aco: move some register demand helpers into aco_live_var_analysis.cpp
[mesa.git] / src / amd / compiler / aco_spill.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include "aco_ir.h"
27 #include "aco_builder.h"
28 #include "sid.h"
29
30 #include <map>
31 #include <stack>
32
33 /*
34 * Implements the spilling algorithm on SSA-form from
35 * "Register Spilling and Live-Range Splitting for SSA-Form Programs"
36 * by Matthias Braun and Sebastian Hack.
37 */
38
39 namespace aco {
40
41 namespace {
42
43 struct remat_info {
44 Instruction *instr;
45 };
46
47 struct spill_ctx {
48 RegisterDemand target_pressure;
49 Program* program;
50 std::vector<std::vector<RegisterDemand>> register_demand;
51 std::vector<std::map<Temp, Temp>> renames;
52 std::vector<std::map<Temp, uint32_t>> spills_entry;
53 std::vector<std::map<Temp, uint32_t>> spills_exit;
54 std::vector<bool> processed;
55 std::stack<Block*> loop_header;
56 std::vector<std::map<Temp, std::pair<uint32_t, uint32_t>>> next_use_distances_start;
57 std::vector<std::map<Temp, std::pair<uint32_t, uint32_t>>> next_use_distances_end;
58 std::vector<std::pair<RegClass, std::set<uint32_t>>> interferences;
59 std::vector<std::vector<uint32_t>> affinities;
60 std::vector<bool> is_reloaded;
61 std::map<Temp, remat_info> remat;
62 std::map<Instruction *, bool> remat_used;
63 unsigned wave_size;
64
65 spill_ctx(const RegisterDemand target_pressure, Program* program,
66 std::vector<std::vector<RegisterDemand>> register_demand)
67 : target_pressure(target_pressure), program(program),
68 register_demand(std::move(register_demand)), renames(program->blocks.size()),
69 spills_entry(program->blocks.size()), spills_exit(program->blocks.size()),
70 processed(program->blocks.size(), false), wave_size(program->wave_size) {}
71
72 void add_affinity(uint32_t first, uint32_t second)
73 {
74 unsigned found_first = affinities.size();
75 unsigned found_second = affinities.size();
76 for (unsigned i = 0; i < affinities.size(); i++) {
77 std::vector<uint32_t>& vec = affinities[i];
78 for (uint32_t entry : vec) {
79 if (entry == first)
80 found_first = i;
81 else if (entry == second)
82 found_second = i;
83 }
84 }
85 if (found_first == affinities.size() && found_second == affinities.size()) {
86 affinities.emplace_back(std::vector<uint32_t>({first, second}));
87 } else if (found_first < affinities.size() && found_second == affinities.size()) {
88 affinities[found_first].push_back(second);
89 } else if (found_second < affinities.size() && found_first == affinities.size()) {
90 affinities[found_second].push_back(first);
91 } else if (found_first != found_second) {
92 /* merge second into first */
93 affinities[found_first].insert(affinities[found_first].end(), affinities[found_second].begin(), affinities[found_second].end());
94 affinities.erase(std::next(affinities.begin(), found_second));
95 } else {
96 assert(found_first == found_second);
97 }
98 }
99
100 uint32_t allocate_spill_id(RegClass rc)
101 {
102 interferences.emplace_back(rc, std::set<uint32_t>());
103 is_reloaded.push_back(false);
104 return next_spill_id++;
105 }
106
107 uint32_t next_spill_id = 0;
108 };
109
110 int32_t get_dominator(int idx_a, int idx_b, Program* program, bool is_linear)
111 {
112
113 if (idx_a == -1)
114 return idx_b;
115 if (idx_b == -1)
116 return idx_a;
117 if (is_linear) {
118 while (idx_a != idx_b) {
119 if (idx_a > idx_b)
120 idx_a = program->blocks[idx_a].linear_idom;
121 else
122 idx_b = program->blocks[idx_b].linear_idom;
123 }
124 } else {
125 while (idx_a != idx_b) {
126 if (idx_a > idx_b)
127 idx_a = program->blocks[idx_a].logical_idom;
128 else
129 idx_b = program->blocks[idx_b].logical_idom;
130 }
131 }
132 assert(idx_a != -1);
133 return idx_a;
134 }
135
136 void next_uses_per_block(spill_ctx& ctx, unsigned block_idx, std::set<uint32_t>& worklist)
137 {
138 Block* block = &ctx.program->blocks[block_idx];
139 std::map<Temp, std::pair<uint32_t, uint32_t>> next_uses = ctx.next_use_distances_end[block_idx];
140
141 /* to compute the next use distance at the beginning of the block, we have to add the block's size */
142 for (std::map<Temp, std::pair<uint32_t, uint32_t>>::iterator it = next_uses.begin(); it != next_uses.end(); ++it)
143 it->second.second = it->second.second + block->instructions.size();
144
145 int idx = block->instructions.size() - 1;
146 while (idx >= 0) {
147 aco_ptr<Instruction>& instr = block->instructions[idx];
148
149 if (instr->opcode == aco_opcode::p_linear_phi ||
150 instr->opcode == aco_opcode::p_phi)
151 break;
152
153 for (const Definition& def : instr->definitions) {
154 if (def.isTemp())
155 next_uses.erase(def.getTemp());
156 }
157
158 for (const Operand& op : instr->operands) {
159 /* omit exec mask */
160 if (op.isFixed() && op.physReg() == exec)
161 continue;
162 if (op.regClass().type() == RegType::vgpr && op.regClass().is_linear())
163 continue;
164 if (op.isTemp())
165 next_uses[op.getTemp()] = {block_idx, idx};
166 }
167 idx--;
168 }
169
170 assert(block_idx != 0 || next_uses.empty());
171 ctx.next_use_distances_start[block_idx] = next_uses;
172 while (idx >= 0) {
173 aco_ptr<Instruction>& instr = block->instructions[idx];
174 assert(instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi);
175
176 for (unsigned i = 0; i < instr->operands.size(); i++) {
177 unsigned pred_idx = instr->opcode == aco_opcode::p_phi ?
178 block->logical_preds[i] :
179 block->linear_preds[i];
180 if (instr->operands[i].isTemp()) {
181 if (instr->operands[i].getTemp() == ctx.program->blocks[pred_idx].live_out_exec)
182 continue;
183 if (ctx.next_use_distances_end[pred_idx].find(instr->operands[i].getTemp()) == ctx.next_use_distances_end[pred_idx].end() ||
184 ctx.next_use_distances_end[pred_idx][instr->operands[i].getTemp()] != std::pair<uint32_t, uint32_t>{block_idx, 0})
185 worklist.insert(pred_idx);
186 ctx.next_use_distances_end[pred_idx][instr->operands[i].getTemp()] = {block_idx, 0};
187 }
188 }
189 next_uses.erase(instr->definitions[0].getTemp());
190 idx--;
191 }
192
193 /* all remaining live vars must be live-out at the predecessors */
194 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : next_uses) {
195 Temp temp = pair.first;
196 uint32_t distance = pair.second.second;
197 uint32_t dom = pair.second.first;
198 std::vector<unsigned>& preds = temp.is_linear() ? block->linear_preds : block->logical_preds;
199 for (unsigned pred_idx : preds) {
200 if (temp == ctx.program->blocks[pred_idx].live_out_exec)
201 continue;
202 if (ctx.program->blocks[pred_idx].loop_nest_depth > block->loop_nest_depth)
203 distance += 0xFFFF;
204 if (ctx.next_use_distances_end[pred_idx].find(temp) != ctx.next_use_distances_end[pred_idx].end()) {
205 dom = get_dominator(dom, ctx.next_use_distances_end[pred_idx][temp].first, ctx.program, temp.is_linear());
206 distance = std::min(ctx.next_use_distances_end[pred_idx][temp].second, distance);
207 }
208 if (ctx.next_use_distances_end[pred_idx][temp] != std::pair<uint32_t, uint32_t>{dom, distance})
209 worklist.insert(pred_idx);
210 ctx.next_use_distances_end[pred_idx][temp] = {dom, distance};
211 }
212 }
213
214 }
215
216 void compute_global_next_uses(spill_ctx& ctx, std::vector<std::set<Temp>>& live_out)
217 {
218 ctx.next_use_distances_start.resize(ctx.program->blocks.size());
219 ctx.next_use_distances_end.resize(ctx.program->blocks.size());
220 std::set<uint32_t> worklist;
221 for (Block& block : ctx.program->blocks)
222 worklist.insert(block.index);
223
224 while (!worklist.empty()) {
225 std::set<unsigned>::reverse_iterator b_it = worklist.rbegin();
226 unsigned block_idx = *b_it;
227 worklist.erase(block_idx);
228 next_uses_per_block(ctx, block_idx, worklist);
229 }
230 }
231
232 bool should_rematerialize(aco_ptr<Instruction>& instr)
233 {
234 /* TODO: rematerialization is only supported for VOP1, SOP1 and PSEUDO */
235 if (instr->format != Format::VOP1 && instr->format != Format::SOP1 && instr->format != Format::PSEUDO && instr->format != Format::SOPK)
236 return false;
237 /* TODO: pseudo-instruction rematerialization is only supported for p_create_vector */
238 if (instr->format == Format::PSEUDO && instr->opcode != aco_opcode::p_create_vector)
239 return false;
240 if (instr->format == Format::SOPK && instr->opcode != aco_opcode::s_movk_i32)
241 return false;
242
243 for (const Operand& op : instr->operands) {
244 /* TODO: rematerialization using temporaries isn't yet supported */
245 if (op.isTemp())
246 return false;
247 }
248
249 /* TODO: rematerialization with multiple definitions isn't yet supported */
250 if (instr->definitions.size() > 1)
251 return false;
252
253 return true;
254 }
255
256 aco_ptr<Instruction> do_reload(spill_ctx& ctx, Temp tmp, Temp new_name, uint32_t spill_id)
257 {
258 std::map<Temp, remat_info>::iterator remat = ctx.remat.find(tmp);
259 if (remat != ctx.remat.end()) {
260 Instruction *instr = remat->second.instr;
261 assert((instr->format == Format::VOP1 || instr->format == Format::SOP1 || instr->format == Format::PSEUDO || instr->format == Format::SOPK) && "unsupported");
262 assert((instr->format != Format::PSEUDO || instr->opcode == aco_opcode::p_create_vector) && "unsupported");
263 assert(instr->definitions.size() == 1 && "unsupported");
264
265 aco_ptr<Instruction> res;
266 if (instr->format == Format::VOP1) {
267 res.reset(create_instruction<VOP1_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
268 } else if (instr->format == Format::SOP1) {
269 res.reset(create_instruction<SOP1_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
270 } else if (instr->format == Format::PSEUDO) {
271 res.reset(create_instruction<Pseudo_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
272 } else if (instr->format == Format::SOPK) {
273 res.reset(create_instruction<SOPK_instruction>(instr->opcode, instr->format, instr->operands.size(), instr->definitions.size()));
274 static_cast<SOPK_instruction*>(res.get())->imm = static_cast<SOPK_instruction*>(instr)->imm;
275 }
276 for (unsigned i = 0; i < instr->operands.size(); i++) {
277 res->operands[i] = instr->operands[i];
278 if (instr->operands[i].isTemp()) {
279 assert(false && "unsupported");
280 if (ctx.remat.count(instr->operands[i].getTemp()))
281 ctx.remat_used[ctx.remat[instr->operands[i].getTemp()].instr] = true;
282 }
283 }
284 res->definitions[0] = Definition(new_name);
285 return res;
286 } else {
287 aco_ptr<Pseudo_instruction> reload{create_instruction<Pseudo_instruction>(aco_opcode::p_reload, Format::PSEUDO, 1, 1)};
288 reload->operands[0] = Operand(spill_id);
289 reload->definitions[0] = Definition(new_name);
290 ctx.is_reloaded[spill_id] = true;
291 return reload;
292 }
293 }
294
295 void get_rematerialize_info(spill_ctx& ctx)
296 {
297 for (Block& block : ctx.program->blocks) {
298 bool logical = false;
299 for (aco_ptr<Instruction>& instr : block.instructions) {
300 if (instr->opcode == aco_opcode::p_logical_start)
301 logical = true;
302 else if (instr->opcode == aco_opcode::p_logical_end)
303 logical = false;
304 if (logical && should_rematerialize(instr)) {
305 for (const Definition& def : instr->definitions) {
306 if (def.isTemp()) {
307 ctx.remat[def.getTemp()] = (remat_info){instr.get()};
308 ctx.remat_used[instr.get()] = false;
309 }
310 }
311 }
312 }
313 }
314 }
315
316 std::vector<std::map<Temp, uint32_t>> local_next_uses(spill_ctx& ctx, Block* block)
317 {
318 std::vector<std::map<Temp, uint32_t>> local_next_uses(block->instructions.size());
319
320 std::map<Temp, uint32_t> next_uses;
321 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_end[block->index])
322 next_uses[pair.first] = pair.second.second + block->instructions.size();
323
324 for (int idx = block->instructions.size() - 1; idx >= 0; idx--) {
325 aco_ptr<Instruction>& instr = block->instructions[idx];
326 if (!instr)
327 break;
328 if (instr->opcode == aco_opcode::p_phi || instr->opcode == aco_opcode::p_linear_phi)
329 break;
330
331 for (const Operand& op : instr->operands) {
332 if (op.isFixed() && op.physReg() == exec)
333 continue;
334 if (op.regClass().type() == RegType::vgpr && op.regClass().is_linear())
335 continue;
336 if (op.isTemp())
337 next_uses[op.getTemp()] = idx;
338 }
339 for (const Definition& def : instr->definitions) {
340 if (def.isTemp())
341 next_uses.erase(def.getTemp());
342 }
343 local_next_uses[idx] = next_uses;
344 }
345 return local_next_uses;
346 }
347
348
349 RegisterDemand init_live_in_vars(spill_ctx& ctx, Block* block, unsigned block_idx)
350 {
351 RegisterDemand spilled_registers;
352
353 /* first block, nothing was spilled before */
354 if (block_idx == 0)
355 return {0, 0};
356
357 /* loop header block */
358 if (block->loop_nest_depth > ctx.program->blocks[block_idx - 1].loop_nest_depth) {
359 assert(block->linear_preds[0] == block_idx - 1);
360 assert(block->logical_preds[0] == block_idx - 1);
361
362 /* create new loop_info */
363 ctx.loop_header.emplace(block);
364
365 /* check how many live-through variables should be spilled */
366 RegisterDemand new_demand;
367 unsigned i = block_idx;
368 while (ctx.program->blocks[i].loop_nest_depth >= block->loop_nest_depth) {
369 assert(ctx.program->blocks.size() > i);
370 new_demand.update(ctx.program->blocks[i].register_demand);
371 i++;
372 }
373 unsigned loop_end = i;
374
375 /* select live-through vgpr variables */
376 while (new_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr) {
377 unsigned distance = 0;
378 Temp to_spill;
379 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_end[block_idx - 1]) {
380 if (pair.first.type() == RegType::vgpr &&
381 pair.second.first >= loop_end &&
382 pair.second.second > distance &&
383 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
384 to_spill = pair.first;
385 distance = pair.second.second;
386 }
387 }
388 if (distance == 0)
389 break;
390
391 uint32_t spill_id;
392 if (ctx.spills_exit[block_idx - 1].find(to_spill) == ctx.spills_exit[block_idx - 1].end()) {
393 spill_id = ctx.allocate_spill_id(to_spill.regClass());
394 } else {
395 spill_id = ctx.spills_exit[block_idx - 1][to_spill];
396 }
397
398 ctx.spills_entry[block_idx][to_spill] = spill_id;
399 spilled_registers.vgpr += to_spill.size();
400 }
401
402 /* select live-through sgpr variables */
403 while (new_demand.sgpr - spilled_registers.sgpr > ctx.target_pressure.sgpr) {
404 unsigned distance = 0;
405 Temp to_spill;
406 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_end[block_idx - 1]) {
407 if (pair.first.type() == RegType::sgpr &&
408 pair.second.first >= loop_end &&
409 pair.second.second > distance &&
410 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
411 to_spill = pair.first;
412 distance = pair.second.second;
413 }
414 }
415 if (distance == 0)
416 break;
417
418 uint32_t spill_id;
419 if (ctx.spills_exit[block_idx - 1].find(to_spill) == ctx.spills_exit[block_idx - 1].end()) {
420 spill_id = ctx.allocate_spill_id(to_spill.regClass());
421 } else {
422 spill_id = ctx.spills_exit[block_idx - 1][to_spill];
423 }
424
425 ctx.spills_entry[block_idx][to_spill] = spill_id;
426 spilled_registers.sgpr += to_spill.size();
427 }
428
429
430
431 /* shortcut */
432 if (!RegisterDemand(new_demand - spilled_registers).exceeds(ctx.target_pressure))
433 return spilled_registers;
434
435 /* if reg pressure is too high at beginning of loop, add variables with furthest use */
436 unsigned idx = 0;
437 while (block->instructions[idx]->opcode == aco_opcode::p_phi || block->instructions[idx]->opcode == aco_opcode::p_linear_phi)
438 idx++;
439
440 assert(idx != 0 && "loop without phis: TODO");
441 idx--;
442 RegisterDemand reg_pressure = ctx.register_demand[block_idx][idx] - spilled_registers;
443 while (reg_pressure.sgpr > ctx.target_pressure.sgpr) {
444 unsigned distance = 0;
445 Temp to_spill;
446 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
447 if (pair.first.type() == RegType::sgpr &&
448 pair.second.second > distance &&
449 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
450 to_spill = pair.first;
451 distance = pair.second.second;
452 }
453 }
454 assert(distance != 0);
455
456 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
457 spilled_registers.sgpr += to_spill.size();
458 reg_pressure.sgpr -= to_spill.size();
459 }
460 while (reg_pressure.vgpr > ctx.target_pressure.vgpr) {
461 unsigned distance = 0;
462 Temp to_spill;
463 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
464 if (pair.first.type() == RegType::vgpr &&
465 pair.second.second > distance &&
466 ctx.spills_entry[block_idx].find(pair.first) == ctx.spills_entry[block_idx].end()) {
467 to_spill = pair.first;
468 distance = pair.second.second;
469 }
470 }
471 assert(distance != 0);
472 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
473 spilled_registers.vgpr += to_spill.size();
474 reg_pressure.vgpr -= to_spill.size();
475 }
476
477 return spilled_registers;
478 }
479
480 /* branch block */
481 if (block->linear_preds.size() == 1 && !(block->kind & block_kind_loop_exit)) {
482 /* keep variables spilled if they are alive and not used in the current block */
483 unsigned pred_idx = block->linear_preds[0];
484 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
485 if (pair.first.type() == RegType::sgpr &&
486 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
487 ctx.next_use_distances_start[block_idx][pair.first].second > block_idx) {
488 ctx.spills_entry[block_idx].insert(pair);
489 spilled_registers.sgpr += pair.first.size();
490 }
491 }
492 if (block->logical_preds.size() == 1) {
493 pred_idx = block->logical_preds[0];
494 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
495 if (pair.first.type() == RegType::vgpr &&
496 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
497 ctx.next_use_distances_start[block_idx][pair.first].second > block_idx) {
498 ctx.spills_entry[block_idx].insert(pair);
499 spilled_registers.vgpr += pair.first.size();
500 }
501 }
502 }
503
504 /* if register demand is still too high, we just keep all spilled live vars and process the block */
505 if (block->register_demand.sgpr - spilled_registers.sgpr > ctx.target_pressure.sgpr) {
506 pred_idx = block->linear_preds[0];
507 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
508 if (pair.first.type() == RegType::sgpr &&
509 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
510 ctx.spills_entry[block_idx].insert(pair).second) {
511 spilled_registers.sgpr += pair.first.size();
512 }
513 }
514 }
515 if (block->register_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr && block->logical_preds.size() == 1) {
516 pred_idx = block->logical_preds[0];
517 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
518 if (pair.first.type() == RegType::vgpr &&
519 ctx.next_use_distances_start[block_idx].find(pair.first) != ctx.next_use_distances_start[block_idx].end() &&
520 ctx.spills_entry[block_idx].insert(pair).second) {
521 spilled_registers.vgpr += pair.first.size();
522 }
523 }
524 }
525
526 return spilled_registers;
527 }
528
529 /* else: merge block */
530 std::set<Temp> partial_spills;
531
532 /* keep variables spilled on all incoming paths */
533 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
534 std::vector<unsigned>& preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds;
535 /* If it can be rematerialized, keep the variable spilled if all predecessors do not reload it.
536 * Otherwise, if any predecessor reloads it, ensure it's reloaded on all other predecessors.
537 * The idea is that it's better in practice to rematerialize redundantly than to create lots of phis. */
538 /* TODO: test this idea with more than Dawn of War III shaders (the current pipeline-db doesn't seem to exercise this path much) */
539 bool remat = ctx.remat.count(pair.first);
540 bool spill = !remat;
541 uint32_t spill_id = 0;
542 for (unsigned pred_idx : preds) {
543 /* variable is not even live at the predecessor: probably from a phi */
544 if (ctx.next_use_distances_end[pred_idx].find(pair.first) == ctx.next_use_distances_end[pred_idx].end()) {
545 spill = false;
546 break;
547 }
548 if (ctx.spills_exit[pred_idx].find(pair.first) == ctx.spills_exit[pred_idx].end()) {
549 if (!remat)
550 spill = false;
551 } else {
552 partial_spills.insert(pair.first);
553 /* it might be that on one incoming path, the variable has a different spill_id, but add_couple_code() will take care of that. */
554 spill_id = ctx.spills_exit[pred_idx][pair.first];
555 if (remat)
556 spill = true;
557 }
558 }
559 if (spill) {
560 ctx.spills_entry[block_idx][pair.first] = spill_id;
561 partial_spills.erase(pair.first);
562 spilled_registers += pair.first;
563 }
564 }
565
566 /* same for phis */
567 unsigned idx = 0;
568 while (block->instructions[idx]->opcode == aco_opcode::p_linear_phi ||
569 block->instructions[idx]->opcode == aco_opcode::p_phi) {
570 aco_ptr<Instruction>& phi = block->instructions[idx];
571 std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
572 bool spill = true;
573
574 for (unsigned i = 0; i < phi->operands.size(); i++) {
575 if (phi->operands[i].isUndefined())
576 continue;
577 assert(phi->operands[i].isTemp());
578 if (ctx.spills_exit[preds[i]].find(phi->operands[i].getTemp()) == ctx.spills_exit[preds[i]].end())
579 spill = false;
580 else
581 partial_spills.insert(phi->definitions[0].getTemp());
582 }
583 if (spill) {
584 ctx.spills_entry[block_idx][phi->definitions[0].getTemp()] = ctx.allocate_spill_id(phi->definitions[0].regClass());
585 partial_spills.erase(phi->definitions[0].getTemp());
586 spilled_registers += phi->definitions[0].getTemp();
587 }
588
589 idx++;
590 }
591
592 /* if reg pressure at first instruction is still too high, add partially spilled variables */
593 RegisterDemand reg_pressure;
594 if (idx == 0) {
595 for (const Definition& def : block->instructions[idx]->definitions) {
596 if (def.isTemp()) {
597 reg_pressure -= def.getTemp();
598 }
599 }
600 for (const Operand& op : block->instructions[idx]->operands) {
601 if (op.isTemp() && op.isFirstKill()) {
602 reg_pressure += op.getTemp();
603 }
604 }
605 } else {
606 idx--;
607 }
608 reg_pressure += ctx.register_demand[block_idx][idx] - spilled_registers;
609
610 while (reg_pressure.sgpr > ctx.target_pressure.sgpr) {
611 assert(!partial_spills.empty());
612
613 std::set<Temp>::iterator it = partial_spills.begin();
614 Temp to_spill = *it;
615 unsigned distance = ctx.next_use_distances_start[block_idx][*it].second;
616 while (it != partial_spills.end()) {
617 assert(ctx.spills_entry[block_idx].find(*it) == ctx.spills_entry[block_idx].end());
618
619 if (it->type() == RegType::sgpr && ctx.next_use_distances_start[block_idx][*it].second > distance) {
620 distance = ctx.next_use_distances_start[block_idx][*it].second;
621 to_spill = *it;
622 }
623 ++it;
624 }
625 assert(distance != 0);
626
627 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
628 partial_spills.erase(to_spill);
629 spilled_registers.sgpr += to_spill.size();
630 reg_pressure.sgpr -= to_spill.size();
631 }
632
633 while (reg_pressure.vgpr > ctx.target_pressure.vgpr) {
634 assert(!partial_spills.empty());
635
636 std::set<Temp>::iterator it = partial_spills.begin();
637 Temp to_spill = *it;
638 unsigned distance = ctx.next_use_distances_start[block_idx][*it].second;
639 while (it != partial_spills.end()) {
640 assert(ctx.spills_entry[block_idx].find(*it) == ctx.spills_entry[block_idx].end());
641
642 if (it->type() == RegType::vgpr && ctx.next_use_distances_start[block_idx][*it].second > distance) {
643 distance = ctx.next_use_distances_start[block_idx][*it].second;
644 to_spill = *it;
645 }
646 ++it;
647 }
648 assert(distance != 0);
649
650 ctx.spills_entry[block_idx][to_spill] = ctx.allocate_spill_id(to_spill.regClass());
651 partial_spills.erase(to_spill);
652 spilled_registers.vgpr += to_spill.size();
653 reg_pressure.vgpr -= to_spill.size();
654 }
655
656 return spilled_registers;
657 }
658
659
660 RegisterDemand get_demand_before(spill_ctx& ctx, unsigned block_idx, unsigned idx)
661 {
662 if (idx == 0) {
663 RegisterDemand demand = ctx.register_demand[block_idx][idx];
664 aco_ptr<Instruction>& instr = ctx.program->blocks[block_idx].instructions[idx];
665 aco_ptr<Instruction> instr_before(nullptr);
666 return get_demand_before(demand, instr, instr_before);
667 } else {
668 return ctx.register_demand[block_idx][idx - 1];
669 }
670 }
671
672 void add_coupling_code(spill_ctx& ctx, Block* block, unsigned block_idx)
673 {
674 /* no coupling code necessary */
675 if (block->linear_preds.size() == 0)
676 return;
677
678 std::vector<aco_ptr<Instruction>> instructions;
679 /* branch block: TODO take other branch into consideration */
680 if (block->linear_preds.size() == 1 && !(block->kind & (block_kind_loop_exit | block_kind_loop_header))) {
681 assert(ctx.processed[block->linear_preds[0]]);
682 assert(ctx.register_demand[block_idx].size() == block->instructions.size());
683 std::vector<RegisterDemand> reg_demand;
684 unsigned insert_idx = 0;
685 unsigned pred_idx = block->linear_preds[0];
686 RegisterDemand demand_before = get_demand_before(ctx, block_idx, 0);
687
688 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> live : ctx.next_use_distances_start[block_idx]) {
689 if (!live.first.is_linear())
690 continue;
691 /* still spilled */
692 if (ctx.spills_entry[block_idx].find(live.first) != ctx.spills_entry[block_idx].end())
693 continue;
694
695 /* in register at end of predecessor */
696 if (ctx.spills_exit[pred_idx].find(live.first) == ctx.spills_exit[pred_idx].end()) {
697 std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(live.first);
698 if (it != ctx.renames[pred_idx].end())
699 ctx.renames[block_idx].insert(*it);
700 continue;
701 }
702
703 /* variable is spilled at predecessor and live at current block: create reload instruction */
704 Temp new_name = {ctx.program->allocateId(), live.first.regClass()};
705 aco_ptr<Instruction> reload = do_reload(ctx, live.first, new_name, ctx.spills_exit[pred_idx][live.first]);
706 instructions.emplace_back(std::move(reload));
707 reg_demand.push_back(demand_before);
708 ctx.renames[block_idx][live.first] = new_name;
709 }
710
711 if (block->logical_preds.size() == 1) {
712 do {
713 assert(insert_idx < block->instructions.size());
714 instructions.emplace_back(std::move(block->instructions[insert_idx]));
715 reg_demand.push_back(ctx.register_demand[block_idx][insert_idx]);
716 insert_idx++;
717 } while (instructions.back()->opcode != aco_opcode::p_logical_start);
718
719 unsigned pred_idx = block->logical_preds[0];
720 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> live : ctx.next_use_distances_start[block_idx]) {
721 if (live.first.is_linear())
722 continue;
723 /* still spilled */
724 if (ctx.spills_entry[block_idx].find(live.first) != ctx.spills_entry[block_idx].end())
725 continue;
726
727 /* in register at end of predecessor */
728 if (ctx.spills_exit[pred_idx].find(live.first) == ctx.spills_exit[pred_idx].end()) {
729 std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(live.first);
730 if (it != ctx.renames[pred_idx].end())
731 ctx.renames[block_idx].insert(*it);
732 continue;
733 }
734
735 /* variable is spilled at predecessor and live at current block: create reload instruction */
736 Temp new_name = {ctx.program->allocateId(), live.first.regClass()};
737 aco_ptr<Instruction> reload = do_reload(ctx, live.first, new_name, ctx.spills_exit[pred_idx][live.first]);
738 instructions.emplace_back(std::move(reload));
739 reg_demand.emplace_back(reg_demand.back());
740 ctx.renames[block_idx][live.first] = new_name;
741 }
742 }
743
744 /* combine new reload instructions with original block */
745 if (!instructions.empty()) {
746 reg_demand.insert(reg_demand.end(), std::next(ctx.register_demand[block->index].begin(), insert_idx),
747 ctx.register_demand[block->index].end());
748 ctx.register_demand[block_idx] = std::move(reg_demand);
749 instructions.insert(instructions.end(),
750 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(std::next(block->instructions.begin(), insert_idx)),
751 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
752 block->instructions = std::move(instructions);
753 }
754 return;
755 }
756
757 /* loop header and merge blocks: check if all (linear) predecessors have been processed */
758 for (ASSERTED unsigned pred : block->linear_preds)
759 assert(ctx.processed[pred]);
760
761 /* iterate the phi nodes for which operands to spill at the predecessor */
762 for (aco_ptr<Instruction>& phi : block->instructions) {
763 if (phi->opcode != aco_opcode::p_phi &&
764 phi->opcode != aco_opcode::p_linear_phi)
765 break;
766
767 /* if the phi is not spilled, add to instructions */
768 if (ctx.spills_entry[block_idx].find(phi->definitions[0].getTemp()) == ctx.spills_entry[block_idx].end()) {
769 instructions.emplace_back(std::move(phi));
770 continue;
771 }
772
773 std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
774 uint32_t def_spill_id = ctx.spills_entry[block_idx][phi->definitions[0].getTemp()];
775
776 for (unsigned i = 0; i < phi->operands.size(); i++) {
777 if (phi->operands[i].isUndefined())
778 continue;
779
780 unsigned pred_idx = preds[i];
781 assert(phi->operands[i].isTemp() && phi->operands[i].isKill());
782 Temp var = phi->operands[i].getTemp();
783
784 /* build interferences between the phi def and all spilled variables at the predecessor blocks */
785 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[pred_idx]) {
786 if (var == pair.first)
787 continue;
788 ctx.interferences[def_spill_id].second.emplace(pair.second);
789 ctx.interferences[pair.second].second.emplace(def_spill_id);
790 }
791
792 /* check if variable is already spilled at predecessor */
793 std::map<Temp, uint32_t>::iterator spilled = ctx.spills_exit[pred_idx].find(var);
794 if (spilled != ctx.spills_exit[pred_idx].end()) {
795 if (spilled->second != def_spill_id)
796 ctx.add_affinity(def_spill_id, spilled->second);
797 continue;
798 }
799
800 /* rename if necessary */
801 std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var);
802 if (rename_it != ctx.renames[pred_idx].end()) {
803 var = rename_it->second;
804 ctx.renames[pred_idx].erase(rename_it);
805 }
806
807 uint32_t spill_id = ctx.allocate_spill_id(phi->definitions[0].regClass());
808 ctx.add_affinity(def_spill_id, spill_id);
809 aco_ptr<Pseudo_instruction> spill{create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
810 spill->operands[0] = Operand(var);
811 spill->operands[1] = Operand(spill_id);
812 Block& pred = ctx.program->blocks[pred_idx];
813 unsigned idx = pred.instructions.size();
814 do {
815 assert(idx != 0);
816 idx--;
817 } while (phi->opcode == aco_opcode::p_phi && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
818 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
819 pred.instructions.insert(it, std::move(spill));
820 ctx.spills_exit[pred_idx][phi->operands[i].getTemp()] = spill_id;
821 }
822
823 /* remove phi from instructions */
824 phi.reset();
825 }
826
827 /* iterate all (other) spilled variables for which to spill at the predecessor */
828 // TODO: would be better to have them sorted: first vgprs and first with longest distance
829 for (std::pair<Temp, uint32_t> pair : ctx.spills_entry[block_idx]) {
830 std::vector<unsigned> preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds;
831
832 for (unsigned pred_idx : preds) {
833 /* variable is already spilled at predecessor */
834 std::map<Temp, uint32_t>::iterator spilled = ctx.spills_exit[pred_idx].find(pair.first);
835 if (spilled != ctx.spills_exit[pred_idx].end()) {
836 if (spilled->second != pair.second)
837 ctx.add_affinity(pair.second, spilled->second);
838 continue;
839 }
840
841 /* variable is dead at predecessor, it must be from a phi: this works because of CSSA form */
842 if (ctx.next_use_distances_end[pred_idx].find(pair.first) == ctx.next_use_distances_end[pred_idx].end())
843 continue;
844
845 /* add interferences between spilled variable and predecessors exit spills */
846 for (std::pair<Temp, uint32_t> exit_spill : ctx.spills_exit[pred_idx]) {
847 if (exit_spill.first == pair.first)
848 continue;
849 ctx.interferences[exit_spill.second].second.emplace(pair.second);
850 ctx.interferences[pair.second].second.emplace(exit_spill.second);
851 }
852
853 /* variable is in register at predecessor and has to be spilled */
854 /* rename if necessary */
855 Temp var = pair.first;
856 std::map<Temp, Temp>::iterator rename_it = ctx.renames[pred_idx].find(var);
857 if (rename_it != ctx.renames[pred_idx].end()) {
858 var = rename_it->second;
859 ctx.renames[pred_idx].erase(rename_it);
860 }
861
862 aco_ptr<Pseudo_instruction> spill{create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
863 spill->operands[0] = Operand(var);
864 spill->operands[1] = Operand(pair.second);
865 Block& pred = ctx.program->blocks[pred_idx];
866 unsigned idx = pred.instructions.size();
867 do {
868 assert(idx != 0);
869 idx--;
870 } while (pair.first.type() == RegType::vgpr && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
871 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
872 pred.instructions.insert(it, std::move(spill));
873 ctx.spills_exit[pred.index][pair.first] = pair.second;
874 }
875 }
876
877 /* iterate phis for which operands to reload */
878 for (aco_ptr<Instruction>& phi : instructions) {
879 assert(phi->opcode == aco_opcode::p_phi || phi->opcode == aco_opcode::p_linear_phi);
880 assert(ctx.spills_entry[block_idx].find(phi->definitions[0].getTemp()) == ctx.spills_entry[block_idx].end());
881
882 std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
883 for (unsigned i = 0; i < phi->operands.size(); i++) {
884 if (!phi->operands[i].isTemp())
885 continue;
886 unsigned pred_idx = preds[i];
887
888 /* rename operand */
889 if (ctx.spills_exit[pred_idx].find(phi->operands[i].getTemp()) == ctx.spills_exit[pred_idx].end()) {
890 std::map<Temp, Temp>::iterator it = ctx.renames[pred_idx].find(phi->operands[i].getTemp());
891 if (it != ctx.renames[pred_idx].end())
892 phi->operands[i].setTemp(it->second);
893 continue;
894 }
895
896 Temp tmp = phi->operands[i].getTemp();
897
898 /* reload phi operand at end of predecessor block */
899 Temp new_name = {ctx.program->allocateId(), tmp.regClass()};
900 Block& pred = ctx.program->blocks[pred_idx];
901 unsigned idx = pred.instructions.size();
902 do {
903 assert(idx != 0);
904 idx--;
905 } while (phi->opcode == aco_opcode::p_phi && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
906 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
907
908 aco_ptr<Instruction> reload = do_reload(ctx, tmp, new_name, ctx.spills_exit[pred_idx][tmp]);
909 pred.instructions.insert(it, std::move(reload));
910
911 ctx.spills_exit[pred_idx].erase(tmp);
912 ctx.renames[pred_idx][tmp] = new_name;
913 phi->operands[i].setTemp(new_name);
914 }
915 }
916
917 /* iterate live variables for which to reload */
918 // TODO: reload at current block if variable is spilled on all predecessors
919 for (std::pair<Temp, std::pair<uint32_t, uint32_t>> pair : ctx.next_use_distances_start[block_idx]) {
920 /* skip spilled variables */
921 if (ctx.spills_entry[block_idx].find(pair.first) != ctx.spills_entry[block_idx].end())
922 continue;
923 std::vector<unsigned> preds = pair.first.is_linear() ? block->linear_preds : block->logical_preds;
924
925 /* variable is dead at predecessor, it must be from a phi */
926 bool is_dead = false;
927 for (unsigned pred_idx : preds) {
928 if (ctx.next_use_distances_end[pred_idx].find(pair.first) == ctx.next_use_distances_end[pred_idx].end())
929 is_dead = true;
930 }
931 if (is_dead)
932 continue;
933 for (unsigned pred_idx : preds) {
934 /* the variable is not spilled at the predecessor */
935 if (ctx.spills_exit[pred_idx].find(pair.first) == ctx.spills_exit[pred_idx].end())
936 continue;
937
938 /* variable is spilled at predecessor and has to be reloaded */
939 Temp new_name = {ctx.program->allocateId(), pair.first.regClass()};
940 Block& pred = ctx.program->blocks[pred_idx];
941 unsigned idx = pred.instructions.size();
942 do {
943 assert(idx != 0);
944 idx--;
945 } while (pair.first.type() == RegType::vgpr && pred.instructions[idx]->opcode != aco_opcode::p_logical_end);
946 std::vector<aco_ptr<Instruction>>::iterator it = std::next(pred.instructions.begin(), idx);
947
948 aco_ptr<Instruction> reload = do_reload(ctx, pair.first, new_name, ctx.spills_exit[pred.index][pair.first]);
949 pred.instructions.insert(it, std::move(reload));
950
951 ctx.spills_exit[pred.index].erase(pair.first);
952 ctx.renames[pred.index][pair.first] = new_name;
953 }
954
955 /* check if we have to create a new phi for this variable */
956 Temp rename = Temp();
957 bool is_same = true;
958 for (unsigned pred_idx : preds) {
959 if (ctx.renames[pred_idx].find(pair.first) == ctx.renames[pred_idx].end()) {
960 if (rename == Temp())
961 rename = pair.first;
962 else
963 is_same = rename == pair.first;
964 } else {
965 if (rename == Temp())
966 rename = ctx.renames[pred_idx][pair.first];
967 else
968 is_same = rename == ctx.renames[pred_idx][pair.first];
969 }
970
971 if (!is_same)
972 break;
973 }
974
975 if (!is_same) {
976 /* the variable was renamed differently in the predecessors: we have to create a phi */
977 aco_opcode opcode = pair.first.is_linear() ? aco_opcode::p_linear_phi : aco_opcode::p_phi;
978 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, preds.size(), 1)};
979 rename = {ctx.program->allocateId(), pair.first.regClass()};
980 for (unsigned i = 0; i < phi->operands.size(); i++) {
981 Temp tmp;
982 if (ctx.renames[preds[i]].find(pair.first) != ctx.renames[preds[i]].end())
983 tmp = ctx.renames[preds[i]][pair.first];
984 else if (preds[i] >= block_idx)
985 tmp = rename;
986 else
987 tmp = pair.first;
988 phi->operands[i] = Operand(tmp);
989 }
990 phi->definitions[0] = Definition(rename);
991 instructions.emplace_back(std::move(phi));
992 }
993
994 /* the variable was renamed: add new name to renames */
995 if (!(rename == Temp() || rename == pair.first))
996 ctx.renames[block_idx][pair.first] = rename;
997 }
998
999 /* combine phis with instructions */
1000 unsigned idx = 0;
1001 while (!block->instructions[idx]) {
1002 idx++;
1003 }
1004
1005 if (!ctx.processed[block_idx]) {
1006 assert(!(block->kind & block_kind_loop_header));
1007 RegisterDemand demand_before = get_demand_before(ctx, block_idx, idx);
1008 ctx.register_demand[block->index].erase(ctx.register_demand[block->index].begin(), ctx.register_demand[block->index].begin() + idx);
1009 ctx.register_demand[block->index].insert(ctx.register_demand[block->index].begin(), instructions.size(), demand_before);
1010 }
1011
1012 std::vector<aco_ptr<Instruction>>::iterator start = std::next(block->instructions.begin(), idx);
1013 instructions.insert(instructions.end(), std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(start),
1014 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
1015 block->instructions = std::move(instructions);
1016 }
1017
1018 void process_block(spill_ctx& ctx, unsigned block_idx, Block* block,
1019 std::map<Temp, uint32_t> &current_spills, RegisterDemand spilled_registers)
1020 {
1021 assert(!ctx.processed[block_idx]);
1022
1023 std::vector<std::map<Temp, uint32_t>> local_next_use_distance;
1024 std::vector<aco_ptr<Instruction>> instructions;
1025 unsigned idx = 0;
1026
1027 /* phis are handled separetely */
1028 while (block->instructions[idx]->opcode == aco_opcode::p_phi ||
1029 block->instructions[idx]->opcode == aco_opcode::p_linear_phi) {
1030 aco_ptr<Instruction>& instr = block->instructions[idx];
1031 for (const Operand& op : instr->operands) {
1032 /* prevent it's definining instruction from being DCE'd if it could be rematerialized */
1033 if (op.isTemp() && ctx.remat.count(op.getTemp()))
1034 ctx.remat_used[ctx.remat[op.getTemp()].instr] = true;
1035 }
1036 instructions.emplace_back(std::move(instr));
1037 idx++;
1038 }
1039
1040 if (block->register_demand.exceeds(ctx.target_pressure))
1041 local_next_use_distance = local_next_uses(ctx, block);
1042
1043 while (idx < block->instructions.size()) {
1044 aco_ptr<Instruction>& instr = block->instructions[idx];
1045
1046 std::map<Temp, std::pair<Temp, uint32_t>> reloads;
1047 std::map<Temp, uint32_t> spills;
1048 /* rename and reload operands */
1049 for (Operand& op : instr->operands) {
1050 if (!op.isTemp())
1051 continue;
1052 if (current_spills.find(op.getTemp()) == current_spills.end()) {
1053 /* the Operand is in register: check if it was renamed */
1054 if (ctx.renames[block_idx].find(op.getTemp()) != ctx.renames[block_idx].end())
1055 op.setTemp(ctx.renames[block_idx][op.getTemp()]);
1056 /* prevent it's definining instruction from being DCE'd if it could be rematerialized */
1057 if (ctx.remat.count(op.getTemp()))
1058 ctx.remat_used[ctx.remat[op.getTemp()].instr] = true;
1059 continue;
1060 }
1061 /* the Operand is spilled: add it to reloads */
1062 Temp new_tmp = {ctx.program->allocateId(), op.regClass()};
1063 ctx.renames[block_idx][op.getTemp()] = new_tmp;
1064 reloads[new_tmp] = std::make_pair(op.getTemp(), current_spills[op.getTemp()]);
1065 current_spills.erase(op.getTemp());
1066 op.setTemp(new_tmp);
1067 spilled_registers -= new_tmp;
1068 }
1069
1070 /* check if register demand is low enough before and after the current instruction */
1071 if (block->register_demand.exceeds(ctx.target_pressure)) {
1072
1073 RegisterDemand new_demand = ctx.register_demand[block_idx][idx];
1074 new_demand.update(get_demand_before(ctx, block_idx, idx));
1075
1076 assert(!local_next_use_distance.empty());
1077
1078 /* if reg pressure is too high, spill variable with furthest next use */
1079 while (RegisterDemand(new_demand - spilled_registers).exceeds(ctx.target_pressure)) {
1080 unsigned distance = 0;
1081 Temp to_spill;
1082 bool do_rematerialize = false;
1083 if (new_demand.vgpr - spilled_registers.vgpr > ctx.target_pressure.vgpr) {
1084 for (std::pair<Temp, uint32_t> pair : local_next_use_distance[idx]) {
1085 bool can_rematerialize = ctx.remat.count(pair.first);
1086 if (pair.first.type() == RegType::vgpr &&
1087 ((pair.second > distance && can_rematerialize == do_rematerialize) ||
1088 (can_rematerialize && !do_rematerialize && pair.second > idx)) &&
1089 current_spills.find(pair.first) == current_spills.end() &&
1090 ctx.spills_exit[block_idx].find(pair.first) == ctx.spills_exit[block_idx].end()) {
1091 to_spill = pair.first;
1092 distance = pair.second;
1093 do_rematerialize = can_rematerialize;
1094 }
1095 }
1096 } else {
1097 for (std::pair<Temp, uint32_t> pair : local_next_use_distance[idx]) {
1098 bool can_rematerialize = ctx.remat.count(pair.first);
1099 if (pair.first.type() == RegType::sgpr &&
1100 ((pair.second > distance && can_rematerialize == do_rematerialize) ||
1101 (can_rematerialize && !do_rematerialize && pair.second > idx)) &&
1102 current_spills.find(pair.first) == current_spills.end() &&
1103 ctx.spills_exit[block_idx].find(pair.first) == ctx.spills_exit[block_idx].end()) {
1104 to_spill = pair.first;
1105 distance = pair.second;
1106 do_rematerialize = can_rematerialize;
1107 }
1108 }
1109 }
1110
1111 assert(distance != 0 && distance > idx);
1112 uint32_t spill_id = ctx.allocate_spill_id(to_spill.regClass());
1113
1114 /* add interferences with currently spilled variables */
1115 for (std::pair<Temp, uint32_t> pair : current_spills) {
1116 ctx.interferences[spill_id].second.emplace(pair.second);
1117 ctx.interferences[pair.second].second.emplace(spill_id);
1118 }
1119 for (std::pair<Temp, std::pair<Temp, uint32_t>> pair : reloads) {
1120 ctx.interferences[spill_id].second.emplace(pair.second.second);
1121 ctx.interferences[pair.second.second].second.emplace(spill_id);
1122 }
1123
1124 current_spills[to_spill] = spill_id;
1125 spilled_registers += to_spill;
1126
1127 /* rename if necessary */
1128 if (ctx.renames[block_idx].find(to_spill) != ctx.renames[block_idx].end()) {
1129 to_spill = ctx.renames[block_idx][to_spill];
1130 }
1131
1132 /* add spill to new instructions */
1133 aco_ptr<Pseudo_instruction> spill{create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 2, 0)};
1134 spill->operands[0] = Operand(to_spill);
1135 spill->operands[1] = Operand(spill_id);
1136 instructions.emplace_back(std::move(spill));
1137 }
1138 }
1139
1140 /* add reloads and instruction to new instructions */
1141 for (std::pair<Temp, std::pair<Temp, uint32_t>> pair : reloads) {
1142 aco_ptr<Instruction> reload = do_reload(ctx, pair.second.first, pair.first, pair.second.second);
1143 instructions.emplace_back(std::move(reload));
1144 }
1145 instructions.emplace_back(std::move(instr));
1146 idx++;
1147 }
1148
1149 block->instructions = std::move(instructions);
1150 ctx.spills_exit[block_idx].insert(current_spills.begin(), current_spills.end());
1151 }
1152
1153 void spill_block(spill_ctx& ctx, unsigned block_idx)
1154 {
1155 Block* block = &ctx.program->blocks[block_idx];
1156
1157 /* determine set of variables which are spilled at the beginning of the block */
1158 RegisterDemand spilled_registers = init_live_in_vars(ctx, block, block_idx);
1159
1160 /* add interferences for spilled variables */
1161 for (std::pair<Temp, uint32_t> x : ctx.spills_entry[block_idx]) {
1162 for (std::pair<Temp, uint32_t> y : ctx.spills_entry[block_idx])
1163 if (x.second != y.second)
1164 ctx.interferences[x.second].second.emplace(y.second);
1165 }
1166
1167 bool is_loop_header = block->loop_nest_depth && ctx.loop_header.top()->index == block_idx;
1168 if (!is_loop_header) {
1169 /* add spill/reload code on incoming control flow edges */
1170 add_coupling_code(ctx, block, block_idx);
1171 }
1172
1173 std::map<Temp, uint32_t> current_spills = ctx.spills_entry[block_idx];
1174
1175 /* check conditions to process this block */
1176 bool process = RegisterDemand(block->register_demand - spilled_registers).exceeds(ctx.target_pressure) ||
1177 !ctx.renames[block_idx].empty() ||
1178 ctx.remat_used.size();
1179
1180 std::map<Temp, uint32_t>::iterator it = current_spills.begin();
1181 while (!process && it != current_spills.end()) {
1182 if (ctx.next_use_distances_start[block_idx][it->first].first == block_idx)
1183 process = true;
1184 ++it;
1185 }
1186
1187 if (process)
1188 process_block(ctx, block_idx, block, current_spills, spilled_registers);
1189 else
1190 ctx.spills_exit[block_idx].insert(current_spills.begin(), current_spills.end());
1191
1192 ctx.processed[block_idx] = true;
1193
1194 /* check if the next block leaves the current loop */
1195 if (block->loop_nest_depth == 0 || ctx.program->blocks[block_idx + 1].loop_nest_depth >= block->loop_nest_depth)
1196 return;
1197
1198 Block* loop_header = ctx.loop_header.top();
1199
1200 /* preserve original renames at end of loop header block */
1201 std::map<Temp, Temp> renames = std::move(ctx.renames[loop_header->index]);
1202
1203 /* add coupling code to all loop header predecessors */
1204 add_coupling_code(ctx, loop_header, loop_header->index);
1205
1206 /* update remat_used for phis added in add_coupling_code() */
1207 for (aco_ptr<Instruction>& instr : loop_header->instructions) {
1208 if (!is_phi(instr))
1209 break;
1210 for (const Operand& op : instr->operands) {
1211 if (op.isTemp() && ctx.remat.count(op.getTemp()))
1212 ctx.remat_used[ctx.remat[op.getTemp()].instr] = true;
1213 }
1214 }
1215
1216 /* propagate new renames through loop: i.e. repair the SSA */
1217 renames.swap(ctx.renames[loop_header->index]);
1218 for (std::pair<Temp, Temp> rename : renames) {
1219 for (unsigned idx = loop_header->index; idx <= block_idx; idx++) {
1220 Block& current = ctx.program->blocks[idx];
1221 std::vector<aco_ptr<Instruction>>::iterator instr_it = current.instructions.begin();
1222
1223 /* first rename phis */
1224 while (instr_it != current.instructions.end()) {
1225 aco_ptr<Instruction>& phi = *instr_it;
1226 if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
1227 break;
1228 /* no need to rename the loop header phis once again. this happened in add_coupling_code() */
1229 if (idx == loop_header->index) {
1230 instr_it++;
1231 continue;
1232 }
1233
1234 for (Operand& op : phi->operands) {
1235 if (!op.isTemp())
1236 continue;
1237 if (op.getTemp() == rename.first)
1238 op.setTemp(rename.second);
1239 }
1240 instr_it++;
1241 }
1242
1243 std::map<Temp, std::pair<uint32_t, uint32_t>>::iterator it = ctx.next_use_distances_start[idx].find(rename.first);
1244
1245 /* variable is not live at beginning of this block */
1246 if (it == ctx.next_use_distances_start[idx].end())
1247 continue;
1248
1249 /* if the variable is live at the block's exit, add rename */
1250 if (ctx.next_use_distances_end[idx].find(rename.first) != ctx.next_use_distances_end[idx].end())
1251 ctx.renames[idx].insert(rename);
1252
1253 /* rename all uses in this block */
1254 bool renamed = false;
1255 while (!renamed && instr_it != current.instructions.end()) {
1256 aco_ptr<Instruction>& instr = *instr_it;
1257 for (Operand& op : instr->operands) {
1258 if (!op.isTemp())
1259 continue;
1260 if (op.getTemp() == rename.first) {
1261 op.setTemp(rename.second);
1262 /* we can stop with this block as soon as the variable is spilled */
1263 if (instr->opcode == aco_opcode::p_spill)
1264 renamed = true;
1265 }
1266 }
1267 instr_it++;
1268 }
1269 }
1270 }
1271
1272 /* remove loop header info from stack */
1273 ctx.loop_header.pop();
1274 }
1275
1276 Temp load_scratch_resource(spill_ctx& ctx, Temp& scratch_offset,
1277 std::vector<aco_ptr<Instruction>>& instructions,
1278 unsigned offset, bool is_top_level)
1279 {
1280 Builder bld(ctx.program);
1281 if (is_top_level) {
1282 bld.reset(&instructions);
1283 } else {
1284 /* find p_logical_end */
1285 unsigned idx = instructions.size() - 1;
1286 while (instructions[idx]->opcode != aco_opcode::p_logical_end)
1287 idx--;
1288 bld.reset(&instructions, std::next(instructions.begin(), idx));
1289 }
1290
1291 Temp private_segment_buffer = ctx.program->private_segment_buffer;
1292 if (ctx.program->stage != compute_cs)
1293 private_segment_buffer = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, Operand(0u));
1294
1295 if (offset)
1296 scratch_offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), scratch_offset, Operand(offset));
1297
1298 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
1299 S_008F0C_INDEX_STRIDE(ctx.program->wave_size == 64 ? 3 : 2);
1300
1301 if (ctx.program->chip_class >= GFX10) {
1302 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1303 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
1304 S_008F0C_RESOURCE_LEVEL(1);
1305 } else if (ctx.program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
1306 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1307 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1308 }
1309 /* older generations need element size = 4 bytes. element size removed in GFX9 */
1310 if (ctx.program->chip_class <= GFX8)
1311 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
1312
1313 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
1314 private_segment_buffer, Operand(-1u),
1315 Operand(rsrc_conf));
1316 }
1317
1318 void assign_spill_slots(spill_ctx& ctx, unsigned spills_to_vgpr) {
1319 std::map<uint32_t, uint32_t> sgpr_slot;
1320 std::map<uint32_t, uint32_t> vgpr_slot;
1321 std::vector<bool> is_assigned(ctx.interferences.size());
1322
1323 /* first, handle affinities: just merge all interferences into both spill ids */
1324 for (std::vector<uint32_t>& vec : ctx.affinities) {
1325 for (unsigned i = 0; i < vec.size(); i++) {
1326 for (unsigned j = i + 1; j < vec.size(); j++) {
1327 assert(vec[i] != vec[j]);
1328 for (uint32_t id : ctx.interferences[vec[i]].second)
1329 ctx.interferences[id].second.insert(vec[j]);
1330 for (uint32_t id : ctx.interferences[vec[j]].second)
1331 ctx.interferences[id].second.insert(vec[i]);
1332 ctx.interferences[vec[i]].second.insert(ctx.interferences[vec[j]].second.begin(), ctx.interferences[vec[j]].second.end());
1333 ctx.interferences[vec[j]].second.insert(ctx.interferences[vec[i]].second.begin(), ctx.interferences[vec[i]].second.end());
1334
1335 bool reloaded = ctx.is_reloaded[vec[i]] || ctx.is_reloaded[vec[j]];
1336 ctx.is_reloaded[vec[i]] = reloaded;
1337 ctx.is_reloaded[vec[j]] = reloaded;
1338 }
1339 }
1340 }
1341 for (ASSERTED uint32_t i = 0; i < ctx.interferences.size(); i++)
1342 for (ASSERTED uint32_t id : ctx.interferences[i].second)
1343 assert(i != id);
1344
1345 /* for each spill slot, assign as many spill ids as possible */
1346 std::vector<std::set<uint32_t>> spill_slot_interferences;
1347 unsigned slot_idx = 0;
1348 bool done = false;
1349
1350 /* assign sgpr spill slots */
1351 while (!done) {
1352 done = true;
1353 for (unsigned id = 0; id < ctx.interferences.size(); id++) {
1354 if (is_assigned[id] || !ctx.is_reloaded[id])
1355 continue;
1356 if (ctx.interferences[id].first.type() != RegType::sgpr)
1357 continue;
1358
1359 /* check interferences */
1360 bool interferes = false;
1361 for (unsigned i = slot_idx; i < slot_idx + ctx.interferences[id].first.size(); i++) {
1362 if (i == spill_slot_interferences.size())
1363 spill_slot_interferences.emplace_back(std::set<uint32_t>());
1364 if (spill_slot_interferences[i].find(id) != spill_slot_interferences[i].end() || i / ctx.wave_size != slot_idx / ctx.wave_size) {
1365 interferes = true;
1366 break;
1367 }
1368 }
1369 if (interferes) {
1370 done = false;
1371 continue;
1372 }
1373
1374 /* we found a spill id which can be assigned to current spill slot */
1375 sgpr_slot[id] = slot_idx;
1376 is_assigned[id] = true;
1377 for (unsigned i = slot_idx; i < slot_idx + ctx.interferences[id].first.size(); i++)
1378 spill_slot_interferences[i].insert(ctx.interferences[id].second.begin(), ctx.interferences[id].second.end());
1379
1380 /* add all affinities: there are no additional interferences */
1381 for (std::vector<uint32_t>& vec : ctx.affinities) {
1382 bool found_affinity = false;
1383 for (uint32_t entry : vec) {
1384 if (entry == id) {
1385 found_affinity = true;
1386 break;
1387 }
1388 }
1389 if (!found_affinity)
1390 continue;
1391 for (uint32_t entry : vec) {
1392 sgpr_slot[entry] = slot_idx;
1393 is_assigned[entry] = true;
1394 }
1395 }
1396 }
1397 slot_idx++;
1398 }
1399
1400 unsigned sgpr_spill_slots = spill_slot_interferences.size();
1401 spill_slot_interferences.clear();
1402 slot_idx = 0;
1403 done = false;
1404
1405 /* assign vgpr spill slots */
1406 while (!done) {
1407 done = true;
1408 for (unsigned id = 0; id < ctx.interferences.size(); id++) {
1409 if (is_assigned[id] || !ctx.is_reloaded[id])
1410 continue;
1411 if (ctx.interferences[id].first.type() != RegType::vgpr)
1412 continue;
1413
1414 /* check interferences */
1415 bool interferes = false;
1416 for (unsigned i = slot_idx; i < slot_idx + ctx.interferences[id].first.size(); i++) {
1417 if (i == spill_slot_interferences.size())
1418 spill_slot_interferences.emplace_back(std::set<uint32_t>());
1419 /* check for interference and ensure that vector regs are stored next to each other */
1420 if (spill_slot_interferences[i].find(id) != spill_slot_interferences[i].end()) {
1421 interferes = true;
1422 break;
1423 }
1424 }
1425 if (interferes) {
1426 done = false;
1427 continue;
1428 }
1429
1430 /* we found a spill id which can be assigned to current spill slot */
1431 vgpr_slot[id] = slot_idx;
1432 is_assigned[id] = true;
1433 for (unsigned i = slot_idx; i < slot_idx + ctx.interferences[id].first.size(); i++)
1434 spill_slot_interferences[i].insert(ctx.interferences[id].second.begin(), ctx.interferences[id].second.end());
1435
1436 /* add all affinities: there are no additional interferences */
1437 for (std::vector<uint32_t>& vec : ctx.affinities) {
1438 bool found_affinity = false;
1439 for (uint32_t entry : vec) {
1440 if (entry == id) {
1441 found_affinity = true;
1442 break;
1443 }
1444 }
1445 if (!found_affinity)
1446 continue;
1447 for (uint32_t entry : vec) {
1448 vgpr_slot[entry] = slot_idx;
1449 is_assigned[entry] = true;
1450 }
1451 }
1452 }
1453 slot_idx++;
1454 }
1455
1456 unsigned vgpr_spill_slots = spill_slot_interferences.size();
1457
1458 for (unsigned id = 0; id < is_assigned.size(); id++)
1459 assert(is_assigned[id] || !ctx.is_reloaded[id]);
1460
1461 for (std::vector<uint32_t>& vec : ctx.affinities) {
1462 for (unsigned i = 0; i < vec.size(); i++) {
1463 for (unsigned j = i + 1; j < vec.size(); j++) {
1464 assert(is_assigned[vec[i]] == is_assigned[vec[j]]);
1465 if (!is_assigned[vec[i]])
1466 continue;
1467 assert(ctx.is_reloaded[vec[i]] == ctx.is_reloaded[vec[j]]);
1468 assert(ctx.interferences[vec[i]].first.type() == ctx.interferences[vec[j]].first.type());
1469 if (ctx.interferences[vec[i]].first.type() == RegType::sgpr)
1470 assert(sgpr_slot[vec[i]] == sgpr_slot[vec[j]]);
1471 else
1472 assert(vgpr_slot[vec[i]] == vgpr_slot[vec[j]]);
1473 }
1474 }
1475 }
1476
1477 /* hope, we didn't mess up */
1478 std::vector<Temp> vgpr_spill_temps((sgpr_spill_slots + ctx.wave_size - 1) / ctx.wave_size);
1479 assert(vgpr_spill_temps.size() <= spills_to_vgpr);
1480
1481 /* replace pseudo instructions with actual hardware instructions */
1482 Temp scratch_offset = ctx.program->scratch_offset, scratch_rsrc = Temp();
1483 unsigned last_top_level_block_idx = 0;
1484 std::vector<bool> reload_in_loop(vgpr_spill_temps.size());
1485 for (Block& block : ctx.program->blocks) {
1486
1487 /* after loops, we insert a user if there was a reload inside the loop */
1488 if (block.loop_nest_depth == 0) {
1489 int end_vgprs = 0;
1490 for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
1491 if (reload_in_loop[i])
1492 end_vgprs++;
1493 }
1494
1495 if (end_vgprs > 0) {
1496 aco_ptr<Instruction> destr{create_instruction<Pseudo_instruction>(aco_opcode::p_end_linear_vgpr, Format::PSEUDO, end_vgprs, 0)};
1497 int k = 0;
1498 for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
1499 if (reload_in_loop[i])
1500 destr->operands[k++] = Operand(vgpr_spill_temps[i]);
1501 reload_in_loop[i] = false;
1502 }
1503 /* find insertion point */
1504 std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin();
1505 while ((*it)->opcode == aco_opcode::p_linear_phi || (*it)->opcode == aco_opcode::p_phi)
1506 ++it;
1507 block.instructions.insert(it, std::move(destr));
1508 }
1509 }
1510
1511 if (block.kind & block_kind_top_level && !block.linear_preds.empty()) {
1512 last_top_level_block_idx = block.index;
1513
1514 /* check if any spilled variables use a created linear vgpr, otherwise destroy them */
1515 for (unsigned i = 0; i < vgpr_spill_temps.size(); i++) {
1516 if (vgpr_spill_temps[i] == Temp())
1517 continue;
1518
1519 bool can_destroy = true;
1520 for (std::pair<Temp, uint32_t> pair : ctx.spills_exit[block.linear_preds[0]]) {
1521
1522 if (sgpr_slot.find(pair.second) != sgpr_slot.end() &&
1523 sgpr_slot[pair.second] / ctx.wave_size == i) {
1524 can_destroy = false;
1525 break;
1526 }
1527 }
1528 if (can_destroy)
1529 vgpr_spill_temps[i] = Temp();
1530 }
1531 }
1532
1533 std::vector<aco_ptr<Instruction>>::iterator it;
1534 std::vector<aco_ptr<Instruction>> instructions;
1535 instructions.reserve(block.instructions.size());
1536 Builder bld(ctx.program, &instructions);
1537 for (it = block.instructions.begin(); it != block.instructions.end(); ++it) {
1538
1539 if ((*it)->opcode == aco_opcode::p_spill) {
1540 uint32_t spill_id = (*it)->operands[1].constantValue();
1541
1542 if (!ctx.is_reloaded[spill_id]) {
1543 /* never reloaded, so don't spill */
1544 } else if (vgpr_slot.find(spill_id) != vgpr_slot.end()) {
1545 /* spill vgpr */
1546 ctx.program->config->spilled_vgprs += (*it)->operands[0].size();
1547 uint32_t spill_slot = vgpr_slot[spill_id];
1548 bool add_offset_to_sgpr = ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size + vgpr_spill_slots * 4 > 4096;
1549 unsigned base_offset = add_offset_to_sgpr ? 0 : ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size;
1550
1551 /* check if the scratch resource descriptor already exists */
1552 if (scratch_rsrc == Temp()) {
1553 unsigned offset = add_offset_to_sgpr ? ctx.program->config->scratch_bytes_per_wave : 0;
1554 scratch_rsrc = load_scratch_resource(ctx, scratch_offset,
1555 last_top_level_block_idx == block.index ?
1556 instructions : ctx.program->blocks[last_top_level_block_idx].instructions,
1557 offset,
1558 last_top_level_block_idx == block.index);
1559 }
1560
1561 unsigned offset = base_offset + spill_slot * 4;
1562 aco_opcode opcode = aco_opcode::buffer_store_dword;
1563 assert((*it)->operands[0].isTemp());
1564 Temp temp = (*it)->operands[0].getTemp();
1565 assert(temp.type() == RegType::vgpr && !temp.is_linear());
1566 if (temp.size() > 1) {
1567 Instruction* split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, temp.size())};
1568 split->operands[0] = Operand(temp);
1569 for (unsigned i = 0; i < temp.size(); i++)
1570 split->definitions[i] = bld.def(v1);
1571 bld.insert(split);
1572 for (unsigned i = 0; i < temp.size(); i++)
1573 bld.mubuf(opcode, scratch_rsrc, Operand(), scratch_offset, split->definitions[i].getTemp(), offset + i * 4, false);
1574 } else {
1575 bld.mubuf(opcode, scratch_rsrc, Operand(), scratch_offset, temp, offset, false);
1576 }
1577 } else if (sgpr_slot.find(spill_id) != sgpr_slot.end()) {
1578 ctx.program->config->spilled_sgprs += (*it)->operands[0].size();
1579
1580 uint32_t spill_slot = sgpr_slot[spill_id];
1581
1582 /* check if the linear vgpr already exists */
1583 if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) {
1584 Temp linear_vgpr = {ctx.program->allocateId(), v1.as_linear()};
1585 vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr;
1586 aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
1587 create->definitions[0] = Definition(linear_vgpr);
1588 /* find the right place to insert this definition */
1589 if (last_top_level_block_idx == block.index) {
1590 /* insert right before the current instruction */
1591 instructions.emplace_back(std::move(create));
1592 } else {
1593 assert(last_top_level_block_idx < block.index);
1594 /* insert before the branch at last top level block */
1595 std::vector<aco_ptr<Instruction>>& instructions = ctx.program->blocks[last_top_level_block_idx].instructions;
1596 instructions.insert(std::next(instructions.begin(), instructions.size() - 1), std::move(create));
1597 }
1598 }
1599
1600 /* spill sgpr: just add the vgpr temp to operands */
1601 Pseudo_instruction* spill = create_instruction<Pseudo_instruction>(aco_opcode::p_spill, Format::PSEUDO, 3, 0);
1602 spill->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]);
1603 spill->operands[1] = Operand(spill_slot % ctx.wave_size);
1604 spill->operands[2] = (*it)->operands[0];
1605 instructions.emplace_back(aco_ptr<Instruction>(spill));
1606 } else {
1607 unreachable("No spill slot assigned for spill id");
1608 }
1609
1610 } else if ((*it)->opcode == aco_opcode::p_reload) {
1611 uint32_t spill_id = (*it)->operands[0].constantValue();
1612 assert(ctx.is_reloaded[spill_id]);
1613
1614 if (vgpr_slot.find(spill_id) != vgpr_slot.end()) {
1615 /* reload vgpr */
1616 uint32_t spill_slot = vgpr_slot[spill_id];
1617 bool add_offset_to_sgpr = ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size + vgpr_spill_slots * 4 > 4096;
1618 unsigned base_offset = add_offset_to_sgpr ? 0 : ctx.program->config->scratch_bytes_per_wave / ctx.program->wave_size;
1619
1620 /* check if the scratch resource descriptor already exists */
1621 if (scratch_rsrc == Temp()) {
1622 unsigned offset = add_offset_to_sgpr ? ctx.program->config->scratch_bytes_per_wave : 0;
1623 scratch_rsrc = load_scratch_resource(ctx, scratch_offset,
1624 last_top_level_block_idx == block.index ?
1625 instructions : ctx.program->blocks[last_top_level_block_idx].instructions,
1626 offset,
1627 last_top_level_block_idx == block.index);
1628 }
1629
1630 unsigned offset = base_offset + spill_slot * 4;
1631 aco_opcode opcode = aco_opcode::buffer_load_dword;
1632 Definition def = (*it)->definitions[0];
1633 if (def.size() > 1) {
1634 Instruction* vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, def.size(), 1)};
1635 vec->definitions[0] = def;
1636 for (unsigned i = 0; i < def.size(); i++) {
1637 Temp tmp = bld.tmp(v1);
1638 vec->operands[i] = Operand(tmp);
1639 bld.mubuf(opcode, Definition(tmp), scratch_rsrc, Operand(), scratch_offset, offset + i * 4, false);
1640 }
1641 bld.insert(vec);
1642 } else {
1643 bld.mubuf(opcode, def, scratch_rsrc, Operand(), scratch_offset, offset, false);
1644 }
1645 } else if (sgpr_slot.find(spill_id) != sgpr_slot.end()) {
1646 uint32_t spill_slot = sgpr_slot[spill_id];
1647 reload_in_loop[spill_slot / ctx.wave_size] = block.loop_nest_depth > 0;
1648
1649 /* check if the linear vgpr already exists */
1650 if (vgpr_spill_temps[spill_slot / ctx.wave_size] == Temp()) {
1651 Temp linear_vgpr = {ctx.program->allocateId(), v1.as_linear()};
1652 vgpr_spill_temps[spill_slot / ctx.wave_size] = linear_vgpr;
1653 aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
1654 create->definitions[0] = Definition(linear_vgpr);
1655 /* find the right place to insert this definition */
1656 if (last_top_level_block_idx == block.index) {
1657 /* insert right before the current instruction */
1658 instructions.emplace_back(std::move(create));
1659 } else {
1660 assert(last_top_level_block_idx < block.index);
1661 /* insert before the branch at last top level block */
1662 std::vector<aco_ptr<Instruction>>& instructions = ctx.program->blocks[last_top_level_block_idx].instructions;
1663 instructions.insert(std::next(instructions.begin(), instructions.size() - 1), std::move(create));
1664 }
1665 }
1666
1667 /* reload sgpr: just add the vgpr temp to operands */
1668 Pseudo_instruction* reload = create_instruction<Pseudo_instruction>(aco_opcode::p_reload, Format::PSEUDO, 2, 1);
1669 reload->operands[0] = Operand(vgpr_spill_temps[spill_slot / ctx.wave_size]);
1670 reload->operands[1] = Operand(spill_slot % ctx.wave_size);
1671 reload->definitions[0] = (*it)->definitions[0];
1672 instructions.emplace_back(aco_ptr<Instruction>(reload));
1673 } else {
1674 unreachable("No spill slot assigned for spill id");
1675 }
1676 } else if (!ctx.remat_used.count(it->get()) || ctx.remat_used[it->get()]) {
1677 instructions.emplace_back(std::move(*it));
1678 }
1679
1680 }
1681 block.instructions = std::move(instructions);
1682 }
1683
1684 /* update required scratch memory */
1685 ctx.program->config->scratch_bytes_per_wave += align(vgpr_spill_slots * 4 * ctx.program->wave_size, 1024);
1686
1687 /* SSA elimination inserts copies for logical phis right before p_logical_end
1688 * So if a linear vgpr is used between that p_logical_end and the branch,
1689 * we need to ensure logical phis don't choose a definition which aliases
1690 * the linear vgpr.
1691 * TODO: Moving the spills and reloads to before p_logical_end might produce
1692 * slightly better code. */
1693 for (Block& block : ctx.program->blocks) {
1694 /* loops exits are already handled */
1695 if (block.logical_preds.size() <= 1)
1696 continue;
1697
1698 bool has_logical_phis = false;
1699 for (aco_ptr<Instruction>& instr : block.instructions) {
1700 if (instr->opcode == aco_opcode::p_phi) {
1701 has_logical_phis = true;
1702 break;
1703 } else if (instr->opcode != aco_opcode::p_linear_phi) {
1704 break;
1705 }
1706 }
1707 if (!has_logical_phis)
1708 continue;
1709
1710 std::set<Temp> vgprs;
1711 for (unsigned pred_idx : block.logical_preds) {
1712 Block& pred = ctx.program->blocks[pred_idx];
1713 for (int i = pred.instructions.size() - 1; i >= 0; i--) {
1714 aco_ptr<Instruction>& pred_instr = pred.instructions[i];
1715 if (pred_instr->opcode == aco_opcode::p_logical_end) {
1716 break;
1717 } else if (pred_instr->opcode == aco_opcode::p_spill ||
1718 pred_instr->opcode == aco_opcode::p_reload) {
1719 vgprs.insert(pred_instr->operands[0].getTemp());
1720 }
1721 }
1722 }
1723 if (!vgprs.size())
1724 continue;
1725
1726 aco_ptr<Instruction> destr{create_instruction<Pseudo_instruction>(aco_opcode::p_end_linear_vgpr, Format::PSEUDO, vgprs.size(), 0)};
1727 int k = 0;
1728 for (Temp tmp : vgprs) {
1729 destr->operands[k++] = Operand(tmp);
1730 }
1731 /* find insertion point */
1732 std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin();
1733 while ((*it)->opcode == aco_opcode::p_linear_phi || (*it)->opcode == aco_opcode::p_phi)
1734 ++it;
1735 block.instructions.insert(it, std::move(destr));
1736 }
1737 }
1738
1739 } /* end namespace */
1740
1741
1742 void spill(Program* program, live& live_vars, const struct radv_nir_compiler_options *options)
1743 {
1744 program->config->spilled_vgprs = 0;
1745 program->config->spilled_sgprs = 0;
1746
1747 /* no spilling when register pressure is low enough */
1748 if (program->num_waves > 0)
1749 return;
1750
1751 /* lower to CSSA before spilling to ensure correctness w.r.t. phis */
1752 lower_to_cssa(program, live_vars, options);
1753
1754 /* calculate target register demand */
1755 RegisterDemand register_target = program->max_reg_demand;
1756 if (register_target.sgpr > program->sgpr_limit)
1757 register_target.vgpr += (register_target.sgpr - program->sgpr_limit + program->wave_size - 1 + 32) / program->wave_size;
1758 register_target.sgpr = program->sgpr_limit;
1759
1760 if (register_target.vgpr > program->vgpr_limit)
1761 register_target.sgpr = program->sgpr_limit - 5;
1762 int spills_to_vgpr = (program->max_reg_demand.sgpr - register_target.sgpr + program->wave_size - 1 + 32) / program->wave_size;
1763 register_target.vgpr = program->vgpr_limit - spills_to_vgpr;
1764
1765 /* initialize ctx */
1766 spill_ctx ctx(register_target, program, live_vars.register_demand);
1767 compute_global_next_uses(ctx, live_vars.live_out);
1768 get_rematerialize_info(ctx);
1769
1770 /* create spills and reloads */
1771 for (unsigned i = 0; i < program->blocks.size(); i++)
1772 spill_block(ctx, i);
1773
1774 /* assign spill slots and DCE rematerialized code */
1775 assign_spill_slots(ctx, spills_to_vgpr);
1776
1777 /* update live variable information */
1778 live_vars = live_var_analysis(program, options);
1779
1780 assert(program->num_waves > 0);
1781 }
1782
1783 }
1784