aco: consider branch definitions in spiller
[mesa.git] / src / amd / compiler / aco_spill.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include "aco_ir.h"
27 #include "aco_builder.h"
28 #include "sid.h"
29
30 #include <map>
31 #include <set>
32 #include <stack>
33
34 /*
35 * Implements the spilling algorithm on SSA-form from
36 * "Register Spilling and Live-Range Splitting for SSA-Form Programs"
37 * by Matthias Braun and Sebastian Hack.
38 */
39
40 namespace aco {
41
42 namespace {
43
44 struct remat_info {
45 Instruction *instr;
46 };
47
48 struct spill_ctx {
49 RegisterDemand target_pressure;
50 Program* program;
51 std::vector<std::vector<RegisterDemand>> register_demand;
52 std::vector<std::map<Temp, Temp>> renames;
53 std::vector<std::map<Temp, uint32_t>> spills_entry;
54 std::vector<std::map<Temp, uint32_t>> spills_exit;
55 std::vector<bool> processed;
56 std::stack<Block*> loop_header;
57 std::vector<std::map<Temp, std::pair<uint32_t, uint32_t>>> next_use_distances_start;
58 std::vector<std::map<Temp, std::pair<uint32_t, uint32_t>>> next_use_distances_end;
59 std::vector<std::pair<RegClass, std::unordered_set<uint32_t>>> interferences;
60 std::vector<std::vector<uint32_t>> affinities;
61 std::vector<bool> is_reloaded;
62 std::map<Temp, remat_info> remat;
63 std::map<Instruction *, bool> remat_used;
64 unsigned wave_size;
65
66 spill_ctx(const RegisterDemand target_pressure, Program* program,
67 std::vector<std::vector<RegisterDemand>> register_demand)
68 : target_pressure(target_pressure), program(program),
69 register_demand(std::move(register_demand)), renames(program->blocks.size()),
70 spills_entry(program->blocks.size()), spills_exit(program->blocks.size()),
71 processed(program->blocks.size(), false), wave_size(program->wave_size) {}
72
73 void add_affinity(uint32_t first, uint32_t second)
74 {
75 unsigned found_first = affinities.size();
76 unsigned found_second = affinities.size();
77 for (unsigned i = 0; i < affinities.size(); i++) {
78 std::vector<uint32_t>& vec = affinities[i];
79 for (uint32_t entry : vec) {
80 if (entry == first)
81 found_first = i;
82 else if (entry == second)
83 found_second = i;
84 }
85 }
86 if (found_first == affinities.size() && found_second == affinities.size()) {
87 affinities.emplace_back(std::vector<uint32_t>({first, second}));
88 } else if (found_first < affinities.size() && found_second == affinities.size()) {
89 affinities[found_first].push_back(second);
90 } else if (found_second < affinities.size() && found_first == affinities.size()) {
91 affinities[found_second].push_back(first);
92 } else if (found_first != found_second) {
93 /* merge second into first */
94 affinities[found_first].insert(affinities[found_first].end(), affinities[found_second].begin(), affinities[found_second].end());
95 affinities.erase(std::next(affinities.begin(), found_second));
96 } else {
97 assert(found_first == found_second);
98 }
99 }
100
101 void add_interference(uint32_t first, uint32_t second)
102 {
103 if (interferences[first].first.type() != interferences[second].first.type())
104 return;
105
106 bool inserted = interferences[first].second.insert(second).second;
107 if (inserted)
108 interferences[second].second.insert(first);
109 }
110
111 uint32_t allocate_spill_id(RegClass rc)
112 {
113 interferences.emplace_back(rc, std::unordered_set<uint32_t>());
114 is_reloaded.push_back(false);
115 return next_spill_id++;
116 }
117
118 uint32_t next_spill_id = 0;
119 };
120
121 int32_t get_dominator(int idx_a, int idx_b, Program* program, bool is_linear)
122 {
123
124 if (idx_a == -1)
125 return idx_b;
126 if (idx_b == -1)
127 return idx_a;
128 if (is_linear) {
129 while (idx_a != idx_b) {
130 if (idx_a > idx_b)
131 idx_a = program->blocks[idx_a].linear_idom;
132 else
133 idx_b = program->blocks[idx_b].linear_idom;
134 }
135 } else {
136 while (idx_a != idx_b) {
137 if (idx_a > idx_b)
138 idx_a = program->blocks[idx_a].logical_idom;
139 else
140 idx_b = program->blocks[idx_b].logical_idom;
141 }
142 }
143 assert(idx_a != -1);
144 return idx_a;
145 }
146
147 void next_uses_per_block(spill_ctx& ctx, unsigned block_idx, std::set<uint32_t>& worklist)
148 {
149 Block* block = &ctx.program->blocks[block_idx];
150 std::map<Temp, std::pair<uint32_t, uint32_t>> next_uses = ctx.next_use_distances_end[block_idx];
151
152 /* to compute the next use distance at the beginning of the block, we have to add the block's size */
153 for (std::map<Temp, std::pair<uint32_t, uint32_t>>::iterator it = next_uses.begin(); it != next_uses.end(); ++it)
154 it->second.second = it->second.second + block->instructions.size();
155
156 int idx = block->instructions.size() - 1;
157 while (idx >= 0) {
158 aco_ptr<Instruction>& instr = block->instructions[idx];
159
160 if (instr->opcode == aco_opcode::p_linear_phi ||
161 instr->opcode == aco_opcode::p_phi)
162 break;
163
164 for (const Definition& def : instr->definitions) {
165 if (def.isTemp())
166 next_uses.erase(def.getTemp());
167 }
168
169 for (const Operand& op : instr->operands) {
170 /* omit exec mask */
171 if (op.isFixed() && op.physReg() == exec)
172 continue;
173 if (op.regClass().type() == RegType::vgpr && op.regClass().is_linear())
174 continue;
175 if (op.isTemp())
176 next_uses[op.getTemp()] = {block_idx, idx};
177 }
178 idx--;
179 }
180
181 assert(block_idx != 0 || next_uses.empty());
182 ctx.next_use_distances_start[block_idx] = next_uses;
183 while (idx >= 0) {
184 aco_ptr<Instruction>& instr = block->instructions[idx];
185 assert(instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi);
186
187 for (unsigned i = 0; i < instr->operands.size(); i++) {
188 unsigned pred_idx = instr->opcode == aco_opcode::p_phi ?
189 block->logical_preds[i] :
190 block->linear_preds[i];
191 if (instr->operands[i].isTemp()) {
192 if (instr->operands[i].getTemp() == ctx.program->blocks[pred_idx].live_out_exec)
193 continue;
194 if (ctx.next_use_distances_end[pred_idx].find(instr->operands[i].getTemp()) == ctx.next_use_distances_end[pred_idx].end() ||
195 ctx.next_use_distances_end[pred_idx][instr->operands[i].getTemp()] != std::pair<uint32_t, uint32_t>{block_idx, 0})
196 worklist.insert(pred_idx);
197 ctx.next_use_distances_end[pred_idx][instr->operands[i].getTemp()] = {block_idx, 0};
198 }
199 }
200 next_uses.erase(instr->definitions[0].getTemp());
201 idx--;
202 }
203
204 /* all remaining live vars must be live-out at the predecessors */
205 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : next_uses) {
206 Temp temp = pair.first;
207 uint32_t distance = pair.second.second;
208 uint32_t dom = pair.second.first;
209 std::vector<unsigned>& preds = temp.is_linear() ? block->linear_preds : block->logical_preds;
210 for (unsigned pred_idx : preds) {
211 if (temp == ctx.program->blocks[pred_idx].live_out_exec)
212 continue;
213 if (ctx.program->blocks[pred_idx].loop_nest_depth > block->loop_nest_depth)
214 distance += 0xFFFF;
215 if (ctx.next_use_distances_end[pred_idx].find(temp) != ctx.next_use_distances_end[pred_idx].end()) {
216 dom = get_dominator(dom, ctx.next_use_distances_end[pred_idx][temp].first, ctx.program, temp.is_linear());
217 distance = std::min(ctx.next_use_distances_end[pred_idx][temp].second, distance);
218 }
219 if (ctx.next_use_distances_end[pred_idx][temp] != std::pair<uint32_t, uint32_t>{dom, distance})
220 worklist.insert(pred_idx);
221 ctx.next_use_distances_end[pred_idx][temp] = {dom, distance};
222 }
223 }
224
225 }
226
227 void compute_global_next_uses(spill_ctx& ctx)
228 {
229 ctx.next_use_distances_start.resize(ctx.program->blocks.size());
230 ctx.next_use_distances_end.resize(ctx.program->blocks.size());
231 std::set<uint32_t> worklist;
232 for (Block& block : ctx.program->blocks)
233 worklist.insert(block.index);
234
235 while (!worklist.empty()) {
236 std::set<unsigned>::reverse_iterator b_it = worklist.rbegin();
237 unsigned block_idx = *b_it;
238 worklist.erase(block_idx);
239 next_uses_per_block(ctx, block_idx, worklist);
240 }
241 }
242
243 bool should_rematerialize(aco_ptr<Instruction>& instr)
244 {
245 /* TODO: rematerialization is only supported for VOP1, SOP1 and PSEUDO */
246 if (instr->format != Format::VOP1 && instr->format != Format::SOP1 && instr->format != Format::PSEUDO && instr->format != Format::SOPK)
247 return false;
248 /* TODO: pseudo-instruction rematerialization is only supported for p_create_vector */
249 if (instr->format == Format::PSEUDO && instr->opcode != aco_opcode::p_create_vector)
250 return false;
251 if (instr->format == Format::SOPK && instr->opcode != aco_opcode::s_movk_i32)
252 return false;
253
254 for (const Operand& op : instr->operands) {
255 /* TODO: rematerialization using temporaries isn't yet supported */
256 if (op.isTemp())
257 return false;
258 }
259
260 /* TODO: rematerialization with multiple definitions isn't yet supported */
261 if (instr->definitions.size() > 1)
262 return false;
263
264 return true;
265 }
266
267 aco_ptr<Instruction> do_reload(spill_ctx& ctx, Temp tmp, Temp new_name, uint32_t spill_id)
268 {
269 std::map<Temp, remat_info>::iterator remat = ctx.remat.find(tmp);
270 if (remat != ctx.remat.end()) {
271 Instruction *instr = remat->second.instr;
272 assert((instr->format == Format::VOP1 || instr->format == Format::SOP1 || instr->format == Format::PSEUDO || instr->format == Format::SOPK) && "unsupported");
273 assert((instr->format != Format::PSEUDO || instr->opcode == aco_opcode::p_create_vector) && "unsupported");
274 assert(instr->definitions.size() == 1 && "unsupported");
275
276 aco_ptr<Instruction> res;
277 if (instr->format == Format::VOP1) {
278 res.reset(create_instruction<VOP1_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
279 } else if (instr->format == Format::SOP1) {
280 res.reset(create_instruction<SOP1_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
281 } else if (instr->format == Format::PSEUDO) {
282 res.reset(create_instruction<Pseudo_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
283 } else if (instr->format == Format::SOPK) {
284 res.reset(create_instruction<SOPK_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
285 static_cast<SOPK_instruction*>(res.get())->imm = static_cast<SOPK_instruction*>(instr)->imm;
286 }
287 for (unsigned i = 0; i < instr->operands.size(); i++) {
288 res->operands[i] = instr->operands[i];
289 if (instr->operands[i].isTemp()) {
290 assert(false && "unsupported");
291 if (ctx.remat.count(instr->operands[i].getTemp()))
292 ctx.remat_used[ctx.remat[instr->operands[i].getTemp()].instr] = true;
293 }
294 }
295 res->definitions[0] = Definition(new_name);
296 return res;
297 } else {
298 aco_ptr<Pseudo_instruction> reload{create_instruction<Pseudo_instruction>(aco_opcode::p_reload, Format::PSEUDO, 1, 1)};
299 reload->operands[0] = Operand(spill_id);
300 reload->definitions[0] = Definition(new_name);
301 ctx.is_reloaded[spill_id] = true;
302 return reload;
303 }
304 }
305
306 void get_rematerialize_info(spill_ctx& ctx)
307 {
308 for (Block& block : ctx.program->blocks) {
309 bool logical = false;
310 for (aco_ptr<Instruction>& instr : block.instructions) {
311 if (instr->opcode == aco_opcode::p_logical_start)
312 logical = true;
313 else if (instr->opcode == aco_opcode::p_logical_end)
314 logical = false;
315 if (logical && should_rematerialize(instr)) {
316 for (const Definition& def : instr->definitions) {
317 if (def.isTemp()) {
318 ctx.remat[def.getTemp()] = (remat_info){instr.get()};
319 ctx.remat_used[instr.get()] = false;
320 }
321 }
322 }
323 }
324 }
325 }
326
327 std::vector<std::map<Temp, uint32_t>> local_next_uses(spill_ctx& ctx, Block* block)
328 {
329 std::vector<std::map<Temp, uint32_t>> local_next_uses(block->instructions.size());
330
331 std::map<Temp, uint32_t> next_uses;
332 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_end[block->index])
333 next_uses[pair.first] = pair.second.second + block->instructions.size();
334
335 for (int idx = block->instructions.size() - 1; idx >= 0; idx--) {
336 aco_ptr<Instruction>& instr = block->instructions[idx];
337 if (!instr)
338 break;
339 if (instr->opcode == aco_opcode::p_phi || instr->opcode == aco_opcode::p_linear_phi)
340 break;
341
342 for (const Operand& op : instr->operands) {
343 if (op.isFixed() && op.physReg() == exec)
344 continue;
345 if (op.regClass().type() == RegType::vgpr && op.regClass().is_linear())
346 continue;
347 if (op.isTemp())
348 next_uses[op.getTemp()] = idx;
349 }
350 for (const Definition& def : instr->definitions) {
351 if (def.isTemp())
352 next_uses.erase(def.getTemp());
353 }
354 local_next_uses[idx] = next_uses;
355 }
356 return local_next_uses;
357 }
358
359
360 RegisterDemand init_live_in_vars(spill_ctx& ctx, Block* block, unsigned block_idx)
361 {
362 RegisterDemand spilled_registers;
363
364 /* first block, nothing was spilled before */
365 if (block_idx == 0)
366 return {0, 0};
367
368 /* loop header block */
369 if (block->loop_nest_depth > ctx.program->blocks[block_idx - 1].loop_nest_depth) {
370 assert(block->linear_preds[0] == block_idx - 1);
371 assert(block->logical_preds[0] == block_idx - 1);
372
373 /* create new loop_info */
374 ctx.loop_header.emplace(block);
375
376 /* check how many live-through variables should be spilled */
377 RegisterDemand new_demand;
378 unsigned i = block_idx;
379 while (ctx.program->blocks[i].loop_nest_depth >= block->loop_nest_depth) {
380 assert(ctx.program->blocks.size() > i);
381 new_demand.update(ctx.program->blocks[i].register_demand);
382 i++;
383 }
384 unsigned loop_end = i;
385
386 /* select live-through vgpr variables */
387 while (new_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr) {
388 unsigned distance = 0;
389 Temp to_spill;
390 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_end[block_idx - 1]) {
391 if (pair.first.type() == RegType::vgpr &&
392 pair.second.first >= loop_end &&
393 pair.second.second > distance &&
394 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
395 to_spill = pair.first;
396 distance = pair.second.second;
397 }
398 }
399 if (distance == 0)
400 break;
401
402 uint32_t spill_id;
403 if (ctx.spills_exit[block_idx - 1].find(to_spill) == ctx.spills_exit[block_idx - 1].end()) {
404 spill_id = ctx.allocate_spill_id(to_spill.regClass());
405 } else {
406 spill_id = ctx.spills_exit[block_idx - 1][to_spill];
407 }
408
409 ctx.spills_entry[block_idx][to_spill] = spill_id;
410 spilled_registers.vgpr += to_spill.size();
411 }
412
413 /* select live-through sgpr variables */
414 while (new_demand.sgpr - spilled_registers.sgpr > ctx.target_pressure.sgpr) {
415 unsigned distance = 0;
416 Temp to_spill;
417 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_end[block_idx - 1]) {
418 if (pair.first.type() == RegType::sgpr &&
419 pair.second.first >= loop_end &&
420 pair.second.second > distance &&
421 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
422 to_spill = pair.first;
423 distance = pair.second.second;
424 }
425 }
426 if (distance == 0)
427 break;
428
429 uint32_t spill_id;
430 if (ctx.spills_exit[block_idx - 1].find(to_spill) == ctx.spills_exit[block_idx - 1].end()) {
431 spill_id = ctx.allocate_spill_id(to_spill.regClass());
432 } else {
433 spill_id = ctx.spills_exit[block_idx - 1][to_spill];
434 }
435
436 ctx.spills_entry[block_idx][to_spill] = spill_id;
437 spilled_registers.sgpr += to_spill.size();
438 }
439
440
441
442 /* shortcut */
443 if (!RegisterDemand(new_demand - spilled_registers).exceeds(ctx.target_pressure))
444 return spilled_registers;
445
446 /* if reg pressure is too high at beginning of loop, add variables with furthest use */
447 unsigned idx = 0;
448 while (block->instructions[idx]->opcode == aco_opcode::p_phi || block->instructions[idx]->opcode == aco_opcode::p_linear_phi)
449 idx++;
450
451 assert(idx != 0 && "loop without phis: TODO");
452 idx--;
453 RegisterDemand reg_pressure = ctx.register_demand[block_idx][idx] - spilled_registers;
454 /* Consider register pressure from linear predecessors. This can affect
455 * reg_pressure if the branch instructions define sgprs. */
456 for (unsigned pred : block->linear_preds) {
457 reg_pressure.sgpr = std::max<int16_t>(
458 reg_pressure.sgpr, ctx.register_demand[pred].back().sgpr - spilled_registers.sgpr);
459 }
460
461 while (reg_pressure.sgpr > ctx.target_pressure.sgpr) {
462 unsigned distance = 0;
463 Temp to_spill;
464 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
465 if (pair.first.type() == RegType::sgpr &&
466 pair.second.second > distance &&
467 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
468 to_spill = pair.first;
469 distance = pair.second.second;
470 }
471 }
472 assert(distance != 0);
473
474 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
475 spilled_registers.sgpr += to_spill.size();
476 reg_pressure.sgpr -= to_spill.size();
477 }
478 while (reg_pressure.vgpr > ctx.target_pressure.vgpr) {
479 unsigned distance = 0;
480 Temp to_spill;
481 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
482 if (pair.first.type() == RegType::vgpr &&
483 pair.second.second > distance &&
484 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
485 to_spill = pair.first;
486 distance = pair.second.second;
487 }
488 }
489 assert(distance != 0);
490 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
491 spilled_registers.vgpr += to_spill.size();
492 reg_pressure.vgpr -= to_spill.size();
493 }
494
495 return spilled_registers;
496 }
497
498 /* branch block */
499 if (block->linear_preds.size() == 1 && !(block->kind & block_kind_loop_exit)) {
500 /* keep variables spilled if they are alive and not used in the current block */
501 unsigned pred_idx = block->linear_preds[0];
502 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
503 if (pair.first.type() == RegType::sgpr &&
504 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
505 ctx.next_use_distances_start[block_idx][pair.first].second > block_idx) {
506 ctx.spills_entry[block_idx].insert(pair);
507 spilled_registers.sgpr += pair.first.size();
508 }
509 }
510 if (block->logical_preds.size() == 1) {
511 pred_idx = block->logical_preds[0];
512 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
513 if (pair.first.type() == RegType::vgpr &&
514 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
515 ctx.next_use_distances_start[block_idx][pair.first].second > block_idx) {
516 ctx.spills_entry[block_idx].insert(pair);
517 spilled_registers.vgpr += pair.first.size();
518 }
519 }
520 }
521
522 /* if register demand is still too high, we just keep all spilled live vars and process the block */
523 if (block->register_demand.sgpr - spilled_registers.sgpr > ctx.target_pressure.sgpr) {
524 pred_idx = block->linear_preds[0];
525 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
526 if (pair.first.type() == RegType::sgpr &&
527 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
528 ctx.spills_entry[block_idx].insert(pair).second) {
529 spilled_registers.sgpr += pair.first.size();
530 }
531 }
532 }
533 if (block->register_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr && block->logical_preds.size() == 1) {
534 pred_idx = block->logical_preds[0];
535 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
536 if (pair.first.type() == RegType::vgpr &&
537 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
538 ctx.spills_entry[block_idx].insert(pair).second) {
539 spilled_registers.vgpr += pair.first.size();
540 }
541 }
542 }
543
544 return spilled_registers;
545 }
546
547 /* else: merge block */
548 std::set<Temp> partial_spills;
549
550 /* keep variables spilled on all incoming paths */
551 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
552 std::vector<unsigned>& preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds;
553 /* If it can be rematerialized, keep the variable spilled if all predecessors do not reload it.
554 * Otherwise, if any predecessor reloads it, ensure it's reloaded on all other predecessors.
555 * The idea is that it's better in practice to rematerialize redundantly than to create lots of phis. */
556 /* TODO: test this idea with more than Dawn of War III shaders (the current pipeline-db doesn't seem to exercise this path much) */
557 bool remat = ctx.remat.count(pair.first);
558 bool spill = !remat;
559 uint32_t spill_id = 0;
560 for (unsigned pred_idx : preds) {
561 /* variable is not even live at the predecessor: probably from a phi */
562 if (ctx.next_use_distances_end[pred_idx].find(pair.first) == ctx.next_use_distances_end[pred_idx].end()) {
563 spill = false;
564 break;
565 }
566 if (ctx.spills_exit[pred_idx].find(pair.first) == ctx.spills_exit[pred_idx].end()) {
567 if (!remat)
568 spill = false;
569 } else {
570 partial_spills.insert(pair.first);
571 /* it might be that on one incoming path, the variable has a different spill_id, but add_couple_code() will take care of that. */
572 spill_id = ctx.spills_exit[pred_idx][pair.first];
573 if (remat)
574 spill = true;
575 }
576 }
577 if (spill) {
578 ctx.spills_entry[block_idx][pair.first] = spill_id;
579 partial_spills.erase(pair.first);
580 spilled_registers += pair.first;
581 }
582 }
583
584 /* same for phis */
585 unsigned idx = 0;
586 while (block->instructions[idx]->opcode == aco_opcode::p_linear_phi ||
587 block->instructions[idx]->opcode == aco_opcode::p_phi) {
588 aco_ptr<Instruction>& phi = block->instructions[idx];
589 std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
590 bool spill = true;
591
592 for (unsigned i = 0; i < phi->operands.size(); i++) {
593 if (phi->operands[i].isUndefined())
594 continue;
595 assert(phi->operands[i].isTemp());
596 if (ctx.spills_exit[preds[i]].find(phi->operands[i].getTemp()) == ctx.spills_exit[preds[i]].end())
597 spill = false;
598 else
599 partial_spills.insert(phi->definitions[0].getTemp());
600 }
601 if (spill) {
602 ctx.spills_entry[block_idx][phi->definitions[0].getTemp()] = ctx.allocate_spill_id(phi->definitions[0].regClass());
603 partial_spills.erase(phi->definitions[0].getTemp());
604 spilled_registers += phi->definitions[0].getTemp();
605 }
606
607 idx++;
608 }
609
610 /* if reg pressure at first instruction is still too high, add partially spilled variables */
611 RegisterDemand reg_pressure;
612 if (idx == 0) {
613 for (const Definition& def : block->instructions[idx]->definitions) {
614 if (def.isTemp()) {
615 reg_pressure -= def.getTemp();
616 }
617 }
618 for (const Operand& op : block->instructions[idx]->operands) {
619 if (op.isTemp() && op.isFirstKill()) {
620 reg_pressure += op.getTemp();
621 }
622 }
623 } else {
624 for (unsigned i = 0; i < idx; i++) {
625 aco_ptr<Instruction>& instr = block->instructions[i];
626 assert(is_phi(instr));
627 /* Killed phi definitions increase pressure in the predecessor but not
628 * the block they're in. Since the loops below are both to control
629 * pressure of the start of this block and the ends of it's
630 * predecessors, we need to count killed unspilled phi definitions here. */
631 if (instr->definitions[0].isKill() &&
632 !ctx.spills_entry[block_idx].count(instr->definitions[0].getTemp()))
633 reg_pressure += instr->definitions[0].getTemp();
634 }
635 idx--;
636 }
637 reg_pressure += ctx.register_demand[block_idx][idx] - spilled_registers;
638
639 /* Consider register pressure from linear predecessors. This can affect
640 * reg_pressure if the branch instructions define sgprs. */
641 for (unsigned pred : block->linear_preds) {
642 reg_pressure.sgpr = std::max<int16_t>(
643 reg_pressure.sgpr, ctx.register_demand[pred].back().sgpr - spilled_registers.sgpr);
644 }
645
646 while (reg_pressure.sgpr > ctx.target_pressure.sgpr) {
647 assert(!partial_spills.empty());
648
649 std::set<Temp>::iterator it = partial_spills.begin();
650 Temp to_spill = *it;
651 unsigned distance = ctx.next_use_distances_start[block_idx][*it].second;
652 while (it != partial_spills.end()) {
653 assert(ctx.spills_entry[block_idx].find(*it) == ctx.spills_entry[block_idx].end());
654
655 if (it->type() == RegType::sgpr && ctx.next_use_distances_start[block_idx][*it].second > distance) {
656 distance = ctx.next_use_distances_start[block_idx][*it].second;
657 to_spill = *it;
658 }
659 ++it;
660 }
661 assert(distance != 0);
662
663 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
664 partial_spills.erase(to_spill);
665 spilled_registers.sgpr += to_spill.size();
666 reg_pressure.sgpr -= to_spill.size();
667 }
668
669 while (reg_pressure.vgpr > ctx.target_pressure.vgpr) {
670 assert(!partial_spills.empty());
671
672 std::set<Temp>::iterator it = partial_spills.begin();
673 Temp to_spill = *it;
674 unsigned distance = ctx.next_use_distances_start[block_idx][*it].second;
675 while (it != partial_spills.end()) {
676 assert(ctx.spills_entry[block_idx].find(*it) == ctx.spills_entry[block_idx].end());
677
678 if (it->type() == RegType::vgpr && ctx.next_use_distances_start[block_idx][*it].second > distance) {
679 distance = ctx.next_use_distances_start[block_idx][*it].second;
680 to_spill = *it;
681 }
682 ++it;
683 }
684 assert(distance != 0);
685
686 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
687 partial_spills.erase(to_spill);
688 spilled_registers.vgpr += to_spill.size();
689 reg_pressure.vgpr -= to_spill.size();
690 }
691
692 return spilled_registers;
693 }
694
695
696 RegisterDemand get_demand_before(spill_ctx& ctx, unsigned block_idx, unsigned idx)
697 {
698 if (idx == 0) {
699 RegisterDemand demand = ctx.register_demand[block_idx][idx];
700 aco_ptr<Instruction>& instr = ctx.program->blocks[block_idx].instructions[idx];
701 aco_ptr<Instruction> instr_before(nullptr);
702 return get_demand_before(demand, instr, instr_before);
703 } else {
704 return ctx.register_demand[block_idx][idx - 1];
705 }
706 }
707
708 void add_coupling_code(spill_ctx& ctx, Block* block, unsigned block_idx)
709 {
710 /* no coupling code necessary */
711 if (block->linear_preds.size() == 0)
712 return;
713
714 std::vector<aco_ptr<Instruction>> instructions;
715 /* branch block: TODO take other branch into consideration */
716 if (block->linear_preds.size() == 1 && !(block->kind & (block_kind_loop_exit | block_kind_loop_header))) {
717 assert(ctx.processed[block->linear_preds[0]]);
718 assert(ctx.register_demand[block_idx].size() == block->instructions.size());
719 std::vector<RegisterDemand> reg_demand;
720 unsigned insert_idx = 0;
721 unsigned pred_idx = block->linear_preds[0];
722 RegisterDemand demand_before = get_demand_before(ctx, block_idx, 0);
723
724 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> live : ctx.next_use_distances_start[block_idx]) {
725 if (!live.first.is_linear())
726 continue;
727 /* still spilled */
728 if (ctx.spills_entry[block_idx].find(live.first) != ctx.spills_entry[block_idx].end())
729 continue;
730
731 /* in register at end of predecessor */
732 if (ctx.spills_exit[pred_idx].find(live.first) == ctx.spills_exit[pred_idx].end()) {
733 std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(live.first);
734 if (it != ctx.renames[pred_idx].end())
735 ctx.renames[block_idx].insert(*it);
736 continue;
737 }
738
739 /* variable is spilled at predecessor and live at current block: create reload instruction */
740 Temp new_name = {ctx.program->allocateId(), live.first.regClass()};
741 aco_ptr<Instruction> reload = do_reload(ctx, live.first, new_name, ctx.spills_exit[pred_idx][live.first]);
742 instructions.emplace_back(std::move(reload));
743 reg_demand.push_back(demand_before);
744 ctx.renames[block_idx][live.first] = new_name;
745 }
746
747 if (block->logical_preds.size() == 1) {
748 do {
749 assert(insert_idx < block->instructions.size());
750 instructions.emplace_back(std::move(block->instructions[insert_idx]));
751 reg_demand.push_back(ctx.register_demand[block_idx][insert_idx]);
752 insert_idx++;
753 } while (instructions.back()->opcode != aco_opcode::p_logical_start);
754
755 unsigned pred_idx = block->logical_preds[0];
756 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> live : ctx.next_use_distances_start[block_idx]) {
757 if (live.first.is_linear())
758 continue;
759 /* still spilled */
760 if (ctx.spills_entry[block_idx].find(live.first) != ctx.spills_entry[block_idx].end())
761 continue;
762
763 /* in register at end of predecessor */
764 if (ctx.spills_exit[pred_idx].find(live.first) == ctx.spills_exit[pred_idx].end()) {
765 std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(live.first);
766 if (it != ctx.renames[pred_idx].end())
767 ctx.renames[block_idx].insert(*it);
768 continue;
769 }
770
771 /* variable is spilled at predecessor and live at current block: create reload instruction */
772 Temp new_name = {ctx.program->allocateId(), live.first.regClass()};
773 aco_ptr<Instruction> reload = do_reload(ctx, live.first, new_name, ctx.spills_exit[pred_idx][live.first]);
774 instructions.emplace_back(std::move(reload));
775 reg_demand.emplace_back(reg_demand.back());
776 ctx.renames[block_idx][live.first] = new_name;
777 }
778 }
779
780 /* combine new reload instructions with original block */
781 if (!instructions.empty()) {
782 reg_demand.insert(reg_demand.end(), std::next(ctx.register_demand[block->index].begin(), insert_idx),
783 ctx.register_demand[block->index].end());
784 ctx.register_demand[block_idx] = std::move(reg_demand);
785 instructions.insert(instructions.end(),
786 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(std::next(block->instructions.begin(), insert_idx)),
787 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
788 block->instructions = std::move(instructions);
789 }
790 return;
791 }
792
793 /* loop header and merge blocks: check if all (linear) predecessors have been processed */
794 for (ASSERTED unsigned pred : block->linear_preds)
795 assert(ctx.processed[pred]);
796
797 /* iterate the phi nodes for which operands to spill at the predecessor */
798 for (aco_ptr<Instruction>& phi : block->instructions) {
799 if (phi->opcode != aco_opcode::p_phi &&
800 phi->opcode != aco_opcode::p_linear_phi)
801 break;
802
803 /* if the phi is not spilled, add to instructions */
804 if (ctx.spills_entry[block_idx].find(phi->definitions[0].getTemp()) == ctx.spills_entry[block_idx].end()) {
805 instructions.emplace_back(std::move(phi));
806 continue;
807 }
808
809 std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
810 uint32_t def_spill_id = ctx.spills_entry[block_idx][phi->definitions[0].getTemp()];
811
812 for (unsigned i = 0; i < phi->operands.size(); i++) {
813 if (phi->operands[i].isUndefined())
814 continue;
815
816 unsigned pred_idx = preds[i];
817 assert(phi->operands[i].isTemp() && phi->operands[i].isKill());
818 Temp var = phi->operands[i].getTemp();
819
820 /* build interferences between the phi def and all spilled variables at the predecessor blocks */
821 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
822 if (var == pair.first)
823 continue;
824 ctx.add_interference(def_spill_id, pair.second);
825 }
826
827 /* check if variable is already spilled at predecessor */
828 std::map<Temp, uint32_t>::iterator spilled = ctx.spills_exit[pred_idx].find(var);
829 if (spilled != ctx.spills_exit[pred_idx].end()) {
830 if (spilled->second != def_spill_id)
831 ctx.add_affinity(def_spill_id, spilled->second);
832 continue;
833 }
834
835 /* rename if necessary */
836 std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var);
837 if (rename_it != ctx.renames[pred_idx].end()) {
838 var = rename_it->second;
839 ctx.renames[pred_idx].erase(rename_it);
840 }
841
842 uint32_t spill_id = ctx.allocate_spill_id(phi->definitions[0].regClass());
843 ctx.add_affinity(def_spill_id, spill_id);
844 aco_ptr<Pseudo_instruction> spill{create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
845 spill->operands[0] = Operand(var);
846 spill->operands[1] = Operand(spill_id);
847 Block& pred = ctx.program->blocks[pred_idx];
848 unsigned idx = pred.instructions.size();
849 do {
850 assert(idx != 0);
851 idx--;
852 } while (phi->opcode == aco_opcode::p_phi && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
853 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
854 pred.instructions.insert(it, std::move(spill));
855 ctx.spills_exit[pred_idx][phi->operands[i].getTemp()] = spill_id;
856 }
857
858 /* remove phi from instructions */
859 phi.reset();
860 }
861
862 /* iterate all (other) spilled variables for which to spill at the predecessor */
863 // TODO: would be better to have them sorted: first vgprs and first with longest distance
864 for (std::pair<Temp, uint32_t> pair : ctx.spills_entry[block_idx]) {
865 std::vector<unsigned> preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds;
866
867 for (unsigned pred_idx : preds) {
868 /* variable is already spilled at predecessor */
869 std::map<Temp, uint32_t>::iterator spilled = ctx.spills_exit[pred_idx].find(pair.first);
870 if (spilled != ctx.spills_exit[pred_idx].end()) {
871 if (spilled->second != pair.second)
872 ctx.add_affinity(pair.second, spilled->second);
873 continue;
874 }
875
876 /* variable is dead at predecessor, it must be from a phi: this works because of CSSA form */
877 if (ctx.next_use_distances_end[pred_idx].find(pair.first) == ctx.next_use_distances_end[pred_idx].end())
878 continue;
879
880 /* add interferences between spilled variable and predecessors exit spills */
881 for (std::pair<Temp, uint32_t> exit_spill : ctx.spills_exit[pred_idx]) {
882 if (exit_spill.first == pair.first)
883 continue;
884 ctx.add_interference(exit_spill.second, pair.second);
885 }
886
887 /* variable is in register at predecessor and has to be spilled */
888 /* rename if necessary */
889 Temp var = pair.first;
890 std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var);
891 if (rename_it != ctx.renames[pred_idx].end()) {
892 var = rename_it->second;
893 ctx.renames[pred_idx].erase(rename_it);
894 }
895
896 aco_ptr<Pseudo_instruction> spill{create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
897 spill->operands[0] = Operand(var);
898 spill->operands[1] = Operand(pair.second);
899 Block& pred = ctx.program->blocks[pred_idx];
900 unsigned idx = pred.instructions.size();
901 do {
902 assert(idx != 0);
903 idx--;
904 } while (pair.first.type() == RegType::vgpr && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
905 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
906 pred.instructions.insert(it, std::move(spill));
907 ctx.spills_exit[pred.index][pair.first] = pair.second;
908 }
909 }
910
911 /* iterate phis for which operands to reload */
912 for (aco_ptr<Instruction>& phi : instructions) {
913 assert(phi->opcode == aco_opcode::p_phi || phi->opcode == aco_opcode::p_linear_phi);
914 assert(ctx.spills_entry[block_idx].find(phi->definitions[0].getTemp()) == ctx.spills_entry[block_idx].end());
915
916 std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
917 for (unsigned i = 0; i < phi->operands.size(); i++) {
918 if (!phi->operands[i].isTemp())
919 continue;
920 unsigned pred_idx = preds[i];
921
922 /* rename operand */
923 if (ctx.spills_exit[pred_idx].find(phi->operands[i].getTemp()) == ctx.spills_exit[pred_idx].end()) {
924 std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(phi->operands[i].getTemp());
925 if (it != ctx.renames[pred_idx].end())
926 phi->operands[i].setTemp(it->second);
927 continue;
928 }
929
930 Temp tmp = phi->operands[i].getTemp();
931
932 /* reload phi operand at end of predecessor block */
933 Temp new_name = {ctx.program->allocateId(), tmp.regClass()};
934 Block& pred = ctx.program->blocks[pred_idx];
935 unsigned idx = pred.instructions.size();
936 do {
937 assert(idx != 0);
938 idx--;
939 } while (phi->opcode == aco_opcode::p_phi && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
940 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
941
942 aco_ptr<Instruction> reload = do_reload(ctx, tmp, new_name, ctx.spills_exit[pred_idx][tmp]);
943 pred.instructions.insert(it, std::move(reload));
944
945 ctx.spills_exit[pred_idx].erase(tmp);
946 ctx.renames[pred_idx][tmp] = new_name;
947 phi->operands[i].setTemp(new_name);
948 }
949 }
950
951 /* iterate live variables for which to reload */
952 // TODO: reload at current block if variable is spilled on all predecessors
953 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
954 /* skip spilled variables */
955 if (ctx.spills_entry[block_idx].find(pair.first) != ctx.spills_entry[block_idx].end())
956 continue;
957 std::vector<unsigned> preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds;
958
959 /* variable is dead at predecessor, it must be from a phi */
960 bool is_dead = false;
961 for (unsigned pred_idx : preds) {
962 if (ctx.next_use_distances_end[pred_idx].find(pair.first) == ctx.next_use_distances_end[pred_idx].end())
963 is_dead = true;
964 }
965 if (is_dead)
966 continue;
967 for (unsigned pred_idx : preds) {
968 /* the variable is not spilled at the predecessor */
969 if (ctx.spills_exit[pred_idx].find(pair.first) == ctx.spills_exit[pred_idx].end())
970 continue;
971
972 /* variable is spilled at predecessor and has to be reloaded */
973 Temp new_name = {ctx.program->allocateId(), pair.first.regClass()};
974 Block& pred = ctx.program->blocks[pred_idx];
975 unsigned idx = pred.instructions.size();
976 do {
977 assert(idx != 0);
978 idx--;
979 } while (pair.first.type() == RegType::vgpr && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
980 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
981
982 aco_ptr<Instruction> reload = do_reload(ctx, pair.first, new_name, ctx.spills_exit[pred.index][pair.first]);
983 pred.instructions.insert(it, std::move(reload));
984
985 ctx.spills_exit[pred.index].erase(pair.first);
986 ctx.renames[pred.index][pair.first] = new_name;
987 }
988
989 /* check if we have to create a new phi for this variable */
990 Temp rename = Temp();
991 bool is_same = true;
992 for (unsigned pred_idx : preds) {
993 if (ctx.renames[pred_idx].find(pair.first) == ctx.renames[pred_idx].end()) {
994 if (rename == Temp())
995 rename = pair.first;
996 else
997 is_same = rename == pair.first;
998 } else {
999 if (rename == Temp())
1000 rename = ctx.renames[pred_idx][pair.first];
1001 else
1002 is_same = rename == ctx.renames[pred_idx][pair.first];
1003 }
1004
1005 if (!is_same)
1006 break;
1007 }
1008
1009 if (!is_same) {
1010 /* the variable was renamed differently in the predecessors: we have to create a phi */
1011 aco_opcode opcode = pair.first.is_linear() ? aco_opcode::p_linear_phi : aco_opcode::p_phi;
1012 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, preds.size(), 1)};
1013 rename = {ctx.program->allocateId(), pair.first.regClass()};
1014 for (unsigned i = 0; i < phi->operands.size(); i++) {
1015 Temp tmp;
1016 if (ctx.renames[preds[i]].find(pair.first) != ctx.renames[preds[i]].end())
1017 tmp = ctx.renames[preds[i]][pair.first];
1018 else if (preds[i] >= block_idx)
1019 tmp = rename;
1020 else
1021 tmp = pair.first;
1022 phi->operands[i] = Operand(tmp);
1023 }
1024 phi->definitions[0] = Definition(rename);
1025 instructions.emplace_back(std::move(phi));
1026 }
1027
1028 /* the variable was renamed: add new name to renames */
1029 if (!(rename == Temp() || rename == pair.first))
1030 ctx.renames[block_idx][pair.first] = rename;
1031 }
1032
1033 /* combine phis with instructions */
1034 unsigned idx = 0;
1035 while (!block->instructions[idx]) {
1036 idx++;
1037 }
1038
1039 if (!ctx.processed[block_idx]) {
1040 assert(!(block->kind & block_kind_loop_header));
1041 RegisterDemand demand_before = get_demand_before(ctx, block_idx, idx);
1042 ctx.register_demand[block->index].erase(ctx.register_demand[block->index].begin(), ctx.register_demand[block->index].begin() + idx);
1043 ctx.register_demand[block->index].insert(ctx.register_demand[block->index].begin(), instructions.size(), demand_before);
1044 }
1045
1046 std::vector<aco_ptr<Instruction>>::iterator start = std::next(block->instructions.begin(), idx);
1047 instructions.insert(instructions.end(), std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(start),
1048 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
1049 block->instructions = std::move(instructions);
1050 }
1051
1052 void process_block(spill_ctx& ctx, unsigned block_idx, Block* block,
1053 std::map<Temp, uint32_t> &current_spills, RegisterDemand spilled_registers)
1054 {
1055 assert(!ctx.processed[block_idx]);
1056
1057 std::vector<std::map<Temp, uint32_t>> local_next_use_distance;
1058 std::vector<aco_ptr<Instruction>> instructions;
1059 unsigned idx = 0;
1060
1061 /* phis are handled separetely */
1062 while (block->instructions[idx]->opcode == aco_opcode::p_phi ||
1063 block->instructions[idx]->opcode == aco_opcode::p_linear_phi) {
1064 aco_ptr<Instruction>& instr = block->instructions[idx];
1065 for (const Operand& op : instr->operands) {
1066 /* prevent it's definining instruction from being DCE'd if it could be rematerialized */
1067 if (op.isTemp() && ctx.remat.count(op.getTemp()))
1068 ctx.remat_used[ctx.remat[op.getTemp()].instr] = true;
1069 }
1070 instructions.emplace_back(std::move(instr));
1071 idx++;
1072 }
1073
1074 if (block->register_demand.exceeds(ctx.target_pressure))
1075 local_next_use_distance = local_next_uses(ctx, block);
1076
1077 while (idx < block->instructions.size()) {
1078 aco_ptr<Instruction>& instr = block->instructions[idx];
1079
1080 std::map<Temp, std::pair<Temp, uint32_t>> reloads;
1081 std::map<Temp, uint32_t> spills;
1082 /* rename and reload operands */
1083 for (Operand& op : instr->operands) {
1084 if (!op.isTemp())
1085 continue;
1086 if (current_spills.find(op.getTemp()) == current_spills.end()) {
1087 /* the Operand is in register: check if it was renamed */
1088 if (ctx.renames[block_idx].find(op.getTemp()) != ctx.renames[block_idx].end())
1089 op.setTemp(ctx.renames[block_idx][op.getTemp()]);
1090 /* prevent it's definining instruction from being DCE'd if it could be rematerialized */
1091 if (ctx.remat.count(op.getTemp()))
1092 ctx.remat_used[ctx.remat[op.getTemp()].instr] = true;
1093 continue;
1094 }
1095 /* the Operand is spilled: add it to reloads */
1096 Temp new_tmp = {ctx.program->allocateId(), op.regClass()};
1097 ctx.renames[block_idx][op.getTemp()] = new_tmp;
1098 reloads[new_tmp] = std::make_pair(op.getTemp(), current_spills[op.getTemp()]);
1099 current_spills.erase(op.getTemp());
1100 op.setTemp(new_tmp);
1101 spilled_registers -= new_tmp;
1102 }
1103
1104 /* check if register demand is low enough before and after the current instruction */
1105 if (block->register_demand.exceeds(ctx.target_pressure)) {
1106
1107 RegisterDemand new_demand = ctx.register_demand[block_idx][idx];
1108 new_demand.update(get_demand_before(ctx, block_idx, idx));
1109
1110 assert(!local_next_use_distance.empty());
1111
1112 /* if reg pressure is too high, spill variable with furthest next use */
1113 while (RegisterDemand(new_demand - spilled_registers).exceeds(ctx.target_pressure)) {
1114 unsigned distance = 0;
1115 Temp to_spill;
1116 bool do_rematerialize = false;
1117 if (new_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr) {
1118 for (std::pair<Temp, uint32_t> pair : local_next_use_distance[idx]) {
1119 bool can_rematerialize = ctx.remat.count(pair.first);
1120 if (pair.first.type() == RegType::vgpr &&
1121 ((pair.second > distance && can_rematerialize == do_rematerialize) ||
1122 (can_rematerialize && !do_rematerialize && pair.second > idx)) &&
1123 current_spills.find(pair.first) == current_spills.end() &&
1124 ctx.spills_exit[block_idx].find(pair.first) == ctx.spills_exit[block_idx].end()) {
1125 to_spill = pair.first;
1126 distance = pair.second;
1127 do_rematerialize = can_rematerialize;
1128 }
1129 }
1130 } else {
1131 for (std::pair<Temp, uint32_t> pair : local_next_use_distance[idx]) {
1132 bool can_rematerialize = ctx.remat.count(pair.first);
1133 if (pair.first.type() == RegType::sgpr &&
1134 ((pair.second > distance && can_rematerialize == do_rematerialize) ||
1135 (can_rematerialize && !do_rematerialize && pair.second > idx)) &&
1136 current_spills.find(pair.first) == current_spills.end() &&
1137 ctx.spills_exit[block_idx].find(pair.first) == ctx.spills_exit[block_idx].end()) {
1138 to_spill = pair.first;
1139 distance = pair.second;
1140 do_rematerialize = can_rematerialize;
1141 }
1142 }
1143 }
1144
1145 assert(distance != 0 && distance > idx);
1146 uint32_t spill_id = ctx.allocate_spill_id(to_spill.regClass());
1147
1148 /* add interferences with currently spilled variables */
1149 for (std::pair<Temp, uint32_t> pair : current_spills)
1150 ctx.add_interference(spill_id, pair.second);
1151 for (std::pair<Temp, std::pair<Temp, uint32_t>> pair : reloads)
1152 ctx.add_interference(spill_id, pair.second.second);
1153
1154 current_spills[to_spill] = spill_id;
1155 spilled_registers += to_spill;
1156
1157 /* rename if necessary */
1158 if (ctx.renames[block_idx].find(to_spill) != ctx.renames[block_idx].end()) {
1159 to_spill = ctx.renames[block_idx][to_spill];
1160 }
1161
1162 /* add spill to new instructions */
1163 aco_ptr<Pseudo_instruction> spill{create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
1164 spill->operands[0] = Operand(to_spill);
1165 spill->operands[1] = Operand(spill_id);
1166 instructions.emplace_back(std::move(spill));
1167 }
1168 }
1169
1170 /* add reloads and instruction to new instructions */
1171 for (std::pair<Temp, std::pair<Temp, uint32_t>> pair : reloads) {
1172 aco_ptr<Instruction> reload = do_reload(ctx, pair.second.first, pair.first, pair.second.second);
1173 instructions.emplace_back(std::move(reload));
1174 }
1175 instructions.emplace_back(std::move(instr));
1176 idx++;
1177 }
1178
1179 block->instructions = std::move(instructions);
1180 ctx.spills_exit[block_idx].insert(current_spills.begin(), current_spills.end());
1181 }
1182
1183 void spill_block(spill_ctx& ctx, unsigned block_idx)
1184 {
1185 Block* block = &ctx.program->blocks[block_idx];
1186
1187 /* determine set of variables which are spilled at the beginning of the block */
1188 RegisterDemand spilled_registers = init_live_in_vars(ctx, block, block_idx);
1189
1190 /* add interferences for spilled variables */
1191 for (auto it = ctx.spills_entry[block_idx].begin(); it != ctx.spills_entry[block_idx].end(); ++it) {
1192 for (auto it2 = std::next(it); it2 != ctx.spills_entry[block_idx].end(); ++it2)
1193 ctx.add_interference(it->second, it2->second);
1194 }
1195
1196 bool is_loop_header = block->loop_nest_depth && ctx.loop_header.top()->index == block_idx;
1197 if (!is_loop_header) {
1198 /* add spill/reload code on incoming control flow edges */
1199 add_coupling_code(ctx, block, block_idx);
1200 }
1201
1202 std::map<Temp, uint32_t> current_spills = ctx.spills_entry[block_idx];
1203
1204 /* check conditions to process this block */
1205 bool process = RegisterDemand(block->register_demand - spilled_registers).exceeds(ctx.target_pressure) ||
1206 !ctx.renames[block_idx].empty() ||
1207 ctx.remat_used.size();
1208
1209 std::map<Temp, uint32_t>::iterator it = current_spills.begin();
1210 while (!process && it != current_spills.end()) {
1211 if (ctx.next_use_distances_start[block_idx][it->first].first == block_idx)
1212 process = true;
1213 ++it;
1214 }
1215
1216 if (process)
1217 process_block(ctx, block_idx, block, current_spills, spilled_registers);
1218 else
1219 ctx.spills_exit[block_idx].insert(current_spills.begin(), current_spills.end());
1220
1221 ctx.processed[block_idx] = true;
1222
1223 /* check if the next block leaves the current loop */
1224 if (block->loop_nest_depth == 0 || ctx.program->blocks[block_idx + 1].loop_nest_depth >= block->loop_nest_depth)
1225 return;
1226
1227 Block* loop_header = ctx.loop_header.top();
1228
1229 /* preserve original renames at end of loop header block */
1230 std::map<Temp, Temp> renames = std::move(ctx.renames[loop_header->index]);
1231
1232 /* add coupling code to all loop header predecessors */
1233 add_coupling_code(ctx, loop_header, loop_header->index);
1234
1235 /* update remat_used for phis added in add_coupling_code() */
1236 for (aco_ptr<Instruction>& instr : loop_header->instructions) {
1237 if (!is_phi(instr))
1238 break;
1239 for (const Operand& op : instr->operands) {
1240 if (op.isTemp() && ctx.remat.count(op.getTemp()))
1241 ctx.remat_used[ctx.remat[op.getTemp()].instr] = true;
1242 }
1243 }
1244
1245 /* propagate new renames through loop: i.e. repair the SSA */
1246 renames.swap(ctx.renames[loop_header->index]);
1247 for (std::pair<Temp, Temp> rename : renames) {
1248 for (unsigned idx = loop_header->index; idx <= block_idx; idx++) {
1249 Block& current = ctx.program->blocks[idx];
1250 std::vector<aco_ptr<Instruction>>::iterator instr_it = current.instructions.begin();
1251
1252 /* first rename phis */
1253 while (instr_it != current.instructions.end()) {
1254 aco_ptr<Instruction>& phi = *instr_it;
1255 if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
1256 break;
1257 /* no need to rename the loop header phis once again. this happened in add_coupling_code() */
1258 if (idx == loop_header->index) {
1259 instr_it++;
1260 continue;
1261 }
1262
1263 for (Operand& op : phi->operands) {
1264 if (!op.isTemp())
1265 continue;
1266 if (op.getTemp() == rename.first)
1267 op.setTemp(rename.second);
1268 }
1269 instr_it++;
1270 }
1271
1272 std::map<Temp, std::pair<uint32_t, uint32_t>>::iterator it = ctx.next_use_distances_start[idx].find(rename.first);
1273
1274 /* variable is not live at beginning of this block */
1275 if (it == ctx.next_use_distances_start[idx].end())
1276 continue;
1277
1278 /* if the variable is live at the block's exit, add rename */
1279 if (ctx.next_use_distances_end[idx].find(rename.first) != ctx.next_use_distances_end[idx].end())
1280 ctx.renames[idx].insert(rename);
1281
1282 /* rename all uses in this block */
1283 bool renamed = false;
1284 while (!renamed && instr_it != current.instructions.end()) {
1285 aco_ptr<Instruction>& instr = *instr_it;
1286 for (Operand& op : instr->operands) {
1287 if (!op.isTemp())
1288 continue;
1289 if (op.getTemp() == rename.first) {
1290 op.setTemp(rename.second);
1291 /* we can stop with this block as soon as the variable is spilled */
1292 if (instr->opcode == aco_opcode::p_spill)
1293 renamed = true;
1294 }
1295 }
1296 instr_it++;
1297 }
1298 }
1299 }
1300
1301 /* remove loop header info from stack */
1302 ctx.loop_header.pop();
1303 }
1304
1305 Temp load_scratch_resource(spill_ctx& ctx, Temp& scratch_offset,
1306 std::vector<aco_ptr<Instruction>>& instructions,
1307 unsigned offset, bool is_top_level)
1308 {
1309 Builder bld(ctx.program);
1310 if (is_top_level) {
1311 bld.reset(&instructions);
1312 } else {
1313 /* find p_logical_end */
1314 unsigned idx = instructions.size() - 1;
1315 while (instructions[idx]->opcode != aco_opcode::p_logical_end)
1316 idx--;
1317 bld.reset(&instructions, std::next(instructions.begin(), idx));
1318 }
1319
1320 Temp private_segment_buffer = ctx.program->private_segment_buffer;
1321 if (ctx.program->stage != compute_cs)
1322 private_segment_buffer = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, Operand(0u));
1323
1324 if (offset)
1325 scratch_offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), scratch_offset, Operand(offset));
1326
1327 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
1328 S_008F0C_INDEX_STRIDE(ctx.program->wave_size == 64 ? 3 : 2);
1329
1330 if (ctx.program->chip_class >= GFX10) {
1331 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1332 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
1333 S_008F0C_RESOURCE_LEVEL(1);
1334 } else if (ctx.program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
1335 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1336 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1337 }
1338 /* older generations need element size = 4 bytes. element size removed in GFX9 */
1339 if (ctx.program->chip_class <= GFX8)
1340 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
1341
1342 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
1343 private_segment_buffer, Operand(-1u),
1344 Operand(rsrc_conf));
1345 }
1346
1347 void add_interferences(spill_ctx& ctx, std::vector<bool>& is_assigned,
1348 std::vector<uint32_t>& slots, std::vector<bool>& slots_used,
1349 unsigned id)
1350 {
1351 for (unsigned other : ctx.interferences[id].second) {
1352 if (!is_assigned[other])
1353 continue;
1354
1355 RegClass other_rc = ctx.interferences[other].first;
1356 unsigned slot = slots[other];
1357 std::fill(slots_used.begin() + slot, slots_used.begin() + slot + other_rc.size(), true);
1358 }
1359 }
1360
1361 unsigned find_available_slot(std::vector<bool>& used, unsigned wave_size,
1362 unsigned size, bool is_sgpr, unsigned *num_slots)
1363 {
1364 unsigned wave_size_minus_one = wave_size - 1;
1365 unsigned slot = 0;
1366
1367 while (true) {
1368 bool available = true;
1369 for (unsigned i = 0; i < size; i++) {
1370 if (slot + i < used.size() && used[slot + i]) {
1371 available = false;
1372 break;
1373 }
1374 }
1375 if (!available) {
1376 slot++;
1377 continue;
1378 }
1379
1380 if (is_sgpr && ((slot & wave_size_minus_one) > wave_size - size)) {
1381 slot = align(slot, wave_size);
1382 continue;
1383 }
1384
1385 std::fill(used.begin(), used.end(), false);
1386
1387 if (slot + size > used.size())
1388 used.resize(slot + size);
1389
1390 return slot;
1391 }
1392 }
1393
1394 void assign_spill_slots_helper(spill_ctx& ctx, RegType type,
1395 std::vector<bool>& is_assigned,
1396 std::vector<uint32_t>& slots,
1397 unsigned *num_slots)
1398 {
1399 std::vector<bool> slots_used(*num_slots);
1400
1401 /* assign slots for ids with affinities first */
1402 for (std::vector<uint32_t>& vec : ctx.affinities) {
1403 if (ctx.interferences[vec[0]].first.type() != type)
1404 continue;
1405
1406 for (unsigned id : vec) {
1407 if (!ctx.is_reloaded[id])
1408 continue;
1409
1410 add_interferences(ctx, is_assigned, slots, slots_used, id);
1411 }
1412
1413 unsigned slot = find_available_slot(slots_used, ctx.wave_size,
1414 ctx.interferences[vec[0]].first.size(),
1415 type == RegType::sgpr, num_slots);
1416
1417 for (unsigned id : vec) {
1418 assert(!is_assigned[id]);
1419
1420 if (ctx.is_reloaded[id]) {
1421 slots[id] = slot;
1422 is_assigned[id] = true;
1423 }
1424 }
1425 }
1426
1427 /* assign slots for ids without affinities */
1428 for (unsigned id = 0; id < ctx.interferences.size(); id++) {
1429 if (is_assigned[id] || !ctx.is_reloaded[id] || ctx.interferences[id].first.type() != type)
1430 continue;
1431
1432 add_interferences(ctx, is_assigned, slots, slots_used, id);
1433
1434 unsigned slot = find_available_slot(slots_used, ctx.wave_size,
1435 ctx.interferences[id].first.size(),
1436 type == RegType::sgpr, num_slots);
1437
1438 slots[id] = slot;
1439 is_assigned[id] = true;
1440 }
1441
1442 *num_slots = slots_used.size();
1443 }
1444
1445 void assign_spill_slots(spill_ctx& ctx, unsigned spills_to_vgpr) {
1446 std::vector<uint32_t> slots(ctx.interferences.size());
1447 std::vector<bool> is_assigned(ctx.interferences.size());
1448
1449 /* first, handle affinities: just merge all interferences into both spill ids */
1450 for (std::vector<uint32_t>& vec : ctx.affinities) {
1451 for (unsigned i = 0; i < vec.size(); i++) {
1452 for (unsigned j = i + 1; j < vec.size(); j++) {
1453 assert(vec[i] != vec[j]);
1454 bool reloaded = ctx.is_reloaded[vec[i]] || ctx.is_reloaded[vec[j]];
1455 ctx.is_reloaded[vec[i]] = reloaded;
1456 ctx.is_reloaded[vec[j]] = reloaded;
1457 }
1458 }
1459 }
1460 for (ASSERTED uint32_t i = 0; i < ctx.interferences.size(); i++)
1461 for (ASSERTED uint32_t id : ctx.interferences[i].second)
1462 assert(i != id);
1463
1464 /* for each spill slot, assign as many spill ids as possible */
1465 unsigned sgpr_spill_slots = 0, vgpr_spill_slots = 0;
1466 assign_spill_slots_helper(ctx, RegType::sgpr, is_assigned, slots, &sgpr_spill_slots);
1467 assign_spill_slots_helper(ctx, RegType::vgpr, is_assigned, slots, &vgpr_spill_slots);
1468
1469 for (unsigned id = 0; id < is_assigned.size(); id++)
1470 assert(is_assigned[id] || !ctx.is_reloaded[id]);
1471
1472 for (std::vector<uint32_t>& vec : ctx.affinities) {
1473 for (unsigned i = 0; i < vec.size(); i++) {
1474 for (unsigned j = i + 1; j < vec.size(); j++) {
1475 assert(is_assigned[vec[i]] == is_assigned[vec[j]]);
1476 if (!is_assigned[vec[i]])
1477 continue;
1478 assert(ctx.is_reloaded[vec[i]] == ctx.is_reloaded[vec[j]]);
1479 assert(ctx.interferences[vec[i]].first.type() == ctx.interferences[vec[j]].first.type());
1480 assert(slots[vec[i]] == slots[vec[j]]);
1481 }
1482 }
1483 }
1484
1485 /* hope, we didn't mess up */
1486 std::vector<Temp> vgpr_spill_temps((sgpr_spill_slots + ctx.wave_size - 1) / ctx.wave_size);
1487 assert(vgpr_spill_temps.size() <= spills_to_vgpr);
1488
1489 /* replace pseudo instructions with actual hardware instructions */
1490 Temp scratch_offset = ctx.program->scratch_offset, scratch_rsrc = Temp();
1491 unsigned last_top_level_block_idx = 0;
1492 std::vector<bool> reload_in_loop(vgpr_spill_temps.size());
1493 for (Block& block : ctx.program->blocks) {
1494
1495 /* after loops, we insert a user if there was a reload inside the loop */
1496 if (block.loop_nest_depth == 0) {
1497 int end_vgprs = 0;
1498 for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
1499 if (reload_in_loop[i])
1500 end_vgprs++;
1501 }
1502
1503 if (end_vgprs > 0) {
1504 aco_ptr<Instruction> destr{create_instruction<Pseudo_instruction>(aco_opcode::p_end_linear_vgpr, Format::PSEUDO, end_vgprs, 0)};
1505 int k = 0;
1506 for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
1507 if (reload_in_loop[i])
1508 destr->operands[k++] = Operand(vgpr_spill_temps[i]);
1509 reload_in_loop[i] = false;
1510 }
1511 /* find insertion point */
1512 std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin();
1513 while ((*it)->opcode == aco_opcode::p_linear_phi || (*it)->opcode == aco_opcode::p_phi)
1514 ++it;
1515 block.instructions.insert(it, std::move(destr));
1516 }
1517 }
1518
1519 if (block.kind & block_kind_top_level && !block.linear_preds.empty()) {
1520 last_top_level_block_idx = block.index;
1521
1522 /* check if any spilled variables use a created linear vgpr, otherwise destroy them */
1523 for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
1524 if (vgpr_spill_temps[i] == Temp())
1525 continue;
1526
1527 bool can_destroy = true;
1528 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[block.linear_preds[0]]) {
1529
1530 if (ctx.interferences[pair.second].first.type() == RegType::sgpr &&
1531 slots[pair.second] / ctx.wave_size == i) {
1532 can_destroy = false;
1533 break;
1534 }
1535 }
1536 if (can_destroy)
1537 vgpr_spill_temps[i] = Temp();
1538 }
1539 }
1540
1541 std::vector<aco_ptr<Instruction>>::iterator it;
1542 std::vector<aco_ptr<Instruction>> instructions;
1543 instructions.reserve(block.instructions.size());
1544 Builder bld(ctx.program, &instructions);
1545 for (it = block.instructions.begin(); it != block.instructions.end(); ++it) {
1546
1547 if ((*it)->opcode == aco_opcode::p_spill) {
1548 uint32_t spill_id = (*it)->operands[1].constantValue();
1549
1550 if (!ctx.is_reloaded[spill_id]) {
1551 /* never reloaded, so don't spill */
1552 } else if (!is_assigned[spill_id]) {
1553 unreachable("No spill slot assigned for spill id");
1554 } else if (ctx.interferences[spill_id].first.type() == RegType::vgpr) {
1555 /* spill vgpr */
1556 ctx.program->config->spilled_vgprs += (*it)->operands[0].size();
1557 uint32_t spill_slot = slots[spill_id];
1558 bool add_offset_to_sgpr = ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size + vgpr_spill_slots * 4 > 4096;
1559 unsigned base_offset = add_offset_to_sgpr ? 0 : ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size;
1560
1561 /* check if the scratch resource descriptor already exists */
1562 if (scratch_rsrc == Temp()) {
1563 unsigned offset = add_offset_to_sgpr ? ctx.program->config->scratch_bytes_per_wave : 0;
1564 scratch_rsrc = load_scratch_resource(ctx, scratch_offset,
1565 last_top_level_block_idx == block.index ?
1566 instructions : ctx.program->blocks[last_top_level_block_idx].instructions,
1567 offset,
1568 last_top_level_block_idx == block.index);
1569 }
1570
1571 unsigned offset = base_offset + spill_slot * 4;
1572 aco_opcode opcode = aco_opcode::buffer_store_dword;
1573 assert((*it)->operands[0].isTemp());
1574 Temp temp = (*it)->operands[0].getTemp();
1575 assert(temp.type() == RegType::vgpr && !temp.is_linear());
1576 if (temp.size() > 1) {
1577 Instruction* split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, temp.size())};
1578 split->operands[0] = Operand(temp);
1579 for (unsigned i = 0; i < temp.size(); i++)
1580 split->definitions[i] = bld.def(v1);
1581 bld.insert(split);
1582 for (unsigned i = 0; i < temp.size(); i++) {
1583 Instruction *instr = bld.mubuf(opcode, scratch_rsrc, Operand(v1), scratch_offset, split->definitions[i].getTemp(), offset + i * 4, false, true);
1584 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_vgpr_spill, semantic_private);
1585 }
1586 } else {
1587 Instruction *instr = bld.mubuf(opcode, scratch_rsrc, Operand(v1), scratch_offset, temp, offset, false, true);
1588 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_vgpr_spill, semantic_private);
1589 }
1590 } else {
1591 ctx.program->config->spilled_sgprs += (*it)->operands[0].size();
1592
1593 uint32_t spill_slot = slots[spill_id];
1594
1595 /* check if the linear vgpr already exists */
1596 if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) {
1597 Temp linear_vgpr = {ctx.program->allocateId(), v1.as_linear()};
1598 vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr;
1599 aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
1600 create->definitions[0] = Definition(linear_vgpr);
1601 /* find the right place to insert this definition */
1602 if (last_top_level_block_idx == block.index) {
1603 /* insert right before the current instruction */
1604 instructions.emplace_back(std::move(create));
1605 } else {
1606 assert(last_top_level_block_idx < block.index);
1607 /* insert before the branch at last top level block */
1608 std::vector<aco_ptr<Instruction>>& instructions = ctx.program->blocks[last_top_level_block_idx].instructions;
1609 instructions.insert(std::next(instructions.begin(), instructions.size() - 1), std::move(create));
1610 }
1611 }
1612
1613 /* spill sgpr: just add the vgpr temp to operands */
1614 Pseudo_instruction* spill = create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 3, 0);
1615 spill->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]);
1616 spill->operands[1] = Operand(spill_slot % ctx.wave_size);
1617 spill->operands[2] = (*it)->operands[0];
1618 instructions.emplace_back(aco_ptr<Instruction>(spill));
1619 }
1620
1621 } else if ((*it)->opcode == aco_opcode::p_reload) {
1622 uint32_t spill_id = (*it)->operands[0].constantValue();
1623 assert(ctx.is_reloaded[spill_id]);
1624
1625 if (!is_assigned[spill_id]) {
1626 unreachable("No spill slot assigned for spill id");
1627 } else if (ctx.interferences[spill_id].first.type() == RegType::vgpr) {
1628 /* reload vgpr */
1629 uint32_t spill_slot = slots[spill_id];
1630 bool add_offset_to_sgpr = ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size + vgpr_spill_slots * 4 > 4096;
1631 unsigned base_offset = add_offset_to_sgpr ? 0 : ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size;
1632
1633 /* check if the scratch resource descriptor already exists */
1634 if (scratch_rsrc == Temp()) {
1635 unsigned offset = add_offset_to_sgpr ? ctx.program->config->scratch_bytes_per_wave : 0;
1636 scratch_rsrc = load_scratch_resource(ctx, scratch_offset,
1637 last_top_level_block_idx == block.index ?
1638 instructions : ctx.program->blocks[last_top_level_block_idx].instructions,
1639 offset,
1640 last_top_level_block_idx == block.index);
1641 }
1642
1643 unsigned offset = base_offset + spill_slot * 4;
1644 aco_opcode opcode = aco_opcode::buffer_load_dword;
1645 Definition def = (*it)->definitions[0];
1646 if (def.size() > 1) {
1647 Instruction* vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, def.size(), 1)};
1648 vec->definitions[0] = def;
1649 for (unsigned i = 0; i < def.size(); i++) {
1650 Temp tmp = bld.tmp(v1);
1651 vec->operands[i] = Operand(tmp);
1652 Instruction *instr = bld.mubuf(opcode, Definition(tmp), scratch_rsrc, Operand(v1), scratch_offset, offset + i * 4, false, true);
1653 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_vgpr_spill, semantic_private);
1654 }
1655 bld.insert(vec);
1656 } else {
1657 Instruction *instr = bld.mubuf(opcode, def, scratch_rsrc, Operand(v1), scratch_offset, offset, false, true);
1658 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_vgpr_spill, semantic_private);
1659 }
1660 } else {
1661 uint32_t spill_slot = slots[spill_id];
1662 reload_in_loop[spill_slot / ctx.wave_size] = block.loop_nest_depth > 0;
1663
1664 /* check if the linear vgpr already exists */
1665 if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) {
1666 Temp linear_vgpr = {ctx.program->allocateId(), v1.as_linear()};
1667 vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr;
1668 aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
1669 create->definitions[0] = Definition(linear_vgpr);
1670 /* find the right place to insert this definition */
1671 if (last_top_level_block_idx == block.index) {
1672 /* insert right before the current instruction */
1673 instructions.emplace_back(std::move(create));
1674 } else {
1675 assert(last_top_level_block_idx < block.index);
1676 /* insert before the branch at last top level block */
1677 std::vector<aco_ptr<Instruction>>& instructions = ctx.program->blocks[last_top_level_block_idx].instructions;
1678 instructions.insert(std::next(instructions.begin(), instructions.size() - 1), std::move(create));
1679 }
1680 }
1681
1682 /* reload sgpr: just add the vgpr temp to operands */
1683 Pseudo_instruction* reload = create_instruction<Pseudo_instruction>(aco_opcode::p_reload, Format::PSEUDO, 2, 1);
1684 reload->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]);
1685 reload->operands[1] = Operand(spill_slot % ctx.wave_size);
1686 reload->definitions[0] = (*it)->definitions[0];
1687 instructions.emplace_back(aco_ptr<Instruction>(reload));
1688 }
1689 } else if (!ctx.remat_used.count(it->get()) || ctx.remat_used[it->get()]) {
1690 instructions.emplace_back(std::move(*it));
1691 }
1692
1693 }
1694 block.instructions = std::move(instructions);
1695 }
1696
1697 /* update required scratch memory */
1698 ctx.program->config->scratch_bytes_per_wave += align(vgpr_spill_slots * 4 * ctx.program->wave_size, 1024);
1699
1700 /* SSA elimination inserts copies for logical phis right before p_logical_end
1701 * So if a linear vgpr is used between that p_logical_end and the branch,
1702 * we need to ensure logical phis don't choose a definition which aliases
1703 * the linear vgpr.
1704 * TODO: Moving the spills and reloads to before p_logical_end might produce
1705 * slightly better code. */
1706 for (Block& block : ctx.program->blocks) {
1707 /* loops exits are already handled */
1708 if (block.logical_preds.size() <= 1)
1709 continue;
1710
1711 bool has_logical_phis = false;
1712 for (aco_ptr<Instruction>& instr : block.instructions) {
1713 if (instr->opcode == aco_opcode::p_phi) {
1714 has_logical_phis = true;
1715 break;
1716 } else if (instr->opcode != aco_opcode::p_linear_phi) {
1717 break;
1718 }
1719 }
1720 if (!has_logical_phis)
1721 continue;
1722
1723 std::set<Temp> vgprs;
1724 for (unsigned pred_idx : block.logical_preds) {
1725 Block& pred = ctx.program->blocks[pred_idx];
1726 for (int i = pred.instructions.size() - 1; i >= 0; i--) {
1727 aco_ptr<Instruction>& pred_instr = pred.instructions[i];
1728 if (pred_instr->opcode == aco_opcode::p_logical_end) {
1729 break;
1730 } else if (pred_instr->opcode == aco_opcode::p_spill ||
1731 pred_instr->opcode == aco_opcode::p_reload) {
1732 vgprs.insert(pred_instr->operands[0].getTemp());
1733 }
1734 }
1735 }
1736 if (!vgprs.size())
1737 continue;
1738
1739 aco_ptr<Instruction> destr{create_instruction<Pseudo_instruction>(aco_opcode::p_end_linear_vgpr, Format::PSEUDO, vgprs.size(), 0)};
1740 int k = 0;
1741 for (Temp tmp : vgprs) {
1742 destr->operands[k++] = Operand(tmp);
1743 }
1744 /* find insertion point */
1745 std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin();
1746 while ((*it)->opcode == aco_opcode::p_linear_phi || (*it)->opcode == aco_opcode::p_phi)
1747 ++it;
1748 block.instructions.insert(it, std::move(destr));
1749 }
1750 }
1751
1752 } /* end namespace */
1753
1754
1755 void spill(Program* program, live& live_vars, const struct radv_nir_compiler_options *options)
1756 {
1757 program->config->spilled_vgprs = 0;
1758 program->config->spilled_sgprs = 0;
1759
1760 /* no spilling when register pressure is low enough */
1761 if (program->num_waves > 0)
1762 return;
1763
1764 /* lower to CSSA before spilling to ensure correctness w.r.t. phis */
1765 lower_to_cssa(program, live_vars, options);
1766
1767 /* calculate target register demand */
1768 RegisterDemand register_target = program->max_reg_demand;
1769 if (register_target.sgpr > program->sgpr_limit)
1770 register_target.vgpr += (register_target.sgpr - program->sgpr_limit + program->wave_size - 1 + 32) / program->wave_size;
1771 register_target.sgpr = program->sgpr_limit;
1772
1773 if (register_target.vgpr > program->vgpr_limit)
1774 register_target.sgpr = program->sgpr_limit - 5;
1775 int spills_to_vgpr = (program->max_reg_demand.sgpr - register_target.sgpr + program->wave_size - 1 + 32) / program->wave_size;
1776 register_target.vgpr = program->vgpr_limit - spills_to_vgpr;
1777
1778 /* initialize ctx */
1779 spill_ctx ctx(register_target, program, live_vars.register_demand);
1780 compute_global_next_uses(ctx);
1781 get_rematerialize_info(ctx);
1782
1783 /* create spills and reloads */
1784 for (unsigned i = 0; i < program->blocks.size(); i++)
1785 spill_block(ctx, i);
1786
1787 /* assign spill slots and DCE rematerialized code */
1788 assign_spill_slots(ctx, spills_to_vgpr);
1789
1790 /* update live variable information */
1791 live_vars = live_var_analysis(program, options);
1792
1793 assert(program->num_waves > 0);
1794 }
1795
1796 }
1797