ac/llvm: fix pointer type for global atomics
[mesa.git] / src / amd / llvm / ac_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Bas Nieuwenhuizen
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <llvm/Config/llvm-config.h>
25
26 #include "ac_nir_to_llvm.h"
27 #include "ac_llvm_build.h"
28 #include "ac_llvm_util.h"
29 #include "ac_binary.h"
30 #include "sid.h"
31 #include "nir/nir.h"
32 #include "nir/nir_deref.h"
33 #include "util/bitscan.h"
34 #include "util/u_math.h"
35 #include "ac_shader_abi.h"
36 #include "ac_shader_util.h"
37
38 struct ac_nir_context {
39 struct ac_llvm_context ac;
40 struct ac_shader_abi *abi;
41 const struct ac_shader_args *args;
42
43 gl_shader_stage stage;
44 shader_info *info;
45
46 LLVMValueRef *ssa_defs;
47
48 LLVMValueRef scratch;
49 LLVMValueRef constant_data;
50
51 struct hash_table *defs;
52 struct hash_table *phis;
53 struct hash_table *vars;
54
55 LLVMValueRef main_function;
56 LLVMBasicBlockRef continue_block;
57 LLVMBasicBlockRef break_block;
58
59 int num_locals;
60 LLVMValueRef *locals;
61 };
62
63 static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
64 nir_deref_instr *deref_instr,
65 enum ac_descriptor_type desc_type,
66 const nir_instr *instr,
67 bool image, bool write);
68
69 static void
70 build_store_values_extended(struct ac_llvm_context *ac,
71 LLVMValueRef *values,
72 unsigned value_count,
73 unsigned value_stride,
74 LLVMValueRef vec)
75 {
76 LLVMBuilderRef builder = ac->builder;
77 unsigned i;
78
79 for (i = 0; i < value_count; i++) {
80 LLVMValueRef ptr = values[i * value_stride];
81 LLVMValueRef index = LLVMConstInt(ac->i32, i, false);
82 LLVMValueRef value = LLVMBuildExtractElement(builder, vec, index, "");
83 LLVMBuildStore(builder, value, ptr);
84 }
85 }
86
87 static LLVMTypeRef get_def_type(struct ac_nir_context *ctx,
88 const nir_ssa_def *def)
89 {
90 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, def->bit_size);
91 if (def->num_components > 1) {
92 type = LLVMVectorType(type, def->num_components);
93 }
94 return type;
95 }
96
97 static LLVMValueRef get_src(struct ac_nir_context *nir, nir_src src)
98 {
99 assert(src.is_ssa);
100 return nir->ssa_defs[src.ssa->index];
101 }
102
103 static LLVMValueRef
104 get_memory_ptr(struct ac_nir_context *ctx, nir_src src, unsigned bit_size)
105 {
106 LLVMValueRef ptr = get_src(ctx, src);
107 ptr = LLVMBuildGEP(ctx->ac.builder, ctx->ac.lds, &ptr, 1, "");
108 int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
109
110 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, bit_size);
111
112 return LLVMBuildBitCast(ctx->ac.builder, ptr,
113 LLVMPointerType(type, addr_space), "");
114 }
115
116 static LLVMBasicBlockRef get_block(struct ac_nir_context *nir,
117 const struct nir_block *b)
118 {
119 struct hash_entry *entry = _mesa_hash_table_search(nir->defs, b);
120 return (LLVMBasicBlockRef)entry->data;
121 }
122
123 static LLVMValueRef get_alu_src(struct ac_nir_context *ctx,
124 nir_alu_src src,
125 unsigned num_components)
126 {
127 LLVMValueRef value = get_src(ctx, src.src);
128 bool need_swizzle = false;
129
130 assert(value);
131 unsigned src_components = ac_get_llvm_num_components(value);
132 for (unsigned i = 0; i < num_components; ++i) {
133 assert(src.swizzle[i] < src_components);
134 if (src.swizzle[i] != i)
135 need_swizzle = true;
136 }
137
138 if (need_swizzle || num_components != src_components) {
139 LLVMValueRef masks[] = {
140 LLVMConstInt(ctx->ac.i32, src.swizzle[0], false),
141 LLVMConstInt(ctx->ac.i32, src.swizzle[1], false),
142 LLVMConstInt(ctx->ac.i32, src.swizzle[2], false),
143 LLVMConstInt(ctx->ac.i32, src.swizzle[3], false)};
144
145 if (src_components > 1 && num_components == 1) {
146 value = LLVMBuildExtractElement(ctx->ac.builder, value,
147 masks[0], "");
148 } else if (src_components == 1 && num_components > 1) {
149 LLVMValueRef values[] = {value, value, value, value};
150 value = ac_build_gather_values(&ctx->ac, values, num_components);
151 } else {
152 LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
153 value = LLVMBuildShuffleVector(ctx->ac.builder, value, value,
154 swizzle, "");
155 }
156 }
157 assert(!src.negate);
158 assert(!src.abs);
159 return value;
160 }
161
162 static LLVMValueRef emit_int_cmp(struct ac_llvm_context *ctx,
163 LLVMIntPredicate pred, LLVMValueRef src0,
164 LLVMValueRef src1)
165 {
166 LLVMValueRef result = LLVMBuildICmp(ctx->builder, pred, src0, src1, "");
167 return LLVMBuildSelect(ctx->builder, result,
168 LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
169 ctx->i32_0, "");
170 }
171
172 static LLVMValueRef emit_float_cmp(struct ac_llvm_context *ctx,
173 LLVMRealPredicate pred, LLVMValueRef src0,
174 LLVMValueRef src1)
175 {
176 LLVMValueRef result;
177 src0 = ac_to_float(ctx, src0);
178 src1 = ac_to_float(ctx, src1);
179 result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, "");
180 return LLVMBuildSelect(ctx->builder, result,
181 LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
182 ctx->i32_0, "");
183 }
184
185 static LLVMValueRef emit_intrin_1f_param(struct ac_llvm_context *ctx,
186 const char *intrin,
187 LLVMTypeRef result_type,
188 LLVMValueRef src0)
189 {
190 char name[64];
191 LLVMValueRef params[] = {
192 ac_to_float(ctx, src0),
193 };
194
195 ASSERTED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
196 ac_get_elem_bits(ctx, result_type));
197 assert(length < sizeof(name));
198 return ac_build_intrinsic(ctx, name, result_type, params, 1, AC_FUNC_ATTR_READNONE);
199 }
200
201 static LLVMValueRef emit_intrin_2f_param(struct ac_llvm_context *ctx,
202 const char *intrin,
203 LLVMTypeRef result_type,
204 LLVMValueRef src0, LLVMValueRef src1)
205 {
206 char name[64];
207 LLVMValueRef params[] = {
208 ac_to_float(ctx, src0),
209 ac_to_float(ctx, src1),
210 };
211
212 ASSERTED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
213 ac_get_elem_bits(ctx, result_type));
214 assert(length < sizeof(name));
215 return ac_build_intrinsic(ctx, name, result_type, params, 2, AC_FUNC_ATTR_READNONE);
216 }
217
218 static LLVMValueRef emit_intrin_3f_param(struct ac_llvm_context *ctx,
219 const char *intrin,
220 LLVMTypeRef result_type,
221 LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
222 {
223 char name[64];
224 LLVMValueRef params[] = {
225 ac_to_float(ctx, src0),
226 ac_to_float(ctx, src1),
227 ac_to_float(ctx, src2),
228 };
229
230 ASSERTED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
231 ac_get_elem_bits(ctx, result_type));
232 assert(length < sizeof(name));
233 return ac_build_intrinsic(ctx, name, result_type, params, 3, AC_FUNC_ATTR_READNONE);
234 }
235
236 static LLVMValueRef emit_bcsel(struct ac_llvm_context *ctx,
237 LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
238 {
239 LLVMTypeRef src1_type = LLVMTypeOf(src1);
240 LLVMTypeRef src2_type = LLVMTypeOf(src2);
241
242 assert(LLVMGetTypeKind(LLVMTypeOf(src0)) != LLVMVectorTypeKind);
243
244 if (LLVMGetTypeKind(src1_type) == LLVMPointerTypeKind &&
245 LLVMGetTypeKind(src2_type) != LLVMPointerTypeKind) {
246 src2 = LLVMBuildIntToPtr(ctx->builder, src2, src1_type, "");
247 } else if (LLVMGetTypeKind(src2_type) == LLVMPointerTypeKind &&
248 LLVMGetTypeKind(src1_type) != LLVMPointerTypeKind) {
249 src1 = LLVMBuildIntToPtr(ctx->builder, src1, src2_type, "");
250 }
251
252 LLVMValueRef v = LLVMBuildICmp(ctx->builder, LLVMIntNE, src0,
253 ctx->i32_0, "");
254 return LLVMBuildSelect(ctx->builder, v,
255 ac_to_integer_or_pointer(ctx, src1),
256 ac_to_integer_or_pointer(ctx, src2), "");
257 }
258
259 static LLVMValueRef emit_iabs(struct ac_llvm_context *ctx,
260 LLVMValueRef src0)
261 {
262 return ac_build_imax(ctx, src0, LLVMBuildNeg(ctx->builder, src0, ""));
263 }
264
265 static LLVMValueRef emit_uint_carry(struct ac_llvm_context *ctx,
266 const char *intrin,
267 LLVMValueRef src0, LLVMValueRef src1)
268 {
269 LLVMTypeRef ret_type;
270 LLVMTypeRef types[] = { ctx->i32, ctx->i1 };
271 LLVMValueRef res;
272 LLVMValueRef params[] = { src0, src1 };
273 ret_type = LLVMStructTypeInContext(ctx->context, types,
274 2, true);
275
276 res = ac_build_intrinsic(ctx, intrin, ret_type,
277 params, 2, AC_FUNC_ATTR_READNONE);
278
279 res = LLVMBuildExtractValue(ctx->builder, res, 1, "");
280 res = LLVMBuildZExt(ctx->builder, res, ctx->i32, "");
281 return res;
282 }
283
284 static LLVMValueRef emit_b2f(struct ac_llvm_context *ctx,
285 LLVMValueRef src0,
286 unsigned bitsize)
287 {
288 LLVMValueRef result = LLVMBuildAnd(ctx->builder, src0,
289 LLVMBuildBitCast(ctx->builder, LLVMConstReal(ctx->f32, 1.0), ctx->i32, ""),
290 "");
291 result = LLVMBuildBitCast(ctx->builder, result, ctx->f32, "");
292
293 switch (bitsize) {
294 case 16:
295 return LLVMBuildFPTrunc(ctx->builder, result, ctx->f16, "");
296 case 32:
297 return result;
298 case 64:
299 return LLVMBuildFPExt(ctx->builder, result, ctx->f64, "");
300 default:
301 unreachable("Unsupported bit size.");
302 }
303 }
304
305 static LLVMValueRef emit_f2b(struct ac_llvm_context *ctx,
306 LLVMValueRef src0)
307 {
308 src0 = ac_to_float(ctx, src0);
309 LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(src0));
310 return LLVMBuildSExt(ctx->builder,
311 LLVMBuildFCmp(ctx->builder, LLVMRealUNE, src0, zero, ""),
312 ctx->i32, "");
313 }
314
315 static LLVMValueRef emit_b2i(struct ac_llvm_context *ctx,
316 LLVMValueRef src0,
317 unsigned bitsize)
318 {
319 LLVMValueRef result = LLVMBuildAnd(ctx->builder, src0, ctx->i32_1, "");
320
321 switch (bitsize) {
322 case 8:
323 return LLVMBuildTrunc(ctx->builder, result, ctx->i8, "");
324 case 16:
325 return LLVMBuildTrunc(ctx->builder, result, ctx->i16, "");
326 case 32:
327 return result;
328 case 64:
329 return LLVMBuildZExt(ctx->builder, result, ctx->i64, "");
330 default:
331 unreachable("Unsupported bit size.");
332 }
333 }
334
335 static LLVMValueRef emit_i2b(struct ac_llvm_context *ctx,
336 LLVMValueRef src0)
337 {
338 LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(src0));
339 return LLVMBuildSExt(ctx->builder,
340 LLVMBuildICmp(ctx->builder, LLVMIntNE, src0, zero, ""),
341 ctx->i32, "");
342 }
343
344 static LLVMValueRef emit_f2f16(struct ac_llvm_context *ctx,
345 LLVMValueRef src0)
346 {
347 LLVMValueRef result;
348 LLVMValueRef cond = NULL;
349
350 src0 = ac_to_float(ctx, src0);
351 result = LLVMBuildFPTrunc(ctx->builder, src0, ctx->f16, "");
352
353 if (ctx->chip_class >= GFX8) {
354 LLVMValueRef args[2];
355 /* Check if the result is a denormal - and flush to 0 if so. */
356 args[0] = result;
357 args[1] = LLVMConstInt(ctx->i32, N_SUBNORMAL | P_SUBNORMAL, false);
358 cond = ac_build_intrinsic(ctx, "llvm.amdgcn.class.f16", ctx->i1, args, 2, AC_FUNC_ATTR_READNONE);
359 }
360
361 /* need to convert back up to f32 */
362 result = LLVMBuildFPExt(ctx->builder, result, ctx->f32, "");
363
364 if (ctx->chip_class >= GFX8)
365 result = LLVMBuildSelect(ctx->builder, cond, ctx->f32_0, result, "");
366 else {
367 /* for GFX6-GFX7 */
368 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
369 * so compare the result and flush to 0 if it's smaller.
370 */
371 LLVMValueRef temp, cond2;
372 temp = emit_intrin_1f_param(ctx, "llvm.fabs", ctx->f32, result);
373 cond = LLVMBuildFCmp(ctx->builder, LLVMRealOGT,
374 LLVMBuildBitCast(ctx->builder, LLVMConstInt(ctx->i32, 0x38800000, false), ctx->f32, ""),
375 temp, "");
376 cond2 = LLVMBuildFCmp(ctx->builder, LLVMRealONE,
377 temp, ctx->f32_0, "");
378 cond = LLVMBuildAnd(ctx->builder, cond, cond2, "");
379 result = LLVMBuildSelect(ctx->builder, cond, ctx->f32_0, result, "");
380 }
381 return result;
382 }
383
384 static LLVMValueRef emit_umul_high(struct ac_llvm_context *ctx,
385 LLVMValueRef src0, LLVMValueRef src1)
386 {
387 LLVMValueRef dst64, result;
388 src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, "");
389 src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, "");
390
391 dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
392 dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
393 result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
394 return result;
395 }
396
397 static LLVMValueRef emit_imul_high(struct ac_llvm_context *ctx,
398 LLVMValueRef src0, LLVMValueRef src1)
399 {
400 LLVMValueRef dst64, result;
401 src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, "");
402 src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, "");
403
404 dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
405 dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
406 result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
407 return result;
408 }
409
410 static LLVMValueRef emit_bfm(struct ac_llvm_context *ctx,
411 LLVMValueRef bits, LLVMValueRef offset)
412 {
413 /* mask = ((1 << bits) - 1) << offset */
414 return LLVMBuildShl(ctx->builder,
415 LLVMBuildSub(ctx->builder,
416 LLVMBuildShl(ctx->builder,
417 ctx->i32_1,
418 bits, ""),
419 ctx->i32_1, ""),
420 offset, "");
421 }
422
423 static LLVMValueRef emit_bitfield_select(struct ac_llvm_context *ctx,
424 LLVMValueRef mask, LLVMValueRef insert,
425 LLVMValueRef base)
426 {
427 /* Calculate:
428 * (mask & insert) | (~mask & base) = base ^ (mask & (insert ^ base))
429 * Use the right-hand side, which the LLVM backend can convert to V_BFI.
430 */
431 return LLVMBuildXor(ctx->builder, base,
432 LLVMBuildAnd(ctx->builder, mask,
433 LLVMBuildXor(ctx->builder, insert, base, ""), ""), "");
434 }
435
436 static LLVMValueRef emit_pack_2x16(struct ac_llvm_context *ctx,
437 LLVMValueRef src0,
438 LLVMValueRef (*pack)(struct ac_llvm_context *ctx,
439 LLVMValueRef args[2]))
440 {
441 LLVMValueRef comp[2];
442
443 src0 = ac_to_float(ctx, src0);
444 comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_0, "");
445 comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_1, "");
446
447 return LLVMBuildBitCast(ctx->builder, pack(ctx, comp), ctx->i32, "");
448 }
449
450 static LLVMValueRef emit_unpack_half_2x16(struct ac_llvm_context *ctx,
451 LLVMValueRef src0)
452 {
453 LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
454 LLVMValueRef temps[2], val;
455 int i;
456
457 for (i = 0; i < 2; i++) {
458 val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0;
459 val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, "");
460 val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, "");
461 temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, "");
462 }
463 return ac_build_gather_values(ctx, temps, 2);
464 }
465
466 static LLVMValueRef emit_ddxy(struct ac_nir_context *ctx,
467 nir_op op,
468 LLVMValueRef src0)
469 {
470 unsigned mask;
471 int idx;
472 LLVMValueRef result;
473
474 if (op == nir_op_fddx_fine)
475 mask = AC_TID_MASK_LEFT;
476 else if (op == nir_op_fddy_fine)
477 mask = AC_TID_MASK_TOP;
478 else
479 mask = AC_TID_MASK_TOP_LEFT;
480
481 /* for DDX we want to next X pixel, DDY next Y pixel. */
482 if (op == nir_op_fddx_fine ||
483 op == nir_op_fddx_coarse ||
484 op == nir_op_fddx)
485 idx = 1;
486 else
487 idx = 2;
488
489 result = ac_build_ddxy(&ctx->ac, mask, idx, src0);
490 return result;
491 }
492
493 static void visit_alu(struct ac_nir_context *ctx, const nir_alu_instr *instr)
494 {
495 LLVMValueRef src[4], result = NULL;
496 unsigned num_components = instr->dest.dest.ssa.num_components;
497 unsigned src_components;
498 LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.dest.ssa);
499
500 assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src));
501 switch (instr->op) {
502 case nir_op_vec2:
503 case nir_op_vec3:
504 case nir_op_vec4:
505 src_components = 1;
506 break;
507 case nir_op_pack_half_2x16:
508 case nir_op_pack_snorm_2x16:
509 case nir_op_pack_unorm_2x16:
510 src_components = 2;
511 break;
512 case nir_op_unpack_half_2x16:
513 src_components = 1;
514 break;
515 case nir_op_cube_face_coord:
516 case nir_op_cube_face_index:
517 src_components = 3;
518 break;
519 default:
520 src_components = num_components;
521 break;
522 }
523 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
524 src[i] = get_alu_src(ctx, instr->src[i], src_components);
525
526 switch (instr->op) {
527 case nir_op_mov:
528 result = src[0];
529 break;
530 case nir_op_fneg:
531 src[0] = ac_to_float(&ctx->ac, src[0]);
532 result = LLVMBuildFNeg(ctx->ac.builder, src[0], "");
533 if (ctx->ac.float_mode == AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO) {
534 /* fneg will be optimized by backend compiler with sign
535 * bit removed via XOR. This is probably a LLVM bug.
536 */
537 result = ac_build_canonicalize(&ctx->ac, result,
538 instr->dest.dest.ssa.bit_size);
539 }
540 break;
541 case nir_op_ineg:
542 result = LLVMBuildNeg(ctx->ac.builder, src[0], "");
543 break;
544 case nir_op_inot:
545 result = LLVMBuildNot(ctx->ac.builder, src[0], "");
546 break;
547 case nir_op_iadd:
548 result = LLVMBuildAdd(ctx->ac.builder, src[0], src[1], "");
549 break;
550 case nir_op_fadd:
551 src[0] = ac_to_float(&ctx->ac, src[0]);
552 src[1] = ac_to_float(&ctx->ac, src[1]);
553 result = LLVMBuildFAdd(ctx->ac.builder, src[0], src[1], "");
554 break;
555 case nir_op_fsub:
556 src[0] = ac_to_float(&ctx->ac, src[0]);
557 src[1] = ac_to_float(&ctx->ac, src[1]);
558 result = LLVMBuildFSub(ctx->ac.builder, src[0], src[1], "");
559 break;
560 case nir_op_isub:
561 result = LLVMBuildSub(ctx->ac.builder, src[0], src[1], "");
562 break;
563 case nir_op_imul:
564 result = LLVMBuildMul(ctx->ac.builder, src[0], src[1], "");
565 break;
566 case nir_op_imod:
567 result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
568 break;
569 case nir_op_umod:
570 result = LLVMBuildURem(ctx->ac.builder, src[0], src[1], "");
571 break;
572 case nir_op_fmod:
573 /* lower_fmod only lower 16-bit and 32-bit fmod */
574 assert(instr->dest.dest.ssa.bit_size == 64);
575 src[0] = ac_to_float(&ctx->ac, src[0]);
576 src[1] = ac_to_float(&ctx->ac, src[1]);
577 result = ac_build_fdiv(&ctx->ac, src[0], src[1]);
578 result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
579 ac_to_float_type(&ctx->ac, def_type), result);
580 result = LLVMBuildFMul(ctx->ac.builder, src[1] , result, "");
581 result = LLVMBuildFSub(ctx->ac.builder, src[0], result, "");
582 break;
583 case nir_op_irem:
584 result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
585 break;
586 case nir_op_idiv:
587 result = LLVMBuildSDiv(ctx->ac.builder, src[0], src[1], "");
588 break;
589 case nir_op_udiv:
590 result = LLVMBuildUDiv(ctx->ac.builder, src[0], src[1], "");
591 break;
592 case nir_op_fmul:
593 src[0] = ac_to_float(&ctx->ac, src[0]);
594 src[1] = ac_to_float(&ctx->ac, src[1]);
595 result = LLVMBuildFMul(ctx->ac.builder, src[0], src[1], "");
596 break;
597 case nir_op_frcp:
598 src[0] = ac_to_float(&ctx->ac, src[0]);
599 result = ac_build_fdiv(&ctx->ac, LLVMConstReal(LLVMTypeOf(src[0]), 1.0), src[0]);
600 break;
601 case nir_op_iand:
602 result = LLVMBuildAnd(ctx->ac.builder, src[0], src[1], "");
603 break;
604 case nir_op_ior:
605 result = LLVMBuildOr(ctx->ac.builder, src[0], src[1], "");
606 break;
607 case nir_op_ixor:
608 result = LLVMBuildXor(ctx->ac.builder, src[0], src[1], "");
609 break;
610 case nir_op_ishl:
611 if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) < ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
612 src[1] = LLVMBuildZExt(ctx->ac.builder, src[1],
613 LLVMTypeOf(src[0]), "");
614 else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) > ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
615 src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1],
616 LLVMTypeOf(src[0]), "");
617 result = LLVMBuildShl(ctx->ac.builder, src[0], src[1], "");
618 break;
619 case nir_op_ishr:
620 if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) < ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
621 src[1] = LLVMBuildZExt(ctx->ac.builder, src[1],
622 LLVMTypeOf(src[0]), "");
623 else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) > ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
624 src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1],
625 LLVMTypeOf(src[0]), "");
626 result = LLVMBuildAShr(ctx->ac.builder, src[0], src[1], "");
627 break;
628 case nir_op_ushr:
629 if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) < ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
630 src[1] = LLVMBuildZExt(ctx->ac.builder, src[1],
631 LLVMTypeOf(src[0]), "");
632 else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) > ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
633 src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1],
634 LLVMTypeOf(src[0]), "");
635 result = LLVMBuildLShr(ctx->ac.builder, src[0], src[1], "");
636 break;
637 case nir_op_ilt32:
638 result = emit_int_cmp(&ctx->ac, LLVMIntSLT, src[0], src[1]);
639 break;
640 case nir_op_ine32:
641 result = emit_int_cmp(&ctx->ac, LLVMIntNE, src[0], src[1]);
642 break;
643 case nir_op_ieq32:
644 result = emit_int_cmp(&ctx->ac, LLVMIntEQ, src[0], src[1]);
645 break;
646 case nir_op_ige32:
647 result = emit_int_cmp(&ctx->ac, LLVMIntSGE, src[0], src[1]);
648 break;
649 case nir_op_ult32:
650 result = emit_int_cmp(&ctx->ac, LLVMIntULT, src[0], src[1]);
651 break;
652 case nir_op_uge32:
653 result = emit_int_cmp(&ctx->ac, LLVMIntUGE, src[0], src[1]);
654 break;
655 case nir_op_feq32:
656 result = emit_float_cmp(&ctx->ac, LLVMRealOEQ, src[0], src[1]);
657 break;
658 case nir_op_fne32:
659 result = emit_float_cmp(&ctx->ac, LLVMRealUNE, src[0], src[1]);
660 break;
661 case nir_op_flt32:
662 result = emit_float_cmp(&ctx->ac, LLVMRealOLT, src[0], src[1]);
663 break;
664 case nir_op_fge32:
665 result = emit_float_cmp(&ctx->ac, LLVMRealOGE, src[0], src[1]);
666 break;
667 case nir_op_fabs:
668 result = emit_intrin_1f_param(&ctx->ac, "llvm.fabs",
669 ac_to_float_type(&ctx->ac, def_type), src[0]);
670 if (ctx->ac.float_mode == AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO) {
671 /* fabs will be optimized by backend compiler with sign
672 * bit removed via AND.
673 */
674 result = ac_build_canonicalize(&ctx->ac, result,
675 instr->dest.dest.ssa.bit_size);
676 }
677 break;
678 case nir_op_iabs:
679 result = emit_iabs(&ctx->ac, src[0]);
680 break;
681 case nir_op_imax:
682 result = ac_build_imax(&ctx->ac, src[0], src[1]);
683 break;
684 case nir_op_imin:
685 result = ac_build_imin(&ctx->ac, src[0], src[1]);
686 break;
687 case nir_op_umax:
688 result = ac_build_umax(&ctx->ac, src[0], src[1]);
689 break;
690 case nir_op_umin:
691 result = ac_build_umin(&ctx->ac, src[0], src[1]);
692 break;
693 case nir_op_isign:
694 result = ac_build_isign(&ctx->ac, src[0],
695 instr->dest.dest.ssa.bit_size);
696 break;
697 case nir_op_fsign:
698 src[0] = ac_to_float(&ctx->ac, src[0]);
699 result = ac_build_fsign(&ctx->ac, src[0],
700 instr->dest.dest.ssa.bit_size);
701 break;
702 case nir_op_ffloor:
703 result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
704 ac_to_float_type(&ctx->ac, def_type), src[0]);
705 break;
706 case nir_op_ftrunc:
707 result = emit_intrin_1f_param(&ctx->ac, "llvm.trunc",
708 ac_to_float_type(&ctx->ac, def_type), src[0]);
709 break;
710 case nir_op_fceil:
711 result = emit_intrin_1f_param(&ctx->ac, "llvm.ceil",
712 ac_to_float_type(&ctx->ac, def_type), src[0]);
713 break;
714 case nir_op_fround_even:
715 result = emit_intrin_1f_param(&ctx->ac, "llvm.rint",
716 ac_to_float_type(&ctx->ac, def_type),src[0]);
717 break;
718 case nir_op_ffract:
719 src[0] = ac_to_float(&ctx->ac, src[0]);
720 result = ac_build_fract(&ctx->ac, src[0],
721 instr->dest.dest.ssa.bit_size);
722 break;
723 case nir_op_fsin:
724 result = emit_intrin_1f_param(&ctx->ac, "llvm.sin",
725 ac_to_float_type(&ctx->ac, def_type), src[0]);
726 break;
727 case nir_op_fcos:
728 result = emit_intrin_1f_param(&ctx->ac, "llvm.cos",
729 ac_to_float_type(&ctx->ac, def_type), src[0]);
730 break;
731 case nir_op_fsqrt:
732 result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt",
733 ac_to_float_type(&ctx->ac, def_type), src[0]);
734 break;
735 case nir_op_fexp2:
736 result = emit_intrin_1f_param(&ctx->ac, "llvm.exp2",
737 ac_to_float_type(&ctx->ac, def_type), src[0]);
738 break;
739 case nir_op_flog2:
740 result = emit_intrin_1f_param(&ctx->ac, "llvm.log2",
741 ac_to_float_type(&ctx->ac, def_type), src[0]);
742 break;
743 case nir_op_frsq:
744 result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt",
745 ac_to_float_type(&ctx->ac, def_type), src[0]);
746 result = ac_build_fdiv(&ctx->ac, LLVMConstReal(LLVMTypeOf(result), 1.0), result);
747 break;
748 case nir_op_frexp_exp:
749 src[0] = ac_to_float(&ctx->ac, src[0]);
750 result = ac_build_frexp_exp(&ctx->ac, src[0],
751 ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])));
752 if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) == 16)
753 result = LLVMBuildSExt(ctx->ac.builder, result,
754 ctx->ac.i32, "");
755 break;
756 case nir_op_frexp_sig:
757 src[0] = ac_to_float(&ctx->ac, src[0]);
758 result = ac_build_frexp_mant(&ctx->ac, src[0],
759 instr->dest.dest.ssa.bit_size);
760 break;
761 case nir_op_fpow:
762 result = emit_intrin_2f_param(&ctx->ac, "llvm.pow",
763 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
764 break;
765 case nir_op_fmax:
766 result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum",
767 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
768 if (ctx->ac.chip_class < GFX9 &&
769 instr->dest.dest.ssa.bit_size == 32) {
770 /* Only pre-GFX9 chips do not flush denorms. */
771 result = ac_build_canonicalize(&ctx->ac, result,
772 instr->dest.dest.ssa.bit_size);
773 }
774 break;
775 case nir_op_fmin:
776 result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum",
777 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
778 if (ctx->ac.chip_class < GFX9 &&
779 instr->dest.dest.ssa.bit_size == 32) {
780 /* Only pre-GFX9 chips do not flush denorms. */
781 result = ac_build_canonicalize(&ctx->ac, result,
782 instr->dest.dest.ssa.bit_size);
783 }
784 break;
785 case nir_op_ffma:
786 /* FMA is better on GFX10, because it has FMA units instead of MUL-ADD units. */
787 result = emit_intrin_3f_param(&ctx->ac, ctx->ac.chip_class >= GFX10 ? "llvm.fma" : "llvm.fmuladd",
788 ac_to_float_type(&ctx->ac, def_type), src[0], src[1], src[2]);
789 break;
790 case nir_op_ldexp:
791 src[0] = ac_to_float(&ctx->ac, src[0]);
792 if (ac_get_elem_bits(&ctx->ac, def_type) == 32)
793 result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f32", ctx->ac.f32, src, 2, AC_FUNC_ATTR_READNONE);
794 else if (ac_get_elem_bits(&ctx->ac, def_type) == 16)
795 result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f16", ctx->ac.f16, src, 2, AC_FUNC_ATTR_READNONE);
796 else
797 result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f64", ctx->ac.f64, src, 2, AC_FUNC_ATTR_READNONE);
798 break;
799 case nir_op_bfm:
800 result = emit_bfm(&ctx->ac, src[0], src[1]);
801 break;
802 case nir_op_bitfield_select:
803 result = emit_bitfield_select(&ctx->ac, src[0], src[1], src[2]);
804 break;
805 case nir_op_ubfe:
806 result = ac_build_bfe(&ctx->ac, src[0], src[1], src[2], false);
807 break;
808 case nir_op_ibfe:
809 result = ac_build_bfe(&ctx->ac, src[0], src[1], src[2], true);
810 break;
811 case nir_op_bitfield_reverse:
812 result = ac_build_bitfield_reverse(&ctx->ac, src[0]);
813 break;
814 case nir_op_bit_count:
815 result = ac_build_bit_count(&ctx->ac, src[0]);
816 break;
817 case nir_op_vec2:
818 case nir_op_vec3:
819 case nir_op_vec4:
820 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
821 src[i] = ac_to_integer(&ctx->ac, src[i]);
822 result = ac_build_gather_values(&ctx->ac, src, num_components);
823 break;
824 case nir_op_f2i8:
825 case nir_op_f2i16:
826 case nir_op_f2i32:
827 case nir_op_f2i64:
828 src[0] = ac_to_float(&ctx->ac, src[0]);
829 result = LLVMBuildFPToSI(ctx->ac.builder, src[0], def_type, "");
830 break;
831 case nir_op_f2u8:
832 case nir_op_f2u16:
833 case nir_op_f2u32:
834 case nir_op_f2u64:
835 src[0] = ac_to_float(&ctx->ac, src[0]);
836 result = LLVMBuildFPToUI(ctx->ac.builder, src[0], def_type, "");
837 break;
838 case nir_op_i2f16:
839 case nir_op_i2f32:
840 case nir_op_i2f64:
841 result = LLVMBuildSIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
842 break;
843 case nir_op_u2f16:
844 case nir_op_u2f32:
845 case nir_op_u2f64:
846 result = LLVMBuildUIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
847 break;
848 case nir_op_f2f16_rtz:
849 src[0] = ac_to_float(&ctx->ac, src[0]);
850 if (LLVMTypeOf(src[0]) == ctx->ac.f64)
851 src[0] = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ctx->ac.f32, "");
852 LLVMValueRef param[2] = { src[0], ctx->ac.f32_0 };
853 result = ac_build_cvt_pkrtz_f16(&ctx->ac, param);
854 result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
855 break;
856 case nir_op_f2f16_rtne:
857 case nir_op_f2f16:
858 case nir_op_f2f32:
859 case nir_op_f2f64:
860 src[0] = ac_to_float(&ctx->ac, src[0]);
861 if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
862 result = LLVMBuildFPExt(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
863 else
864 result = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
865 break;
866 case nir_op_u2u8:
867 case nir_op_u2u16:
868 case nir_op_u2u32:
869 case nir_op_u2u64:
870 if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
871 result = LLVMBuildZExt(ctx->ac.builder, src[0], def_type, "");
872 else
873 result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
874 break;
875 case nir_op_i2i8:
876 case nir_op_i2i16:
877 case nir_op_i2i32:
878 case nir_op_i2i64:
879 if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
880 result = LLVMBuildSExt(ctx->ac.builder, src[0], def_type, "");
881 else
882 result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
883 break;
884 case nir_op_b32csel:
885 result = emit_bcsel(&ctx->ac, src[0], src[1], src[2]);
886 break;
887 case nir_op_find_lsb:
888 result = ac_find_lsb(&ctx->ac, ctx->ac.i32, src[0]);
889 break;
890 case nir_op_ufind_msb:
891 result = ac_build_umsb(&ctx->ac, src[0], ctx->ac.i32);
892 break;
893 case nir_op_ifind_msb:
894 result = ac_build_imsb(&ctx->ac, src[0], ctx->ac.i32);
895 break;
896 case nir_op_uadd_carry:
897 result = emit_uint_carry(&ctx->ac, "llvm.uadd.with.overflow.i32", src[0], src[1]);
898 break;
899 case nir_op_usub_borrow:
900 result = emit_uint_carry(&ctx->ac, "llvm.usub.with.overflow.i32", src[0], src[1]);
901 break;
902 case nir_op_b2f16:
903 case nir_op_b2f32:
904 case nir_op_b2f64:
905 result = emit_b2f(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
906 break;
907 case nir_op_f2b32:
908 result = emit_f2b(&ctx->ac, src[0]);
909 break;
910 case nir_op_b2i8:
911 case nir_op_b2i16:
912 case nir_op_b2i32:
913 case nir_op_b2i64:
914 result = emit_b2i(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
915 break;
916 case nir_op_i2b32:
917 result = emit_i2b(&ctx->ac, src[0]);
918 break;
919 case nir_op_fquantize2f16:
920 result = emit_f2f16(&ctx->ac, src[0]);
921 break;
922 case nir_op_umul_high:
923 result = emit_umul_high(&ctx->ac, src[0], src[1]);
924 break;
925 case nir_op_imul_high:
926 result = emit_imul_high(&ctx->ac, src[0], src[1]);
927 break;
928 case nir_op_pack_half_2x16:
929 result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pkrtz_f16);
930 break;
931 case nir_op_pack_snorm_2x16:
932 result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pknorm_i16);
933 break;
934 case nir_op_pack_unorm_2x16:
935 result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pknorm_u16);
936 break;
937 case nir_op_unpack_half_2x16:
938 result = emit_unpack_half_2x16(&ctx->ac, src[0]);
939 break;
940 case nir_op_fddx:
941 case nir_op_fddy:
942 case nir_op_fddx_fine:
943 case nir_op_fddy_fine:
944 case nir_op_fddx_coarse:
945 case nir_op_fddy_coarse:
946 result = emit_ddxy(ctx, instr->op, src[0]);
947 break;
948
949 case nir_op_unpack_64_2x32_split_x: {
950 assert(ac_get_llvm_num_components(src[0]) == 1);
951 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
952 ctx->ac.v2i32,
953 "");
954 result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
955 ctx->ac.i32_0, "");
956 break;
957 }
958
959 case nir_op_unpack_64_2x32_split_y: {
960 assert(ac_get_llvm_num_components(src[0]) == 1);
961 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
962 ctx->ac.v2i32,
963 "");
964 result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
965 ctx->ac.i32_1, "");
966 break;
967 }
968
969 case nir_op_pack_64_2x32_split: {
970 LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, src, 2);
971 result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i64, "");
972 break;
973 }
974
975 case nir_op_pack_32_2x16_split: {
976 LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, src, 2);
977 result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i32, "");
978 break;
979 }
980
981 case nir_op_unpack_32_2x16_split_x: {
982 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
983 ctx->ac.v2i16,
984 "");
985 result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
986 ctx->ac.i32_0, "");
987 break;
988 }
989
990 case nir_op_unpack_32_2x16_split_y: {
991 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
992 ctx->ac.v2i16,
993 "");
994 result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
995 ctx->ac.i32_1, "");
996 break;
997 }
998
999 case nir_op_cube_face_coord: {
1000 src[0] = ac_to_float(&ctx->ac, src[0]);
1001 LLVMValueRef results[2];
1002 LLVMValueRef in[3];
1003 for (unsigned chan = 0; chan < 3; chan++)
1004 in[chan] = ac_llvm_extract_elem(&ctx->ac, src[0], chan);
1005 results[0] = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubesc",
1006 ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE);
1007 results[1] = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubetc",
1008 ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE);
1009 LLVMValueRef ma = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubema",
1010 ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE);
1011 results[0] = ac_build_fdiv(&ctx->ac, results[0], ma);
1012 results[1] = ac_build_fdiv(&ctx->ac, results[1], ma);
1013 LLVMValueRef offset = LLVMConstReal(ctx->ac.f32, 0.5);
1014 results[0] = LLVMBuildFAdd(ctx->ac.builder, results[0], offset, "");
1015 results[1] = LLVMBuildFAdd(ctx->ac.builder, results[1], offset, "");
1016 result = ac_build_gather_values(&ctx->ac, results, 2);
1017 break;
1018 }
1019
1020 case nir_op_cube_face_index: {
1021 src[0] = ac_to_float(&ctx->ac, src[0]);
1022 LLVMValueRef in[3];
1023 for (unsigned chan = 0; chan < 3; chan++)
1024 in[chan] = ac_llvm_extract_elem(&ctx->ac, src[0], chan);
1025 result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubeid",
1026 ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE);
1027 break;
1028 }
1029
1030 case nir_op_fmin3:
1031 result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum",
1032 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
1033 result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum",
1034 ac_to_float_type(&ctx->ac, def_type), result, src[2]);
1035 break;
1036 case nir_op_umin3:
1037 result = ac_build_umin(&ctx->ac, src[0], src[1]);
1038 result = ac_build_umin(&ctx->ac, result, src[2]);
1039 break;
1040 case nir_op_imin3:
1041 result = ac_build_imin(&ctx->ac, src[0], src[1]);
1042 result = ac_build_imin(&ctx->ac, result, src[2]);
1043 break;
1044 case nir_op_fmax3:
1045 result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum",
1046 ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
1047 result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum",
1048 ac_to_float_type(&ctx->ac, def_type), result, src[2]);
1049 break;
1050 case nir_op_umax3:
1051 result = ac_build_umax(&ctx->ac, src[0], src[1]);
1052 result = ac_build_umax(&ctx->ac, result, src[2]);
1053 break;
1054 case nir_op_imax3:
1055 result = ac_build_imax(&ctx->ac, src[0], src[1]);
1056 result = ac_build_imax(&ctx->ac, result, src[2]);
1057 break;
1058 case nir_op_fmed3: {
1059 src[0] = ac_to_float(&ctx->ac, src[0]);
1060 src[1] = ac_to_float(&ctx->ac, src[1]);
1061 src[2] = ac_to_float(&ctx->ac, src[2]);
1062 result = ac_build_fmed3(&ctx->ac, src[0], src[1], src[2],
1063 instr->dest.dest.ssa.bit_size);
1064 break;
1065 }
1066 case nir_op_imed3: {
1067 LLVMValueRef tmp1 = ac_build_imin(&ctx->ac, src[0], src[1]);
1068 LLVMValueRef tmp2 = ac_build_imax(&ctx->ac, src[0], src[1]);
1069 tmp2 = ac_build_imin(&ctx->ac, tmp2, src[2]);
1070 result = ac_build_imax(&ctx->ac, tmp1, tmp2);
1071 break;
1072 }
1073 case nir_op_umed3: {
1074 LLVMValueRef tmp1 = ac_build_umin(&ctx->ac, src[0], src[1]);
1075 LLVMValueRef tmp2 = ac_build_umax(&ctx->ac, src[0], src[1]);
1076 tmp2 = ac_build_umin(&ctx->ac, tmp2, src[2]);
1077 result = ac_build_umax(&ctx->ac, tmp1, tmp2);
1078 break;
1079 }
1080
1081 default:
1082 fprintf(stderr, "Unknown NIR alu instr: ");
1083 nir_print_instr(&instr->instr, stderr);
1084 fprintf(stderr, "\n");
1085 abort();
1086 }
1087
1088 if (result) {
1089 assert(instr->dest.dest.is_ssa);
1090 result = ac_to_integer_or_pointer(&ctx->ac, result);
1091 ctx->ssa_defs[instr->dest.dest.ssa.index] = result;
1092 }
1093 }
1094
1095 static void visit_load_const(struct ac_nir_context *ctx,
1096 const nir_load_const_instr *instr)
1097 {
1098 LLVMValueRef values[4], value = NULL;
1099 LLVMTypeRef element_type =
1100 LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
1101
1102 for (unsigned i = 0; i < instr->def.num_components; ++i) {
1103 switch (instr->def.bit_size) {
1104 case 8:
1105 values[i] = LLVMConstInt(element_type,
1106 instr->value[i].u8, false);
1107 break;
1108 case 16:
1109 values[i] = LLVMConstInt(element_type,
1110 instr->value[i].u16, false);
1111 break;
1112 case 32:
1113 values[i] = LLVMConstInt(element_type,
1114 instr->value[i].u32, false);
1115 break;
1116 case 64:
1117 values[i] = LLVMConstInt(element_type,
1118 instr->value[i].u64, false);
1119 break;
1120 default:
1121 fprintf(stderr,
1122 "unsupported nir load_const bit_size: %d\n",
1123 instr->def.bit_size);
1124 abort();
1125 }
1126 }
1127 if (instr->def.num_components > 1) {
1128 value = LLVMConstVector(values, instr->def.num_components);
1129 } else
1130 value = values[0];
1131
1132 ctx->ssa_defs[instr->def.index] = value;
1133 }
1134
1135 static LLVMValueRef
1136 get_buffer_size(struct ac_nir_context *ctx, LLVMValueRef descriptor, bool in_elements)
1137 {
1138 LLVMValueRef size =
1139 LLVMBuildExtractElement(ctx->ac.builder, descriptor,
1140 LLVMConstInt(ctx->ac.i32, 2, false), "");
1141
1142 /* GFX8 only */
1143 if (ctx->ac.chip_class == GFX8 && in_elements) {
1144 /* On GFX8, the descriptor contains the size in bytes,
1145 * but TXQ must return the size in elements.
1146 * The stride is always non-zero for resources using TXQ.
1147 */
1148 LLVMValueRef stride =
1149 LLVMBuildExtractElement(ctx->ac.builder, descriptor,
1150 ctx->ac.i32_1, "");
1151 stride = LLVMBuildLShr(ctx->ac.builder, stride,
1152 LLVMConstInt(ctx->ac.i32, 16, false), "");
1153 stride = LLVMBuildAnd(ctx->ac.builder, stride,
1154 LLVMConstInt(ctx->ac.i32, 0x3fff, false), "");
1155
1156 size = LLVMBuildUDiv(ctx->ac.builder, size, stride, "");
1157 }
1158 return size;
1159 }
1160
1161 /* Gather4 should follow the same rules as bilinear filtering, but the hardware
1162 * incorrectly forces nearest filtering if the texture format is integer.
1163 * The only effect it has on Gather4, which always returns 4 texels for
1164 * bilinear filtering, is that the final coordinates are off by 0.5 of
1165 * the texel size.
1166 *
1167 * The workaround is to subtract 0.5 from the unnormalized coordinates,
1168 * or (0.5 / size) from the normalized coordinates.
1169 *
1170 * However, cube textures with 8_8_8_8 data formats require a different
1171 * workaround of overriding the num format to USCALED/SSCALED. This would lose
1172 * precision in 32-bit data formats, so it needs to be applied dynamically at
1173 * runtime. In this case, return an i1 value that indicates whether the
1174 * descriptor was overridden (and hence a fixup of the sampler result is needed).
1175 */
1176 static LLVMValueRef lower_gather4_integer(struct ac_llvm_context *ctx,
1177 nir_variable *var,
1178 struct ac_image_args *args,
1179 const nir_tex_instr *instr)
1180 {
1181 const struct glsl_type *type = glsl_without_array(var->type);
1182 enum glsl_base_type stype = glsl_get_sampler_result_type(type);
1183 LLVMValueRef wa_8888 = NULL;
1184 LLVMValueRef half_texel[2];
1185 LLVMValueRef result;
1186
1187 assert(stype == GLSL_TYPE_INT || stype == GLSL_TYPE_UINT);
1188
1189 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1190 LLVMValueRef formats;
1191 LLVMValueRef data_format;
1192 LLVMValueRef wa_formats;
1193
1194 formats = LLVMBuildExtractElement(ctx->builder, args->resource, ctx->i32_1, "");
1195
1196 data_format = LLVMBuildLShr(ctx->builder, formats,
1197 LLVMConstInt(ctx->i32, 20, false), "");
1198 data_format = LLVMBuildAnd(ctx->builder, data_format,
1199 LLVMConstInt(ctx->i32, (1u << 6) - 1, false), "");
1200 wa_8888 = LLVMBuildICmp(
1201 ctx->builder, LLVMIntEQ, data_format,
1202 LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false),
1203 "");
1204
1205 uint32_t wa_num_format =
1206 stype == GLSL_TYPE_UINT ?
1207 S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_USCALED) :
1208 S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_SSCALED);
1209 wa_formats = LLVMBuildAnd(ctx->builder, formats,
1210 LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT, false),
1211 "");
1212 wa_formats = LLVMBuildOr(ctx->builder, wa_formats,
1213 LLVMConstInt(ctx->i32, wa_num_format, false), "");
1214
1215 formats = LLVMBuildSelect(ctx->builder, wa_8888, wa_formats, formats, "");
1216 args->resource = LLVMBuildInsertElement(
1217 ctx->builder, args->resource, formats, ctx->i32_1, "");
1218 }
1219
1220 if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
1221 assert(!wa_8888);
1222 half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
1223 } else {
1224 struct ac_image_args resinfo = {};
1225 LLVMBasicBlockRef bbs[2];
1226
1227 LLVMValueRef unnorm = NULL;
1228 LLVMValueRef default_offset = ctx->f32_0;
1229 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D &&
1230 !instr->is_array) {
1231 /* In vulkan, whether the sampler uses unnormalized
1232 * coordinates or not is a dynamic property of the
1233 * sampler. Hence, to figure out whether or not we
1234 * need to divide by the texture size, we need to test
1235 * the sampler at runtime. This tests the bit set by
1236 * radv_init_sampler().
1237 */
1238 LLVMValueRef sampler0 =
1239 LLVMBuildExtractElement(ctx->builder, args->sampler, ctx->i32_0, "");
1240 sampler0 = LLVMBuildLShr(ctx->builder, sampler0,
1241 LLVMConstInt(ctx->i32, 15, false), "");
1242 sampler0 = LLVMBuildAnd(ctx->builder, sampler0, ctx->i32_1, "");
1243 unnorm = LLVMBuildICmp(ctx->builder, LLVMIntEQ, sampler0, ctx->i32_1, "");
1244 default_offset = LLVMConstReal(ctx->f32, -0.5);
1245 }
1246
1247 bbs[0] = LLVMGetInsertBlock(ctx->builder);
1248 if (wa_8888 || unnorm) {
1249 assert(!(wa_8888 && unnorm));
1250 LLVMValueRef not_needed = wa_8888 ? wa_8888 : unnorm;
1251 /* Skip the texture size query entirely if we don't need it. */
1252 ac_build_ifcc(ctx, LLVMBuildNot(ctx->builder, not_needed, ""), 2000);
1253 bbs[1] = LLVMGetInsertBlock(ctx->builder);
1254 }
1255
1256 /* Query the texture size. */
1257 resinfo.dim = ac_get_sampler_dim(ctx->chip_class, instr->sampler_dim, instr->is_array);
1258 resinfo.opcode = ac_image_get_resinfo;
1259 resinfo.dmask = 0xf;
1260 resinfo.lod = ctx->i32_0;
1261 resinfo.resource = args->resource;
1262 resinfo.attributes = AC_FUNC_ATTR_READNONE;
1263 LLVMValueRef size = ac_build_image_opcode(ctx, &resinfo);
1264
1265 /* Compute -0.5 / size. */
1266 for (unsigned c = 0; c < 2; c++) {
1267 half_texel[c] =
1268 LLVMBuildExtractElement(ctx->builder, size,
1269 LLVMConstInt(ctx->i32, c, 0), "");
1270 half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, "");
1271 half_texel[c] = ac_build_fdiv(ctx, ctx->f32_1, half_texel[c]);
1272 half_texel[c] = LLVMBuildFMul(ctx->builder, half_texel[c],
1273 LLVMConstReal(ctx->f32, -0.5), "");
1274 }
1275
1276 if (wa_8888 || unnorm) {
1277 ac_build_endif(ctx, 2000);
1278
1279 for (unsigned c = 0; c < 2; c++) {
1280 LLVMValueRef values[2] = { default_offset, half_texel[c] };
1281 half_texel[c] = ac_build_phi(ctx, ctx->f32, 2,
1282 values, bbs);
1283 }
1284 }
1285 }
1286
1287 for (unsigned c = 0; c < 2; c++) {
1288 LLVMValueRef tmp;
1289 tmp = LLVMBuildBitCast(ctx->builder, args->coords[c], ctx->f32, "");
1290 args->coords[c] = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], "");
1291 }
1292
1293 args->attributes = AC_FUNC_ATTR_READNONE;
1294 result = ac_build_image_opcode(ctx, args);
1295
1296 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1297 LLVMValueRef tmp, tmp2;
1298
1299 /* if the cube workaround is in place, f2i the result. */
1300 for (unsigned c = 0; c < 4; c++) {
1301 tmp = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, c, false), "");
1302 if (stype == GLSL_TYPE_UINT)
1303 tmp2 = LLVMBuildFPToUI(ctx->builder, tmp, ctx->i32, "");
1304 else
1305 tmp2 = LLVMBuildFPToSI(ctx->builder, tmp, ctx->i32, "");
1306 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
1307 tmp2 = LLVMBuildBitCast(ctx->builder, tmp2, ctx->i32, "");
1308 tmp = LLVMBuildSelect(ctx->builder, wa_8888, tmp2, tmp, "");
1309 tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
1310 result = LLVMBuildInsertElement(ctx->builder, result, tmp, LLVMConstInt(ctx->i32, c, false), "");
1311 }
1312 }
1313 return result;
1314 }
1315
1316 static nir_deref_instr *get_tex_texture_deref(const nir_tex_instr *instr)
1317 {
1318 nir_deref_instr *texture_deref_instr = NULL;
1319
1320 for (unsigned i = 0; i < instr->num_srcs; i++) {
1321 switch (instr->src[i].src_type) {
1322 case nir_tex_src_texture_deref:
1323 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
1324 break;
1325 default:
1326 break;
1327 }
1328 }
1329 return texture_deref_instr;
1330 }
1331
1332 static LLVMValueRef build_tex_intrinsic(struct ac_nir_context *ctx,
1333 const nir_tex_instr *instr,
1334 struct ac_image_args *args)
1335 {
1336 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
1337 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
1338
1339 return ac_build_buffer_load_format(&ctx->ac,
1340 args->resource,
1341 args->coords[0],
1342 ctx->ac.i32_0,
1343 util_last_bit(mask),
1344 0, true);
1345 }
1346
1347 args->opcode = ac_image_sample;
1348
1349 switch (instr->op) {
1350 case nir_texop_txf:
1351 case nir_texop_txf_ms:
1352 case nir_texop_samples_identical:
1353 args->opcode = args->level_zero ||
1354 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ?
1355 ac_image_load : ac_image_load_mip;
1356 args->level_zero = false;
1357 break;
1358 case nir_texop_txs:
1359 case nir_texop_query_levels:
1360 args->opcode = ac_image_get_resinfo;
1361 if (!args->lod)
1362 args->lod = ctx->ac.i32_0;
1363 args->level_zero = false;
1364 break;
1365 case nir_texop_tex:
1366 if (ctx->stage != MESA_SHADER_FRAGMENT) {
1367 assert(!args->lod);
1368 args->level_zero = true;
1369 }
1370 break;
1371 case nir_texop_tg4:
1372 args->opcode = ac_image_gather4;
1373 args->level_zero = true;
1374 break;
1375 case nir_texop_lod:
1376 args->opcode = ac_image_get_lod;
1377 break;
1378 default:
1379 break;
1380 }
1381
1382 if (instr->op == nir_texop_tg4 && ctx->ac.chip_class <= GFX8) {
1383 nir_deref_instr *texture_deref_instr = get_tex_texture_deref(instr);
1384 nir_variable *var = nir_deref_instr_get_variable(texture_deref_instr);
1385 const struct glsl_type *type = glsl_without_array(var->type);
1386 enum glsl_base_type stype = glsl_get_sampler_result_type(type);
1387 if (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT) {
1388 return lower_gather4_integer(&ctx->ac, var, args, instr);
1389 }
1390 }
1391
1392 /* Fixup for GFX9 which allocates 1D textures as 2D. */
1393 if (instr->op == nir_texop_lod && ctx->ac.chip_class == GFX9) {
1394 if ((args->dim == ac_image_2darray ||
1395 args->dim == ac_image_2d) && !args->coords[1]) {
1396 args->coords[1] = ctx->ac.i32_0;
1397 }
1398 }
1399
1400 args->attributes = AC_FUNC_ATTR_READNONE;
1401 bool cs_derivs = ctx->stage == MESA_SHADER_COMPUTE &&
1402 ctx->info->cs.derivative_group != DERIVATIVE_GROUP_NONE;
1403 if (ctx->stage == MESA_SHADER_FRAGMENT || cs_derivs) {
1404 /* Prevent texture instructions with implicit derivatives from being
1405 * sinked into branches. */
1406 switch (instr->op) {
1407 case nir_texop_tex:
1408 case nir_texop_txb:
1409 case nir_texop_lod:
1410 args->attributes |= AC_FUNC_ATTR_CONVERGENT;
1411 break;
1412 default:
1413 break;
1414 }
1415 }
1416
1417 return ac_build_image_opcode(&ctx->ac, args);
1418 }
1419
1420 static LLVMValueRef visit_vulkan_resource_reindex(struct ac_nir_context *ctx,
1421 nir_intrinsic_instr *instr)
1422 {
1423 LLVMValueRef ptr = get_src(ctx, instr->src[0]);
1424 LLVMValueRef index = get_src(ctx, instr->src[1]);
1425
1426 LLVMValueRef result = LLVMBuildGEP(ctx->ac.builder, ptr, &index, 1, "");
1427 LLVMSetMetadata(result, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1428 return result;
1429 }
1430
1431 static LLVMValueRef visit_load_push_constant(struct ac_nir_context *ctx,
1432 nir_intrinsic_instr *instr)
1433 {
1434 LLVMValueRef ptr, addr;
1435 LLVMValueRef src0 = get_src(ctx, instr->src[0]);
1436 unsigned index = nir_intrinsic_base(instr);
1437
1438 addr = LLVMConstInt(ctx->ac.i32, index, 0);
1439 addr = LLVMBuildAdd(ctx->ac.builder, addr, src0, "");
1440
1441 /* Load constant values from user SGPRS when possible, otherwise
1442 * fallback to the default path that loads directly from memory.
1443 */
1444 if (LLVMIsConstant(src0) &&
1445 instr->dest.ssa.bit_size == 32) {
1446 unsigned count = instr->dest.ssa.num_components;
1447 unsigned offset = index;
1448
1449 offset += LLVMConstIntGetZExtValue(src0);
1450 offset /= 4;
1451
1452 offset -= ctx->args->base_inline_push_consts;
1453
1454 unsigned num_inline_push_consts = ctx->args->num_inline_push_consts;
1455 if (offset + count <= num_inline_push_consts) {
1456 LLVMValueRef push_constants[num_inline_push_consts];
1457 for (unsigned i = 0; i < num_inline_push_consts; i++)
1458 push_constants[i] = ac_get_arg(&ctx->ac,
1459 ctx->args->inline_push_consts[i]);
1460 return ac_build_gather_values(&ctx->ac,
1461 push_constants + offset,
1462 count);
1463 }
1464 }
1465
1466 ptr = LLVMBuildGEP(ctx->ac.builder,
1467 ac_get_arg(&ctx->ac, ctx->args->push_constants), &addr, 1, "");
1468
1469 if (instr->dest.ssa.bit_size == 8) {
1470 unsigned load_dwords = instr->dest.ssa.num_components > 1 ? 2 : 1;
1471 LLVMTypeRef vec_type = LLVMVectorType(LLVMInt8TypeInContext(ctx->ac.context), 4 * load_dwords);
1472 ptr = ac_cast_ptr(&ctx->ac, ptr, vec_type);
1473 LLVMValueRef res = LLVMBuildLoad(ctx->ac.builder, ptr, "");
1474
1475 LLVMValueRef params[3];
1476 if (load_dwords > 1) {
1477 LLVMValueRef res_vec = LLVMBuildBitCast(ctx->ac.builder, res, LLVMVectorType(ctx->ac.i32, 2), "");
1478 params[0] = LLVMBuildExtractElement(ctx->ac.builder, res_vec, LLVMConstInt(ctx->ac.i32, 1, false), "");
1479 params[1] = LLVMBuildExtractElement(ctx->ac.builder, res_vec, LLVMConstInt(ctx->ac.i32, 0, false), "");
1480 } else {
1481 res = LLVMBuildBitCast(ctx->ac.builder, res, ctx->ac.i32, "");
1482 params[0] = ctx->ac.i32_0;
1483 params[1] = res;
1484 }
1485 params[2] = addr;
1486 res = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.alignbyte", ctx->ac.i32, params, 3, 0);
1487
1488 res = LLVMBuildTrunc(ctx->ac.builder, res, LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.num_components * 8), "");
1489 if (instr->dest.ssa.num_components > 1)
1490 res = LLVMBuildBitCast(ctx->ac.builder, res, LLVMVectorType(LLVMInt8TypeInContext(ctx->ac.context), instr->dest.ssa.num_components), "");
1491 return res;
1492 } else if (instr->dest.ssa.bit_size == 16) {
1493 unsigned load_dwords = instr->dest.ssa.num_components / 2 + 1;
1494 LLVMTypeRef vec_type = LLVMVectorType(LLVMInt16TypeInContext(ctx->ac.context), 2 * load_dwords);
1495 ptr = ac_cast_ptr(&ctx->ac, ptr, vec_type);
1496 LLVMValueRef res = LLVMBuildLoad(ctx->ac.builder, ptr, "");
1497 res = LLVMBuildBitCast(ctx->ac.builder, res, vec_type, "");
1498 LLVMValueRef cond = LLVMBuildLShr(ctx->ac.builder, addr, ctx->ac.i32_1, "");
1499 cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->ac.i1, "");
1500 LLVMValueRef mask[] = { LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
1501 LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
1502 LLVMConstInt(ctx->ac.i32, 4, false)};
1503 LLVMValueRef swizzle_aligned = LLVMConstVector(&mask[0], instr->dest.ssa.num_components);
1504 LLVMValueRef swizzle_unaligned = LLVMConstVector(&mask[1], instr->dest.ssa.num_components);
1505 LLVMValueRef shuffle_aligned = LLVMBuildShuffleVector(ctx->ac.builder, res, res, swizzle_aligned, "");
1506 LLVMValueRef shuffle_unaligned = LLVMBuildShuffleVector(ctx->ac.builder, res, res, swizzle_unaligned, "");
1507 res = LLVMBuildSelect(ctx->ac.builder, cond, shuffle_unaligned, shuffle_aligned, "");
1508 return LLVMBuildBitCast(ctx->ac.builder, res, get_def_type(ctx, &instr->dest.ssa), "");
1509 }
1510
1511 ptr = ac_cast_ptr(&ctx->ac, ptr, get_def_type(ctx, &instr->dest.ssa));
1512
1513 return LLVMBuildLoad(ctx->ac.builder, ptr, "");
1514 }
1515
1516 static LLVMValueRef visit_get_buffer_size(struct ac_nir_context *ctx,
1517 const nir_intrinsic_instr *instr)
1518 {
1519 LLVMValueRef index = get_src(ctx, instr->src[0]);
1520
1521 return get_buffer_size(ctx, ctx->abi->load_ssbo(ctx->abi, index, false), false);
1522 }
1523
1524 static uint32_t widen_mask(uint32_t mask, unsigned multiplier)
1525 {
1526 uint32_t new_mask = 0;
1527 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
1528 if (mask & (1u << i))
1529 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
1530 return new_mask;
1531 }
1532
1533 static LLVMValueRef extract_vector_range(struct ac_llvm_context *ctx, LLVMValueRef src,
1534 unsigned start, unsigned count)
1535 {
1536 LLVMValueRef mask[] = {
1537 ctx->i32_0, ctx->i32_1,
1538 LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false) };
1539
1540 unsigned src_elements = ac_get_llvm_num_components(src);
1541
1542 if (count == src_elements) {
1543 assert(start == 0);
1544 return src;
1545 } else if (count == 1) {
1546 assert(start < src_elements);
1547 return LLVMBuildExtractElement(ctx->builder, src, mask[start], "");
1548 } else {
1549 assert(start + count <= src_elements);
1550 assert(count <= 4);
1551 LLVMValueRef swizzle = LLVMConstVector(&mask[start], count);
1552 return LLVMBuildShuffleVector(ctx->builder, src, src, swizzle, "");
1553 }
1554 }
1555
1556 static unsigned get_cache_policy(struct ac_nir_context *ctx,
1557 enum gl_access_qualifier access,
1558 bool may_store_unaligned,
1559 bool writeonly_memory)
1560 {
1561 unsigned cache_policy = 0;
1562
1563 /* GFX6 has a TC L1 bug causing corruption of 8bit/16bit stores. All
1564 * store opcodes not aligned to a dword are affected. The only way to
1565 * get unaligned stores is through shader images.
1566 */
1567 if (((may_store_unaligned && ctx->ac.chip_class == GFX6) ||
1568 /* If this is write-only, don't keep data in L1 to prevent
1569 * evicting L1 cache lines that may be needed by other
1570 * instructions.
1571 */
1572 writeonly_memory ||
1573 access & (ACCESS_COHERENT | ACCESS_VOLATILE))) {
1574 cache_policy |= ac_glc;
1575 }
1576
1577 if (access & ACCESS_STREAM_CACHE_POLICY)
1578 cache_policy |= ac_slc;
1579
1580 return cache_policy;
1581 }
1582
1583 static void visit_store_ssbo(struct ac_nir_context *ctx,
1584 nir_intrinsic_instr *instr)
1585 {
1586 LLVMValueRef src_data = get_src(ctx, instr->src[0]);
1587 int elem_size_bytes = ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src_data)) / 8;
1588 unsigned writemask = nir_intrinsic_write_mask(instr);
1589 enum gl_access_qualifier access = nir_intrinsic_access(instr);
1590 bool writeonly_memory = access & ACCESS_NON_READABLE;
1591 unsigned cache_policy = get_cache_policy(ctx, access, false, writeonly_memory);
1592
1593 LLVMValueRef rsrc = ctx->abi->load_ssbo(ctx->abi,
1594 get_src(ctx, instr->src[1]), true);
1595 LLVMValueRef base_data = src_data;
1596 base_data = ac_trim_vector(&ctx->ac, base_data, instr->num_components);
1597 LLVMValueRef base_offset = get_src(ctx, instr->src[2]);
1598
1599 while (writemask) {
1600 int start, count;
1601 LLVMValueRef data, offset;
1602 LLVMTypeRef data_type;
1603
1604 u_bit_scan_consecutive_range(&writemask, &start, &count);
1605
1606 /* Due to an LLVM limitation with LLVM < 9, split 3-element
1607 * writes into a 2-element and a 1-element write. */
1608 if (count == 3 &&
1609 (elem_size_bytes != 4 || !ac_has_vec3_support(ctx->ac.chip_class, false))) {
1610 writemask |= 1 << (start + 2);
1611 count = 2;
1612 }
1613 int num_bytes = count * elem_size_bytes; /* count in bytes */
1614
1615 /* we can only store 4 DWords at the same time.
1616 * can only happen for 64 Bit vectors. */
1617 if (num_bytes > 16) {
1618 writemask |= ((1u << (count - 2)) - 1u) << (start + 2);
1619 count = 2;
1620 num_bytes = 16;
1621 }
1622
1623 /* check alignment of 16 Bit stores */
1624 if (elem_size_bytes == 2 && num_bytes > 2 && (start % 2) == 1) {
1625 writemask |= ((1u << (count - 1)) - 1u) << (start + 1);
1626 count = 1;
1627 num_bytes = 2;
1628 }
1629 data = extract_vector_range(&ctx->ac, base_data, start, count);
1630
1631 offset = LLVMBuildAdd(ctx->ac.builder, base_offset,
1632 LLVMConstInt(ctx->ac.i32, start * elem_size_bytes, false), "");
1633
1634 if (num_bytes == 1) {
1635 ac_build_tbuffer_store_byte(&ctx->ac, rsrc, data,
1636 offset, ctx->ac.i32_0,
1637 cache_policy);
1638 } else if (num_bytes == 2) {
1639 ac_build_tbuffer_store_short(&ctx->ac, rsrc, data,
1640 offset, ctx->ac.i32_0,
1641 cache_policy);
1642 } else {
1643 int num_channels = num_bytes / 4;
1644
1645 switch (num_bytes) {
1646 case 16: /* v4f32 */
1647 data_type = ctx->ac.v4f32;
1648 break;
1649 case 12: /* v3f32 */
1650 data_type = ctx->ac.v3f32;
1651 break;
1652 case 8: /* v2f32 */
1653 data_type = ctx->ac.v2f32;
1654 break;
1655 case 4: /* f32 */
1656 data_type = ctx->ac.f32;
1657 break;
1658 default:
1659 unreachable("Malformed vector store.");
1660 }
1661 data = LLVMBuildBitCast(ctx->ac.builder, data, data_type, "");
1662
1663 ac_build_buffer_store_dword(&ctx->ac, rsrc, data,
1664 num_channels, offset,
1665 ctx->ac.i32_0, 0,
1666 cache_policy);
1667 }
1668 }
1669 }
1670
1671 static LLVMValueRef emit_ssbo_comp_swap_64(struct ac_nir_context *ctx,
1672 LLVMValueRef descriptor,
1673 LLVMValueRef offset,
1674 LLVMValueRef compare,
1675 LLVMValueRef exchange)
1676 {
1677 LLVMBasicBlockRef start_block = NULL, then_block = NULL;
1678 if (ctx->abi->robust_buffer_access) {
1679 LLVMValueRef size = ac_llvm_extract_elem(&ctx->ac, descriptor, 2);
1680
1681 LLVMValueRef cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, offset, size, "");
1682 start_block = LLVMGetInsertBlock(ctx->ac.builder);
1683
1684 ac_build_ifcc(&ctx->ac, cond, -1);
1685
1686 then_block = LLVMGetInsertBlock(ctx->ac.builder);
1687 }
1688
1689 LLVMValueRef ptr_parts[2] = {
1690 ac_llvm_extract_elem(&ctx->ac, descriptor, 0),
1691 LLVMBuildAnd(ctx->ac.builder,
1692 ac_llvm_extract_elem(&ctx->ac, descriptor, 1),
1693 LLVMConstInt(ctx->ac.i32, 65535, 0), "")
1694 };
1695
1696 ptr_parts[1] = LLVMBuildTrunc(ctx->ac.builder, ptr_parts[1], ctx->ac.i16, "");
1697 ptr_parts[1] = LLVMBuildSExt(ctx->ac.builder, ptr_parts[1], ctx->ac.i32, "");
1698
1699 offset = LLVMBuildZExt(ctx->ac.builder, offset, ctx->ac.i64, "");
1700
1701 LLVMValueRef ptr = ac_build_gather_values(&ctx->ac, ptr_parts, 2);
1702 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->ac.i64, "");
1703 ptr = LLVMBuildAdd(ctx->ac.builder, ptr, offset, "");
1704 ptr = LLVMBuildIntToPtr(ctx->ac.builder, ptr, LLVMPointerType(ctx->ac.i64, AC_ADDR_SPACE_GLOBAL), "");
1705
1706 LLVMValueRef result = ac_build_atomic_cmp_xchg(&ctx->ac, ptr, compare, exchange, "singlethread-one-as");
1707 result = LLVMBuildExtractValue(ctx->ac.builder, result, 0, "");
1708
1709 if (ctx->abi->robust_buffer_access) {
1710 ac_build_endif(&ctx->ac, -1);
1711
1712 LLVMBasicBlockRef incoming_blocks[2] = {
1713 start_block,
1714 then_block,
1715 };
1716
1717 LLVMValueRef incoming_values[2] = {
1718 LLVMConstInt(ctx->ac.i64, 0, 0),
1719 result,
1720 };
1721 LLVMValueRef ret = LLVMBuildPhi(ctx->ac.builder, ctx->ac.i64, "");
1722 LLVMAddIncoming(ret, incoming_values, incoming_blocks, 2);
1723 return ret;
1724 } else {
1725 return result;
1726 }
1727 }
1728
1729 static LLVMValueRef visit_atomic_ssbo(struct ac_nir_context *ctx,
1730 const nir_intrinsic_instr *instr)
1731 {
1732 LLVMTypeRef return_type = LLVMTypeOf(get_src(ctx, instr->src[2]));
1733 const char *op;
1734 char name[64], type[8];
1735 LLVMValueRef params[6], descriptor;
1736 int arg_count = 0;
1737
1738 switch (instr->intrinsic) {
1739 case nir_intrinsic_ssbo_atomic_add:
1740 op = "add";
1741 break;
1742 case nir_intrinsic_ssbo_atomic_imin:
1743 op = "smin";
1744 break;
1745 case nir_intrinsic_ssbo_atomic_umin:
1746 op = "umin";
1747 break;
1748 case nir_intrinsic_ssbo_atomic_imax:
1749 op = "smax";
1750 break;
1751 case nir_intrinsic_ssbo_atomic_umax:
1752 op = "umax";
1753 break;
1754 case nir_intrinsic_ssbo_atomic_and:
1755 op = "and";
1756 break;
1757 case nir_intrinsic_ssbo_atomic_or:
1758 op = "or";
1759 break;
1760 case nir_intrinsic_ssbo_atomic_xor:
1761 op = "xor";
1762 break;
1763 case nir_intrinsic_ssbo_atomic_exchange:
1764 op = "swap";
1765 break;
1766 case nir_intrinsic_ssbo_atomic_comp_swap:
1767 op = "cmpswap";
1768 break;
1769 default:
1770 abort();
1771 }
1772
1773 descriptor = ctx->abi->load_ssbo(ctx->abi,
1774 get_src(ctx, instr->src[0]),
1775 true);
1776
1777 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap &&
1778 return_type == ctx->ac.i64) {
1779 return emit_ssbo_comp_swap_64(ctx, descriptor,
1780 get_src(ctx, instr->src[1]),
1781 get_src(ctx, instr->src[2]),
1782 get_src(ctx, instr->src[3]));
1783 }
1784 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
1785 params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[3]), 0);
1786 }
1787 params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0);
1788 params[arg_count++] = descriptor;
1789
1790 if (LLVM_VERSION_MAJOR >= 9) {
1791 /* XXX: The new raw/struct atomic intrinsics are buggy with
1792 * LLVM 8, see r358579.
1793 */
1794 params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
1795 params[arg_count++] = ctx->ac.i32_0; /* soffset */
1796 params[arg_count++] = ctx->ac.i32_0; /* slc */
1797
1798 ac_build_type_name_for_intr(return_type, type, sizeof(type));
1799 snprintf(name, sizeof(name),
1800 "llvm.amdgcn.raw.buffer.atomic.%s.%s", op, type);
1801 } else {
1802 params[arg_count++] = ctx->ac.i32_0; /* vindex */
1803 params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
1804 params[arg_count++] = ctx->ac.i1false; /* slc */
1805
1806 assert(return_type == ctx->ac.i32);
1807 snprintf(name, sizeof(name),
1808 "llvm.amdgcn.buffer.atomic.%s", op);
1809 }
1810
1811 return ac_build_intrinsic(&ctx->ac, name, return_type, params,
1812 arg_count, 0);
1813 }
1814
1815 static LLVMValueRef visit_load_buffer(struct ac_nir_context *ctx,
1816 const nir_intrinsic_instr *instr)
1817 {
1818 int elem_size_bytes = instr->dest.ssa.bit_size / 8;
1819 int num_components = instr->num_components;
1820 enum gl_access_qualifier access = nir_intrinsic_access(instr);
1821 unsigned cache_policy = get_cache_policy(ctx, access, false, false);
1822
1823 LLVMValueRef offset = get_src(ctx, instr->src[1]);
1824 LLVMValueRef rsrc = ctx->abi->load_ssbo(ctx->abi,
1825 get_src(ctx, instr->src[0]), false);
1826 LLVMValueRef vindex = ctx->ac.i32_0;
1827
1828 LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.ssa);
1829 LLVMTypeRef def_elem_type = num_components > 1 ? LLVMGetElementType(def_type) : def_type;
1830
1831 LLVMValueRef results[4];
1832 for (int i = 0; i < num_components;) {
1833 int num_elems = num_components - i;
1834 if (elem_size_bytes < 4 && nir_intrinsic_align(instr) % 4 != 0)
1835 num_elems = 1;
1836 if (num_elems * elem_size_bytes > 16)
1837 num_elems = 16 / elem_size_bytes;
1838 int load_bytes = num_elems * elem_size_bytes;
1839
1840 LLVMValueRef immoffset = LLVMConstInt(ctx->ac.i32, i * elem_size_bytes, false);
1841
1842 LLVMValueRef ret;
1843
1844 if (load_bytes == 1) {
1845 ret = ac_build_tbuffer_load_byte(&ctx->ac,
1846 rsrc,
1847 offset,
1848 ctx->ac.i32_0,
1849 immoffset,
1850 cache_policy);
1851 } else if (load_bytes == 2) {
1852 ret = ac_build_tbuffer_load_short(&ctx->ac,
1853 rsrc,
1854 offset,
1855 ctx->ac.i32_0,
1856 immoffset,
1857 cache_policy);
1858 } else {
1859 int num_channels = util_next_power_of_two(load_bytes) / 4;
1860 bool can_speculate = access & ACCESS_CAN_REORDER;
1861
1862 ret = ac_build_buffer_load(&ctx->ac, rsrc, num_channels,
1863 vindex, offset, immoffset, 0,
1864 cache_policy, can_speculate, false);
1865 }
1866
1867 LLVMTypeRef byte_vec = LLVMVectorType(ctx->ac.i8, ac_get_type_size(LLVMTypeOf(ret)));
1868 ret = LLVMBuildBitCast(ctx->ac.builder, ret, byte_vec, "");
1869 ret = ac_trim_vector(&ctx->ac, ret, load_bytes);
1870
1871 LLVMTypeRef ret_type = LLVMVectorType(def_elem_type, num_elems);
1872 ret = LLVMBuildBitCast(ctx->ac.builder, ret, ret_type, "");
1873
1874 for (unsigned j = 0; j < num_elems; j++) {
1875 results[i + j] = LLVMBuildExtractElement(ctx->ac.builder, ret, LLVMConstInt(ctx->ac.i32, j, false), "");
1876 }
1877 i += num_elems;
1878 }
1879
1880 return ac_build_gather_values(&ctx->ac, results, num_components);
1881 }
1882
1883 static LLVMValueRef visit_load_ubo_buffer(struct ac_nir_context *ctx,
1884 const nir_intrinsic_instr *instr)
1885 {
1886 LLVMValueRef ret;
1887 LLVMValueRef rsrc = get_src(ctx, instr->src[0]);
1888 LLVMValueRef offset = get_src(ctx, instr->src[1]);
1889 int num_components = instr->num_components;
1890
1891 if (ctx->abi->load_ubo)
1892 rsrc = ctx->abi->load_ubo(ctx->abi, rsrc);
1893
1894 if (instr->dest.ssa.bit_size == 64)
1895 num_components *= 2;
1896
1897 if (instr->dest.ssa.bit_size == 16 || instr->dest.ssa.bit_size == 8) {
1898 unsigned load_bytes = instr->dest.ssa.bit_size / 8;
1899 LLVMValueRef results[num_components];
1900 for (unsigned i = 0; i < num_components; ++i) {
1901 LLVMValueRef immoffset = LLVMConstInt(ctx->ac.i32,
1902 load_bytes * i, 0);
1903
1904 if (load_bytes == 1) {
1905 results[i] = ac_build_tbuffer_load_byte(&ctx->ac,
1906 rsrc,
1907 offset,
1908 ctx->ac.i32_0,
1909 immoffset,
1910 0);
1911 } else {
1912 assert(load_bytes == 2);
1913 results[i] = ac_build_tbuffer_load_short(&ctx->ac,
1914 rsrc,
1915 offset,
1916 ctx->ac.i32_0,
1917 immoffset,
1918 0);
1919 }
1920 }
1921 ret = ac_build_gather_values(&ctx->ac, results, num_components);
1922 } else {
1923 ret = ac_build_buffer_load(&ctx->ac, rsrc, num_components, NULL, offset,
1924 NULL, 0, 0, true, true);
1925
1926 ret = ac_trim_vector(&ctx->ac, ret, num_components);
1927 }
1928
1929 return LLVMBuildBitCast(ctx->ac.builder, ret,
1930 get_def_type(ctx, &instr->dest.ssa), "");
1931 }
1932
1933 static void
1934 get_deref_offset(struct ac_nir_context *ctx, nir_deref_instr *instr,
1935 bool vs_in, unsigned *vertex_index_out,
1936 LLVMValueRef *vertex_index_ref,
1937 unsigned *const_out, LLVMValueRef *indir_out)
1938 {
1939 nir_variable *var = nir_deref_instr_get_variable(instr);
1940 nir_deref_path path;
1941 unsigned idx_lvl = 1;
1942
1943 nir_deref_path_init(&path, instr, NULL);
1944
1945 if (vertex_index_out != NULL || vertex_index_ref != NULL) {
1946 if (vertex_index_ref) {
1947 *vertex_index_ref = get_src(ctx, path.path[idx_lvl]->arr.index);
1948 if (vertex_index_out)
1949 *vertex_index_out = 0;
1950 } else {
1951 *vertex_index_out = nir_src_as_uint(path.path[idx_lvl]->arr.index);
1952 }
1953 ++idx_lvl;
1954 }
1955
1956 uint32_t const_offset = 0;
1957 LLVMValueRef offset = NULL;
1958
1959 if (var->data.compact) {
1960 assert(instr->deref_type == nir_deref_type_array);
1961 const_offset = nir_src_as_uint(instr->arr.index);
1962 goto out;
1963 }
1964
1965 for (; path.path[idx_lvl]; ++idx_lvl) {
1966 const struct glsl_type *parent_type = path.path[idx_lvl - 1]->type;
1967 if (path.path[idx_lvl]->deref_type == nir_deref_type_struct) {
1968 unsigned index = path.path[idx_lvl]->strct.index;
1969
1970 for (unsigned i = 0; i < index; i++) {
1971 const struct glsl_type *ft = glsl_get_struct_field(parent_type, i);
1972 const_offset += glsl_count_attribute_slots(ft, vs_in);
1973 }
1974 } else if(path.path[idx_lvl]->deref_type == nir_deref_type_array) {
1975 unsigned size = glsl_count_attribute_slots(path.path[idx_lvl]->type, vs_in);
1976 if (nir_src_is_const(path.path[idx_lvl]->arr.index)) {
1977 const_offset += size *
1978 nir_src_as_uint(path.path[idx_lvl]->arr.index);
1979 } else {
1980 LLVMValueRef array_off = LLVMBuildMul(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, size, 0),
1981 get_src(ctx, path.path[idx_lvl]->arr.index), "");
1982 if (offset)
1983 offset = LLVMBuildAdd(ctx->ac.builder, offset, array_off, "");
1984 else
1985 offset = array_off;
1986 }
1987 } else
1988 unreachable("Uhandled deref type in get_deref_instr_offset");
1989 }
1990
1991 out:
1992 nir_deref_path_finish(&path);
1993
1994 if (const_offset && offset)
1995 offset = LLVMBuildAdd(ctx->ac.builder, offset,
1996 LLVMConstInt(ctx->ac.i32, const_offset, 0),
1997 "");
1998
1999 *const_out = const_offset;
2000 *indir_out = offset;
2001 }
2002
2003 static LLVMValueRef load_tess_varyings(struct ac_nir_context *ctx,
2004 nir_intrinsic_instr *instr,
2005 bool load_inputs)
2006 {
2007 LLVMValueRef result;
2008 LLVMValueRef vertex_index = NULL;
2009 LLVMValueRef indir_index = NULL;
2010 unsigned const_index = 0;
2011
2012 nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
2013
2014 unsigned location = var->data.location;
2015 unsigned driver_location = var->data.driver_location;
2016 const bool is_patch = var->data.patch ||
2017 var->data.location == VARYING_SLOT_TESS_LEVEL_INNER ||
2018 var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER;
2019 const bool is_compact = var->data.compact;
2020
2021 get_deref_offset(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr),
2022 false, NULL, is_patch ? NULL : &vertex_index,
2023 &const_index, &indir_index);
2024
2025 LLVMTypeRef dest_type = get_def_type(ctx, &instr->dest.ssa);
2026
2027 LLVMTypeRef src_component_type;
2028 if (LLVMGetTypeKind(dest_type) == LLVMVectorTypeKind)
2029 src_component_type = LLVMGetElementType(dest_type);
2030 else
2031 src_component_type = dest_type;
2032
2033 result = ctx->abi->load_tess_varyings(ctx->abi, src_component_type,
2034 vertex_index, indir_index,
2035 const_index, location, driver_location,
2036 var->data.location_frac,
2037 instr->num_components,
2038 is_patch, is_compact, load_inputs);
2039 if (instr->dest.ssa.bit_size == 16) {
2040 result = ac_to_integer(&ctx->ac, result);
2041 result = LLVMBuildTrunc(ctx->ac.builder, result, dest_type, "");
2042 }
2043 return LLVMBuildBitCast(ctx->ac.builder, result, dest_type, "");
2044 }
2045
2046 static unsigned
2047 type_scalar_size_bytes(const struct glsl_type *type)
2048 {
2049 assert(glsl_type_is_vector_or_scalar(type) ||
2050 glsl_type_is_matrix(type));
2051 return glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
2052 }
2053
2054 static LLVMValueRef visit_load_var(struct ac_nir_context *ctx,
2055 nir_intrinsic_instr *instr)
2056 {
2057 nir_deref_instr *deref = nir_instr_as_deref(instr->src[0].ssa->parent_instr);
2058 nir_variable *var = nir_deref_instr_get_variable(deref);
2059
2060 LLVMValueRef values[8];
2061 int idx = 0;
2062 int ve = instr->dest.ssa.num_components;
2063 unsigned comp = 0;
2064 LLVMValueRef indir_index;
2065 LLVMValueRef ret;
2066 unsigned const_index;
2067 unsigned stride = 4;
2068 int mode = deref->mode;
2069
2070 if (var) {
2071 bool vs_in = ctx->stage == MESA_SHADER_VERTEX &&
2072 var->data.mode == nir_var_shader_in;
2073 idx = var->data.driver_location;
2074 comp = var->data.location_frac;
2075 mode = var->data.mode;
2076
2077 get_deref_offset(ctx, deref, vs_in, NULL, NULL,
2078 &const_index, &indir_index);
2079
2080 if (var->data.compact) {
2081 stride = 1;
2082 const_index += comp;
2083 comp = 0;
2084 }
2085 }
2086
2087 if (instr->dest.ssa.bit_size == 64 &&
2088 (deref->mode == nir_var_shader_in ||
2089 deref->mode == nir_var_shader_out ||
2090 deref->mode == nir_var_function_temp))
2091 ve *= 2;
2092
2093 switch (mode) {
2094 case nir_var_shader_in:
2095 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
2096 ctx->stage == MESA_SHADER_TESS_EVAL) {
2097 return load_tess_varyings(ctx, instr, true);
2098 }
2099
2100 if (ctx->stage == MESA_SHADER_GEOMETRY) {
2101 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
2102 LLVMValueRef indir_index;
2103 unsigned const_index, vertex_index;
2104 get_deref_offset(ctx, deref, false, &vertex_index, NULL,
2105 &const_index, &indir_index);
2106 assert(indir_index == NULL);
2107
2108 return ctx->abi->load_inputs(ctx->abi, var->data.location,
2109 var->data.driver_location,
2110 var->data.location_frac,
2111 instr->num_components, vertex_index, const_index, type);
2112 }
2113
2114 for (unsigned chan = comp; chan < ve + comp; chan++) {
2115 if (indir_index) {
2116 unsigned count = glsl_count_attribute_slots(
2117 var->type,
2118 ctx->stage == MESA_SHADER_VERTEX);
2119 count -= chan / 4;
2120 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
2121 &ctx->ac, ctx->abi->inputs + idx + chan, count,
2122 stride, false, true);
2123
2124 values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
2125 tmp_vec,
2126 indir_index, "");
2127 } else
2128 values[chan] = ctx->abi->inputs[idx + chan + const_index * stride];
2129 }
2130 break;
2131 case nir_var_function_temp:
2132 for (unsigned chan = 0; chan < ve; chan++) {
2133 if (indir_index) {
2134 unsigned count = glsl_count_attribute_slots(
2135 var->type, false);
2136 count -= chan / 4;
2137 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
2138 &ctx->ac, ctx->locals + idx + chan, count,
2139 stride, true, true);
2140
2141 values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
2142 tmp_vec,
2143 indir_index, "");
2144 } else {
2145 values[chan] = LLVMBuildLoad(ctx->ac.builder, ctx->locals[idx + chan + const_index * stride], "");
2146 }
2147 }
2148 break;
2149 case nir_var_shader_out:
2150 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
2151 return load_tess_varyings(ctx, instr, false);
2152 }
2153
2154 if (ctx->stage == MESA_SHADER_FRAGMENT &&
2155 var->data.fb_fetch_output &&
2156 ctx->abi->emit_fbfetch)
2157 return ctx->abi->emit_fbfetch(ctx->abi);
2158
2159 for (unsigned chan = comp; chan < ve + comp; chan++) {
2160 if (indir_index) {
2161 unsigned count = glsl_count_attribute_slots(
2162 var->type, false);
2163 count -= chan / 4;
2164 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
2165 &ctx->ac, ctx->abi->outputs + idx + chan, count,
2166 stride, true, true);
2167
2168 values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
2169 tmp_vec,
2170 indir_index, "");
2171 } else {
2172 values[chan] = LLVMBuildLoad(ctx->ac.builder,
2173 ctx->abi->outputs[idx + chan + const_index * stride],
2174 "");
2175 }
2176 }
2177 break;
2178 case nir_var_mem_global: {
2179 LLVMValueRef address = get_src(ctx, instr->src[0]);
2180 unsigned explicit_stride = glsl_get_explicit_stride(deref->type);
2181 unsigned natural_stride = type_scalar_size_bytes(deref->type);
2182 unsigned stride = explicit_stride ? explicit_stride : natural_stride;
2183
2184 LLVMTypeRef result_type = get_def_type(ctx, &instr->dest.ssa);
2185 if (stride != natural_stride) {
2186 LLVMTypeRef ptr_type = LLVMPointerType(LLVMGetElementType(result_type),
2187 LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
2188 address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
2189
2190 for (unsigned i = 0; i < instr->dest.ssa.num_components; ++i) {
2191 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, i * stride / natural_stride, 0);
2192 values[i] = LLVMBuildLoad(ctx->ac.builder,
2193 ac_build_gep_ptr(&ctx->ac, address, offset), "");
2194 }
2195 return ac_build_gather_values(&ctx->ac, values, instr->dest.ssa.num_components);
2196 } else {
2197 LLVMTypeRef ptr_type = LLVMPointerType(result_type,
2198 LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
2199 address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
2200 LLVMValueRef val = LLVMBuildLoad(ctx->ac.builder, address, "");
2201 return val;
2202 }
2203 }
2204 default:
2205 unreachable("unhandle variable mode");
2206 }
2207 ret = ac_build_varying_gather_values(&ctx->ac, values, ve, comp);
2208 return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
2209 }
2210
2211 static void
2212 visit_store_var(struct ac_nir_context *ctx,
2213 nir_intrinsic_instr *instr)
2214 {
2215 nir_deref_instr *deref = nir_instr_as_deref(instr->src[0].ssa->parent_instr);
2216 nir_variable *var = nir_deref_instr_get_variable(deref);
2217
2218 LLVMValueRef temp_ptr, value;
2219 int idx = 0;
2220 unsigned comp = 0;
2221 LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[1]));
2222 int writemask = instr->const_index[0];
2223 LLVMValueRef indir_index;
2224 unsigned const_index;
2225
2226 if (var) {
2227 get_deref_offset(ctx, deref, false,
2228 NULL, NULL, &const_index, &indir_index);
2229 idx = var->data.driver_location;
2230 comp = var->data.location_frac;
2231
2232 if (var->data.compact) {
2233 const_index += comp;
2234 comp = 0;
2235 }
2236 }
2237
2238 if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src)) == 64 &&
2239 (deref->mode == nir_var_shader_out ||
2240 deref->mode == nir_var_function_temp)) {
2241
2242 src = LLVMBuildBitCast(ctx->ac.builder, src,
2243 LLVMVectorType(ctx->ac.f32, ac_get_llvm_num_components(src) * 2),
2244 "");
2245
2246 writemask = widen_mask(writemask, 2);
2247 }
2248
2249 writemask = writemask << comp;
2250
2251 switch (deref->mode) {
2252 case nir_var_shader_out:
2253
2254 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
2255 LLVMValueRef vertex_index = NULL;
2256 LLVMValueRef indir_index = NULL;
2257 unsigned const_index = 0;
2258 const bool is_patch = var->data.patch ||
2259 var->data.location == VARYING_SLOT_TESS_LEVEL_INNER ||
2260 var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER;
2261
2262 get_deref_offset(ctx, deref, false, NULL,
2263 is_patch ? NULL : &vertex_index,
2264 &const_index, &indir_index);
2265
2266 ctx->abi->store_tcs_outputs(ctx->abi, var,
2267 vertex_index, indir_index,
2268 const_index, src, writemask);
2269 return;
2270 }
2271
2272 for (unsigned chan = 0; chan < 8; chan++) {
2273 int stride = 4;
2274 if (!(writemask & (1 << chan)))
2275 continue;
2276
2277 value = ac_llvm_extract_elem(&ctx->ac, src, chan - comp);
2278
2279 if (var->data.compact)
2280 stride = 1;
2281 if (indir_index) {
2282 unsigned count = glsl_count_attribute_slots(
2283 var->type, false);
2284 count -= chan / 4;
2285 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
2286 &ctx->ac, ctx->abi->outputs + idx + chan, count,
2287 stride, true, true);
2288
2289 tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
2290 value, indir_index, "");
2291 build_store_values_extended(&ctx->ac, ctx->abi->outputs + idx + chan,
2292 count, stride, tmp_vec);
2293
2294 } else {
2295 temp_ptr = ctx->abi->outputs[idx + chan + const_index * stride];
2296
2297 LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
2298 }
2299 }
2300 break;
2301 case nir_var_function_temp:
2302 for (unsigned chan = 0; chan < 8; chan++) {
2303 if (!(writemask & (1 << chan)))
2304 continue;
2305
2306 value = ac_llvm_extract_elem(&ctx->ac, src, chan);
2307 if (indir_index) {
2308 unsigned count = glsl_count_attribute_slots(
2309 var->type, false);
2310 count -= chan / 4;
2311 LLVMValueRef tmp_vec = ac_build_gather_values_extended(
2312 &ctx->ac, ctx->locals + idx + chan, count,
2313 4, true, true);
2314
2315 tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
2316 value, indir_index, "");
2317 build_store_values_extended(&ctx->ac, ctx->locals + idx + chan,
2318 count, 4, tmp_vec);
2319 } else {
2320 temp_ptr = ctx->locals[idx + chan + const_index * 4];
2321
2322 LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
2323 }
2324 }
2325 break;
2326
2327 case nir_var_mem_global: {
2328 int writemask = instr->const_index[0];
2329 LLVMValueRef address = get_src(ctx, instr->src[0]);
2330 LLVMValueRef val = get_src(ctx, instr->src[1]);
2331
2332 unsigned explicit_stride = glsl_get_explicit_stride(deref->type);
2333 unsigned natural_stride = type_scalar_size_bytes(deref->type);
2334 unsigned stride = explicit_stride ? explicit_stride : natural_stride;
2335
2336 LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(val),
2337 LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
2338 address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
2339
2340 if (writemask == (1u << ac_get_llvm_num_components(val)) - 1 &&
2341 stride == natural_stride) {
2342 LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(val),
2343 LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
2344 address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
2345
2346 val = LLVMBuildBitCast(ctx->ac.builder, val,
2347 LLVMGetElementType(LLVMTypeOf(address)), "");
2348 LLVMBuildStore(ctx->ac.builder, val, address);
2349 } else {
2350 LLVMTypeRef ptr_type = LLVMPointerType(LLVMGetElementType(LLVMTypeOf(val)),
2351 LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
2352 address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
2353 for (unsigned chan = 0; chan < 4; chan++) {
2354 if (!(writemask & (1 << chan)))
2355 continue;
2356
2357 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, chan * stride / natural_stride, 0);
2358
2359 LLVMValueRef ptr = ac_build_gep_ptr(&ctx->ac, address, offset);
2360 LLVMValueRef src = ac_llvm_extract_elem(&ctx->ac, val,
2361 chan);
2362 src = LLVMBuildBitCast(ctx->ac.builder, src,
2363 LLVMGetElementType(LLVMTypeOf(ptr)), "");
2364 LLVMBuildStore(ctx->ac.builder, src, ptr);
2365 }
2366 }
2367 break;
2368 }
2369 default:
2370 abort();
2371 break;
2372 }
2373 }
2374
2375 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
2376 {
2377 switch (dim) {
2378 case GLSL_SAMPLER_DIM_BUF:
2379 return 1;
2380 case GLSL_SAMPLER_DIM_1D:
2381 return array ? 2 : 1;
2382 case GLSL_SAMPLER_DIM_2D:
2383 return array ? 3 : 2;
2384 case GLSL_SAMPLER_DIM_MS:
2385 return array ? 4 : 3;
2386 case GLSL_SAMPLER_DIM_3D:
2387 case GLSL_SAMPLER_DIM_CUBE:
2388 return 3;
2389 case GLSL_SAMPLER_DIM_RECT:
2390 case GLSL_SAMPLER_DIM_SUBPASS:
2391 return 2;
2392 case GLSL_SAMPLER_DIM_SUBPASS_MS:
2393 return 3;
2394 default:
2395 break;
2396 }
2397 return 0;
2398 }
2399
2400 static LLVMValueRef adjust_sample_index_using_fmask(struct ac_llvm_context *ctx,
2401 LLVMValueRef coord_x, LLVMValueRef coord_y,
2402 LLVMValueRef coord_z,
2403 LLVMValueRef sample_index,
2404 LLVMValueRef fmask_desc_ptr)
2405 {
2406 unsigned sample_chan = coord_z ? 3 : 2;
2407 LLVMValueRef addr[4] = {coord_x, coord_y, coord_z};
2408 addr[sample_chan] = sample_index;
2409
2410 ac_apply_fmask_to_sample(ctx, fmask_desc_ptr, addr, coord_z != NULL);
2411 return addr[sample_chan];
2412 }
2413
2414 static nir_deref_instr *get_image_deref(const nir_intrinsic_instr *instr)
2415 {
2416 assert(instr->src[0].is_ssa);
2417 return nir_instr_as_deref(instr->src[0].ssa->parent_instr);
2418 }
2419
2420 static LLVMValueRef get_image_descriptor(struct ac_nir_context *ctx,
2421 const nir_intrinsic_instr *instr,
2422 enum ac_descriptor_type desc_type,
2423 bool write)
2424 {
2425 nir_deref_instr *deref_instr =
2426 instr->src[0].ssa->parent_instr->type == nir_instr_type_deref ?
2427 nir_instr_as_deref(instr->src[0].ssa->parent_instr) : NULL;
2428
2429 return get_sampler_desc(ctx, deref_instr, desc_type, &instr->instr, true, write);
2430 }
2431
2432 static void get_image_coords(struct ac_nir_context *ctx,
2433 const nir_intrinsic_instr *instr,
2434 struct ac_image_args *args,
2435 enum glsl_sampler_dim dim,
2436 bool is_array)
2437 {
2438 LLVMValueRef src0 = get_src(ctx, instr->src[1]);
2439 LLVMValueRef masks[] = {
2440 LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
2441 LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
2442 };
2443 LLVMValueRef sample_index = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0);
2444
2445 int count;
2446 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS ||
2447 dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
2448 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS ||
2449 dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
2450 bool gfx9_1d = ctx->ac.chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
2451 assert(!add_frag_pos && "Input attachments should be lowered by this point.");
2452 count = image_type_to_components_count(dim, is_array);
2453
2454 if (is_ms && (instr->intrinsic == nir_intrinsic_image_deref_load ||
2455 instr->intrinsic == nir_intrinsic_bindless_image_load)) {
2456 LLVMValueRef fmask_load_address[3];
2457
2458 fmask_load_address[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
2459 fmask_load_address[1] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[1], "");
2460 if (is_array)
2461 fmask_load_address[2] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[2], "");
2462 else
2463 fmask_load_address[2] = NULL;
2464
2465 sample_index = adjust_sample_index_using_fmask(&ctx->ac,
2466 fmask_load_address[0],
2467 fmask_load_address[1],
2468 fmask_load_address[2],
2469 sample_index,
2470 get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr),
2471 AC_DESC_FMASK, &instr->instr, true, false));
2472 }
2473 if (count == 1 && !gfx9_1d) {
2474 if (instr->src[1].ssa->num_components)
2475 args->coords[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
2476 else
2477 args->coords[0] = src0;
2478 } else {
2479 int chan;
2480 if (is_ms)
2481 count--;
2482 for (chan = 0; chan < count; ++chan) {
2483 args->coords[chan] = ac_llvm_extract_elem(&ctx->ac, src0, chan);
2484 }
2485
2486 if (gfx9_1d) {
2487 if (is_array) {
2488 args->coords[2] = args->coords[1];
2489 args->coords[1] = ctx->ac.i32_0;
2490 } else
2491 args->coords[1] = ctx->ac.i32_0;
2492 count++;
2493 }
2494 if (ctx->ac.chip_class == GFX9 &&
2495 dim == GLSL_SAMPLER_DIM_2D &&
2496 !is_array) {
2497 /* The hw can't bind a slice of a 3D image as a 2D
2498 * image, because it ignores BASE_ARRAY if the target
2499 * is 3D. The workaround is to read BASE_ARRAY and set
2500 * it as the 3rd address operand for all 2D images.
2501 */
2502 LLVMValueRef first_layer, const5, mask;
2503
2504 const5 = LLVMConstInt(ctx->ac.i32, 5, 0);
2505 mask = LLVMConstInt(ctx->ac.i32, S_008F24_BASE_ARRAY(~0), 0);
2506 first_layer = LLVMBuildExtractElement(ctx->ac.builder, args->resource, const5, "");
2507 first_layer = LLVMBuildAnd(ctx->ac.builder, first_layer, mask, "");
2508
2509 args->coords[count] = first_layer;
2510 count++;
2511 }
2512
2513
2514 if (is_ms) {
2515 args->coords[count] = sample_index;
2516 count++;
2517 }
2518 }
2519 }
2520
2521 static LLVMValueRef get_image_buffer_descriptor(struct ac_nir_context *ctx,
2522 const nir_intrinsic_instr *instr,
2523 bool write, bool atomic)
2524 {
2525 LLVMValueRef rsrc = get_image_descriptor(ctx, instr, AC_DESC_BUFFER, write);
2526 if (ctx->ac.chip_class == GFX9 && LLVM_VERSION_MAJOR < 9 && atomic) {
2527 LLVMValueRef elem_count = LLVMBuildExtractElement(ctx->ac.builder, rsrc, LLVMConstInt(ctx->ac.i32, 2, 0), "");
2528 LLVMValueRef stride = LLVMBuildExtractElement(ctx->ac.builder, rsrc, LLVMConstInt(ctx->ac.i32, 1, 0), "");
2529 stride = LLVMBuildLShr(ctx->ac.builder, stride, LLVMConstInt(ctx->ac.i32, 16, 0), "");
2530
2531 LLVMValueRef new_elem_count = LLVMBuildSelect(ctx->ac.builder,
2532 LLVMBuildICmp(ctx->ac.builder, LLVMIntUGT, elem_count, stride, ""),
2533 elem_count, stride, "");
2534
2535 rsrc = LLVMBuildInsertElement(ctx->ac.builder, rsrc, new_elem_count,
2536 LLVMConstInt(ctx->ac.i32, 2, 0), "");
2537 }
2538 return rsrc;
2539 }
2540
2541 static LLVMValueRef visit_image_load(struct ac_nir_context *ctx,
2542 const nir_intrinsic_instr *instr,
2543 bool bindless)
2544 {
2545 LLVMValueRef res;
2546
2547 enum glsl_sampler_dim dim;
2548 enum gl_access_qualifier access;
2549 bool is_array;
2550 if (bindless) {
2551 dim = nir_intrinsic_image_dim(instr);
2552 access = nir_intrinsic_access(instr);
2553 is_array = nir_intrinsic_image_array(instr);
2554 } else {
2555 const nir_deref_instr *image_deref = get_image_deref(instr);
2556 const struct glsl_type *type = image_deref->type;
2557 const nir_variable *var = nir_deref_instr_get_variable(image_deref);
2558 dim = glsl_get_sampler_dim(type);
2559 access = var->data.access;
2560 is_array = glsl_sampler_type_is_array(type);
2561 }
2562
2563 struct ac_image_args args = {};
2564
2565 args.cache_policy = get_cache_policy(ctx, access, false, false);
2566
2567 if (dim == GLSL_SAMPLER_DIM_BUF) {
2568 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
2569 unsigned num_channels = util_last_bit(mask);
2570 LLVMValueRef rsrc, vindex;
2571
2572 rsrc = get_image_buffer_descriptor(ctx, instr, false, false);
2573 vindex = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]),
2574 ctx->ac.i32_0, "");
2575
2576 bool can_speculate = access & ACCESS_CAN_REORDER;
2577 res = ac_build_buffer_load_format(&ctx->ac, rsrc, vindex,
2578 ctx->ac.i32_0, num_channels,
2579 args.cache_policy,
2580 can_speculate);
2581 res = ac_build_expand_to_vec4(&ctx->ac, res, num_channels);
2582
2583 res = ac_trim_vector(&ctx->ac, res, instr->dest.ssa.num_components);
2584 res = ac_to_integer(&ctx->ac, res);
2585 } else {
2586 args.opcode = ac_image_load;
2587 args.resource = get_image_descriptor(ctx, instr, AC_DESC_IMAGE, false);
2588 get_image_coords(ctx, instr, &args, dim, is_array);
2589 args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array);
2590 args.dmask = 15;
2591 args.attributes = AC_FUNC_ATTR_READONLY;
2592
2593 res = ac_build_image_opcode(&ctx->ac, &args);
2594 }
2595 return res;
2596 }
2597
2598 static void visit_image_store(struct ac_nir_context *ctx,
2599 nir_intrinsic_instr *instr,
2600 bool bindless)
2601 {
2602
2603
2604 enum glsl_sampler_dim dim;
2605 enum gl_access_qualifier access;
2606 bool is_array;
2607 if (bindless) {
2608 dim = nir_intrinsic_image_dim(instr);
2609 access = nir_intrinsic_access(instr);
2610 is_array = nir_intrinsic_image_array(instr);
2611 } else {
2612 const nir_deref_instr *image_deref = get_image_deref(instr);
2613 const struct glsl_type *type = image_deref->type;
2614 const nir_variable *var = nir_deref_instr_get_variable(image_deref);
2615 dim = glsl_get_sampler_dim(type);
2616 access = var->data.access;
2617 is_array = glsl_sampler_type_is_array(type);
2618 }
2619
2620 bool writeonly_memory = access & ACCESS_NON_READABLE;
2621 struct ac_image_args args = {};
2622
2623 args.cache_policy = get_cache_policy(ctx, access, true, writeonly_memory);
2624
2625 if (dim == GLSL_SAMPLER_DIM_BUF) {
2626 LLVMValueRef rsrc = get_image_buffer_descriptor(ctx, instr, true, false);
2627 LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[3]));
2628 unsigned src_channels = ac_get_llvm_num_components(src);
2629 LLVMValueRef vindex;
2630
2631 if (src_channels == 3)
2632 src = ac_build_expand_to_vec4(&ctx->ac, src, 3);
2633
2634 vindex = LLVMBuildExtractElement(ctx->ac.builder,
2635 get_src(ctx, instr->src[1]),
2636 ctx->ac.i32_0, "");
2637
2638 ac_build_buffer_store_format(&ctx->ac, rsrc, src, vindex,
2639 ctx->ac.i32_0, src_channels,
2640 args.cache_policy);
2641 } else {
2642 args.opcode = ac_image_store;
2643 args.data[0] = ac_to_float(&ctx->ac, get_src(ctx, instr->src[3]));
2644 args.resource = get_image_descriptor(ctx, instr, AC_DESC_IMAGE, true);
2645 get_image_coords(ctx, instr, &args, dim, is_array);
2646 args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array);
2647 args.dmask = 15;
2648
2649 ac_build_image_opcode(&ctx->ac, &args);
2650 }
2651
2652 }
2653
2654 static LLVMValueRef visit_image_atomic(struct ac_nir_context *ctx,
2655 const nir_intrinsic_instr *instr,
2656 bool bindless)
2657 {
2658 LLVMValueRef params[7];
2659 int param_count = 0;
2660
2661 bool cmpswap = instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap ||
2662 instr->intrinsic == nir_intrinsic_bindless_image_atomic_comp_swap;
2663 const char *atomic_name;
2664 char intrinsic_name[64];
2665 enum ac_atomic_op atomic_subop;
2666 ASSERTED int length;
2667
2668 enum glsl_sampler_dim dim;
2669 bool is_array;
2670 if (bindless) {
2671 if (instr->intrinsic == nir_intrinsic_bindless_image_atomic_imin ||
2672 instr->intrinsic == nir_intrinsic_bindless_image_atomic_umin ||
2673 instr->intrinsic == nir_intrinsic_bindless_image_atomic_imax ||
2674 instr->intrinsic == nir_intrinsic_bindless_image_atomic_umax) {
2675 ASSERTED const GLenum format = nir_intrinsic_format(instr);
2676 assert(format == GL_R32UI || format == GL_R32I);
2677 }
2678 dim = nir_intrinsic_image_dim(instr);
2679 is_array = nir_intrinsic_image_array(instr);
2680 } else {
2681 const struct glsl_type *type = get_image_deref(instr)->type;
2682 dim = glsl_get_sampler_dim(type);
2683 is_array = glsl_sampler_type_is_array(type);
2684 }
2685
2686 switch (instr->intrinsic) {
2687 case nir_intrinsic_bindless_image_atomic_add:
2688 case nir_intrinsic_image_deref_atomic_add:
2689 atomic_name = "add";
2690 atomic_subop = ac_atomic_add;
2691 break;
2692 case nir_intrinsic_bindless_image_atomic_imin:
2693 case nir_intrinsic_image_deref_atomic_imin:
2694 atomic_name = "smin";
2695 atomic_subop = ac_atomic_smin;
2696 break;
2697 case nir_intrinsic_bindless_image_atomic_umin:
2698 case nir_intrinsic_image_deref_atomic_umin:
2699 atomic_name = "umin";
2700 atomic_subop = ac_atomic_umin;
2701 break;
2702 case nir_intrinsic_bindless_image_atomic_imax:
2703 case nir_intrinsic_image_deref_atomic_imax:
2704 atomic_name = "smax";
2705 atomic_subop = ac_atomic_smax;
2706 break;
2707 case nir_intrinsic_bindless_image_atomic_umax:
2708 case nir_intrinsic_image_deref_atomic_umax:
2709 atomic_name = "umax";
2710 atomic_subop = ac_atomic_umax;
2711 break;
2712 case nir_intrinsic_bindless_image_atomic_and:
2713 case nir_intrinsic_image_deref_atomic_and:
2714 atomic_name = "and";
2715 atomic_subop = ac_atomic_and;
2716 break;
2717 case nir_intrinsic_bindless_image_atomic_or:
2718 case nir_intrinsic_image_deref_atomic_or:
2719 atomic_name = "or";
2720 atomic_subop = ac_atomic_or;
2721 break;
2722 case nir_intrinsic_bindless_image_atomic_xor:
2723 case nir_intrinsic_image_deref_atomic_xor:
2724 atomic_name = "xor";
2725 atomic_subop = ac_atomic_xor;
2726 break;
2727 case nir_intrinsic_bindless_image_atomic_exchange:
2728 case nir_intrinsic_image_deref_atomic_exchange:
2729 atomic_name = "swap";
2730 atomic_subop = ac_atomic_swap;
2731 break;
2732 case nir_intrinsic_bindless_image_atomic_comp_swap:
2733 case nir_intrinsic_image_deref_atomic_comp_swap:
2734 atomic_name = "cmpswap";
2735 atomic_subop = 0; /* not used */
2736 break;
2737 case nir_intrinsic_bindless_image_atomic_inc_wrap:
2738 case nir_intrinsic_image_deref_atomic_inc_wrap: {
2739 atomic_name = "inc";
2740 atomic_subop = ac_atomic_inc_wrap;
2741 /* ATOMIC_INC instruction does:
2742 * value = (value + 1) % (data + 1)
2743 * but we want:
2744 * value = (value + 1) % data
2745 * So replace 'data' by 'data - 1'.
2746 */
2747 ctx->ssa_defs[instr->src[3].ssa->index] =
2748 LLVMBuildSub(ctx->ac.builder,
2749 ctx->ssa_defs[instr->src[3].ssa->index],
2750 ctx->ac.i32_1, "");
2751 break;
2752 }
2753 case nir_intrinsic_bindless_image_atomic_dec_wrap:
2754 case nir_intrinsic_image_deref_atomic_dec_wrap:
2755 atomic_name = "dec";
2756 atomic_subop = ac_atomic_dec_wrap;
2757 break;
2758 default:
2759 abort();
2760 }
2761
2762 if (cmpswap)
2763 params[param_count++] = get_src(ctx, instr->src[4]);
2764 params[param_count++] = get_src(ctx, instr->src[3]);
2765
2766 if (dim == GLSL_SAMPLER_DIM_BUF) {
2767 params[param_count++] = get_image_buffer_descriptor(ctx, instr, true, true);
2768 params[param_count++] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]),
2769 ctx->ac.i32_0, ""); /* vindex */
2770 params[param_count++] = ctx->ac.i32_0; /* voffset */
2771 if (LLVM_VERSION_MAJOR >= 9) {
2772 /* XXX: The new raw/struct atomic intrinsics are buggy
2773 * with LLVM 8, see r358579.
2774 */
2775 params[param_count++] = ctx->ac.i32_0; /* soffset */
2776 params[param_count++] = ctx->ac.i32_0; /* slc */
2777
2778 length = snprintf(intrinsic_name, sizeof(intrinsic_name),
2779 "llvm.amdgcn.struct.buffer.atomic.%s.i32", atomic_name);
2780 } else {
2781 params[param_count++] = ctx->ac.i1false; /* slc */
2782
2783 length = snprintf(intrinsic_name, sizeof(intrinsic_name),
2784 "llvm.amdgcn.buffer.atomic.%s", atomic_name);
2785 }
2786
2787 assert(length < sizeof(intrinsic_name));
2788 return ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.i32,
2789 params, param_count, 0);
2790 } else {
2791 struct ac_image_args args = {};
2792 args.opcode = cmpswap ? ac_image_atomic_cmpswap : ac_image_atomic;
2793 args.atomic = atomic_subop;
2794 args.data[0] = params[0];
2795 if (cmpswap)
2796 args.data[1] = params[1];
2797 args.resource = get_image_descriptor(ctx, instr, AC_DESC_IMAGE, true);
2798 get_image_coords(ctx, instr, &args, dim, is_array);
2799 args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array);
2800
2801 return ac_build_image_opcode(&ctx->ac, &args);
2802 }
2803 }
2804
2805 static LLVMValueRef visit_image_samples(struct ac_nir_context *ctx,
2806 const nir_intrinsic_instr *instr)
2807 {
2808 LLVMValueRef rsrc = get_image_descriptor(ctx, instr, AC_DESC_IMAGE, false);
2809
2810 return ac_build_image_get_sample_count(&ctx->ac, rsrc);
2811 }
2812
2813 static LLVMValueRef visit_image_size(struct ac_nir_context *ctx,
2814 const nir_intrinsic_instr *instr,
2815 bool bindless)
2816 {
2817 LLVMValueRef res;
2818
2819 enum glsl_sampler_dim dim;
2820 bool is_array;
2821 if (bindless) {
2822 dim = nir_intrinsic_image_dim(instr);
2823 is_array = nir_intrinsic_image_array(instr);
2824 } else {
2825 const struct glsl_type *type = get_image_deref(instr)->type;
2826 dim = glsl_get_sampler_dim(type);
2827 is_array = glsl_sampler_type_is_array(type);
2828 }
2829
2830 if (dim == GLSL_SAMPLER_DIM_BUF)
2831 return get_buffer_size(ctx, get_image_descriptor(ctx, instr, AC_DESC_BUFFER, false), true);
2832
2833 struct ac_image_args args = { 0 };
2834
2835 args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array);
2836 args.dmask = 0xf;
2837 args.resource = get_image_descriptor(ctx, instr, AC_DESC_IMAGE, false);
2838 args.opcode = ac_image_get_resinfo;
2839 args.lod = ctx->ac.i32_0;
2840 args.attributes = AC_FUNC_ATTR_READNONE;
2841
2842 res = ac_build_image_opcode(&ctx->ac, &args);
2843
2844 LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
2845
2846 if (dim == GLSL_SAMPLER_DIM_CUBE && is_array) {
2847 LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
2848 LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
2849 z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
2850 res = LLVMBuildInsertElement(ctx->ac.builder, res, z, two, "");
2851 }
2852 if (ctx->ac.chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D && is_array) {
2853 LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
2854 res = LLVMBuildInsertElement(ctx->ac.builder, res, layers,
2855 ctx->ac.i32_1, "");
2856
2857 }
2858 return res;
2859 }
2860
2861 static void emit_membar(struct ac_llvm_context *ac,
2862 const nir_intrinsic_instr *instr)
2863 {
2864 unsigned wait_flags = 0;
2865
2866 switch (instr->intrinsic) {
2867 case nir_intrinsic_memory_barrier:
2868 case nir_intrinsic_group_memory_barrier:
2869 wait_flags = AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE;
2870 break;
2871 case nir_intrinsic_memory_barrier_atomic_counter:
2872 case nir_intrinsic_memory_barrier_buffer:
2873 case nir_intrinsic_memory_barrier_image:
2874 wait_flags = AC_WAIT_VLOAD | AC_WAIT_VSTORE;
2875 break;
2876 case nir_intrinsic_memory_barrier_shared:
2877 wait_flags = AC_WAIT_LGKM;
2878 break;
2879 default:
2880 break;
2881 }
2882
2883 ac_build_waitcnt(ac, wait_flags);
2884 }
2885
2886 void ac_emit_barrier(struct ac_llvm_context *ac, gl_shader_stage stage)
2887 {
2888 /* GFX6 only (thanks to a hw bug workaround):
2889 * The real barrier instruction isn’t needed, because an entire patch
2890 * always fits into a single wave.
2891 */
2892 if (ac->chip_class == GFX6 && stage == MESA_SHADER_TESS_CTRL) {
2893 ac_build_waitcnt(ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE);
2894 return;
2895 }
2896 ac_build_s_barrier(ac);
2897 }
2898
2899 static void emit_discard(struct ac_nir_context *ctx,
2900 const nir_intrinsic_instr *instr)
2901 {
2902 LLVMValueRef cond;
2903
2904 if (instr->intrinsic == nir_intrinsic_discard_if) {
2905 cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
2906 get_src(ctx, instr->src[0]),
2907 ctx->ac.i32_0, "");
2908 } else {
2909 assert(instr->intrinsic == nir_intrinsic_discard);
2910 cond = ctx->ac.i1false;
2911 }
2912
2913 ctx->abi->emit_kill(ctx->abi, cond);
2914 }
2915
2916 static LLVMValueRef
2917 visit_load_local_invocation_index(struct ac_nir_context *ctx)
2918 {
2919 LLVMValueRef result;
2920 LLVMValueRef thread_id = ac_get_thread_id(&ctx->ac);
2921 result = LLVMBuildAnd(ctx->ac.builder,
2922 ac_get_arg(&ctx->ac, ctx->args->tg_size),
2923 LLVMConstInt(ctx->ac.i32, 0xfc0, false), "");
2924
2925 if (ctx->ac.wave_size == 32)
2926 result = LLVMBuildLShr(ctx->ac.builder, result,
2927 LLVMConstInt(ctx->ac.i32, 1, false), "");
2928
2929 return LLVMBuildAdd(ctx->ac.builder, result, thread_id, "");
2930 }
2931
2932 static LLVMValueRef
2933 visit_load_subgroup_id(struct ac_nir_context *ctx)
2934 {
2935 if (ctx->stage == MESA_SHADER_COMPUTE) {
2936 LLVMValueRef result;
2937 result = LLVMBuildAnd(ctx->ac.builder,
2938 ac_get_arg(&ctx->ac, ctx->args->tg_size),
2939 LLVMConstInt(ctx->ac.i32, 0xfc0, false), "");
2940 return LLVMBuildLShr(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 6, false), "");
2941 } else {
2942 return LLVMConstInt(ctx->ac.i32, 0, false);
2943 }
2944 }
2945
2946 static LLVMValueRef
2947 visit_load_num_subgroups(struct ac_nir_context *ctx)
2948 {
2949 if (ctx->stage == MESA_SHADER_COMPUTE) {
2950 return LLVMBuildAnd(ctx->ac.builder,
2951 ac_get_arg(&ctx->ac, ctx->args->tg_size),
2952 LLVMConstInt(ctx->ac.i32, 0x3f, false), "");
2953 } else {
2954 return LLVMConstInt(ctx->ac.i32, 1, false);
2955 }
2956 }
2957
2958 static LLVMValueRef
2959 visit_first_invocation(struct ac_nir_context *ctx)
2960 {
2961 LLVMValueRef active_set = ac_build_ballot(&ctx->ac, ctx->ac.i32_1);
2962 const char *intr = ctx->ac.wave_size == 32 ? "llvm.cttz.i32" : "llvm.cttz.i64";
2963
2964 /* The second argument is whether cttz(0) should be defined, but we do not care. */
2965 LLVMValueRef args[] = {active_set, ctx->ac.i1false};
2966 LLVMValueRef result = ac_build_intrinsic(&ctx->ac, intr,
2967 ctx->ac.iN_wavemask, args, 2,
2968 AC_FUNC_ATTR_NOUNWIND |
2969 AC_FUNC_ATTR_READNONE);
2970
2971 return LLVMBuildTrunc(ctx->ac.builder, result, ctx->ac.i32, "");
2972 }
2973
2974 static LLVMValueRef
2975 visit_load_shared(struct ac_nir_context *ctx,
2976 const nir_intrinsic_instr *instr)
2977 {
2978 LLVMValueRef values[4], derived_ptr, index, ret;
2979
2980 LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[0],
2981 instr->dest.ssa.bit_size);
2982
2983 for (int chan = 0; chan < instr->num_components; chan++) {
2984 index = LLVMConstInt(ctx->ac.i32, chan, 0);
2985 derived_ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &index, 1, "");
2986 values[chan] = LLVMBuildLoad(ctx->ac.builder, derived_ptr, "");
2987 }
2988
2989 ret = ac_build_gather_values(&ctx->ac, values, instr->num_components);
2990 return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
2991 }
2992
2993 static void
2994 visit_store_shared(struct ac_nir_context *ctx,
2995 const nir_intrinsic_instr *instr)
2996 {
2997 LLVMValueRef derived_ptr, data,index;
2998 LLVMBuilderRef builder = ctx->ac.builder;
2999
3000 LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[1],
3001 instr->src[0].ssa->bit_size);
3002 LLVMValueRef src = get_src(ctx, instr->src[0]);
3003
3004 int writemask = nir_intrinsic_write_mask(instr);
3005 for (int chan = 0; chan < 4; chan++) {
3006 if (!(writemask & (1 << chan))) {
3007 continue;
3008 }
3009 data = ac_llvm_extract_elem(&ctx->ac, src, chan);
3010 index = LLVMConstInt(ctx->ac.i32, chan, 0);
3011 derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
3012 LLVMBuildStore(builder, data, derived_ptr);
3013 }
3014 }
3015
3016 static LLVMValueRef visit_var_atomic(struct ac_nir_context *ctx,
3017 const nir_intrinsic_instr *instr,
3018 LLVMValueRef ptr, int src_idx)
3019 {
3020 LLVMValueRef result;
3021 LLVMValueRef src = get_src(ctx, instr->src[src_idx]);
3022
3023 const char *sync_scope = LLVM_VERSION_MAJOR >= 9 ? "workgroup-one-as" : "workgroup";
3024
3025 nir_deref_instr *deref = nir_instr_as_deref(instr->src[0].ssa->parent_instr);
3026 if (deref->mode == nir_var_mem_global) {
3027 LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(src), LLVMGetPointerAddressSpace(LLVMTypeOf(ptr)));
3028 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ptr_type , "");
3029 }
3030
3031 if (instr->intrinsic == nir_intrinsic_shared_atomic_comp_swap ||
3032 instr->intrinsic == nir_intrinsic_deref_atomic_comp_swap) {
3033 LLVMValueRef src1 = get_src(ctx, instr->src[src_idx + 1]);
3034 result = ac_build_atomic_cmp_xchg(&ctx->ac, ptr, src, src1, sync_scope);
3035 result = LLVMBuildExtractValue(ctx->ac.builder, result, 0, "");
3036 } else {
3037 LLVMAtomicRMWBinOp op;
3038 switch (instr->intrinsic) {
3039 case nir_intrinsic_shared_atomic_add:
3040 case nir_intrinsic_deref_atomic_add:
3041 op = LLVMAtomicRMWBinOpAdd;
3042 break;
3043 case nir_intrinsic_shared_atomic_umin:
3044 case nir_intrinsic_deref_atomic_umin:
3045 op = LLVMAtomicRMWBinOpUMin;
3046 break;
3047 case nir_intrinsic_shared_atomic_umax:
3048 case nir_intrinsic_deref_atomic_umax:
3049 op = LLVMAtomicRMWBinOpUMax;
3050 break;
3051 case nir_intrinsic_shared_atomic_imin:
3052 case nir_intrinsic_deref_atomic_imin:
3053 op = LLVMAtomicRMWBinOpMin;
3054 break;
3055 case nir_intrinsic_shared_atomic_imax:
3056 case nir_intrinsic_deref_atomic_imax:
3057 op = LLVMAtomicRMWBinOpMax;
3058 break;
3059 case nir_intrinsic_shared_atomic_and:
3060 case nir_intrinsic_deref_atomic_and:
3061 op = LLVMAtomicRMWBinOpAnd;
3062 break;
3063 case nir_intrinsic_shared_atomic_or:
3064 case nir_intrinsic_deref_atomic_or:
3065 op = LLVMAtomicRMWBinOpOr;
3066 break;
3067 case nir_intrinsic_shared_atomic_xor:
3068 case nir_intrinsic_deref_atomic_xor:
3069 op = LLVMAtomicRMWBinOpXor;
3070 break;
3071 case nir_intrinsic_shared_atomic_exchange:
3072 case nir_intrinsic_deref_atomic_exchange:
3073 op = LLVMAtomicRMWBinOpXchg;
3074 break;
3075 default:
3076 return NULL;
3077 }
3078
3079 result = ac_build_atomic_rmw(&ctx->ac, op, ptr, ac_to_integer(&ctx->ac, src), sync_scope);
3080 }
3081 return result;
3082 }
3083
3084 static LLVMValueRef load_sample_pos(struct ac_nir_context *ctx)
3085 {
3086 LLVMValueRef values[2];
3087 LLVMValueRef pos[2];
3088
3089 pos[0] = ac_to_float(&ctx->ac,
3090 ac_get_arg(&ctx->ac, ctx->args->frag_pos[0]));
3091 pos[1] = ac_to_float(&ctx->ac,
3092 ac_get_arg(&ctx->ac, ctx->args->frag_pos[1]));
3093
3094 values[0] = ac_build_fract(&ctx->ac, pos[0], 32);
3095 values[1] = ac_build_fract(&ctx->ac, pos[1], 32);
3096 return ac_build_gather_values(&ctx->ac, values, 2);
3097 }
3098
3099 static LLVMValueRef lookup_interp_param(struct ac_nir_context *ctx,
3100 enum glsl_interp_mode interp, unsigned location)
3101 {
3102 switch (interp) {
3103 case INTERP_MODE_FLAT:
3104 default:
3105 return NULL;
3106 case INTERP_MODE_SMOOTH:
3107 case INTERP_MODE_NONE:
3108 if (location == INTERP_CENTER)
3109 return ac_get_arg(&ctx->ac, ctx->args->persp_center);
3110 else if (location == INTERP_CENTROID)
3111 return ctx->abi->persp_centroid;
3112 else if (location == INTERP_SAMPLE)
3113 return ac_get_arg(&ctx->ac, ctx->args->persp_sample);
3114 break;
3115 case INTERP_MODE_NOPERSPECTIVE:
3116 if (location == INTERP_CENTER)
3117 return ac_get_arg(&ctx->ac, ctx->args->linear_center);
3118 else if (location == INTERP_CENTROID)
3119 return ctx->abi->linear_centroid;
3120 else if (location == INTERP_SAMPLE)
3121 return ac_get_arg(&ctx->ac, ctx->args->linear_sample);
3122 break;
3123 }
3124 return NULL;
3125 }
3126
3127 static LLVMValueRef barycentric_center(struct ac_nir_context *ctx,
3128 unsigned mode)
3129 {
3130 LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTER);
3131 return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
3132 }
3133
3134 static LLVMValueRef barycentric_offset(struct ac_nir_context *ctx,
3135 unsigned mode,
3136 LLVMValueRef offset)
3137 {
3138 LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTER);
3139 LLVMValueRef src_c0 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, offset, ctx->ac.i32_0, ""));
3140 LLVMValueRef src_c1 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, offset, ctx->ac.i32_1, ""));
3141
3142 LLVMValueRef ij_out[2];
3143 LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param);
3144
3145 /*
3146 * take the I then J parameters, and the DDX/Y for it, and
3147 * calculate the IJ inputs for the interpolator.
3148 * temp1 = ddx * offset/sample.x + I;
3149 * interp_param.I = ddy * offset/sample.y + temp1;
3150 * temp1 = ddx * offset/sample.x + J;
3151 * interp_param.J = ddy * offset/sample.y + temp1;
3152 */
3153 for (unsigned i = 0; i < 2; i++) {
3154 LLVMValueRef ix_ll = LLVMConstInt(ctx->ac.i32, i, false);
3155 LLVMValueRef iy_ll = LLVMConstInt(ctx->ac.i32, i + 2, false);
3156 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
3157 ddxy_out, ix_ll, "");
3158 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
3159 ddxy_out, iy_ll, "");
3160 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
3161 interp_param, ix_ll, "");
3162 LLVMValueRef temp1, temp2;
3163
3164 interp_el = LLVMBuildBitCast(ctx->ac.builder, interp_el,
3165 ctx->ac.f32, "");
3166
3167 temp1 = ac_build_fmad(&ctx->ac, ddx_el, src_c0, interp_el);
3168 temp2 = ac_build_fmad(&ctx->ac, ddy_el, src_c1, temp1);
3169
3170 ij_out[i] = LLVMBuildBitCast(ctx->ac.builder,
3171 temp2, ctx->ac.i32, "");
3172 }
3173 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
3174 return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
3175 }
3176
3177 static LLVMValueRef barycentric_centroid(struct ac_nir_context *ctx,
3178 unsigned mode)
3179 {
3180 LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTROID);
3181 return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
3182 }
3183
3184 static LLVMValueRef barycentric_at_sample(struct ac_nir_context *ctx,
3185 unsigned mode,
3186 LLVMValueRef sample_id)
3187 {
3188 if (ctx->abi->interp_at_sample_force_center)
3189 return barycentric_center(ctx, mode);
3190
3191 LLVMValueRef halfval = LLVMConstReal(ctx->ac.f32, 0.5f);
3192
3193 /* fetch sample ID */
3194 LLVMValueRef sample_pos = ctx->abi->load_sample_position(ctx->abi, sample_id);
3195
3196 LLVMValueRef src_c0 = LLVMBuildExtractElement(ctx->ac.builder, sample_pos, ctx->ac.i32_0, "");
3197 src_c0 = LLVMBuildFSub(ctx->ac.builder, src_c0, halfval, "");
3198 LLVMValueRef src_c1 = LLVMBuildExtractElement(ctx->ac.builder, sample_pos, ctx->ac.i32_1, "");
3199 src_c1 = LLVMBuildFSub(ctx->ac.builder, src_c1, halfval, "");
3200 LLVMValueRef coords[] = { src_c0, src_c1 };
3201 LLVMValueRef offset = ac_build_gather_values(&ctx->ac, coords, 2);
3202
3203 return barycentric_offset(ctx, mode, offset);
3204 }
3205
3206
3207 static LLVMValueRef barycentric_sample(struct ac_nir_context *ctx,
3208 unsigned mode)
3209 {
3210 LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_SAMPLE);
3211 return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
3212 }
3213
3214 static LLVMValueRef load_interpolated_input(struct ac_nir_context *ctx,
3215 LLVMValueRef interp_param,
3216 unsigned index, unsigned comp_start,
3217 unsigned num_components,
3218 unsigned bitsize)
3219 {
3220 LLVMValueRef attr_number = LLVMConstInt(ctx->ac.i32, index, false);
3221
3222 interp_param = LLVMBuildBitCast(ctx->ac.builder,
3223 interp_param, ctx->ac.v2f32, "");
3224 LLVMValueRef i = LLVMBuildExtractElement(
3225 ctx->ac.builder, interp_param, ctx->ac.i32_0, "");
3226 LLVMValueRef j = LLVMBuildExtractElement(
3227 ctx->ac.builder, interp_param, ctx->ac.i32_1, "");
3228
3229 LLVMValueRef values[4];
3230 assert(bitsize == 16 || bitsize == 32);
3231 for (unsigned comp = 0; comp < num_components; comp++) {
3232 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, comp_start + comp, false);
3233 if (bitsize == 16) {
3234 values[comp] = ac_build_fs_interp_f16(&ctx->ac, llvm_chan, attr_number,
3235 ac_get_arg(&ctx->ac, ctx->args->prim_mask), i, j);
3236 } else {
3237 values[comp] = ac_build_fs_interp(&ctx->ac, llvm_chan, attr_number,
3238 ac_get_arg(&ctx->ac, ctx->args->prim_mask), i, j);
3239 }
3240 }
3241
3242 return ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, num_components));
3243 }
3244
3245 static LLVMValueRef load_flat_input(struct ac_nir_context *ctx,
3246 unsigned index, unsigned comp_start,
3247 unsigned num_components,
3248 unsigned bit_size)
3249 {
3250 LLVMValueRef attr_number = LLVMConstInt(ctx->ac.i32, index, false);
3251
3252 LLVMValueRef values[8];
3253
3254 /* Each component of a 64-bit value takes up two GL-level channels. */
3255 unsigned channels =
3256 bit_size == 64 ? num_components * 2 : num_components;
3257
3258 for (unsigned chan = 0; chan < channels; chan++) {
3259 if (comp_start + chan > 4)
3260 attr_number = LLVMConstInt(ctx->ac.i32, index + 1, false);
3261 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, (comp_start + chan) % 4, false);
3262 values[chan] = ac_build_fs_interp_mov(&ctx->ac,
3263 LLVMConstInt(ctx->ac.i32, 2, false),
3264 llvm_chan,
3265 attr_number,
3266 ac_get_arg(&ctx->ac, ctx->args->prim_mask));
3267 values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i32, "");
3268 values[chan] = LLVMBuildTruncOrBitCast(ctx->ac.builder, values[chan],
3269 bit_size == 16 ? ctx->ac.i16 : ctx->ac.i32, "");
3270 }
3271
3272 LLVMValueRef result = ac_build_gather_values(&ctx->ac, values, channels);
3273 if (bit_size == 64) {
3274 LLVMTypeRef type = num_components == 1 ? ctx->ac.i64 :
3275 LLVMVectorType(ctx->ac.i64, num_components);
3276 result = LLVMBuildBitCast(ctx->ac.builder, result, type, "");
3277 }
3278 return result;
3279 }
3280
3281 static void visit_intrinsic(struct ac_nir_context *ctx,
3282 nir_intrinsic_instr *instr)
3283 {
3284 LLVMValueRef result = NULL;
3285
3286 switch (instr->intrinsic) {
3287 case nir_intrinsic_ballot:
3288 result = ac_build_ballot(&ctx->ac, get_src(ctx, instr->src[0]));
3289 if (ctx->ac.ballot_mask_bits > ctx->ac.wave_size)
3290 result = LLVMBuildZExt(ctx->ac.builder, result, ctx->ac.iN_ballotmask, "");
3291 break;
3292 case nir_intrinsic_read_invocation:
3293 result = ac_build_readlane(&ctx->ac, get_src(ctx, instr->src[0]),
3294 get_src(ctx, instr->src[1]));
3295 break;
3296 case nir_intrinsic_read_first_invocation:
3297 result = ac_build_readlane(&ctx->ac, get_src(ctx, instr->src[0]), NULL);
3298 break;
3299 case nir_intrinsic_load_subgroup_invocation:
3300 result = ac_get_thread_id(&ctx->ac);
3301 break;
3302 case nir_intrinsic_load_work_group_id: {
3303 LLVMValueRef values[3];
3304
3305 for (int i = 0; i < 3; i++) {
3306 values[i] = ctx->args->workgroup_ids[i].used ?
3307 ac_get_arg(&ctx->ac, ctx->args->workgroup_ids[i]) : ctx->ac.i32_0;
3308 }
3309
3310 result = ac_build_gather_values(&ctx->ac, values, 3);
3311 break;
3312 }
3313 case nir_intrinsic_load_base_vertex:
3314 case nir_intrinsic_load_first_vertex:
3315 result = ctx->abi->load_base_vertex(ctx->abi);
3316 break;
3317 case nir_intrinsic_load_local_group_size:
3318 result = ctx->abi->load_local_group_size(ctx->abi);
3319 break;
3320 case nir_intrinsic_load_vertex_id:
3321 result = LLVMBuildAdd(ctx->ac.builder,
3322 ac_get_arg(&ctx->ac, ctx->args->vertex_id),
3323 ac_get_arg(&ctx->ac, ctx->args->base_vertex), "");
3324 break;
3325 case nir_intrinsic_load_vertex_id_zero_base: {
3326 result = ctx->abi->vertex_id;
3327 break;
3328 }
3329 case nir_intrinsic_load_local_invocation_id: {
3330 result = ac_get_arg(&ctx->ac, ctx->args->local_invocation_ids);
3331 break;
3332 }
3333 case nir_intrinsic_load_base_instance:
3334 result = ac_get_arg(&ctx->ac, ctx->args->start_instance);
3335 break;
3336 case nir_intrinsic_load_draw_id:
3337 result = ac_get_arg(&ctx->ac, ctx->args->draw_id);
3338 break;
3339 case nir_intrinsic_load_view_index:
3340 result = ac_get_arg(&ctx->ac, ctx->args->view_index);
3341 break;
3342 case nir_intrinsic_load_invocation_id:
3343 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
3344 result = ac_unpack_param(&ctx->ac,
3345 ac_get_arg(&ctx->ac, ctx->args->tcs_rel_ids),
3346 8, 5);
3347 } else {
3348 if (ctx->ac.chip_class >= GFX10) {
3349 result = LLVMBuildAnd(ctx->ac.builder,
3350 ac_get_arg(&ctx->ac, ctx->args->gs_invocation_id),
3351 LLVMConstInt(ctx->ac.i32, 127, 0), "");
3352 } else {
3353 result = ac_get_arg(&ctx->ac, ctx->args->gs_invocation_id);
3354 }
3355 }
3356 break;
3357 case nir_intrinsic_load_primitive_id:
3358 if (ctx->stage == MESA_SHADER_GEOMETRY) {
3359 result = ac_get_arg(&ctx->ac, ctx->args->gs_prim_id);
3360 } else if (ctx->stage == MESA_SHADER_TESS_CTRL) {
3361 result = ac_get_arg(&ctx->ac, ctx->args->tcs_patch_id);
3362 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
3363 result = ac_get_arg(&ctx->ac, ctx->args->tes_patch_id);
3364 } else
3365 fprintf(stderr, "Unknown primitive id intrinsic: %d", ctx->stage);
3366 break;
3367 case nir_intrinsic_load_sample_id:
3368 result = ac_unpack_param(&ctx->ac,
3369 ac_get_arg(&ctx->ac, ctx->args->ancillary),
3370 8, 4);
3371 break;
3372 case nir_intrinsic_load_sample_pos:
3373 result = load_sample_pos(ctx);
3374 break;
3375 case nir_intrinsic_load_sample_mask_in:
3376 result = ctx->abi->load_sample_mask_in(ctx->abi);
3377 break;
3378 case nir_intrinsic_load_frag_coord: {
3379 LLVMValueRef values[4] = {
3380 ac_get_arg(&ctx->ac, ctx->args->frag_pos[0]),
3381 ac_get_arg(&ctx->ac, ctx->args->frag_pos[1]),
3382 ac_get_arg(&ctx->ac, ctx->args->frag_pos[2]),
3383 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
3384 ac_get_arg(&ctx->ac, ctx->args->frag_pos[3]))
3385 };
3386 result = ac_to_integer(&ctx->ac,
3387 ac_build_gather_values(&ctx->ac, values, 4));
3388 break;
3389 }
3390 case nir_intrinsic_load_layer_id:
3391 result = ctx->abi->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
3392 break;
3393 case nir_intrinsic_load_front_face:
3394 result = ac_get_arg(&ctx->ac, ctx->args->front_face);
3395 break;
3396 case nir_intrinsic_load_helper_invocation:
3397 result = ac_build_load_helper_invocation(&ctx->ac);
3398 break;
3399 case nir_intrinsic_load_color0:
3400 result = ctx->abi->color0;
3401 break;
3402 case nir_intrinsic_load_color1:
3403 result = ctx->abi->color1;
3404 break;
3405 case nir_intrinsic_load_user_data_amd:
3406 assert(LLVMTypeOf(ctx->abi->user_data) == ctx->ac.v4i32);
3407 result = ctx->abi->user_data;
3408 break;
3409 case nir_intrinsic_load_instance_id:
3410 result = ctx->abi->instance_id;
3411 break;
3412 case nir_intrinsic_load_num_work_groups:
3413 result = ac_get_arg(&ctx->ac, ctx->args->num_work_groups);
3414 break;
3415 case nir_intrinsic_load_local_invocation_index:
3416 result = visit_load_local_invocation_index(ctx);
3417 break;
3418 case nir_intrinsic_load_subgroup_id:
3419 result = visit_load_subgroup_id(ctx);
3420 break;
3421 case nir_intrinsic_load_num_subgroups:
3422 result = visit_load_num_subgroups(ctx);
3423 break;
3424 case nir_intrinsic_first_invocation:
3425 result = visit_first_invocation(ctx);
3426 break;
3427 case nir_intrinsic_load_push_constant:
3428 result = visit_load_push_constant(ctx, instr);
3429 break;
3430 case nir_intrinsic_vulkan_resource_index: {
3431 LLVMValueRef index = get_src(ctx, instr->src[0]);
3432 unsigned desc_set = nir_intrinsic_desc_set(instr);
3433 unsigned binding = nir_intrinsic_binding(instr);
3434
3435 result = ctx->abi->load_resource(ctx->abi, index, desc_set,
3436 binding);
3437 break;
3438 }
3439 case nir_intrinsic_vulkan_resource_reindex:
3440 result = visit_vulkan_resource_reindex(ctx, instr);
3441 break;
3442 case nir_intrinsic_store_ssbo:
3443 visit_store_ssbo(ctx, instr);
3444 break;
3445 case nir_intrinsic_load_ssbo:
3446 result = visit_load_buffer(ctx, instr);
3447 break;
3448 case nir_intrinsic_ssbo_atomic_add:
3449 case nir_intrinsic_ssbo_atomic_imin:
3450 case nir_intrinsic_ssbo_atomic_umin:
3451 case nir_intrinsic_ssbo_atomic_imax:
3452 case nir_intrinsic_ssbo_atomic_umax:
3453 case nir_intrinsic_ssbo_atomic_and:
3454 case nir_intrinsic_ssbo_atomic_or:
3455 case nir_intrinsic_ssbo_atomic_xor:
3456 case nir_intrinsic_ssbo_atomic_exchange:
3457 case nir_intrinsic_ssbo_atomic_comp_swap:
3458 result = visit_atomic_ssbo(ctx, instr);
3459 break;
3460 case nir_intrinsic_load_ubo:
3461 result = visit_load_ubo_buffer(ctx, instr);
3462 break;
3463 case nir_intrinsic_get_buffer_size:
3464 result = visit_get_buffer_size(ctx, instr);
3465 break;
3466 case nir_intrinsic_load_deref:
3467 result = visit_load_var(ctx, instr);
3468 break;
3469 case nir_intrinsic_store_deref:
3470 visit_store_var(ctx, instr);
3471 break;
3472 case nir_intrinsic_load_shared:
3473 result = visit_load_shared(ctx, instr);
3474 break;
3475 case nir_intrinsic_store_shared:
3476 visit_store_shared(ctx, instr);
3477 break;
3478 case nir_intrinsic_bindless_image_samples:
3479 case nir_intrinsic_image_deref_samples:
3480 result = visit_image_samples(ctx, instr);
3481 break;
3482 case nir_intrinsic_bindless_image_load:
3483 result = visit_image_load(ctx, instr, true);
3484 break;
3485 case nir_intrinsic_image_deref_load:
3486 result = visit_image_load(ctx, instr, false);
3487 break;
3488 case nir_intrinsic_bindless_image_store:
3489 visit_image_store(ctx, instr, true);
3490 break;
3491 case nir_intrinsic_image_deref_store:
3492 visit_image_store(ctx, instr, false);
3493 break;
3494 case nir_intrinsic_bindless_image_atomic_add:
3495 case nir_intrinsic_bindless_image_atomic_imin:
3496 case nir_intrinsic_bindless_image_atomic_umin:
3497 case nir_intrinsic_bindless_image_atomic_imax:
3498 case nir_intrinsic_bindless_image_atomic_umax:
3499 case nir_intrinsic_bindless_image_atomic_and:
3500 case nir_intrinsic_bindless_image_atomic_or:
3501 case nir_intrinsic_bindless_image_atomic_xor:
3502 case nir_intrinsic_bindless_image_atomic_exchange:
3503 case nir_intrinsic_bindless_image_atomic_comp_swap:
3504 case nir_intrinsic_bindless_image_atomic_inc_wrap:
3505 case nir_intrinsic_bindless_image_atomic_dec_wrap:
3506 result = visit_image_atomic(ctx, instr, true);
3507 break;
3508 case nir_intrinsic_image_deref_atomic_add:
3509 case nir_intrinsic_image_deref_atomic_imin:
3510 case nir_intrinsic_image_deref_atomic_umin:
3511 case nir_intrinsic_image_deref_atomic_imax:
3512 case nir_intrinsic_image_deref_atomic_umax:
3513 case nir_intrinsic_image_deref_atomic_and:
3514 case nir_intrinsic_image_deref_atomic_or:
3515 case nir_intrinsic_image_deref_atomic_xor:
3516 case nir_intrinsic_image_deref_atomic_exchange:
3517 case nir_intrinsic_image_deref_atomic_comp_swap:
3518 case nir_intrinsic_image_deref_atomic_inc_wrap:
3519 case nir_intrinsic_image_deref_atomic_dec_wrap:
3520 result = visit_image_atomic(ctx, instr, false);
3521 break;
3522 case nir_intrinsic_bindless_image_size:
3523 result = visit_image_size(ctx, instr, true);
3524 break;
3525 case nir_intrinsic_image_deref_size:
3526 result = visit_image_size(ctx, instr, false);
3527 break;
3528 case nir_intrinsic_shader_clock:
3529 result = ac_build_shader_clock(&ctx->ac);
3530 break;
3531 case nir_intrinsic_discard:
3532 case nir_intrinsic_discard_if:
3533 emit_discard(ctx, instr);
3534 break;
3535 case nir_intrinsic_memory_barrier:
3536 case nir_intrinsic_group_memory_barrier:
3537 case nir_intrinsic_memory_barrier_atomic_counter:
3538 case nir_intrinsic_memory_barrier_buffer:
3539 case nir_intrinsic_memory_barrier_image:
3540 case nir_intrinsic_memory_barrier_shared:
3541 emit_membar(&ctx->ac, instr);
3542 break;
3543 case nir_intrinsic_barrier:
3544 ac_emit_barrier(&ctx->ac, ctx->stage);
3545 break;
3546 case nir_intrinsic_shared_atomic_add:
3547 case nir_intrinsic_shared_atomic_imin:
3548 case nir_intrinsic_shared_atomic_umin:
3549 case nir_intrinsic_shared_atomic_imax:
3550 case nir_intrinsic_shared_atomic_umax:
3551 case nir_intrinsic_shared_atomic_and:
3552 case nir_intrinsic_shared_atomic_or:
3553 case nir_intrinsic_shared_atomic_xor:
3554 case nir_intrinsic_shared_atomic_exchange:
3555 case nir_intrinsic_shared_atomic_comp_swap: {
3556 LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[0],
3557 instr->src[1].ssa->bit_size);
3558 result = visit_var_atomic(ctx, instr, ptr, 1);
3559 break;
3560 }
3561 case nir_intrinsic_deref_atomic_add:
3562 case nir_intrinsic_deref_atomic_imin:
3563 case nir_intrinsic_deref_atomic_umin:
3564 case nir_intrinsic_deref_atomic_imax:
3565 case nir_intrinsic_deref_atomic_umax:
3566 case nir_intrinsic_deref_atomic_and:
3567 case nir_intrinsic_deref_atomic_or:
3568 case nir_intrinsic_deref_atomic_xor:
3569 case nir_intrinsic_deref_atomic_exchange:
3570 case nir_intrinsic_deref_atomic_comp_swap: {
3571 LLVMValueRef ptr = get_src(ctx, instr->src[0]);
3572 result = visit_var_atomic(ctx, instr, ptr, 1);
3573 break;
3574 }
3575 case nir_intrinsic_load_barycentric_pixel:
3576 result = barycentric_center(ctx, nir_intrinsic_interp_mode(instr));
3577 break;
3578 case nir_intrinsic_load_barycentric_centroid:
3579 result = barycentric_centroid(ctx, nir_intrinsic_interp_mode(instr));
3580 break;
3581 case nir_intrinsic_load_barycentric_sample:
3582 result = barycentric_sample(ctx, nir_intrinsic_interp_mode(instr));
3583 break;
3584 case nir_intrinsic_load_barycentric_at_offset: {
3585 LLVMValueRef offset = ac_to_float(&ctx->ac, get_src(ctx, instr->src[0]));
3586 result = barycentric_offset(ctx, nir_intrinsic_interp_mode(instr), offset);
3587 break;
3588 }
3589 case nir_intrinsic_load_barycentric_at_sample: {
3590 LLVMValueRef sample_id = get_src(ctx, instr->src[0]);
3591 result = barycentric_at_sample(ctx, nir_intrinsic_interp_mode(instr), sample_id);
3592 break;
3593 }
3594 case nir_intrinsic_load_interpolated_input: {
3595 /* We assume any indirect loads have been lowered away */
3596 ASSERTED nir_const_value *offset = nir_src_as_const_value(instr->src[1]);
3597 assert(offset);
3598 assert(offset[0].i32 == 0);
3599
3600 LLVMValueRef interp_param = get_src(ctx, instr->src[0]);
3601 unsigned index = nir_intrinsic_base(instr);
3602 unsigned component = nir_intrinsic_component(instr);
3603 result = load_interpolated_input(ctx, interp_param, index,
3604 component,
3605 instr->dest.ssa.num_components,
3606 instr->dest.ssa.bit_size);
3607 break;
3608 }
3609 case nir_intrinsic_load_input: {
3610 /* We only lower inputs for fragment shaders ATM */
3611 ASSERTED nir_const_value *offset = nir_src_as_const_value(instr->src[0]);
3612 assert(offset);
3613 assert(offset[0].i32 == 0);
3614
3615 unsigned index = nir_intrinsic_base(instr);
3616 unsigned component = nir_intrinsic_component(instr);
3617 result = load_flat_input(ctx, index, component,
3618 instr->dest.ssa.num_components,
3619 instr->dest.ssa.bit_size);
3620 break;
3621 }
3622 case nir_intrinsic_emit_vertex:
3623 ctx->abi->emit_vertex(ctx->abi, nir_intrinsic_stream_id(instr), ctx->abi->outputs);
3624 break;
3625 case nir_intrinsic_end_primitive:
3626 ctx->abi->emit_primitive(ctx->abi, nir_intrinsic_stream_id(instr));
3627 break;
3628 case nir_intrinsic_load_tess_coord:
3629 result = ctx->abi->load_tess_coord(ctx->abi);
3630 break;
3631 case nir_intrinsic_load_tess_level_outer:
3632 result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_OUTER, false);
3633 break;
3634 case nir_intrinsic_load_tess_level_inner:
3635 result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_INNER, false);
3636 break;
3637 case nir_intrinsic_load_tess_level_outer_default:
3638 result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_OUTER, true);
3639 break;
3640 case nir_intrinsic_load_tess_level_inner_default:
3641 result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_INNER, true);
3642 break;
3643 case nir_intrinsic_load_patch_vertices_in:
3644 result = ctx->abi->load_patch_vertices_in(ctx->abi);
3645 break;
3646 case nir_intrinsic_vote_all: {
3647 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, get_src(ctx, instr->src[0]));
3648 result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
3649 break;
3650 }
3651 case nir_intrinsic_vote_any: {
3652 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, get_src(ctx, instr->src[0]));
3653 result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
3654 break;
3655 }
3656 case nir_intrinsic_shuffle:
3657 result = ac_build_shuffle(&ctx->ac, get_src(ctx, instr->src[0]),
3658 get_src(ctx, instr->src[1]));
3659 break;
3660 case nir_intrinsic_reduce:
3661 result = ac_build_reduce(&ctx->ac,
3662 get_src(ctx, instr->src[0]),
3663 instr->const_index[0],
3664 instr->const_index[1]);
3665 break;
3666 case nir_intrinsic_inclusive_scan:
3667 result = ac_build_inclusive_scan(&ctx->ac,
3668 get_src(ctx, instr->src[0]),
3669 instr->const_index[0]);
3670 break;
3671 case nir_intrinsic_exclusive_scan:
3672 result = ac_build_exclusive_scan(&ctx->ac,
3673 get_src(ctx, instr->src[0]),
3674 instr->const_index[0]);
3675 break;
3676 case nir_intrinsic_quad_broadcast: {
3677 unsigned lane = nir_src_as_uint(instr->src[1]);
3678 result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]),
3679 lane, lane, lane, lane);
3680 break;
3681 }
3682 case nir_intrinsic_quad_swap_horizontal:
3683 result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 1, 0, 3 ,2);
3684 break;
3685 case nir_intrinsic_quad_swap_vertical:
3686 result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 2, 3, 0 ,1);
3687 break;
3688 case nir_intrinsic_quad_swap_diagonal:
3689 result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 3, 2, 1 ,0);
3690 break;
3691 case nir_intrinsic_quad_swizzle_amd: {
3692 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
3693 result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]),
3694 mask & 0x3, (mask >> 2) & 0x3,
3695 (mask >> 4) & 0x3, (mask >> 6) & 0x3);
3696 break;
3697 }
3698 case nir_intrinsic_masked_swizzle_amd: {
3699 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
3700 result = ac_build_ds_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), mask);
3701 break;
3702 }
3703 case nir_intrinsic_write_invocation_amd:
3704 result = ac_build_writelane(&ctx->ac, get_src(ctx, instr->src[0]),
3705 get_src(ctx, instr->src[1]),
3706 get_src(ctx, instr->src[2]));
3707 break;
3708 case nir_intrinsic_mbcnt_amd:
3709 result = ac_build_mbcnt(&ctx->ac, get_src(ctx, instr->src[0]));
3710 break;
3711 case nir_intrinsic_load_scratch: {
3712 LLVMValueRef offset = get_src(ctx, instr->src[0]);
3713 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->scratch,
3714 offset);
3715 LLVMTypeRef comp_type =
3716 LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
3717 LLVMTypeRef vec_type =
3718 instr->dest.ssa.num_components == 1 ? comp_type :
3719 LLVMVectorType(comp_type, instr->dest.ssa.num_components);
3720 unsigned addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
3721 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
3722 LLVMPointerType(vec_type, addr_space), "");
3723 result = LLVMBuildLoad(ctx->ac.builder, ptr, "");
3724 break;
3725 }
3726 case nir_intrinsic_store_scratch: {
3727 LLVMValueRef offset = get_src(ctx, instr->src[1]);
3728 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->scratch,
3729 offset);
3730 LLVMTypeRef comp_type =
3731 LLVMIntTypeInContext(ctx->ac.context, instr->src[0].ssa->bit_size);
3732 unsigned addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
3733 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
3734 LLVMPointerType(comp_type, addr_space), "");
3735 LLVMValueRef src = get_src(ctx, instr->src[0]);
3736 unsigned wrmask = nir_intrinsic_write_mask(instr);
3737 while (wrmask) {
3738 int start, count;
3739 u_bit_scan_consecutive_range(&wrmask, &start, &count);
3740
3741 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, start, false);
3742 LLVMValueRef offset_ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &offset, 1, "");
3743 LLVMTypeRef vec_type =
3744 count == 1 ? comp_type : LLVMVectorType(comp_type, count);
3745 offset_ptr = LLVMBuildBitCast(ctx->ac.builder,
3746 offset_ptr,
3747 LLVMPointerType(vec_type, addr_space),
3748 "");
3749 LLVMValueRef offset_src =
3750 ac_extract_components(&ctx->ac, src, start, count);
3751 LLVMBuildStore(ctx->ac.builder, offset_src, offset_ptr);
3752 }
3753 break;
3754 }
3755 case nir_intrinsic_load_constant: {
3756 LLVMValueRef offset = get_src(ctx, instr->src[0]);
3757 LLVMValueRef base = LLVMConstInt(ctx->ac.i32,
3758 nir_intrinsic_base(instr),
3759 false);
3760 offset = LLVMBuildAdd(ctx->ac.builder, offset, base, "");
3761 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->constant_data,
3762 offset);
3763 LLVMTypeRef comp_type =
3764 LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
3765 LLVMTypeRef vec_type =
3766 instr->dest.ssa.num_components == 1 ? comp_type :
3767 LLVMVectorType(comp_type, instr->dest.ssa.num_components);
3768 unsigned addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
3769 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
3770 LLVMPointerType(vec_type, addr_space), "");
3771 result = LLVMBuildLoad(ctx->ac.builder, ptr, "");
3772 break;
3773 }
3774 default:
3775 fprintf(stderr, "Unknown intrinsic: ");
3776 nir_print_instr(&instr->instr, stderr);
3777 fprintf(stderr, "\n");
3778 break;
3779 }
3780 if (result) {
3781 ctx->ssa_defs[instr->dest.ssa.index] = result;
3782 }
3783 }
3784
3785 static LLVMValueRef get_bindless_index_from_uniform(struct ac_nir_context *ctx,
3786 unsigned base_index,
3787 unsigned constant_index,
3788 LLVMValueRef dynamic_index)
3789 {
3790 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, base_index * 4, 0);
3791 LLVMValueRef index = LLVMBuildAdd(ctx->ac.builder, dynamic_index,
3792 LLVMConstInt(ctx->ac.i32, constant_index, 0), "");
3793
3794 /* Bindless uniforms are 64bit so multiple index by 8 */
3795 index = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->ac.i32, 8, 0), "");
3796 offset = LLVMBuildAdd(ctx->ac.builder, offset, index, "");
3797
3798 LLVMValueRef ubo_index = ctx->abi->load_ubo(ctx->abi, ctx->ac.i32_0);
3799
3800 LLVMValueRef ret = ac_build_buffer_load(&ctx->ac, ubo_index, 1, NULL, offset,
3801 NULL, 0, 0, true, true);
3802
3803 return LLVMBuildBitCast(ctx->ac.builder, ret, ctx->ac.i32, "");
3804 }
3805
3806 static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
3807 nir_deref_instr *deref_instr,
3808 enum ac_descriptor_type desc_type,
3809 const nir_instr *instr,
3810 bool image, bool write)
3811 {
3812 LLVMValueRef index = NULL;
3813 unsigned constant_index = 0;
3814 unsigned descriptor_set;
3815 unsigned base_index;
3816 bool bindless = false;
3817
3818 if (!deref_instr) {
3819 descriptor_set = 0;
3820 if (image) {
3821 nir_intrinsic_instr *img_instr = nir_instr_as_intrinsic(instr);
3822 base_index = 0;
3823 bindless = true;
3824 index = get_src(ctx, img_instr->src[0]);
3825 } else {
3826 nir_tex_instr *tex_instr = nir_instr_as_tex(instr);
3827 int sampSrcIdx = nir_tex_instr_src_index(tex_instr,
3828 nir_tex_src_sampler_handle);
3829 if (sampSrcIdx != -1) {
3830 base_index = 0;
3831 bindless = true;
3832 index = get_src(ctx, tex_instr->src[sampSrcIdx].src);
3833 } else {
3834 assert(tex_instr && !image);
3835 base_index = tex_instr->sampler_index;
3836 }
3837 }
3838 } else {
3839 while(deref_instr->deref_type != nir_deref_type_var) {
3840 if (deref_instr->deref_type == nir_deref_type_array) {
3841 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
3842 if (!array_size)
3843 array_size = 1;
3844
3845 if (nir_src_is_const(deref_instr->arr.index)) {
3846 constant_index += array_size * nir_src_as_uint(deref_instr->arr.index);
3847 } else {
3848 LLVMValueRef indirect = get_src(ctx, deref_instr->arr.index);
3849
3850 indirect = LLVMBuildMul(ctx->ac.builder, indirect,
3851 LLVMConstInt(ctx->ac.i32, array_size, false), "");
3852
3853 if (!index)
3854 index = indirect;
3855 else
3856 index = LLVMBuildAdd(ctx->ac.builder, index, indirect, "");
3857 }
3858
3859 deref_instr = nir_src_as_deref(deref_instr->parent);
3860 } else if (deref_instr->deref_type == nir_deref_type_struct) {
3861 unsigned sidx = deref_instr->strct.index;
3862 deref_instr = nir_src_as_deref(deref_instr->parent);
3863 constant_index += glsl_get_struct_location_offset(deref_instr->type, sidx);
3864 } else {
3865 unreachable("Unsupported deref type");
3866 }
3867 }
3868 descriptor_set = deref_instr->var->data.descriptor_set;
3869
3870 if (deref_instr->var->data.bindless) {
3871 /* For now just assert on unhandled variable types */
3872 assert(deref_instr->var->data.mode == nir_var_uniform);
3873
3874 base_index = deref_instr->var->data.driver_location;
3875 bindless = true;
3876
3877 index = index ? index : ctx->ac.i32_0;
3878 index = get_bindless_index_from_uniform(ctx, base_index,
3879 constant_index, index);
3880 } else
3881 base_index = deref_instr->var->data.binding;
3882 }
3883
3884 return ctx->abi->load_sampler_desc(ctx->abi,
3885 descriptor_set,
3886 base_index,
3887 constant_index, index,
3888 desc_type, image, write, bindless);
3889 }
3890
3891 /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
3892 *
3893 * GFX6-GFX7:
3894 * If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
3895 * filtering manually. The driver sets img7 to a mask clearing
3896 * MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
3897 * s_and_b32 samp0, samp0, img7
3898 *
3899 * GFX8:
3900 * The ANISO_OVERRIDE sampler field enables this fix in TA.
3901 */
3902 static LLVMValueRef sici_fix_sampler_aniso(struct ac_nir_context *ctx,
3903 LLVMValueRef res, LLVMValueRef samp)
3904 {
3905 LLVMBuilderRef builder = ctx->ac.builder;
3906 LLVMValueRef img7, samp0;
3907
3908 if (ctx->ac.chip_class >= GFX8)
3909 return samp;
3910
3911 img7 = LLVMBuildExtractElement(builder, res,
3912 LLVMConstInt(ctx->ac.i32, 7, 0), "");
3913 samp0 = LLVMBuildExtractElement(builder, samp,
3914 LLVMConstInt(ctx->ac.i32, 0, 0), "");
3915 samp0 = LLVMBuildAnd(builder, samp0, img7, "");
3916 return LLVMBuildInsertElement(builder, samp, samp0,
3917 LLVMConstInt(ctx->ac.i32, 0, 0), "");
3918 }
3919
3920 static void tex_fetch_ptrs(struct ac_nir_context *ctx,
3921 nir_tex_instr *instr,
3922 LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
3923 LLVMValueRef *fmask_ptr)
3924 {
3925 nir_deref_instr *texture_deref_instr = NULL;
3926 nir_deref_instr *sampler_deref_instr = NULL;
3927 int plane = -1;
3928
3929 for (unsigned i = 0; i < instr->num_srcs; i++) {
3930 switch (instr->src[i].src_type) {
3931 case nir_tex_src_texture_deref:
3932 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
3933 break;
3934 case nir_tex_src_sampler_deref:
3935 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
3936 break;
3937 case nir_tex_src_plane:
3938 plane = nir_src_as_int(instr->src[i].src);
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3945 if (!sampler_deref_instr)
3946 sampler_deref_instr = texture_deref_instr;
3947
3948 enum ac_descriptor_type main_descriptor = instr->sampler_dim == GLSL_SAMPLER_DIM_BUF ? AC_DESC_BUFFER : AC_DESC_IMAGE;
3949
3950 if (plane >= 0) {
3951 assert(instr->op != nir_texop_txf_ms &&
3952 instr->op != nir_texop_samples_identical);
3953 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
3954
3955 main_descriptor = AC_DESC_PLANE_0 + plane;
3956 }
3957
3958 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, main_descriptor, &instr->instr, false, false);
3959
3960 if (samp_ptr) {
3961 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, AC_DESC_SAMPLER, &instr->instr, false, false);
3962 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT)
3963 *samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
3964 }
3965 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
3966 instr->op == nir_texop_samples_identical))
3967 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, AC_DESC_FMASK, &instr->instr, false, false);
3968 }
3969
3970 static LLVMValueRef apply_round_slice(struct ac_llvm_context *ctx,
3971 LLVMValueRef coord)
3972 {
3973 coord = ac_to_float(ctx, coord);
3974 coord = ac_build_round(ctx, coord);
3975 coord = ac_to_integer(ctx, coord);
3976 return coord;
3977 }
3978
3979 static void visit_tex(struct ac_nir_context *ctx, nir_tex_instr *instr)
3980 {
3981 LLVMValueRef result = NULL;
3982 struct ac_image_args args = { 0 };
3983 LLVMValueRef fmask_ptr = NULL, sample_index = NULL;
3984 LLVMValueRef ddx = NULL, ddy = NULL;
3985 unsigned offset_src = 0;
3986
3987 tex_fetch_ptrs(ctx, instr, &args.resource, &args.sampler, &fmask_ptr);
3988
3989 for (unsigned i = 0; i < instr->num_srcs; i++) {
3990 switch (instr->src[i].src_type) {
3991 case nir_tex_src_coord: {
3992 LLVMValueRef coord = get_src(ctx, instr->src[i].src);
3993 for (unsigned chan = 0; chan < instr->coord_components; ++chan)
3994 args.coords[chan] = ac_llvm_extract_elem(&ctx->ac, coord, chan);
3995 break;
3996 }
3997 case nir_tex_src_projector:
3998 break;
3999 case nir_tex_src_comparator:
4000 if (instr->is_shadow) {
4001 args.compare = get_src(ctx, instr->src[i].src);
4002 args.compare = ac_to_float(&ctx->ac, args.compare);
4003 }
4004 break;
4005 case nir_tex_src_offset:
4006 args.offset = get_src(ctx, instr->src[i].src);
4007 offset_src = i;
4008 break;
4009 case nir_tex_src_bias:
4010 if (instr->op == nir_texop_txb)
4011 args.bias = get_src(ctx, instr->src[i].src);
4012 break;
4013 case nir_tex_src_lod: {
4014 if (nir_src_is_const(instr->src[i].src) && nir_src_as_uint(instr->src[i].src) == 0)
4015 args.level_zero = true;
4016 else
4017 args.lod = get_src(ctx, instr->src[i].src);
4018 break;
4019 }
4020 case nir_tex_src_ms_index:
4021 sample_index = get_src(ctx, instr->src[i].src);
4022 break;
4023 case nir_tex_src_ms_mcs:
4024 break;
4025 case nir_tex_src_ddx:
4026 ddx = get_src(ctx, instr->src[i].src);
4027 break;
4028 case nir_tex_src_ddy:
4029 ddy = get_src(ctx, instr->src[i].src);
4030 break;
4031 case nir_tex_src_texture_offset:
4032 case nir_tex_src_sampler_offset:
4033 case nir_tex_src_plane:
4034 default:
4035 break;
4036 }
4037 }
4038
4039 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
4040 result = get_buffer_size(ctx, args.resource, true);
4041 goto write_result;
4042 }
4043
4044 if (instr->op == nir_texop_texture_samples) {
4045 LLVMValueRef res, samples, is_msaa;
4046 res = LLVMBuildBitCast(ctx->ac.builder, args.resource, ctx->ac.v8i32, "");
4047 samples = LLVMBuildExtractElement(ctx->ac.builder, res,
4048 LLVMConstInt(ctx->ac.i32, 3, false), "");
4049 is_msaa = LLVMBuildLShr(ctx->ac.builder, samples,
4050 LLVMConstInt(ctx->ac.i32, 28, false), "");
4051 is_msaa = LLVMBuildAnd(ctx->ac.builder, is_msaa,
4052 LLVMConstInt(ctx->ac.i32, 0xe, false), "");
4053 is_msaa = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, is_msaa,
4054 LLVMConstInt(ctx->ac.i32, 0xe, false), "");
4055
4056 samples = LLVMBuildLShr(ctx->ac.builder, samples,
4057 LLVMConstInt(ctx->ac.i32, 16, false), "");
4058 samples = LLVMBuildAnd(ctx->ac.builder, samples,
4059 LLVMConstInt(ctx->ac.i32, 0xf, false), "");
4060 samples = LLVMBuildShl(ctx->ac.builder, ctx->ac.i32_1,
4061 samples, "");
4062 samples = LLVMBuildSelect(ctx->ac.builder, is_msaa, samples,
4063 ctx->ac.i32_1, "");
4064 result = samples;
4065 goto write_result;
4066 }
4067
4068 if (args.offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
4069 LLVMValueRef offset[3], pack;
4070 for (unsigned chan = 0; chan < 3; ++chan)
4071 offset[chan] = ctx->ac.i32_0;
4072
4073 unsigned num_components = ac_get_llvm_num_components(args.offset);
4074 for (unsigned chan = 0; chan < num_components; chan++) {
4075 offset[chan] = ac_llvm_extract_elem(&ctx->ac, args.offset, chan);
4076 offset[chan] = LLVMBuildAnd(ctx->ac.builder, offset[chan],
4077 LLVMConstInt(ctx->ac.i32, 0x3f, false), "");
4078 if (chan)
4079 offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan],
4080 LLVMConstInt(ctx->ac.i32, chan * 8, false), "");
4081 }
4082 pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], "");
4083 pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], "");
4084 args.offset = pack;
4085 }
4086
4087 /* Section 8.23.1 (Depth Texture Comparison Mode) of the
4088 * OpenGL 4.5 spec says:
4089 *
4090 * "If the texture’s internal format indicates a fixed-point
4091 * depth texture, then D_t and D_ref are clamped to the
4092 * range [0, 1]; otherwise no clamping is performed."
4093 *
4094 * TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
4095 * so the depth comparison value isn't clamped for Z16 and
4096 * Z24 anymore. Do it manually here for GFX8-9; GFX10 has
4097 * an explicitly clamped 32-bit float format.
4098 */
4099 if (args.compare &&
4100 ctx->ac.chip_class >= GFX8 &&
4101 ctx->ac.chip_class <= GFX9 &&
4102 ctx->abi->clamp_shadow_reference) {
4103 LLVMValueRef upgraded, clamped;
4104
4105 upgraded = LLVMBuildExtractElement(ctx->ac.builder, args.sampler,
4106 LLVMConstInt(ctx->ac.i32, 3, false), "");
4107 upgraded = LLVMBuildLShr(ctx->ac.builder, upgraded,
4108 LLVMConstInt(ctx->ac.i32, 29, false), "");
4109 upgraded = LLVMBuildTrunc(ctx->ac.builder, upgraded, ctx->ac.i1, "");
4110 clamped = ac_build_clamp(&ctx->ac, args.compare);
4111 args.compare = LLVMBuildSelect(ctx->ac.builder, upgraded, clamped,
4112 args.compare, "");
4113 }
4114
4115 /* pack derivatives */
4116 if (ddx || ddy) {
4117 int num_src_deriv_channels, num_dest_deriv_channels;
4118 switch (instr->sampler_dim) {
4119 case GLSL_SAMPLER_DIM_3D:
4120 case GLSL_SAMPLER_DIM_CUBE:
4121 num_src_deriv_channels = 3;
4122 num_dest_deriv_channels = 3;
4123 break;
4124 case GLSL_SAMPLER_DIM_2D:
4125 default:
4126 num_src_deriv_channels = 2;
4127 num_dest_deriv_channels = 2;
4128 break;
4129 case GLSL_SAMPLER_DIM_1D:
4130 num_src_deriv_channels = 1;
4131 if (ctx->ac.chip_class == GFX9) {
4132 num_dest_deriv_channels = 2;
4133 } else {
4134 num_dest_deriv_channels = 1;
4135 }
4136 break;
4137 }
4138
4139 for (unsigned i = 0; i < num_src_deriv_channels; i++) {
4140 args.derivs[i] = ac_to_float(&ctx->ac,
4141 ac_llvm_extract_elem(&ctx->ac, ddx, i));
4142 args.derivs[num_dest_deriv_channels + i] = ac_to_float(&ctx->ac,
4143 ac_llvm_extract_elem(&ctx->ac, ddy, i));
4144 }
4145 for (unsigned i = num_src_deriv_channels; i < num_dest_deriv_channels; i++) {
4146 args.derivs[i] = ctx->ac.f32_0;
4147 args.derivs[num_dest_deriv_channels + i] = ctx->ac.f32_0;
4148 }
4149 }
4150
4151 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && args.coords[0]) {
4152 for (unsigned chan = 0; chan < instr->coord_components; chan++)
4153 args.coords[chan] = ac_to_float(&ctx->ac, args.coords[chan]);
4154 if (instr->coord_components == 3)
4155 args.coords[3] = LLVMGetUndef(ctx->ac.f32);
4156 ac_prepare_cube_coords(&ctx->ac,
4157 instr->op == nir_texop_txd, instr->is_array,
4158 instr->op == nir_texop_lod, args.coords, args.derivs);
4159 }
4160
4161 /* Texture coordinates fixups */
4162 if (instr->coord_components > 1 &&
4163 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
4164 instr->is_array &&
4165 instr->op != nir_texop_txf) {
4166 args.coords[1] = apply_round_slice(&ctx->ac, args.coords[1]);
4167 }
4168
4169 if (instr->coord_components > 2 &&
4170 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
4171 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
4172 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
4173 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
4174 instr->is_array &&
4175 instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
4176 args.coords[2] = apply_round_slice(&ctx->ac, args.coords[2]);
4177 }
4178
4179 if (ctx->ac.chip_class == GFX9 &&
4180 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
4181 instr->op != nir_texop_lod) {
4182 LLVMValueRef filler;
4183 if (instr->op == nir_texop_txf)
4184 filler = ctx->ac.i32_0;
4185 else
4186 filler = LLVMConstReal(ctx->ac.f32, 0.5);
4187
4188 if (instr->is_array)
4189 args.coords[2] = args.coords[1];
4190 args.coords[1] = filler;
4191 }
4192
4193 /* Pack sample index */
4194 if (instr->op == nir_texop_txf_ms && sample_index)
4195 args.coords[instr->coord_components] = sample_index;
4196
4197 if (instr->op == nir_texop_samples_identical) {
4198 struct ac_image_args txf_args = { 0 };
4199 memcpy(txf_args.coords, args.coords, sizeof(txf_args.coords));
4200
4201 txf_args.dmask = 0xf;
4202 txf_args.resource = fmask_ptr;
4203 txf_args.dim = instr->is_array ? ac_image_2darray : ac_image_2d;
4204 result = build_tex_intrinsic(ctx, instr, &txf_args);
4205
4206 result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
4207 result = emit_int_cmp(&ctx->ac, LLVMIntEQ, result, ctx->ac.i32_0);
4208 goto write_result;
4209 }
4210
4211 if ((instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ||
4212 instr->sampler_dim == GLSL_SAMPLER_DIM_MS) &&
4213 instr->op != nir_texop_txs) {
4214 unsigned sample_chan = instr->is_array ? 3 : 2;
4215 args.coords[sample_chan] = adjust_sample_index_using_fmask(
4216 &ctx->ac, args.coords[0], args.coords[1],
4217 instr->is_array ? args.coords[2] : NULL,
4218 args.coords[sample_chan], fmask_ptr);
4219 }
4220
4221 if (args.offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
4222 int num_offsets = instr->src[offset_src].src.ssa->num_components;
4223 num_offsets = MIN2(num_offsets, instr->coord_components);
4224 for (unsigned i = 0; i < num_offsets; ++i) {
4225 args.coords[i] = LLVMBuildAdd(
4226 ctx->ac.builder, args.coords[i],
4227 LLVMConstInt(ctx->ac.i32, nir_src_comp_as_uint(instr->src[offset_src].src, i), false), "");
4228 }
4229 args.offset = NULL;
4230 }
4231
4232 /* DMASK was repurposed for GATHER4. 4 components are always
4233 * returned and DMASK works like a swizzle - it selects
4234 * the component to fetch. The only valid DMASK values are
4235 * 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
4236 * (red,red,red,red) etc.) The ISA document doesn't mention
4237 * this.
4238 */
4239 args.dmask = 0xf;
4240 if (instr->op == nir_texop_tg4) {
4241 if (instr->is_shadow)
4242 args.dmask = 1;
4243 else
4244 args.dmask = 1 << instr->component;
4245 }
4246
4247 if (instr->sampler_dim != GLSL_SAMPLER_DIM_BUF) {
4248 args.dim = ac_get_sampler_dim(ctx->ac.chip_class, instr->sampler_dim, instr->is_array);
4249 args.unorm = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
4250 }
4251 result = build_tex_intrinsic(ctx, instr, &args);
4252
4253 if (instr->op == nir_texop_query_levels)
4254 result = LLVMBuildExtractElement(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 3, false), "");
4255 else if (instr->is_shadow && instr->is_new_style_shadow &&
4256 instr->op != nir_texop_txs && instr->op != nir_texop_lod &&
4257 instr->op != nir_texop_tg4)
4258 result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
4259 else if (instr->op == nir_texop_txs &&
4260 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
4261 instr->is_array) {
4262 LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
4263 LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
4264 LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
4265 z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
4266 result = LLVMBuildInsertElement(ctx->ac.builder, result, z, two, "");
4267 } else if (ctx->ac.chip_class == GFX9 &&
4268 instr->op == nir_texop_txs &&
4269 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
4270 instr->is_array) {
4271 LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
4272 LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
4273 result = LLVMBuildInsertElement(ctx->ac.builder, result, layers,
4274 ctx->ac.i32_1, "");
4275 } else if (instr->dest.ssa.num_components != 4)
4276 result = ac_trim_vector(&ctx->ac, result, instr->dest.ssa.num_components);
4277
4278 write_result:
4279 if (result) {
4280 assert(instr->dest.is_ssa);
4281 result = ac_to_integer(&ctx->ac, result);
4282 ctx->ssa_defs[instr->dest.ssa.index] = result;
4283 }
4284 }
4285
4286
4287 static void visit_phi(struct ac_nir_context *ctx, nir_phi_instr *instr)
4288 {
4289 LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa);
4290 LLVMValueRef result = LLVMBuildPhi(ctx->ac.builder, type, "");
4291
4292 ctx->ssa_defs[instr->dest.ssa.index] = result;
4293 _mesa_hash_table_insert(ctx->phis, instr, result);
4294 }
4295
4296 static void visit_post_phi(struct ac_nir_context *ctx,
4297 nir_phi_instr *instr,
4298 LLVMValueRef llvm_phi)
4299 {
4300 nir_foreach_phi_src(src, instr) {
4301 LLVMBasicBlockRef block = get_block(ctx, src->pred);
4302 LLVMValueRef llvm_src = get_src(ctx, src->src);
4303
4304 LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1);
4305 }
4306 }
4307
4308 static void phi_post_pass(struct ac_nir_context *ctx)
4309 {
4310 hash_table_foreach(ctx->phis, entry) {
4311 visit_post_phi(ctx, (nir_phi_instr*)entry->key,
4312 (LLVMValueRef)entry->data);
4313 }
4314 }
4315
4316
4317 static void visit_ssa_undef(struct ac_nir_context *ctx,
4318 const nir_ssa_undef_instr *instr)
4319 {
4320 unsigned num_components = instr->def.num_components;
4321 LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
4322 LLVMValueRef undef;
4323
4324 if (num_components == 1)
4325 undef = LLVMGetUndef(type);
4326 else {
4327 undef = LLVMGetUndef(LLVMVectorType(type, num_components));
4328 }
4329 ctx->ssa_defs[instr->def.index] = undef;
4330 }
4331
4332 static void visit_jump(struct ac_llvm_context *ctx,
4333 const nir_jump_instr *instr)
4334 {
4335 switch (instr->type) {
4336 case nir_jump_break:
4337 ac_build_break(ctx);
4338 break;
4339 case nir_jump_continue:
4340 ac_build_continue(ctx);
4341 break;
4342 default:
4343 fprintf(stderr, "Unknown NIR jump instr: ");
4344 nir_print_instr(&instr->instr, stderr);
4345 fprintf(stderr, "\n");
4346 abort();
4347 }
4348 }
4349
4350 static LLVMTypeRef
4351 glsl_base_to_llvm_type(struct ac_llvm_context *ac,
4352 enum glsl_base_type type)
4353 {
4354 switch (type) {
4355 case GLSL_TYPE_INT:
4356 case GLSL_TYPE_UINT:
4357 case GLSL_TYPE_BOOL:
4358 case GLSL_TYPE_SUBROUTINE:
4359 return ac->i32;
4360 case GLSL_TYPE_INT8:
4361 case GLSL_TYPE_UINT8:
4362 return ac->i8;
4363 case GLSL_TYPE_INT16:
4364 case GLSL_TYPE_UINT16:
4365 return ac->i16;
4366 case GLSL_TYPE_FLOAT:
4367 return ac->f32;
4368 case GLSL_TYPE_FLOAT16:
4369 return ac->f16;
4370 case GLSL_TYPE_INT64:
4371 case GLSL_TYPE_UINT64:
4372 return ac->i64;
4373 case GLSL_TYPE_DOUBLE:
4374 return ac->f64;
4375 default:
4376 unreachable("unknown GLSL type");
4377 }
4378 }
4379
4380 static LLVMTypeRef
4381 glsl_to_llvm_type(struct ac_llvm_context *ac,
4382 const struct glsl_type *type)
4383 {
4384 if (glsl_type_is_scalar(type)) {
4385 return glsl_base_to_llvm_type(ac, glsl_get_base_type(type));
4386 }
4387
4388 if (glsl_type_is_vector(type)) {
4389 return LLVMVectorType(
4390 glsl_base_to_llvm_type(ac, glsl_get_base_type(type)),
4391 glsl_get_vector_elements(type));
4392 }
4393
4394 if (glsl_type_is_matrix(type)) {
4395 return LLVMArrayType(
4396 glsl_to_llvm_type(ac, glsl_get_column_type(type)),
4397 glsl_get_matrix_columns(type));
4398 }
4399
4400 if (glsl_type_is_array(type)) {
4401 return LLVMArrayType(
4402 glsl_to_llvm_type(ac, glsl_get_array_element(type)),
4403 glsl_get_length(type));
4404 }
4405
4406 assert(glsl_type_is_struct_or_ifc(type));
4407
4408 LLVMTypeRef member_types[glsl_get_length(type)];
4409
4410 for (unsigned i = 0; i < glsl_get_length(type); i++) {
4411 member_types[i] =
4412 glsl_to_llvm_type(ac,
4413 glsl_get_struct_field(type, i));
4414 }
4415
4416 return LLVMStructTypeInContext(ac->context, member_types,
4417 glsl_get_length(type), false);
4418 }
4419
4420 static void visit_deref(struct ac_nir_context *ctx,
4421 nir_deref_instr *instr)
4422 {
4423 if (instr->mode != nir_var_mem_shared &&
4424 instr->mode != nir_var_mem_global)
4425 return;
4426
4427 LLVMValueRef result = NULL;
4428 switch(instr->deref_type) {
4429 case nir_deref_type_var: {
4430 struct hash_entry *entry = _mesa_hash_table_search(ctx->vars, instr->var);
4431 result = entry->data;
4432 break;
4433 }
4434 case nir_deref_type_struct:
4435 if (instr->mode == nir_var_mem_global) {
4436 nir_deref_instr *parent = nir_deref_instr_parent(instr);
4437 uint64_t offset = glsl_get_struct_field_offset(parent->type,
4438 instr->strct.index);
4439 result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent),
4440 LLVMConstInt(ctx->ac.i32, offset, 0));
4441 } else {
4442 result = ac_build_gep0(&ctx->ac, get_src(ctx, instr->parent),
4443 LLVMConstInt(ctx->ac.i32, instr->strct.index, 0));
4444 }
4445 break;
4446 case nir_deref_type_array:
4447 if (instr->mode == nir_var_mem_global) {
4448 nir_deref_instr *parent = nir_deref_instr_parent(instr);
4449 unsigned stride = glsl_get_explicit_stride(parent->type);
4450
4451 if ((glsl_type_is_matrix(parent->type) &&
4452 glsl_matrix_type_is_row_major(parent->type)) ||
4453 (glsl_type_is_vector(parent->type) && stride == 0))
4454 stride = type_scalar_size_bytes(parent->type);
4455
4456 assert(stride > 0);
4457 LLVMValueRef index = get_src(ctx, instr->arr.index);
4458 if (LLVMTypeOf(index) != ctx->ac.i64)
4459 index = LLVMBuildZExt(ctx->ac.builder, index, ctx->ac.i64, "");
4460
4461 LLVMValueRef offset = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->ac.i64, stride, 0), "");
4462
4463 result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent), offset);
4464 } else {
4465 result = ac_build_gep0(&ctx->ac, get_src(ctx, instr->parent),
4466 get_src(ctx, instr->arr.index));
4467 }
4468 break;
4469 case nir_deref_type_ptr_as_array:
4470 if (instr->mode == nir_var_mem_global) {
4471 unsigned stride = nir_deref_instr_ptr_as_array_stride(instr);
4472
4473 LLVMValueRef index = get_src(ctx, instr->arr.index);
4474 if (LLVMTypeOf(index) != ctx->ac.i64)
4475 index = LLVMBuildZExt(ctx->ac.builder, index, ctx->ac.i64, "");
4476
4477 LLVMValueRef offset = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->ac.i64, stride, 0), "");
4478
4479 result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent), offset);
4480 } else {
4481 result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent),
4482 get_src(ctx, instr->arr.index));
4483 }
4484 break;
4485 case nir_deref_type_cast: {
4486 result = get_src(ctx, instr->parent);
4487
4488 /* We can't use the structs from LLVM because the shader
4489 * specifies its own offsets. */
4490 LLVMTypeRef pointee_type = ctx->ac.i8;
4491 if (instr->mode == nir_var_mem_shared)
4492 pointee_type = glsl_to_llvm_type(&ctx->ac, instr->type);
4493
4494 unsigned address_space;
4495
4496 switch(instr->mode) {
4497 case nir_var_mem_shared:
4498 address_space = AC_ADDR_SPACE_LDS;
4499 break;
4500 case nir_var_mem_global:
4501 address_space = AC_ADDR_SPACE_GLOBAL;
4502 break;
4503 default:
4504 unreachable("Unhandled address space");
4505 }
4506
4507 LLVMTypeRef type = LLVMPointerType(pointee_type, address_space);
4508
4509 if (LLVMTypeOf(result) != type) {
4510 if (LLVMGetTypeKind(LLVMTypeOf(result)) == LLVMVectorTypeKind) {
4511 result = LLVMBuildBitCast(ctx->ac.builder, result,
4512 type, "");
4513 } else {
4514 result = LLVMBuildIntToPtr(ctx->ac.builder, result,
4515 type, "");
4516 }
4517 }
4518 break;
4519 }
4520 default:
4521 unreachable("Unhandled deref_instr deref type");
4522 }
4523
4524 ctx->ssa_defs[instr->dest.ssa.index] = result;
4525 }
4526
4527 static void visit_cf_list(struct ac_nir_context *ctx,
4528 struct exec_list *list);
4529
4530 static void visit_block(struct ac_nir_context *ctx, nir_block *block)
4531 {
4532 nir_foreach_instr(instr, block)
4533 {
4534 switch (instr->type) {
4535 case nir_instr_type_alu:
4536 visit_alu(ctx, nir_instr_as_alu(instr));
4537 break;
4538 case nir_instr_type_load_const:
4539 visit_load_const(ctx, nir_instr_as_load_const(instr));
4540 break;
4541 case nir_instr_type_intrinsic:
4542 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
4543 break;
4544 case nir_instr_type_tex:
4545 visit_tex(ctx, nir_instr_as_tex(instr));
4546 break;
4547 case nir_instr_type_phi:
4548 visit_phi(ctx, nir_instr_as_phi(instr));
4549 break;
4550 case nir_instr_type_ssa_undef:
4551 visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
4552 break;
4553 case nir_instr_type_jump:
4554 visit_jump(&ctx->ac, nir_instr_as_jump(instr));
4555 break;
4556 case nir_instr_type_deref:
4557 visit_deref(ctx, nir_instr_as_deref(instr));
4558 break;
4559 default:
4560 fprintf(stderr, "Unknown NIR instr type: ");
4561 nir_print_instr(instr, stderr);
4562 fprintf(stderr, "\n");
4563 abort();
4564 }
4565 }
4566
4567 _mesa_hash_table_insert(ctx->defs, block,
4568 LLVMGetInsertBlock(ctx->ac.builder));
4569 }
4570
4571 static void visit_if(struct ac_nir_context *ctx, nir_if *if_stmt)
4572 {
4573 LLVMValueRef value = get_src(ctx, if_stmt->condition);
4574
4575 nir_block *then_block =
4576 (nir_block *) exec_list_get_head(&if_stmt->then_list);
4577
4578 ac_build_uif(&ctx->ac, value, then_block->index);
4579
4580 visit_cf_list(ctx, &if_stmt->then_list);
4581
4582 if (!exec_list_is_empty(&if_stmt->else_list)) {
4583 nir_block *else_block =
4584 (nir_block *) exec_list_get_head(&if_stmt->else_list);
4585
4586 ac_build_else(&ctx->ac, else_block->index);
4587 visit_cf_list(ctx, &if_stmt->else_list);
4588 }
4589
4590 ac_build_endif(&ctx->ac, then_block->index);
4591 }
4592
4593 static void visit_loop(struct ac_nir_context *ctx, nir_loop *loop)
4594 {
4595 nir_block *first_loop_block =
4596 (nir_block *) exec_list_get_head(&loop->body);
4597
4598 ac_build_bgnloop(&ctx->ac, first_loop_block->index);
4599
4600 visit_cf_list(ctx, &loop->body);
4601
4602 ac_build_endloop(&ctx->ac, first_loop_block->index);
4603 }
4604
4605 static void visit_cf_list(struct ac_nir_context *ctx,
4606 struct exec_list *list)
4607 {
4608 foreach_list_typed(nir_cf_node, node, node, list)
4609 {
4610 switch (node->type) {
4611 case nir_cf_node_block:
4612 visit_block(ctx, nir_cf_node_as_block(node));
4613 break;
4614
4615 case nir_cf_node_if:
4616 visit_if(ctx, nir_cf_node_as_if(node));
4617 break;
4618
4619 case nir_cf_node_loop:
4620 visit_loop(ctx, nir_cf_node_as_loop(node));
4621 break;
4622
4623 default:
4624 assert(0);
4625 }
4626 }
4627 }
4628
4629 void
4630 ac_handle_shader_output_decl(struct ac_llvm_context *ctx,
4631 struct ac_shader_abi *abi,
4632 struct nir_shader *nir,
4633 struct nir_variable *variable,
4634 gl_shader_stage stage)
4635 {
4636 unsigned output_loc = variable->data.driver_location / 4;
4637 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
4638
4639 /* tess ctrl has it's own load/store paths for outputs */
4640 if (stage == MESA_SHADER_TESS_CTRL)
4641 return;
4642
4643 if (stage == MESA_SHADER_VERTEX ||
4644 stage == MESA_SHADER_TESS_EVAL ||
4645 stage == MESA_SHADER_GEOMETRY) {
4646 int idx = variable->data.location + variable->data.index;
4647 if (idx == VARYING_SLOT_CLIP_DIST0) {
4648 int length = nir->info.clip_distance_array_size +
4649 nir->info.cull_distance_array_size;
4650
4651 if (length > 4)
4652 attrib_count = 2;
4653 else
4654 attrib_count = 1;
4655 }
4656 }
4657
4658 bool is_16bit = glsl_type_is_16bit(glsl_without_array(variable->type));
4659 LLVMTypeRef type = is_16bit ? ctx->f16 : ctx->f32;
4660 for (unsigned i = 0; i < attrib_count; ++i) {
4661 for (unsigned chan = 0; chan < 4; chan++) {
4662 abi->outputs[ac_llvm_reg_index_soa(output_loc + i, chan)] =
4663 ac_build_alloca_undef(ctx, type, "");
4664 }
4665 }
4666 }
4667
4668 static void
4669 setup_locals(struct ac_nir_context *ctx,
4670 struct nir_function *func)
4671 {
4672 int i, j;
4673 ctx->num_locals = 0;
4674 nir_foreach_variable(variable, &func->impl->locals) {
4675 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
4676 variable->data.driver_location = ctx->num_locals * 4;
4677 variable->data.location_frac = 0;
4678 ctx->num_locals += attrib_count;
4679 }
4680 ctx->locals = malloc(4 * ctx->num_locals * sizeof(LLVMValueRef));
4681 if (!ctx->locals)
4682 return;
4683
4684 for (i = 0; i < ctx->num_locals; i++) {
4685 for (j = 0; j < 4; j++) {
4686 ctx->locals[i * 4 + j] =
4687 ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "temp");
4688 }
4689 }
4690 }
4691
4692 static void
4693 setup_scratch(struct ac_nir_context *ctx,
4694 struct nir_shader *shader)
4695 {
4696 if (shader->scratch_size == 0)
4697 return;
4698
4699 ctx->scratch = ac_build_alloca_undef(&ctx->ac,
4700 LLVMArrayType(ctx->ac.i8, shader->scratch_size),
4701 "scratch");
4702 }
4703
4704 static void
4705 setup_constant_data(struct ac_nir_context *ctx,
4706 struct nir_shader *shader)
4707 {
4708 if (!shader->constant_data)
4709 return;
4710
4711 LLVMValueRef data =
4712 LLVMConstStringInContext(ctx->ac.context,
4713 shader->constant_data,
4714 shader->constant_data_size,
4715 true);
4716 LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, shader->constant_data_size);
4717
4718 /* We want to put the constant data in the CONST address space so that
4719 * we can use scalar loads. However, LLVM versions before 10 put these
4720 * variables in the same section as the code, which is unacceptable
4721 * for RadeonSI as it needs to relocate all the data sections after
4722 * the code sections. See https://reviews.llvm.org/D65813.
4723 */
4724 unsigned address_space =
4725 LLVM_VERSION_MAJOR < 10 ? AC_ADDR_SPACE_GLOBAL : AC_ADDR_SPACE_CONST;
4726
4727 LLVMValueRef global =
4728 LLVMAddGlobalInAddressSpace(ctx->ac.module, type,
4729 "const_data",
4730 address_space);
4731
4732 LLVMSetInitializer(global, data);
4733 LLVMSetGlobalConstant(global, true);
4734 LLVMSetVisibility(global, LLVMHiddenVisibility);
4735 ctx->constant_data = global;
4736 }
4737
4738 static void
4739 setup_shared(struct ac_nir_context *ctx,
4740 struct nir_shader *nir)
4741 {
4742 if (ctx->ac.lds)
4743 return;
4744
4745 LLVMTypeRef type = LLVMArrayType(ctx->ac.i8,
4746 nir->info.cs.shared_size);
4747
4748 LLVMValueRef lds =
4749 LLVMAddGlobalInAddressSpace(ctx->ac.module, type,
4750 "compute_lds",
4751 AC_ADDR_SPACE_LDS);
4752 LLVMSetAlignment(lds, 64 * 1024);
4753
4754 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, lds,
4755 LLVMPointerType(ctx->ac.i8,
4756 AC_ADDR_SPACE_LDS), "");
4757 }
4758
4759 void ac_nir_translate(struct ac_llvm_context *ac, struct ac_shader_abi *abi,
4760 const struct ac_shader_args *args, struct nir_shader *nir)
4761 {
4762 struct ac_nir_context ctx = {};
4763 struct nir_function *func;
4764
4765 ctx.ac = *ac;
4766 ctx.abi = abi;
4767 ctx.args = args;
4768
4769 ctx.stage = nir->info.stage;
4770 ctx.info = &nir->info;
4771
4772 ctx.main_function = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
4773
4774 nir_foreach_variable(variable, &nir->outputs)
4775 ac_handle_shader_output_decl(&ctx.ac, ctx.abi, nir, variable,
4776 ctx.stage);
4777
4778 ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
4779 _mesa_key_pointer_equal);
4780 ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
4781 _mesa_key_pointer_equal);
4782 ctx.vars = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
4783 _mesa_key_pointer_equal);
4784
4785 func = (struct nir_function *)exec_list_get_head(&nir->functions);
4786
4787 nir_index_ssa_defs(func->impl);
4788 ctx.ssa_defs = calloc(func->impl->ssa_alloc, sizeof(LLVMValueRef));
4789
4790 setup_locals(&ctx, func);
4791 setup_scratch(&ctx, nir);
4792 setup_constant_data(&ctx, nir);
4793
4794 if (gl_shader_stage_is_compute(nir->info.stage))
4795 setup_shared(&ctx, nir);
4796
4797 visit_cf_list(&ctx, &func->impl->body);
4798 phi_post_pass(&ctx);
4799
4800 if (!gl_shader_stage_is_compute(nir->info.stage))
4801 ctx.abi->emit_outputs(ctx.abi, AC_LLVM_MAX_OUTPUTS,
4802 ctx.abi->outputs);
4803
4804 free(ctx.locals);
4805 free(ctx.ssa_defs);
4806 ralloc_free(ctx.defs);
4807 ralloc_free(ctx.phis);
4808 ralloc_free(ctx.vars);
4809 }
4810
4811 bool
4812 ac_lower_indirect_derefs(struct nir_shader *nir, enum chip_class chip_class)
4813 {
4814 bool progress = false;
4815
4816 /* Lower large variables to scratch first so that we won't bloat the
4817 * shader by generating large if ladders for them. We later lower
4818 * scratch to alloca's, assuming LLVM won't generate VGPR indexing.
4819 */
4820 NIR_PASS(progress, nir, nir_lower_vars_to_scratch,
4821 nir_var_function_temp,
4822 256,
4823 glsl_get_natural_size_align_bytes);
4824
4825 /* While it would be nice not to have this flag, we are constrained
4826 * by the reality that LLVM 9.0 has buggy VGPR indexing on GFX9.
4827 */
4828 bool llvm_has_working_vgpr_indexing = chip_class != GFX9;
4829
4830 /* TODO: Indirect indexing of GS inputs is unimplemented.
4831 *
4832 * TCS and TES load inputs directly from LDS or offchip memory, so
4833 * indirect indexing is trivial.
4834 */
4835 nir_variable_mode indirect_mask = 0;
4836 if (nir->info.stage == MESA_SHADER_GEOMETRY ||
4837 (nir->info.stage != MESA_SHADER_TESS_CTRL &&
4838 nir->info.stage != MESA_SHADER_TESS_EVAL &&
4839 !llvm_has_working_vgpr_indexing)) {
4840 indirect_mask |= nir_var_shader_in;
4841 }
4842 if (!llvm_has_working_vgpr_indexing &&
4843 nir->info.stage != MESA_SHADER_TESS_CTRL)
4844 indirect_mask |= nir_var_shader_out;
4845
4846 /* TODO: We shouldn't need to do this, however LLVM isn't currently
4847 * smart enough to handle indirects without causing excess spilling
4848 * causing the gpu to hang.
4849 *
4850 * See the following thread for more details of the problem:
4851 * https://lists.freedesktop.org/archives/mesa-dev/2017-July/162106.html
4852 */
4853 indirect_mask |= nir_var_function_temp;
4854
4855 progress |= nir_lower_indirect_derefs(nir, indirect_mask);
4856 return progress;
4857 }
4858
4859 static unsigned
4860 get_inst_tessfactor_writemask(nir_intrinsic_instr *intrin)
4861 {
4862 if (intrin->intrinsic != nir_intrinsic_store_deref)
4863 return 0;
4864
4865 nir_variable *var =
4866 nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[0]));
4867
4868 if (var->data.mode != nir_var_shader_out)
4869 return 0;
4870
4871 unsigned writemask = 0;
4872 const int location = var->data.location;
4873 unsigned first_component = var->data.location_frac;
4874 unsigned num_comps = intrin->dest.ssa.num_components;
4875
4876 if (location == VARYING_SLOT_TESS_LEVEL_INNER)
4877 writemask = ((1 << (num_comps + 1)) - 1) << first_component;
4878 else if (location == VARYING_SLOT_TESS_LEVEL_OUTER)
4879 writemask = (((1 << (num_comps + 1)) - 1) << first_component) << 4;
4880
4881 return writemask;
4882 }
4883
4884 static void
4885 scan_tess_ctrl(nir_cf_node *cf_node, unsigned *upper_block_tf_writemask,
4886 unsigned *cond_block_tf_writemask,
4887 bool *tessfactors_are_def_in_all_invocs, bool is_nested_cf)
4888 {
4889 switch (cf_node->type) {
4890 case nir_cf_node_block: {
4891 nir_block *block = nir_cf_node_as_block(cf_node);
4892 nir_foreach_instr(instr, block) {
4893 if (instr->type != nir_instr_type_intrinsic)
4894 continue;
4895
4896 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
4897 if (intrin->intrinsic == nir_intrinsic_barrier) {
4898
4899 /* If we find a barrier in nested control flow put this in the
4900 * too hard basket. In GLSL this is not possible but it is in
4901 * SPIR-V.
4902 */
4903 if (is_nested_cf) {
4904 *tessfactors_are_def_in_all_invocs = false;
4905 return;
4906 }
4907
4908 /* The following case must be prevented:
4909 * gl_TessLevelInner = ...;
4910 * barrier();
4911 * if (gl_InvocationID == 1)
4912 * gl_TessLevelInner = ...;
4913 *
4914 * If you consider disjoint code segments separated by barriers, each
4915 * such segment that writes tess factor channels should write the same
4916 * channels in all codepaths within that segment.
4917 */
4918 if (upper_block_tf_writemask || cond_block_tf_writemask) {
4919 /* Accumulate the result: */
4920 *tessfactors_are_def_in_all_invocs &=
4921 !(*cond_block_tf_writemask & ~(*upper_block_tf_writemask));
4922
4923 /* Analyze the next code segment from scratch. */
4924 *upper_block_tf_writemask = 0;
4925 *cond_block_tf_writemask = 0;
4926 }
4927 } else
4928 *upper_block_tf_writemask |= get_inst_tessfactor_writemask(intrin);
4929 }
4930
4931 break;
4932 }
4933 case nir_cf_node_if: {
4934 unsigned then_tessfactor_writemask = 0;
4935 unsigned else_tessfactor_writemask = 0;
4936
4937 nir_if *if_stmt = nir_cf_node_as_if(cf_node);
4938 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list) {
4939 scan_tess_ctrl(nested_node, &then_tessfactor_writemask,
4940 cond_block_tf_writemask,
4941 tessfactors_are_def_in_all_invocs, true);
4942 }
4943
4944 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list) {
4945 scan_tess_ctrl(nested_node, &else_tessfactor_writemask,
4946 cond_block_tf_writemask,
4947 tessfactors_are_def_in_all_invocs, true);
4948 }
4949
4950 if (then_tessfactor_writemask || else_tessfactor_writemask) {
4951 /* If both statements write the same tess factor channels,
4952 * we can say that the upper block writes them too.
4953 */
4954 *upper_block_tf_writemask |= then_tessfactor_writemask &
4955 else_tessfactor_writemask;
4956 *cond_block_tf_writemask |= then_tessfactor_writemask |
4957 else_tessfactor_writemask;
4958 }
4959
4960 break;
4961 }
4962 case nir_cf_node_loop: {
4963 nir_loop *loop = nir_cf_node_as_loop(cf_node);
4964 foreach_list_typed(nir_cf_node, nested_node, node, &loop->body) {
4965 scan_tess_ctrl(nested_node, cond_block_tf_writemask,
4966 cond_block_tf_writemask,
4967 tessfactors_are_def_in_all_invocs, true);
4968 }
4969
4970 break;
4971 }
4972 default:
4973 unreachable("unknown cf node type");
4974 }
4975 }
4976
4977 bool
4978 ac_are_tessfactors_def_in_all_invocs(const struct nir_shader *nir)
4979 {
4980 assert(nir->info.stage == MESA_SHADER_TESS_CTRL);
4981
4982 /* The pass works as follows:
4983 * If all codepaths write tess factors, we can say that all
4984 * invocations define tess factors.
4985 *
4986 * Each tess factor channel is tracked separately.
4987 */
4988 unsigned main_block_tf_writemask = 0; /* if main block writes tess factors */
4989 unsigned cond_block_tf_writemask = 0; /* if cond block writes tess factors */
4990
4991 /* Initial value = true. Here the pass will accumulate results from
4992 * multiple segments surrounded by barriers. If tess factors aren't
4993 * written at all, it's a shader bug and we don't care if this will be
4994 * true.
4995 */
4996 bool tessfactors_are_def_in_all_invocs = true;
4997
4998 nir_foreach_function(function, nir) {
4999 if (function->impl) {
5000 foreach_list_typed(nir_cf_node, node, node, &function->impl->body) {
5001 scan_tess_ctrl(node, &main_block_tf_writemask,
5002 &cond_block_tf_writemask,
5003 &tessfactors_are_def_in_all_invocs,
5004 false);
5005 }
5006 }
5007 }
5008
5009 /* Accumulate the result for the last code segment separated by a
5010 * barrier.
5011 */
5012 if (main_block_tf_writemask || cond_block_tf_writemask) {
5013 tessfactors_are_def_in_all_invocs &=
5014 !(cond_block_tf_writemask & ~main_block_tf_writemask);
5015 }
5016
5017 return tessfactors_are_def_in_all_invocs;
5018 }