] = spill_id;
426 spilled_registers.sgpr += to_spill.size();
427 }
428
429
430
431 /* shortcut */
432 if (!RegisterDemand(new_demand - spilled_registers).exceeds(ctx.target_pressure))
433 return spilled_registers;
434
435 /* if reg pressure is too high at beginning of loop, add variables with furthest use */
436 unsigned idx = 0;
437 while (block->instructions[idx]->opcode == aco_opcode::p_phi || block->instructions[idx]->opcode == aco_opcode::p_linear_phi)
438 idx++;
439
440 assert(idx != 0 && "loop without phis: TODO");
441 idx--;
442 RegisterDemand reg_pressure = ctx.register_demand[block_idx][idx] - spilled_registers;
443 while (reg_pressure.sgpr > ctx.target_pressure.sgpr) {
444 unsigned distance = 0;
445 Temp to_spill;
446 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
447 if (pair.first.type() == RegType::sgpr &&
448 pair.second.second > distance &&
449 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
450 to_spill = pair.first;
451 distance = pair.second.second;
452 }
453 }
454 assert(distance != 0);
455
456 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
457 spilled_registers.sgpr += to_spill.size();
458 reg_pressure.sgpr -= to_spill.size();
459 }
460 while (reg_pressure.vgpr > ctx.target_pressure.vgpr) {
461 unsigned distance = 0;
462 Temp to_spill;
463 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
464 if (pair.first.type() == RegType::vgpr &&
465 pair.second.second > distance &&
466 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
467 to_spill = pair.first;
468 distance = pair.second.second;
469 }
470 }
471 assert(distance != 0);
472 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
473 spilled_registers.vgpr += to_spill.size();
474 reg_pressure.vgpr -= to_spill.size();
475 }
476
477 return spilled_registers;
478 }
479
480 /* branch block */
481 if (block->linear_preds.size() == 1 && !(block->kind & block_kind_loop_exit)) {
482 /* keep variables spilled if they are alive and not used in the current block */
483 unsigned pred_idx = block->linear_preds[0];
484 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
485 if (pair.first.type() == RegType::sgpr &&
486 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
487 ctx.next_use_distances_start[block_idx][pair.first].second > block_idx) {
488 ctx.spills_entry[block_idx].insert(pair);
489 spilled_registers.sgpr += pair.first.size();
490 }
491 }
492 if (block->logical_preds.size() == 1) {
493 pred_idx = block->logical_preds[0];
494 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
495 if (pair.first.type() == RegType::vgpr &&
496 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
497 ctx.next_use_distances_start[block_idx][pair.first].second > block_idx) {
498 ctx.spills_entry[block_idx].insert(pair);
499 spilled_registers.vgpr += pair.first.size();
500 }
501 }
502 }
503
504 /* if register demand is still too high, we just keep all spilled live vars and process the block */
505 if (block->register_demand.sgpr - spilled_registers.sgpr > ctx.target_pressure.sgpr) {
506 pred_idx = block->linear_preds[0];
507 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
508 if (pair.first.type() == RegType::sgpr &&
509 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
510 ctx.spills_entry[block_idx].insert(pair).second) {
511 spilled_registers.sgpr += pair.first.size();
512 }
513 }
514 }
515 if (block->register_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr && block->logical_preds.size() == 1) {
516 pred_idx = block->logical_preds[0];
517 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
518 if (pair.first.type() == RegType::vgpr &&
519 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
520 ctx.spills_entry[block_idx].insert(pair).second) {
521 spilled_registers.vgpr += pair.first.size();
522 }
523 }
524 }
525
526 return spilled_registers;
527 }
528
529 /* else: merge block */
530 std::set<Temp> partial_spills;
531
532 /* keep variables spilled on all incoming paths */
533 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
534 std::vector<unsigned>& preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds;
535 /* If it can be rematerialized, keep the variable spilled if all predecessors do not reload it.
536 * Otherwise, if any predecessor reloads it, ensure it's reloaded on all other predecessors.
537 * The idea is that it's better in practice to rematerialize redundantly than to create lots of phis. */
538 /* TODO: test this idea with more than Dawn of War III shaders (the current pipeline-db doesn't seem to exercise this path much) */
539 bool remat = ctx.remat.count(pair.first);
540 bool spill = !remat;
541 uint32_t spill_id = 0;
542 for (unsigned pred_idx : preds) {
543 /* variable is not even live at the predecessor: probably from a phi */
544 if (ctx.next_use_distances_end[pred_idx].find(pair.first) == ctx.next_use_distances_end[pred_idx].end()) {
545 spill = false;
546 break;
547 }
548 if (ctx.spills_exit[pred_idx].find(pair.first) == ctx.spills_exit[pred_idx].end()) {
549 if (!remat)
550 spill = false;
551 } else {
552 partial_spills.insert(pair.first);
553 /* it might be that on one incoming path, the variable has a different spill_id, but add_couple_code() will take care of that. */
554 spill_id = ctx.spills_exit[pred_idx][pair.first];
555 if (remat)
556 spill = true;
557 }
558 }
559 if (spill) {
560 ctx.spills_entry[block_idx][pair.first] = spill_id;
561 partial_spills.erase(pair.first);
562 spilled_registers += pair.first;
563 }
564 }
565
566 /* same for phis */
567 unsigned idx = 0;
568 while (block->instructions[idx]->opcode == aco_opcode::p_linear_phi ||
569 block->instructions[idx]->opcode == aco_opcode::p_phi) {
570 aco_ptr<Instruction>& phi = block->instructions[idx];
571 std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
572 bool spill = true;
573
574 for (unsigned i = 0; i < phi->operands.size(); i++) {
575 if (phi->operands[i].isUndefined())
576 continue;
577 assert(phi->operands[i].isTemp());
578 if (ctx.spills_exit[preds[i]].find(phi->operands[i].getTemp()) == ctx.spills_exit[preds[i]].end())
579 spill = false;
580 else
581 partial_spills.insert(phi->definitions[0].getTemp());
582 }
583 if (spill) {
584 ctx.spills_entry[block_idx][phi->definitions[0].getTemp()] = ctx.allocate_spill_id(phi->definitions[0].regClass());
585 partial_spills.erase(phi->definitions[0].getTemp());
586 spilled_registers += phi->definitions[0].getTemp();
587 }
588
589 idx++;
590 }
591
592 /* if reg pressure at first instruction is still too high, add partially spilled variables */
593 RegisterDemand reg_pressure;
594 if (idx == 0) {
595 for (const Definition& def : block->instructions[idx]->definitions) {
596 if (def.isTemp()) {
597 reg_pressure -= def.getTemp();
598 }
599 }
600 for (const Operand& op : block->instructions[idx]->operands) {
601 if (op.isTemp() && op.isFirstKill()) {
602 reg_pressure += op.getTemp();
603 }
604 }
605 } else {
606 idx--;
607 }
608 reg_pressure += ctx.register_demand[block_idx][idx] - spilled_registers;
609
610 while (reg_pressure.sgpr > ctx.target_pressure.sgpr) {
611 assert(!partial_spills.empty());
612
613 std::set<Temp>::iterator it = partial_spills.begin();
614 Temp to_spill = *it;
615 unsigned distance = ctx.next_use_distances_start[block_idx][*it].second;
616 while (it != partial_spills.end()) {
617 assert(ctx.spills_entry[block_idx].find(*it) == ctx.spills_entry[block_idx].end());
618
619 if (it->type() == RegType::sgpr && ctx.next_use_distances_start[block_idx][*it].second > distance) {
620 distance = ctx.next_use_distances_start[block_idx][*it].second;
621 to_spill = *it;
622 }
623 ++it;
624 }
625 assert(distance != 0);
626
627 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
628 partial_spills.erase(to_spill);
629 spilled_registers.sgpr += to_spill.size();
630 reg_pressure.sgpr -= to_spill.size();
631 }
632
633 while (reg_pressure.vgpr > ctx.target_pressure.vgpr) {
634 assert(!partial_spills.empty());
635
636 std::set<Temp>::iterator it = partial_spills.begin();
637 Temp to_spill = *it;
638 unsigned distance = ctx.next_use_distances_start[block_idx][*it].second;
639 while (it != partial_spills.end()) {
640 assert(ctx.spills_entry[block_idx].find(*it) == ctx.spills_entry[block_idx].end());
641
642 if (it->type() == RegType::vgpr && ctx.next_use_distances_start[block_idx][*it].second > distance) {
643 distance = ctx.next_use_distances_start[block_idx][*it].second;
644 to_spill = *it;
645 }
646 ++it;
647 }
648 assert(distance != 0);
649
650 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
651 partial_spills.erase(to_spill);
652 spilled_registers.vgpr += to_spill.size();
653 reg_pressure.vgpr -= to_spill.size();
654 }
655
656 return spilled_registers;
657 }
658
659
660 void add_coupling_code(spill_ctx& ctx, Block* block, unsigned block_idx)
661 {
662 /* no coupling code necessary */
663 if (block->linear_preds.size() == 0)
664 return;
665
666 std::vector<aco_ptr<Instruction>> instructions;
667 /* branch block: TODO take other branch into consideration */
668 if (block->linear_preds.size() == 1 && !(block->kind & block_kind_loop_exit)) {
669 assert(ctx.processed[block->linear_preds[0]]);
670 assert(ctx.register_demand[block_idx].size() == block->instructions.size());
671 std::vector<RegisterDemand> reg_demand;
672 unsigned insert_idx = 0;
673 unsigned pred_idx = block->linear_preds[0];
674
675 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> live : ctx.next_use_distances_start[block_idx]) {
676 if (!live.first.is_linear())
677 continue;
678 /* still spilled */
679 if (ctx.spills_entry[block_idx].find(live.first) != ctx.spills_entry[block_idx].end())
680 continue;
681
682 /* in register at end of predecessor */
683 if (ctx.spills_exit[pred_idx].find(live.first) == ctx.spills_exit[pred_idx].end()) {
684 std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(live.first);
685 if (it != ctx.renames[pred_idx].end())
686 ctx.renames[block_idx].insert(*it);
687 continue;
688 }
689
690 /* variable is spilled at predecessor and live at current block: create reload instruction */
691 Temp new_name = {ctx.program->allocateId(), live.first.regClass()};
692 aco_ptr<Instruction> reload = do_reload(ctx, live.first, new_name, ctx.spills_exit[pred_idx][live.first]);
693 instructions.emplace_back(std::move(reload));
694 reg_demand.push_back(RegisterDemand());
695 ctx.renames[block_idx][live.first] = new_name;
696 }
697
698 if (block->logical_preds.size() == 1) {
699 do {
700 assert(insert_idx < block->instructions.size());
701 instructions.emplace_back(std::move(block->instructions[insert_idx]));
702 reg_demand.push_back(ctx.register_demand[block_idx][insert_idx]);
703 insert_idx++;
704 } while (instructions.back()->opcode != aco_opcode::p_logical_start);
705
706 unsigned pred_idx = block->logical_preds[0];
707 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> live : ctx.next_use_distances_start[block_idx]) {
708 if (live.first.is_linear())
709 continue;
710 /* still spilled */
711 if (ctx.spills_entry[block_idx].find(live.first) != ctx.spills_entry[block_idx].end())
712 continue;
713
714 /* in register at end of predecessor */
715 if (ctx.spills_exit[pred_idx].find(live.first) == ctx.spills_exit[pred_idx].end()) {
716 std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(live.first);
717 if (it != ctx.renames[pred_idx].end())
718 ctx.renames[block_idx].insert(*it);
719 continue;
720 }
721
722 /* variable is spilled at predecessor and live at current block: create reload instruction */
723 Temp new_name = {ctx.program->allocateId(), live.first.regClass()};
724 aco_ptr<Instruction> reload = do_reload(ctx, live.first, new_name, ctx.spills_exit[pred_idx][live.first]);
725 instructions.emplace_back(std::move(reload));
726 reg_demand.emplace_back(reg_demand.back());
727 ctx.renames[block_idx][live.first] = new_name;
728 }
729 }
730
731 /* combine new reload instructions with original block */
732 if (!instructions.empty()) {
733 reg_demand.insert(reg_demand.end(), std::next(ctx.register_demand[block->index].begin(), insert_idx),
734 ctx.register_demand[block->index].end());
735 ctx.register_demand[block_idx] = std::move(reg_demand);
736 instructions.insert(instructions.end(),
737 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(std::next(block->instructions.begin(), insert_idx)),
738 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
739 block->instructions = std::move(instructions);
740 }
741 return;
742 }
743
744 /* loop header and merge blocks: check if all (linear) predecessors have been processed */
745 for (ASSERTED unsigned pred : block->linear_preds)
746 assert(ctx.processed[pred]);
747
748 /* iterate the phi nodes for which operands to spill at the predecessor */
749 for (aco_ptr<Instruction>& phi : block->instructions) {
750 if (phi->opcode != aco_opcode::p_phi &&
751 phi->opcode != aco_opcode::p_linear_phi)
752 break;
753
754 /* if the phi is not spilled, add to instructions */
755 if (ctx.spills_entry[block_idx].find(phi->definitions[0].getTemp()) == ctx.spills_entry[block_idx].end()) {
756 instructions.emplace_back(std::move(phi));
757 continue;
758 }
759
760 std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
761 uint32_t def_spill_id = ctx.spills_entry[block_idx][phi->definitions[0].getTemp()];
762
763 for (unsigned i = 0; i < phi->operands.size(); i++) {
764 if (phi->operands[i].isUndefined())
765 continue;
766
767 unsigned pred_idx = preds[i];
768 assert(phi->operands[i].isTemp() && phi->operands[i].isKill());
769 Temp var = phi->operands[i].getTemp();
770
771 /* build interferences between the phi def and all spilled variables at the predecessor blocks */
772 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
773 if (var == pair.first)
774 continue;
775 ctx.interferences[def_spill_id].second.emplace(pair.second);
776 ctx.interferences[pair.second].second.emplace(def_spill_id);
777 }
778
779 /* check if variable is already spilled at predecessor */
780 std::map<Temp, uint32_t>::iterator spilled = ctx.spills_exit[pred_idx].find(var);
781 if (spilled != ctx.spills_exit[pred_idx].end()) {
782 if (spilled->second != def_spill_id)
783 ctx.add_affinity(def_spill_id, spilled->second);
784 continue;
785 }
786
787 /* rename if necessary */
788 std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var);
789 if (rename_it != ctx.renames[pred_idx].end()) {
790 var = rename_it->second;
791 ctx.renames[pred_idx].erase(rename_it);
792 }
793
794 uint32_t spill_id = ctx.allocate_spill_id(phi->definitions[0].regClass());
795 ctx.add_affinity(def_spill_id, spill_id);
796 aco_ptr<Pseudo_instruction> spill{create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
797 spill->operands[0] = Operand(var);
798 spill->operands[1] = Operand(spill_id);
799 Block& pred = ctx.program->blocks[pred_idx];
800 unsigned idx = pred.instructions.size();
801 do {
802 assert(idx != 0);
803 idx--;
804 } while (phi->opcode == aco_opcode::p_phi && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
805 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
806 pred.instructions.insert(it, std::move(spill));
807 ctx.spills_exit[pred_idx][phi->operands[i].getTemp()] = spill_id;
808 }
809
810 /* remove phi from instructions */
811 phi.reset();
812 }
813
814 /* iterate all (other) spilled variables for which to spill at the predecessor */
815 // TODO: would be better to have them sorted: first vgprs and first with longest distance
816 for (std::pair<Temp, uint32_t> pair : ctx.spills_entry[block_idx]) {
817 std::vector<unsigned> preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds;
818
819 for (unsigned pred_idx : preds) {
820 /* variable is already spilled at predecessor */
821 std::map<Temp, uint32_t>::iterator spilled = ctx.spills_exit[pred_idx].find(pair.first);
822 if (spilled != ctx.spills_exit[pred_idx].end()) {
823 if (spilled->second != pair.second)
824 ctx.add_affinity(pair.second, spilled->second);
825 continue;
826 }
827
828 /* variable is dead at predecessor, it must be from a phi: this works because of CSSA form */
829 if (ctx.next_use_distances_end[pred_idx].find(pair.first) == ctx.next_use_distances_end[pred_idx].end())
830 continue;
831
832 /* add interferences between spilled variable and predecessors exit spills */
833 for (std::pair<Temp, uint32_t> exit_spill : ctx.spills_exit[pred_idx]) {
834 if (exit_spill.first == pair.first)
835 continue;
836 ctx.interferences[exit_spill.second].second.emplace(pair.second);
837 ctx.interferences[pair.second].second.emplace(exit_spill.second);
838 }
839
840 /* variable is in register at predecessor and has to be spilled */
841 /* rename if necessary */
842 Temp var = pair.first;
843 std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var);
844 if (rename_it != ctx.renames[pred_idx].end()) {
845 var = rename_it->second;
846 ctx.renames[pred_idx].erase(rename_it);
847 }
848
849 aco_ptr<Pseudo_instruction> spill{create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
850 spill->operands[0] = Operand(var);
851 spill->operands[1] = Operand(pair.second);
852 Block& pred = ctx.program->blocks[pred_idx];
853 unsigned idx = pred.instructions.size();
854 do {
855 assert(idx != 0);
856 idx--;
857 } while (pair.first.type() == RegType::vgpr && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
858 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
859 pred.instructions.insert(it, std::move(spill));
860 ctx.spills_exit[pred.index][pair.first] = pair.second;
861 }
862 }
863
864 /* iterate phis for which operands to reload */
865 for (aco_ptr<Instruction>& phi : instructions) {
866 assert(phi->opcode == aco_opcode::p_phi || phi->opcode == aco_opcode::p_linear_phi);
867 assert(ctx.spills_entry[block_idx].find(phi->definitions[0].getTemp()) == ctx.spills_entry[block_idx].end());
868
869 std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
870 for (unsigned i = 0; i < phi->operands.size(); i++) {
871 if (!phi->operands[i].isTemp())
872 continue;
873 unsigned pred_idx = preds[i];
874
875 /* rename operand */
876 if (ctx.spills_exit[pred_idx].find(phi->operands[i].getTemp()) == ctx.spills_exit[pred_idx].end()) {
877 std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(phi->operands[i].getTemp());
878 if (it != ctx.renames[pred_idx].end())
879 phi->operands[i].setTemp(it->second);
880 continue;
881 }
882
883 Temp tmp = phi->operands[i].getTemp();
884
885 /* reload phi operand at end of predecessor block */
886 Temp new_name = {ctx.program->allocateId(), tmp.regClass()};
887 Block& pred = ctx.program->blocks[pred_idx];
888 unsigned idx = pred.instructions.size();
889 do {
890 assert(idx != 0);
891 idx--;
892 } while (phi->opcode == aco_opcode::p_phi && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
893 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
894
895 aco_ptr<Instruction> reload = do_reload(ctx, tmp, new_name, ctx.spills_exit[pred_idx][tmp]);
896 pred.instructions.insert(it, std::move(reload));
897
898 ctx.spills_exit[pred_idx].erase(tmp);
899 ctx.renames[pred_idx][tmp] = new_name;
900 phi->operands[i].setTemp(new_name);
901 }
902 }
903
904 /* iterate live variables for which to reload */
905 // TODO: reload at current block if variable is spilled on all predecessors
906 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
907 /* skip spilled variables */
908 if (ctx.spills_entry[block_idx].find(pair.first) != ctx.spills_entry[block_idx].end())
909 continue;
910 std::vector<unsigned> preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds;
911
912 /* variable is dead at predecessor, it must be from a phi */
913 bool is_dead = false;
914 for (unsigned pred_idx : preds) {
915 if (ctx.next_use_distances_end[pred_idx].find(pair.first) == ctx.next_use_distances_end[pred_idx].end())
916 is_dead = true;
917 }
918 if (is_dead)
919 continue;
920 for (unsigned pred_idx : preds) {
921 /* the variable is not spilled at the predecessor */
922 if (ctx.spills_exit[pred_idx].find(pair.first) == ctx.spills_exit[pred_idx].end())
923 continue;
924
925 /* variable is spilled at predecessor and has to be reloaded */
926 Temp new_name = {ctx.program->allocateId(), pair.first.regClass()};
927 Block& pred = ctx.program->blocks[pred_idx];
928 unsigned idx = pred.instructions.size();
929 do {
930 assert(idx != 0);
931 idx--;
932 } while (pair.first.type() == RegType::vgpr && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
933 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
934
935 aco_ptr<Instruction> reload = do_reload(ctx, pair.first, new_name, ctx.spills_exit[pred.index][pair.first]);
936 pred.instructions.insert(it, std::move(reload));
937
938 ctx.spills_exit[pred.index].erase(pair.first);
939 ctx.renames[pred.index][pair.first] = new_name;
940 }
941
942 /* check if we have to create a new phi for this variable */
943 Temp rename = Temp();
944 bool is_same = true;
945 for (unsigned pred_idx : preds) {
946 if (ctx.renames[pred_idx].find(pair.first) == ctx.renames[pred_idx].end()) {
947 if (rename == Temp())
948 rename = pair.first;
949 else
950 is_same = rename == pair.first;
951 } else {
952 if (rename == Temp())
953 rename = ctx.renames[pred_idx][pair.first];
954 else
955 is_same = rename == ctx.renames[pred_idx][pair.first];
956 }
957
958 if (!is_same)
959 break;
960 }
961
962 if (!is_same) {
963 /* the variable was renamed differently in the predecessors: we have to create a phi */
964 aco_opcode opcode = pair.first.is_linear() ? aco_opcode::p_linear_phi : aco_opcode::p_phi;
965 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, preds.size(), 1)};
966 rename = {ctx.program->allocateId(), pair.first.regClass()};
967 for (unsigned i = 0; i < phi->operands.size(); i++) {
968 Temp tmp;
969 if (ctx.renames[preds[i]].find(pair.first) != ctx.renames[preds[i]].end())
970 tmp = ctx.renames[preds[i]][pair.first];
971 else if (preds[i] >= block_idx)
972 tmp = rename;
973 else
974 tmp = pair.first;
975 phi->operands[i] = Operand(tmp);
976 }
977 phi->definitions[0] = Definition(rename);
978 instructions.emplace_back(std::move(phi));
979 }
980
981 /* the variable was renamed: add new name to renames */
982 if (!(rename == Temp() || rename == pair.first))
983 ctx.renames[block_idx][pair.first] = rename;
984 }
985
986 /* combine phis with instructions */
987 unsigned idx = 0;
988 while (!block->instructions[idx]) {
989 idx++;
990 }
991
992 ctx.register_demand[block->index].erase(ctx.register_demand[block->index].begin(), ctx.register_demand[block->index].begin() + idx);
993 ctx.register_demand[block->index].insert(ctx.register_demand[block->index].begin(), instructions.size(), RegisterDemand());
994
995 std::vector<aco_ptr<Instruction>>::iterator start = std::next(block->instructions.begin(), idx);
996 instructions.insert(instructions.end(), std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(start),
997 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
998 block->instructions = std::move(instructions);
999 }
1000
1001 void process_block(spill_ctx& ctx, unsigned block_idx, Block* block,
1002 std::map<Temp, uint32_t> &current_spills, RegisterDemand spilled_registers)
1003 {
1004 std::vector<std::map<Temp, uint32_t>> local_next_use_distance;
1005 std::vector<aco_ptr<Instruction>> instructions;
1006 unsigned idx = 0;
1007
1008 /* phis are handled separetely */
1009 while (block->instructions[idx]->opcode == aco_opcode::p_phi ||
1010 block->instructions[idx]->opcode == aco_opcode::p_linear_phi) {
1011 aco_ptr<Instruction>& instr = block->instructions[idx];
1012 for (const Operand& op : instr->operands) {
1013 /* prevent it's definining instruction from being DCE'd if it could be rematerialized */
1014 if (op.isTemp() && ctx.remat.count(op.getTemp()))
1015 ctx.remat_used[ctx.remat[op.getTemp()].instr] = true;
1016 }
1017 instructions.emplace_back(std::move(instr));
1018 idx++;
1019 }
1020
1021 if (block->register_demand.exceeds(ctx.target_pressure))
1022 local_next_use_distance = local_next_uses(ctx, block);
1023
1024 while (idx < block->instructions.size()) {
1025 aco_ptr<Instruction>& instr = block->instructions[idx];
1026
1027 std::map<Temp, std::pair<Temp, uint32_t>> reloads;
1028 std::map<Temp, uint32_t> spills;
1029 /* rename and reload operands */
1030 for (Operand& op : instr->operands) {
1031 if (!op.isTemp())
1032 continue;
1033 if (current_spills.find(op.getTemp()) == current_spills.end()) {
1034 /* the Operand is in register: check if it was renamed */
1035 if (ctx.renames[block_idx].find(op.getTemp()) != ctx.renames[block_idx].end())
1036 op.setTemp(ctx.renames[block_idx][op.getTemp()]);
1037 /* prevent it's definining instruction from being DCE'd if it could be rematerialized */
1038 if (ctx.remat.count(op.getTemp()))
1039 ctx.remat_used[ctx.remat[op.getTemp()].instr] = true;
1040 continue;
1041 }
1042 /* the Operand is spilled: add it to reloads */
1043 Temp new_tmp = {ctx.program->allocateId(), op.regClass()};
1044 ctx.renames[block_idx][op.getTemp()] = new_tmp;
1045 reloads[new_tmp] = std::make_pair(op.getTemp(), current_spills[op.getTemp()]);
1046 current_spills.erase(op.getTemp());
1047 op.setTemp(new_tmp);
1048 spilled_registers -= new_tmp;
1049 }
1050
1051 /* check if register demand is low enough before and after the current instruction */
1052 if (block->register_demand.exceeds(ctx.target_pressure)) {
1053
1054 RegisterDemand new_demand = ctx.register_demand[block_idx][idx];
1055 if (idx == 0) {
1056 RegisterDemand demand_before = new_demand;
1057 for (const Definition& def : instr->definitions)
1058 demand_before -= def.getTemp();
1059 for (const Operand& op : instr->operands) {
1060 if (op.isFirstKill())
1061 demand_before += op.getTemp();
1062 }
1063 new_demand.update(demand_before);
1064 } else {
1065 new_demand.update(ctx.register_demand[block_idx][idx - 1]);
1066 }
1067
1068 assert(!local_next_use_distance.empty());
1069
1070 /* if reg pressure is too high, spill variable with furthest next use */
1071 while (RegisterDemand(new_demand - spilled_registers).exceeds(ctx.target_pressure)) {
1072 unsigned distance = 0;
1073 Temp to_spill;
1074 bool do_rematerialize = false;
1075 if (new_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr) {
1076 for (std::pair<Temp, uint32_t> pair : local_next_use_distance[idx]) {
1077 bool can_rematerialize = ctx.remat.count(pair.first);
1078 if (pair.first.type() == RegType::vgpr &&
1079 ((pair.second > distance && can_rematerialize == do_rematerialize) ||
1080 (can_rematerialize && !do_rematerialize && pair.second > idx)) &&
1081 current_spills.find(pair.first) == current_spills.end() &&
1082 ctx.spills_exit[block_idx].find(pair.first) == ctx.spills_exit[block_idx].end()) {
1083 to_spill = pair.first;
1084 distance = pair.second;
1085 do_rematerialize = can_rematerialize;
1086 }
1087 }
1088 } else {
1089 for (std::pair<Temp, uint32_t> pair : local_next_use_distance[idx]) {
1090 bool can_rematerialize = ctx.remat.count(pair.first);
1091 if (pair.first.type() == RegType::sgpr &&
1092 ((pair.second > distance && can_rematerialize == do_rematerialize) ||
1093 (can_rematerialize && !do_rematerialize && pair.second > idx)) &&
1094 current_spills.find(pair.first) == current_spills.end() &&
1095 ctx.spills_exit[block_idx].find(pair.first) == ctx.spills_exit[block_idx].end()) {
1096 to_spill = pair.first;
1097 distance = pair.second;
1098 do_rematerialize = can_rematerialize;
1099 }
1100 }
1101 }
1102
1103 assert(distance != 0 && distance > idx);
1104 uint32_t spill_id = ctx.allocate_spill_id(to_spill.regClass());
1105
1106 /* add interferences with currently spilled variables */
1107 for (std::pair<Temp, uint32_t> pair : current_spills) {
1108 ctx.interferences[spill_id].second.emplace(pair.second);
1109 ctx.interferences[pair.second].second.emplace(spill_id);
1110 }
1111 for (std::pair<Temp, std::pair<Temp, uint32_t>> pair : reloads) {
1112 ctx.interferences[spill_id].second.emplace(pair.second.second);
1113 ctx.interferences[pair.second.second].second.emplace(spill_id);
1114 }
1115
1116 current_spills[to_spill] = spill_id;
1117 spilled_registers += to_spill;
1118
1119 /* rename if necessary */
1120 if (ctx.renames[block_idx].find(to_spill) != ctx.renames[block_idx].end()) {
1121 to_spill = ctx.renames[block_idx][to_spill];
1122 }
1123
1124 /* add spill to new instructions */
1125 aco_ptr<Pseudo_instruction> spill{create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
1126 spill->operands[0] = Operand(to_spill);
1127 spill->operands[1] = Operand(spill_id);
1128 instructions.emplace_back(std::move(spill));
1129 }
1130 }
1131
1132 /* add reloads and instruction to new instructions */
1133 for (std::pair<Temp, std::pair<Temp, uint32_t>> pair : reloads) {
1134 aco_ptr<Instruction> reload = do_reload(ctx, pair.second.first, pair.first, pair.second.second);
1135 instructions.emplace_back(std::move(reload));
1136 }
1137 instructions.emplace_back(std::move(instr));
1138 idx++;
1139 }
1140
1141 block->instructions = std::move(instructions);
1142 ctx.spills_exit[block_idx].insert(current_spills.begin(), current_spills.end());
1143 }
1144
1145 void spill_block(spill_ctx& ctx, unsigned block_idx)
1146 {
1147 Block* block = &ctx.program->blocks[block_idx];
1148 ctx.processed[block_idx] = true;
1149
1150 /* determine set of variables which are spilled at the beginning of the block */
1151 RegisterDemand spilled_registers = init_live_in_vars(ctx, block, block_idx);
1152
1153 /* add interferences for spilled variables */
1154 for (std::pair<Temp, uint32_t> x : ctx.spills_entry[block_idx]) {
1155 for (std::pair<Temp, uint32_t> y : ctx.spills_entry[block_idx])
1156 if (x.second != y.second)
1157 ctx.interferences[x.second].second.emplace(y.second);
1158 }
1159
1160 bool is_loop_header = block->loop_nest_depth && ctx.loop_header.top()->index == block_idx;
1161 if (!is_loop_header) {
1162 /* add spill/reload code on incoming control flow edges */
1163 add_coupling_code(ctx, block, block_idx);
1164 }
1165
1166 std::map<Temp, uint32_t> current_spills = ctx.spills_entry[block_idx];
1167
1168 /* check conditions to process this block */
1169 bool process = RegisterDemand(block->register_demand - spilled_registers).exceeds(ctx.target_pressure) ||
1170 !ctx.renames[block_idx].empty() ||
1171 ctx.remat_used.size();
1172
1173 std::map<Temp, uint32_t>::iterator it = current_spills.begin();
1174 while (!process && it != current_spills.end()) {
1175 if (ctx.next_use_distances_start[block_idx][it->first].first == block_idx)
1176 process = true;
1177 ++it;
1178 }
1179
1180 if (process)
1181 process_block(ctx, block_idx, block, current_spills, spilled_registers);
1182 else
1183 ctx.spills_exit[block_idx].insert(current_spills.begin(), current_spills.end());
1184
1185 /* check if the next block leaves the current loop */
1186 if (block->loop_nest_depth == 0 || ctx.program->blocks[block_idx + 1].loop_nest_depth >= block->loop_nest_depth)
1187 return;
1188
1189 Block* loop_header = ctx.loop_header.top();
1190
1191 /* preserve original renames at end of loop header block */
1192 std::map<Temp, Temp> renames = std::move(ctx.renames[loop_header->index]);
1193
1194 /* add coupling code to all loop header predecessors */
1195 add_coupling_code(ctx, loop_header, loop_header->index);
1196
1197 /* update remat_used for phis added in add_coupling_code() */
1198 for (aco_ptr<Instruction>& instr : loop_header->instructions) {
1199 if (!is_phi(instr))
1200 break;
1201 for (const Operand& op : instr->operands) {
1202 if (op.isTemp() && ctx.remat.count(op.getTemp()))
1203 ctx.remat_used[ctx.remat[op.getTemp()].instr] = true;
1204 }
1205 }
1206
1207 /* propagate new renames through loop: i.e. repair the SSA */
1208 renames.swap(ctx.renames[loop_header->index]);
1209 for (std::pair<Temp, Temp> rename : renames) {
1210 for (unsigned idx = loop_header->index; idx <= block_idx; idx++) {
1211 Block& current = ctx.program->blocks[idx];
1212 std::vector<aco_ptr<Instruction>>::iterator instr_it = current.instructions.begin();
1213
1214 /* first rename phis */
1215 while (instr_it != current.instructions.end()) {
1216 aco_ptr<Instruction>& phi = *instr_it;
1217 if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
1218 break;
1219 /* no need to rename the loop header phis once again. this happened in add_coupling_code() */
1220 if (idx == loop_header->index) {
1221 instr_it++;
1222 continue;
1223 }
1224
1225 for (Operand& op : phi->operands) {
1226 if (!op.isTemp())
1227 continue;
1228 if (op.getTemp() == rename.first)
1229 op.setTemp(rename.second);
1230 }
1231 instr_it++;
1232 }
1233
1234 std::map<Temp, std::pair<uint32_t, uint32_t>>::iterator it = ctx.next_use_distances_start[idx].find(rename.first);
1235
1236 /* variable is not live at beginning of this block */
1237 if (it == ctx.next_use_distances_start[idx].end())
1238 continue;
1239
1240 /* if the variable is live at the block's exit, add rename */
1241 if (ctx.next_use_distances_end[idx].find(rename.first) != ctx.next_use_distances_end[idx].end())
1242 ctx.renames[idx].insert(rename);
1243
1244 /* rename all uses in this block */
1245 bool renamed = false;
1246 while (!renamed && instr_it != current.instructions.end()) {
1247 aco_ptr<Instruction>& instr = *instr_it;
1248 for (Operand& op : instr->operands) {
1249 if (!op.isTemp())
1250 continue;
1251 if (op.getTemp() == rename.first) {
1252 op.setTemp(rename.second);
1253 /* we can stop with this block as soon as the variable is spilled */
1254 if (instr->opcode == aco_opcode::p_spill)
1255 renamed = true;
1256 }
1257 }
1258 instr_it++;
1259 }
1260 }
1261 }
1262
1263 /* remove loop header info from stack */
1264 ctx.loop_header.pop();
1265 }
1266
1267 Temp load_scratch_resource(spill_ctx& ctx, Temp& scratch_offset,
1268 std::vector<aco_ptr<Instruction>>& instructions,
1269 unsigned offset, bool is_top_level)
1270 {
1271 Builder bld(ctx.program);
1272 if (is_top_level) {
1273 bld.reset(&instructions);
1274 } else {
1275 /* find p_logical_end */
1276 unsigned idx = instructions.size() - 1;
1277 while (instructions[idx]->opcode != aco_opcode::p_logical_end)
1278 idx--;
1279 bld.reset(&instructions, std::next(instructions.begin(), idx));
1280 }
1281
1282 Temp private_segment_buffer = ctx.program->private_segment_buffer;
1283 if (ctx.program->stage != compute_cs)
1284 private_segment_buffer = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, Operand(0u));
1285
1286 if (offset)
1287 scratch_offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), scratch_offset, Operand(offset));
1288
1289 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
1290 S_008F0C_INDEX_STRIDE(ctx.program->wave_size == 64 ? 3 : 2);
1291
1292 if (ctx.program->chip_class >= GFX10) {
1293 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1294 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
1295 S_008F0C_RESOURCE_LEVEL(1);
1296 } else if (ctx.program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
1297 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1298 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1299 }
1300 /* older generations need element size = 4 bytes. element size removed in GFX9 */
1301 if (ctx.program->chip_class <= GFX8)
1302 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
1303
1304 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
1305 private_segment_buffer, Operand(-1u),
1306 Operand(rsrc_conf));
1307 }
1308
1309 void assign_spill_slots(spill_ctx& ctx, unsigned spills_to_vgpr) {
1310 std::map<uint32_t, uint32_t> sgpr_slot;
1311 std::map<uint32_t, uint32_t> vgpr_slot;
1312 std::vector<bool> is_assigned(ctx.interferences.size());
1313
1314 /* first, handle affinities: just merge all interferences into both spill ids */
1315 for (std::vector<uint32_t>& vec : ctx.affinities) {
1316 for (unsigned i = 0; i < vec.size(); i++) {
1317 for (unsigned j = i + 1; j < vec.size(); j++) {
1318 assert(vec[i] != vec[j]);
1319 for (uint32_t id : ctx.interferences[vec[i]].second)
1320 ctx.interferences[id].second.insert(vec[j]);
1321 for (uint32_t id : ctx.interferences[vec[j]].second)
1322 ctx.interferences[id].second.insert(vec[i]);
1323 ctx.interferences[vec[i]].second.insert(ctx.interferences[vec[j]].second.begin(), ctx.interferences[vec[j]].second.end());
1324 ctx.interferences[vec[j]].second.insert(ctx.interferences[vec[i]].second.begin(), ctx.interferences[vec[i]].second.end());
1325
1326 bool reloaded = ctx.is_reloaded[vec[i]] || ctx.is_reloaded[vec[j]];
1327 ctx.is_reloaded[vec[i]] = reloaded;
1328 ctx.is_reloaded[vec[j]] = reloaded;
1329 }
1330 }
1331 }
1332 for (ASSERTED uint32_t i = 0; i < ctx.interferences.size(); i++)
1333 for (ASSERTED uint32_t id : ctx.interferences[i].second)
1334 assert(i != id);
1335
1336 /* for each spill slot, assign as many spill ids as possible */
1337 std::vector<std::set<uint32_t>> spill_slot_interferences;
1338 unsigned slot_idx = 0;
1339 bool done = false;
1340
1341 /* assign sgpr spill slots */
1342 while (!done) {
1343 done = true;
1344 for (unsigned id = 0; id < ctx.interferences.size(); id++) {
1345 if (is_assigned[id] || !ctx.is_reloaded[id])
1346 continue;
1347 if (ctx.interferences[id].first.type() != RegType::sgpr)
1348 continue;
1349
1350 /* check interferences */
1351 bool interferes = false;
1352 for (unsigned i = slot_idx; i < slot_idx + ctx.interferences[id].first.size(); i++) {
1353 if (i == spill_slot_interferences.size())
1354 spill_slot_interferences.emplace_back(std::set<uint32_t>());
1355 if (spill_slot_interferences[i].find(id) != spill_slot_interferences[i].end() || i / ctx.wave_size != slot_idx / ctx.wave_size) {
1356 interferes = true;
1357 break;
1358 }
1359 }
1360 if (interferes) {
1361 done = false;
1362 continue;
1363 }
1364
1365 /* we found a spill id which can be assigned to current spill slot */
1366 sgpr_slot[id] = slot_idx;
1367 is_assigned[id] = true;
1368 for (unsigned i = slot_idx; i < slot_idx + ctx.interferences[id].first.size(); i++)
1369 spill_slot_interferences[i].insert(ctx.interferences[id].second.begin(), ctx.interferences[id].second.end());
1370
1371 /* add all affinities: there are no additional interferences */
1372 for (std::vector<uint32_t>& vec : ctx.affinities) {
1373 bool found_affinity = false;
1374 for (uint32_t entry : vec) {
1375 if (entry == id) {
1376 found_affinity = true;
1377 break;
1378 }
1379 }
1380 if (!found_affinity)
1381 continue;
1382 for (uint32_t entry : vec) {
1383 sgpr_slot[entry] = slot_idx;
1384 is_assigned[entry] = true;
1385 }
1386 }
1387 }
1388 slot_idx++;
1389 }
1390
1391 unsigned sgpr_spill_slots = spill_slot_interferences.size();
1392 spill_slot_interferences.clear();
1393 slot_idx = 0;
1394 done = false;
1395
1396 /* assign vgpr spill slots */
1397 while (!done) {
1398 done = true;
1399 for (unsigned id = 0; id < ctx.interferences.size(); id++) {
1400 if (is_assigned[id] || !ctx.is_reloaded[id])
1401 continue;
1402 if (ctx.interferences[id].first.type() != RegType::vgpr)
1403 continue;
1404
1405 /* check interferences */
1406 bool interferes = false;
1407 for (unsigned i = slot_idx; i < slot_idx + ctx.interferences[id].first.size(); i++) {
1408 if (i == spill_slot_interferences.size())
1409 spill_slot_interferences.emplace_back(std::set<uint32_t>());
1410 /* check for interference and ensure that vector regs are stored next to each other */
1411 if (spill_slot_interferences[i].find(id) != spill_slot_interferences[i].end()) {
1412 interferes = true;
1413 break;
1414 }
1415 }
1416 if (interferes) {
1417 done = false;
1418 continue;
1419 }
1420
1421 /* we found a spill id which can be assigned to current spill slot */
1422 vgpr_slot[id] = slot_idx;
1423 is_assigned[id] = true;
1424 for (unsigned i = slot_idx; i < slot_idx + ctx.interferences[id].first.size(); i++)
1425 spill_slot_interferences[i].insert(ctx.interferences[id].second.begin(), ctx.interferences[id].second.end());
1426
1427 /* add all affinities: there are no additional interferences */
1428 for (std::vector<uint32_t>& vec : ctx.affinities) {
1429 bool found_affinity = false;
1430 for (uint32_t entry : vec) {
1431 if (entry == id) {
1432 found_affinity = true;
1433 break;
1434 }
1435 }
1436 if (!found_affinity)
1437 continue;
1438 for (uint32_t entry : vec) {
1439 vgpr_slot[entry] = slot_idx;
1440 is_assigned[entry] = true;
1441 }
1442 }
1443 }
1444 slot_idx++;
1445 }
1446
1447 unsigned vgpr_spill_slots = spill_slot_interferences.size();
1448
1449 for (unsigned id = 0; id < is_assigned.size(); id++)
1450 assert(is_assigned[id] || !ctx.is_reloaded[id]);
1451
1452 for (std::vector<uint32_t>& vec : ctx.affinities) {
1453 for (unsigned i = 0; i < vec.size(); i++) {
1454 for (unsigned j = i + 1; j < vec.size(); j++) {
1455 assert(is_assigned[vec[i]] == is_assigned[vec[j]]);
1456 if (!is_assigned[vec[i]])
1457 continue;
1458 assert(ctx.is_reloaded[vec[i]] == ctx.is_reloaded[vec[j]]);
1459 assert(ctx.interferences[vec[i]].first.type() == ctx.interferences[vec[j]].first.type());
1460 if (ctx.interferences[vec[i]].first.type() == RegType::sgpr)
1461 assert(sgpr_slot[vec[i]] == sgpr_slot[vec[j]]);
1462 else
1463 assert(vgpr_slot[vec[i]] == vgpr_slot[vec[j]]);
1464 }
1465 }
1466 }
1467
1468 /* hope, we didn't mess up */
1469 std::vector<Temp> vgpr_spill_temps((sgpr_spill_slots + ctx.wave_size - 1) / ctx.wave_size);
1470 assert(vgpr_spill_temps.size() <= spills_to_vgpr);
1471
1472 /* replace pseudo instructions with actual hardware instructions */
1473 Temp scratch_offset = ctx.program->scratch_offset, scratch_rsrc = Temp();
1474 unsigned last_top_level_block_idx = 0;
1475 std::vector<bool> reload_in_loop(vgpr_spill_temps.size());
1476 for (Block& block : ctx.program->blocks) {
1477
1478 /* after loops, we insert a user if there was a reload inside the loop */
1479 if (block.loop_nest_depth == 0) {
1480 int end_vgprs = 0;
1481 for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
1482 if (reload_in_loop[i])
1483 end_vgprs++;
1484 }
1485
1486 if (end_vgprs > 0) {
1487 aco_ptr<Instruction> destr{create_instruction<Pseudo_instruction>(aco_opcode::p_end_linear_vgpr, Format::PSEUDO, end_vgprs, 0)};
1488 int k = 0;
1489 for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
1490 if (reload_in_loop[i])
1491 destr->operands[k++] = Operand(vgpr_spill_temps[i]);
1492 reload_in_loop[i] = false;
1493 }
1494 /* find insertion point */
1495 std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin();
1496 while ((*it)->opcode == aco_opcode::p_linear_phi || (*it)->opcode == aco_opcode::p_phi)
1497 ++it;
1498 block.instructions.insert(it, std::move(destr));
1499 }
1500 }
1501
1502 if (block.kind & block_kind_top_level && !block.linear_preds.empty()) {
1503 last_top_level_block_idx = block.index;
1504
1505 /* check if any spilled variables use a created linear vgpr, otherwise destroy them */
1506 for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
1507 if (vgpr_spill_temps[i] == Temp())
1508 continue;
1509
1510 bool can_destroy = true;
1511 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[block.linear_preds[0]]) {
1512
1513 if (sgpr_slot.find(pair.second) != sgpr_slot.end() &&
1514 sgpr_slot[pair.second] / ctx.wave_size == i) {
1515 can_destroy = false;
1516 break;
1517 }
1518 }
1519 if (can_destroy)
1520 vgpr_spill_temps[i] = Temp();
1521 }
1522 }
1523
1524 std::vector<aco_ptr<Instruction>>::iterator it;
1525 std::vector<aco_ptr<Instruction>> instructions;
1526 instructions.reserve(block.instructions.size());
1527 Builder bld(ctx.program, &instructions);
1528 for (it = block.instructions.begin(); it != block.instructions.end(); ++it) {
1529
1530 if ((*it)->opcode == aco_opcode::p_spill) {
1531 uint32_t spill_id = (*it)->operands[1].constantValue();
1532
1533 if (!ctx.is_reloaded[spill_id]) {
1534 /* never reloaded, so don't spill */
1535 } else if (vgpr_slot.find(spill_id) != vgpr_slot.end()) {
1536 /* spill vgpr */
1537 ctx.program->config->spilled_vgprs += (*it)->operands[0].size();
1538 uint32_t spill_slot = vgpr_slot[spill_id];
1539 bool add_offset_to_sgpr = ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size + vgpr_spill_slots * 4 > 4096;
1540 unsigned base_offset = add_offset_to_sgpr ? 0 : ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size;
1541
1542 /* check if the scratch resource descriptor already exists */
1543 if (scratch_rsrc == Temp()) {
1544 unsigned offset = add_offset_to_sgpr ? ctx.program->config->scratch_bytes_per_wave : 0;
1545 scratch_rsrc = load_scratch_resource(ctx, scratch_offset,
1546 last_top_level_block_idx == block.index ?
1547 instructions : ctx.program->blocks[last_top_level_block_idx].instructions,
1548 offset,
1549 last_top_level_block_idx == block.index);
1550 }
1551
1552 unsigned offset = base_offset + spill_slot * 4;
1553 aco_opcode opcode = aco_opcode::buffer_store_dword;
1554 assert((*it)->operands[0].isTemp());
1555 Temp temp = (*it)->operands[0].getTemp();
1556 assert(temp.type() == RegType::vgpr && !temp.is_linear());
1557 if (temp.size() > 1) {
1558 Instruction* split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, temp.size())};
1559 split->operands[0] = Operand(temp);
1560 for (unsigned i = 0; i < temp.size(); i++)
1561 split->definitions[i] = bld.def(v1);
1562 bld.insert(split);
1563 for (unsigned i = 0; i < temp.size(); i++)
1564 bld.mubuf(opcode, Operand(), scratch_rsrc, scratch_offset, split->definitions[i].getTemp(), offset + i * 4, false);
1565 } else {
1566 bld.mubuf(opcode, Operand(), scratch_rsrc, scratch_offset, temp, offset, false);
1567 }
1568 } else if (sgpr_slot.find(spill_id) != sgpr_slot.end()) {
1569 ctx.program->config->spilled_sgprs += (*it)->operands[0].size();
1570
1571 uint32_t spill_slot = sgpr_slot[spill_id];
1572
1573 /* check if the linear vgpr already exists */
1574 if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) {
1575 Temp linear_vgpr = {ctx.program->allocateId(), v1.as_linear()};
1576 vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr;
1577 aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
1578 create->definitions[0] = Definition(linear_vgpr);
1579 /* find the right place to insert this definition */
1580 if (last_top_level_block_idx == block.index) {
1581 /* insert right before the current instruction */
1582 instructions.emplace_back(std::move(create));
1583 } else {
1584 assert(last_top_level_block_idx < block.index);
1585 /* insert before the branch at last top level block */
1586 std::vector<aco_ptr<Instruction>>& instructions = ctx.program->blocks[last_top_level_block_idx].instructions;
1587 instructions.insert(std::next(instructions.begin(), instructions.size() - 1), std::move(create));
1588 }
1589 }
1590
1591 /* spill sgpr: just add the vgpr temp to operands */
1592 Pseudo_instruction* spill = create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 3, 0);
1593 spill->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]);
1594 spill->operands[1] = Operand(spill_slot % ctx.wave_size);
1595 spill->operands[2] = (*it)->operands[0];
1596 instructions.emplace_back(aco_ptr<Instruction>(spill));
1597 } else {
1598 unreachable("No spill slot assigned for spill id");
1599 }
1600
1601 } else if ((*it)->opcode == aco_opcode::p_reload) {
1602 uint32_t spill_id = (*it)->operands[0].constantValue();
1603 assert(ctx.is_reloaded[spill_id]);
1604
1605 if (vgpr_slot.find(spill_id) != vgpr_slot.end()) {
1606 /* reload vgpr */
1607 uint32_t spill_slot = vgpr_slot[spill_id];
1608 bool add_offset_to_sgpr = ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size + vgpr_spill_slots * 4 > 4096;
1609 unsigned base_offset = add_offset_to_sgpr ? 0 : ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size;
1610
1611 /* check if the scratch resource descriptor already exists */
1612 if (scratch_rsrc == Temp()) {
1613 unsigned offset = add_offset_to_sgpr ? ctx.program->config->scratch_bytes_per_wave : 0;
1614 scratch_rsrc = load_scratch_resource(ctx, scratch_offset,
1615 last_top_level_block_idx == block.index ?
1616 instructions : ctx.program->blocks[last_top_level_block_idx].instructions,
1617 offset,
1618 last_top_level_block_idx == block.index);
1619 }
1620
1621 unsigned offset = base_offset + spill_slot * 4;
1622 aco_opcode opcode = aco_opcode::buffer_load_dword;
1623 Definition def = (*it)->definitions[0];
1624 if (def.size() > 1) {
1625 Instruction* vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, def.size(), 1)};
1626 vec->definitions[0] = def;
1627 for (unsigned i = 0; i < def.size(); i++) {
1628 Temp tmp = bld.tmp(v1);
1629 vec->operands[i] = Operand(tmp);
1630 bld.mubuf(opcode, Definition(tmp), Operand(), scratch_rsrc, scratch_offset, offset + i * 4, false);
1631 }
1632 bld.insert(vec);
1633 } else {
1634 bld.mubuf(opcode, def, Operand(), scratch_rsrc, scratch_offset, offset, false);
1635 }
1636 } else if (sgpr_slot.find(spill_id) != sgpr_slot.end()) {
1637 uint32_t spill_slot = sgpr_slot[spill_id];
1638 reload_in_loop[spill_slot / ctx.wave_size] = block.loop_nest_depth > 0;
1639
1640 /* check if the linear vgpr already exists */
1641 if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) {
1642 Temp linear_vgpr = {ctx.program->allocateId(), v1.as_linear()};
1643 vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr;
1644 aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
1645 create->definitions[0] = Definition(linear_vgpr);
1646 /* find the right place to insert this definition */
1647 if (last_top_level_block_idx == block.index) {
1648 /* insert right before the current instruction */
1649 instructions.emplace_back(std::move(create));
1650 } else {
1651 assert(last_top_level_block_idx < block.index);
1652 /* insert before the branch at last top level block */
1653 std::vector<aco_ptr<Instruction>>& instructions = ctx.program->blocks[last_top_level_block_idx].instructions;
1654 instructions.insert(std::next(instructions.begin(), instructions.size() - 1), std::move(create));
1655 }
1656 }
1657
1658 /* reload sgpr: just add the vgpr temp to operands */
1659 Pseudo_instruction* reload = create_instruction<Pseudo_instruction>(aco_opcode::p_reload, Format::PSEUDO, 2, 1);
1660 reload->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]);
1661 reload->operands[1] = Operand(spill_slot % ctx.wave_size);
1662 reload->definitions[0] = (*it)->definitions[0];
1663 instructions.emplace_back(aco_ptr<Instruction>(reload));
1664 } else {
1665 unreachable("No spill slot assigned for spill id");
1666 }
1667 } else if (!ctx.remat_used.count(it->get()) || ctx.remat_used[it->get()]) {
1668 instructions.emplace_back(std::move(*it));
1669 }
1670
1671 }
1672 block.instructions = std::move(instructions);
1673 }
1674
1675 /* update required scratch memory */
1676 ctx.program->config->scratch_bytes_per_wave += align(vgpr_spill_slots * 4 * ctx.program->wave_size, 1024);
1677
1678 /* SSA elimination inserts copies for logical phis right before p_logical_end
1679 * So if a linear vgpr is used between that p_logical_end and the branch,
1680 * we need to ensure logical phis don't choose a definition which aliases
1681 * the linear vgpr.
1682 * TODO: Moving the spills and reloads to before p_logical_end might produce
1683 * slightly better code. */
1684 for (Block& block : ctx.program->blocks) {
1685 /* loops exits are already handled */
1686 if (block.logical_preds.size() <= 1)
1687 continue;
1688
1689 bool has_logical_phis = false;
1690 for (aco_ptr<Instruction>& instr : block.instructions) {
1691 if (instr->opcode == aco_opcode::p_phi) {
1692 has_logical_phis = true;
1693 break;
1694 } else if (instr->opcode != aco_opcode::p_linear_phi) {
1695 break;
1696 }
1697 }
1698 if (!has_logical_phis)
1699 continue;
1700
1701 std::set<Temp> vgprs;
1702 for (unsigned pred_idx : block.logical_preds) {
1703 Block& pred = ctx.program->blocks[pred_idx];
1704 for (int i = pred.instructions.size() - 1; i >= 0; i--) {
1705 aco_ptr<Instruction>& pred_instr = pred.instructions[i];
1706 if (pred_instr->opcode == aco_opcode::p_logical_end) {
1707 break;
1708 } else if (pred_instr->opcode == aco_opcode::p_spill ||
1709 pred_instr->opcode == aco_opcode::p_reload) {
1710 vgprs.insert(pred_instr->operands[0].getTemp());
1711 }
1712 }
1713 }
1714 if (!vgprs.size())
1715 continue;
1716
1717 aco_ptr<Instruction> destr{create_instruction<Pseudo_instruction>(aco_opcode::p_end_linear_vgpr, Format::PSEUDO, vgprs.size(), 0)};
1718 int k = 0;
1719 for (Temp tmp : vgprs) {
1720 destr->operands[k++] = Operand(tmp);
1721 }
1722 /* find insertion point */
1723 std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin();
1724 while ((*it)->opcode == aco_opcode::p_linear_phi || (*it)->opcode == aco_opcode::p_phi)
1725 ++it;
1726 block.instructions.insert(it, std::move(destr));
1727 }
1728 }
1729
1730 } /* end namespace */
1731
1732
1733 void spill(Program* program, live& live_vars, const struct radv_nir_compiler_options *options)
1734 {
1735 program->config->spilled_vgprs = 0;
1736 program->config->spilled_sgprs = 0;
1737
1738 /* no spilling when register pressure is low enough */
1739 if (program->num_waves > 0)
1740 return;
1741
1742 /* lower to CSSA before spilling to ensure correctness w.r.t. phis */
1743 lower_to_cssa(program, live_vars, options);
1744
1745 /* calculate target register demand */
1746 RegisterDemand register_target = program->max_reg_demand;
1747 if (register_target.sgpr > program->sgpr_limit)
1748 register_target.vgpr += (register_target.sgpr - program->sgpr_limit + program->wave_size - 1 + 32) / program->wave_size;
1749 register_target.sgpr = program->sgpr_limit;
1750
1751 if (register_target.vgpr > program->vgpr_limit)
1752 register_target.sgpr = program->sgpr_limit - 5;
1753 register_target.vgpr = program->vgpr_limit - (register_target.vgpr - program->max_reg_demand.vgpr);
1754
1755 int spills_to_vgpr = (program->max_reg_demand.sgpr - register_target.sgpr + program->wave_size - 1 + 32) / program->wave_size;
1756
1757 /* initialize ctx */
1758 spill_ctx ctx(register_target, program, live_vars.register_demand);
1759 compute_global_next_uses(ctx, live_vars.live_out);
1760 get_rematerialize_info(ctx);
1761
1762 /* create spills and reloads */
1763 for (unsigned i = 0; i < program->blocks.size(); i++)
1764 spill_block(ctx, i);
1765
1766 /* assign spill slots and DCE rematerialized code */
1767 assign_spill_slots(ctx, spills_to_vgpr);
1768
1769 /* update live variable information */
1770 live_vars = live_var_analysis(program, options);
1771
1772 assert(program->num_waves >= 0);
1773 }
1774
1775 }
1776