aco: print ACO IR before scheduling instead of after
[mesa.git] / src / amd / compiler / aco_validate.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_ir.h"
26
27 #include <array>
28 #include <map>
29
30 namespace aco {
31
32 #ifndef NDEBUG
33 void perfwarn(bool cond, const char *msg, Instruction *instr)
34 {
35 if (cond) {
36 fprintf(stderr, "ACO performance warning: %s\n", msg);
37 if (instr) {
38 fprintf(stderr, "instruction: ");
39 aco_print_instr(instr, stderr);
40 fprintf(stderr, "\n");
41 }
42
43 if (debug_flags & DEBUG_PERFWARN)
44 exit(1);
45 }
46 }
47 #endif
48
49 bool validate(Program* program, FILE *output)
50 {
51 bool is_valid = true;
52 auto check = [&output, &is_valid](bool check, const char * msg, aco::Instruction * instr) -> void {
53 if (!check) {
54 fprintf(output, "%s: ", msg);
55 aco_print_instr(instr, output);
56 fprintf(output, "\n");
57 is_valid = false;
58 }
59 };
60 auto check_block = [&output, &is_valid](bool check, const char * msg, aco::Block * block) -> void {
61 if (!check) {
62 fprintf(output, "%s: BB%u\n", msg, block->index);
63 is_valid = false;
64 }
65 };
66
67 for (Block& block : program->blocks) {
68 for (aco_ptr<Instruction>& instr : block.instructions) {
69
70 /* check base format */
71 Format base_format = instr->format;
72 base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA);
73 base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP);
74 if ((uint32_t)base_format & (uint32_t)Format::VOP1)
75 base_format = Format::VOP1;
76 else if ((uint32_t)base_format & (uint32_t)Format::VOP2)
77 base_format = Format::VOP2;
78 else if ((uint32_t)base_format & (uint32_t)Format::VOPC)
79 base_format = Format::VOPC;
80 else if ((uint32_t)base_format & (uint32_t)Format::VINTRP) {
81 if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
82 instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
83 instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
84 instr->opcode == aco_opcode::v_interp_p2_f16) {
85 /* v_interp_*_fp16 are considered VINTRP by the compiler but
86 * they are emitted as VOP3.
87 */
88 base_format = Format::VOP3;
89 } else {
90 base_format = Format::VINTRP;
91 }
92 }
93 check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get());
94
95 /* check VOP3 modifiers */
96 if (((uint32_t)instr->format & (uint32_t)Format::VOP3) && instr->format != Format::VOP3) {
97 check(base_format == Format::VOP2 ||
98 base_format == Format::VOP1 ||
99 base_format == Format::VOPC ||
100 base_format == Format::VINTRP,
101 "Format cannot have VOP3A/VOP3B applied", instr.get());
102 }
103
104 /* check SDWA */
105 if (instr->isSDWA()) {
106 check(base_format == Format::VOP2 ||
107 base_format == Format::VOP1 ||
108 base_format == Format::VOPC,
109 "Format cannot have SDWA applied", instr.get());
110
111 check(program->chip_class >= GFX8, "SDWA is GFX8+ only", instr.get());
112
113 SDWA_instruction *sdwa = static_cast<SDWA_instruction*>(instr.get());
114 check(sdwa->omod == 0 || program->chip_class >= GFX9, "SDWA omod only supported on GFX9+", instr.get());
115 if (base_format == Format::VOPC) {
116 check(sdwa->clamp == false || program->chip_class == GFX8, "SDWA VOPC clamp only supported on GFX8", instr.get());
117 check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) ||
118 program->chip_class >= GFX9,
119 "SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get());
120 }
121
122 if (instr->operands.size() >= 3) {
123 check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc,
124 "3rd operand must be fixed to vcc with SDWA", instr.get());
125 }
126 if (instr->definitions.size() >= 2) {
127 check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc,
128 "2nd definition must be fixed to vcc with SDWA", instr.get());
129 }
130
131 check(instr->opcode != aco_opcode::v_madmk_f32 &&
132 instr->opcode != aco_opcode::v_madak_f32 &&
133 instr->opcode != aco_opcode::v_madmk_f16 &&
134 instr->opcode != aco_opcode::v_madak_f16 &&
135 instr->opcode != aco_opcode::v_readfirstlane_b32 &&
136 instr->opcode != aco_opcode::v_clrexcp &&
137 instr->opcode != aco_opcode::v_swap_b32,
138 "SDWA can't be used with this opcode", instr.get());
139 if (program->chip_class != GFX8) {
140 check(instr->opcode != aco_opcode::v_mac_f32 &&
141 instr->opcode != aco_opcode::v_mac_f16 &&
142 instr->opcode != aco_opcode::v_fmac_f32 &&
143 instr->opcode != aco_opcode::v_fmac_f16,
144 "SDWA can't be used with this opcode", instr.get());
145 }
146
147 for (unsigned i = 0; i < MIN2(instr->operands.size(), 2); i++) {
148 if (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword())
149 check((sdwa->sel[i] & sdwa_asuint) == (sdwa_isra | instr->operands[i].bytes()), "Unexpected SDWA sel for sub-dword operand", instr.get());
150 }
151 if (instr->definitions[0].regClass().is_subdword())
152 check((sdwa->dst_sel & sdwa_asuint) == (sdwa_isra | instr->definitions[0].bytes()), "Unexpected SDWA sel for sub-dword definition", instr.get());
153 }
154
155 /* check opsel */
156 if (instr->isVOP3()) {
157 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(instr.get());
158 check(vop3->opsel == 0 || program->chip_class >= GFX9, "Opsel is only supported on GFX9+", instr.get());
159
160 for (unsigned i = 0; i < 3; i++) {
161 if (i >= instr->operands.size() ||
162 (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed()))
163 check((vop3->opsel & (1 << i)) == 0, "Unexpected opsel for operand", instr.get());
164 }
165 if (instr->definitions[0].regClass().is_subdword() && !instr->definitions[0].isFixed())
166 check((vop3->opsel & (1 << 3)) == 0, "Unexpected opsel for sub-dword definition", instr.get());
167 }
168
169 /* check for undefs */
170 for (unsigned i = 0; i < instr->operands.size(); i++) {
171 if (instr->operands[i].isUndefined()) {
172 bool flat = instr->format == Format::FLAT || instr->format == Format::SCRATCH || instr->format == Format::GLOBAL;
173 bool can_be_undef = is_phi(instr) || instr->format == Format::EXP ||
174 instr->format == Format::PSEUDO_REDUCTION ||
175 instr->opcode == aco_opcode::p_create_vector ||
176 (flat && i == 1) || (instr->format == Format::MIMG && i == 1) ||
177 ((instr->format == Format::MUBUF || instr->format == Format::MTBUF) && i == 1);
178 check(can_be_undef, "Undefs can only be used in certain operands", instr.get());
179 } else {
180 check(instr->operands[i].isFixed() || instr->operands[i].isTemp() || instr->operands[i].isConstant(), "Uninitialized Operand", instr.get());
181 }
182 }
183
184 /* check subdword definitions */
185 for (unsigned i = 0; i < instr->definitions.size(); i++) {
186 if (instr->definitions[i].regClass().is_subdword())
187 check(instr->format == Format::PSEUDO || instr->definitions[i].bytes() <= 4, "Only Pseudo instructions can write subdword registers larger than 4 bytes", instr.get());
188 }
189
190 if (instr->isSALU() || instr->isVALU()) {
191 /* check literals */
192 Operand literal(s1);
193 for (unsigned i = 0; i < instr->operands.size(); i++)
194 {
195 Operand op = instr->operands[i];
196 if (!op.isLiteral())
197 continue;
198
199 check(instr->format == Format::SOP1 ||
200 instr->format == Format::SOP2 ||
201 instr->format == Format::SOPC ||
202 instr->format == Format::VOP1 ||
203 instr->format == Format::VOP2 ||
204 instr->format == Format::VOPC ||
205 (instr->isVOP3() && program->chip_class >= GFX10),
206 "Literal applied on wrong instruction format", instr.get());
207
208 check(literal.isUndefined() || (literal.size() == op.size() && literal.constantValue() == op.constantValue()), "Only 1 Literal allowed", instr.get());
209 literal = op;
210 check(!instr->isVALU() || instr->isVOP3() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get());
211 }
212
213 /* check num sgprs for VALU */
214 if (instr->isVALU()) {
215 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
216 instr->opcode == aco_opcode::v_lshrrev_b64 ||
217 instr->opcode == aco_opcode::v_ashrrev_i64;
218 unsigned const_bus_limit = 1;
219 if (program->chip_class >= GFX10 && !is_shift64)
220 const_bus_limit = 2;
221
222 uint32_t scalar_mask = instr->isVOP3() ? 0x7 : 0x5;
223 if (instr->isSDWA())
224 scalar_mask = program->chip_class >= GFX9 ? 0x7 : 0x4;
225
226 if ((int) instr->format & (int) Format::VOPC ||
227 instr->opcode == aco_opcode::v_readfirstlane_b32 ||
228 instr->opcode == aco_opcode::v_readlane_b32 ||
229 instr->opcode == aco_opcode::v_readlane_b32_e64) {
230 check(instr->definitions[0].getTemp().type() == RegType::sgpr,
231 "Wrong Definition type for VALU instruction", instr.get());
232 } else {
233 check(instr->definitions[0].getTemp().type() == RegType::vgpr,
234 "Wrong Definition type for VALU instruction", instr.get());
235 }
236
237 unsigned num_sgprs = 0;
238 unsigned sgpr[] = {0, 0};
239 for (unsigned i = 0; i < instr->operands.size(); i++)
240 {
241 Operand op = instr->operands[i];
242 if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
243 instr->opcode == aco_opcode::v_readlane_b32 ||
244 instr->opcode == aco_opcode::v_readlane_b32_e64) {
245 check(i != 1 ||
246 (op.isTemp() && op.regClass().type() == RegType::sgpr) ||
247 op.isConstant(),
248 "Must be a SGPR or a constant", instr.get());
249 check(i == 1 ||
250 (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4),
251 "Wrong Operand type for VALU instruction", instr.get());
252 continue;
253 }
254
255 if (instr->opcode == aco_opcode::v_writelane_b32 ||
256 instr->opcode == aco_opcode::v_writelane_b32_e64) {
257 check(i != 2 ||
258 (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4),
259 "Wrong Operand type for VALU instruction", instr.get());
260 check(i == 2 ||
261 (op.isTemp() && op.regClass().type() == RegType::sgpr) ||
262 op.isConstant(),
263 "Must be a SGPR or a constant", instr.get());
264 continue;
265 }
266 if (op.isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) {
267 check(scalar_mask & (1 << i), "Wrong source position for SGPR argument", instr.get());
268
269 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
270 if (num_sgprs < 2)
271 sgpr[num_sgprs++] = op.tempId();
272 }
273 }
274
275 if (op.isConstant() && !op.isLiteral())
276 check(scalar_mask & (1 << i), "Wrong source position for constant argument", instr.get());
277 }
278 check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit, "Too many SGPRs/literals", instr.get());
279 }
280
281 if (instr->format == Format::SOP1 || instr->format == Format::SOP2) {
282 check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get());
283 for (const Operand& op : instr->operands) {
284 check(op.isConstant() || op.regClass().type() <= RegType::sgpr,
285 "Wrong Operand type for SALU instruction", instr.get());
286 }
287 }
288 }
289
290 switch (instr->format) {
291 case Format::PSEUDO: {
292 bool is_subdword = false;
293 bool has_const_sgpr = false;
294 bool has_literal = false;
295 for (Definition def : instr->definitions)
296 is_subdword |= def.regClass().is_subdword();
297 for (unsigned i = 0; i < instr->operands.size(); i++) {
298 if (instr->opcode == aco_opcode::p_extract_vector && i == 1)
299 continue;
300 Operand op = instr->operands[i];
301 is_subdword |= op.hasRegClass() && op.regClass().is_subdword();
302 has_const_sgpr |= op.isConstant() || (op.hasRegClass() && op.regClass().type() == RegType::sgpr);
303 has_literal |= op.isLiteral();
304 }
305
306 check(!is_subdword || !has_const_sgpr || program->chip_class >= GFX9,
307 "Sub-dword pseudo instructions can only take constants or SGPRs on GFX9+", instr.get());
308 check(!is_subdword || !has_literal, "Sub-dword pseudo instructions cannot take literals", instr.get());
309
310 if (instr->opcode == aco_opcode::p_create_vector) {
311 unsigned size = 0;
312 for (const Operand& op : instr->operands) {
313 size += op.bytes();
314 }
315 check(size == instr->definitions[0].bytes(), "Definition size does not match operand sizes", instr.get());
316 if (instr->definitions[0].getTemp().type() == RegType::sgpr) {
317 for (const Operand& op : instr->operands) {
318 check(op.isConstant() || op.regClass().type() == RegType::sgpr,
319 "Wrong Operand type for scalar vector", instr.get());
320 }
321 }
322 } else if (instr->opcode == aco_opcode::p_extract_vector) {
323 check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), "Wrong Operand types", instr.get());
324 check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <= instr->operands[0].bytes(), "Index out of range", instr.get());
325 check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr,
326 "Cannot extract SGPR value from VGPR vector", instr.get());
327 } else if (instr->opcode == aco_opcode::p_parallelcopy) {
328 check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get());
329 for (unsigned i = 0; i < instr->operands.size(); i++) {
330 if (instr->operands[i].isTemp())
331 check((instr->definitions[i].getTemp().type() == instr->operands[i].regClass().type()) ||
332 (instr->definitions[i].getTemp().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr),
333 "Operand and Definition types do not match", instr.get());
334 }
335 } else if (instr->opcode == aco_opcode::p_phi) {
336 check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
337 check(instr->definitions[0].getTemp().type() == RegType::vgpr, "Logical Phi Definition must be vgpr", instr.get());
338 } else if (instr->opcode == aco_opcode::p_linear_phi) {
339 for (const Operand& op : instr->operands)
340 check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get());
341 check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
342 }
343 break;
344 }
345 case Format::SMEM: {
346 if (instr->operands.size() >= 1)
347 check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "SMEM operands must be sgpr", instr.get());
348 if (instr->operands.size() >= 2)
349 check(instr->operands[1].isConstant() || (instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr),
350 "SMEM offset must be constant or sgpr", instr.get());
351 if (!instr->definitions.empty())
352 check(instr->definitions[0].getTemp().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get());
353 break;
354 }
355 case Format::MTBUF:
356 case Format::MUBUF: {
357 check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get());
358 check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr,
359 "VADDR must be in vgpr for VMEM instructions", instr.get());
360 check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "VMEM resource constant must be sgpr", instr.get());
361 check(instr->operands.size() < 4 || (instr->operands[3].isTemp() && instr->operands[3].regClass().type() == RegType::vgpr), "VMEM write data must be vgpr", instr.get());
362 break;
363 }
364 case Format::MIMG: {
365 check(instr->operands.size() == 3, "MIMG instructions must have exactly 3 operands", instr.get());
366 check(instr->operands[0].hasRegClass() && (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8),
367 "MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get());
368 if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr)
369 check(instr->operands[1].regClass() == s4, "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get());
370 else if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr)
371 check((instr->definitions.empty() || instr->definitions[0].regClass() == instr->operands[1].regClass() ||
372 instr->opcode == aco_opcode::image_atomic_cmpswap || instr->opcode == aco_opcode::image_atomic_fcmpswap),
373 "MIMG operands[1] (VDATA) must be the same as definitions[0] for atomics", instr.get());
374 check(instr->operands[2].hasRegClass() && instr->operands[2].regClass().type() == RegType::vgpr,
375 "MIMG operands[2] (VADDR) must be VGPR", instr.get());
376 check(instr->definitions.empty() || (instr->definitions[0].isTemp() && instr->definitions[0].regClass().type() == RegType::vgpr),
377 "MIMG definitions[0] (VDATA) must be VGPR", instr.get());
378 break;
379 }
380 case Format::DS: {
381 for (const Operand& op : instr->operands) {
382 check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0,
383 "Only VGPRs are valid DS instruction operands", instr.get());
384 }
385 if (!instr->definitions.empty())
386 check(instr->definitions[0].getTemp().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get());
387 break;
388 }
389 case Format::EXP: {
390 for (unsigned i = 0; i < 4; i++)
391 check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr,
392 "Only VGPRs are valid Export arguments", instr.get());
393 break;
394 }
395 case Format::FLAT:
396 check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get());
397 /* fallthrough */
398 case Format::GLOBAL:
399 case Format::SCRATCH: {
400 check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get());
401 check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr,
402 "FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get());
403 if (!instr->definitions.empty())
404 check(instr->definitions[0].getTemp().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get());
405 else
406 check(instr->operands[2].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get());
407 break;
408 }
409 default:
410 break;
411 }
412 }
413 }
414
415 /* validate CFG */
416 for (unsigned i = 0; i < program->blocks.size(); i++) {
417 Block& block = program->blocks[i];
418 check_block(block.index == i, "block.index must match actual index", &block);
419
420 /* predecessors/successors should be sorted */
421 for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++)
422 check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block);
423 for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++)
424 check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block);
425 for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++)
426 check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block);
427 for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++)
428 check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block);
429
430 /* critical edges are not allowed */
431 if (block.linear_preds.size() > 1) {
432 for (unsigned pred : block.linear_preds)
433 check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]);
434 for (unsigned pred : block.logical_preds)
435 check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]);
436 }
437 }
438
439 return is_valid;
440 }
441
442 /* RA validation */
443 namespace {
444
445 struct Location {
446 Location() : block(NULL), instr(NULL) {}
447
448 Block *block;
449 Instruction *instr; //NULL if it's the block's live-in
450 };
451
452 struct Assignment {
453 Location defloc;
454 Location firstloc;
455 PhysReg reg;
456 };
457
458 bool ra_fail(FILE *output, Location loc, Location loc2, const char *fmt, ...) {
459 va_list args;
460 va_start(args, fmt);
461 char msg[1024];
462 vsprintf(msg, fmt, args);
463 va_end(args);
464
465 fprintf(stderr, "RA error found at instruction in BB%d:\n", loc.block->index);
466 if (loc.instr) {
467 aco_print_instr(loc.instr, stderr);
468 fprintf(stderr, "\n%s", msg);
469 } else {
470 fprintf(stderr, "%s", msg);
471 }
472 if (loc2.block) {
473 fprintf(stderr, " in BB%d:\n", loc2.block->index);
474 aco_print_instr(loc2.instr, stderr);
475 }
476 fprintf(stderr, "\n\n");
477
478 return true;
479 }
480
481 bool validate_subdword_operand(chip_class chip, const aco_ptr<Instruction>& instr, unsigned index)
482 {
483 Operand op = instr->operands[index];
484 unsigned byte = op.physReg().byte();
485
486 if (instr->format == Format::PSEUDO && chip >= GFX8)
487 return true;
488 if (instr->isSDWA() && (static_cast<SDWA_instruction *>(instr.get())->sel[index] & sdwa_asuint) == (sdwa_isra | op.bytes()))
489 return true;
490 if (byte == 2 && can_use_opsel(chip, instr->opcode, index, 1))
491 return true;
492
493 switch (instr->opcode) {
494 case aco_opcode::v_cvt_f32_ubyte1:
495 if (byte == 1)
496 return true;
497 break;
498 case aco_opcode::v_cvt_f32_ubyte2:
499 if (byte == 2)
500 return true;
501 break;
502 case aco_opcode::v_cvt_f32_ubyte3:
503 if (byte == 3)
504 return true;
505 break;
506 case aco_opcode::ds_write_b8_d16_hi:
507 case aco_opcode::ds_write_b16_d16_hi:
508 if (byte == 2 && index == 1)
509 return true;
510 break;
511 case aco_opcode::buffer_store_byte_d16_hi:
512 case aco_opcode::buffer_store_short_d16_hi:
513 if (byte == 2 && index == 3)
514 return true;
515 break;
516 case aco_opcode::flat_store_byte_d16_hi:
517 case aco_opcode::flat_store_short_d16_hi:
518 case aco_opcode::scratch_store_byte_d16_hi:
519 case aco_opcode::scratch_store_short_d16_hi:
520 case aco_opcode::global_store_byte_d16_hi:
521 case aco_opcode::global_store_short_d16_hi:
522 if (byte == 2 && index == 2)
523 return true;
524 default:
525 break;
526 }
527
528 return byte == 0;
529 }
530
531 bool validate_subdword_definition(chip_class chip, const aco_ptr<Instruction>& instr)
532 {
533 Definition def = instr->definitions[0];
534 unsigned byte = def.physReg().byte();
535
536 if (instr->format == Format::PSEUDO && chip >= GFX8)
537 return true;
538 if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
539 return true;
540 if (byte == 2 && can_use_opsel(chip, instr->opcode, -1, 1))
541 return true;
542
543 switch (instr->opcode) {
544 case aco_opcode::buffer_load_ubyte_d16_hi:
545 case aco_opcode::buffer_load_short_d16_hi:
546 case aco_opcode::flat_load_ubyte_d16_hi:
547 case aco_opcode::flat_load_short_d16_hi:
548 case aco_opcode::scratch_load_ubyte_d16_hi:
549 case aco_opcode::scratch_load_short_d16_hi:
550 case aco_opcode::global_load_ubyte_d16_hi:
551 case aco_opcode::global_load_short_d16_hi:
552 case aco_opcode::ds_read_u8_d16_hi:
553 case aco_opcode::ds_read_u16_d16_hi:
554 return byte == 2;
555 default:
556 break;
557 }
558
559 return byte == 0;
560 }
561
562 unsigned get_subdword_bytes_written(Program *program, const aco_ptr<Instruction>& instr, unsigned index)
563 {
564 chip_class chip = program->chip_class;
565 Definition def = instr->definitions[index];
566
567 if (instr->format == Format::PSEUDO)
568 return chip >= GFX8 ? def.bytes() : def.size() * 4u;
569 if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
570 return def.bytes();
571
572 switch (instr->opcode) {
573 case aco_opcode::buffer_load_ubyte_d16:
574 case aco_opcode::buffer_load_short_d16:
575 case aco_opcode::flat_load_ubyte_d16:
576 case aco_opcode::flat_load_short_d16:
577 case aco_opcode::scratch_load_ubyte_d16:
578 case aco_opcode::scratch_load_short_d16:
579 case aco_opcode::global_load_ubyte_d16:
580 case aco_opcode::global_load_short_d16:
581 case aco_opcode::ds_read_u8_d16:
582 case aco_opcode::ds_read_u16_d16:
583 case aco_opcode::buffer_load_ubyte_d16_hi:
584 case aco_opcode::buffer_load_short_d16_hi:
585 case aco_opcode::flat_load_ubyte_d16_hi:
586 case aco_opcode::flat_load_short_d16_hi:
587 case aco_opcode::scratch_load_ubyte_d16_hi:
588 case aco_opcode::scratch_load_short_d16_hi:
589 case aco_opcode::global_load_ubyte_d16_hi:
590 case aco_opcode::global_load_short_d16_hi:
591 case aco_opcode::ds_read_u8_d16_hi:
592 case aco_opcode::ds_read_u16_d16_hi:
593 return program->sram_ecc_enabled ? 4 : 2;
594 case aco_opcode::v_mad_f16:
595 case aco_opcode::v_mad_u16:
596 case aco_opcode::v_mad_i16:
597 case aco_opcode::v_fma_f16:
598 case aco_opcode::v_div_fixup_f16:
599 case aco_opcode::v_interp_p2_f16:
600 if (chip >= GFX9)
601 return 2;
602 default:
603 break;
604 }
605
606 return MAX2(chip >= GFX10 ? def.bytes() : 4, instr_info.definition_size[(int)instr->opcode] / 8u);
607 }
608
609 } /* end namespace */
610
611 bool validate_ra(Program *program, const struct radv_nir_compiler_options *options, FILE *output) {
612 if (!(debug_flags & DEBUG_VALIDATE_RA))
613 return false;
614
615 bool err = false;
616 aco::live live_vars = aco::live_var_analysis(program, options);
617 std::vector<std::vector<Temp>> phi_sgpr_ops(program->blocks.size());
618
619 std::map<unsigned, Assignment> assignments;
620 for (Block& block : program->blocks) {
621 Location loc;
622 loc.block = &block;
623 for (aco_ptr<Instruction>& instr : block.instructions) {
624 if (instr->opcode == aco_opcode::p_phi) {
625 for (unsigned i = 0; i < instr->operands.size(); i++) {
626 if (instr->operands[i].isTemp() &&
627 instr->operands[i].getTemp().type() == RegType::sgpr &&
628 instr->operands[i].isFirstKill())
629 phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp());
630 }
631 }
632
633 loc.instr = instr.get();
634 for (unsigned i = 0; i < instr->operands.size(); i++) {
635 Operand& op = instr->operands[i];
636 if (!op.isTemp())
637 continue;
638 if (!op.isFixed())
639 err |= ra_fail(output, loc, Location(), "Operand %d is not assigned a register", i);
640 if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg())
641 err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an inconsistent register assignment with instruction", i);
642 if ((op.getTemp().type() == RegType::vgpr && op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) ||
643 (op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < program->sgpr_limit))
644 err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an out-of-bounds register assignment", i);
645 if (op.physReg() == vcc && !program->needs_vcc)
646 err |= ra_fail(output, loc, Location(), "Operand %d fixed to vcc but needs_vcc=false", i);
647 if (op.regClass().is_subdword() && !validate_subdword_operand(program->chip_class, instr, i))
648 err |= ra_fail(output, loc, Location(), "Operand %d not aligned correctly", i);
649 if (!assignments[op.tempId()].firstloc.block)
650 assignments[op.tempId()].firstloc = loc;
651 if (!assignments[op.tempId()].defloc.block)
652 assignments[op.tempId()].reg = op.physReg();
653 }
654
655 for (unsigned i = 0; i < instr->definitions.size(); i++) {
656 Definition& def = instr->definitions[i];
657 if (!def.isTemp())
658 continue;
659 if (!def.isFixed())
660 err |= ra_fail(output, loc, Location(), "Definition %d is not assigned a register", i);
661 if (assignments[def.tempId()].defloc.block)
662 err |= ra_fail(output, loc, assignments.at(def.tempId()).defloc, "Temporary %%%d also defined by instruction", def.tempId());
663 if ((def.getTemp().type() == RegType::vgpr && def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) ||
664 (def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < program->sgpr_limit))
665 err |= ra_fail(output, loc, assignments.at(def.tempId()).firstloc, "Definition %d has an out-of-bounds register assignment", i);
666 if (def.physReg() == vcc && !program->needs_vcc)
667 err |= ra_fail(output, loc, Location(), "Definition %d fixed to vcc but needs_vcc=false", i);
668 if (def.regClass().is_subdword() && !validate_subdword_definition(program->chip_class, instr))
669 err |= ra_fail(output, loc, Location(), "Definition %d not aligned correctly", i);
670 if (!assignments[def.tempId()].firstloc.block)
671 assignments[def.tempId()].firstloc = loc;
672 assignments[def.tempId()].defloc = loc;
673 assignments[def.tempId()].reg = def.physReg();
674 }
675 }
676 }
677
678 for (Block& block : program->blocks) {
679 Location loc;
680 loc.block = &block;
681
682 std::array<unsigned, 2048> regs; /* register file in bytes */
683 regs.fill(0);
684
685 std::set<Temp> live;
686 live.insert(live_vars.live_out[block.index].begin(), live_vars.live_out[block.index].end());
687 /* remove killed p_phi sgpr operands */
688 for (Temp tmp : phi_sgpr_ops[block.index])
689 live.erase(tmp);
690
691 /* check live out */
692 for (Temp tmp : live) {
693 PhysReg reg = assignments.at(tmp.id()).reg;
694 for (unsigned i = 0; i < tmp.bytes(); i++) {
695 if (regs[reg.reg_b + i]) {
696 err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
697 }
698 regs[reg.reg_b + i] = tmp.id();
699 }
700 }
701 regs.fill(0);
702
703 for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) {
704 aco_ptr<Instruction>& instr = *it;
705
706 /* check killed p_phi sgpr operands */
707 if (instr->opcode == aco_opcode::p_logical_end) {
708 for (Temp tmp : phi_sgpr_ops[block.index]) {
709 PhysReg reg = assignments.at(tmp.id()).reg;
710 for (unsigned i = 0; i < tmp.bytes(); i++) {
711 if (regs[reg.reg_b + i])
712 err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
713 }
714 live.emplace(tmp);
715 }
716 }
717
718 for (const Definition& def : instr->definitions) {
719 if (!def.isTemp())
720 continue;
721 live.erase(def.getTemp());
722 }
723
724 /* don't count phi operands as live-in, since they are actually
725 * killed when they are copied at the predecessor */
726 if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
727 for (const Operand& op : instr->operands) {
728 if (!op.isTemp())
729 continue;
730 live.insert(op.getTemp());
731 }
732 }
733 }
734
735 for (Temp tmp : live) {
736 PhysReg reg = assignments.at(tmp.id()).reg;
737 for (unsigned i = 0; i < tmp.bytes(); i++)
738 regs[reg.reg_b + i] = tmp.id();
739 }
740
741 for (aco_ptr<Instruction>& instr : block.instructions) {
742 loc.instr = instr.get();
743
744 /* remove killed p_phi operands from regs */
745 if (instr->opcode == aco_opcode::p_logical_end) {
746 for (Temp tmp : phi_sgpr_ops[block.index]) {
747 PhysReg reg = assignments.at(tmp.id()).reg;
748 for (unsigned i = 0; i < tmp.bytes(); i++)
749 regs[reg.reg_b + i] = 0;
750 }
751 }
752
753 if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
754 for (const Operand& op : instr->operands) {
755 if (!op.isTemp())
756 continue;
757 if (op.isFirstKillBeforeDef()) {
758 for (unsigned j = 0; j < op.getTemp().bytes(); j++)
759 regs[op.physReg().reg_b + j] = 0;
760 }
761 }
762 }
763
764 for (unsigned i = 0; i < instr->definitions.size(); i++) {
765 Definition& def = instr->definitions[i];
766 if (!def.isTemp())
767 continue;
768 Temp tmp = def.getTemp();
769 PhysReg reg = assignments.at(tmp.id()).reg;
770 for (unsigned j = 0; j < tmp.bytes(); j++) {
771 if (regs[reg.reg_b + j])
772 err |= ra_fail(output, loc, assignments.at(regs[reg.reg_b + j]).defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg.reg_b + j]);
773 regs[reg.reg_b + j] = tmp.id();
774 }
775 if (def.regClass().is_subdword() && def.bytes() < 4) {
776 unsigned written = get_subdword_bytes_written(program, instr, i);
777 /* If written=4, the instruction still might write the upper half. In that case, it's the lower half that isn't preserved */
778 for (unsigned j = reg.byte() & ~(written - 1); j < written; j++) {
779 unsigned written_reg = reg.reg() * 4u + j;
780 if (regs[written_reg] && regs[written_reg] != def.tempId())
781 err |= ra_fail(output, loc, assignments.at(regs[written_reg]).defloc, "Assignment of element %d of %%%d overwrites the full register taken by %%%d from instruction", i, tmp.id(), regs[written_reg]);
782 }
783 }
784 }
785
786 for (const Definition& def : instr->definitions) {
787 if (!def.isTemp())
788 continue;
789 if (def.isKill()) {
790 for (unsigned j = 0; j < def.getTemp().bytes(); j++)
791 regs[def.physReg().reg_b + j] = 0;
792 }
793 }
794
795 if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
796 for (const Operand& op : instr->operands) {
797 if (!op.isTemp())
798 continue;
799 if (op.isLateKill() && op.isFirstKill()) {
800 for (unsigned j = 0; j < op.getTemp().bytes(); j++)
801 regs[op.physReg().reg_b + j] = 0;
802 }
803 }
804 }
805 }
806 }
807
808 return err;
809 }
810 }