aco: properly recognize that s_waitcnt mitigates VMEMtoScalarWriteHazard
[mesa.git] / src / amd / compiler / aco_validate.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_ir.h"
26
27 #include <array>
28 #include <map>
29
30 namespace aco {
31
32 #ifndef NDEBUG
33 void perfwarn(bool cond, const char *msg, Instruction *instr)
34 {
35 if (cond) {
36 fprintf(stderr, "ACO performance warning: %s\n", msg);
37 if (instr) {
38 fprintf(stderr, "instruction: ");
39 aco_print_instr(instr, stderr);
40 fprintf(stderr, "\n");
41 }
42
43 if (debug_flags & DEBUG_PERFWARN)
44 exit(1);
45 }
46 }
47 #endif
48
49 void validate(Program* program, FILE * output)
50 {
51 if (!(debug_flags & DEBUG_VALIDATE))
52 return;
53
54 bool is_valid = true;
55 auto check = [&output, &is_valid](bool check, const char * msg, aco::Instruction * instr) -> void {
56 if (!check) {
57 fprintf(output, "%s: ", msg);
58 aco_print_instr(instr, output);
59 fprintf(output, "\n");
60 is_valid = false;
61 }
62 };
63 auto check_block = [&output, &is_valid](bool check, const char * msg, aco::Block * block) -> void {
64 if (!check) {
65 fprintf(output, "%s: BB%u\n", msg, block->index);
66 is_valid = false;
67 }
68 };
69
70 for (Block& block : program->blocks) {
71 for (aco_ptr<Instruction>& instr : block.instructions) {
72
73 /* check base format */
74 Format base_format = instr->format;
75 base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA);
76 base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP);
77 if ((uint32_t)base_format & (uint32_t)Format::VOP1)
78 base_format = Format::VOP1;
79 else if ((uint32_t)base_format & (uint32_t)Format::VOP2)
80 base_format = Format::VOP2;
81 else if ((uint32_t)base_format & (uint32_t)Format::VOPC)
82 base_format = Format::VOPC;
83 else if ((uint32_t)base_format & (uint32_t)Format::VINTRP) {
84 if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
85 instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
86 instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
87 instr->opcode == aco_opcode::v_interp_p2_f16) {
88 /* v_interp_*_fp16 are considered VINTRP by the compiler but
89 * they are emitted as VOP3.
90 */
91 base_format = Format::VOP3;
92 } else {
93 base_format = Format::VINTRP;
94 }
95 }
96 check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get());
97
98 /* check VOP3 modifiers */
99 if (((uint32_t)instr->format & (uint32_t)Format::VOP3) && instr->format != Format::VOP3) {
100 check(base_format == Format::VOP2 ||
101 base_format == Format::VOP1 ||
102 base_format == Format::VOPC ||
103 base_format == Format::VINTRP,
104 "Format cannot have VOP3A/VOP3B applied", instr.get());
105 }
106
107 /* check SDWA */
108 if (instr->isSDWA()) {
109 check(base_format == Format::VOP2 ||
110 base_format == Format::VOP1 ||
111 base_format == Format::VOPC,
112 "Format cannot have SDWA applied", instr.get());
113
114 check(program->chip_class >= GFX8, "SDWA is GFX8+ only", instr.get());
115
116 SDWA_instruction *sdwa = static_cast<SDWA_instruction*>(instr.get());
117 check(sdwa->omod == 0 || program->chip_class >= GFX9, "SDWA omod only supported on GFX9+", instr.get());
118 if (base_format == Format::VOPC) {
119 check(sdwa->clamp == false || program->chip_class == GFX8, "SDWA VOPC clamp only supported on GFX8", instr.get());
120 check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) ||
121 program->chip_class >= GFX9,
122 "SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get());
123 }
124
125 if (instr->operands.size() >= 3) {
126 check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc,
127 "3rd operand must be fixed to vcc with SDWA", instr.get());
128 }
129 if (instr->definitions.size() >= 2) {
130 check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc,
131 "2nd definition must be fixed to vcc with SDWA", instr.get());
132 }
133
134 check(instr->opcode != aco_opcode::v_madmk_f32 &&
135 instr->opcode != aco_opcode::v_madak_f32 &&
136 instr->opcode != aco_opcode::v_madmk_f16 &&
137 instr->opcode != aco_opcode::v_madak_f16 &&
138 instr->opcode != aco_opcode::v_readfirstlane_b32 &&
139 instr->opcode != aco_opcode::v_clrexcp &&
140 instr->opcode != aco_opcode::v_swap_b32,
141 "SDWA can't be used with this opcode", instr.get());
142 if (program->chip_class != GFX8) {
143 check(instr->opcode != aco_opcode::v_mac_f32 &&
144 instr->opcode != aco_opcode::v_mac_f16 &&
145 instr->opcode != aco_opcode::v_fmac_f32 &&
146 instr->opcode != aco_opcode::v_fmac_f16,
147 "SDWA can't be used with this opcode", instr.get());
148 }
149
150 for (unsigned i = 0; i < MIN2(instr->operands.size(), 2); i++) {
151 if (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword())
152 check((sdwa->sel[i] & sdwa_asuint) == (sdwa_isra | instr->operands[i].bytes()), "Unexpected SDWA sel for sub-dword operand", instr.get());
153 }
154 if (instr->definitions[0].regClass().is_subdword())
155 check((sdwa->dst_sel & sdwa_asuint) == (sdwa_isra | instr->definitions[0].bytes()), "Unexpected SDWA sel for sub-dword definition", instr.get());
156 }
157
158 /* check opsel */
159 if (instr->isVOP3()) {
160 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(instr.get());
161 check(vop3->opsel == 0 || program->chip_class >= GFX9, "Opsel is only supported on GFX9+", instr.get());
162
163 for (unsigned i = 0; i < 3; i++) {
164 if (i >= instr->operands.size() ||
165 (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed()))
166 check((vop3->opsel & (1 << i)) == 0, "Unexpected opsel for operand", instr.get());
167 }
168 if (instr->definitions[0].regClass().is_subdword() && !instr->definitions[0].isFixed())
169 check((vop3->opsel & (1 << 3)) == 0, "Unexpected opsel for sub-dword definition", instr.get());
170 }
171
172 /* check for undefs */
173 for (unsigned i = 0; i < instr->operands.size(); i++) {
174 if (instr->operands[i].isUndefined()) {
175 bool flat = instr->format == Format::FLAT || instr->format == Format::SCRATCH || instr->format == Format::GLOBAL;
176 bool can_be_undef = is_phi(instr) || instr->format == Format::EXP ||
177 instr->format == Format::PSEUDO_REDUCTION ||
178 instr->opcode == aco_opcode::p_create_vector ||
179 (flat && i == 1) || (instr->format == Format::MIMG && i == 1) ||
180 ((instr->format == Format::MUBUF || instr->format == Format::MTBUF) && i == 1);
181 check(can_be_undef, "Undefs can only be used in certain operands", instr.get());
182 } else {
183 check(instr->operands[i].isFixed() || instr->operands[i].isTemp() || instr->operands[i].isConstant(), "Uninitialized Operand", instr.get());
184 }
185 }
186
187 /* check subdword definitions */
188 for (unsigned i = 0; i < instr->definitions.size(); i++) {
189 if (instr->definitions[i].regClass().is_subdword())
190 check(instr->format == Format::PSEUDO || instr->definitions[i].bytes() <= 4, "Only Pseudo instructions can write subdword registers larger than 4 bytes", instr.get());
191 }
192
193 if (instr->isSALU() || instr->isVALU()) {
194 /* check literals */
195 Operand literal(s1);
196 for (unsigned i = 0; i < instr->operands.size(); i++)
197 {
198 Operand op = instr->operands[i];
199 if (!op.isLiteral())
200 continue;
201
202 check(instr->format == Format::SOP1 ||
203 instr->format == Format::SOP2 ||
204 instr->format == Format::SOPC ||
205 instr->format == Format::VOP1 ||
206 instr->format == Format::VOP2 ||
207 instr->format == Format::VOPC ||
208 (instr->isVOP3() && program->chip_class >= GFX10),
209 "Literal applied on wrong instruction format", instr.get());
210
211 check(literal.isUndefined() || (literal.size() == op.size() && literal.constantValue() == op.constantValue()), "Only 1 Literal allowed", instr.get());
212 literal = op;
213 check(!instr->isVALU() || instr->isVOP3() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get());
214 }
215
216 /* check num sgprs for VALU */
217 if (instr->isVALU()) {
218 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
219 instr->opcode == aco_opcode::v_lshrrev_b64 ||
220 instr->opcode == aco_opcode::v_ashrrev_i64;
221 unsigned const_bus_limit = 1;
222 if (program->chip_class >= GFX10 && !is_shift64)
223 const_bus_limit = 2;
224
225 uint32_t scalar_mask = instr->isVOP3() ? 0x7 : 0x5;
226 if (instr->isSDWA())
227 scalar_mask = program->chip_class >= GFX9 ? 0x7 : 0x4;
228
229 if ((int) instr->format & (int) Format::VOPC ||
230 instr->opcode == aco_opcode::v_readfirstlane_b32 ||
231 instr->opcode == aco_opcode::v_readlane_b32 ||
232 instr->opcode == aco_opcode::v_readlane_b32_e64) {
233 check(instr->definitions[0].getTemp().type() == RegType::sgpr,
234 "Wrong Definition type for VALU instruction", instr.get());
235 } else {
236 check(instr->definitions[0].getTemp().type() == RegType::vgpr,
237 "Wrong Definition type for VALU instruction", instr.get());
238 }
239
240 unsigned num_sgprs = 0;
241 unsigned sgpr[] = {0, 0};
242 for (unsigned i = 0; i < instr->operands.size(); i++)
243 {
244 Operand op = instr->operands[i];
245 if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
246 instr->opcode == aco_opcode::v_readlane_b32 ||
247 instr->opcode == aco_opcode::v_readlane_b32_e64) {
248 check(i != 1 ||
249 (op.isTemp() && op.regClass().type() == RegType::sgpr) ||
250 op.isConstant(),
251 "Must be a SGPR or a constant", instr.get());
252 check(i == 1 ||
253 (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4),
254 "Wrong Operand type for VALU instruction", instr.get());
255 continue;
256 }
257
258 if (instr->opcode == aco_opcode::v_writelane_b32 ||
259 instr->opcode == aco_opcode::v_writelane_b32_e64) {
260 check(i != 2 ||
261 (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4),
262 "Wrong Operand type for VALU instruction", instr.get());
263 check(i == 2 ||
264 (op.isTemp() && op.regClass().type() == RegType::sgpr) ||
265 op.isConstant(),
266 "Must be a SGPR or a constant", instr.get());
267 continue;
268 }
269 if (op.isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) {
270 check(scalar_mask & (1 << i), "Wrong source position for SGPR argument", instr.get());
271
272 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
273 if (num_sgprs < 2)
274 sgpr[num_sgprs++] = op.tempId();
275 }
276 }
277
278 if (op.isConstant() && !op.isLiteral())
279 check(scalar_mask & (1 << i), "Wrong source position for constant argument", instr.get());
280 }
281 check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit, "Too many SGPRs/literals", instr.get());
282 }
283
284 if (instr->format == Format::SOP1 || instr->format == Format::SOP2) {
285 check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get());
286 for (const Operand& op : instr->operands) {
287 check(op.isConstant() || op.regClass().type() <= RegType::sgpr,
288 "Wrong Operand type for SALU instruction", instr.get());
289 }
290 }
291 }
292
293 switch (instr->format) {
294 case Format::PSEUDO: {
295 bool is_subdword = false;
296 bool has_const_sgpr = false;
297 bool has_literal = false;
298 for (Definition def : instr->definitions)
299 is_subdword |= def.regClass().is_subdword();
300 for (unsigned i = 0; i < instr->operands.size(); i++) {
301 if (instr->opcode == aco_opcode::p_extract_vector && i == 1)
302 continue;
303 Operand op = instr->operands[i];
304 is_subdword |= op.hasRegClass() && op.regClass().is_subdword();
305 has_const_sgpr |= op.isConstant() || (op.hasRegClass() && op.regClass().type() == RegType::sgpr);
306 has_literal |= op.isLiteral();
307 }
308
309 check(!is_subdword || !has_const_sgpr || program->chip_class >= GFX9,
310 "Sub-dword pseudo instructions can only take constants or SGPRs on GFX9+", instr.get());
311 check(!is_subdword || !has_literal, "Sub-dword pseudo instructions cannot take literals", instr.get());
312
313 if (instr->opcode == aco_opcode::p_create_vector) {
314 unsigned size = 0;
315 for (const Operand& op : instr->operands) {
316 size += op.bytes();
317 }
318 check(size == instr->definitions[0].bytes(), "Definition size does not match operand sizes", instr.get());
319 if (instr->definitions[0].getTemp().type() == RegType::sgpr) {
320 for (const Operand& op : instr->operands) {
321 check(op.isConstant() || op.regClass().type() == RegType::sgpr,
322 "Wrong Operand type for scalar vector", instr.get());
323 }
324 }
325 } else if (instr->opcode == aco_opcode::p_extract_vector) {
326 check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), "Wrong Operand types", instr.get());
327 check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <= instr->operands[0].bytes(), "Index out of range", instr.get());
328 check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr,
329 "Cannot extract SGPR value from VGPR vector", instr.get());
330 } else if (instr->opcode == aco_opcode::p_parallelcopy) {
331 check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get());
332 for (unsigned i = 0; i < instr->operands.size(); i++) {
333 if (instr->operands[i].isTemp())
334 check((instr->definitions[i].getTemp().type() == instr->operands[i].regClass().type()) ||
335 (instr->definitions[i].getTemp().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr),
336 "Operand and Definition types do not match", instr.get());
337 }
338 } else if (instr->opcode == aco_opcode::p_phi) {
339 check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
340 check(instr->definitions[0].getTemp().type() == RegType::vgpr, "Logical Phi Definition must be vgpr", instr.get());
341 } else if (instr->opcode == aco_opcode::p_linear_phi) {
342 for (const Operand& op : instr->operands)
343 check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get());
344 check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
345 }
346 break;
347 }
348 case Format::SMEM: {
349 if (instr->operands.size() >= 1)
350 check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "SMEM operands must be sgpr", instr.get());
351 if (instr->operands.size() >= 2)
352 check(instr->operands[1].isConstant() || (instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr),
353 "SMEM offset must be constant or sgpr", instr.get());
354 if (!instr->definitions.empty())
355 check(instr->definitions[0].getTemp().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get());
356 break;
357 }
358 case Format::MTBUF:
359 case Format::MUBUF: {
360 check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get());
361 check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr,
362 "VADDR must be in vgpr for VMEM instructions", instr.get());
363 check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "VMEM resource constant must be sgpr", instr.get());
364 check(instr->operands.size() < 4 || (instr->operands[3].isTemp() && instr->operands[3].regClass().type() == RegType::vgpr), "VMEM write data must be vgpr", instr.get());
365 break;
366 }
367 case Format::MIMG: {
368 check(instr->operands.size() == 3, "MIMG instructions must have exactly 3 operands", instr.get());
369 check(instr->operands[0].hasRegClass() && (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8),
370 "MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get());
371 if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr)
372 check(instr->operands[1].regClass() == s4, "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get());
373 else if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr)
374 check((instr->definitions.empty() || instr->definitions[0].regClass() == instr->operands[1].regClass() ||
375 instr->opcode == aco_opcode::image_atomic_cmpswap || instr->opcode == aco_opcode::image_atomic_fcmpswap),
376 "MIMG operands[1] (VDATA) must be the same as definitions[0] for atomics", instr.get());
377 check(instr->operands[2].hasRegClass() && instr->operands[2].regClass().type() == RegType::vgpr,
378 "MIMG operands[2] (VADDR) must be VGPR", instr.get());
379 check(instr->definitions.empty() || (instr->definitions[0].isTemp() && instr->definitions[0].regClass().type() == RegType::vgpr),
380 "MIMG definitions[0] (VDATA) must be VGPR", instr.get());
381 break;
382 }
383 case Format::DS: {
384 for (const Operand& op : instr->operands) {
385 check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0,
386 "Only VGPRs are valid DS instruction operands", instr.get());
387 }
388 if (!instr->definitions.empty())
389 check(instr->definitions[0].getTemp().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get());
390 break;
391 }
392 case Format::EXP: {
393 for (unsigned i = 0; i < 4; i++)
394 check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr,
395 "Only VGPRs are valid Export arguments", instr.get());
396 break;
397 }
398 case Format::FLAT:
399 check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get());
400 /* fallthrough */
401 case Format::GLOBAL:
402 case Format::SCRATCH: {
403 check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get());
404 check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr,
405 "FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get());
406 if (!instr->definitions.empty())
407 check(instr->definitions[0].getTemp().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get());
408 else
409 check(instr->operands[2].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get());
410 break;
411 }
412 default:
413 break;
414 }
415 }
416 }
417
418 /* validate CFG */
419 for (unsigned i = 0; i < program->blocks.size(); i++) {
420 Block& block = program->blocks[i];
421 check_block(block.index == i, "block.index must match actual index", &block);
422
423 /* predecessors/successors should be sorted */
424 for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++)
425 check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block);
426 for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++)
427 check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block);
428 for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++)
429 check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block);
430 for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++)
431 check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block);
432
433 /* critical edges are not allowed */
434 if (block.linear_preds.size() > 1) {
435 for (unsigned pred : block.linear_preds)
436 check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]);
437 for (unsigned pred : block.logical_preds)
438 check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]);
439 }
440 }
441
442 assert(is_valid);
443 }
444
445 /* RA validation */
446 namespace {
447
448 struct Location {
449 Location() : block(NULL), instr(NULL) {}
450
451 Block *block;
452 Instruction *instr; //NULL if it's the block's live-in
453 };
454
455 struct Assignment {
456 Location defloc;
457 Location firstloc;
458 PhysReg reg;
459 };
460
461 bool ra_fail(FILE *output, Location loc, Location loc2, const char *fmt, ...) {
462 va_list args;
463 va_start(args, fmt);
464 char msg[1024];
465 vsprintf(msg, fmt, args);
466 va_end(args);
467
468 fprintf(stderr, "RA error found at instruction in BB%d:\n", loc.block->index);
469 if (loc.instr) {
470 aco_print_instr(loc.instr, stderr);
471 fprintf(stderr, "\n%s", msg);
472 } else {
473 fprintf(stderr, "%s", msg);
474 }
475 if (loc2.block) {
476 fprintf(stderr, " in BB%d:\n", loc2.block->index);
477 aco_print_instr(loc2.instr, stderr);
478 }
479 fprintf(stderr, "\n\n");
480
481 return true;
482 }
483
484 bool validate_subdword_operand(chip_class chip, const aco_ptr<Instruction>& instr, unsigned index)
485 {
486 Operand op = instr->operands[index];
487 unsigned byte = op.physReg().byte();
488
489 if (instr->format == Format::PSEUDO && chip >= GFX8)
490 return true;
491 if (instr->isSDWA() && (static_cast<SDWA_instruction *>(instr.get())->sel[index] & sdwa_asuint) == (sdwa_isra | op.bytes()))
492 return true;
493 if (byte == 2 && can_use_opsel(chip, instr->opcode, index, 1))
494 return true;
495
496 switch (instr->opcode) {
497 case aco_opcode::v_cvt_f32_ubyte1:
498 if (byte == 1)
499 return true;
500 break;
501 case aco_opcode::v_cvt_f32_ubyte2:
502 if (byte == 2)
503 return true;
504 break;
505 case aco_opcode::v_cvt_f32_ubyte3:
506 if (byte == 3)
507 return true;
508 break;
509 case aco_opcode::ds_write_b8_d16_hi:
510 case aco_opcode::ds_write_b16_d16_hi:
511 if (byte == 2 && index == 1)
512 return true;
513 break;
514 case aco_opcode::buffer_store_byte_d16_hi:
515 case aco_opcode::buffer_store_short_d16_hi:
516 if (byte == 2 && index == 3)
517 return true;
518 break;
519 case aco_opcode::flat_store_byte_d16_hi:
520 case aco_opcode::flat_store_short_d16_hi:
521 case aco_opcode::scratch_store_byte_d16_hi:
522 case aco_opcode::scratch_store_short_d16_hi:
523 case aco_opcode::global_store_byte_d16_hi:
524 case aco_opcode::global_store_short_d16_hi:
525 if (byte == 2 && index == 2)
526 return true;
527 default:
528 break;
529 }
530
531 return byte == 0;
532 }
533
534 bool validate_subdword_definition(chip_class chip, const aco_ptr<Instruction>& instr)
535 {
536 Definition def = instr->definitions[0];
537 unsigned byte = def.physReg().byte();
538
539 if (instr->format == Format::PSEUDO && chip >= GFX8)
540 return true;
541 if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
542 return true;
543 if (byte == 2 && can_use_opsel(chip, instr->opcode, -1, 1))
544 return true;
545
546 switch (instr->opcode) {
547 case aco_opcode::buffer_load_ubyte_d16_hi:
548 case aco_opcode::buffer_load_short_d16_hi:
549 case aco_opcode::flat_load_ubyte_d16_hi:
550 case aco_opcode::flat_load_short_d16_hi:
551 case aco_opcode::scratch_load_ubyte_d16_hi:
552 case aco_opcode::scratch_load_short_d16_hi:
553 case aco_opcode::global_load_ubyte_d16_hi:
554 case aco_opcode::global_load_short_d16_hi:
555 case aco_opcode::ds_read_u8_d16_hi:
556 case aco_opcode::ds_read_u16_d16_hi:
557 return byte == 2;
558 default:
559 break;
560 }
561
562 return byte == 0;
563 }
564
565 unsigned get_subdword_bytes_written(Program *program, const aco_ptr<Instruction>& instr, unsigned index)
566 {
567 chip_class chip = program->chip_class;
568 Definition def = instr->definitions[index];
569
570 if (instr->format == Format::PSEUDO)
571 return chip >= GFX8 ? def.bytes() : def.size() * 4u;
572 if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
573 return def.bytes();
574
575 switch (instr->opcode) {
576 case aco_opcode::buffer_load_ubyte_d16:
577 case aco_opcode::buffer_load_short_d16:
578 case aco_opcode::flat_load_ubyte_d16:
579 case aco_opcode::flat_load_short_d16:
580 case aco_opcode::scratch_load_ubyte_d16:
581 case aco_opcode::scratch_load_short_d16:
582 case aco_opcode::global_load_ubyte_d16:
583 case aco_opcode::global_load_short_d16:
584 case aco_opcode::ds_read_u8_d16:
585 case aco_opcode::ds_read_u16_d16:
586 case aco_opcode::buffer_load_ubyte_d16_hi:
587 case aco_opcode::buffer_load_short_d16_hi:
588 case aco_opcode::flat_load_ubyte_d16_hi:
589 case aco_opcode::flat_load_short_d16_hi:
590 case aco_opcode::scratch_load_ubyte_d16_hi:
591 case aco_opcode::scratch_load_short_d16_hi:
592 case aco_opcode::global_load_ubyte_d16_hi:
593 case aco_opcode::global_load_short_d16_hi:
594 case aco_opcode::ds_read_u8_d16_hi:
595 case aco_opcode::ds_read_u16_d16_hi:
596 return program->sram_ecc_enabled ? 4 : 2;
597 case aco_opcode::v_mad_f16:
598 case aco_opcode::v_mad_u16:
599 case aco_opcode::v_mad_i16:
600 case aco_opcode::v_fma_f16:
601 case aco_opcode::v_div_fixup_f16:
602 case aco_opcode::v_interp_p2_f16:
603 if (chip >= GFX9)
604 return 2;
605 default:
606 break;
607 }
608
609 return MAX2(chip >= GFX10 ? def.bytes() : 4, instr_info.definition_size[(int)instr->opcode] / 8u);
610 }
611
612 } /* end namespace */
613
614 bool validate_ra(Program *program, const struct radv_nir_compiler_options *options, FILE *output) {
615 if (!(debug_flags & DEBUG_VALIDATE_RA))
616 return false;
617
618 bool err = false;
619 aco::live live_vars = aco::live_var_analysis(program, options);
620 std::vector<std::vector<Temp>> phi_sgpr_ops(program->blocks.size());
621
622 std::map<unsigned, Assignment> assignments;
623 for (Block& block : program->blocks) {
624 Location loc;
625 loc.block = &block;
626 for (aco_ptr<Instruction>& instr : block.instructions) {
627 if (instr->opcode == aco_opcode::p_phi) {
628 for (unsigned i = 0; i < instr->operands.size(); i++) {
629 if (instr->operands[i].isTemp() &&
630 instr->operands[i].getTemp().type() == RegType::sgpr &&
631 instr->operands[i].isFirstKill())
632 phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp());
633 }
634 }
635
636 loc.instr = instr.get();
637 for (unsigned i = 0; i < instr->operands.size(); i++) {
638 Operand& op = instr->operands[i];
639 if (!op.isTemp())
640 continue;
641 if (!op.isFixed())
642 err |= ra_fail(output, loc, Location(), "Operand %d is not assigned a register", i);
643 if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg())
644 err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an inconsistent register assignment with instruction", i);
645 if ((op.getTemp().type() == RegType::vgpr && op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) ||
646 (op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < program->sgpr_limit))
647 err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an out-of-bounds register assignment", i);
648 if (op.physReg() == vcc && !program->needs_vcc)
649 err |= ra_fail(output, loc, Location(), "Operand %d fixed to vcc but needs_vcc=false", i);
650 if (op.regClass().is_subdword() && !validate_subdword_operand(program->chip_class, instr, i))
651 err |= ra_fail(output, loc, Location(), "Operand %d not aligned correctly", i);
652 if (!assignments[op.tempId()].firstloc.block)
653 assignments[op.tempId()].firstloc = loc;
654 if (!assignments[op.tempId()].defloc.block)
655 assignments[op.tempId()].reg = op.physReg();
656 }
657
658 for (unsigned i = 0; i < instr->definitions.size(); i++) {
659 Definition& def = instr->definitions[i];
660 if (!def.isTemp())
661 continue;
662 if (!def.isFixed())
663 err |= ra_fail(output, loc, Location(), "Definition %d is not assigned a register", i);
664 if (assignments[def.tempId()].defloc.block)
665 err |= ra_fail(output, loc, assignments.at(def.tempId()).defloc, "Temporary %%%d also defined by instruction", def.tempId());
666 if ((def.getTemp().type() == RegType::vgpr && def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) ||
667 (def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < program->sgpr_limit))
668 err |= ra_fail(output, loc, assignments.at(def.tempId()).firstloc, "Definition %d has an out-of-bounds register assignment", i);
669 if (def.physReg() == vcc && !program->needs_vcc)
670 err |= ra_fail(output, loc, Location(), "Definition %d fixed to vcc but needs_vcc=false", i);
671 if (def.regClass().is_subdword() && !validate_subdword_definition(program->chip_class, instr))
672 err |= ra_fail(output, loc, Location(), "Definition %d not aligned correctly", i);
673 if (!assignments[def.tempId()].firstloc.block)
674 assignments[def.tempId()].firstloc = loc;
675 assignments[def.tempId()].defloc = loc;
676 assignments[def.tempId()].reg = def.physReg();
677 }
678 }
679 }
680
681 for (Block& block : program->blocks) {
682 Location loc;
683 loc.block = &block;
684
685 std::array<unsigned, 2048> regs; /* register file in bytes */
686 regs.fill(0);
687
688 std::set<Temp> live;
689 live.insert(live_vars.live_out[block.index].begin(), live_vars.live_out[block.index].end());
690 /* remove killed p_phi sgpr operands */
691 for (Temp tmp : phi_sgpr_ops[block.index])
692 live.erase(tmp);
693
694 /* check live out */
695 for (Temp tmp : live) {
696 PhysReg reg = assignments.at(tmp.id()).reg;
697 for (unsigned i = 0; i < tmp.bytes(); i++) {
698 if (regs[reg.reg_b + i]) {
699 err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
700 }
701 regs[reg.reg_b + i] = tmp.id();
702 }
703 }
704 regs.fill(0);
705
706 for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) {
707 aco_ptr<Instruction>& instr = *it;
708
709 /* check killed p_phi sgpr operands */
710 if (instr->opcode == aco_opcode::p_logical_end) {
711 for (Temp tmp : phi_sgpr_ops[block.index]) {
712 PhysReg reg = assignments.at(tmp.id()).reg;
713 for (unsigned i = 0; i < tmp.bytes(); i++) {
714 if (regs[reg.reg_b + i])
715 err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
716 }
717 live.emplace(tmp);
718 }
719 }
720
721 for (const Definition& def : instr->definitions) {
722 if (!def.isTemp())
723 continue;
724 live.erase(def.getTemp());
725 }
726
727 /* don't count phi operands as live-in, since they are actually
728 * killed when they are copied at the predecessor */
729 if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
730 for (const Operand& op : instr->operands) {
731 if (!op.isTemp())
732 continue;
733 live.insert(op.getTemp());
734 }
735 }
736 }
737
738 for (Temp tmp : live) {
739 PhysReg reg = assignments.at(tmp.id()).reg;
740 for (unsigned i = 0; i < tmp.bytes(); i++)
741 regs[reg.reg_b + i] = tmp.id();
742 }
743
744 for (aco_ptr<Instruction>& instr : block.instructions) {
745 loc.instr = instr.get();
746
747 /* remove killed p_phi operands from regs */
748 if (instr->opcode == aco_opcode::p_logical_end) {
749 for (Temp tmp : phi_sgpr_ops[block.index]) {
750 PhysReg reg = assignments.at(tmp.id()).reg;
751 for (unsigned i = 0; i < tmp.bytes(); i++)
752 regs[reg.reg_b + i] = 0;
753 }
754 }
755
756 if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
757 for (const Operand& op : instr->operands) {
758 if (!op.isTemp())
759 continue;
760 if (op.isFirstKillBeforeDef()) {
761 for (unsigned j = 0; j < op.getTemp().bytes(); j++)
762 regs[op.physReg().reg_b + j] = 0;
763 }
764 }
765 }
766
767 for (unsigned i = 0; i < instr->definitions.size(); i++) {
768 Definition& def = instr->definitions[i];
769 if (!def.isTemp())
770 continue;
771 Temp tmp = def.getTemp();
772 PhysReg reg = assignments.at(tmp.id()).reg;
773 for (unsigned j = 0; j < tmp.bytes(); j++) {
774 if (regs[reg.reg_b + j])
775 err |= ra_fail(output, loc, assignments.at(regs[reg.reg_b + j]).defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg.reg_b + j]);
776 regs[reg.reg_b + j] = tmp.id();
777 }
778 if (def.regClass().is_subdword() && def.bytes() < 4) {
779 unsigned written = get_subdword_bytes_written(program, instr, i);
780 /* If written=4, the instruction still might write the upper half. In that case, it's the lower half that isn't preserved */
781 for (unsigned j = reg.byte() & ~(written - 1); j < written; j++) {
782 unsigned written_reg = reg.reg() * 4u + j;
783 if (regs[written_reg] && regs[written_reg] != def.tempId())
784 err |= ra_fail(output, loc, assignments.at(regs[written_reg]).defloc, "Assignment of element %d of %%%d overwrites the full register taken by %%%d from instruction", i, tmp.id(), regs[written_reg]);
785 }
786 }
787 }
788
789 for (const Definition& def : instr->definitions) {
790 if (!def.isTemp())
791 continue;
792 if (def.isKill()) {
793 for (unsigned j = 0; j < def.getTemp().bytes(); j++)
794 regs[def.physReg().reg_b + j] = 0;
795 }
796 }
797
798 if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
799 for (const Operand& op : instr->operands) {
800 if (!op.isTemp())
801 continue;
802 if (op.isLateKill() && op.isFirstKill()) {
803 for (unsigned j = 0; j < op.getTemp().bytes(); j++)
804 regs[op.physReg().reg_b + j] = 0;
805 }
806 }
807 }
808 }
809 }
810
811 return err;
812 }
813 }